4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
23 * This function balances dirty node and dentry pages.
24 * In addition, it controls garbage collection.
26 void f2fs_balance_fs(struct f2fs_sb_info
*sbi
)
29 * We should do GC or end up with checkpoint, if there are so many dirty
30 * dir/node pages without enough free segments.
32 if (has_not_enough_free_secs(sbi
)) {
33 mutex_lock(&sbi
->gc_mutex
);
38 static void __locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
39 enum dirty_type dirty_type
)
41 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
43 /* need not be added */
44 if (IS_CURSEG(sbi
, segno
))
47 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
48 dirty_i
->nr_dirty
[dirty_type
]++;
50 if (dirty_type
== DIRTY
) {
51 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
52 dirty_type
= sentry
->type
;
53 if (!test_and_set_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
54 dirty_i
->nr_dirty
[dirty_type
]++;
58 static void __remove_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
,
59 enum dirty_type dirty_type
)
61 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
63 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[dirty_type
]))
64 dirty_i
->nr_dirty
[dirty_type
]--;
66 if (dirty_type
== DIRTY
) {
67 struct seg_entry
*sentry
= get_seg_entry(sbi
, segno
);
68 dirty_type
= sentry
->type
;
69 if (test_and_clear_bit(segno
,
70 dirty_i
->dirty_segmap
[dirty_type
]))
71 dirty_i
->nr_dirty
[dirty_type
]--;
72 clear_bit(segno
, dirty_i
->victim_segmap
[FG_GC
]);
73 clear_bit(segno
, dirty_i
->victim_segmap
[BG_GC
]);
78 * Should not occur error such as -ENOMEM.
79 * Adding dirty entry into seglist is not critical operation.
80 * If a given segment is one of current working segments, it won't be added.
82 void locate_dirty_segment(struct f2fs_sb_info
*sbi
, unsigned int segno
)
84 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
85 unsigned short valid_blocks
;
87 if (segno
== NULL_SEGNO
|| IS_CURSEG(sbi
, segno
))
90 mutex_lock(&dirty_i
->seglist_lock
);
92 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
94 if (valid_blocks
== 0) {
95 __locate_dirty_segment(sbi
, segno
, PRE
);
96 __remove_dirty_segment(sbi
, segno
, DIRTY
);
97 } else if (valid_blocks
< sbi
->blocks_per_seg
) {
98 __locate_dirty_segment(sbi
, segno
, DIRTY
);
100 /* Recovery routine with SSR needs this */
101 __remove_dirty_segment(sbi
, segno
, DIRTY
);
104 mutex_unlock(&dirty_i
->seglist_lock
);
109 * Should call clear_prefree_segments after checkpoint is done.
111 static void set_prefree_as_free_segments(struct f2fs_sb_info
*sbi
)
113 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
114 unsigned int segno
, offset
= 0;
115 unsigned int total_segs
= TOTAL_SEGS(sbi
);
117 mutex_lock(&dirty_i
->seglist_lock
);
119 segno
= find_next_bit(dirty_i
->dirty_segmap
[PRE
], total_segs
,
121 if (segno
>= total_segs
)
123 __set_test_and_free(sbi
, segno
);
126 mutex_unlock(&dirty_i
->seglist_lock
);
129 void clear_prefree_segments(struct f2fs_sb_info
*sbi
)
131 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
132 unsigned int segno
, offset
= 0;
133 unsigned int total_segs
= TOTAL_SEGS(sbi
);
135 mutex_lock(&dirty_i
->seglist_lock
);
137 segno
= find_next_bit(dirty_i
->dirty_segmap
[PRE
], total_segs
,
139 if (segno
>= total_segs
)
143 if (test_and_clear_bit(segno
, dirty_i
->dirty_segmap
[PRE
]))
144 dirty_i
->nr_dirty
[PRE
]--;
147 if (test_opt(sbi
, DISCARD
))
148 blkdev_issue_discard(sbi
->sb
->s_bdev
,
149 START_BLOCK(sbi
, segno
) <<
150 sbi
->log_sectors_per_block
,
151 1 << (sbi
->log_sectors_per_block
+
152 sbi
->log_blocks_per_seg
),
155 mutex_unlock(&dirty_i
->seglist_lock
);
158 static void __mark_sit_entry_dirty(struct f2fs_sb_info
*sbi
, unsigned int segno
)
160 struct sit_info
*sit_i
= SIT_I(sbi
);
161 if (!__test_and_set_bit(segno
, sit_i
->dirty_sentries_bitmap
))
162 sit_i
->dirty_sentries
++;
165 static void __set_sit_entry_type(struct f2fs_sb_info
*sbi
, int type
,
166 unsigned int segno
, int modified
)
168 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
171 __mark_sit_entry_dirty(sbi
, segno
);
174 static void update_sit_entry(struct f2fs_sb_info
*sbi
, block_t blkaddr
, int del
)
176 struct seg_entry
*se
;
177 unsigned int segno
, offset
;
178 long int new_vblocks
;
180 segno
= GET_SEGNO(sbi
, blkaddr
);
182 se
= get_seg_entry(sbi
, segno
);
183 new_vblocks
= se
->valid_blocks
+ del
;
184 offset
= GET_SEGOFF_FROM_SEG0(sbi
, blkaddr
) & (sbi
->blocks_per_seg
- 1);
186 BUG_ON((new_vblocks
>> (sizeof(unsigned short) << 3) ||
187 (new_vblocks
> sbi
->blocks_per_seg
)));
189 se
->valid_blocks
= new_vblocks
;
190 se
->mtime
= get_mtime(sbi
);
191 SIT_I(sbi
)->max_mtime
= se
->mtime
;
193 /* Update valid block bitmap */
195 if (f2fs_set_bit(offset
, se
->cur_valid_map
))
198 if (!f2fs_clear_bit(offset
, se
->cur_valid_map
))
201 if (!f2fs_test_bit(offset
, se
->ckpt_valid_map
))
202 se
->ckpt_valid_blocks
+= del
;
204 __mark_sit_entry_dirty(sbi
, segno
);
206 /* update total number of valid blocks to be written in ckpt area */
207 SIT_I(sbi
)->written_valid_blocks
+= del
;
209 if (sbi
->segs_per_sec
> 1)
210 get_sec_entry(sbi
, segno
)->valid_blocks
+= del
;
213 static void refresh_sit_entry(struct f2fs_sb_info
*sbi
,
214 block_t old_blkaddr
, block_t new_blkaddr
)
216 update_sit_entry(sbi
, new_blkaddr
, 1);
217 if (GET_SEGNO(sbi
, old_blkaddr
) != NULL_SEGNO
)
218 update_sit_entry(sbi
, old_blkaddr
, -1);
221 void invalidate_blocks(struct f2fs_sb_info
*sbi
, block_t addr
)
223 unsigned int segno
= GET_SEGNO(sbi
, addr
);
224 struct sit_info
*sit_i
= SIT_I(sbi
);
226 BUG_ON(addr
== NULL_ADDR
);
227 if (addr
== NEW_ADDR
)
230 /* add it into sit main buffer */
231 mutex_lock(&sit_i
->sentry_lock
);
233 update_sit_entry(sbi
, addr
, -1);
235 /* add it into dirty seglist */
236 locate_dirty_segment(sbi
, segno
);
238 mutex_unlock(&sit_i
->sentry_lock
);
242 * This function should be resided under the curseg_mutex lock
244 static void __add_sum_entry(struct f2fs_sb_info
*sbi
, int type
,
245 struct f2fs_summary
*sum
, unsigned short offset
)
247 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
248 void *addr
= curseg
->sum_blk
;
249 addr
+= offset
* sizeof(struct f2fs_summary
);
250 memcpy(addr
, sum
, sizeof(struct f2fs_summary
));
255 * Calculate the number of current summary pages for writing
257 int npages_for_summary_flush(struct f2fs_sb_info
*sbi
)
259 int total_size_bytes
= 0;
260 int valid_sum_count
= 0;
263 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
264 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
265 valid_sum_count
+= sbi
->blocks_per_seg
;
267 valid_sum_count
+= curseg_blkoff(sbi
, i
);
270 total_size_bytes
= valid_sum_count
* (SUMMARY_SIZE
+ 1)
271 + sizeof(struct nat_journal
) + 2
272 + sizeof(struct sit_journal
) + 2;
273 sum_space
= PAGE_CACHE_SIZE
- SUM_FOOTER_SIZE
;
274 if (total_size_bytes
< sum_space
)
276 else if (total_size_bytes
< 2 * sum_space
)
282 * Caller should put this summary page
284 struct page
*get_sum_page(struct f2fs_sb_info
*sbi
, unsigned int segno
)
286 return get_meta_page(sbi
, GET_SUM_BLOCK(sbi
, segno
));
289 static void write_sum_page(struct f2fs_sb_info
*sbi
,
290 struct f2fs_summary_block
*sum_blk
, block_t blk_addr
)
292 struct page
*page
= grab_meta_page(sbi
, blk_addr
);
293 void *kaddr
= page_address(page
);
294 memcpy(kaddr
, sum_blk
, PAGE_CACHE_SIZE
);
295 set_page_dirty(page
);
296 f2fs_put_page(page
, 1);
299 static unsigned int check_prefree_segments(struct f2fs_sb_info
*sbi
,
300 int ofs_unit
, int type
)
302 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
303 unsigned long *prefree_segmap
= dirty_i
->dirty_segmap
[PRE
];
304 unsigned int segno
, next_segno
, i
;
308 * If there is not enough reserved sections,
309 * we should not reuse prefree segments.
311 if (has_not_enough_free_secs(sbi
))
315 * NODE page should not reuse prefree segment,
316 * since those information is used for SPOR.
318 if (IS_NODESEG(type
))
321 segno
= find_next_bit(prefree_segmap
, TOTAL_SEGS(sbi
), ofs
++);
322 ofs
= ((segno
/ ofs_unit
) * ofs_unit
) + ofs_unit
;
323 if (segno
< TOTAL_SEGS(sbi
)) {
324 /* skip intermediate segments in a section */
325 if (segno
% ofs_unit
)
328 /* skip if whole section is not prefree */
329 next_segno
= find_next_zero_bit(prefree_segmap
,
330 TOTAL_SEGS(sbi
), segno
+ 1);
331 if (next_segno
- segno
< ofs_unit
)
334 /* skip if whole section was not free at the last checkpoint */
335 for (i
= 0; i
< ofs_unit
; i
++)
336 if (get_seg_entry(sbi
, segno
)->ckpt_valid_blocks
)
344 * Find a new segment from the free segments bitmap to right order
345 * This function should be returned with success, otherwise BUG
347 static void get_new_segment(struct f2fs_sb_info
*sbi
,
348 unsigned int *newseg
, bool new_sec
, int dir
)
350 struct free_segmap_info
*free_i
= FREE_I(sbi
);
351 unsigned int total_secs
= sbi
->total_sections
;
352 unsigned int segno
, secno
, zoneno
;
353 unsigned int total_zones
= sbi
->total_sections
/ sbi
->secs_per_zone
;
354 unsigned int hint
= *newseg
/ sbi
->segs_per_sec
;
355 unsigned int old_zoneno
= GET_ZONENO_FROM_SEGNO(sbi
, *newseg
);
356 unsigned int left_start
= hint
;
361 write_lock(&free_i
->segmap_lock
);
363 if (!new_sec
&& ((*newseg
+ 1) % sbi
->segs_per_sec
)) {
364 segno
= find_next_zero_bit(free_i
->free_segmap
,
365 TOTAL_SEGS(sbi
), *newseg
+ 1);
366 if (segno
< TOTAL_SEGS(sbi
))
370 secno
= find_next_zero_bit(free_i
->free_secmap
, total_secs
, hint
);
371 if (secno
>= total_secs
) {
372 if (dir
== ALLOC_RIGHT
) {
373 secno
= find_next_zero_bit(free_i
->free_secmap
,
375 BUG_ON(secno
>= total_secs
);
378 left_start
= hint
- 1;
384 while (test_bit(left_start
, free_i
->free_secmap
)) {
385 if (left_start
> 0) {
389 left_start
= find_next_zero_bit(free_i
->free_secmap
,
391 BUG_ON(left_start
>= total_secs
);
397 segno
= secno
* sbi
->segs_per_sec
;
398 zoneno
= secno
/ sbi
->secs_per_zone
;
400 /* give up on finding another zone */
403 if (sbi
->secs_per_zone
== 1)
405 if (zoneno
== old_zoneno
)
407 if (dir
== ALLOC_LEFT
) {
408 if (!go_left
&& zoneno
+ 1 >= total_zones
)
410 if (go_left
&& zoneno
== 0)
413 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
414 if (CURSEG_I(sbi
, i
)->zone
== zoneno
)
417 if (i
< NR_CURSEG_TYPE
) {
418 /* zone is in user, try another */
420 hint
= zoneno
* sbi
->secs_per_zone
- 1;
421 else if (zoneno
+ 1 >= total_zones
)
424 hint
= (zoneno
+ 1) * sbi
->secs_per_zone
;
426 goto find_other_zone
;
429 /* set it as dirty segment in free segmap */
430 BUG_ON(test_bit(segno
, free_i
->free_segmap
));
431 __set_inuse(sbi
, segno
);
433 write_unlock(&free_i
->segmap_lock
);
436 static void reset_curseg(struct f2fs_sb_info
*sbi
, int type
, int modified
)
438 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
439 struct summary_footer
*sum_footer
;
441 curseg
->segno
= curseg
->next_segno
;
442 curseg
->zone
= GET_ZONENO_FROM_SEGNO(sbi
, curseg
->segno
);
443 curseg
->next_blkoff
= 0;
444 curseg
->next_segno
= NULL_SEGNO
;
446 sum_footer
= &(curseg
->sum_blk
->footer
);
447 memset(sum_footer
, 0, sizeof(struct summary_footer
));
448 if (IS_DATASEG(type
))
449 SET_SUM_TYPE(sum_footer
, SUM_TYPE_DATA
);
450 if (IS_NODESEG(type
))
451 SET_SUM_TYPE(sum_footer
, SUM_TYPE_NODE
);
452 __set_sit_entry_type(sbi
, type
, curseg
->segno
, modified
);
456 * Allocate a current working segment.
457 * This function always allocates a free segment in LFS manner.
459 static void new_curseg(struct f2fs_sb_info
*sbi
, int type
, bool new_sec
)
461 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
462 unsigned int segno
= curseg
->segno
;
463 int dir
= ALLOC_LEFT
;
465 write_sum_page(sbi
, curseg
->sum_blk
,
466 GET_SUM_BLOCK(sbi
, curseg
->segno
));
467 if (type
== CURSEG_WARM_DATA
|| type
== CURSEG_COLD_DATA
)
470 if (test_opt(sbi
, NOHEAP
))
473 get_new_segment(sbi
, &segno
, new_sec
, dir
);
474 curseg
->next_segno
= segno
;
475 reset_curseg(sbi
, type
, 1);
476 curseg
->alloc_type
= LFS
;
479 static void __next_free_blkoff(struct f2fs_sb_info
*sbi
,
480 struct curseg_info
*seg
, block_t start
)
482 struct seg_entry
*se
= get_seg_entry(sbi
, seg
->segno
);
484 for (ofs
= start
; ofs
< sbi
->blocks_per_seg
; ofs
++) {
485 if (!f2fs_test_bit(ofs
, se
->ckpt_valid_map
)
486 && !f2fs_test_bit(ofs
, se
->cur_valid_map
))
489 seg
->next_blkoff
= ofs
;
493 * If a segment is written by LFS manner, next block offset is just obtained
494 * by increasing the current block offset. However, if a segment is written by
495 * SSR manner, next block offset obtained by calling __next_free_blkoff
497 static void __refresh_next_blkoff(struct f2fs_sb_info
*sbi
,
498 struct curseg_info
*seg
)
500 if (seg
->alloc_type
== SSR
)
501 __next_free_blkoff(sbi
, seg
, seg
->next_blkoff
+ 1);
507 * This function always allocates a used segment (from dirty seglist) by SSR
508 * manner, so it should recover the existing segment information of valid blocks
510 static void change_curseg(struct f2fs_sb_info
*sbi
, int type
, bool reuse
)
512 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
513 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
514 unsigned int new_segno
= curseg
->next_segno
;
515 struct f2fs_summary_block
*sum_node
;
516 struct page
*sum_page
;
518 write_sum_page(sbi
, curseg
->sum_blk
,
519 GET_SUM_BLOCK(sbi
, curseg
->segno
));
520 __set_test_and_inuse(sbi
, new_segno
);
522 mutex_lock(&dirty_i
->seglist_lock
);
523 __remove_dirty_segment(sbi
, new_segno
, PRE
);
524 __remove_dirty_segment(sbi
, new_segno
, DIRTY
);
525 mutex_unlock(&dirty_i
->seglist_lock
);
527 reset_curseg(sbi
, type
, 1);
528 curseg
->alloc_type
= SSR
;
529 __next_free_blkoff(sbi
, curseg
, 0);
532 sum_page
= get_sum_page(sbi
, new_segno
);
533 sum_node
= (struct f2fs_summary_block
*)page_address(sum_page
);
534 memcpy(curseg
->sum_blk
, sum_node
, SUM_ENTRY_SIZE
);
535 f2fs_put_page(sum_page
, 1);
540 * flush out current segment and replace it with new segment
541 * This function should be returned with success, otherwise BUG
543 static void allocate_segment_by_default(struct f2fs_sb_info
*sbi
,
544 int type
, bool force
)
546 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
547 unsigned int ofs_unit
;
550 new_curseg(sbi
, type
, true);
554 ofs_unit
= need_SSR(sbi
) ? 1 : sbi
->segs_per_sec
;
555 curseg
->next_segno
= check_prefree_segments(sbi
, ofs_unit
, type
);
557 if (curseg
->next_segno
!= NULL_SEGNO
)
558 change_curseg(sbi
, type
, false);
559 else if (type
== CURSEG_WARM_NODE
)
560 new_curseg(sbi
, type
, false);
561 else if (need_SSR(sbi
) && get_ssr_segment(sbi
, type
))
562 change_curseg(sbi
, type
, true);
564 new_curseg(sbi
, type
, false);
566 sbi
->segment_count
[curseg
->alloc_type
]++;
569 void allocate_new_segments(struct f2fs_sb_info
*sbi
)
571 struct curseg_info
*curseg
;
572 unsigned int old_curseg
;
575 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
576 curseg
= CURSEG_I(sbi
, i
);
577 old_curseg
= curseg
->segno
;
578 SIT_I(sbi
)->s_ops
->allocate_segment(sbi
, i
, true);
579 locate_dirty_segment(sbi
, old_curseg
);
583 static const struct segment_allocation default_salloc_ops
= {
584 .allocate_segment
= allocate_segment_by_default
,
587 static void f2fs_end_io_write(struct bio
*bio
, int err
)
589 const int uptodate
= test_bit(BIO_UPTODATE
, &bio
->bi_flags
);
590 struct bio_vec
*bvec
= bio
->bi_io_vec
+ bio
->bi_vcnt
- 1;
591 struct bio_private
*p
= bio
->bi_private
;
594 struct page
*page
= bvec
->bv_page
;
596 if (--bvec
>= bio
->bi_io_vec
)
597 prefetchw(&bvec
->bv_page
->flags
);
601 set_bit(AS_EIO
, &page
->mapping
->flags
);
602 set_ckpt_flags(p
->sbi
->ckpt
, CP_ERROR_FLAG
);
604 end_page_writeback(page
);
605 dec_page_count(p
->sbi
, F2FS_WRITEBACK
);
606 } while (bvec
>= bio
->bi_io_vec
);
614 struct bio
*f2fs_bio_alloc(struct block_device
*bdev
, int npages
)
617 struct bio_private
*priv
;
619 priv
= kmalloc(sizeof(struct bio_private
), GFP_NOFS
);
625 /* No failure on bio allocation */
626 bio
= bio_alloc(GFP_NOIO
, npages
);
628 bio
->bi_private
= priv
;
632 static void do_submit_bio(struct f2fs_sb_info
*sbi
,
633 enum page_type type
, bool sync
)
635 int rw
= sync
? WRITE_SYNC
: WRITE
;
636 enum page_type btype
= type
> META
? META
: type
;
638 if (type
>= META_FLUSH
)
639 rw
= WRITE_FLUSH_FUA
;
641 if (sbi
->bio
[btype
]) {
642 struct bio_private
*p
= sbi
->bio
[btype
]->bi_private
;
644 sbi
->bio
[btype
]->bi_end_io
= f2fs_end_io_write
;
645 if (type
== META_FLUSH
) {
646 DECLARE_COMPLETION_ONSTACK(wait
);
649 submit_bio(rw
, sbi
->bio
[btype
]);
650 wait_for_completion(&wait
);
653 submit_bio(rw
, sbi
->bio
[btype
]);
655 sbi
->bio
[btype
] = NULL
;
659 void f2fs_submit_bio(struct f2fs_sb_info
*sbi
, enum page_type type
, bool sync
)
661 down_write(&sbi
->bio_sem
);
662 do_submit_bio(sbi
, type
, sync
);
663 up_write(&sbi
->bio_sem
);
666 static void submit_write_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
667 block_t blk_addr
, enum page_type type
)
669 struct block_device
*bdev
= sbi
->sb
->s_bdev
;
671 verify_block_addr(sbi
, blk_addr
);
673 down_write(&sbi
->bio_sem
);
675 inc_page_count(sbi
, F2FS_WRITEBACK
);
677 if (sbi
->bio
[type
] && sbi
->last_block_in_bio
[type
] != blk_addr
- 1)
678 do_submit_bio(sbi
, type
, false);
680 if (sbi
->bio
[type
] == NULL
) {
681 sbi
->bio
[type
] = f2fs_bio_alloc(bdev
, bio_get_nr_vecs(bdev
));
682 sbi
->bio
[type
]->bi_sector
= SECTOR_FROM_BLOCK(sbi
, blk_addr
);
684 * The end_io will be assigned at the sumbission phase.
685 * Until then, let bio_add_page() merge consecutive IOs as much
690 if (bio_add_page(sbi
->bio
[type
], page
, PAGE_CACHE_SIZE
, 0) <
692 do_submit_bio(sbi
, type
, false);
696 sbi
->last_block_in_bio
[type
] = blk_addr
;
698 up_write(&sbi
->bio_sem
);
701 static bool __has_curseg_space(struct f2fs_sb_info
*sbi
, int type
)
703 struct curseg_info
*curseg
= CURSEG_I(sbi
, type
);
704 if (curseg
->next_blkoff
< sbi
->blocks_per_seg
)
709 static int __get_segment_type_2(struct page
*page
, enum page_type p_type
)
712 return CURSEG_HOT_DATA
;
714 return CURSEG_HOT_NODE
;
717 static int __get_segment_type_4(struct page
*page
, enum page_type p_type
)
719 if (p_type
== DATA
) {
720 struct inode
*inode
= page
->mapping
->host
;
722 if (S_ISDIR(inode
->i_mode
))
723 return CURSEG_HOT_DATA
;
725 return CURSEG_COLD_DATA
;
727 if (IS_DNODE(page
) && !is_cold_node(page
))
728 return CURSEG_HOT_NODE
;
730 return CURSEG_COLD_NODE
;
734 static int __get_segment_type_6(struct page
*page
, enum page_type p_type
)
736 if (p_type
== DATA
) {
737 struct inode
*inode
= page
->mapping
->host
;
739 if (S_ISDIR(inode
->i_mode
))
740 return CURSEG_HOT_DATA
;
741 else if (is_cold_data(page
) || is_cold_file(inode
))
742 return CURSEG_COLD_DATA
;
744 return CURSEG_WARM_DATA
;
747 return is_cold_node(page
) ? CURSEG_WARM_NODE
:
750 return CURSEG_COLD_NODE
;
754 static int __get_segment_type(struct page
*page
, enum page_type p_type
)
756 struct f2fs_sb_info
*sbi
= F2FS_SB(page
->mapping
->host
->i_sb
);
757 switch (sbi
->active_logs
) {
759 return __get_segment_type_2(page
, p_type
);
761 return __get_segment_type_4(page
, p_type
);
763 /* NR_CURSEG_TYPE(6) logs by default */
764 BUG_ON(sbi
->active_logs
!= NR_CURSEG_TYPE
);
765 return __get_segment_type_6(page
, p_type
);
768 static void do_write_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
769 block_t old_blkaddr
, block_t
*new_blkaddr
,
770 struct f2fs_summary
*sum
, enum page_type p_type
)
772 struct sit_info
*sit_i
= SIT_I(sbi
);
773 struct curseg_info
*curseg
;
774 unsigned int old_cursegno
;
777 type
= __get_segment_type(page
, p_type
);
778 curseg
= CURSEG_I(sbi
, type
);
780 mutex_lock(&curseg
->curseg_mutex
);
782 *new_blkaddr
= NEXT_FREE_BLKADDR(sbi
, curseg
);
783 old_cursegno
= curseg
->segno
;
786 * __add_sum_entry should be resided under the curseg_mutex
787 * because, this function updates a summary entry in the
788 * current summary block.
790 __add_sum_entry(sbi
, type
, sum
, curseg
->next_blkoff
);
792 mutex_lock(&sit_i
->sentry_lock
);
793 __refresh_next_blkoff(sbi
, curseg
);
794 sbi
->block_count
[curseg
->alloc_type
]++;
797 * SIT information should be updated before segment allocation,
798 * since SSR needs latest valid block information.
800 refresh_sit_entry(sbi
, old_blkaddr
, *new_blkaddr
);
802 if (!__has_curseg_space(sbi
, type
))
803 sit_i
->s_ops
->allocate_segment(sbi
, type
, false);
805 locate_dirty_segment(sbi
, old_cursegno
);
806 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
807 mutex_unlock(&sit_i
->sentry_lock
);
810 fill_node_footer_blkaddr(page
, NEXT_FREE_BLKADDR(sbi
, curseg
));
812 /* writeout dirty page into bdev */
813 submit_write_page(sbi
, page
, *new_blkaddr
, p_type
);
815 mutex_unlock(&curseg
->curseg_mutex
);
818 int write_meta_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
819 struct writeback_control
*wbc
)
821 if (wbc
->for_reclaim
)
822 return AOP_WRITEPAGE_ACTIVATE
;
824 set_page_writeback(page
);
825 submit_write_page(sbi
, page
, page
->index
, META
);
829 void write_node_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
830 unsigned int nid
, block_t old_blkaddr
, block_t
*new_blkaddr
)
832 struct f2fs_summary sum
;
833 set_summary(&sum
, nid
, 0, 0);
834 do_write_page(sbi
, page
, old_blkaddr
, new_blkaddr
, &sum
, NODE
);
837 void write_data_page(struct inode
*inode
, struct page
*page
,
838 struct dnode_of_data
*dn
, block_t old_blkaddr
,
839 block_t
*new_blkaddr
)
841 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
842 struct f2fs_summary sum
;
845 BUG_ON(old_blkaddr
== NULL_ADDR
);
846 get_node_info(sbi
, dn
->nid
, &ni
);
847 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
849 do_write_page(sbi
, page
, old_blkaddr
,
850 new_blkaddr
, &sum
, DATA
);
853 void rewrite_data_page(struct f2fs_sb_info
*sbi
, struct page
*page
,
854 block_t old_blk_addr
)
856 submit_write_page(sbi
, page
, old_blk_addr
, DATA
);
859 void recover_data_page(struct f2fs_sb_info
*sbi
,
860 struct page
*page
, struct f2fs_summary
*sum
,
861 block_t old_blkaddr
, block_t new_blkaddr
)
863 struct sit_info
*sit_i
= SIT_I(sbi
);
864 struct curseg_info
*curseg
;
865 unsigned int segno
, old_cursegno
;
866 struct seg_entry
*se
;
869 segno
= GET_SEGNO(sbi
, new_blkaddr
);
870 se
= get_seg_entry(sbi
, segno
);
873 if (se
->valid_blocks
== 0 && !IS_CURSEG(sbi
, segno
)) {
874 if (old_blkaddr
== NULL_ADDR
)
875 type
= CURSEG_COLD_DATA
;
877 type
= CURSEG_WARM_DATA
;
879 curseg
= CURSEG_I(sbi
, type
);
881 mutex_lock(&curseg
->curseg_mutex
);
882 mutex_lock(&sit_i
->sentry_lock
);
884 old_cursegno
= curseg
->segno
;
886 /* change the current segment */
887 if (segno
!= curseg
->segno
) {
888 curseg
->next_segno
= segno
;
889 change_curseg(sbi
, type
, true);
892 curseg
->next_blkoff
= GET_SEGOFF_FROM_SEG0(sbi
, new_blkaddr
) &
893 (sbi
->blocks_per_seg
- 1);
894 __add_sum_entry(sbi
, type
, sum
, curseg
->next_blkoff
);
896 refresh_sit_entry(sbi
, old_blkaddr
, new_blkaddr
);
898 locate_dirty_segment(sbi
, old_cursegno
);
899 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
901 mutex_unlock(&sit_i
->sentry_lock
);
902 mutex_unlock(&curseg
->curseg_mutex
);
905 void rewrite_node_page(struct f2fs_sb_info
*sbi
,
906 struct page
*page
, struct f2fs_summary
*sum
,
907 block_t old_blkaddr
, block_t new_blkaddr
)
909 struct sit_info
*sit_i
= SIT_I(sbi
);
910 int type
= CURSEG_WARM_NODE
;
911 struct curseg_info
*curseg
;
912 unsigned int segno
, old_cursegno
;
913 block_t next_blkaddr
= next_blkaddr_of_node(page
);
914 unsigned int next_segno
= GET_SEGNO(sbi
, next_blkaddr
);
916 curseg
= CURSEG_I(sbi
, type
);
918 mutex_lock(&curseg
->curseg_mutex
);
919 mutex_lock(&sit_i
->sentry_lock
);
921 segno
= GET_SEGNO(sbi
, new_blkaddr
);
922 old_cursegno
= curseg
->segno
;
924 /* change the current segment */
925 if (segno
!= curseg
->segno
) {
926 curseg
->next_segno
= segno
;
927 change_curseg(sbi
, type
, true);
929 curseg
->next_blkoff
= GET_SEGOFF_FROM_SEG0(sbi
, new_blkaddr
) &
930 (sbi
->blocks_per_seg
- 1);
931 __add_sum_entry(sbi
, type
, sum
, curseg
->next_blkoff
);
933 /* change the current log to the next block addr in advance */
934 if (next_segno
!= segno
) {
935 curseg
->next_segno
= next_segno
;
936 change_curseg(sbi
, type
, true);
938 curseg
->next_blkoff
= GET_SEGOFF_FROM_SEG0(sbi
, next_blkaddr
) &
939 (sbi
->blocks_per_seg
- 1);
941 /* rewrite node page */
942 set_page_writeback(page
);
943 submit_write_page(sbi
, page
, new_blkaddr
, NODE
);
944 f2fs_submit_bio(sbi
, NODE
, true);
945 refresh_sit_entry(sbi
, old_blkaddr
, new_blkaddr
);
947 locate_dirty_segment(sbi
, old_cursegno
);
948 locate_dirty_segment(sbi
, GET_SEGNO(sbi
, old_blkaddr
));
950 mutex_unlock(&sit_i
->sentry_lock
);
951 mutex_unlock(&curseg
->curseg_mutex
);
954 static int read_compacted_summaries(struct f2fs_sb_info
*sbi
)
956 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
957 struct curseg_info
*seg_i
;
958 unsigned char *kaddr
;
963 start
= start_sum_block(sbi
);
965 page
= get_meta_page(sbi
, start
++);
966 kaddr
= (unsigned char *)page_address(page
);
968 /* Step 1: restore nat cache */
969 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
970 memcpy(&seg_i
->sum_blk
->n_nats
, kaddr
, SUM_JOURNAL_SIZE
);
972 /* Step 2: restore sit cache */
973 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
974 memcpy(&seg_i
->sum_blk
->n_sits
, kaddr
+ SUM_JOURNAL_SIZE
,
976 offset
= 2 * SUM_JOURNAL_SIZE
;
978 /* Step 3: restore summary entries */
979 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
980 unsigned short blk_off
;
983 seg_i
= CURSEG_I(sbi
, i
);
984 segno
= le32_to_cpu(ckpt
->cur_data_segno
[i
]);
985 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[i
]);
986 seg_i
->next_segno
= segno
;
987 reset_curseg(sbi
, i
, 0);
988 seg_i
->alloc_type
= ckpt
->alloc_type
[i
];
989 seg_i
->next_blkoff
= blk_off
;
991 if (seg_i
->alloc_type
== SSR
)
992 blk_off
= sbi
->blocks_per_seg
;
994 for (j
= 0; j
< blk_off
; j
++) {
995 struct f2fs_summary
*s
;
996 s
= (struct f2fs_summary
*)(kaddr
+ offset
);
997 seg_i
->sum_blk
->entries
[j
] = *s
;
998 offset
+= SUMMARY_SIZE
;
999 if (offset
+ SUMMARY_SIZE
<= PAGE_CACHE_SIZE
-
1003 f2fs_put_page(page
, 1);
1006 page
= get_meta_page(sbi
, start
++);
1007 kaddr
= (unsigned char *)page_address(page
);
1011 f2fs_put_page(page
, 1);
1015 static int read_normal_summaries(struct f2fs_sb_info
*sbi
, int type
)
1017 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1018 struct f2fs_summary_block
*sum
;
1019 struct curseg_info
*curseg
;
1021 unsigned short blk_off
;
1022 unsigned int segno
= 0;
1023 block_t blk_addr
= 0;
1025 /* get segment number and block addr */
1026 if (IS_DATASEG(type
)) {
1027 segno
= le32_to_cpu(ckpt
->cur_data_segno
[type
]);
1028 blk_off
= le16_to_cpu(ckpt
->cur_data_blkoff
[type
-
1030 if (is_set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
))
1031 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_TYPE
, type
);
1033 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_DATA_TYPE
, type
);
1035 segno
= le32_to_cpu(ckpt
->cur_node_segno
[type
-
1037 blk_off
= le16_to_cpu(ckpt
->cur_node_blkoff
[type
-
1039 if (is_set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
))
1040 blk_addr
= sum_blk_addr(sbi
, NR_CURSEG_NODE_TYPE
,
1041 type
- CURSEG_HOT_NODE
);
1043 blk_addr
= GET_SUM_BLOCK(sbi
, segno
);
1046 new = get_meta_page(sbi
, blk_addr
);
1047 sum
= (struct f2fs_summary_block
*)page_address(new);
1049 if (IS_NODESEG(type
)) {
1050 if (is_set_ckpt_flags(ckpt
, CP_UMOUNT_FLAG
)) {
1051 struct f2fs_summary
*ns
= &sum
->entries
[0];
1053 for (i
= 0; i
< sbi
->blocks_per_seg
; i
++, ns
++) {
1055 ns
->ofs_in_node
= 0;
1058 if (restore_node_summary(sbi
, segno
, sum
)) {
1059 f2fs_put_page(new, 1);
1065 /* set uncompleted segment to curseg */
1066 curseg
= CURSEG_I(sbi
, type
);
1067 mutex_lock(&curseg
->curseg_mutex
);
1068 memcpy(curseg
->sum_blk
, sum
, PAGE_CACHE_SIZE
);
1069 curseg
->next_segno
= segno
;
1070 reset_curseg(sbi
, type
, 0);
1071 curseg
->alloc_type
= ckpt
->alloc_type
[type
];
1072 curseg
->next_blkoff
= blk_off
;
1073 mutex_unlock(&curseg
->curseg_mutex
);
1074 f2fs_put_page(new, 1);
1078 static int restore_curseg_summaries(struct f2fs_sb_info
*sbi
)
1080 int type
= CURSEG_HOT_DATA
;
1082 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
)) {
1083 /* restore for compacted data summary */
1084 if (read_compacted_summaries(sbi
))
1086 type
= CURSEG_HOT_NODE
;
1089 for (; type
<= CURSEG_COLD_NODE
; type
++)
1090 if (read_normal_summaries(sbi
, type
))
1095 static void write_compacted_summaries(struct f2fs_sb_info
*sbi
, block_t blkaddr
)
1098 unsigned char *kaddr
;
1099 struct f2fs_summary
*summary
;
1100 struct curseg_info
*seg_i
;
1101 int written_size
= 0;
1104 page
= grab_meta_page(sbi
, blkaddr
++);
1105 kaddr
= (unsigned char *)page_address(page
);
1107 /* Step 1: write nat cache */
1108 seg_i
= CURSEG_I(sbi
, CURSEG_HOT_DATA
);
1109 memcpy(kaddr
, &seg_i
->sum_blk
->n_nats
, SUM_JOURNAL_SIZE
);
1110 written_size
+= SUM_JOURNAL_SIZE
;
1112 /* Step 2: write sit cache */
1113 seg_i
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1114 memcpy(kaddr
+ written_size
, &seg_i
->sum_blk
->n_sits
,
1116 written_size
+= SUM_JOURNAL_SIZE
;
1118 set_page_dirty(page
);
1120 /* Step 3: write summary entries */
1121 for (i
= CURSEG_HOT_DATA
; i
<= CURSEG_COLD_DATA
; i
++) {
1122 unsigned short blkoff
;
1123 seg_i
= CURSEG_I(sbi
, i
);
1124 if (sbi
->ckpt
->alloc_type
[i
] == SSR
)
1125 blkoff
= sbi
->blocks_per_seg
;
1127 blkoff
= curseg_blkoff(sbi
, i
);
1129 for (j
= 0; j
< blkoff
; j
++) {
1131 page
= grab_meta_page(sbi
, blkaddr
++);
1132 kaddr
= (unsigned char *)page_address(page
);
1135 summary
= (struct f2fs_summary
*)(kaddr
+ written_size
);
1136 *summary
= seg_i
->sum_blk
->entries
[j
];
1137 written_size
+= SUMMARY_SIZE
;
1138 set_page_dirty(page
);
1140 if (written_size
+ SUMMARY_SIZE
<= PAGE_CACHE_SIZE
-
1144 f2fs_put_page(page
, 1);
1149 f2fs_put_page(page
, 1);
1152 static void write_normal_summaries(struct f2fs_sb_info
*sbi
,
1153 block_t blkaddr
, int type
)
1156 if (IS_DATASEG(type
))
1157 end
= type
+ NR_CURSEG_DATA_TYPE
;
1159 end
= type
+ NR_CURSEG_NODE_TYPE
;
1161 for (i
= type
; i
< end
; i
++) {
1162 struct curseg_info
*sum
= CURSEG_I(sbi
, i
);
1163 mutex_lock(&sum
->curseg_mutex
);
1164 write_sum_page(sbi
, sum
->sum_blk
, blkaddr
+ (i
- type
));
1165 mutex_unlock(&sum
->curseg_mutex
);
1169 void write_data_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1171 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_COMPACT_SUM_FLAG
))
1172 write_compacted_summaries(sbi
, start_blk
);
1174 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_DATA
);
1177 void write_node_summaries(struct f2fs_sb_info
*sbi
, block_t start_blk
)
1179 if (is_set_ckpt_flags(F2FS_CKPT(sbi
), CP_UMOUNT_FLAG
))
1180 write_normal_summaries(sbi
, start_blk
, CURSEG_HOT_NODE
);
1184 int lookup_journal_in_cursum(struct f2fs_summary_block
*sum
, int type
,
1185 unsigned int val
, int alloc
)
1189 if (type
== NAT_JOURNAL
) {
1190 for (i
= 0; i
< nats_in_cursum(sum
); i
++) {
1191 if (le32_to_cpu(nid_in_journal(sum
, i
)) == val
)
1194 if (alloc
&& nats_in_cursum(sum
) < NAT_JOURNAL_ENTRIES
)
1195 return update_nats_in_cursum(sum
, 1);
1196 } else if (type
== SIT_JOURNAL
) {
1197 for (i
= 0; i
< sits_in_cursum(sum
); i
++)
1198 if (le32_to_cpu(segno_in_journal(sum
, i
)) == val
)
1200 if (alloc
&& sits_in_cursum(sum
) < SIT_JOURNAL_ENTRIES
)
1201 return update_sits_in_cursum(sum
, 1);
1206 static struct page
*get_current_sit_page(struct f2fs_sb_info
*sbi
,
1209 struct sit_info
*sit_i
= SIT_I(sbi
);
1210 unsigned int offset
= SIT_BLOCK_OFFSET(sit_i
, segno
);
1211 block_t blk_addr
= sit_i
->sit_base_addr
+ offset
;
1213 check_seg_range(sbi
, segno
);
1215 /* calculate sit block address */
1216 if (f2fs_test_bit(offset
, sit_i
->sit_bitmap
))
1217 blk_addr
+= sit_i
->sit_blocks
;
1219 return get_meta_page(sbi
, blk_addr
);
1222 static struct page
*get_next_sit_page(struct f2fs_sb_info
*sbi
,
1225 struct sit_info
*sit_i
= SIT_I(sbi
);
1226 struct page
*src_page
, *dst_page
;
1227 pgoff_t src_off
, dst_off
;
1228 void *src_addr
, *dst_addr
;
1230 src_off
= current_sit_addr(sbi
, start
);
1231 dst_off
= next_sit_addr(sbi
, src_off
);
1233 /* get current sit block page without lock */
1234 src_page
= get_meta_page(sbi
, src_off
);
1235 dst_page
= grab_meta_page(sbi
, dst_off
);
1236 BUG_ON(PageDirty(src_page
));
1238 src_addr
= page_address(src_page
);
1239 dst_addr
= page_address(dst_page
);
1240 memcpy(dst_addr
, src_addr
, PAGE_CACHE_SIZE
);
1242 set_page_dirty(dst_page
);
1243 f2fs_put_page(src_page
, 1);
1245 set_to_next_sit(sit_i
, start
);
1250 static bool flush_sits_in_journal(struct f2fs_sb_info
*sbi
)
1252 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1253 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1257 * If the journal area in the current summary is full of sit entries,
1258 * all the sit entries will be flushed. Otherwise the sit entries
1259 * are not able to replace with newly hot sit entries.
1261 if (sits_in_cursum(sum
) >= SIT_JOURNAL_ENTRIES
) {
1262 for (i
= sits_in_cursum(sum
) - 1; i
>= 0; i
--) {
1264 segno
= le32_to_cpu(segno_in_journal(sum
, i
));
1265 __mark_sit_entry_dirty(sbi
, segno
);
1267 update_sits_in_cursum(sum
, -sits_in_cursum(sum
));
1274 * CP calls this function, which flushes SIT entries including sit_journal,
1275 * and moves prefree segs to free segs.
1277 void flush_sit_entries(struct f2fs_sb_info
*sbi
)
1279 struct sit_info
*sit_i
= SIT_I(sbi
);
1280 unsigned long *bitmap
= sit_i
->dirty_sentries_bitmap
;
1281 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1282 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1283 unsigned long nsegs
= TOTAL_SEGS(sbi
);
1284 struct page
*page
= NULL
;
1285 struct f2fs_sit_block
*raw_sit
= NULL
;
1286 unsigned int start
= 0, end
= 0;
1287 unsigned int segno
= -1;
1290 mutex_lock(&curseg
->curseg_mutex
);
1291 mutex_lock(&sit_i
->sentry_lock
);
1294 * "flushed" indicates whether sit entries in journal are flushed
1295 * to the SIT area or not.
1297 flushed
= flush_sits_in_journal(sbi
);
1299 while ((segno
= find_next_bit(bitmap
, nsegs
, segno
+ 1)) < nsegs
) {
1300 struct seg_entry
*se
= get_seg_entry(sbi
, segno
);
1301 int sit_offset
, offset
;
1303 sit_offset
= SIT_ENTRY_OFFSET(sit_i
, segno
);
1308 offset
= lookup_journal_in_cursum(sum
, SIT_JOURNAL
, segno
, 1);
1310 segno_in_journal(sum
, offset
) = cpu_to_le32(segno
);
1311 seg_info_to_raw_sit(se
, &sit_in_journal(sum
, offset
));
1315 if (!page
|| (start
> segno
) || (segno
> end
)) {
1317 f2fs_put_page(page
, 1);
1321 start
= START_SEGNO(sit_i
, segno
);
1322 end
= start
+ SIT_ENTRY_PER_BLOCK
- 1;
1324 /* read sit block that will be updated */
1325 page
= get_next_sit_page(sbi
, start
);
1326 raw_sit
= page_address(page
);
1329 /* udpate entry in SIT block */
1330 seg_info_to_raw_sit(se
, &raw_sit
->entries
[sit_offset
]);
1332 __clear_bit(segno
, bitmap
);
1333 sit_i
->dirty_sentries
--;
1335 mutex_unlock(&sit_i
->sentry_lock
);
1336 mutex_unlock(&curseg
->curseg_mutex
);
1338 /* writeout last modified SIT block */
1339 f2fs_put_page(page
, 1);
1341 set_prefree_as_free_segments(sbi
);
1344 static int build_sit_info(struct f2fs_sb_info
*sbi
)
1346 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
1347 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1348 struct sit_info
*sit_i
;
1349 unsigned int sit_segs
, start
;
1350 char *src_bitmap
, *dst_bitmap
;
1351 unsigned int bitmap_size
;
1353 /* allocate memory for SIT information */
1354 sit_i
= kzalloc(sizeof(struct sit_info
), GFP_KERNEL
);
1358 SM_I(sbi
)->sit_info
= sit_i
;
1360 sit_i
->sentries
= vzalloc(TOTAL_SEGS(sbi
) * sizeof(struct seg_entry
));
1361 if (!sit_i
->sentries
)
1364 bitmap_size
= f2fs_bitmap_size(TOTAL_SEGS(sbi
));
1365 sit_i
->dirty_sentries_bitmap
= kzalloc(bitmap_size
, GFP_KERNEL
);
1366 if (!sit_i
->dirty_sentries_bitmap
)
1369 for (start
= 0; start
< TOTAL_SEGS(sbi
); start
++) {
1370 sit_i
->sentries
[start
].cur_valid_map
1371 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
1372 sit_i
->sentries
[start
].ckpt_valid_map
1373 = kzalloc(SIT_VBLOCK_MAP_SIZE
, GFP_KERNEL
);
1374 if (!sit_i
->sentries
[start
].cur_valid_map
1375 || !sit_i
->sentries
[start
].ckpt_valid_map
)
1379 if (sbi
->segs_per_sec
> 1) {
1380 sit_i
->sec_entries
= vzalloc(sbi
->total_sections
*
1381 sizeof(struct sec_entry
));
1382 if (!sit_i
->sec_entries
)
1386 /* get information related with SIT */
1387 sit_segs
= le32_to_cpu(raw_super
->segment_count_sit
) >> 1;
1389 /* setup SIT bitmap from ckeckpoint pack */
1390 bitmap_size
= __bitmap_size(sbi
, SIT_BITMAP
);
1391 src_bitmap
= __bitmap_ptr(sbi
, SIT_BITMAP
);
1393 dst_bitmap
= kzalloc(bitmap_size
, GFP_KERNEL
);
1396 memcpy(dst_bitmap
, src_bitmap
, bitmap_size
);
1398 /* init SIT information */
1399 sit_i
->s_ops
= &default_salloc_ops
;
1401 sit_i
->sit_base_addr
= le32_to_cpu(raw_super
->sit_blkaddr
);
1402 sit_i
->sit_blocks
= sit_segs
<< sbi
->log_blocks_per_seg
;
1403 sit_i
->written_valid_blocks
= le64_to_cpu(ckpt
->valid_block_count
);
1404 sit_i
->sit_bitmap
= dst_bitmap
;
1405 sit_i
->bitmap_size
= bitmap_size
;
1406 sit_i
->dirty_sentries
= 0;
1407 sit_i
->sents_per_block
= SIT_ENTRY_PER_BLOCK
;
1408 sit_i
->elapsed_time
= le64_to_cpu(sbi
->ckpt
->elapsed_time
);
1409 sit_i
->mounted_time
= CURRENT_TIME_SEC
.tv_sec
;
1410 mutex_init(&sit_i
->sentry_lock
);
1414 static int build_free_segmap(struct f2fs_sb_info
*sbi
)
1416 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
1417 struct free_segmap_info
*free_i
;
1418 unsigned int bitmap_size
, sec_bitmap_size
;
1420 /* allocate memory for free segmap information */
1421 free_i
= kzalloc(sizeof(struct free_segmap_info
), GFP_KERNEL
);
1425 SM_I(sbi
)->free_info
= free_i
;
1427 bitmap_size
= f2fs_bitmap_size(TOTAL_SEGS(sbi
));
1428 free_i
->free_segmap
= kmalloc(bitmap_size
, GFP_KERNEL
);
1429 if (!free_i
->free_segmap
)
1432 sec_bitmap_size
= f2fs_bitmap_size(sbi
->total_sections
);
1433 free_i
->free_secmap
= kmalloc(sec_bitmap_size
, GFP_KERNEL
);
1434 if (!free_i
->free_secmap
)
1437 /* set all segments as dirty temporarily */
1438 memset(free_i
->free_segmap
, 0xff, bitmap_size
);
1439 memset(free_i
->free_secmap
, 0xff, sec_bitmap_size
);
1441 /* init free segmap information */
1442 free_i
->start_segno
=
1443 (unsigned int) GET_SEGNO_FROM_SEG0(sbi
, sm_info
->main_blkaddr
);
1444 free_i
->free_segments
= 0;
1445 free_i
->free_sections
= 0;
1446 rwlock_init(&free_i
->segmap_lock
);
1450 static int build_curseg(struct f2fs_sb_info
*sbi
)
1452 struct curseg_info
*array
;
1455 array
= kzalloc(sizeof(*array
) * NR_CURSEG_TYPE
, GFP_KERNEL
);
1459 SM_I(sbi
)->curseg_array
= array
;
1461 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++) {
1462 mutex_init(&array
[i
].curseg_mutex
);
1463 array
[i
].sum_blk
= kzalloc(PAGE_CACHE_SIZE
, GFP_KERNEL
);
1464 if (!array
[i
].sum_blk
)
1466 array
[i
].segno
= NULL_SEGNO
;
1467 array
[i
].next_blkoff
= 0;
1469 return restore_curseg_summaries(sbi
);
1472 static void build_sit_entries(struct f2fs_sb_info
*sbi
)
1474 struct sit_info
*sit_i
= SIT_I(sbi
);
1475 struct curseg_info
*curseg
= CURSEG_I(sbi
, CURSEG_COLD_DATA
);
1476 struct f2fs_summary_block
*sum
= curseg
->sum_blk
;
1479 for (start
= 0; start
< TOTAL_SEGS(sbi
); start
++) {
1480 struct seg_entry
*se
= &sit_i
->sentries
[start
];
1481 struct f2fs_sit_block
*sit_blk
;
1482 struct f2fs_sit_entry sit
;
1486 mutex_lock(&curseg
->curseg_mutex
);
1487 for (i
= 0; i
< sits_in_cursum(sum
); i
++) {
1488 if (le32_to_cpu(segno_in_journal(sum
, i
)) == start
) {
1489 sit
= sit_in_journal(sum
, i
);
1490 mutex_unlock(&curseg
->curseg_mutex
);
1494 mutex_unlock(&curseg
->curseg_mutex
);
1495 page
= get_current_sit_page(sbi
, start
);
1496 sit_blk
= (struct f2fs_sit_block
*)page_address(page
);
1497 sit
= sit_blk
->entries
[SIT_ENTRY_OFFSET(sit_i
, start
)];
1498 f2fs_put_page(page
, 1);
1500 check_block_count(sbi
, start
, &sit
);
1501 seg_info_from_raw_sit(se
, &sit
);
1502 if (sbi
->segs_per_sec
> 1) {
1503 struct sec_entry
*e
= get_sec_entry(sbi
, start
);
1504 e
->valid_blocks
+= se
->valid_blocks
;
1509 static void init_free_segmap(struct f2fs_sb_info
*sbi
)
1514 for (start
= 0; start
< TOTAL_SEGS(sbi
); start
++) {
1515 struct seg_entry
*sentry
= get_seg_entry(sbi
, start
);
1516 if (!sentry
->valid_blocks
)
1517 __set_free(sbi
, start
);
1520 /* set use the current segments */
1521 for (type
= CURSEG_HOT_DATA
; type
<= CURSEG_COLD_NODE
; type
++) {
1522 struct curseg_info
*curseg_t
= CURSEG_I(sbi
, type
);
1523 __set_test_and_inuse(sbi
, curseg_t
->segno
);
1527 static void init_dirty_segmap(struct f2fs_sb_info
*sbi
)
1529 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1530 struct free_segmap_info
*free_i
= FREE_I(sbi
);
1531 unsigned int segno
= 0, offset
= 0;
1532 unsigned short valid_blocks
;
1534 while (segno
< TOTAL_SEGS(sbi
)) {
1535 /* find dirty segment based on free segmap */
1536 segno
= find_next_inuse(free_i
, TOTAL_SEGS(sbi
), offset
);
1537 if (segno
>= TOTAL_SEGS(sbi
))
1540 valid_blocks
= get_valid_blocks(sbi
, segno
, 0);
1541 if (valid_blocks
>= sbi
->blocks_per_seg
|| !valid_blocks
)
1543 mutex_lock(&dirty_i
->seglist_lock
);
1544 __locate_dirty_segment(sbi
, segno
, DIRTY
);
1545 mutex_unlock(&dirty_i
->seglist_lock
);
1549 static int init_victim_segmap(struct f2fs_sb_info
*sbi
)
1551 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1552 unsigned int bitmap_size
= f2fs_bitmap_size(TOTAL_SEGS(sbi
));
1554 dirty_i
->victim_segmap
[FG_GC
] = kzalloc(bitmap_size
, GFP_KERNEL
);
1555 dirty_i
->victim_segmap
[BG_GC
] = kzalloc(bitmap_size
, GFP_KERNEL
);
1556 if (!dirty_i
->victim_segmap
[FG_GC
] || !dirty_i
->victim_segmap
[BG_GC
])
1561 static int build_dirty_segmap(struct f2fs_sb_info
*sbi
)
1563 struct dirty_seglist_info
*dirty_i
;
1564 unsigned int bitmap_size
, i
;
1566 /* allocate memory for dirty segments list information */
1567 dirty_i
= kzalloc(sizeof(struct dirty_seglist_info
), GFP_KERNEL
);
1571 SM_I(sbi
)->dirty_info
= dirty_i
;
1572 mutex_init(&dirty_i
->seglist_lock
);
1574 bitmap_size
= f2fs_bitmap_size(TOTAL_SEGS(sbi
));
1576 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++) {
1577 dirty_i
->dirty_segmap
[i
] = kzalloc(bitmap_size
, GFP_KERNEL
);
1578 if (!dirty_i
->dirty_segmap
[i
])
1582 init_dirty_segmap(sbi
);
1583 return init_victim_segmap(sbi
);
1587 * Update min, max modified time for cost-benefit GC algorithm
1589 static void init_min_max_mtime(struct f2fs_sb_info
*sbi
)
1591 struct sit_info
*sit_i
= SIT_I(sbi
);
1594 mutex_lock(&sit_i
->sentry_lock
);
1596 sit_i
->min_mtime
= LLONG_MAX
;
1598 for (segno
= 0; segno
< TOTAL_SEGS(sbi
); segno
+= sbi
->segs_per_sec
) {
1600 unsigned long long mtime
= 0;
1602 for (i
= 0; i
< sbi
->segs_per_sec
; i
++)
1603 mtime
+= get_seg_entry(sbi
, segno
+ i
)->mtime
;
1605 mtime
= div_u64(mtime
, sbi
->segs_per_sec
);
1607 if (sit_i
->min_mtime
> mtime
)
1608 sit_i
->min_mtime
= mtime
;
1610 sit_i
->max_mtime
= get_mtime(sbi
);
1611 mutex_unlock(&sit_i
->sentry_lock
);
1614 int build_segment_manager(struct f2fs_sb_info
*sbi
)
1616 struct f2fs_super_block
*raw_super
= F2FS_RAW_SUPER(sbi
);
1617 struct f2fs_checkpoint
*ckpt
= F2FS_CKPT(sbi
);
1618 struct f2fs_sm_info
*sm_info
;
1621 sm_info
= kzalloc(sizeof(struct f2fs_sm_info
), GFP_KERNEL
);
1626 sbi
->sm_info
= sm_info
;
1627 INIT_LIST_HEAD(&sm_info
->wblist_head
);
1628 spin_lock_init(&sm_info
->wblist_lock
);
1629 sm_info
->seg0_blkaddr
= le32_to_cpu(raw_super
->segment0_blkaddr
);
1630 sm_info
->main_blkaddr
= le32_to_cpu(raw_super
->main_blkaddr
);
1631 sm_info
->segment_count
= le32_to_cpu(raw_super
->segment_count
);
1632 sm_info
->reserved_segments
= le32_to_cpu(ckpt
->rsvd_segment_count
);
1633 sm_info
->ovp_segments
= le32_to_cpu(ckpt
->overprov_segment_count
);
1634 sm_info
->main_segments
= le32_to_cpu(raw_super
->segment_count_main
);
1635 sm_info
->ssa_blkaddr
= le32_to_cpu(raw_super
->ssa_blkaddr
);
1637 err
= build_sit_info(sbi
);
1640 err
= build_free_segmap(sbi
);
1643 err
= build_curseg(sbi
);
1647 /* reinit free segmap based on SIT */
1648 build_sit_entries(sbi
);
1650 init_free_segmap(sbi
);
1651 err
= build_dirty_segmap(sbi
);
1655 init_min_max_mtime(sbi
);
1659 static void discard_dirty_segmap(struct f2fs_sb_info
*sbi
,
1660 enum dirty_type dirty_type
)
1662 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1664 mutex_lock(&dirty_i
->seglist_lock
);
1665 kfree(dirty_i
->dirty_segmap
[dirty_type
]);
1666 dirty_i
->nr_dirty
[dirty_type
] = 0;
1667 mutex_unlock(&dirty_i
->seglist_lock
);
1670 void reset_victim_segmap(struct f2fs_sb_info
*sbi
)
1672 unsigned int bitmap_size
= f2fs_bitmap_size(TOTAL_SEGS(sbi
));
1673 memset(DIRTY_I(sbi
)->victim_segmap
[FG_GC
], 0, bitmap_size
);
1676 static void destroy_victim_segmap(struct f2fs_sb_info
*sbi
)
1678 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1680 kfree(dirty_i
->victim_segmap
[FG_GC
]);
1681 kfree(dirty_i
->victim_segmap
[BG_GC
]);
1684 static void destroy_dirty_segmap(struct f2fs_sb_info
*sbi
)
1686 struct dirty_seglist_info
*dirty_i
= DIRTY_I(sbi
);
1692 /* discard pre-free/dirty segments list */
1693 for (i
= 0; i
< NR_DIRTY_TYPE
; i
++)
1694 discard_dirty_segmap(sbi
, i
);
1696 destroy_victim_segmap(sbi
);
1697 SM_I(sbi
)->dirty_info
= NULL
;
1701 static void destroy_curseg(struct f2fs_sb_info
*sbi
)
1703 struct curseg_info
*array
= SM_I(sbi
)->curseg_array
;
1708 SM_I(sbi
)->curseg_array
= NULL
;
1709 for (i
= 0; i
< NR_CURSEG_TYPE
; i
++)
1710 kfree(array
[i
].sum_blk
);
1714 static void destroy_free_segmap(struct f2fs_sb_info
*sbi
)
1716 struct free_segmap_info
*free_i
= SM_I(sbi
)->free_info
;
1719 SM_I(sbi
)->free_info
= NULL
;
1720 kfree(free_i
->free_segmap
);
1721 kfree(free_i
->free_secmap
);
1725 static void destroy_sit_info(struct f2fs_sb_info
*sbi
)
1727 struct sit_info
*sit_i
= SIT_I(sbi
);
1733 if (sit_i
->sentries
) {
1734 for (start
= 0; start
< TOTAL_SEGS(sbi
); start
++) {
1735 kfree(sit_i
->sentries
[start
].cur_valid_map
);
1736 kfree(sit_i
->sentries
[start
].ckpt_valid_map
);
1739 vfree(sit_i
->sentries
);
1740 vfree(sit_i
->sec_entries
);
1741 kfree(sit_i
->dirty_sentries_bitmap
);
1743 SM_I(sbi
)->sit_info
= NULL
;
1744 kfree(sit_i
->sit_bitmap
);
1748 void destroy_segment_manager(struct f2fs_sb_info
*sbi
)
1750 struct f2fs_sm_info
*sm_info
= SM_I(sbi
);
1751 destroy_dirty_segmap(sbi
);
1752 destroy_curseg(sbi
);
1753 destroy_free_segmap(sbi
);
1754 destroy_sit_info(sbi
);
1755 sbi
->sm_info
= NULL
;