ALSA: hda - detect jacks on VT1708 even when no streams are active
[linux/fpc-iii.git] / fs / f2fs / segment.c
blobde6240922b0a8f14d4a17109013d09e432b0fb6e
1 /*
2 * fs/f2fs/segment.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/bio.h>
14 #include <linux/blkdev.h>
15 #include <linux/prefetch.h>
16 #include <linux/vmalloc.h>
18 #include "f2fs.h"
19 #include "segment.h"
20 #include "node.h"
23 * This function balances dirty node and dentry pages.
24 * In addition, it controls garbage collection.
26 void f2fs_balance_fs(struct f2fs_sb_info *sbi)
29 * We should do GC or end up with checkpoint, if there are so many dirty
30 * dir/node pages without enough free segments.
32 if (has_not_enough_free_secs(sbi)) {
33 mutex_lock(&sbi->gc_mutex);
34 f2fs_gc(sbi, 1);
38 static void __locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
39 enum dirty_type dirty_type)
41 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
43 /* need not be added */
44 if (IS_CURSEG(sbi, segno))
45 return;
47 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
48 dirty_i->nr_dirty[dirty_type]++;
50 if (dirty_type == DIRTY) {
51 struct seg_entry *sentry = get_seg_entry(sbi, segno);
52 dirty_type = sentry->type;
53 if (!test_and_set_bit(segno, dirty_i->dirty_segmap[dirty_type]))
54 dirty_i->nr_dirty[dirty_type]++;
58 static void __remove_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno,
59 enum dirty_type dirty_type)
61 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
63 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[dirty_type]))
64 dirty_i->nr_dirty[dirty_type]--;
66 if (dirty_type == DIRTY) {
67 struct seg_entry *sentry = get_seg_entry(sbi, segno);
68 dirty_type = sentry->type;
69 if (test_and_clear_bit(segno,
70 dirty_i->dirty_segmap[dirty_type]))
71 dirty_i->nr_dirty[dirty_type]--;
72 clear_bit(segno, dirty_i->victim_segmap[FG_GC]);
73 clear_bit(segno, dirty_i->victim_segmap[BG_GC]);
78 * Should not occur error such as -ENOMEM.
79 * Adding dirty entry into seglist is not critical operation.
80 * If a given segment is one of current working segments, it won't be added.
82 void locate_dirty_segment(struct f2fs_sb_info *sbi, unsigned int segno)
84 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
85 unsigned short valid_blocks;
87 if (segno == NULL_SEGNO || IS_CURSEG(sbi, segno))
88 return;
90 mutex_lock(&dirty_i->seglist_lock);
92 valid_blocks = get_valid_blocks(sbi, segno, 0);
94 if (valid_blocks == 0) {
95 __locate_dirty_segment(sbi, segno, PRE);
96 __remove_dirty_segment(sbi, segno, DIRTY);
97 } else if (valid_blocks < sbi->blocks_per_seg) {
98 __locate_dirty_segment(sbi, segno, DIRTY);
99 } else {
100 /* Recovery routine with SSR needs this */
101 __remove_dirty_segment(sbi, segno, DIRTY);
104 mutex_unlock(&dirty_i->seglist_lock);
105 return;
109 * Should call clear_prefree_segments after checkpoint is done.
111 static void set_prefree_as_free_segments(struct f2fs_sb_info *sbi)
113 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
114 unsigned int segno, offset = 0;
115 unsigned int total_segs = TOTAL_SEGS(sbi);
117 mutex_lock(&dirty_i->seglist_lock);
118 while (1) {
119 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
120 offset);
121 if (segno >= total_segs)
122 break;
123 __set_test_and_free(sbi, segno);
124 offset = segno + 1;
126 mutex_unlock(&dirty_i->seglist_lock);
129 void clear_prefree_segments(struct f2fs_sb_info *sbi)
131 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
132 unsigned int segno, offset = 0;
133 unsigned int total_segs = TOTAL_SEGS(sbi);
135 mutex_lock(&dirty_i->seglist_lock);
136 while (1) {
137 segno = find_next_bit(dirty_i->dirty_segmap[PRE], total_segs,
138 offset);
139 if (segno >= total_segs)
140 break;
142 offset = segno + 1;
143 if (test_and_clear_bit(segno, dirty_i->dirty_segmap[PRE]))
144 dirty_i->nr_dirty[PRE]--;
146 /* Let's use trim */
147 if (test_opt(sbi, DISCARD))
148 blkdev_issue_discard(sbi->sb->s_bdev,
149 START_BLOCK(sbi, segno) <<
150 sbi->log_sectors_per_block,
151 1 << (sbi->log_sectors_per_block +
152 sbi->log_blocks_per_seg),
153 GFP_NOFS, 0);
155 mutex_unlock(&dirty_i->seglist_lock);
158 static void __mark_sit_entry_dirty(struct f2fs_sb_info *sbi, unsigned int segno)
160 struct sit_info *sit_i = SIT_I(sbi);
161 if (!__test_and_set_bit(segno, sit_i->dirty_sentries_bitmap))
162 sit_i->dirty_sentries++;
165 static void __set_sit_entry_type(struct f2fs_sb_info *sbi, int type,
166 unsigned int segno, int modified)
168 struct seg_entry *se = get_seg_entry(sbi, segno);
169 se->type = type;
170 if (modified)
171 __mark_sit_entry_dirty(sbi, segno);
174 static void update_sit_entry(struct f2fs_sb_info *sbi, block_t blkaddr, int del)
176 struct seg_entry *se;
177 unsigned int segno, offset;
178 long int new_vblocks;
180 segno = GET_SEGNO(sbi, blkaddr);
182 se = get_seg_entry(sbi, segno);
183 new_vblocks = se->valid_blocks + del;
184 offset = GET_SEGOFF_FROM_SEG0(sbi, blkaddr) & (sbi->blocks_per_seg - 1);
186 BUG_ON((new_vblocks >> (sizeof(unsigned short) << 3) ||
187 (new_vblocks > sbi->blocks_per_seg)));
189 se->valid_blocks = new_vblocks;
190 se->mtime = get_mtime(sbi);
191 SIT_I(sbi)->max_mtime = se->mtime;
193 /* Update valid block bitmap */
194 if (del > 0) {
195 if (f2fs_set_bit(offset, se->cur_valid_map))
196 BUG();
197 } else {
198 if (!f2fs_clear_bit(offset, se->cur_valid_map))
199 BUG();
201 if (!f2fs_test_bit(offset, se->ckpt_valid_map))
202 se->ckpt_valid_blocks += del;
204 __mark_sit_entry_dirty(sbi, segno);
206 /* update total number of valid blocks to be written in ckpt area */
207 SIT_I(sbi)->written_valid_blocks += del;
209 if (sbi->segs_per_sec > 1)
210 get_sec_entry(sbi, segno)->valid_blocks += del;
213 static void refresh_sit_entry(struct f2fs_sb_info *sbi,
214 block_t old_blkaddr, block_t new_blkaddr)
216 update_sit_entry(sbi, new_blkaddr, 1);
217 if (GET_SEGNO(sbi, old_blkaddr) != NULL_SEGNO)
218 update_sit_entry(sbi, old_blkaddr, -1);
221 void invalidate_blocks(struct f2fs_sb_info *sbi, block_t addr)
223 unsigned int segno = GET_SEGNO(sbi, addr);
224 struct sit_info *sit_i = SIT_I(sbi);
226 BUG_ON(addr == NULL_ADDR);
227 if (addr == NEW_ADDR)
228 return;
230 /* add it into sit main buffer */
231 mutex_lock(&sit_i->sentry_lock);
233 update_sit_entry(sbi, addr, -1);
235 /* add it into dirty seglist */
236 locate_dirty_segment(sbi, segno);
238 mutex_unlock(&sit_i->sentry_lock);
242 * This function should be resided under the curseg_mutex lock
244 static void __add_sum_entry(struct f2fs_sb_info *sbi, int type,
245 struct f2fs_summary *sum, unsigned short offset)
247 struct curseg_info *curseg = CURSEG_I(sbi, type);
248 void *addr = curseg->sum_blk;
249 addr += offset * sizeof(struct f2fs_summary);
250 memcpy(addr, sum, sizeof(struct f2fs_summary));
251 return;
255 * Calculate the number of current summary pages for writing
257 int npages_for_summary_flush(struct f2fs_sb_info *sbi)
259 int total_size_bytes = 0;
260 int valid_sum_count = 0;
261 int i, sum_space;
263 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
264 if (sbi->ckpt->alloc_type[i] == SSR)
265 valid_sum_count += sbi->blocks_per_seg;
266 else
267 valid_sum_count += curseg_blkoff(sbi, i);
270 total_size_bytes = valid_sum_count * (SUMMARY_SIZE + 1)
271 + sizeof(struct nat_journal) + 2
272 + sizeof(struct sit_journal) + 2;
273 sum_space = PAGE_CACHE_SIZE - SUM_FOOTER_SIZE;
274 if (total_size_bytes < sum_space)
275 return 1;
276 else if (total_size_bytes < 2 * sum_space)
277 return 2;
278 return 3;
282 * Caller should put this summary page
284 struct page *get_sum_page(struct f2fs_sb_info *sbi, unsigned int segno)
286 return get_meta_page(sbi, GET_SUM_BLOCK(sbi, segno));
289 static void write_sum_page(struct f2fs_sb_info *sbi,
290 struct f2fs_summary_block *sum_blk, block_t blk_addr)
292 struct page *page = grab_meta_page(sbi, blk_addr);
293 void *kaddr = page_address(page);
294 memcpy(kaddr, sum_blk, PAGE_CACHE_SIZE);
295 set_page_dirty(page);
296 f2fs_put_page(page, 1);
299 static unsigned int check_prefree_segments(struct f2fs_sb_info *sbi,
300 int ofs_unit, int type)
302 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
303 unsigned long *prefree_segmap = dirty_i->dirty_segmap[PRE];
304 unsigned int segno, next_segno, i;
305 int ofs = 0;
308 * If there is not enough reserved sections,
309 * we should not reuse prefree segments.
311 if (has_not_enough_free_secs(sbi))
312 return NULL_SEGNO;
315 * NODE page should not reuse prefree segment,
316 * since those information is used for SPOR.
318 if (IS_NODESEG(type))
319 return NULL_SEGNO;
320 next:
321 segno = find_next_bit(prefree_segmap, TOTAL_SEGS(sbi), ofs++);
322 ofs = ((segno / ofs_unit) * ofs_unit) + ofs_unit;
323 if (segno < TOTAL_SEGS(sbi)) {
324 /* skip intermediate segments in a section */
325 if (segno % ofs_unit)
326 goto next;
328 /* skip if whole section is not prefree */
329 next_segno = find_next_zero_bit(prefree_segmap,
330 TOTAL_SEGS(sbi), segno + 1);
331 if (next_segno - segno < ofs_unit)
332 goto next;
334 /* skip if whole section was not free at the last checkpoint */
335 for (i = 0; i < ofs_unit; i++)
336 if (get_seg_entry(sbi, segno)->ckpt_valid_blocks)
337 goto next;
338 return segno;
340 return NULL_SEGNO;
344 * Find a new segment from the free segments bitmap to right order
345 * This function should be returned with success, otherwise BUG
347 static void get_new_segment(struct f2fs_sb_info *sbi,
348 unsigned int *newseg, bool new_sec, int dir)
350 struct free_segmap_info *free_i = FREE_I(sbi);
351 unsigned int total_secs = sbi->total_sections;
352 unsigned int segno, secno, zoneno;
353 unsigned int total_zones = sbi->total_sections / sbi->secs_per_zone;
354 unsigned int hint = *newseg / sbi->segs_per_sec;
355 unsigned int old_zoneno = GET_ZONENO_FROM_SEGNO(sbi, *newseg);
356 unsigned int left_start = hint;
357 bool init = true;
358 int go_left = 0;
359 int i;
361 write_lock(&free_i->segmap_lock);
363 if (!new_sec && ((*newseg + 1) % sbi->segs_per_sec)) {
364 segno = find_next_zero_bit(free_i->free_segmap,
365 TOTAL_SEGS(sbi), *newseg + 1);
366 if (segno < TOTAL_SEGS(sbi))
367 goto got_it;
369 find_other_zone:
370 secno = find_next_zero_bit(free_i->free_secmap, total_secs, hint);
371 if (secno >= total_secs) {
372 if (dir == ALLOC_RIGHT) {
373 secno = find_next_zero_bit(free_i->free_secmap,
374 total_secs, 0);
375 BUG_ON(secno >= total_secs);
376 } else {
377 go_left = 1;
378 left_start = hint - 1;
381 if (go_left == 0)
382 goto skip_left;
384 while (test_bit(left_start, free_i->free_secmap)) {
385 if (left_start > 0) {
386 left_start--;
387 continue;
389 left_start = find_next_zero_bit(free_i->free_secmap,
390 total_secs, 0);
391 BUG_ON(left_start >= total_secs);
392 break;
394 secno = left_start;
395 skip_left:
396 hint = secno;
397 segno = secno * sbi->segs_per_sec;
398 zoneno = secno / sbi->secs_per_zone;
400 /* give up on finding another zone */
401 if (!init)
402 goto got_it;
403 if (sbi->secs_per_zone == 1)
404 goto got_it;
405 if (zoneno == old_zoneno)
406 goto got_it;
407 if (dir == ALLOC_LEFT) {
408 if (!go_left && zoneno + 1 >= total_zones)
409 goto got_it;
410 if (go_left && zoneno == 0)
411 goto got_it;
413 for (i = 0; i < NR_CURSEG_TYPE; i++)
414 if (CURSEG_I(sbi, i)->zone == zoneno)
415 break;
417 if (i < NR_CURSEG_TYPE) {
418 /* zone is in user, try another */
419 if (go_left)
420 hint = zoneno * sbi->secs_per_zone - 1;
421 else if (zoneno + 1 >= total_zones)
422 hint = 0;
423 else
424 hint = (zoneno + 1) * sbi->secs_per_zone;
425 init = false;
426 goto find_other_zone;
428 got_it:
429 /* set it as dirty segment in free segmap */
430 BUG_ON(test_bit(segno, free_i->free_segmap));
431 __set_inuse(sbi, segno);
432 *newseg = segno;
433 write_unlock(&free_i->segmap_lock);
436 static void reset_curseg(struct f2fs_sb_info *sbi, int type, int modified)
438 struct curseg_info *curseg = CURSEG_I(sbi, type);
439 struct summary_footer *sum_footer;
441 curseg->segno = curseg->next_segno;
442 curseg->zone = GET_ZONENO_FROM_SEGNO(sbi, curseg->segno);
443 curseg->next_blkoff = 0;
444 curseg->next_segno = NULL_SEGNO;
446 sum_footer = &(curseg->sum_blk->footer);
447 memset(sum_footer, 0, sizeof(struct summary_footer));
448 if (IS_DATASEG(type))
449 SET_SUM_TYPE(sum_footer, SUM_TYPE_DATA);
450 if (IS_NODESEG(type))
451 SET_SUM_TYPE(sum_footer, SUM_TYPE_NODE);
452 __set_sit_entry_type(sbi, type, curseg->segno, modified);
456 * Allocate a current working segment.
457 * This function always allocates a free segment in LFS manner.
459 static void new_curseg(struct f2fs_sb_info *sbi, int type, bool new_sec)
461 struct curseg_info *curseg = CURSEG_I(sbi, type);
462 unsigned int segno = curseg->segno;
463 int dir = ALLOC_LEFT;
465 write_sum_page(sbi, curseg->sum_blk,
466 GET_SUM_BLOCK(sbi, curseg->segno));
467 if (type == CURSEG_WARM_DATA || type == CURSEG_COLD_DATA)
468 dir = ALLOC_RIGHT;
470 if (test_opt(sbi, NOHEAP))
471 dir = ALLOC_RIGHT;
473 get_new_segment(sbi, &segno, new_sec, dir);
474 curseg->next_segno = segno;
475 reset_curseg(sbi, type, 1);
476 curseg->alloc_type = LFS;
479 static void __next_free_blkoff(struct f2fs_sb_info *sbi,
480 struct curseg_info *seg, block_t start)
482 struct seg_entry *se = get_seg_entry(sbi, seg->segno);
483 block_t ofs;
484 for (ofs = start; ofs < sbi->blocks_per_seg; ofs++) {
485 if (!f2fs_test_bit(ofs, se->ckpt_valid_map)
486 && !f2fs_test_bit(ofs, se->cur_valid_map))
487 break;
489 seg->next_blkoff = ofs;
493 * If a segment is written by LFS manner, next block offset is just obtained
494 * by increasing the current block offset. However, if a segment is written by
495 * SSR manner, next block offset obtained by calling __next_free_blkoff
497 static void __refresh_next_blkoff(struct f2fs_sb_info *sbi,
498 struct curseg_info *seg)
500 if (seg->alloc_type == SSR)
501 __next_free_blkoff(sbi, seg, seg->next_blkoff + 1);
502 else
503 seg->next_blkoff++;
507 * This function always allocates a used segment (from dirty seglist) by SSR
508 * manner, so it should recover the existing segment information of valid blocks
510 static void change_curseg(struct f2fs_sb_info *sbi, int type, bool reuse)
512 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
513 struct curseg_info *curseg = CURSEG_I(sbi, type);
514 unsigned int new_segno = curseg->next_segno;
515 struct f2fs_summary_block *sum_node;
516 struct page *sum_page;
518 write_sum_page(sbi, curseg->sum_blk,
519 GET_SUM_BLOCK(sbi, curseg->segno));
520 __set_test_and_inuse(sbi, new_segno);
522 mutex_lock(&dirty_i->seglist_lock);
523 __remove_dirty_segment(sbi, new_segno, PRE);
524 __remove_dirty_segment(sbi, new_segno, DIRTY);
525 mutex_unlock(&dirty_i->seglist_lock);
527 reset_curseg(sbi, type, 1);
528 curseg->alloc_type = SSR;
529 __next_free_blkoff(sbi, curseg, 0);
531 if (reuse) {
532 sum_page = get_sum_page(sbi, new_segno);
533 sum_node = (struct f2fs_summary_block *)page_address(sum_page);
534 memcpy(curseg->sum_blk, sum_node, SUM_ENTRY_SIZE);
535 f2fs_put_page(sum_page, 1);
540 * flush out current segment and replace it with new segment
541 * This function should be returned with success, otherwise BUG
543 static void allocate_segment_by_default(struct f2fs_sb_info *sbi,
544 int type, bool force)
546 struct curseg_info *curseg = CURSEG_I(sbi, type);
547 unsigned int ofs_unit;
549 if (force) {
550 new_curseg(sbi, type, true);
551 goto out;
554 ofs_unit = need_SSR(sbi) ? 1 : sbi->segs_per_sec;
555 curseg->next_segno = check_prefree_segments(sbi, ofs_unit, type);
557 if (curseg->next_segno != NULL_SEGNO)
558 change_curseg(sbi, type, false);
559 else if (type == CURSEG_WARM_NODE)
560 new_curseg(sbi, type, false);
561 else if (need_SSR(sbi) && get_ssr_segment(sbi, type))
562 change_curseg(sbi, type, true);
563 else
564 new_curseg(sbi, type, false);
565 out:
566 sbi->segment_count[curseg->alloc_type]++;
569 void allocate_new_segments(struct f2fs_sb_info *sbi)
571 struct curseg_info *curseg;
572 unsigned int old_curseg;
573 int i;
575 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
576 curseg = CURSEG_I(sbi, i);
577 old_curseg = curseg->segno;
578 SIT_I(sbi)->s_ops->allocate_segment(sbi, i, true);
579 locate_dirty_segment(sbi, old_curseg);
583 static const struct segment_allocation default_salloc_ops = {
584 .allocate_segment = allocate_segment_by_default,
587 static void f2fs_end_io_write(struct bio *bio, int err)
589 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
590 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
591 struct bio_private *p = bio->bi_private;
593 do {
594 struct page *page = bvec->bv_page;
596 if (--bvec >= bio->bi_io_vec)
597 prefetchw(&bvec->bv_page->flags);
598 if (!uptodate) {
599 SetPageError(page);
600 if (page->mapping)
601 set_bit(AS_EIO, &page->mapping->flags);
602 set_ckpt_flags(p->sbi->ckpt, CP_ERROR_FLAG);
604 end_page_writeback(page);
605 dec_page_count(p->sbi, F2FS_WRITEBACK);
606 } while (bvec >= bio->bi_io_vec);
608 if (p->is_sync)
609 complete(p->wait);
610 kfree(p);
611 bio_put(bio);
614 struct bio *f2fs_bio_alloc(struct block_device *bdev, int npages)
616 struct bio *bio;
617 struct bio_private *priv;
618 retry:
619 priv = kmalloc(sizeof(struct bio_private), GFP_NOFS);
620 if (!priv) {
621 cond_resched();
622 goto retry;
625 /* No failure on bio allocation */
626 bio = bio_alloc(GFP_NOIO, npages);
627 bio->bi_bdev = bdev;
628 bio->bi_private = priv;
629 return bio;
632 static void do_submit_bio(struct f2fs_sb_info *sbi,
633 enum page_type type, bool sync)
635 int rw = sync ? WRITE_SYNC : WRITE;
636 enum page_type btype = type > META ? META : type;
638 if (type >= META_FLUSH)
639 rw = WRITE_FLUSH_FUA;
641 if (sbi->bio[btype]) {
642 struct bio_private *p = sbi->bio[btype]->bi_private;
643 p->sbi = sbi;
644 sbi->bio[btype]->bi_end_io = f2fs_end_io_write;
645 if (type == META_FLUSH) {
646 DECLARE_COMPLETION_ONSTACK(wait);
647 p->is_sync = true;
648 p->wait = &wait;
649 submit_bio(rw, sbi->bio[btype]);
650 wait_for_completion(&wait);
651 } else {
652 p->is_sync = false;
653 submit_bio(rw, sbi->bio[btype]);
655 sbi->bio[btype] = NULL;
659 void f2fs_submit_bio(struct f2fs_sb_info *sbi, enum page_type type, bool sync)
661 down_write(&sbi->bio_sem);
662 do_submit_bio(sbi, type, sync);
663 up_write(&sbi->bio_sem);
666 static void submit_write_page(struct f2fs_sb_info *sbi, struct page *page,
667 block_t blk_addr, enum page_type type)
669 struct block_device *bdev = sbi->sb->s_bdev;
671 verify_block_addr(sbi, blk_addr);
673 down_write(&sbi->bio_sem);
675 inc_page_count(sbi, F2FS_WRITEBACK);
677 if (sbi->bio[type] && sbi->last_block_in_bio[type] != blk_addr - 1)
678 do_submit_bio(sbi, type, false);
679 alloc_new:
680 if (sbi->bio[type] == NULL) {
681 sbi->bio[type] = f2fs_bio_alloc(bdev, bio_get_nr_vecs(bdev));
682 sbi->bio[type]->bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
684 * The end_io will be assigned at the sumbission phase.
685 * Until then, let bio_add_page() merge consecutive IOs as much
686 * as possible.
690 if (bio_add_page(sbi->bio[type], page, PAGE_CACHE_SIZE, 0) <
691 PAGE_CACHE_SIZE) {
692 do_submit_bio(sbi, type, false);
693 goto alloc_new;
696 sbi->last_block_in_bio[type] = blk_addr;
698 up_write(&sbi->bio_sem);
701 static bool __has_curseg_space(struct f2fs_sb_info *sbi, int type)
703 struct curseg_info *curseg = CURSEG_I(sbi, type);
704 if (curseg->next_blkoff < sbi->blocks_per_seg)
705 return true;
706 return false;
709 static int __get_segment_type_2(struct page *page, enum page_type p_type)
711 if (p_type == DATA)
712 return CURSEG_HOT_DATA;
713 else
714 return CURSEG_HOT_NODE;
717 static int __get_segment_type_4(struct page *page, enum page_type p_type)
719 if (p_type == DATA) {
720 struct inode *inode = page->mapping->host;
722 if (S_ISDIR(inode->i_mode))
723 return CURSEG_HOT_DATA;
724 else
725 return CURSEG_COLD_DATA;
726 } else {
727 if (IS_DNODE(page) && !is_cold_node(page))
728 return CURSEG_HOT_NODE;
729 else
730 return CURSEG_COLD_NODE;
734 static int __get_segment_type_6(struct page *page, enum page_type p_type)
736 if (p_type == DATA) {
737 struct inode *inode = page->mapping->host;
739 if (S_ISDIR(inode->i_mode))
740 return CURSEG_HOT_DATA;
741 else if (is_cold_data(page) || is_cold_file(inode))
742 return CURSEG_COLD_DATA;
743 else
744 return CURSEG_WARM_DATA;
745 } else {
746 if (IS_DNODE(page))
747 return is_cold_node(page) ? CURSEG_WARM_NODE :
748 CURSEG_HOT_NODE;
749 else
750 return CURSEG_COLD_NODE;
754 static int __get_segment_type(struct page *page, enum page_type p_type)
756 struct f2fs_sb_info *sbi = F2FS_SB(page->mapping->host->i_sb);
757 switch (sbi->active_logs) {
758 case 2:
759 return __get_segment_type_2(page, p_type);
760 case 4:
761 return __get_segment_type_4(page, p_type);
763 /* NR_CURSEG_TYPE(6) logs by default */
764 BUG_ON(sbi->active_logs != NR_CURSEG_TYPE);
765 return __get_segment_type_6(page, p_type);
768 static void do_write_page(struct f2fs_sb_info *sbi, struct page *page,
769 block_t old_blkaddr, block_t *new_blkaddr,
770 struct f2fs_summary *sum, enum page_type p_type)
772 struct sit_info *sit_i = SIT_I(sbi);
773 struct curseg_info *curseg;
774 unsigned int old_cursegno;
775 int type;
777 type = __get_segment_type(page, p_type);
778 curseg = CURSEG_I(sbi, type);
780 mutex_lock(&curseg->curseg_mutex);
782 *new_blkaddr = NEXT_FREE_BLKADDR(sbi, curseg);
783 old_cursegno = curseg->segno;
786 * __add_sum_entry should be resided under the curseg_mutex
787 * because, this function updates a summary entry in the
788 * current summary block.
790 __add_sum_entry(sbi, type, sum, curseg->next_blkoff);
792 mutex_lock(&sit_i->sentry_lock);
793 __refresh_next_blkoff(sbi, curseg);
794 sbi->block_count[curseg->alloc_type]++;
797 * SIT information should be updated before segment allocation,
798 * since SSR needs latest valid block information.
800 refresh_sit_entry(sbi, old_blkaddr, *new_blkaddr);
802 if (!__has_curseg_space(sbi, type))
803 sit_i->s_ops->allocate_segment(sbi, type, false);
805 locate_dirty_segment(sbi, old_cursegno);
806 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
807 mutex_unlock(&sit_i->sentry_lock);
809 if (p_type == NODE)
810 fill_node_footer_blkaddr(page, NEXT_FREE_BLKADDR(sbi, curseg));
812 /* writeout dirty page into bdev */
813 submit_write_page(sbi, page, *new_blkaddr, p_type);
815 mutex_unlock(&curseg->curseg_mutex);
818 int write_meta_page(struct f2fs_sb_info *sbi, struct page *page,
819 struct writeback_control *wbc)
821 if (wbc->for_reclaim)
822 return AOP_WRITEPAGE_ACTIVATE;
824 set_page_writeback(page);
825 submit_write_page(sbi, page, page->index, META);
826 return 0;
829 void write_node_page(struct f2fs_sb_info *sbi, struct page *page,
830 unsigned int nid, block_t old_blkaddr, block_t *new_blkaddr)
832 struct f2fs_summary sum;
833 set_summary(&sum, nid, 0, 0);
834 do_write_page(sbi, page, old_blkaddr, new_blkaddr, &sum, NODE);
837 void write_data_page(struct inode *inode, struct page *page,
838 struct dnode_of_data *dn, block_t old_blkaddr,
839 block_t *new_blkaddr)
841 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
842 struct f2fs_summary sum;
843 struct node_info ni;
845 BUG_ON(old_blkaddr == NULL_ADDR);
846 get_node_info(sbi, dn->nid, &ni);
847 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
849 do_write_page(sbi, page, old_blkaddr,
850 new_blkaddr, &sum, DATA);
853 void rewrite_data_page(struct f2fs_sb_info *sbi, struct page *page,
854 block_t old_blk_addr)
856 submit_write_page(sbi, page, old_blk_addr, DATA);
859 void recover_data_page(struct f2fs_sb_info *sbi,
860 struct page *page, struct f2fs_summary *sum,
861 block_t old_blkaddr, block_t new_blkaddr)
863 struct sit_info *sit_i = SIT_I(sbi);
864 struct curseg_info *curseg;
865 unsigned int segno, old_cursegno;
866 struct seg_entry *se;
867 int type;
869 segno = GET_SEGNO(sbi, new_blkaddr);
870 se = get_seg_entry(sbi, segno);
871 type = se->type;
873 if (se->valid_blocks == 0 && !IS_CURSEG(sbi, segno)) {
874 if (old_blkaddr == NULL_ADDR)
875 type = CURSEG_COLD_DATA;
876 else
877 type = CURSEG_WARM_DATA;
879 curseg = CURSEG_I(sbi, type);
881 mutex_lock(&curseg->curseg_mutex);
882 mutex_lock(&sit_i->sentry_lock);
884 old_cursegno = curseg->segno;
886 /* change the current segment */
887 if (segno != curseg->segno) {
888 curseg->next_segno = segno;
889 change_curseg(sbi, type, true);
892 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
893 (sbi->blocks_per_seg - 1);
894 __add_sum_entry(sbi, type, sum, curseg->next_blkoff);
896 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
898 locate_dirty_segment(sbi, old_cursegno);
899 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
901 mutex_unlock(&sit_i->sentry_lock);
902 mutex_unlock(&curseg->curseg_mutex);
905 void rewrite_node_page(struct f2fs_sb_info *sbi,
906 struct page *page, struct f2fs_summary *sum,
907 block_t old_blkaddr, block_t new_blkaddr)
909 struct sit_info *sit_i = SIT_I(sbi);
910 int type = CURSEG_WARM_NODE;
911 struct curseg_info *curseg;
912 unsigned int segno, old_cursegno;
913 block_t next_blkaddr = next_blkaddr_of_node(page);
914 unsigned int next_segno = GET_SEGNO(sbi, next_blkaddr);
916 curseg = CURSEG_I(sbi, type);
918 mutex_lock(&curseg->curseg_mutex);
919 mutex_lock(&sit_i->sentry_lock);
921 segno = GET_SEGNO(sbi, new_blkaddr);
922 old_cursegno = curseg->segno;
924 /* change the current segment */
925 if (segno != curseg->segno) {
926 curseg->next_segno = segno;
927 change_curseg(sbi, type, true);
929 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, new_blkaddr) &
930 (sbi->blocks_per_seg - 1);
931 __add_sum_entry(sbi, type, sum, curseg->next_blkoff);
933 /* change the current log to the next block addr in advance */
934 if (next_segno != segno) {
935 curseg->next_segno = next_segno;
936 change_curseg(sbi, type, true);
938 curseg->next_blkoff = GET_SEGOFF_FROM_SEG0(sbi, next_blkaddr) &
939 (sbi->blocks_per_seg - 1);
941 /* rewrite node page */
942 set_page_writeback(page);
943 submit_write_page(sbi, page, new_blkaddr, NODE);
944 f2fs_submit_bio(sbi, NODE, true);
945 refresh_sit_entry(sbi, old_blkaddr, new_blkaddr);
947 locate_dirty_segment(sbi, old_cursegno);
948 locate_dirty_segment(sbi, GET_SEGNO(sbi, old_blkaddr));
950 mutex_unlock(&sit_i->sentry_lock);
951 mutex_unlock(&curseg->curseg_mutex);
954 static int read_compacted_summaries(struct f2fs_sb_info *sbi)
956 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
957 struct curseg_info *seg_i;
958 unsigned char *kaddr;
959 struct page *page;
960 block_t start;
961 int i, j, offset;
963 start = start_sum_block(sbi);
965 page = get_meta_page(sbi, start++);
966 kaddr = (unsigned char *)page_address(page);
968 /* Step 1: restore nat cache */
969 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
970 memcpy(&seg_i->sum_blk->n_nats, kaddr, SUM_JOURNAL_SIZE);
972 /* Step 2: restore sit cache */
973 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
974 memcpy(&seg_i->sum_blk->n_sits, kaddr + SUM_JOURNAL_SIZE,
975 SUM_JOURNAL_SIZE);
976 offset = 2 * SUM_JOURNAL_SIZE;
978 /* Step 3: restore summary entries */
979 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
980 unsigned short blk_off;
981 unsigned int segno;
983 seg_i = CURSEG_I(sbi, i);
984 segno = le32_to_cpu(ckpt->cur_data_segno[i]);
985 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[i]);
986 seg_i->next_segno = segno;
987 reset_curseg(sbi, i, 0);
988 seg_i->alloc_type = ckpt->alloc_type[i];
989 seg_i->next_blkoff = blk_off;
991 if (seg_i->alloc_type == SSR)
992 blk_off = sbi->blocks_per_seg;
994 for (j = 0; j < blk_off; j++) {
995 struct f2fs_summary *s;
996 s = (struct f2fs_summary *)(kaddr + offset);
997 seg_i->sum_blk->entries[j] = *s;
998 offset += SUMMARY_SIZE;
999 if (offset + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1000 SUM_FOOTER_SIZE)
1001 continue;
1003 f2fs_put_page(page, 1);
1004 page = NULL;
1006 page = get_meta_page(sbi, start++);
1007 kaddr = (unsigned char *)page_address(page);
1008 offset = 0;
1011 f2fs_put_page(page, 1);
1012 return 0;
1015 static int read_normal_summaries(struct f2fs_sb_info *sbi, int type)
1017 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1018 struct f2fs_summary_block *sum;
1019 struct curseg_info *curseg;
1020 struct page *new;
1021 unsigned short blk_off;
1022 unsigned int segno = 0;
1023 block_t blk_addr = 0;
1025 /* get segment number and block addr */
1026 if (IS_DATASEG(type)) {
1027 segno = le32_to_cpu(ckpt->cur_data_segno[type]);
1028 blk_off = le16_to_cpu(ckpt->cur_data_blkoff[type -
1029 CURSEG_HOT_DATA]);
1030 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1031 blk_addr = sum_blk_addr(sbi, NR_CURSEG_TYPE, type);
1032 else
1033 blk_addr = sum_blk_addr(sbi, NR_CURSEG_DATA_TYPE, type);
1034 } else {
1035 segno = le32_to_cpu(ckpt->cur_node_segno[type -
1036 CURSEG_HOT_NODE]);
1037 blk_off = le16_to_cpu(ckpt->cur_node_blkoff[type -
1038 CURSEG_HOT_NODE]);
1039 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG))
1040 blk_addr = sum_blk_addr(sbi, NR_CURSEG_NODE_TYPE,
1041 type - CURSEG_HOT_NODE);
1042 else
1043 blk_addr = GET_SUM_BLOCK(sbi, segno);
1046 new = get_meta_page(sbi, blk_addr);
1047 sum = (struct f2fs_summary_block *)page_address(new);
1049 if (IS_NODESEG(type)) {
1050 if (is_set_ckpt_flags(ckpt, CP_UMOUNT_FLAG)) {
1051 struct f2fs_summary *ns = &sum->entries[0];
1052 int i;
1053 for (i = 0; i < sbi->blocks_per_seg; i++, ns++) {
1054 ns->version = 0;
1055 ns->ofs_in_node = 0;
1057 } else {
1058 if (restore_node_summary(sbi, segno, sum)) {
1059 f2fs_put_page(new, 1);
1060 return -EINVAL;
1065 /* set uncompleted segment to curseg */
1066 curseg = CURSEG_I(sbi, type);
1067 mutex_lock(&curseg->curseg_mutex);
1068 memcpy(curseg->sum_blk, sum, PAGE_CACHE_SIZE);
1069 curseg->next_segno = segno;
1070 reset_curseg(sbi, type, 0);
1071 curseg->alloc_type = ckpt->alloc_type[type];
1072 curseg->next_blkoff = blk_off;
1073 mutex_unlock(&curseg->curseg_mutex);
1074 f2fs_put_page(new, 1);
1075 return 0;
1078 static int restore_curseg_summaries(struct f2fs_sb_info *sbi)
1080 int type = CURSEG_HOT_DATA;
1082 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG)) {
1083 /* restore for compacted data summary */
1084 if (read_compacted_summaries(sbi))
1085 return -EINVAL;
1086 type = CURSEG_HOT_NODE;
1089 for (; type <= CURSEG_COLD_NODE; type++)
1090 if (read_normal_summaries(sbi, type))
1091 return -EINVAL;
1092 return 0;
1095 static void write_compacted_summaries(struct f2fs_sb_info *sbi, block_t blkaddr)
1097 struct page *page;
1098 unsigned char *kaddr;
1099 struct f2fs_summary *summary;
1100 struct curseg_info *seg_i;
1101 int written_size = 0;
1102 int i, j;
1104 page = grab_meta_page(sbi, blkaddr++);
1105 kaddr = (unsigned char *)page_address(page);
1107 /* Step 1: write nat cache */
1108 seg_i = CURSEG_I(sbi, CURSEG_HOT_DATA);
1109 memcpy(kaddr, &seg_i->sum_blk->n_nats, SUM_JOURNAL_SIZE);
1110 written_size += SUM_JOURNAL_SIZE;
1112 /* Step 2: write sit cache */
1113 seg_i = CURSEG_I(sbi, CURSEG_COLD_DATA);
1114 memcpy(kaddr + written_size, &seg_i->sum_blk->n_sits,
1115 SUM_JOURNAL_SIZE);
1116 written_size += SUM_JOURNAL_SIZE;
1118 set_page_dirty(page);
1120 /* Step 3: write summary entries */
1121 for (i = CURSEG_HOT_DATA; i <= CURSEG_COLD_DATA; i++) {
1122 unsigned short blkoff;
1123 seg_i = CURSEG_I(sbi, i);
1124 if (sbi->ckpt->alloc_type[i] == SSR)
1125 blkoff = sbi->blocks_per_seg;
1126 else
1127 blkoff = curseg_blkoff(sbi, i);
1129 for (j = 0; j < blkoff; j++) {
1130 if (!page) {
1131 page = grab_meta_page(sbi, blkaddr++);
1132 kaddr = (unsigned char *)page_address(page);
1133 written_size = 0;
1135 summary = (struct f2fs_summary *)(kaddr + written_size);
1136 *summary = seg_i->sum_blk->entries[j];
1137 written_size += SUMMARY_SIZE;
1138 set_page_dirty(page);
1140 if (written_size + SUMMARY_SIZE <= PAGE_CACHE_SIZE -
1141 SUM_FOOTER_SIZE)
1142 continue;
1144 f2fs_put_page(page, 1);
1145 page = NULL;
1148 if (page)
1149 f2fs_put_page(page, 1);
1152 static void write_normal_summaries(struct f2fs_sb_info *sbi,
1153 block_t blkaddr, int type)
1155 int i, end;
1156 if (IS_DATASEG(type))
1157 end = type + NR_CURSEG_DATA_TYPE;
1158 else
1159 end = type + NR_CURSEG_NODE_TYPE;
1161 for (i = type; i < end; i++) {
1162 struct curseg_info *sum = CURSEG_I(sbi, i);
1163 mutex_lock(&sum->curseg_mutex);
1164 write_sum_page(sbi, sum->sum_blk, blkaddr + (i - type));
1165 mutex_unlock(&sum->curseg_mutex);
1169 void write_data_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1171 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_COMPACT_SUM_FLAG))
1172 write_compacted_summaries(sbi, start_blk);
1173 else
1174 write_normal_summaries(sbi, start_blk, CURSEG_HOT_DATA);
1177 void write_node_summaries(struct f2fs_sb_info *sbi, block_t start_blk)
1179 if (is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG))
1180 write_normal_summaries(sbi, start_blk, CURSEG_HOT_NODE);
1181 return;
1184 int lookup_journal_in_cursum(struct f2fs_summary_block *sum, int type,
1185 unsigned int val, int alloc)
1187 int i;
1189 if (type == NAT_JOURNAL) {
1190 for (i = 0; i < nats_in_cursum(sum); i++) {
1191 if (le32_to_cpu(nid_in_journal(sum, i)) == val)
1192 return i;
1194 if (alloc && nats_in_cursum(sum) < NAT_JOURNAL_ENTRIES)
1195 return update_nats_in_cursum(sum, 1);
1196 } else if (type == SIT_JOURNAL) {
1197 for (i = 0; i < sits_in_cursum(sum); i++)
1198 if (le32_to_cpu(segno_in_journal(sum, i)) == val)
1199 return i;
1200 if (alloc && sits_in_cursum(sum) < SIT_JOURNAL_ENTRIES)
1201 return update_sits_in_cursum(sum, 1);
1203 return -1;
1206 static struct page *get_current_sit_page(struct f2fs_sb_info *sbi,
1207 unsigned int segno)
1209 struct sit_info *sit_i = SIT_I(sbi);
1210 unsigned int offset = SIT_BLOCK_OFFSET(sit_i, segno);
1211 block_t blk_addr = sit_i->sit_base_addr + offset;
1213 check_seg_range(sbi, segno);
1215 /* calculate sit block address */
1216 if (f2fs_test_bit(offset, sit_i->sit_bitmap))
1217 blk_addr += sit_i->sit_blocks;
1219 return get_meta_page(sbi, blk_addr);
1222 static struct page *get_next_sit_page(struct f2fs_sb_info *sbi,
1223 unsigned int start)
1225 struct sit_info *sit_i = SIT_I(sbi);
1226 struct page *src_page, *dst_page;
1227 pgoff_t src_off, dst_off;
1228 void *src_addr, *dst_addr;
1230 src_off = current_sit_addr(sbi, start);
1231 dst_off = next_sit_addr(sbi, src_off);
1233 /* get current sit block page without lock */
1234 src_page = get_meta_page(sbi, src_off);
1235 dst_page = grab_meta_page(sbi, dst_off);
1236 BUG_ON(PageDirty(src_page));
1238 src_addr = page_address(src_page);
1239 dst_addr = page_address(dst_page);
1240 memcpy(dst_addr, src_addr, PAGE_CACHE_SIZE);
1242 set_page_dirty(dst_page);
1243 f2fs_put_page(src_page, 1);
1245 set_to_next_sit(sit_i, start);
1247 return dst_page;
1250 static bool flush_sits_in_journal(struct f2fs_sb_info *sbi)
1252 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1253 struct f2fs_summary_block *sum = curseg->sum_blk;
1254 int i;
1257 * If the journal area in the current summary is full of sit entries,
1258 * all the sit entries will be flushed. Otherwise the sit entries
1259 * are not able to replace with newly hot sit entries.
1261 if (sits_in_cursum(sum) >= SIT_JOURNAL_ENTRIES) {
1262 for (i = sits_in_cursum(sum) - 1; i >= 0; i--) {
1263 unsigned int segno;
1264 segno = le32_to_cpu(segno_in_journal(sum, i));
1265 __mark_sit_entry_dirty(sbi, segno);
1267 update_sits_in_cursum(sum, -sits_in_cursum(sum));
1268 return 1;
1270 return 0;
1274 * CP calls this function, which flushes SIT entries including sit_journal,
1275 * and moves prefree segs to free segs.
1277 void flush_sit_entries(struct f2fs_sb_info *sbi)
1279 struct sit_info *sit_i = SIT_I(sbi);
1280 unsigned long *bitmap = sit_i->dirty_sentries_bitmap;
1281 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1282 struct f2fs_summary_block *sum = curseg->sum_blk;
1283 unsigned long nsegs = TOTAL_SEGS(sbi);
1284 struct page *page = NULL;
1285 struct f2fs_sit_block *raw_sit = NULL;
1286 unsigned int start = 0, end = 0;
1287 unsigned int segno = -1;
1288 bool flushed;
1290 mutex_lock(&curseg->curseg_mutex);
1291 mutex_lock(&sit_i->sentry_lock);
1294 * "flushed" indicates whether sit entries in journal are flushed
1295 * to the SIT area or not.
1297 flushed = flush_sits_in_journal(sbi);
1299 while ((segno = find_next_bit(bitmap, nsegs, segno + 1)) < nsegs) {
1300 struct seg_entry *se = get_seg_entry(sbi, segno);
1301 int sit_offset, offset;
1303 sit_offset = SIT_ENTRY_OFFSET(sit_i, segno);
1305 if (flushed)
1306 goto to_sit_page;
1308 offset = lookup_journal_in_cursum(sum, SIT_JOURNAL, segno, 1);
1309 if (offset >= 0) {
1310 segno_in_journal(sum, offset) = cpu_to_le32(segno);
1311 seg_info_to_raw_sit(se, &sit_in_journal(sum, offset));
1312 goto flush_done;
1314 to_sit_page:
1315 if (!page || (start > segno) || (segno > end)) {
1316 if (page) {
1317 f2fs_put_page(page, 1);
1318 page = NULL;
1321 start = START_SEGNO(sit_i, segno);
1322 end = start + SIT_ENTRY_PER_BLOCK - 1;
1324 /* read sit block that will be updated */
1325 page = get_next_sit_page(sbi, start);
1326 raw_sit = page_address(page);
1329 /* udpate entry in SIT block */
1330 seg_info_to_raw_sit(se, &raw_sit->entries[sit_offset]);
1331 flush_done:
1332 __clear_bit(segno, bitmap);
1333 sit_i->dirty_sentries--;
1335 mutex_unlock(&sit_i->sentry_lock);
1336 mutex_unlock(&curseg->curseg_mutex);
1338 /* writeout last modified SIT block */
1339 f2fs_put_page(page, 1);
1341 set_prefree_as_free_segments(sbi);
1344 static int build_sit_info(struct f2fs_sb_info *sbi)
1346 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1347 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1348 struct sit_info *sit_i;
1349 unsigned int sit_segs, start;
1350 char *src_bitmap, *dst_bitmap;
1351 unsigned int bitmap_size;
1353 /* allocate memory for SIT information */
1354 sit_i = kzalloc(sizeof(struct sit_info), GFP_KERNEL);
1355 if (!sit_i)
1356 return -ENOMEM;
1358 SM_I(sbi)->sit_info = sit_i;
1360 sit_i->sentries = vzalloc(TOTAL_SEGS(sbi) * sizeof(struct seg_entry));
1361 if (!sit_i->sentries)
1362 return -ENOMEM;
1364 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1365 sit_i->dirty_sentries_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1366 if (!sit_i->dirty_sentries_bitmap)
1367 return -ENOMEM;
1369 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1370 sit_i->sentries[start].cur_valid_map
1371 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1372 sit_i->sentries[start].ckpt_valid_map
1373 = kzalloc(SIT_VBLOCK_MAP_SIZE, GFP_KERNEL);
1374 if (!sit_i->sentries[start].cur_valid_map
1375 || !sit_i->sentries[start].ckpt_valid_map)
1376 return -ENOMEM;
1379 if (sbi->segs_per_sec > 1) {
1380 sit_i->sec_entries = vzalloc(sbi->total_sections *
1381 sizeof(struct sec_entry));
1382 if (!sit_i->sec_entries)
1383 return -ENOMEM;
1386 /* get information related with SIT */
1387 sit_segs = le32_to_cpu(raw_super->segment_count_sit) >> 1;
1389 /* setup SIT bitmap from ckeckpoint pack */
1390 bitmap_size = __bitmap_size(sbi, SIT_BITMAP);
1391 src_bitmap = __bitmap_ptr(sbi, SIT_BITMAP);
1393 dst_bitmap = kzalloc(bitmap_size, GFP_KERNEL);
1394 if (!dst_bitmap)
1395 return -ENOMEM;
1396 memcpy(dst_bitmap, src_bitmap, bitmap_size);
1398 /* init SIT information */
1399 sit_i->s_ops = &default_salloc_ops;
1401 sit_i->sit_base_addr = le32_to_cpu(raw_super->sit_blkaddr);
1402 sit_i->sit_blocks = sit_segs << sbi->log_blocks_per_seg;
1403 sit_i->written_valid_blocks = le64_to_cpu(ckpt->valid_block_count);
1404 sit_i->sit_bitmap = dst_bitmap;
1405 sit_i->bitmap_size = bitmap_size;
1406 sit_i->dirty_sentries = 0;
1407 sit_i->sents_per_block = SIT_ENTRY_PER_BLOCK;
1408 sit_i->elapsed_time = le64_to_cpu(sbi->ckpt->elapsed_time);
1409 sit_i->mounted_time = CURRENT_TIME_SEC.tv_sec;
1410 mutex_init(&sit_i->sentry_lock);
1411 return 0;
1414 static int build_free_segmap(struct f2fs_sb_info *sbi)
1416 struct f2fs_sm_info *sm_info = SM_I(sbi);
1417 struct free_segmap_info *free_i;
1418 unsigned int bitmap_size, sec_bitmap_size;
1420 /* allocate memory for free segmap information */
1421 free_i = kzalloc(sizeof(struct free_segmap_info), GFP_KERNEL);
1422 if (!free_i)
1423 return -ENOMEM;
1425 SM_I(sbi)->free_info = free_i;
1427 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1428 free_i->free_segmap = kmalloc(bitmap_size, GFP_KERNEL);
1429 if (!free_i->free_segmap)
1430 return -ENOMEM;
1432 sec_bitmap_size = f2fs_bitmap_size(sbi->total_sections);
1433 free_i->free_secmap = kmalloc(sec_bitmap_size, GFP_KERNEL);
1434 if (!free_i->free_secmap)
1435 return -ENOMEM;
1437 /* set all segments as dirty temporarily */
1438 memset(free_i->free_segmap, 0xff, bitmap_size);
1439 memset(free_i->free_secmap, 0xff, sec_bitmap_size);
1441 /* init free segmap information */
1442 free_i->start_segno =
1443 (unsigned int) GET_SEGNO_FROM_SEG0(sbi, sm_info->main_blkaddr);
1444 free_i->free_segments = 0;
1445 free_i->free_sections = 0;
1446 rwlock_init(&free_i->segmap_lock);
1447 return 0;
1450 static int build_curseg(struct f2fs_sb_info *sbi)
1452 struct curseg_info *array;
1453 int i;
1455 array = kzalloc(sizeof(*array) * NR_CURSEG_TYPE, GFP_KERNEL);
1456 if (!array)
1457 return -ENOMEM;
1459 SM_I(sbi)->curseg_array = array;
1461 for (i = 0; i < NR_CURSEG_TYPE; i++) {
1462 mutex_init(&array[i].curseg_mutex);
1463 array[i].sum_blk = kzalloc(PAGE_CACHE_SIZE, GFP_KERNEL);
1464 if (!array[i].sum_blk)
1465 return -ENOMEM;
1466 array[i].segno = NULL_SEGNO;
1467 array[i].next_blkoff = 0;
1469 return restore_curseg_summaries(sbi);
1472 static void build_sit_entries(struct f2fs_sb_info *sbi)
1474 struct sit_info *sit_i = SIT_I(sbi);
1475 struct curseg_info *curseg = CURSEG_I(sbi, CURSEG_COLD_DATA);
1476 struct f2fs_summary_block *sum = curseg->sum_blk;
1477 unsigned int start;
1479 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1480 struct seg_entry *se = &sit_i->sentries[start];
1481 struct f2fs_sit_block *sit_blk;
1482 struct f2fs_sit_entry sit;
1483 struct page *page;
1484 int i;
1486 mutex_lock(&curseg->curseg_mutex);
1487 for (i = 0; i < sits_in_cursum(sum); i++) {
1488 if (le32_to_cpu(segno_in_journal(sum, i)) == start) {
1489 sit = sit_in_journal(sum, i);
1490 mutex_unlock(&curseg->curseg_mutex);
1491 goto got_it;
1494 mutex_unlock(&curseg->curseg_mutex);
1495 page = get_current_sit_page(sbi, start);
1496 sit_blk = (struct f2fs_sit_block *)page_address(page);
1497 sit = sit_blk->entries[SIT_ENTRY_OFFSET(sit_i, start)];
1498 f2fs_put_page(page, 1);
1499 got_it:
1500 check_block_count(sbi, start, &sit);
1501 seg_info_from_raw_sit(se, &sit);
1502 if (sbi->segs_per_sec > 1) {
1503 struct sec_entry *e = get_sec_entry(sbi, start);
1504 e->valid_blocks += se->valid_blocks;
1509 static void init_free_segmap(struct f2fs_sb_info *sbi)
1511 unsigned int start;
1512 int type;
1514 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1515 struct seg_entry *sentry = get_seg_entry(sbi, start);
1516 if (!sentry->valid_blocks)
1517 __set_free(sbi, start);
1520 /* set use the current segments */
1521 for (type = CURSEG_HOT_DATA; type <= CURSEG_COLD_NODE; type++) {
1522 struct curseg_info *curseg_t = CURSEG_I(sbi, type);
1523 __set_test_and_inuse(sbi, curseg_t->segno);
1527 static void init_dirty_segmap(struct f2fs_sb_info *sbi)
1529 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1530 struct free_segmap_info *free_i = FREE_I(sbi);
1531 unsigned int segno = 0, offset = 0;
1532 unsigned short valid_blocks;
1534 while (segno < TOTAL_SEGS(sbi)) {
1535 /* find dirty segment based on free segmap */
1536 segno = find_next_inuse(free_i, TOTAL_SEGS(sbi), offset);
1537 if (segno >= TOTAL_SEGS(sbi))
1538 break;
1539 offset = segno + 1;
1540 valid_blocks = get_valid_blocks(sbi, segno, 0);
1541 if (valid_blocks >= sbi->blocks_per_seg || !valid_blocks)
1542 continue;
1543 mutex_lock(&dirty_i->seglist_lock);
1544 __locate_dirty_segment(sbi, segno, DIRTY);
1545 mutex_unlock(&dirty_i->seglist_lock);
1549 static int init_victim_segmap(struct f2fs_sb_info *sbi)
1551 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1552 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1554 dirty_i->victim_segmap[FG_GC] = kzalloc(bitmap_size, GFP_KERNEL);
1555 dirty_i->victim_segmap[BG_GC] = kzalloc(bitmap_size, GFP_KERNEL);
1556 if (!dirty_i->victim_segmap[FG_GC] || !dirty_i->victim_segmap[BG_GC])
1557 return -ENOMEM;
1558 return 0;
1561 static int build_dirty_segmap(struct f2fs_sb_info *sbi)
1563 struct dirty_seglist_info *dirty_i;
1564 unsigned int bitmap_size, i;
1566 /* allocate memory for dirty segments list information */
1567 dirty_i = kzalloc(sizeof(struct dirty_seglist_info), GFP_KERNEL);
1568 if (!dirty_i)
1569 return -ENOMEM;
1571 SM_I(sbi)->dirty_info = dirty_i;
1572 mutex_init(&dirty_i->seglist_lock);
1574 bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1576 for (i = 0; i < NR_DIRTY_TYPE; i++) {
1577 dirty_i->dirty_segmap[i] = kzalloc(bitmap_size, GFP_KERNEL);
1578 if (!dirty_i->dirty_segmap[i])
1579 return -ENOMEM;
1582 init_dirty_segmap(sbi);
1583 return init_victim_segmap(sbi);
1587 * Update min, max modified time for cost-benefit GC algorithm
1589 static void init_min_max_mtime(struct f2fs_sb_info *sbi)
1591 struct sit_info *sit_i = SIT_I(sbi);
1592 unsigned int segno;
1594 mutex_lock(&sit_i->sentry_lock);
1596 sit_i->min_mtime = LLONG_MAX;
1598 for (segno = 0; segno < TOTAL_SEGS(sbi); segno += sbi->segs_per_sec) {
1599 unsigned int i;
1600 unsigned long long mtime = 0;
1602 for (i = 0; i < sbi->segs_per_sec; i++)
1603 mtime += get_seg_entry(sbi, segno + i)->mtime;
1605 mtime = div_u64(mtime, sbi->segs_per_sec);
1607 if (sit_i->min_mtime > mtime)
1608 sit_i->min_mtime = mtime;
1610 sit_i->max_mtime = get_mtime(sbi);
1611 mutex_unlock(&sit_i->sentry_lock);
1614 int build_segment_manager(struct f2fs_sb_info *sbi)
1616 struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1617 struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1618 struct f2fs_sm_info *sm_info;
1619 int err;
1621 sm_info = kzalloc(sizeof(struct f2fs_sm_info), GFP_KERNEL);
1622 if (!sm_info)
1623 return -ENOMEM;
1625 /* init sm info */
1626 sbi->sm_info = sm_info;
1627 INIT_LIST_HEAD(&sm_info->wblist_head);
1628 spin_lock_init(&sm_info->wblist_lock);
1629 sm_info->seg0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1630 sm_info->main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1631 sm_info->segment_count = le32_to_cpu(raw_super->segment_count);
1632 sm_info->reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1633 sm_info->ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1634 sm_info->main_segments = le32_to_cpu(raw_super->segment_count_main);
1635 sm_info->ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1637 err = build_sit_info(sbi);
1638 if (err)
1639 return err;
1640 err = build_free_segmap(sbi);
1641 if (err)
1642 return err;
1643 err = build_curseg(sbi);
1644 if (err)
1645 return err;
1647 /* reinit free segmap based on SIT */
1648 build_sit_entries(sbi);
1650 init_free_segmap(sbi);
1651 err = build_dirty_segmap(sbi);
1652 if (err)
1653 return err;
1655 init_min_max_mtime(sbi);
1656 return 0;
1659 static void discard_dirty_segmap(struct f2fs_sb_info *sbi,
1660 enum dirty_type dirty_type)
1662 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1664 mutex_lock(&dirty_i->seglist_lock);
1665 kfree(dirty_i->dirty_segmap[dirty_type]);
1666 dirty_i->nr_dirty[dirty_type] = 0;
1667 mutex_unlock(&dirty_i->seglist_lock);
1670 void reset_victim_segmap(struct f2fs_sb_info *sbi)
1672 unsigned int bitmap_size = f2fs_bitmap_size(TOTAL_SEGS(sbi));
1673 memset(DIRTY_I(sbi)->victim_segmap[FG_GC], 0, bitmap_size);
1676 static void destroy_victim_segmap(struct f2fs_sb_info *sbi)
1678 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1680 kfree(dirty_i->victim_segmap[FG_GC]);
1681 kfree(dirty_i->victim_segmap[BG_GC]);
1684 static void destroy_dirty_segmap(struct f2fs_sb_info *sbi)
1686 struct dirty_seglist_info *dirty_i = DIRTY_I(sbi);
1687 int i;
1689 if (!dirty_i)
1690 return;
1692 /* discard pre-free/dirty segments list */
1693 for (i = 0; i < NR_DIRTY_TYPE; i++)
1694 discard_dirty_segmap(sbi, i);
1696 destroy_victim_segmap(sbi);
1697 SM_I(sbi)->dirty_info = NULL;
1698 kfree(dirty_i);
1701 static void destroy_curseg(struct f2fs_sb_info *sbi)
1703 struct curseg_info *array = SM_I(sbi)->curseg_array;
1704 int i;
1706 if (!array)
1707 return;
1708 SM_I(sbi)->curseg_array = NULL;
1709 for (i = 0; i < NR_CURSEG_TYPE; i++)
1710 kfree(array[i].sum_blk);
1711 kfree(array);
1714 static void destroy_free_segmap(struct f2fs_sb_info *sbi)
1716 struct free_segmap_info *free_i = SM_I(sbi)->free_info;
1717 if (!free_i)
1718 return;
1719 SM_I(sbi)->free_info = NULL;
1720 kfree(free_i->free_segmap);
1721 kfree(free_i->free_secmap);
1722 kfree(free_i);
1725 static void destroy_sit_info(struct f2fs_sb_info *sbi)
1727 struct sit_info *sit_i = SIT_I(sbi);
1728 unsigned int start;
1730 if (!sit_i)
1731 return;
1733 if (sit_i->sentries) {
1734 for (start = 0; start < TOTAL_SEGS(sbi); start++) {
1735 kfree(sit_i->sentries[start].cur_valid_map);
1736 kfree(sit_i->sentries[start].ckpt_valid_map);
1739 vfree(sit_i->sentries);
1740 vfree(sit_i->sec_entries);
1741 kfree(sit_i->dirty_sentries_bitmap);
1743 SM_I(sbi)->sit_info = NULL;
1744 kfree(sit_i->sit_bitmap);
1745 kfree(sit_i);
1748 void destroy_segment_manager(struct f2fs_sb_info *sbi)
1750 struct f2fs_sm_info *sm_info = SM_I(sbi);
1751 destroy_dirty_segmap(sbi);
1752 destroy_curseg(sbi);
1753 destroy_free_segmap(sbi);
1754 destroy_sit_info(sbi);
1755 sbi->sm_info = NULL;
1756 kfree(sm_info);