2 * Copyright 2011 Red Hat Inc.
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice shall be included in
12 * all copies or substantial portions of the Software.
14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20 * OTHER DEALINGS IN THE SOFTWARE.
25 #include <linux/dma-mapping.h>
28 #include "drm_crtc_helper.h"
30 #include "nouveau_drv.h"
31 #include "nouveau_connector.h"
32 #include "nouveau_encoder.h"
33 #include "nouveau_crtc.h"
34 #include "nouveau_dma.h"
35 #include "nouveau_fb.h"
36 #include "nv50_display.h"
39 struct nouveau_gpuobj
*mem
;
45 struct tasklet_struct tasklet
;
49 static struct nvd0_display
*
50 nvd0_display(struct drm_device
*dev
)
52 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
53 return dev_priv
->engine
.display
.priv
;
57 evo_icmd(struct drm_device
*dev
, int id
, u32 mthd
, u32 data
)
60 nv_mask(dev
, 0x610700 + (id
* 0x10), 0x00000001, 0x00000001);
61 nv_wr32(dev
, 0x610704 + (id
* 0x10), data
);
62 nv_mask(dev
, 0x610704 + (id
* 0x10), 0x80000ffc, 0x80000000 | mthd
);
63 if (!nv_wait(dev
, 0x610704 + (id
* 0x10), 0x80000000, 0x00000000))
65 nv_mask(dev
, 0x610700 + (id
* 0x10), 0x00000001, 0x00000000);
70 evo_wait(struct drm_device
*dev
, int id
, int nr
)
72 struct nvd0_display
*disp
= nvd0_display(dev
);
73 u32 put
= nv_rd32(dev
, 0x640000 + (id
* 0x1000)) / 4;
75 if (put
+ nr
>= (PAGE_SIZE
/ 4)) {
76 disp
->evo
[id
].ptr
[put
] = 0x20000000;
78 nv_wr32(dev
, 0x640000 + (id
* 0x1000), 0x00000000);
79 if (!nv_wait(dev
, 0x640004 + (id
* 0x1000), ~0, 0x00000000)) {
80 NV_ERROR(dev
, "evo %d dma stalled\n", id
);
87 return disp
->evo
[id
].ptr
+ put
;
91 evo_kick(u32
*push
, struct drm_device
*dev
, int id
)
93 struct nvd0_display
*disp
= nvd0_display(dev
);
94 nv_wr32(dev
, 0x640000 + (id
* 0x1000), (push
- disp
->evo
[id
].ptr
) << 2);
97 #define evo_mthd(p,m,s) *((p)++) = (((s) << 18) | (m))
98 #define evo_data(p,d) *((p)++) = (d)
100 static struct drm_crtc
*
101 nvd0_display_crtc_get(struct drm_encoder
*encoder
)
103 return nouveau_encoder(encoder
)->crtc
;
106 /******************************************************************************
108 *****************************************************************************/
110 nvd0_crtc_set_dither(struct nouveau_crtc
*nv_crtc
, bool on
, bool update
)
112 struct drm_device
*dev
= nv_crtc
->base
.dev
;
117 /* 0x11: 6bpc dynamic 2x2
118 * 0x13: 8bpc dynamic 2x2
119 * 0x19: 6bpc static 2x2
120 * 0x1b: 8bpc static 2x2
121 * 0x21: 6bpc temporal
122 * 0x23: 8bpc temporal
127 push
= evo_wait(dev
, 0, 4);
129 evo_mthd(push
, 0x0490 + (nv_crtc
->index
* 0x300), 1);
130 evo_data(push
, mode
);
132 evo_mthd(push
, 0x0080, 1);
133 evo_data(push
, 0x00000000);
135 evo_kick(push
, dev
, 0);
142 nvd0_crtc_set_scale(struct nouveau_crtc
*nv_crtc
, int type
, bool update
)
144 struct drm_display_mode
*mode
= &nv_crtc
->base
.mode
;
145 struct drm_device
*dev
= nv_crtc
->base
.dev
;
146 struct nouveau_connector
*nv_connector
;
147 u32
*push
, outX
, outY
;
149 outX
= mode
->hdisplay
;
150 outY
= mode
->vdisplay
;
152 nv_connector
= nouveau_crtc_connector_get(nv_crtc
);
153 if (nv_connector
&& nv_connector
->native_mode
) {
154 struct drm_display_mode
*native
= nv_connector
->native_mode
;
155 u32 xratio
= (native
->hdisplay
<< 19) / mode
->hdisplay
;
156 u32 yratio
= (native
->vdisplay
<< 19) / mode
->vdisplay
;
159 case DRM_MODE_SCALE_ASPECT
:
160 if (xratio
> yratio
) {
161 outX
= (mode
->hdisplay
* yratio
) >> 19;
162 outY
= (mode
->vdisplay
* yratio
) >> 19;
164 outX
= (mode
->hdisplay
* xratio
) >> 19;
165 outY
= (mode
->vdisplay
* xratio
) >> 19;
168 case DRM_MODE_SCALE_FULLSCREEN
:
169 outX
= native
->hdisplay
;
170 outY
= native
->vdisplay
;
177 push
= evo_wait(dev
, 0, 16);
179 evo_mthd(push
, 0x04c0 + (nv_crtc
->index
* 0x300), 3);
180 evo_data(push
, (outY
<< 16) | outX
);
181 evo_data(push
, (outY
<< 16) | outX
);
182 evo_data(push
, (outY
<< 16) | outX
);
183 evo_mthd(push
, 0x0494 + (nv_crtc
->index
* 0x300), 1);
184 evo_data(push
, 0x00000000);
185 evo_mthd(push
, 0x04b8 + (nv_crtc
->index
* 0x300), 1);
186 evo_data(push
, (mode
->vdisplay
<< 16) | mode
->hdisplay
);
188 evo_mthd(push
, 0x0080, 1);
189 evo_data(push
, 0x00000000);
191 evo_kick(push
, dev
, 0);
198 nvd0_crtc_set_image(struct nouveau_crtc
*nv_crtc
, struct drm_framebuffer
*fb
,
199 int x
, int y
, bool update
)
201 struct nouveau_framebuffer
*nvfb
= nouveau_framebuffer(fb
);
204 push
= evo_wait(fb
->dev
, 0, 16);
206 evo_mthd(push
, 0x0460 + (nv_crtc
->index
* 0x300), 1);
207 evo_data(push
, nvfb
->nvbo
->bo
.offset
>> 8);
208 evo_mthd(push
, 0x0468 + (nv_crtc
->index
* 0x300), 4);
209 evo_data(push
, (fb
->height
<< 16) | fb
->width
);
210 evo_data(push
, nvfb
->r_pitch
);
211 evo_data(push
, nvfb
->r_format
);
212 evo_data(push
, nvfb
->r_dma
);
213 evo_mthd(push
, 0x04b0 + (nv_crtc
->index
* 0x300), 1);
214 evo_data(push
, (y
<< 16) | x
);
216 evo_mthd(push
, 0x0080, 1);
217 evo_data(push
, 0x00000000);
219 evo_kick(push
, fb
->dev
, 0);
222 nv_crtc
->fb
.tile_flags
= nvfb
->r_dma
;
227 nvd0_crtc_cursor_show(struct nouveau_crtc
*nv_crtc
, bool show
, bool update
)
229 struct drm_device
*dev
= nv_crtc
->base
.dev
;
230 u32
*push
= evo_wait(dev
, 0, 16);
233 evo_mthd(push
, 0x0480 + (nv_crtc
->index
* 0x300), 2);
234 evo_data(push
, 0x85000000);
235 evo_data(push
, nv_crtc
->cursor
.nvbo
->bo
.offset
>> 8);
236 evo_mthd(push
, 0x048c + (nv_crtc
->index
* 0x300), 1);
237 evo_data(push
, NvEvoVRAM
);
239 evo_mthd(push
, 0x0480 + (nv_crtc
->index
* 0x300), 1);
240 evo_data(push
, 0x05000000);
241 evo_mthd(push
, 0x048c + (nv_crtc
->index
* 0x300), 1);
242 evo_data(push
, 0x00000000);
246 evo_mthd(push
, 0x0080, 1);
247 evo_data(push
, 0x00000000);
250 evo_kick(push
, dev
, 0);
255 nvd0_crtc_dpms(struct drm_crtc
*crtc
, int mode
)
260 nvd0_crtc_prepare(struct drm_crtc
*crtc
)
262 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
265 push
= evo_wait(crtc
->dev
, 0, 2);
267 evo_mthd(push
, 0x0474 + (nv_crtc
->index
* 0x300), 1);
268 evo_data(push
, 0x00000000);
269 evo_mthd(push
, 0x0440 + (nv_crtc
->index
* 0x300), 1);
270 evo_data(push
, 0x03000000);
271 evo_mthd(push
, 0x045c + (nv_crtc
->index
* 0x300), 1);
272 evo_data(push
, 0x00000000);
273 evo_kick(push
, crtc
->dev
, 0);
276 nvd0_crtc_cursor_show(nv_crtc
, false, false);
280 nvd0_crtc_commit(struct drm_crtc
*crtc
)
282 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
285 push
= evo_wait(crtc
->dev
, 0, 32);
287 evo_mthd(push
, 0x0474 + (nv_crtc
->index
* 0x300), 1);
288 evo_data(push
, nv_crtc
->fb
.tile_flags
);
289 evo_mthd(push
, 0x0440 + (nv_crtc
->index
* 0x300), 4);
290 evo_data(push
, 0x83000000);
291 evo_data(push
, nv_crtc
->lut
.nvbo
->bo
.offset
>> 8);
292 evo_data(push
, 0x00000000);
293 evo_data(push
, 0x00000000);
294 evo_mthd(push
, 0x045c + (nv_crtc
->index
* 0x300), 1);
295 evo_data(push
, NvEvoVRAM
);
296 evo_mthd(push
, 0x0430 + (nv_crtc
->index
* 0x300), 1);
297 evo_data(push
, 0xffffff00);
298 evo_kick(push
, crtc
->dev
, 0);
301 nvd0_crtc_cursor_show(nv_crtc
, nv_crtc
->cursor
.visible
, true);
305 nvd0_crtc_mode_fixup(struct drm_crtc
*crtc
, struct drm_display_mode
*mode
,
306 struct drm_display_mode
*adjusted_mode
)
312 nvd0_crtc_swap_fbs(struct drm_crtc
*crtc
, struct drm_framebuffer
*old_fb
)
314 struct nouveau_framebuffer
*nvfb
= nouveau_framebuffer(crtc
->fb
);
317 ret
= nouveau_bo_pin(nvfb
->nvbo
, TTM_PL_FLAG_VRAM
);
322 nvfb
= nouveau_framebuffer(old_fb
);
323 nouveau_bo_unpin(nvfb
->nvbo
);
330 nvd0_crtc_mode_set(struct drm_crtc
*crtc
, struct drm_display_mode
*umode
,
331 struct drm_display_mode
*mode
, int x
, int y
,
332 struct drm_framebuffer
*old_fb
)
334 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
335 struct nouveau_connector
*nv_connector
;
336 u32 htotal
= mode
->htotal
;
337 u32 vtotal
= mode
->vtotal
;
338 u32 hsyncw
= mode
->hsync_end
- mode
->hsync_start
- 1;
339 u32 vsyncw
= mode
->vsync_end
- mode
->vsync_start
- 1;
340 u32 hfrntp
= mode
->hsync_start
- mode
->hdisplay
;
341 u32 vfrntp
= mode
->vsync_start
- mode
->vdisplay
;
342 u32 hbackp
= mode
->htotal
- mode
->hsync_end
;
343 u32 vbackp
= mode
->vtotal
- mode
->vsync_end
;
344 u32 hss2be
= hsyncw
+ hbackp
;
345 u32 vss2be
= vsyncw
+ vbackp
;
346 u32 hss2de
= htotal
- hfrntp
;
347 u32 vss2de
= vtotal
- vfrntp
;
352 if (mode
->flags
& DRM_MODE_FLAG_NHSYNC
)
354 if (mode
->flags
& DRM_MODE_FLAG_NVSYNC
)
357 ret
= nvd0_crtc_swap_fbs(crtc
, old_fb
);
361 push
= evo_wait(crtc
->dev
, 0, 64);
363 evo_mthd(push
, 0x0410 + (nv_crtc
->index
* 0x300), 5);
364 evo_data(push
, 0x00000000);
365 evo_data(push
, (vtotal
<< 16) | htotal
);
366 evo_data(push
, (vsyncw
<< 16) | hsyncw
);
367 evo_data(push
, (vss2be
<< 16) | hss2be
);
368 evo_data(push
, (vss2de
<< 16) | hss2de
);
369 evo_mthd(push
, 0x042c + (nv_crtc
->index
* 0x300), 1);
370 evo_data(push
, 0x00000000); /* ??? */
371 evo_mthd(push
, 0x0450 + (nv_crtc
->index
* 0x300), 3);
372 evo_data(push
, mode
->clock
* 1000);
373 evo_data(push
, 0x00200000); /* ??? */
374 evo_data(push
, mode
->clock
* 1000);
375 evo_mthd(push
, 0x0404 + (nv_crtc
->index
* 0x300), 1);
376 evo_data(push
, syncs
);
377 evo_kick(push
, crtc
->dev
, 0);
380 nv_connector
= nouveau_crtc_connector_get(nv_crtc
);
381 nvd0_crtc_set_dither(nv_crtc
, nv_connector
->use_dithering
, false);
382 nvd0_crtc_set_scale(nv_crtc
, nv_connector
->scaling_mode
, false);
383 nvd0_crtc_set_image(nv_crtc
, crtc
->fb
, x
, y
, false);
388 nvd0_crtc_mode_set_base(struct drm_crtc
*crtc
, int x
, int y
,
389 struct drm_framebuffer
*old_fb
)
391 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
395 NV_DEBUG_KMS(crtc
->dev
, "No FB bound\n");
399 ret
= nvd0_crtc_swap_fbs(crtc
, old_fb
);
403 nvd0_crtc_set_image(nv_crtc
, crtc
->fb
, x
, y
, true);
408 nvd0_crtc_mode_set_base_atomic(struct drm_crtc
*crtc
,
409 struct drm_framebuffer
*fb
, int x
, int y
,
410 enum mode_set_atomic state
)
412 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
413 nvd0_crtc_set_image(nv_crtc
, fb
, x
, y
, true);
418 nvd0_crtc_lut_load(struct drm_crtc
*crtc
)
420 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
421 void __iomem
*lut
= nvbo_kmap_obj_iovirtual(nv_crtc
->lut
.nvbo
);
424 for (i
= 0; i
< 256; i
++) {
425 writew(0x6000 + (nv_crtc
->lut
.r
[i
] >> 2), lut
+ (i
* 0x20) + 0);
426 writew(0x6000 + (nv_crtc
->lut
.g
[i
] >> 2), lut
+ (i
* 0x20) + 2);
427 writew(0x6000 + (nv_crtc
->lut
.b
[i
] >> 2), lut
+ (i
* 0x20) + 4);
432 nvd0_crtc_cursor_set(struct drm_crtc
*crtc
, struct drm_file
*file_priv
,
433 uint32_t handle
, uint32_t width
, uint32_t height
)
435 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
436 struct drm_device
*dev
= crtc
->dev
;
437 struct drm_gem_object
*gem
;
438 struct nouveau_bo
*nvbo
;
439 bool visible
= (handle
!= 0);
443 if (width
!= 64 || height
!= 64)
446 gem
= drm_gem_object_lookup(dev
, file_priv
, handle
);
449 nvbo
= nouveau_gem_object(gem
);
451 ret
= nouveau_bo_map(nvbo
);
453 for (i
= 0; i
< 64 * 64; i
++) {
454 u32 v
= nouveau_bo_rd32(nvbo
, i
);
455 nouveau_bo_wr32(nv_crtc
->cursor
.nvbo
, i
, v
);
457 nouveau_bo_unmap(nvbo
);
460 drm_gem_object_unreference_unlocked(gem
);
463 if (visible
!= nv_crtc
->cursor
.visible
) {
464 nvd0_crtc_cursor_show(nv_crtc
, visible
, true);
465 nv_crtc
->cursor
.visible
= visible
;
472 nvd0_crtc_cursor_move(struct drm_crtc
*crtc
, int x
, int y
)
474 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
475 const u32 data
= (y
<< 16) | x
;
477 nv_wr32(crtc
->dev
, 0x64d084 + (nv_crtc
->index
* 0x1000), data
);
478 nv_wr32(crtc
->dev
, 0x64d080 + (nv_crtc
->index
* 0x1000), 0x00000000);
483 nvd0_crtc_gamma_set(struct drm_crtc
*crtc
, u16
*r
, u16
*g
, u16
*b
,
484 uint32_t start
, uint32_t size
)
486 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
487 u32 end
= max(start
+ size
, (u32
)256);
490 for (i
= start
; i
< end
; i
++) {
491 nv_crtc
->lut
.r
[i
] = r
[i
];
492 nv_crtc
->lut
.g
[i
] = g
[i
];
493 nv_crtc
->lut
.b
[i
] = b
[i
];
496 nvd0_crtc_lut_load(crtc
);
500 nvd0_crtc_destroy(struct drm_crtc
*crtc
)
502 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(crtc
);
503 nouveau_bo_unmap(nv_crtc
->cursor
.nvbo
);
504 nouveau_bo_ref(NULL
, &nv_crtc
->cursor
.nvbo
);
505 nouveau_bo_unmap(nv_crtc
->lut
.nvbo
);
506 nouveau_bo_ref(NULL
, &nv_crtc
->lut
.nvbo
);
507 drm_crtc_cleanup(crtc
);
511 static const struct drm_crtc_helper_funcs nvd0_crtc_hfunc
= {
512 .dpms
= nvd0_crtc_dpms
,
513 .prepare
= nvd0_crtc_prepare
,
514 .commit
= nvd0_crtc_commit
,
515 .mode_fixup
= nvd0_crtc_mode_fixup
,
516 .mode_set
= nvd0_crtc_mode_set
,
517 .mode_set_base
= nvd0_crtc_mode_set_base
,
518 .mode_set_base_atomic
= nvd0_crtc_mode_set_base_atomic
,
519 .load_lut
= nvd0_crtc_lut_load
,
522 static const struct drm_crtc_funcs nvd0_crtc_func
= {
523 .cursor_set
= nvd0_crtc_cursor_set
,
524 .cursor_move
= nvd0_crtc_cursor_move
,
525 .gamma_set
= nvd0_crtc_gamma_set
,
526 .set_config
= drm_crtc_helper_set_config
,
527 .destroy
= nvd0_crtc_destroy
,
531 nvd0_cursor_set_pos(struct nouveau_crtc
*nv_crtc
, int x
, int y
)
536 nvd0_cursor_set_offset(struct nouveau_crtc
*nv_crtc
, uint32_t offset
)
541 nvd0_crtc_create(struct drm_device
*dev
, int index
)
543 struct nouveau_crtc
*nv_crtc
;
544 struct drm_crtc
*crtc
;
547 nv_crtc
= kzalloc(sizeof(*nv_crtc
), GFP_KERNEL
);
551 nv_crtc
->index
= index
;
552 nv_crtc
->set_dither
= nvd0_crtc_set_dither
;
553 nv_crtc
->set_scale
= nvd0_crtc_set_scale
;
554 nv_crtc
->cursor
.set_offset
= nvd0_cursor_set_offset
;
555 nv_crtc
->cursor
.set_pos
= nvd0_cursor_set_pos
;
556 for (i
= 0; i
< 256; i
++) {
557 nv_crtc
->lut
.r
[i
] = i
<< 8;
558 nv_crtc
->lut
.g
[i
] = i
<< 8;
559 nv_crtc
->lut
.b
[i
] = i
<< 8;
562 crtc
= &nv_crtc
->base
;
563 drm_crtc_init(dev
, crtc
, &nvd0_crtc_func
);
564 drm_crtc_helper_add(crtc
, &nvd0_crtc_hfunc
);
565 drm_mode_crtc_set_gamma_size(crtc
, 256);
567 ret
= nouveau_bo_new(dev
, 64 * 64 * 4, 0x100, TTM_PL_FLAG_VRAM
,
568 0, 0x0000, &nv_crtc
->cursor
.nvbo
);
570 ret
= nouveau_bo_pin(nv_crtc
->cursor
.nvbo
, TTM_PL_FLAG_VRAM
);
572 ret
= nouveau_bo_map(nv_crtc
->cursor
.nvbo
);
574 nouveau_bo_ref(NULL
, &nv_crtc
->cursor
.nvbo
);
580 ret
= nouveau_bo_new(dev
, 8192, 0x100, TTM_PL_FLAG_VRAM
,
581 0, 0x0000, &nv_crtc
->lut
.nvbo
);
583 ret
= nouveau_bo_pin(nv_crtc
->lut
.nvbo
, TTM_PL_FLAG_VRAM
);
585 ret
= nouveau_bo_map(nv_crtc
->lut
.nvbo
);
587 nouveau_bo_ref(NULL
, &nv_crtc
->lut
.nvbo
);
593 nvd0_crtc_lut_load(crtc
);
597 nvd0_crtc_destroy(crtc
);
601 /******************************************************************************
603 *****************************************************************************/
605 nvd0_dac_dpms(struct drm_encoder
*encoder
, int mode
)
607 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
608 struct drm_device
*dev
= encoder
->dev
;
609 int or = nv_encoder
->or;
612 dpms_ctrl
= 0x80000000;
613 if (mode
== DRM_MODE_DPMS_STANDBY
|| mode
== DRM_MODE_DPMS_OFF
)
614 dpms_ctrl
|= 0x00000001;
615 if (mode
== DRM_MODE_DPMS_SUSPEND
|| mode
== DRM_MODE_DPMS_OFF
)
616 dpms_ctrl
|= 0x00000004;
618 nv_wait(dev
, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
619 nv_mask(dev
, 0x61a004 + (or * 0x0800), 0xc000007f, dpms_ctrl
);
620 nv_wait(dev
, 0x61a004 + (or * 0x0800), 0x80000000, 0x00000000);
624 nvd0_dac_mode_fixup(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
,
625 struct drm_display_mode
*adjusted_mode
)
627 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
628 struct nouveau_connector
*nv_connector
;
630 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
631 if (nv_connector
&& nv_connector
->native_mode
) {
632 if (nv_connector
->scaling_mode
!= DRM_MODE_SCALE_NONE
) {
633 int id
= adjusted_mode
->base
.id
;
634 *adjusted_mode
= *nv_connector
->native_mode
;
635 adjusted_mode
->base
.id
= id
;
643 nvd0_dac_prepare(struct drm_encoder
*encoder
)
648 nvd0_dac_commit(struct drm_encoder
*encoder
)
653 nvd0_dac_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
,
654 struct drm_display_mode
*adjusted_mode
)
656 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
657 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(encoder
->crtc
);
660 nvd0_dac_dpms(encoder
, DRM_MODE_DPMS_ON
);
662 push
= evo_wait(encoder
->dev
, 0, 4);
664 evo_mthd(push
, 0x0180 + (nv_encoder
->or * 0x20), 2);
665 evo_data(push
, 1 << nv_crtc
->index
);
666 evo_data(push
, 0x00ff);
667 evo_kick(push
, encoder
->dev
, 0);
670 nv_encoder
->crtc
= encoder
->crtc
;
674 nvd0_dac_disconnect(struct drm_encoder
*encoder
)
676 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
677 struct drm_device
*dev
= encoder
->dev
;
680 if (nv_encoder
->crtc
) {
681 nvd0_crtc_prepare(nv_encoder
->crtc
);
683 push
= evo_wait(dev
, 0, 4);
685 evo_mthd(push
, 0x0180 + (nv_encoder
->or * 0x20), 1);
686 evo_data(push
, 0x00000000);
687 evo_mthd(push
, 0x0080, 1);
688 evo_data(push
, 0x00000000);
689 evo_kick(push
, dev
, 0);
692 nv_encoder
->crtc
= NULL
;
696 static enum drm_connector_status
697 nvd0_dac_detect(struct drm_encoder
*encoder
, struct drm_connector
*connector
)
699 enum drm_connector_status status
= connector_status_disconnected
;
700 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
701 struct drm_device
*dev
= encoder
->dev
;
702 int or = nv_encoder
->or;
705 nv_wr32(dev
, 0x61a00c + (or * 0x800), 0x00100000);
707 nv_wr32(dev
, 0x61a00c + (or * 0x800), 0x80000000);
709 load
= nv_rd32(dev
, 0x61a00c + (or * 0x800));
710 if ((load
& 0x38000000) == 0x38000000)
711 status
= connector_status_connected
;
713 nv_wr32(dev
, 0x61a00c + (or * 0x800), 0x00000000);
718 nvd0_dac_destroy(struct drm_encoder
*encoder
)
720 drm_encoder_cleanup(encoder
);
724 static const struct drm_encoder_helper_funcs nvd0_dac_hfunc
= {
725 .dpms
= nvd0_dac_dpms
,
726 .mode_fixup
= nvd0_dac_mode_fixup
,
727 .prepare
= nvd0_dac_prepare
,
728 .commit
= nvd0_dac_commit
,
729 .mode_set
= nvd0_dac_mode_set
,
730 .disable
= nvd0_dac_disconnect
,
731 .get_crtc
= nvd0_display_crtc_get
,
732 .detect
= nvd0_dac_detect
735 static const struct drm_encoder_funcs nvd0_dac_func
= {
736 .destroy
= nvd0_dac_destroy
,
740 nvd0_dac_create(struct drm_connector
*connector
, struct dcb_entry
*dcbe
)
742 struct drm_device
*dev
= connector
->dev
;
743 struct nouveau_encoder
*nv_encoder
;
744 struct drm_encoder
*encoder
;
746 nv_encoder
= kzalloc(sizeof(*nv_encoder
), GFP_KERNEL
);
749 nv_encoder
->dcb
= dcbe
;
750 nv_encoder
->or = ffs(dcbe
->or) - 1;
752 encoder
= to_drm_encoder(nv_encoder
);
753 encoder
->possible_crtcs
= dcbe
->heads
;
754 encoder
->possible_clones
= 0;
755 drm_encoder_init(dev
, encoder
, &nvd0_dac_func
, DRM_MODE_ENCODER_DAC
);
756 drm_encoder_helper_add(encoder
, &nvd0_dac_hfunc
);
758 drm_mode_connector_attach_encoder(connector
, encoder
);
762 /******************************************************************************
764 *****************************************************************************/
766 nvd0_sor_dpms(struct drm_encoder
*encoder
, int mode
)
768 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
769 struct drm_device
*dev
= encoder
->dev
;
770 struct drm_encoder
*partner
;
771 int or = nv_encoder
->or;
774 nv_encoder
->last_dpms
= mode
;
776 list_for_each_entry(partner
, &dev
->mode_config
.encoder_list
, head
) {
777 struct nouveau_encoder
*nv_partner
= nouveau_encoder(partner
);
779 if (partner
->encoder_type
!= DRM_MODE_ENCODER_TMDS
)
782 if (nv_partner
!= nv_encoder
&&
783 nv_partner
->dcb
->or == nv_encoder
->or) {
784 if (nv_partner
->last_dpms
== DRM_MODE_DPMS_ON
)
790 dpms_ctrl
= (mode
== DRM_MODE_DPMS_ON
);
791 dpms_ctrl
|= 0x80000000;
793 nv_wait(dev
, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
794 nv_mask(dev
, 0x61c004 + (or * 0x0800), 0x80000001, dpms_ctrl
);
795 nv_wait(dev
, 0x61c004 + (or * 0x0800), 0x80000000, 0x00000000);
796 nv_wait(dev
, 0x61c030 + (or * 0x0800), 0x10000000, 0x00000000);
800 nvd0_sor_mode_fixup(struct drm_encoder
*encoder
, struct drm_display_mode
*mode
,
801 struct drm_display_mode
*adjusted_mode
)
803 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
804 struct nouveau_connector
*nv_connector
;
806 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
807 if (nv_connector
&& nv_connector
->native_mode
) {
808 if (nv_connector
->scaling_mode
!= DRM_MODE_SCALE_NONE
) {
809 int id
= adjusted_mode
->base
.id
;
810 *adjusted_mode
= *nv_connector
->native_mode
;
811 adjusted_mode
->base
.id
= id
;
819 nvd0_sor_prepare(struct drm_encoder
*encoder
)
824 nvd0_sor_commit(struct drm_encoder
*encoder
)
829 nvd0_sor_mode_set(struct drm_encoder
*encoder
, struct drm_display_mode
*umode
,
830 struct drm_display_mode
*mode
)
832 struct drm_nouveau_private
*dev_priv
= encoder
->dev
->dev_private
;
833 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
834 struct nouveau_crtc
*nv_crtc
= nouveau_crtc(encoder
->crtc
);
835 struct nouveau_connector
*nv_connector
;
836 struct nvbios
*bios
= &dev_priv
->vbios
;
837 u32 mode_ctrl
= (1 << nv_crtc
->index
);
838 u32
*push
, or_config
;
840 nv_connector
= nouveau_encoder_connector_get(nv_encoder
);
841 switch (nv_encoder
->dcb
->type
) {
843 if (nv_encoder
->dcb
->sorconf
.link
& 1) {
844 if (mode
->clock
< 165000)
845 mode_ctrl
|= 0x00000100;
847 mode_ctrl
|= 0x00000500;
849 mode_ctrl
|= 0x00000200;
852 or_config
= (mode_ctrl
& 0x00000f00) >> 8;
853 if (mode
->clock
>= 165000)
857 or_config
= (mode_ctrl
& 0x00000f00) >> 8;
858 if (bios
->fp_no_ddc
) {
859 if (bios
->fp
.dual_link
)
861 if (bios
->fp
.if_is_24bit
)
864 if (nv_connector
->dcb
->type
== DCB_CONNECTOR_LVDS_SPWG
) {
865 if (((u8
*)nv_connector
->edid
)[121] == 2)
868 if (mode
->clock
>= bios
->fp
.duallink_transition_clk
) {
872 if (or_config
& 0x0100) {
873 if (bios
->fp
.strapless_is_24bit
& 2)
876 if (bios
->fp
.strapless_is_24bit
& 1)
880 if (nv_connector
->base
.display_info
.bpc
== 8)
890 nvd0_sor_dpms(encoder
, DRM_MODE_DPMS_ON
);
892 push
= evo_wait(encoder
->dev
, 0, 4);
894 evo_mthd(push
, 0x0200 + (nv_encoder
->or * 0x20), 2);
895 evo_data(push
, mode_ctrl
);
896 evo_data(push
, or_config
);
897 evo_kick(push
, encoder
->dev
, 0);
900 nv_encoder
->crtc
= encoder
->crtc
;
904 nvd0_sor_disconnect(struct drm_encoder
*encoder
)
906 struct nouveau_encoder
*nv_encoder
= nouveau_encoder(encoder
);
907 struct drm_device
*dev
= encoder
->dev
;
910 if (nv_encoder
->crtc
) {
911 nvd0_crtc_prepare(nv_encoder
->crtc
);
913 push
= evo_wait(dev
, 0, 4);
915 evo_mthd(push
, 0x0200 + (nv_encoder
->or * 0x20), 1);
916 evo_data(push
, 0x00000000);
917 evo_mthd(push
, 0x0080, 1);
918 evo_data(push
, 0x00000000);
919 evo_kick(push
, dev
, 0);
922 nv_encoder
->crtc
= NULL
;
923 nv_encoder
->last_dpms
= DRM_MODE_DPMS_OFF
;
928 nvd0_sor_destroy(struct drm_encoder
*encoder
)
930 drm_encoder_cleanup(encoder
);
934 static const struct drm_encoder_helper_funcs nvd0_sor_hfunc
= {
935 .dpms
= nvd0_sor_dpms
,
936 .mode_fixup
= nvd0_sor_mode_fixup
,
937 .prepare
= nvd0_sor_prepare
,
938 .commit
= nvd0_sor_commit
,
939 .mode_set
= nvd0_sor_mode_set
,
940 .disable
= nvd0_sor_disconnect
,
941 .get_crtc
= nvd0_display_crtc_get
,
944 static const struct drm_encoder_funcs nvd0_sor_func
= {
945 .destroy
= nvd0_sor_destroy
,
949 nvd0_sor_create(struct drm_connector
*connector
, struct dcb_entry
*dcbe
)
951 struct drm_device
*dev
= connector
->dev
;
952 struct nouveau_encoder
*nv_encoder
;
953 struct drm_encoder
*encoder
;
955 nv_encoder
= kzalloc(sizeof(*nv_encoder
), GFP_KERNEL
);
958 nv_encoder
->dcb
= dcbe
;
959 nv_encoder
->or = ffs(dcbe
->or) - 1;
960 nv_encoder
->last_dpms
= DRM_MODE_DPMS_OFF
;
962 encoder
= to_drm_encoder(nv_encoder
);
963 encoder
->possible_crtcs
= dcbe
->heads
;
964 encoder
->possible_clones
= 0;
965 drm_encoder_init(dev
, encoder
, &nvd0_sor_func
, DRM_MODE_ENCODER_TMDS
);
966 drm_encoder_helper_add(encoder
, &nvd0_sor_hfunc
);
968 drm_mode_connector_attach_encoder(connector
, encoder
);
972 /******************************************************************************
974 *****************************************************************************/
975 static struct dcb_entry
*
976 lookup_dcb(struct drm_device
*dev
, int id
, u32 mc
)
978 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
982 type
= OUTPUT_ANALOG
;
985 switch (mc
& 0x00000f00) {
986 case 0x00000000: type
= OUTPUT_LVDS
; break;
987 case 0x00000100: type
= OUTPUT_TMDS
; break;
988 case 0x00000200: type
= OUTPUT_TMDS
; break;
989 case 0x00000500: type
= OUTPUT_TMDS
; break;
991 NV_ERROR(dev
, "PDISP: unknown SOR mc 0x%08x\n", mc
);
998 for (i
= 0; i
< dev_priv
->vbios
.dcb
.entries
; i
++) {
999 struct dcb_entry
*dcb
= &dev_priv
->vbios
.dcb
.entry
[i
];
1000 if (dcb
->type
== type
&& (dcb
->or & (1 << or)))
1004 NV_ERROR(dev
, "PDISP: DCB for %d/0x%08x not found\n", id
, mc
);
1009 nvd0_display_unk1_handler(struct drm_device
*dev
, u32 crtc
, u32 mask
)
1011 struct dcb_entry
*dcb
;
1014 for (i
= 0; mask
&& i
< 8; i
++) {
1015 u32 mcc
= nv_rd32(dev
, 0x640180 + (i
* 0x20));
1016 if (!(mcc
& (1 << crtc
)))
1019 dcb
= lookup_dcb(dev
, i
, mcc
);
1023 nouveau_bios_run_display_table(dev
, 0x0000, -1, dcb
, crtc
);
1026 nv_wr32(dev
, 0x6101d4, 0x00000000);
1027 nv_wr32(dev
, 0x6109d4, 0x00000000);
1028 nv_wr32(dev
, 0x6101d0, 0x80000000);
1032 nvd0_display_unk2_handler(struct drm_device
*dev
, u32 crtc
, u32 mask
)
1034 struct dcb_entry
*dcb
;
1038 for (i
= 0; mask
&& i
< 8; i
++) {
1039 u32 mcc
= nv_rd32(dev
, 0x640180 + (i
* 0x20));
1040 if (!(mcc
& (1 << crtc
)))
1043 dcb
= lookup_dcb(dev
, i
, mcc
);
1047 nouveau_bios_run_display_table(dev
, 0x0000, -2, dcb
, crtc
);
1050 pclk
= nv_rd32(dev
, 0x660450 + (crtc
* 0x300)) / 1000;
1051 if (mask
& 0x00010000) {
1052 nv50_crtc_set_clock(dev
, crtc
, pclk
);
1055 for (i
= 0; mask
&& i
< 8; i
++) {
1056 u32 mcp
= nv_rd32(dev
, 0x660180 + (i
* 0x20));
1057 u32 cfg
= nv_rd32(dev
, 0x660184 + (i
* 0x20));
1058 if (!(mcp
& (1 << crtc
)))
1061 dcb
= lookup_dcb(dev
, i
, mcp
);
1064 or = ffs(dcb
->or) - 1;
1066 nouveau_bios_run_display_table(dev
, cfg
, pclk
, dcb
, crtc
);
1068 nv_wr32(dev
, 0x612200 + (crtc
* 0x800), 0x00000000);
1069 switch (dcb
->type
) {
1071 nv_wr32(dev
, 0x612280 + (or * 0x800), 0x00000000);
1075 if (cfg
& 0x00000100)
1080 nv_mask(dev
, 0x612300 + (or * 0x800), 0x00000707, tmp
);
1089 nv_wr32(dev
, 0x6101d4, 0x00000000);
1090 nv_wr32(dev
, 0x6109d4, 0x00000000);
1091 nv_wr32(dev
, 0x6101d0, 0x80000000);
1095 nvd0_display_unk4_handler(struct drm_device
*dev
, u32 crtc
, u32 mask
)
1097 struct dcb_entry
*dcb
;
1100 pclk
= nv_rd32(dev
, 0x660450 + (crtc
* 0x300)) / 1000;
1102 for (i
= 0; mask
&& i
< 8; i
++) {
1103 u32 mcp
= nv_rd32(dev
, 0x660180 + (i
* 0x20));
1104 u32 cfg
= nv_rd32(dev
, 0x660184 + (i
* 0x20));
1105 if (!(mcp
& (1 << crtc
)))
1108 dcb
= lookup_dcb(dev
, i
, mcp
);
1112 nouveau_bios_run_display_table(dev
, cfg
, -pclk
, dcb
, crtc
);
1115 nv_wr32(dev
, 0x6101d4, 0x00000000);
1116 nv_wr32(dev
, 0x6109d4, 0x00000000);
1117 nv_wr32(dev
, 0x6101d0, 0x80000000);
1121 nvd0_display_bh(unsigned long data
)
1123 struct drm_device
*dev
= (struct drm_device
*)data
;
1124 struct nvd0_display
*disp
= nvd0_display(dev
);
1128 if (drm_debug
& (DRM_UT_DRIVER
| DRM_UT_KMS
)) {
1129 NV_INFO(dev
, "PDISP: modeset req %d\n", disp
->modeset
);
1130 NV_INFO(dev
, " STAT: 0x%08x 0x%08x 0x%08x\n",
1131 nv_rd32(dev
, 0x6101d0),
1132 nv_rd32(dev
, 0x6101d4), nv_rd32(dev
, 0x6109d4));
1133 for (i
= 0; i
< 8; i
++) {
1134 NV_INFO(dev
, " %s%d: 0x%08x 0x%08x\n",
1135 i
< 4 ? "DAC" : "SOR", i
,
1136 nv_rd32(dev
, 0x640180 + (i
* 0x20)),
1137 nv_rd32(dev
, 0x660180 + (i
* 0x20)));
1141 mask
= nv_rd32(dev
, 0x6101d4);
1144 mask
= nv_rd32(dev
, 0x6109d4);
1148 if (disp
->modeset
& 0x00000001)
1149 nvd0_display_unk1_handler(dev
, crtc
, mask
);
1150 if (disp
->modeset
& 0x00000002)
1151 nvd0_display_unk2_handler(dev
, crtc
, mask
);
1152 if (disp
->modeset
& 0x00000004)
1153 nvd0_display_unk4_handler(dev
, crtc
, mask
);
1157 nvd0_display_intr(struct drm_device
*dev
)
1159 struct nvd0_display
*disp
= nvd0_display(dev
);
1160 u32 intr
= nv_rd32(dev
, 0x610088);
1162 if (intr
& 0x00000002) {
1163 u32 stat
= nv_rd32(dev
, 0x61009c);
1164 int chid
= ffs(stat
) - 1;
1166 u32 mthd
= nv_rd32(dev
, 0x6101f0 + (chid
* 12));
1167 u32 data
= nv_rd32(dev
, 0x6101f4 + (chid
* 12));
1168 u32 unkn
= nv_rd32(dev
, 0x6101f8 + (chid
* 12));
1170 NV_INFO(dev
, "EvoCh: chid %d mthd 0x%04x data 0x%08x "
1172 chid
, (mthd
& 0x0000ffc), data
, mthd
, unkn
);
1173 nv_wr32(dev
, 0x61009c, (1 << chid
));
1174 nv_wr32(dev
, 0x6101f0 + (chid
* 12), 0x90000000);
1177 intr
&= ~0x00000002;
1180 if (intr
& 0x00100000) {
1181 u32 stat
= nv_rd32(dev
, 0x6100ac);
1183 if (stat
& 0x00000007) {
1184 disp
->modeset
= stat
;
1185 tasklet_schedule(&disp
->tasklet
);
1187 nv_wr32(dev
, 0x6100ac, (stat
& 0x00000007));
1188 stat
&= ~0x00000007;
1192 NV_INFO(dev
, "PDISP: unknown intr24 0x%08x\n", stat
);
1193 nv_wr32(dev
, 0x6100ac, stat
);
1196 intr
&= ~0x00100000;
1199 if (intr
& 0x01000000) {
1200 u32 stat
= nv_rd32(dev
, 0x6100bc);
1201 nv_wr32(dev
, 0x6100bc, stat
);
1202 intr
&= ~0x01000000;
1205 if (intr
& 0x02000000) {
1206 u32 stat
= nv_rd32(dev
, 0x6108bc);
1207 nv_wr32(dev
, 0x6108bc, stat
);
1208 intr
&= ~0x02000000;
1212 NV_INFO(dev
, "PDISP: unknown intr 0x%08x\n", intr
);
1215 /******************************************************************************
1217 *****************************************************************************/
1219 nvd0_display_fini(struct drm_device
*dev
)
1224 for (i
= 14; i
>= 13; i
--) {
1225 if (!(nv_rd32(dev
, 0x610490 + (i
* 0x10)) & 0x00000001))
1228 nv_mask(dev
, 0x610490 + (i
* 0x10), 0x00000001, 0x00000000);
1229 nv_wait(dev
, 0x610490 + (i
* 0x10), 0x00010000, 0x00000000);
1230 nv_mask(dev
, 0x610090, 1 << i
, 0x00000000);
1231 nv_mask(dev
, 0x6100a0, 1 << i
, 0x00000000);
1235 if (nv_rd32(dev
, 0x610490) & 0x00000010) {
1236 nv_mask(dev
, 0x610490, 0x00000010, 0x00000000);
1237 nv_mask(dev
, 0x610490, 0x00000003, 0x00000000);
1238 nv_wait(dev
, 0x610490, 0x80000000, 0x00000000);
1239 nv_mask(dev
, 0x610090, 0x00000001, 0x00000000);
1240 nv_mask(dev
, 0x6100a0, 0x00000001, 0x00000000);
1245 nvd0_display_init(struct drm_device
*dev
)
1247 struct nvd0_display
*disp
= nvd0_display(dev
);
1251 if (nv_rd32(dev
, 0x6100ac) & 0x00000100) {
1252 nv_wr32(dev
, 0x6100ac, 0x00000100);
1253 nv_mask(dev
, 0x6194e8, 0x00000001, 0x00000000);
1254 if (!nv_wait(dev
, 0x6194e8, 0x00000002, 0x00000000)) {
1255 NV_ERROR(dev
, "PDISP: 0x6194e8 0x%08x\n",
1256 nv_rd32(dev
, 0x6194e8));
1261 /* nfi what these are exactly, i do know that SOR_MODE_CTRL won't
1262 * work at all unless you do the SOR part below.
1264 for (i
= 0; i
< 3; i
++) {
1265 u32 dac
= nv_rd32(dev
, 0x61a000 + (i
* 0x800));
1266 nv_wr32(dev
, 0x6101c0 + (i
* 0x800), dac
);
1269 for (i
= 0; i
< 4; i
++) {
1270 u32 sor
= nv_rd32(dev
, 0x61c000 + (i
* 0x800));
1271 nv_wr32(dev
, 0x6301c4 + (i
* 0x800), sor
);
1274 for (i
= 0; i
< 2; i
++) {
1275 u32 crtc0
= nv_rd32(dev
, 0x616104 + (i
* 0x800));
1276 u32 crtc1
= nv_rd32(dev
, 0x616108 + (i
* 0x800));
1277 u32 crtc2
= nv_rd32(dev
, 0x61610c + (i
* 0x800));
1278 nv_wr32(dev
, 0x6101b4 + (i
* 0x800), crtc0
);
1279 nv_wr32(dev
, 0x6101b8 + (i
* 0x800), crtc1
);
1280 nv_wr32(dev
, 0x6101bc + (i
* 0x800), crtc2
);
1283 /* point at our hash table / objects, enable interrupts */
1284 nv_wr32(dev
, 0x610010, (disp
->mem
->vinst
>> 8) | 9);
1285 nv_mask(dev
, 0x6100b0, 0x00000307, 0x00000307);
1288 nv_wr32(dev
, 0x610494, (disp
->evo
[0].handle
>> 8) | 3);
1289 nv_wr32(dev
, 0x610498, 0x00010000);
1290 nv_wr32(dev
, 0x61049c, 0x00000001);
1291 nv_mask(dev
, 0x610490, 0x00000010, 0x00000010);
1292 nv_wr32(dev
, 0x640000, 0x00000000);
1293 nv_wr32(dev
, 0x610490, 0x01000013);
1294 if (!nv_wait(dev
, 0x610490, 0x80000000, 0x00000000)) {
1295 NV_ERROR(dev
, "PDISP: master 0x%08x\n",
1296 nv_rd32(dev
, 0x610490));
1299 nv_mask(dev
, 0x610090, 0x00000001, 0x00000001);
1300 nv_mask(dev
, 0x6100a0, 0x00000001, 0x00000001);
1303 for (i
= 13; i
<= 14; i
++) {
1304 nv_wr32(dev
, 0x610490 + (i
* 0x10), 0x00000001);
1305 if (!nv_wait(dev
, 0x610490 + (i
* 0x10), 0x00010000, 0x00010000)) {
1306 NV_ERROR(dev
, "PDISP: curs%d 0x%08x\n", i
,
1307 nv_rd32(dev
, 0x610490 + (i
* 0x10)));
1311 nv_mask(dev
, 0x610090, 1 << i
, 1 << i
);
1312 nv_mask(dev
, 0x6100a0, 1 << i
, 1 << i
);
1315 push
= evo_wait(dev
, 0, 32);
1318 evo_mthd(push
, 0x0088, 1);
1319 evo_data(push
, NvEvoSync
);
1320 evo_mthd(push
, 0x0084, 1);
1321 evo_data(push
, 0x00000000);
1322 evo_mthd(push
, 0x0084, 1);
1323 evo_data(push
, 0x80000000);
1324 evo_mthd(push
, 0x008c, 1);
1325 evo_data(push
, 0x00000000);
1326 evo_kick(push
, dev
, 0);
1332 nvd0_display_destroy(struct drm_device
*dev
)
1334 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
1335 struct nvd0_display
*disp
= nvd0_display(dev
);
1336 struct pci_dev
*pdev
= dev
->pdev
;
1338 nvd0_display_fini(dev
);
1340 pci_free_consistent(pdev
, PAGE_SIZE
, disp
->evo
[0].ptr
, disp
->evo
[0].handle
);
1341 nouveau_gpuobj_ref(NULL
, &disp
->mem
);
1342 nouveau_irq_unregister(dev
, 26);
1344 dev_priv
->engine
.display
.priv
= NULL
;
1349 nvd0_display_create(struct drm_device
*dev
)
1351 struct drm_nouveau_private
*dev_priv
= dev
->dev_private
;
1352 struct nouveau_instmem_engine
*pinstmem
= &dev_priv
->engine
.instmem
;
1353 struct dcb_table
*dcb
= &dev_priv
->vbios
.dcb
;
1354 struct drm_connector
*connector
, *tmp
;
1355 struct pci_dev
*pdev
= dev
->pdev
;
1356 struct nvd0_display
*disp
;
1357 struct dcb_entry
*dcbe
;
1360 disp
= kzalloc(sizeof(*disp
), GFP_KERNEL
);
1363 dev_priv
->engine
.display
.priv
= disp
;
1365 /* create crtc objects to represent the hw heads */
1366 for (i
= 0; i
< 2; i
++) {
1367 ret
= nvd0_crtc_create(dev
, i
);
1372 /* create encoder/connector objects based on VBIOS DCB table */
1373 for (i
= 0, dcbe
= &dcb
->entry
[0]; i
< dcb
->entries
; i
++, dcbe
++) {
1374 connector
= nouveau_connector_create(dev
, dcbe
->connector
);
1375 if (IS_ERR(connector
))
1378 if (dcbe
->location
!= DCB_LOC_ON_CHIP
) {
1379 NV_WARN(dev
, "skipping off-chip encoder %d/%d\n",
1380 dcbe
->type
, ffs(dcbe
->or) - 1);
1384 switch (dcbe
->type
) {
1387 nvd0_sor_create(connector
, dcbe
);
1390 nvd0_dac_create(connector
, dcbe
);
1393 NV_WARN(dev
, "skipping unsupported encoder %d/%d\n",
1394 dcbe
->type
, ffs(dcbe
->or) - 1);
1399 /* cull any connectors we created that don't have an encoder */
1400 list_for_each_entry_safe(connector
, tmp
, &dev
->mode_config
.connector_list
, head
) {
1401 if (connector
->encoder_ids
[0])
1404 NV_WARN(dev
, "%s has no encoders, removing\n",
1405 drm_get_connector_name(connector
));
1406 connector
->funcs
->destroy(connector
);
1409 /* setup interrupt handling */
1410 tasklet_init(&disp
->tasklet
, nvd0_display_bh
, (unsigned long)dev
);
1411 nouveau_irq_register(dev
, 26, nvd0_display_intr
);
1413 /* hash table and dma objects for the memory areas we care about */
1414 ret
= nouveau_gpuobj_new(dev
, NULL
, 0x4000, 0x10000,
1415 NVOBJ_FLAG_ZERO_ALLOC
, &disp
->mem
);
1419 nv_wo32(disp
->mem
, 0x1000, 0x00000049);
1420 nv_wo32(disp
->mem
, 0x1004, (disp
->mem
->vinst
+ 0x2000) >> 8);
1421 nv_wo32(disp
->mem
, 0x1008, (disp
->mem
->vinst
+ 0x2fff) >> 8);
1422 nv_wo32(disp
->mem
, 0x100c, 0x00000000);
1423 nv_wo32(disp
->mem
, 0x1010, 0x00000000);
1424 nv_wo32(disp
->mem
, 0x1014, 0x00000000);
1425 nv_wo32(disp
->mem
, 0x0000, NvEvoSync
);
1426 nv_wo32(disp
->mem
, 0x0004, (0x1000 << 9) | 0x00000001);
1428 nv_wo32(disp
->mem
, 0x1020, 0x00000049);
1429 nv_wo32(disp
->mem
, 0x1024, 0x00000000);
1430 nv_wo32(disp
->mem
, 0x1028, (dev_priv
->vram_size
- 1) >> 8);
1431 nv_wo32(disp
->mem
, 0x102c, 0x00000000);
1432 nv_wo32(disp
->mem
, 0x1030, 0x00000000);
1433 nv_wo32(disp
->mem
, 0x1034, 0x00000000);
1434 nv_wo32(disp
->mem
, 0x0008, NvEvoVRAM
);
1435 nv_wo32(disp
->mem
, 0x000c, (0x1020 << 9) | 0x00000001);
1437 nv_wo32(disp
->mem
, 0x1040, 0x00000009);
1438 nv_wo32(disp
->mem
, 0x1044, 0x00000000);
1439 nv_wo32(disp
->mem
, 0x1048, (dev_priv
->vram_size
- 1) >> 8);
1440 nv_wo32(disp
->mem
, 0x104c, 0x00000000);
1441 nv_wo32(disp
->mem
, 0x1050, 0x00000000);
1442 nv_wo32(disp
->mem
, 0x1054, 0x00000000);
1443 nv_wo32(disp
->mem
, 0x0010, NvEvoVRAM_LP
);
1444 nv_wo32(disp
->mem
, 0x0014, (0x1040 << 9) | 0x00000001);
1446 nv_wo32(disp
->mem
, 0x1060, 0x0fe00009);
1447 nv_wo32(disp
->mem
, 0x1064, 0x00000000);
1448 nv_wo32(disp
->mem
, 0x1068, (dev_priv
->vram_size
- 1) >> 8);
1449 nv_wo32(disp
->mem
, 0x106c, 0x00000000);
1450 nv_wo32(disp
->mem
, 0x1070, 0x00000000);
1451 nv_wo32(disp
->mem
, 0x1074, 0x00000000);
1452 nv_wo32(disp
->mem
, 0x0018, NvEvoFB32
);
1453 nv_wo32(disp
->mem
, 0x001c, (0x1060 << 9) | 0x00000001);
1455 pinstmem
->flush(dev
);
1457 /* push buffers for evo channels */
1459 pci_alloc_consistent(pdev
, PAGE_SIZE
, &disp
->evo
[0].handle
);
1460 if (!disp
->evo
[0].ptr
) {
1465 ret
= nvd0_display_init(dev
);
1471 nvd0_display_destroy(dev
);