[S390] Remove error checking from copy_oldmem_page()
[linux/fpc-iii.git] / drivers / usb / host / xhci-mem.c
blob42a22b8e692262fde4eab6b2133fc6cf485555a7
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
28 #include "xhci.h"
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
34 * Section 4.11.1.1:
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
39 struct xhci_segment *seg;
40 dma_addr_t dma;
42 seg = kzalloc(sizeof *seg, flags);
43 if (!seg)
44 return NULL;
45 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
47 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
48 if (!seg->trbs) {
49 kfree(seg);
50 return NULL;
52 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg->trbs, (unsigned long long)dma);
55 memset(seg->trbs, 0, SEGMENT_SIZE);
56 seg->dma = dma;
57 seg->next = NULL;
59 return seg;
62 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
64 if (seg->trbs) {
65 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
66 seg->trbs, (unsigned long long)seg->dma);
67 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
68 seg->trbs = NULL;
70 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
71 kfree(seg);
75 * Make the prev segment point to the next segment.
77 * Change the last TRB in the prev segment to be a Link TRB which points to the
78 * DMA address of the next segment. The caller needs to set any Link TRB
79 * related flags, such as End TRB, Toggle Cycle, and no snoop.
81 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
82 struct xhci_segment *next, bool link_trbs, bool isoc)
84 u32 val;
86 if (!prev || !next)
87 return;
88 prev->next = next;
89 if (link_trbs) {
90 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr =
91 cpu_to_le64(next->dma);
93 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94 val = le32_to_cpu(prev->trbs[TRBS_PER_SEGMENT-1].link.control);
95 val &= ~TRB_TYPE_BITMASK;
96 val |= TRB_TYPE(TRB_LINK);
97 /* Always set the chain bit with 0.95 hardware */
98 /* Set chain bit for isoc rings on AMD 0.96 host */
99 if (xhci_link_trb_quirk(xhci) ||
100 (isoc && (xhci->quirks & XHCI_AMD_0x96_HOST)))
101 val |= TRB_CHAIN;
102 prev->trbs[TRBS_PER_SEGMENT-1].link.control = cpu_to_le32(val);
104 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 (unsigned long long)prev->dma,
106 (unsigned long long)next->dma);
109 /* XXX: Do we need the hcd structure in all these functions? */
110 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
112 struct xhci_segment *seg;
113 struct xhci_segment *first_seg;
115 if (!ring)
116 return;
117 if (ring->first_seg) {
118 first_seg = ring->first_seg;
119 seg = first_seg->next;
120 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
121 while (seg != first_seg) {
122 struct xhci_segment *next = seg->next;
123 xhci_segment_free(xhci, seg);
124 seg = next;
126 xhci_segment_free(xhci, first_seg);
127 ring->first_seg = NULL;
129 kfree(ring);
132 static void xhci_initialize_ring_info(struct xhci_ring *ring)
134 /* The ring is empty, so the enqueue pointer == dequeue pointer */
135 ring->enqueue = ring->first_seg->trbs;
136 ring->enq_seg = ring->first_seg;
137 ring->dequeue = ring->enqueue;
138 ring->deq_seg = ring->first_seg;
139 /* The ring is initialized to 0. The producer must write 1 to the cycle
140 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
141 * compare CCS to the cycle bit to check ownership, so CCS = 1.
143 ring->cycle_state = 1;
144 /* Not necessary for new rings, but needed for re-initialized rings */
145 ring->enq_updates = 0;
146 ring->deq_updates = 0;
150 * Create a new ring with zero or more segments.
152 * Link each segment together into a ring.
153 * Set the end flag and the cycle toggle bit on the last segment.
154 * See section 4.9.1 and figures 15 and 16.
156 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
157 unsigned int num_segs, bool link_trbs, bool isoc, gfp_t flags)
159 struct xhci_ring *ring;
160 struct xhci_segment *prev;
162 ring = kzalloc(sizeof *(ring), flags);
163 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
164 if (!ring)
165 return NULL;
167 INIT_LIST_HEAD(&ring->td_list);
168 if (num_segs == 0)
169 return ring;
171 ring->first_seg = xhci_segment_alloc(xhci, flags);
172 if (!ring->first_seg)
173 goto fail;
174 num_segs--;
176 prev = ring->first_seg;
177 while (num_segs > 0) {
178 struct xhci_segment *next;
180 next = xhci_segment_alloc(xhci, flags);
181 if (!next)
182 goto fail;
183 xhci_link_segments(xhci, prev, next, link_trbs, isoc);
185 prev = next;
186 num_segs--;
188 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs, isoc);
190 if (link_trbs) {
191 /* See section 4.9.2.1 and 6.4.4.1 */
192 prev->trbs[TRBS_PER_SEGMENT-1].link.control |=
193 cpu_to_le32(LINK_TOGGLE);
194 xhci_dbg(xhci, "Wrote link toggle flag to"
195 " segment %p (virtual), 0x%llx (DMA)\n",
196 prev, (unsigned long long)prev->dma);
198 xhci_initialize_ring_info(ring);
199 return ring;
201 fail:
202 xhci_ring_free(xhci, ring);
203 return NULL;
206 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd *xhci,
207 struct xhci_virt_device *virt_dev,
208 unsigned int ep_index)
210 int rings_cached;
212 rings_cached = virt_dev->num_rings_cached;
213 if (rings_cached < XHCI_MAX_RINGS_CACHED) {
214 virt_dev->ring_cache[rings_cached] =
215 virt_dev->eps[ep_index].ring;
216 virt_dev->num_rings_cached++;
217 xhci_dbg(xhci, "Cached old ring, "
218 "%d ring%s cached\n",
219 virt_dev->num_rings_cached,
220 (virt_dev->num_rings_cached > 1) ? "s" : "");
221 } else {
222 xhci_ring_free(xhci, virt_dev->eps[ep_index].ring);
223 xhci_dbg(xhci, "Ring cache full (%d rings), "
224 "freeing ring\n",
225 virt_dev->num_rings_cached);
227 virt_dev->eps[ep_index].ring = NULL;
230 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
231 * pointers to the beginning of the ring.
233 static void xhci_reinit_cached_ring(struct xhci_hcd *xhci,
234 struct xhci_ring *ring, bool isoc)
236 struct xhci_segment *seg = ring->first_seg;
237 do {
238 memset(seg->trbs, 0,
239 sizeof(union xhci_trb)*TRBS_PER_SEGMENT);
240 /* All endpoint rings have link TRBs */
241 xhci_link_segments(xhci, seg, seg->next, 1, isoc);
242 seg = seg->next;
243 } while (seg != ring->first_seg);
244 xhci_initialize_ring_info(ring);
245 /* td list should be empty since all URBs have been cancelled,
246 * but just in case...
248 INIT_LIST_HEAD(&ring->td_list);
251 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
253 static struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
254 int type, gfp_t flags)
256 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
257 if (!ctx)
258 return NULL;
260 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
261 ctx->type = type;
262 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
263 if (type == XHCI_CTX_TYPE_INPUT)
264 ctx->size += CTX_SIZE(xhci->hcc_params);
266 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
267 memset(ctx->bytes, 0, ctx->size);
268 return ctx;
271 static void xhci_free_container_ctx(struct xhci_hcd *xhci,
272 struct xhci_container_ctx *ctx)
274 if (!ctx)
275 return;
276 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
277 kfree(ctx);
280 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
281 struct xhci_container_ctx *ctx)
283 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
284 return (struct xhci_input_control_ctx *)ctx->bytes;
287 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
288 struct xhci_container_ctx *ctx)
290 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
291 return (struct xhci_slot_ctx *)ctx->bytes;
293 return (struct xhci_slot_ctx *)
294 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
297 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
298 struct xhci_container_ctx *ctx,
299 unsigned int ep_index)
301 /* increment ep index by offset of start of ep ctx array */
302 ep_index++;
303 if (ctx->type == XHCI_CTX_TYPE_INPUT)
304 ep_index++;
306 return (struct xhci_ep_ctx *)
307 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
311 /***************** Streams structures manipulation *************************/
313 static void xhci_free_stream_ctx(struct xhci_hcd *xhci,
314 unsigned int num_stream_ctxs,
315 struct xhci_stream_ctx *stream_ctx, dma_addr_t dma)
317 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
319 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
320 dma_free_coherent(&pdev->dev,
321 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
322 stream_ctx, dma);
323 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
324 return dma_pool_free(xhci->small_streams_pool,
325 stream_ctx, dma);
326 else
327 return dma_pool_free(xhci->medium_streams_pool,
328 stream_ctx, dma);
332 * The stream context array for each endpoint with bulk streams enabled can
333 * vary in size, based on:
334 * - how many streams the endpoint supports,
335 * - the maximum primary stream array size the host controller supports,
336 * - and how many streams the device driver asks for.
338 * The stream context array must be a power of 2, and can be as small as
339 * 64 bytes or as large as 1MB.
341 static struct xhci_stream_ctx *xhci_alloc_stream_ctx(struct xhci_hcd *xhci,
342 unsigned int num_stream_ctxs, dma_addr_t *dma,
343 gfp_t mem_flags)
345 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
347 if (num_stream_ctxs > MEDIUM_STREAM_ARRAY_SIZE)
348 return dma_alloc_coherent(&pdev->dev,
349 sizeof(struct xhci_stream_ctx)*num_stream_ctxs,
350 dma, mem_flags);
351 else if (num_stream_ctxs <= SMALL_STREAM_ARRAY_SIZE)
352 return dma_pool_alloc(xhci->small_streams_pool,
353 mem_flags, dma);
354 else
355 return dma_pool_alloc(xhci->medium_streams_pool,
356 mem_flags, dma);
359 struct xhci_ring *xhci_dma_to_transfer_ring(
360 struct xhci_virt_ep *ep,
361 u64 address)
363 if (ep->ep_state & EP_HAS_STREAMS)
364 return radix_tree_lookup(&ep->stream_info->trb_address_map,
365 address >> SEGMENT_SHIFT);
366 return ep->ring;
369 /* Only use this when you know stream_info is valid */
370 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
371 static struct xhci_ring *dma_to_stream_ring(
372 struct xhci_stream_info *stream_info,
373 u64 address)
375 return radix_tree_lookup(&stream_info->trb_address_map,
376 address >> SEGMENT_SHIFT);
378 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
380 struct xhci_ring *xhci_stream_id_to_ring(
381 struct xhci_virt_device *dev,
382 unsigned int ep_index,
383 unsigned int stream_id)
385 struct xhci_virt_ep *ep = &dev->eps[ep_index];
387 if (stream_id == 0)
388 return ep->ring;
389 if (!ep->stream_info)
390 return NULL;
392 if (stream_id > ep->stream_info->num_streams)
393 return NULL;
394 return ep->stream_info->stream_rings[stream_id];
397 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
398 static int xhci_test_radix_tree(struct xhci_hcd *xhci,
399 unsigned int num_streams,
400 struct xhci_stream_info *stream_info)
402 u32 cur_stream;
403 struct xhci_ring *cur_ring;
404 u64 addr;
406 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
407 struct xhci_ring *mapped_ring;
408 int trb_size = sizeof(union xhci_trb);
410 cur_ring = stream_info->stream_rings[cur_stream];
411 for (addr = cur_ring->first_seg->dma;
412 addr < cur_ring->first_seg->dma + SEGMENT_SIZE;
413 addr += trb_size) {
414 mapped_ring = dma_to_stream_ring(stream_info, addr);
415 if (cur_ring != mapped_ring) {
416 xhci_warn(xhci, "WARN: DMA address 0x%08llx "
417 "didn't map to stream ID %u; "
418 "mapped to ring %p\n",
419 (unsigned long long) addr,
420 cur_stream,
421 mapped_ring);
422 return -EINVAL;
425 /* One TRB after the end of the ring segment shouldn't return a
426 * pointer to the current ring (although it may be a part of a
427 * different ring).
429 mapped_ring = dma_to_stream_ring(stream_info, addr);
430 if (mapped_ring != cur_ring) {
431 /* One TRB before should also fail */
432 addr = cur_ring->first_seg->dma - trb_size;
433 mapped_ring = dma_to_stream_ring(stream_info, addr);
435 if (mapped_ring == cur_ring) {
436 xhci_warn(xhci, "WARN: Bad DMA address 0x%08llx "
437 "mapped to valid stream ID %u; "
438 "mapped ring = %p\n",
439 (unsigned long long) addr,
440 cur_stream,
441 mapped_ring);
442 return -EINVAL;
445 return 0;
447 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
450 * Change an endpoint's internal structure so it supports stream IDs. The
451 * number of requested streams includes stream 0, which cannot be used by device
452 * drivers.
454 * The number of stream contexts in the stream context array may be bigger than
455 * the number of streams the driver wants to use. This is because the number of
456 * stream context array entries must be a power of two.
458 * We need a radix tree for mapping physical addresses of TRBs to which stream
459 * ID they belong to. We need to do this because the host controller won't tell
460 * us which stream ring the TRB came from. We could store the stream ID in an
461 * event data TRB, but that doesn't help us for the cancellation case, since the
462 * endpoint may stop before it reaches that event data TRB.
464 * The radix tree maps the upper portion of the TRB DMA address to a ring
465 * segment that has the same upper portion of DMA addresses. For example, say I
466 * have segments of size 1KB, that are always 64-byte aligned. A segment may
467 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
468 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
469 * pass the radix tree a key to get the right stream ID:
471 * 0x10c90fff >> 10 = 0x43243
472 * 0x10c912c0 >> 10 = 0x43244
473 * 0x10c91400 >> 10 = 0x43245
475 * Obviously, only those TRBs with DMA addresses that are within the segment
476 * will make the radix tree return the stream ID for that ring.
478 * Caveats for the radix tree:
480 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
481 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
482 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
483 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
484 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
485 * extended systems (where the DMA address can be bigger than 32-bits),
486 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
488 struct xhci_stream_info *xhci_alloc_stream_info(struct xhci_hcd *xhci,
489 unsigned int num_stream_ctxs,
490 unsigned int num_streams, gfp_t mem_flags)
492 struct xhci_stream_info *stream_info;
493 u32 cur_stream;
494 struct xhci_ring *cur_ring;
495 unsigned long key;
496 u64 addr;
497 int ret;
499 xhci_dbg(xhci, "Allocating %u streams and %u "
500 "stream context array entries.\n",
501 num_streams, num_stream_ctxs);
502 if (xhci->cmd_ring_reserved_trbs == MAX_RSVD_CMD_TRBS) {
503 xhci_dbg(xhci, "Command ring has no reserved TRBs available\n");
504 return NULL;
506 xhci->cmd_ring_reserved_trbs++;
508 stream_info = kzalloc(sizeof(struct xhci_stream_info), mem_flags);
509 if (!stream_info)
510 goto cleanup_trbs;
512 stream_info->num_streams = num_streams;
513 stream_info->num_stream_ctxs = num_stream_ctxs;
515 /* Initialize the array of virtual pointers to stream rings. */
516 stream_info->stream_rings = kzalloc(
517 sizeof(struct xhci_ring *)*num_streams,
518 mem_flags);
519 if (!stream_info->stream_rings)
520 goto cleanup_info;
522 /* Initialize the array of DMA addresses for stream rings for the HW. */
523 stream_info->stream_ctx_array = xhci_alloc_stream_ctx(xhci,
524 num_stream_ctxs, &stream_info->ctx_array_dma,
525 mem_flags);
526 if (!stream_info->stream_ctx_array)
527 goto cleanup_ctx;
528 memset(stream_info->stream_ctx_array, 0,
529 sizeof(struct xhci_stream_ctx)*num_stream_ctxs);
531 /* Allocate everything needed to free the stream rings later */
532 stream_info->free_streams_command =
533 xhci_alloc_command(xhci, true, true, mem_flags);
534 if (!stream_info->free_streams_command)
535 goto cleanup_ctx;
537 INIT_RADIX_TREE(&stream_info->trb_address_map, GFP_ATOMIC);
539 /* Allocate rings for all the streams that the driver will use,
540 * and add their segment DMA addresses to the radix tree.
541 * Stream 0 is reserved.
543 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
544 stream_info->stream_rings[cur_stream] =
545 xhci_ring_alloc(xhci, 1, true, false, mem_flags);
546 cur_ring = stream_info->stream_rings[cur_stream];
547 if (!cur_ring)
548 goto cleanup_rings;
549 cur_ring->stream_id = cur_stream;
550 /* Set deq ptr, cycle bit, and stream context type */
551 addr = cur_ring->first_seg->dma |
552 SCT_FOR_CTX(SCT_PRI_TR) |
553 cur_ring->cycle_state;
554 stream_info->stream_ctx_array[cur_stream].stream_ring =
555 cpu_to_le64(addr);
556 xhci_dbg(xhci, "Setting stream %d ring ptr to 0x%08llx\n",
557 cur_stream, (unsigned long long) addr);
559 key = (unsigned long)
560 (cur_ring->first_seg->dma >> SEGMENT_SHIFT);
561 ret = radix_tree_insert(&stream_info->trb_address_map,
562 key, cur_ring);
563 if (ret) {
564 xhci_ring_free(xhci, cur_ring);
565 stream_info->stream_rings[cur_stream] = NULL;
566 goto cleanup_rings;
569 /* Leave the other unused stream ring pointers in the stream context
570 * array initialized to zero. This will cause the xHC to give us an
571 * error if the device asks for a stream ID we don't have setup (if it
572 * was any other way, the host controller would assume the ring is
573 * "empty" and wait forever for data to be queued to that stream ID).
575 #if XHCI_DEBUG
576 /* Do a little test on the radix tree to make sure it returns the
577 * correct values.
579 if (xhci_test_radix_tree(xhci, num_streams, stream_info))
580 goto cleanup_rings;
581 #endif
583 return stream_info;
585 cleanup_rings:
586 for (cur_stream = 1; cur_stream < num_streams; cur_stream++) {
587 cur_ring = stream_info->stream_rings[cur_stream];
588 if (cur_ring) {
589 addr = cur_ring->first_seg->dma;
590 radix_tree_delete(&stream_info->trb_address_map,
591 addr >> SEGMENT_SHIFT);
592 xhci_ring_free(xhci, cur_ring);
593 stream_info->stream_rings[cur_stream] = NULL;
596 xhci_free_command(xhci, stream_info->free_streams_command);
597 cleanup_ctx:
598 kfree(stream_info->stream_rings);
599 cleanup_info:
600 kfree(stream_info);
601 cleanup_trbs:
602 xhci->cmd_ring_reserved_trbs--;
603 return NULL;
606 * Sets the MaxPStreams field and the Linear Stream Array field.
607 * Sets the dequeue pointer to the stream context array.
609 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd *xhci,
610 struct xhci_ep_ctx *ep_ctx,
611 struct xhci_stream_info *stream_info)
613 u32 max_primary_streams;
614 /* MaxPStreams is the number of stream context array entries, not the
615 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
616 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
618 max_primary_streams = fls(stream_info->num_stream_ctxs) - 2;
619 xhci_dbg(xhci, "Setting number of stream ctx array entries to %u\n",
620 1 << (max_primary_streams + 1));
621 ep_ctx->ep_info &= cpu_to_le32(~EP_MAXPSTREAMS_MASK);
622 ep_ctx->ep_info |= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams)
623 | EP_HAS_LSA);
624 ep_ctx->deq = cpu_to_le64(stream_info->ctx_array_dma);
628 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
629 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
630 * not at the beginning of the ring).
632 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd *xhci,
633 struct xhci_ep_ctx *ep_ctx,
634 struct xhci_virt_ep *ep)
636 dma_addr_t addr;
637 ep_ctx->ep_info &= cpu_to_le32(~(EP_MAXPSTREAMS_MASK | EP_HAS_LSA));
638 addr = xhci_trb_virt_to_dma(ep->ring->deq_seg, ep->ring->dequeue);
639 ep_ctx->deq = cpu_to_le64(addr | ep->ring->cycle_state);
642 /* Frees all stream contexts associated with the endpoint,
644 * Caller should fix the endpoint context streams fields.
646 void xhci_free_stream_info(struct xhci_hcd *xhci,
647 struct xhci_stream_info *stream_info)
649 int cur_stream;
650 struct xhci_ring *cur_ring;
651 dma_addr_t addr;
653 if (!stream_info)
654 return;
656 for (cur_stream = 1; cur_stream < stream_info->num_streams;
657 cur_stream++) {
658 cur_ring = stream_info->stream_rings[cur_stream];
659 if (cur_ring) {
660 addr = cur_ring->first_seg->dma;
661 radix_tree_delete(&stream_info->trb_address_map,
662 addr >> SEGMENT_SHIFT);
663 xhci_ring_free(xhci, cur_ring);
664 stream_info->stream_rings[cur_stream] = NULL;
667 xhci_free_command(xhci, stream_info->free_streams_command);
668 xhci->cmd_ring_reserved_trbs--;
669 if (stream_info->stream_ctx_array)
670 xhci_free_stream_ctx(xhci,
671 stream_info->num_stream_ctxs,
672 stream_info->stream_ctx_array,
673 stream_info->ctx_array_dma);
675 if (stream_info)
676 kfree(stream_info->stream_rings);
677 kfree(stream_info);
681 /***************** Device context manipulation *************************/
683 static void xhci_init_endpoint_timer(struct xhci_hcd *xhci,
684 struct xhci_virt_ep *ep)
686 init_timer(&ep->stop_cmd_timer);
687 ep->stop_cmd_timer.data = (unsigned long) ep;
688 ep->stop_cmd_timer.function = xhci_stop_endpoint_command_watchdog;
689 ep->xhci = xhci;
692 static void xhci_free_tt_info(struct xhci_hcd *xhci,
693 struct xhci_virt_device *virt_dev,
694 int slot_id)
696 struct list_head *tt;
697 struct list_head *tt_list_head;
698 struct list_head *tt_next;
699 struct xhci_tt_bw_info *tt_info;
701 /* If the device never made it past the Set Address stage,
702 * it may not have the real_port set correctly.
704 if (virt_dev->real_port == 0 ||
705 virt_dev->real_port > HCS_MAX_PORTS(xhci->hcs_params1)) {
706 xhci_dbg(xhci, "Bad real port.\n");
707 return;
710 tt_list_head = &(xhci->rh_bw[virt_dev->real_port - 1].tts);
711 if (list_empty(tt_list_head))
712 return;
714 list_for_each(tt, tt_list_head) {
715 tt_info = list_entry(tt, struct xhci_tt_bw_info, tt_list);
716 if (tt_info->slot_id == slot_id)
717 break;
719 /* Cautionary measure in case the hub was disconnected before we
720 * stored the TT information.
722 if (tt_info->slot_id != slot_id)
723 return;
725 tt_next = tt->next;
726 tt_info = list_entry(tt, struct xhci_tt_bw_info,
727 tt_list);
728 /* Multi-TT hubs will have more than one entry */
729 do {
730 list_del(tt);
731 kfree(tt_info);
732 tt = tt_next;
733 if (list_empty(tt_list_head))
734 break;
735 tt_next = tt->next;
736 tt_info = list_entry(tt, struct xhci_tt_bw_info,
737 tt_list);
738 } while (tt_info->slot_id == slot_id);
741 int xhci_alloc_tt_info(struct xhci_hcd *xhci,
742 struct xhci_virt_device *virt_dev,
743 struct usb_device *hdev,
744 struct usb_tt *tt, gfp_t mem_flags)
746 struct xhci_tt_bw_info *tt_info;
747 unsigned int num_ports;
748 int i, j;
750 if (!tt->multi)
751 num_ports = 1;
752 else
753 num_ports = hdev->maxchild;
755 for (i = 0; i < num_ports; i++, tt_info++) {
756 struct xhci_interval_bw_table *bw_table;
758 tt_info = kzalloc(sizeof(*tt_info), mem_flags);
759 if (!tt_info)
760 goto free_tts;
761 INIT_LIST_HEAD(&tt_info->tt_list);
762 list_add(&tt_info->tt_list,
763 &xhci->rh_bw[virt_dev->real_port - 1].tts);
764 tt_info->slot_id = virt_dev->udev->slot_id;
765 if (tt->multi)
766 tt_info->ttport = i+1;
767 bw_table = &tt_info->bw_table;
768 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
769 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
771 return 0;
773 free_tts:
774 xhci_free_tt_info(xhci, virt_dev, virt_dev->udev->slot_id);
775 return -ENOMEM;
779 /* All the xhci_tds in the ring's TD list should be freed at this point.
780 * Should be called with xhci->lock held if there is any chance the TT lists
781 * will be manipulated by the configure endpoint, allocate device, or update
782 * hub functions while this function is removing the TT entries from the list.
784 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
786 struct xhci_virt_device *dev;
787 int i;
788 int old_active_eps = 0;
790 /* Slot ID 0 is reserved */
791 if (slot_id == 0 || !xhci->devs[slot_id])
792 return;
794 dev = xhci->devs[slot_id];
795 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
796 if (!dev)
797 return;
799 if (dev->tt_info)
800 old_active_eps = dev->tt_info->active_eps;
802 for (i = 0; i < 31; ++i) {
803 if (dev->eps[i].ring)
804 xhci_ring_free(xhci, dev->eps[i].ring);
805 if (dev->eps[i].stream_info)
806 xhci_free_stream_info(xhci,
807 dev->eps[i].stream_info);
808 /* Endpoints on the TT/root port lists should have been removed
809 * when usb_disable_device() was called for the device.
810 * We can't drop them anyway, because the udev might have gone
811 * away by this point, and we can't tell what speed it was.
813 if (!list_empty(&dev->eps[i].bw_endpoint_list))
814 xhci_warn(xhci, "Slot %u endpoint %u "
815 "not removed from BW list!\n",
816 slot_id, i);
818 /* If this is a hub, free the TT(s) from the TT list */
819 xhci_free_tt_info(xhci, dev, slot_id);
820 /* If necessary, update the number of active TTs on this root port */
821 xhci_update_tt_active_eps(xhci, dev, old_active_eps);
823 if (dev->ring_cache) {
824 for (i = 0; i < dev->num_rings_cached; i++)
825 xhci_ring_free(xhci, dev->ring_cache[i]);
826 kfree(dev->ring_cache);
829 if (dev->in_ctx)
830 xhci_free_container_ctx(xhci, dev->in_ctx);
831 if (dev->out_ctx)
832 xhci_free_container_ctx(xhci, dev->out_ctx);
834 kfree(xhci->devs[slot_id]);
835 xhci->devs[slot_id] = NULL;
838 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
839 struct usb_device *udev, gfp_t flags)
841 struct xhci_virt_device *dev;
842 int i;
844 /* Slot ID 0 is reserved */
845 if (slot_id == 0 || xhci->devs[slot_id]) {
846 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
847 return 0;
850 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
851 if (!xhci->devs[slot_id])
852 return 0;
853 dev = xhci->devs[slot_id];
855 /* Allocate the (output) device context that will be used in the HC. */
856 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
857 if (!dev->out_ctx)
858 goto fail;
860 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
861 (unsigned long long)dev->out_ctx->dma);
863 /* Allocate the (input) device context for address device command */
864 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
865 if (!dev->in_ctx)
866 goto fail;
868 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
869 (unsigned long long)dev->in_ctx->dma);
871 /* Initialize the cancellation list and watchdog timers for each ep */
872 for (i = 0; i < 31; i++) {
873 xhci_init_endpoint_timer(xhci, &dev->eps[i]);
874 INIT_LIST_HEAD(&dev->eps[i].cancelled_td_list);
875 INIT_LIST_HEAD(&dev->eps[i].bw_endpoint_list);
878 /* Allocate endpoint 0 ring */
879 dev->eps[0].ring = xhci_ring_alloc(xhci, 1, true, false, flags);
880 if (!dev->eps[0].ring)
881 goto fail;
883 /* Allocate pointers to the ring cache */
884 dev->ring_cache = kzalloc(
885 sizeof(struct xhci_ring *)*XHCI_MAX_RINGS_CACHED,
886 flags);
887 if (!dev->ring_cache)
888 goto fail;
889 dev->num_rings_cached = 0;
891 init_completion(&dev->cmd_completion);
892 INIT_LIST_HEAD(&dev->cmd_list);
893 dev->udev = udev;
895 /* Point to output device context in dcbaa. */
896 xhci->dcbaa->dev_context_ptrs[slot_id] = cpu_to_le64(dev->out_ctx->dma);
897 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
898 slot_id,
899 &xhci->dcbaa->dev_context_ptrs[slot_id],
900 le64_to_cpu(xhci->dcbaa->dev_context_ptrs[slot_id]));
902 return 1;
903 fail:
904 xhci_free_virt_device(xhci, slot_id);
905 return 0;
908 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd *xhci,
909 struct usb_device *udev)
911 struct xhci_virt_device *virt_dev;
912 struct xhci_ep_ctx *ep0_ctx;
913 struct xhci_ring *ep_ring;
915 virt_dev = xhci->devs[udev->slot_id];
916 ep0_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, 0);
917 ep_ring = virt_dev->eps[0].ring;
919 * FIXME we don't keep track of the dequeue pointer very well after a
920 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
921 * host to our enqueue pointer. This should only be called after a
922 * configured device has reset, so all control transfers should have
923 * been completed or cancelled before the reset.
925 ep0_ctx->deq = cpu_to_le64(xhci_trb_virt_to_dma(ep_ring->enq_seg,
926 ep_ring->enqueue)
927 | ep_ring->cycle_state);
931 * The xHCI roothub may have ports of differing speeds in any order in the port
932 * status registers. xhci->port_array provides an array of the port speed for
933 * each offset into the port status registers.
935 * The xHCI hardware wants to know the roothub port number that the USB device
936 * is attached to (or the roothub port its ancestor hub is attached to). All we
937 * know is the index of that port under either the USB 2.0 or the USB 3.0
938 * roothub, but that doesn't give us the real index into the HW port status
939 * registers. Scan through the xHCI roothub port array, looking for the Nth
940 * entry of the correct port speed. Return the port number of that entry.
942 static u32 xhci_find_real_port_number(struct xhci_hcd *xhci,
943 struct usb_device *udev)
945 struct usb_device *top_dev;
946 unsigned int num_similar_speed_ports;
947 unsigned int faked_port_num;
948 int i;
950 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
951 top_dev = top_dev->parent)
952 /* Found device below root hub */;
953 faked_port_num = top_dev->portnum;
954 for (i = 0, num_similar_speed_ports = 0;
955 i < HCS_MAX_PORTS(xhci->hcs_params1); i++) {
956 u8 port_speed = xhci->port_array[i];
959 * Skip ports that don't have known speeds, or have duplicate
960 * Extended Capabilities port speed entries.
962 if (port_speed == 0 || port_speed == DUPLICATE_ENTRY)
963 continue;
966 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
967 * 1.1 ports are under the USB 2.0 hub. If the port speed
968 * matches the device speed, it's a similar speed port.
970 if ((port_speed == 0x03) == (udev->speed == USB_SPEED_SUPER))
971 num_similar_speed_ports++;
972 if (num_similar_speed_ports == faked_port_num)
973 /* Roothub ports are numbered from 1 to N */
974 return i+1;
976 return 0;
979 /* Setup an xHCI virtual device for a Set Address command */
980 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
982 struct xhci_virt_device *dev;
983 struct xhci_ep_ctx *ep0_ctx;
984 struct xhci_slot_ctx *slot_ctx;
985 struct xhci_input_control_ctx *ctrl_ctx;
986 u32 port_num;
987 struct usb_device *top_dev;
989 dev = xhci->devs[udev->slot_id];
990 /* Slot ID 0 is reserved */
991 if (udev->slot_id == 0 || !dev) {
992 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
993 udev->slot_id);
994 return -EINVAL;
996 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
997 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
998 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
1000 /* 2) New slot context and endpoint 0 context are valid*/
1001 ctrl_ctx->add_flags = cpu_to_le32(SLOT_FLAG | EP0_FLAG);
1003 /* 3) Only the control endpoint is valid - one endpoint context */
1004 slot_ctx->dev_info |= cpu_to_le32(LAST_CTX(1) | udev->route);
1005 switch (udev->speed) {
1006 case USB_SPEED_SUPER:
1007 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_SS);
1008 break;
1009 case USB_SPEED_HIGH:
1010 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_HS);
1011 break;
1012 case USB_SPEED_FULL:
1013 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_FS);
1014 break;
1015 case USB_SPEED_LOW:
1016 slot_ctx->dev_info |= cpu_to_le32(SLOT_SPEED_LS);
1017 break;
1018 case USB_SPEED_WIRELESS:
1019 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1020 return -EINVAL;
1021 break;
1022 default:
1023 /* Speed was set earlier, this shouldn't happen. */
1024 BUG();
1026 /* Find the root hub port this device is under */
1027 port_num = xhci_find_real_port_number(xhci, udev);
1028 if (!port_num)
1029 return -EINVAL;
1030 slot_ctx->dev_info2 |= cpu_to_le32(ROOT_HUB_PORT(port_num));
1031 /* Set the port number in the virtual_device to the faked port number */
1032 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
1033 top_dev = top_dev->parent)
1034 /* Found device below root hub */;
1035 dev->fake_port = top_dev->portnum;
1036 dev->real_port = port_num;
1037 xhci_dbg(xhci, "Set root hub portnum to %d\n", port_num);
1038 xhci_dbg(xhci, "Set fake root hub portnum to %d\n", dev->fake_port);
1040 /* Find the right bandwidth table that this device will be a part of.
1041 * If this is a full speed device attached directly to a root port (or a
1042 * decendent of one), it counts as a primary bandwidth domain, not a
1043 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1044 * will never be created for the HS root hub.
1046 if (!udev->tt || !udev->tt->hub->parent) {
1047 dev->bw_table = &xhci->rh_bw[port_num - 1].bw_table;
1048 } else {
1049 struct xhci_root_port_bw_info *rh_bw;
1050 struct xhci_tt_bw_info *tt_bw;
1052 rh_bw = &xhci->rh_bw[port_num - 1];
1053 /* Find the right TT. */
1054 list_for_each_entry(tt_bw, &rh_bw->tts, tt_list) {
1055 if (tt_bw->slot_id != udev->tt->hub->slot_id)
1056 continue;
1058 if (!dev->udev->tt->multi ||
1059 (udev->tt->multi &&
1060 tt_bw->ttport == dev->udev->ttport)) {
1061 dev->bw_table = &tt_bw->bw_table;
1062 dev->tt_info = tt_bw;
1063 break;
1066 if (!dev->tt_info)
1067 xhci_warn(xhci, "WARN: Didn't find a matching TT\n");
1070 /* Is this a LS/FS device under an external HS hub? */
1071 if (udev->tt && udev->tt->hub->parent) {
1072 slot_ctx->tt_info = cpu_to_le32(udev->tt->hub->slot_id |
1073 (udev->ttport << 8));
1074 if (udev->tt->multi)
1075 slot_ctx->dev_info |= cpu_to_le32(DEV_MTT);
1077 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
1078 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
1080 /* Step 4 - ring already allocated */
1081 /* Step 5 */
1082 ep0_ctx->ep_info2 = cpu_to_le32(EP_TYPE(CTRL_EP));
1084 * XXX: Not sure about wireless USB devices.
1086 switch (udev->speed) {
1087 case USB_SPEED_SUPER:
1088 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(512));
1089 break;
1090 case USB_SPEED_HIGH:
1091 /* USB core guesses at a 64-byte max packet first for FS devices */
1092 case USB_SPEED_FULL:
1093 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(64));
1094 break;
1095 case USB_SPEED_LOW:
1096 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(8));
1097 break;
1098 case USB_SPEED_WIRELESS:
1099 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
1100 return -EINVAL;
1101 break;
1102 default:
1103 /* New speed? */
1104 BUG();
1106 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1107 ep0_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1109 ep0_ctx->deq = cpu_to_le64(dev->eps[0].ring->first_seg->dma |
1110 dev->eps[0].ring->cycle_state);
1112 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1114 return 0;
1118 * Convert interval expressed as 2^(bInterval - 1) == interval into
1119 * straight exponent value 2^n == interval.
1122 static unsigned int xhci_parse_exponent_interval(struct usb_device *udev,
1123 struct usb_host_endpoint *ep)
1125 unsigned int interval;
1127 interval = clamp_val(ep->desc.bInterval, 1, 16) - 1;
1128 if (interval != ep->desc.bInterval - 1)
1129 dev_warn(&udev->dev,
1130 "ep %#x - rounding interval to %d %sframes\n",
1131 ep->desc.bEndpointAddress,
1132 1 << interval,
1133 udev->speed == USB_SPEED_FULL ? "" : "micro");
1135 if (udev->speed == USB_SPEED_FULL) {
1137 * Full speed isoc endpoints specify interval in frames,
1138 * not microframes. We are using microframes everywhere,
1139 * so adjust accordingly.
1141 interval += 3; /* 1 frame = 2^3 uframes */
1144 return interval;
1148 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1149 * microframes, rounded down to nearest power of 2.
1151 static unsigned int xhci_parse_frame_interval(struct usb_device *udev,
1152 struct usb_host_endpoint *ep)
1154 unsigned int interval;
1156 interval = fls(8 * ep->desc.bInterval) - 1;
1157 interval = clamp_val(interval, 3, 10);
1158 if ((1 << interval) != 8 * ep->desc.bInterval)
1159 dev_warn(&udev->dev,
1160 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1161 ep->desc.bEndpointAddress,
1162 1 << interval,
1163 8 * ep->desc.bInterval);
1165 return interval;
1168 /* Return the polling or NAK interval.
1170 * The polling interval is expressed in "microframes". If xHCI's Interval field
1171 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1173 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1174 * is set to 0.
1176 static unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
1177 struct usb_host_endpoint *ep)
1179 unsigned int interval = 0;
1181 switch (udev->speed) {
1182 case USB_SPEED_HIGH:
1183 /* Max NAK rate */
1184 if (usb_endpoint_xfer_control(&ep->desc) ||
1185 usb_endpoint_xfer_bulk(&ep->desc)) {
1186 interval = ep->desc.bInterval;
1187 break;
1189 /* Fall through - SS and HS isoc/int have same decoding */
1191 case USB_SPEED_SUPER:
1192 if (usb_endpoint_xfer_int(&ep->desc) ||
1193 usb_endpoint_xfer_isoc(&ep->desc)) {
1194 interval = xhci_parse_exponent_interval(udev, ep);
1196 break;
1198 case USB_SPEED_FULL:
1199 if (usb_endpoint_xfer_isoc(&ep->desc)) {
1200 interval = xhci_parse_exponent_interval(udev, ep);
1201 break;
1204 * Fall through for interrupt endpoint interval decoding
1205 * since it uses the same rules as low speed interrupt
1206 * endpoints.
1209 case USB_SPEED_LOW:
1210 if (usb_endpoint_xfer_int(&ep->desc) ||
1211 usb_endpoint_xfer_isoc(&ep->desc)) {
1213 interval = xhci_parse_frame_interval(udev, ep);
1215 break;
1217 default:
1218 BUG();
1220 return EP_INTERVAL(interval);
1223 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1224 * High speed endpoint descriptors can define "the number of additional
1225 * transaction opportunities per microframe", but that goes in the Max Burst
1226 * endpoint context field.
1228 static u32 xhci_get_endpoint_mult(struct usb_device *udev,
1229 struct usb_host_endpoint *ep)
1231 if (udev->speed != USB_SPEED_SUPER ||
1232 !usb_endpoint_xfer_isoc(&ep->desc))
1233 return 0;
1234 return ep->ss_ep_comp.bmAttributes;
1237 static u32 xhci_get_endpoint_type(struct usb_device *udev,
1238 struct usb_host_endpoint *ep)
1240 int in;
1241 u32 type;
1243 in = usb_endpoint_dir_in(&ep->desc);
1244 if (usb_endpoint_xfer_control(&ep->desc)) {
1245 type = EP_TYPE(CTRL_EP);
1246 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
1247 if (in)
1248 type = EP_TYPE(BULK_IN_EP);
1249 else
1250 type = EP_TYPE(BULK_OUT_EP);
1251 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
1252 if (in)
1253 type = EP_TYPE(ISOC_IN_EP);
1254 else
1255 type = EP_TYPE(ISOC_OUT_EP);
1256 } else if (usb_endpoint_xfer_int(&ep->desc)) {
1257 if (in)
1258 type = EP_TYPE(INT_IN_EP);
1259 else
1260 type = EP_TYPE(INT_OUT_EP);
1261 } else {
1262 BUG();
1264 return type;
1267 /* Return the maximum endpoint service interval time (ESIT) payload.
1268 * Basically, this is the maxpacket size, multiplied by the burst size
1269 * and mult size.
1271 static u32 xhci_get_max_esit_payload(struct xhci_hcd *xhci,
1272 struct usb_device *udev,
1273 struct usb_host_endpoint *ep)
1275 int max_burst;
1276 int max_packet;
1278 /* Only applies for interrupt or isochronous endpoints */
1279 if (usb_endpoint_xfer_control(&ep->desc) ||
1280 usb_endpoint_xfer_bulk(&ep->desc))
1281 return 0;
1283 if (udev->speed == USB_SPEED_SUPER)
1284 return le16_to_cpu(ep->ss_ep_comp.wBytesPerInterval);
1286 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1287 max_burst = (usb_endpoint_maxp(&ep->desc) & 0x1800) >> 11;
1288 /* A 0 in max burst means 1 transfer per ESIT */
1289 return max_packet * (max_burst + 1);
1292 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1293 * Drivers will have to call usb_alloc_streams() to do that.
1295 int xhci_endpoint_init(struct xhci_hcd *xhci,
1296 struct xhci_virt_device *virt_dev,
1297 struct usb_device *udev,
1298 struct usb_host_endpoint *ep,
1299 gfp_t mem_flags)
1301 unsigned int ep_index;
1302 struct xhci_ep_ctx *ep_ctx;
1303 struct xhci_ring *ep_ring;
1304 unsigned int max_packet;
1305 unsigned int max_burst;
1306 u32 max_esit_payload;
1308 ep_index = xhci_get_endpoint_index(&ep->desc);
1309 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1311 /* Set up the endpoint ring */
1313 * Isochronous endpoint ring needs bigger size because one isoc URB
1314 * carries multiple packets and it will insert multiple tds to the
1315 * ring.
1316 * This should be replaced with dynamic ring resizing in the future.
1318 if (usb_endpoint_xfer_isoc(&ep->desc))
1319 virt_dev->eps[ep_index].new_ring =
1320 xhci_ring_alloc(xhci, 8, true, true, mem_flags);
1321 else
1322 virt_dev->eps[ep_index].new_ring =
1323 xhci_ring_alloc(xhci, 1, true, false, mem_flags);
1324 if (!virt_dev->eps[ep_index].new_ring) {
1325 /* Attempt to use the ring cache */
1326 if (virt_dev->num_rings_cached == 0)
1327 return -ENOMEM;
1328 virt_dev->eps[ep_index].new_ring =
1329 virt_dev->ring_cache[virt_dev->num_rings_cached];
1330 virt_dev->ring_cache[virt_dev->num_rings_cached] = NULL;
1331 virt_dev->num_rings_cached--;
1332 xhci_reinit_cached_ring(xhci, virt_dev->eps[ep_index].new_ring,
1333 usb_endpoint_xfer_isoc(&ep->desc) ? true : false);
1335 virt_dev->eps[ep_index].skip = false;
1336 ep_ring = virt_dev->eps[ep_index].new_ring;
1337 ep_ctx->deq = cpu_to_le64(ep_ring->first_seg->dma | ep_ring->cycle_state);
1339 ep_ctx->ep_info = cpu_to_le32(xhci_get_endpoint_interval(udev, ep)
1340 | EP_MULT(xhci_get_endpoint_mult(udev, ep)));
1342 /* FIXME dig Mult and streams info out of ep companion desc */
1344 /* Allow 3 retries for everything but isoc;
1345 * CErr shall be set to 0 for Isoch endpoints.
1347 if (!usb_endpoint_xfer_isoc(&ep->desc))
1348 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(3));
1349 else
1350 ep_ctx->ep_info2 = cpu_to_le32(ERROR_COUNT(0));
1352 ep_ctx->ep_info2 |= cpu_to_le32(xhci_get_endpoint_type(udev, ep));
1354 /* Set the max packet size and max burst */
1355 switch (udev->speed) {
1356 case USB_SPEED_SUPER:
1357 max_packet = usb_endpoint_maxp(&ep->desc);
1358 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1359 /* dig out max burst from ep companion desc */
1360 max_packet = ep->ss_ep_comp.bMaxBurst;
1361 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_packet));
1362 break;
1363 case USB_SPEED_HIGH:
1364 /* bits 11:12 specify the number of additional transaction
1365 * opportunities per microframe (USB 2.0, section 9.6.6)
1367 if (usb_endpoint_xfer_isoc(&ep->desc) ||
1368 usb_endpoint_xfer_int(&ep->desc)) {
1369 max_burst = (usb_endpoint_maxp(&ep->desc)
1370 & 0x1800) >> 11;
1371 ep_ctx->ep_info2 |= cpu_to_le32(MAX_BURST(max_burst));
1373 /* Fall through */
1374 case USB_SPEED_FULL:
1375 case USB_SPEED_LOW:
1376 max_packet = GET_MAX_PACKET(usb_endpoint_maxp(&ep->desc));
1377 ep_ctx->ep_info2 |= cpu_to_le32(MAX_PACKET(max_packet));
1378 break;
1379 default:
1380 BUG();
1382 max_esit_payload = xhci_get_max_esit_payload(xhci, udev, ep);
1383 ep_ctx->tx_info = cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload));
1386 * XXX no idea how to calculate the average TRB buffer length for bulk
1387 * endpoints, as the driver gives us no clue how big each scatter gather
1388 * list entry (or buffer) is going to be.
1390 * For isochronous and interrupt endpoints, we set it to the max
1391 * available, until we have new API in the USB core to allow drivers to
1392 * declare how much bandwidth they actually need.
1394 * Normally, it would be calculated by taking the total of the buffer
1395 * lengths in the TD and then dividing by the number of TRBs in a TD,
1396 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1397 * use Event Data TRBs, and we don't chain in a link TRB on short
1398 * transfers, we're basically dividing by 1.
1400 * xHCI 1.0 specification indicates that the Average TRB Length should
1401 * be set to 8 for control endpoints.
1403 if (usb_endpoint_xfer_control(&ep->desc) && xhci->hci_version == 0x100)
1404 ep_ctx->tx_info |= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1405 else
1406 ep_ctx->tx_info |=
1407 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload));
1409 /* FIXME Debug endpoint context */
1410 return 0;
1413 void xhci_endpoint_zero(struct xhci_hcd *xhci,
1414 struct xhci_virt_device *virt_dev,
1415 struct usb_host_endpoint *ep)
1417 unsigned int ep_index;
1418 struct xhci_ep_ctx *ep_ctx;
1420 ep_index = xhci_get_endpoint_index(&ep->desc);
1421 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
1423 ep_ctx->ep_info = 0;
1424 ep_ctx->ep_info2 = 0;
1425 ep_ctx->deq = 0;
1426 ep_ctx->tx_info = 0;
1427 /* Don't free the endpoint ring until the set interface or configuration
1428 * request succeeds.
1432 void xhci_clear_endpoint_bw_info(struct xhci_bw_info *bw_info)
1434 bw_info->ep_interval = 0;
1435 bw_info->mult = 0;
1436 bw_info->num_packets = 0;
1437 bw_info->max_packet_size = 0;
1438 bw_info->type = 0;
1439 bw_info->max_esit_payload = 0;
1442 void xhci_update_bw_info(struct xhci_hcd *xhci,
1443 struct xhci_container_ctx *in_ctx,
1444 struct xhci_input_control_ctx *ctrl_ctx,
1445 struct xhci_virt_device *virt_dev)
1447 struct xhci_bw_info *bw_info;
1448 struct xhci_ep_ctx *ep_ctx;
1449 unsigned int ep_type;
1450 int i;
1452 for (i = 1; i < 31; ++i) {
1453 bw_info = &virt_dev->eps[i].bw_info;
1455 /* We can't tell what endpoint type is being dropped, but
1456 * unconditionally clearing the bandwidth info for non-periodic
1457 * endpoints should be harmless because the info will never be
1458 * set in the first place.
1460 if (!EP_IS_ADDED(ctrl_ctx, i) && EP_IS_DROPPED(ctrl_ctx, i)) {
1461 /* Dropped endpoint */
1462 xhci_clear_endpoint_bw_info(bw_info);
1463 continue;
1466 if (EP_IS_ADDED(ctrl_ctx, i)) {
1467 ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, i);
1468 ep_type = CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx->ep_info2));
1470 /* Ignore non-periodic endpoints */
1471 if (ep_type != ISOC_OUT_EP && ep_type != INT_OUT_EP &&
1472 ep_type != ISOC_IN_EP &&
1473 ep_type != INT_IN_EP)
1474 continue;
1476 /* Added or changed endpoint */
1477 bw_info->ep_interval = CTX_TO_EP_INTERVAL(
1478 le32_to_cpu(ep_ctx->ep_info));
1479 /* Number of packets and mult are zero-based in the
1480 * input context, but we want one-based for the
1481 * interval table.
1483 bw_info->mult = CTX_TO_EP_MULT(
1484 le32_to_cpu(ep_ctx->ep_info)) + 1;
1485 bw_info->num_packets = CTX_TO_MAX_BURST(
1486 le32_to_cpu(ep_ctx->ep_info2)) + 1;
1487 bw_info->max_packet_size = MAX_PACKET_DECODED(
1488 le32_to_cpu(ep_ctx->ep_info2));
1489 bw_info->type = ep_type;
1490 bw_info->max_esit_payload = CTX_TO_MAX_ESIT_PAYLOAD(
1491 le32_to_cpu(ep_ctx->tx_info));
1496 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1497 * Useful when you want to change one particular aspect of the endpoint and then
1498 * issue a configure endpoint command.
1500 void xhci_endpoint_copy(struct xhci_hcd *xhci,
1501 struct xhci_container_ctx *in_ctx,
1502 struct xhci_container_ctx *out_ctx,
1503 unsigned int ep_index)
1505 struct xhci_ep_ctx *out_ep_ctx;
1506 struct xhci_ep_ctx *in_ep_ctx;
1508 out_ep_ctx = xhci_get_ep_ctx(xhci, out_ctx, ep_index);
1509 in_ep_ctx = xhci_get_ep_ctx(xhci, in_ctx, ep_index);
1511 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
1512 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
1513 in_ep_ctx->deq = out_ep_ctx->deq;
1514 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
1517 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1518 * Useful when you want to change one particular aspect of the endpoint and then
1519 * issue a configure endpoint command. Only the context entries field matters,
1520 * but we'll copy the whole thing anyway.
1522 void xhci_slot_copy(struct xhci_hcd *xhci,
1523 struct xhci_container_ctx *in_ctx,
1524 struct xhci_container_ctx *out_ctx)
1526 struct xhci_slot_ctx *in_slot_ctx;
1527 struct xhci_slot_ctx *out_slot_ctx;
1529 in_slot_ctx = xhci_get_slot_ctx(xhci, in_ctx);
1530 out_slot_ctx = xhci_get_slot_ctx(xhci, out_ctx);
1532 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
1533 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
1534 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
1535 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
1538 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1539 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
1541 int i;
1542 struct device *dev = xhci_to_hcd(xhci)->self.controller;
1543 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1545 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
1547 if (!num_sp)
1548 return 0;
1550 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
1551 if (!xhci->scratchpad)
1552 goto fail_sp;
1554 xhci->scratchpad->sp_array = dma_alloc_coherent(dev,
1555 num_sp * sizeof(u64),
1556 &xhci->scratchpad->sp_dma, flags);
1557 if (!xhci->scratchpad->sp_array)
1558 goto fail_sp2;
1560 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
1561 if (!xhci->scratchpad->sp_buffers)
1562 goto fail_sp3;
1564 xhci->scratchpad->sp_dma_buffers =
1565 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
1567 if (!xhci->scratchpad->sp_dma_buffers)
1568 goto fail_sp4;
1570 xhci->dcbaa->dev_context_ptrs[0] = cpu_to_le64(xhci->scratchpad->sp_dma);
1571 for (i = 0; i < num_sp; i++) {
1572 dma_addr_t dma;
1573 void *buf = dma_alloc_coherent(dev, xhci->page_size, &dma,
1574 flags);
1575 if (!buf)
1576 goto fail_sp5;
1578 xhci->scratchpad->sp_array[i] = dma;
1579 xhci->scratchpad->sp_buffers[i] = buf;
1580 xhci->scratchpad->sp_dma_buffers[i] = dma;
1583 return 0;
1585 fail_sp5:
1586 for (i = i - 1; i >= 0; i--) {
1587 dma_free_coherent(dev, xhci->page_size,
1588 xhci->scratchpad->sp_buffers[i],
1589 xhci->scratchpad->sp_dma_buffers[i]);
1591 kfree(xhci->scratchpad->sp_dma_buffers);
1593 fail_sp4:
1594 kfree(xhci->scratchpad->sp_buffers);
1596 fail_sp3:
1597 dma_free_coherent(dev, num_sp * sizeof(u64),
1598 xhci->scratchpad->sp_array,
1599 xhci->scratchpad->sp_dma);
1601 fail_sp2:
1602 kfree(xhci->scratchpad);
1603 xhci->scratchpad = NULL;
1605 fail_sp:
1606 return -ENOMEM;
1609 static void scratchpad_free(struct xhci_hcd *xhci)
1611 int num_sp;
1612 int i;
1613 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1615 if (!xhci->scratchpad)
1616 return;
1618 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
1620 for (i = 0; i < num_sp; i++) {
1621 dma_free_coherent(&pdev->dev, xhci->page_size,
1622 xhci->scratchpad->sp_buffers[i],
1623 xhci->scratchpad->sp_dma_buffers[i]);
1625 kfree(xhci->scratchpad->sp_dma_buffers);
1626 kfree(xhci->scratchpad->sp_buffers);
1627 dma_free_coherent(&pdev->dev, num_sp * sizeof(u64),
1628 xhci->scratchpad->sp_array,
1629 xhci->scratchpad->sp_dma);
1630 kfree(xhci->scratchpad);
1631 xhci->scratchpad = NULL;
1634 struct xhci_command *xhci_alloc_command(struct xhci_hcd *xhci,
1635 bool allocate_in_ctx, bool allocate_completion,
1636 gfp_t mem_flags)
1638 struct xhci_command *command;
1640 command = kzalloc(sizeof(*command), mem_flags);
1641 if (!command)
1642 return NULL;
1644 if (allocate_in_ctx) {
1645 command->in_ctx =
1646 xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT,
1647 mem_flags);
1648 if (!command->in_ctx) {
1649 kfree(command);
1650 return NULL;
1654 if (allocate_completion) {
1655 command->completion =
1656 kzalloc(sizeof(struct completion), mem_flags);
1657 if (!command->completion) {
1658 xhci_free_container_ctx(xhci, command->in_ctx);
1659 kfree(command);
1660 return NULL;
1662 init_completion(command->completion);
1665 command->status = 0;
1666 INIT_LIST_HEAD(&command->cmd_list);
1667 return command;
1670 void xhci_urb_free_priv(struct xhci_hcd *xhci, struct urb_priv *urb_priv)
1672 if (urb_priv) {
1673 kfree(urb_priv->td[0]);
1674 kfree(urb_priv);
1678 void xhci_free_command(struct xhci_hcd *xhci,
1679 struct xhci_command *command)
1681 xhci_free_container_ctx(xhci,
1682 command->in_ctx);
1683 kfree(command->completion);
1684 kfree(command);
1687 void xhci_mem_cleanup(struct xhci_hcd *xhci)
1689 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
1690 struct dev_info *dev_info, *next;
1691 unsigned long flags;
1692 int size;
1693 int i;
1695 /* Free the Event Ring Segment Table and the actual Event Ring */
1696 if (xhci->ir_set) {
1697 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
1698 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
1699 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
1701 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
1702 if (xhci->erst.entries)
1703 dma_free_coherent(&pdev->dev, size,
1704 xhci->erst.entries, xhci->erst.erst_dma_addr);
1705 xhci->erst.entries = NULL;
1706 xhci_dbg(xhci, "Freed ERST\n");
1707 if (xhci->event_ring)
1708 xhci_ring_free(xhci, xhci->event_ring);
1709 xhci->event_ring = NULL;
1710 xhci_dbg(xhci, "Freed event ring\n");
1712 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
1713 if (xhci->cmd_ring)
1714 xhci_ring_free(xhci, xhci->cmd_ring);
1715 xhci->cmd_ring = NULL;
1716 xhci_dbg(xhci, "Freed command ring\n");
1718 for (i = 1; i < MAX_HC_SLOTS; ++i)
1719 xhci_free_virt_device(xhci, i);
1721 if (xhci->segment_pool)
1722 dma_pool_destroy(xhci->segment_pool);
1723 xhci->segment_pool = NULL;
1724 xhci_dbg(xhci, "Freed segment pool\n");
1726 if (xhci->device_pool)
1727 dma_pool_destroy(xhci->device_pool);
1728 xhci->device_pool = NULL;
1729 xhci_dbg(xhci, "Freed device context pool\n");
1731 if (xhci->small_streams_pool)
1732 dma_pool_destroy(xhci->small_streams_pool);
1733 xhci->small_streams_pool = NULL;
1734 xhci_dbg(xhci, "Freed small stream array pool\n");
1736 if (xhci->medium_streams_pool)
1737 dma_pool_destroy(xhci->medium_streams_pool);
1738 xhci->medium_streams_pool = NULL;
1739 xhci_dbg(xhci, "Freed medium stream array pool\n");
1741 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
1742 if (xhci->dcbaa)
1743 dma_free_coherent(&pdev->dev, sizeof(*xhci->dcbaa),
1744 xhci->dcbaa, xhci->dcbaa->dma);
1745 xhci->dcbaa = NULL;
1747 scratchpad_free(xhci);
1749 spin_lock_irqsave(&xhci->lock, flags);
1750 list_for_each_entry_safe(dev_info, next, &xhci->lpm_failed_devs, list) {
1751 list_del(&dev_info->list);
1752 kfree(dev_info);
1754 spin_unlock_irqrestore(&xhci->lock, flags);
1756 xhci->num_usb2_ports = 0;
1757 xhci->num_usb3_ports = 0;
1758 kfree(xhci->usb2_ports);
1759 kfree(xhci->usb3_ports);
1760 kfree(xhci->port_array);
1761 kfree(xhci->rh_bw);
1763 xhci->page_size = 0;
1764 xhci->page_shift = 0;
1765 xhci->bus_state[0].bus_suspended = 0;
1766 xhci->bus_state[1].bus_suspended = 0;
1769 static int xhci_test_trb_in_td(struct xhci_hcd *xhci,
1770 struct xhci_segment *input_seg,
1771 union xhci_trb *start_trb,
1772 union xhci_trb *end_trb,
1773 dma_addr_t input_dma,
1774 struct xhci_segment *result_seg,
1775 char *test_name, int test_number)
1777 unsigned long long start_dma;
1778 unsigned long long end_dma;
1779 struct xhci_segment *seg;
1781 start_dma = xhci_trb_virt_to_dma(input_seg, start_trb);
1782 end_dma = xhci_trb_virt_to_dma(input_seg, end_trb);
1784 seg = trb_in_td(input_seg, start_trb, end_trb, input_dma);
1785 if (seg != result_seg) {
1786 xhci_warn(xhci, "WARN: %s TRB math test %d failed!\n",
1787 test_name, test_number);
1788 xhci_warn(xhci, "Tested TRB math w/ seg %p and "
1789 "input DMA 0x%llx\n",
1790 input_seg,
1791 (unsigned long long) input_dma);
1792 xhci_warn(xhci, "starting TRB %p (0x%llx DMA), "
1793 "ending TRB %p (0x%llx DMA)\n",
1794 start_trb, start_dma,
1795 end_trb, end_dma);
1796 xhci_warn(xhci, "Expected seg %p, got seg %p\n",
1797 result_seg, seg);
1798 return -1;
1800 return 0;
1803 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1804 static int xhci_check_trb_in_td_math(struct xhci_hcd *xhci, gfp_t mem_flags)
1806 struct {
1807 dma_addr_t input_dma;
1808 struct xhci_segment *result_seg;
1809 } simple_test_vector [] = {
1810 /* A zeroed DMA field should fail */
1811 { 0, NULL },
1812 /* One TRB before the ring start should fail */
1813 { xhci->event_ring->first_seg->dma - 16, NULL },
1814 /* One byte before the ring start should fail */
1815 { xhci->event_ring->first_seg->dma - 1, NULL },
1816 /* Starting TRB should succeed */
1817 { xhci->event_ring->first_seg->dma, xhci->event_ring->first_seg },
1818 /* Ending TRB should succeed */
1819 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16,
1820 xhci->event_ring->first_seg },
1821 /* One byte after the ring end should fail */
1822 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 1)*16 + 1, NULL },
1823 /* One TRB after the ring end should fail */
1824 { xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT)*16, NULL },
1825 /* An address of all ones should fail */
1826 { (dma_addr_t) (~0), NULL },
1828 struct {
1829 struct xhci_segment *input_seg;
1830 union xhci_trb *start_trb;
1831 union xhci_trb *end_trb;
1832 dma_addr_t input_dma;
1833 struct xhci_segment *result_seg;
1834 } complex_test_vector [] = {
1835 /* Test feeding a valid DMA address from a different ring */
1836 { .input_seg = xhci->event_ring->first_seg,
1837 .start_trb = xhci->event_ring->first_seg->trbs,
1838 .end_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1839 .input_dma = xhci->cmd_ring->first_seg->dma,
1840 .result_seg = NULL,
1842 /* Test feeding a valid end TRB from a different ring */
1843 { .input_seg = xhci->event_ring->first_seg,
1844 .start_trb = xhci->event_ring->first_seg->trbs,
1845 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1846 .input_dma = xhci->cmd_ring->first_seg->dma,
1847 .result_seg = NULL,
1849 /* Test feeding a valid start and end TRB from a different ring */
1850 { .input_seg = xhci->event_ring->first_seg,
1851 .start_trb = xhci->cmd_ring->first_seg->trbs,
1852 .end_trb = &xhci->cmd_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1853 .input_dma = xhci->cmd_ring->first_seg->dma,
1854 .result_seg = NULL,
1856 /* TRB in this ring, but after this TD */
1857 { .input_seg = xhci->event_ring->first_seg,
1858 .start_trb = &xhci->event_ring->first_seg->trbs[0],
1859 .end_trb = &xhci->event_ring->first_seg->trbs[3],
1860 .input_dma = xhci->event_ring->first_seg->dma + 4*16,
1861 .result_seg = NULL,
1863 /* TRB in this ring, but before this TD */
1864 { .input_seg = xhci->event_ring->first_seg,
1865 .start_trb = &xhci->event_ring->first_seg->trbs[3],
1866 .end_trb = &xhci->event_ring->first_seg->trbs[6],
1867 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1868 .result_seg = NULL,
1870 /* TRB in this ring, but after this wrapped TD */
1871 { .input_seg = xhci->event_ring->first_seg,
1872 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1873 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1874 .input_dma = xhci->event_ring->first_seg->dma + 2*16,
1875 .result_seg = NULL,
1877 /* TRB in this ring, but before this wrapped TD */
1878 { .input_seg = xhci->event_ring->first_seg,
1879 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1880 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1881 .input_dma = xhci->event_ring->first_seg->dma + (TRBS_PER_SEGMENT - 4)*16,
1882 .result_seg = NULL,
1884 /* TRB not in this ring, and we have a wrapped TD */
1885 { .input_seg = xhci->event_ring->first_seg,
1886 .start_trb = &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 3],
1887 .end_trb = &xhci->event_ring->first_seg->trbs[1],
1888 .input_dma = xhci->cmd_ring->first_seg->dma + 2*16,
1889 .result_seg = NULL,
1893 unsigned int num_tests;
1894 int i, ret;
1896 num_tests = ARRAY_SIZE(simple_test_vector);
1897 for (i = 0; i < num_tests; i++) {
1898 ret = xhci_test_trb_in_td(xhci,
1899 xhci->event_ring->first_seg,
1900 xhci->event_ring->first_seg->trbs,
1901 &xhci->event_ring->first_seg->trbs[TRBS_PER_SEGMENT - 1],
1902 simple_test_vector[i].input_dma,
1903 simple_test_vector[i].result_seg,
1904 "Simple", i);
1905 if (ret < 0)
1906 return ret;
1909 num_tests = ARRAY_SIZE(complex_test_vector);
1910 for (i = 0; i < num_tests; i++) {
1911 ret = xhci_test_trb_in_td(xhci,
1912 complex_test_vector[i].input_seg,
1913 complex_test_vector[i].start_trb,
1914 complex_test_vector[i].end_trb,
1915 complex_test_vector[i].input_dma,
1916 complex_test_vector[i].result_seg,
1917 "Complex", i);
1918 if (ret < 0)
1919 return ret;
1921 xhci_dbg(xhci, "TRB math tests passed.\n");
1922 return 0;
1925 static void xhci_set_hc_event_deq(struct xhci_hcd *xhci)
1927 u64 temp;
1928 dma_addr_t deq;
1930 deq = xhci_trb_virt_to_dma(xhci->event_ring->deq_seg,
1931 xhci->event_ring->dequeue);
1932 if (deq == 0 && !in_interrupt())
1933 xhci_warn(xhci, "WARN something wrong with SW event ring "
1934 "dequeue ptr.\n");
1935 /* Update HC event ring dequeue pointer */
1936 temp = xhci_read_64(xhci, &xhci->ir_set->erst_dequeue);
1937 temp &= ERST_PTR_MASK;
1938 /* Don't clear the EHB bit (which is RW1C) because
1939 * there might be more events to service.
1941 temp &= ~ERST_EHB;
1942 xhci_dbg(xhci, "// Write event ring dequeue pointer, "
1943 "preserving EHB bit\n");
1944 xhci_write_64(xhci, ((u64) deq & (u64) ~ERST_PTR_MASK) | temp,
1945 &xhci->ir_set->erst_dequeue);
1948 static void xhci_add_in_port(struct xhci_hcd *xhci, unsigned int num_ports,
1949 __le32 __iomem *addr, u8 major_revision)
1951 u32 temp, port_offset, port_count;
1952 int i;
1954 if (major_revision > 0x03) {
1955 xhci_warn(xhci, "Ignoring unknown port speed, "
1956 "Ext Cap %p, revision = 0x%x\n",
1957 addr, major_revision);
1958 /* Ignoring port protocol we can't understand. FIXME */
1959 return;
1962 /* Port offset and count in the third dword, see section 7.2 */
1963 temp = xhci_readl(xhci, addr + 2);
1964 port_offset = XHCI_EXT_PORT_OFF(temp);
1965 port_count = XHCI_EXT_PORT_COUNT(temp);
1966 xhci_dbg(xhci, "Ext Cap %p, port offset = %u, "
1967 "count = %u, revision = 0x%x\n",
1968 addr, port_offset, port_count, major_revision);
1969 /* Port count includes the current port offset */
1970 if (port_offset == 0 || (port_offset + port_count - 1) > num_ports)
1971 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1972 return;
1974 /* Check the host's USB2 LPM capability */
1975 if ((xhci->hci_version == 0x96) && (major_revision != 0x03) &&
1976 (temp & XHCI_L1C)) {
1977 xhci_dbg(xhci, "xHCI 0.96: support USB2 software lpm\n");
1978 xhci->sw_lpm_support = 1;
1981 if ((xhci->hci_version >= 0x100) && (major_revision != 0x03)) {
1982 xhci_dbg(xhci, "xHCI 1.0: support USB2 software lpm\n");
1983 xhci->sw_lpm_support = 1;
1984 if (temp & XHCI_HLC) {
1985 xhci_dbg(xhci, "xHCI 1.0: support USB2 hardware lpm\n");
1986 xhci->hw_lpm_support = 1;
1990 port_offset--;
1991 for (i = port_offset; i < (port_offset + port_count); i++) {
1992 /* Duplicate entry. Ignore the port if the revisions differ. */
1993 if (xhci->port_array[i] != 0) {
1994 xhci_warn(xhci, "Duplicate port entry, Ext Cap %p,"
1995 " port %u\n", addr, i);
1996 xhci_warn(xhci, "Port was marked as USB %u, "
1997 "duplicated as USB %u\n",
1998 xhci->port_array[i], major_revision);
1999 /* Only adjust the roothub port counts if we haven't
2000 * found a similar duplicate.
2002 if (xhci->port_array[i] != major_revision &&
2003 xhci->port_array[i] != DUPLICATE_ENTRY) {
2004 if (xhci->port_array[i] == 0x03)
2005 xhci->num_usb3_ports--;
2006 else
2007 xhci->num_usb2_ports--;
2008 xhci->port_array[i] = DUPLICATE_ENTRY;
2010 /* FIXME: Should we disable the port? */
2011 continue;
2013 xhci->port_array[i] = major_revision;
2014 if (major_revision == 0x03)
2015 xhci->num_usb3_ports++;
2016 else
2017 xhci->num_usb2_ports++;
2019 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2023 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2024 * specify what speeds each port is supposed to be. We can't count on the port
2025 * speed bits in the PORTSC register being correct until a device is connected,
2026 * but we need to set up the two fake roothubs with the correct number of USB
2027 * 3.0 and USB 2.0 ports at host controller initialization time.
2029 static int xhci_setup_port_arrays(struct xhci_hcd *xhci, gfp_t flags)
2031 __le32 __iomem *addr;
2032 u32 offset;
2033 unsigned int num_ports;
2034 int i, j, port_index;
2036 addr = &xhci->cap_regs->hcc_params;
2037 offset = XHCI_HCC_EXT_CAPS(xhci_readl(xhci, addr));
2038 if (offset == 0) {
2039 xhci_err(xhci, "No Extended Capability registers, "
2040 "unable to set up roothub.\n");
2041 return -ENODEV;
2044 num_ports = HCS_MAX_PORTS(xhci->hcs_params1);
2045 xhci->port_array = kzalloc(sizeof(*xhci->port_array)*num_ports, flags);
2046 if (!xhci->port_array)
2047 return -ENOMEM;
2049 xhci->rh_bw = kzalloc(sizeof(*xhci->rh_bw)*num_ports, flags);
2050 if (!xhci->rh_bw)
2051 return -ENOMEM;
2052 for (i = 0; i < num_ports; i++) {
2053 struct xhci_interval_bw_table *bw_table;
2055 INIT_LIST_HEAD(&xhci->rh_bw[i].tts);
2056 bw_table = &xhci->rh_bw[i].bw_table;
2057 for (j = 0; j < XHCI_MAX_INTERVAL; j++)
2058 INIT_LIST_HEAD(&bw_table->interval_bw[j].endpoints);
2062 * For whatever reason, the first capability offset is from the
2063 * capability register base, not from the HCCPARAMS register.
2064 * See section 5.3.6 for offset calculation.
2066 addr = &xhci->cap_regs->hc_capbase + offset;
2067 while (1) {
2068 u32 cap_id;
2070 cap_id = xhci_readl(xhci, addr);
2071 if (XHCI_EXT_CAPS_ID(cap_id) == XHCI_EXT_CAPS_PROTOCOL)
2072 xhci_add_in_port(xhci, num_ports, addr,
2073 (u8) XHCI_EXT_PORT_MAJOR(cap_id));
2074 offset = XHCI_EXT_CAPS_NEXT(cap_id);
2075 if (!offset || (xhci->num_usb2_ports + xhci->num_usb3_ports)
2076 == num_ports)
2077 break;
2079 * Once you're into the Extended Capabilities, the offset is
2080 * always relative to the register holding the offset.
2082 addr += offset;
2085 if (xhci->num_usb2_ports == 0 && xhci->num_usb3_ports == 0) {
2086 xhci_warn(xhci, "No ports on the roothubs?\n");
2087 return -ENODEV;
2089 xhci_dbg(xhci, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2090 xhci->num_usb2_ports, xhci->num_usb3_ports);
2092 /* Place limits on the number of roothub ports so that the hub
2093 * descriptors aren't longer than the USB core will allocate.
2095 if (xhci->num_usb3_ports > 15) {
2096 xhci_dbg(xhci, "Limiting USB 3.0 roothub ports to 15.\n");
2097 xhci->num_usb3_ports = 15;
2099 if (xhci->num_usb2_ports > USB_MAXCHILDREN) {
2100 xhci_dbg(xhci, "Limiting USB 2.0 roothub ports to %u.\n",
2101 USB_MAXCHILDREN);
2102 xhci->num_usb2_ports = USB_MAXCHILDREN;
2106 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2107 * Not sure how the USB core will handle a hub with no ports...
2109 if (xhci->num_usb2_ports) {
2110 xhci->usb2_ports = kmalloc(sizeof(*xhci->usb2_ports)*
2111 xhci->num_usb2_ports, flags);
2112 if (!xhci->usb2_ports)
2113 return -ENOMEM;
2115 port_index = 0;
2116 for (i = 0; i < num_ports; i++) {
2117 if (xhci->port_array[i] == 0x03 ||
2118 xhci->port_array[i] == 0 ||
2119 xhci->port_array[i] == DUPLICATE_ENTRY)
2120 continue;
2122 xhci->usb2_ports[port_index] =
2123 &xhci->op_regs->port_status_base +
2124 NUM_PORT_REGS*i;
2125 xhci_dbg(xhci, "USB 2.0 port at index %u, "
2126 "addr = %p\n", i,
2127 xhci->usb2_ports[port_index]);
2128 port_index++;
2129 if (port_index == xhci->num_usb2_ports)
2130 break;
2133 if (xhci->num_usb3_ports) {
2134 xhci->usb3_ports = kmalloc(sizeof(*xhci->usb3_ports)*
2135 xhci->num_usb3_ports, flags);
2136 if (!xhci->usb3_ports)
2137 return -ENOMEM;
2139 port_index = 0;
2140 for (i = 0; i < num_ports; i++)
2141 if (xhci->port_array[i] == 0x03) {
2142 xhci->usb3_ports[port_index] =
2143 &xhci->op_regs->port_status_base +
2144 NUM_PORT_REGS*i;
2145 xhci_dbg(xhci, "USB 3.0 port at index %u, "
2146 "addr = %p\n", i,
2147 xhci->usb3_ports[port_index]);
2148 port_index++;
2149 if (port_index == xhci->num_usb3_ports)
2150 break;
2153 return 0;
2156 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
2158 dma_addr_t dma;
2159 struct device *dev = xhci_to_hcd(xhci)->self.controller;
2160 unsigned int val, val2;
2161 u64 val_64;
2162 struct xhci_segment *seg;
2163 u32 page_size;
2164 int i;
2166 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
2167 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
2168 for (i = 0; i < 16; i++) {
2169 if ((0x1 & page_size) != 0)
2170 break;
2171 page_size = page_size >> 1;
2173 if (i < 16)
2174 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
2175 else
2176 xhci_warn(xhci, "WARN: no supported page size\n");
2177 /* Use 4K pages, since that's common and the minimum the HC supports */
2178 xhci->page_shift = 12;
2179 xhci->page_size = 1 << xhci->page_shift;
2180 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
2183 * Program the Number of Device Slots Enabled field in the CONFIG
2184 * register with the max value of slots the HC can handle.
2186 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
2187 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
2188 (unsigned int) val);
2189 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
2190 val |= (val2 & ~HCS_SLOTS_MASK);
2191 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
2192 (unsigned int) val);
2193 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
2196 * Section 5.4.8 - doorbell array must be
2197 * "physically contiguous and 64-byte (cache line) aligned".
2199 xhci->dcbaa = dma_alloc_coherent(dev, sizeof(*xhci->dcbaa), &dma,
2200 GFP_KERNEL);
2201 if (!xhci->dcbaa)
2202 goto fail;
2203 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
2204 xhci->dcbaa->dma = dma;
2205 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2206 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
2207 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
2210 * Initialize the ring segment pool. The ring must be a contiguous
2211 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2212 * however, the command ring segment needs 64-byte aligned segments,
2213 * so we pick the greater alignment need.
2215 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
2216 SEGMENT_SIZE, 64, xhci->page_size);
2218 /* See Table 46 and Note on Figure 55 */
2219 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
2220 2112, 64, xhci->page_size);
2221 if (!xhci->segment_pool || !xhci->device_pool)
2222 goto fail;
2224 /* Linear stream context arrays don't have any boundary restrictions,
2225 * and only need to be 16-byte aligned.
2227 xhci->small_streams_pool =
2228 dma_pool_create("xHCI 256 byte stream ctx arrays",
2229 dev, SMALL_STREAM_ARRAY_SIZE, 16, 0);
2230 xhci->medium_streams_pool =
2231 dma_pool_create("xHCI 1KB stream ctx arrays",
2232 dev, MEDIUM_STREAM_ARRAY_SIZE, 16, 0);
2233 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2234 * will be allocated with dma_alloc_coherent()
2237 if (!xhci->small_streams_pool || !xhci->medium_streams_pool)
2238 goto fail;
2240 /* Set up the command ring to have one segments for now. */
2241 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, false, flags);
2242 if (!xhci->cmd_ring)
2243 goto fail;
2244 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
2245 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
2246 (unsigned long long)xhci->cmd_ring->first_seg->dma);
2248 /* Set the address in the Command Ring Control register */
2249 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
2250 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
2251 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
2252 xhci->cmd_ring->cycle_state;
2253 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
2254 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
2255 xhci_dbg_cmd_ptrs(xhci);
2257 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
2258 val &= DBOFF_MASK;
2259 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
2260 " from cap regs base addr\n", val);
2261 xhci->dba = (void __iomem *) xhci->cap_regs + val;
2262 xhci_dbg_regs(xhci);
2263 xhci_print_run_regs(xhci);
2264 /* Set ir_set to interrupt register set 0 */
2265 xhci->ir_set = &xhci->run_regs->ir_set[0];
2268 * Event ring setup: Allocate a normal ring, but also setup
2269 * the event ring segment table (ERST). Section 4.9.3.
2271 xhci_dbg(xhci, "// Allocating event ring\n");
2272 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, false,
2273 flags);
2274 if (!xhci->event_ring)
2275 goto fail;
2276 if (xhci_check_trb_in_td_math(xhci, flags) < 0)
2277 goto fail;
2279 xhci->erst.entries = dma_alloc_coherent(dev,
2280 sizeof(struct xhci_erst_entry) * ERST_NUM_SEGS, &dma,
2281 GFP_KERNEL);
2282 if (!xhci->erst.entries)
2283 goto fail;
2284 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
2285 (unsigned long long)dma);
2287 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
2288 xhci->erst.num_entries = ERST_NUM_SEGS;
2289 xhci->erst.erst_dma_addr = dma;
2290 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2291 xhci->erst.num_entries,
2292 xhci->erst.entries,
2293 (unsigned long long)xhci->erst.erst_dma_addr);
2295 /* set ring base address and size for each segment table entry */
2296 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
2297 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
2298 entry->seg_addr = cpu_to_le64(seg->dma);
2299 entry->seg_size = cpu_to_le32(TRBS_PER_SEGMENT);
2300 entry->rsvd = 0;
2301 seg = seg->next;
2304 /* set ERST count with the number of entries in the segment table */
2305 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
2306 val &= ERST_SIZE_MASK;
2307 val |= ERST_NUM_SEGS;
2308 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2309 val);
2310 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
2312 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
2313 /* set the segment table base address */
2314 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2315 (unsigned long long)xhci->erst.erst_dma_addr);
2316 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
2317 val_64 &= ERST_PTR_MASK;
2318 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
2319 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
2321 /* Set the event ring dequeue address */
2322 xhci_set_hc_event_deq(xhci);
2323 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
2324 xhci_print_ir_set(xhci, 0);
2327 * XXX: Might need to set the Interrupter Moderation Register to
2328 * something other than the default (~1ms minimum between interrupts).
2329 * See section 5.5.1.2.
2331 init_completion(&xhci->addr_dev);
2332 for (i = 0; i < MAX_HC_SLOTS; ++i)
2333 xhci->devs[i] = NULL;
2334 for (i = 0; i < USB_MAXCHILDREN; ++i) {
2335 xhci->bus_state[0].resume_done[i] = 0;
2336 xhci->bus_state[1].resume_done[i] = 0;
2339 if (scratchpad_alloc(xhci, flags))
2340 goto fail;
2341 if (xhci_setup_port_arrays(xhci, flags))
2342 goto fail;
2344 INIT_LIST_HEAD(&xhci->lpm_failed_devs);
2346 return 0;
2348 fail:
2349 xhci_warn(xhci, "Couldn't initialize memory\n");
2350 xhci_mem_cleanup(xhci);
2351 return -ENOMEM;