2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/slab.h>
26 #include <linux/dmapool.h>
31 * Allocates a generic ring segment from the ring pool, sets the dma address,
32 * initializes the segment to zero, and sets the private next pointer to NULL.
35 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
37 static struct xhci_segment
*xhci_segment_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
39 struct xhci_segment
*seg
;
42 seg
= kzalloc(sizeof *seg
, flags
);
45 xhci_dbg(xhci
, "Allocating priv segment structure at %p\n", seg
);
47 seg
->trbs
= dma_pool_alloc(xhci
->segment_pool
, flags
, &dma
);
52 xhci_dbg(xhci
, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
53 seg
->trbs
, (unsigned long long)dma
);
55 memset(seg
->trbs
, 0, SEGMENT_SIZE
);
62 static void xhci_segment_free(struct xhci_hcd
*xhci
, struct xhci_segment
*seg
)
65 xhci_dbg(xhci
, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
66 seg
->trbs
, (unsigned long long)seg
->dma
);
67 dma_pool_free(xhci
->segment_pool
, seg
->trbs
, seg
->dma
);
70 xhci_dbg(xhci
, "Freeing priv segment structure at %p\n", seg
);
75 * Make the prev segment point to the next segment.
77 * Change the last TRB in the prev segment to be a Link TRB which points to the
78 * DMA address of the next segment. The caller needs to set any Link TRB
79 * related flags, such as End TRB, Toggle Cycle, and no snoop.
81 static void xhci_link_segments(struct xhci_hcd
*xhci
, struct xhci_segment
*prev
,
82 struct xhci_segment
*next
, bool link_trbs
, bool isoc
)
90 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.segment_ptr
=
91 cpu_to_le64(next
->dma
);
93 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94 val
= le32_to_cpu(prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
);
95 val
&= ~TRB_TYPE_BITMASK
;
96 val
|= TRB_TYPE(TRB_LINK
);
97 /* Always set the chain bit with 0.95 hardware */
98 /* Set chain bit for isoc rings on AMD 0.96 host */
99 if (xhci_link_trb_quirk(xhci
) ||
100 (isoc
&& (xhci
->quirks
& XHCI_AMD_0x96_HOST
)))
102 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
= cpu_to_le32(val
);
104 xhci_dbg(xhci
, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
105 (unsigned long long)prev
->dma
,
106 (unsigned long long)next
->dma
);
109 /* XXX: Do we need the hcd structure in all these functions? */
110 void xhci_ring_free(struct xhci_hcd
*xhci
, struct xhci_ring
*ring
)
112 struct xhci_segment
*seg
;
113 struct xhci_segment
*first_seg
;
117 if (ring
->first_seg
) {
118 first_seg
= ring
->first_seg
;
119 seg
= first_seg
->next
;
120 xhci_dbg(xhci
, "Freeing ring at %p\n", ring
);
121 while (seg
!= first_seg
) {
122 struct xhci_segment
*next
= seg
->next
;
123 xhci_segment_free(xhci
, seg
);
126 xhci_segment_free(xhci
, first_seg
);
127 ring
->first_seg
= NULL
;
132 static void xhci_initialize_ring_info(struct xhci_ring
*ring
)
134 /* The ring is empty, so the enqueue pointer == dequeue pointer */
135 ring
->enqueue
= ring
->first_seg
->trbs
;
136 ring
->enq_seg
= ring
->first_seg
;
137 ring
->dequeue
= ring
->enqueue
;
138 ring
->deq_seg
= ring
->first_seg
;
139 /* The ring is initialized to 0. The producer must write 1 to the cycle
140 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
141 * compare CCS to the cycle bit to check ownership, so CCS = 1.
143 ring
->cycle_state
= 1;
144 /* Not necessary for new rings, but needed for re-initialized rings */
145 ring
->enq_updates
= 0;
146 ring
->deq_updates
= 0;
150 * Create a new ring with zero or more segments.
152 * Link each segment together into a ring.
153 * Set the end flag and the cycle toggle bit on the last segment.
154 * See section 4.9.1 and figures 15 and 16.
156 static struct xhci_ring
*xhci_ring_alloc(struct xhci_hcd
*xhci
,
157 unsigned int num_segs
, bool link_trbs
, bool isoc
, gfp_t flags
)
159 struct xhci_ring
*ring
;
160 struct xhci_segment
*prev
;
162 ring
= kzalloc(sizeof *(ring
), flags
);
163 xhci_dbg(xhci
, "Allocating ring at %p\n", ring
);
167 INIT_LIST_HEAD(&ring
->td_list
);
171 ring
->first_seg
= xhci_segment_alloc(xhci
, flags
);
172 if (!ring
->first_seg
)
176 prev
= ring
->first_seg
;
177 while (num_segs
> 0) {
178 struct xhci_segment
*next
;
180 next
= xhci_segment_alloc(xhci
, flags
);
183 xhci_link_segments(xhci
, prev
, next
, link_trbs
, isoc
);
188 xhci_link_segments(xhci
, prev
, ring
->first_seg
, link_trbs
, isoc
);
191 /* See section 4.9.2.1 and 6.4.4.1 */
192 prev
->trbs
[TRBS_PER_SEGMENT
-1].link
.control
|=
193 cpu_to_le32(LINK_TOGGLE
);
194 xhci_dbg(xhci
, "Wrote link toggle flag to"
195 " segment %p (virtual), 0x%llx (DMA)\n",
196 prev
, (unsigned long long)prev
->dma
);
198 xhci_initialize_ring_info(ring
);
202 xhci_ring_free(xhci
, ring
);
206 void xhci_free_or_cache_endpoint_ring(struct xhci_hcd
*xhci
,
207 struct xhci_virt_device
*virt_dev
,
208 unsigned int ep_index
)
212 rings_cached
= virt_dev
->num_rings_cached
;
213 if (rings_cached
< XHCI_MAX_RINGS_CACHED
) {
214 virt_dev
->ring_cache
[rings_cached
] =
215 virt_dev
->eps
[ep_index
].ring
;
216 virt_dev
->num_rings_cached
++;
217 xhci_dbg(xhci
, "Cached old ring, "
218 "%d ring%s cached\n",
219 virt_dev
->num_rings_cached
,
220 (virt_dev
->num_rings_cached
> 1) ? "s" : "");
222 xhci_ring_free(xhci
, virt_dev
->eps
[ep_index
].ring
);
223 xhci_dbg(xhci
, "Ring cache full (%d rings), "
225 virt_dev
->num_rings_cached
);
227 virt_dev
->eps
[ep_index
].ring
= NULL
;
230 /* Zero an endpoint ring (except for link TRBs) and move the enqueue and dequeue
231 * pointers to the beginning of the ring.
233 static void xhci_reinit_cached_ring(struct xhci_hcd
*xhci
,
234 struct xhci_ring
*ring
, bool isoc
)
236 struct xhci_segment
*seg
= ring
->first_seg
;
239 sizeof(union xhci_trb
)*TRBS_PER_SEGMENT
);
240 /* All endpoint rings have link TRBs */
241 xhci_link_segments(xhci
, seg
, seg
->next
, 1, isoc
);
243 } while (seg
!= ring
->first_seg
);
244 xhci_initialize_ring_info(ring
);
245 /* td list should be empty since all URBs have been cancelled,
246 * but just in case...
248 INIT_LIST_HEAD(&ring
->td_list
);
251 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
253 static struct xhci_container_ctx
*xhci_alloc_container_ctx(struct xhci_hcd
*xhci
,
254 int type
, gfp_t flags
)
256 struct xhci_container_ctx
*ctx
= kzalloc(sizeof(*ctx
), flags
);
260 BUG_ON((type
!= XHCI_CTX_TYPE_DEVICE
) && (type
!= XHCI_CTX_TYPE_INPUT
));
262 ctx
->size
= HCC_64BYTE_CONTEXT(xhci
->hcc_params
) ? 2048 : 1024;
263 if (type
== XHCI_CTX_TYPE_INPUT
)
264 ctx
->size
+= CTX_SIZE(xhci
->hcc_params
);
266 ctx
->bytes
= dma_pool_alloc(xhci
->device_pool
, flags
, &ctx
->dma
);
267 memset(ctx
->bytes
, 0, ctx
->size
);
271 static void xhci_free_container_ctx(struct xhci_hcd
*xhci
,
272 struct xhci_container_ctx
*ctx
)
276 dma_pool_free(xhci
->device_pool
, ctx
->bytes
, ctx
->dma
);
280 struct xhci_input_control_ctx
*xhci_get_input_control_ctx(struct xhci_hcd
*xhci
,
281 struct xhci_container_ctx
*ctx
)
283 BUG_ON(ctx
->type
!= XHCI_CTX_TYPE_INPUT
);
284 return (struct xhci_input_control_ctx
*)ctx
->bytes
;
287 struct xhci_slot_ctx
*xhci_get_slot_ctx(struct xhci_hcd
*xhci
,
288 struct xhci_container_ctx
*ctx
)
290 if (ctx
->type
== XHCI_CTX_TYPE_DEVICE
)
291 return (struct xhci_slot_ctx
*)ctx
->bytes
;
293 return (struct xhci_slot_ctx
*)
294 (ctx
->bytes
+ CTX_SIZE(xhci
->hcc_params
));
297 struct xhci_ep_ctx
*xhci_get_ep_ctx(struct xhci_hcd
*xhci
,
298 struct xhci_container_ctx
*ctx
,
299 unsigned int ep_index
)
301 /* increment ep index by offset of start of ep ctx array */
303 if (ctx
->type
== XHCI_CTX_TYPE_INPUT
)
306 return (struct xhci_ep_ctx
*)
307 (ctx
->bytes
+ (ep_index
* CTX_SIZE(xhci
->hcc_params
)));
311 /***************** Streams structures manipulation *************************/
313 static void xhci_free_stream_ctx(struct xhci_hcd
*xhci
,
314 unsigned int num_stream_ctxs
,
315 struct xhci_stream_ctx
*stream_ctx
, dma_addr_t dma
)
317 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
319 if (num_stream_ctxs
> MEDIUM_STREAM_ARRAY_SIZE
)
320 dma_free_coherent(&pdev
->dev
,
321 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
,
323 else if (num_stream_ctxs
<= SMALL_STREAM_ARRAY_SIZE
)
324 return dma_pool_free(xhci
->small_streams_pool
,
327 return dma_pool_free(xhci
->medium_streams_pool
,
332 * The stream context array for each endpoint with bulk streams enabled can
333 * vary in size, based on:
334 * - how many streams the endpoint supports,
335 * - the maximum primary stream array size the host controller supports,
336 * - and how many streams the device driver asks for.
338 * The stream context array must be a power of 2, and can be as small as
339 * 64 bytes or as large as 1MB.
341 static struct xhci_stream_ctx
*xhci_alloc_stream_ctx(struct xhci_hcd
*xhci
,
342 unsigned int num_stream_ctxs
, dma_addr_t
*dma
,
345 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
347 if (num_stream_ctxs
> MEDIUM_STREAM_ARRAY_SIZE
)
348 return dma_alloc_coherent(&pdev
->dev
,
349 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
,
351 else if (num_stream_ctxs
<= SMALL_STREAM_ARRAY_SIZE
)
352 return dma_pool_alloc(xhci
->small_streams_pool
,
355 return dma_pool_alloc(xhci
->medium_streams_pool
,
359 struct xhci_ring
*xhci_dma_to_transfer_ring(
360 struct xhci_virt_ep
*ep
,
363 if (ep
->ep_state
& EP_HAS_STREAMS
)
364 return radix_tree_lookup(&ep
->stream_info
->trb_address_map
,
365 address
>> SEGMENT_SHIFT
);
369 /* Only use this when you know stream_info is valid */
370 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
371 static struct xhci_ring
*dma_to_stream_ring(
372 struct xhci_stream_info
*stream_info
,
375 return radix_tree_lookup(&stream_info
->trb_address_map
,
376 address
>> SEGMENT_SHIFT
);
378 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
380 struct xhci_ring
*xhci_stream_id_to_ring(
381 struct xhci_virt_device
*dev
,
382 unsigned int ep_index
,
383 unsigned int stream_id
)
385 struct xhci_virt_ep
*ep
= &dev
->eps
[ep_index
];
389 if (!ep
->stream_info
)
392 if (stream_id
> ep
->stream_info
->num_streams
)
394 return ep
->stream_info
->stream_rings
[stream_id
];
397 #ifdef CONFIG_USB_XHCI_HCD_DEBUGGING
398 static int xhci_test_radix_tree(struct xhci_hcd
*xhci
,
399 unsigned int num_streams
,
400 struct xhci_stream_info
*stream_info
)
403 struct xhci_ring
*cur_ring
;
406 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
407 struct xhci_ring
*mapped_ring
;
408 int trb_size
= sizeof(union xhci_trb
);
410 cur_ring
= stream_info
->stream_rings
[cur_stream
];
411 for (addr
= cur_ring
->first_seg
->dma
;
412 addr
< cur_ring
->first_seg
->dma
+ SEGMENT_SIZE
;
414 mapped_ring
= dma_to_stream_ring(stream_info
, addr
);
415 if (cur_ring
!= mapped_ring
) {
416 xhci_warn(xhci
, "WARN: DMA address 0x%08llx "
417 "didn't map to stream ID %u; "
418 "mapped to ring %p\n",
419 (unsigned long long) addr
,
425 /* One TRB after the end of the ring segment shouldn't return a
426 * pointer to the current ring (although it may be a part of a
429 mapped_ring
= dma_to_stream_ring(stream_info
, addr
);
430 if (mapped_ring
!= cur_ring
) {
431 /* One TRB before should also fail */
432 addr
= cur_ring
->first_seg
->dma
- trb_size
;
433 mapped_ring
= dma_to_stream_ring(stream_info
, addr
);
435 if (mapped_ring
== cur_ring
) {
436 xhci_warn(xhci
, "WARN: Bad DMA address 0x%08llx "
437 "mapped to valid stream ID %u; "
438 "mapped ring = %p\n",
439 (unsigned long long) addr
,
447 #endif /* CONFIG_USB_XHCI_HCD_DEBUGGING */
450 * Change an endpoint's internal structure so it supports stream IDs. The
451 * number of requested streams includes stream 0, which cannot be used by device
454 * The number of stream contexts in the stream context array may be bigger than
455 * the number of streams the driver wants to use. This is because the number of
456 * stream context array entries must be a power of two.
458 * We need a radix tree for mapping physical addresses of TRBs to which stream
459 * ID they belong to. We need to do this because the host controller won't tell
460 * us which stream ring the TRB came from. We could store the stream ID in an
461 * event data TRB, but that doesn't help us for the cancellation case, since the
462 * endpoint may stop before it reaches that event data TRB.
464 * The radix tree maps the upper portion of the TRB DMA address to a ring
465 * segment that has the same upper portion of DMA addresses. For example, say I
466 * have segments of size 1KB, that are always 64-byte aligned. A segment may
467 * start at 0x10c91000 and end at 0x10c913f0. If I use the upper 10 bits, the
468 * key to the stream ID is 0x43244. I can use the DMA address of the TRB to
469 * pass the radix tree a key to get the right stream ID:
471 * 0x10c90fff >> 10 = 0x43243
472 * 0x10c912c0 >> 10 = 0x43244
473 * 0x10c91400 >> 10 = 0x43245
475 * Obviously, only those TRBs with DMA addresses that are within the segment
476 * will make the radix tree return the stream ID for that ring.
478 * Caveats for the radix tree:
480 * The radix tree uses an unsigned long as a key pair. On 32-bit systems, an
481 * unsigned long will be 32-bits; on a 64-bit system an unsigned long will be
482 * 64-bits. Since we only request 32-bit DMA addresses, we can use that as the
483 * key on 32-bit or 64-bit systems (it would also be fine if we asked for 64-bit
484 * PCI DMA addresses on a 64-bit system). There might be a problem on 32-bit
485 * extended systems (where the DMA address can be bigger than 32-bits),
486 * if we allow the PCI dma mask to be bigger than 32-bits. So don't do that.
488 struct xhci_stream_info
*xhci_alloc_stream_info(struct xhci_hcd
*xhci
,
489 unsigned int num_stream_ctxs
,
490 unsigned int num_streams
, gfp_t mem_flags
)
492 struct xhci_stream_info
*stream_info
;
494 struct xhci_ring
*cur_ring
;
499 xhci_dbg(xhci
, "Allocating %u streams and %u "
500 "stream context array entries.\n",
501 num_streams
, num_stream_ctxs
);
502 if (xhci
->cmd_ring_reserved_trbs
== MAX_RSVD_CMD_TRBS
) {
503 xhci_dbg(xhci
, "Command ring has no reserved TRBs available\n");
506 xhci
->cmd_ring_reserved_trbs
++;
508 stream_info
= kzalloc(sizeof(struct xhci_stream_info
), mem_flags
);
512 stream_info
->num_streams
= num_streams
;
513 stream_info
->num_stream_ctxs
= num_stream_ctxs
;
515 /* Initialize the array of virtual pointers to stream rings. */
516 stream_info
->stream_rings
= kzalloc(
517 sizeof(struct xhci_ring
*)*num_streams
,
519 if (!stream_info
->stream_rings
)
522 /* Initialize the array of DMA addresses for stream rings for the HW. */
523 stream_info
->stream_ctx_array
= xhci_alloc_stream_ctx(xhci
,
524 num_stream_ctxs
, &stream_info
->ctx_array_dma
,
526 if (!stream_info
->stream_ctx_array
)
528 memset(stream_info
->stream_ctx_array
, 0,
529 sizeof(struct xhci_stream_ctx
)*num_stream_ctxs
);
531 /* Allocate everything needed to free the stream rings later */
532 stream_info
->free_streams_command
=
533 xhci_alloc_command(xhci
, true, true, mem_flags
);
534 if (!stream_info
->free_streams_command
)
537 INIT_RADIX_TREE(&stream_info
->trb_address_map
, GFP_ATOMIC
);
539 /* Allocate rings for all the streams that the driver will use,
540 * and add their segment DMA addresses to the radix tree.
541 * Stream 0 is reserved.
543 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
544 stream_info
->stream_rings
[cur_stream
] =
545 xhci_ring_alloc(xhci
, 1, true, false, mem_flags
);
546 cur_ring
= stream_info
->stream_rings
[cur_stream
];
549 cur_ring
->stream_id
= cur_stream
;
550 /* Set deq ptr, cycle bit, and stream context type */
551 addr
= cur_ring
->first_seg
->dma
|
552 SCT_FOR_CTX(SCT_PRI_TR
) |
553 cur_ring
->cycle_state
;
554 stream_info
->stream_ctx_array
[cur_stream
].stream_ring
=
556 xhci_dbg(xhci
, "Setting stream %d ring ptr to 0x%08llx\n",
557 cur_stream
, (unsigned long long) addr
);
559 key
= (unsigned long)
560 (cur_ring
->first_seg
->dma
>> SEGMENT_SHIFT
);
561 ret
= radix_tree_insert(&stream_info
->trb_address_map
,
564 xhci_ring_free(xhci
, cur_ring
);
565 stream_info
->stream_rings
[cur_stream
] = NULL
;
569 /* Leave the other unused stream ring pointers in the stream context
570 * array initialized to zero. This will cause the xHC to give us an
571 * error if the device asks for a stream ID we don't have setup (if it
572 * was any other way, the host controller would assume the ring is
573 * "empty" and wait forever for data to be queued to that stream ID).
576 /* Do a little test on the radix tree to make sure it returns the
579 if (xhci_test_radix_tree(xhci
, num_streams
, stream_info
))
586 for (cur_stream
= 1; cur_stream
< num_streams
; cur_stream
++) {
587 cur_ring
= stream_info
->stream_rings
[cur_stream
];
589 addr
= cur_ring
->first_seg
->dma
;
590 radix_tree_delete(&stream_info
->trb_address_map
,
591 addr
>> SEGMENT_SHIFT
);
592 xhci_ring_free(xhci
, cur_ring
);
593 stream_info
->stream_rings
[cur_stream
] = NULL
;
596 xhci_free_command(xhci
, stream_info
->free_streams_command
);
598 kfree(stream_info
->stream_rings
);
602 xhci
->cmd_ring_reserved_trbs
--;
606 * Sets the MaxPStreams field and the Linear Stream Array field.
607 * Sets the dequeue pointer to the stream context array.
609 void xhci_setup_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
610 struct xhci_ep_ctx
*ep_ctx
,
611 struct xhci_stream_info
*stream_info
)
613 u32 max_primary_streams
;
614 /* MaxPStreams is the number of stream context array entries, not the
615 * number we're actually using. Must be in 2^(MaxPstreams + 1) format.
616 * fls(0) = 0, fls(0x1) = 1, fls(0x10) = 2, fls(0x100) = 3, etc.
618 max_primary_streams
= fls(stream_info
->num_stream_ctxs
) - 2;
619 xhci_dbg(xhci
, "Setting number of stream ctx array entries to %u\n",
620 1 << (max_primary_streams
+ 1));
621 ep_ctx
->ep_info
&= cpu_to_le32(~EP_MAXPSTREAMS_MASK
);
622 ep_ctx
->ep_info
|= cpu_to_le32(EP_MAXPSTREAMS(max_primary_streams
)
624 ep_ctx
->deq
= cpu_to_le64(stream_info
->ctx_array_dma
);
628 * Sets the MaxPStreams field and the Linear Stream Array field to 0.
629 * Reinstalls the "normal" endpoint ring (at its previous dequeue mark,
630 * not at the beginning of the ring).
632 void xhci_setup_no_streams_ep_input_ctx(struct xhci_hcd
*xhci
,
633 struct xhci_ep_ctx
*ep_ctx
,
634 struct xhci_virt_ep
*ep
)
637 ep_ctx
->ep_info
&= cpu_to_le32(~(EP_MAXPSTREAMS_MASK
| EP_HAS_LSA
));
638 addr
= xhci_trb_virt_to_dma(ep
->ring
->deq_seg
, ep
->ring
->dequeue
);
639 ep_ctx
->deq
= cpu_to_le64(addr
| ep
->ring
->cycle_state
);
642 /* Frees all stream contexts associated with the endpoint,
644 * Caller should fix the endpoint context streams fields.
646 void xhci_free_stream_info(struct xhci_hcd
*xhci
,
647 struct xhci_stream_info
*stream_info
)
650 struct xhci_ring
*cur_ring
;
656 for (cur_stream
= 1; cur_stream
< stream_info
->num_streams
;
658 cur_ring
= stream_info
->stream_rings
[cur_stream
];
660 addr
= cur_ring
->first_seg
->dma
;
661 radix_tree_delete(&stream_info
->trb_address_map
,
662 addr
>> SEGMENT_SHIFT
);
663 xhci_ring_free(xhci
, cur_ring
);
664 stream_info
->stream_rings
[cur_stream
] = NULL
;
667 xhci_free_command(xhci
, stream_info
->free_streams_command
);
668 xhci
->cmd_ring_reserved_trbs
--;
669 if (stream_info
->stream_ctx_array
)
670 xhci_free_stream_ctx(xhci
,
671 stream_info
->num_stream_ctxs
,
672 stream_info
->stream_ctx_array
,
673 stream_info
->ctx_array_dma
);
676 kfree(stream_info
->stream_rings
);
681 /***************** Device context manipulation *************************/
683 static void xhci_init_endpoint_timer(struct xhci_hcd
*xhci
,
684 struct xhci_virt_ep
*ep
)
686 init_timer(&ep
->stop_cmd_timer
);
687 ep
->stop_cmd_timer
.data
= (unsigned long) ep
;
688 ep
->stop_cmd_timer
.function
= xhci_stop_endpoint_command_watchdog
;
692 static void xhci_free_tt_info(struct xhci_hcd
*xhci
,
693 struct xhci_virt_device
*virt_dev
,
696 struct list_head
*tt
;
697 struct list_head
*tt_list_head
;
698 struct list_head
*tt_next
;
699 struct xhci_tt_bw_info
*tt_info
;
701 /* If the device never made it past the Set Address stage,
702 * it may not have the real_port set correctly.
704 if (virt_dev
->real_port
== 0 ||
705 virt_dev
->real_port
> HCS_MAX_PORTS(xhci
->hcs_params1
)) {
706 xhci_dbg(xhci
, "Bad real port.\n");
710 tt_list_head
= &(xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
711 if (list_empty(tt_list_head
))
714 list_for_each(tt
, tt_list_head
) {
715 tt_info
= list_entry(tt
, struct xhci_tt_bw_info
, tt_list
);
716 if (tt_info
->slot_id
== slot_id
)
719 /* Cautionary measure in case the hub was disconnected before we
720 * stored the TT information.
722 if (tt_info
->slot_id
!= slot_id
)
726 tt_info
= list_entry(tt
, struct xhci_tt_bw_info
,
728 /* Multi-TT hubs will have more than one entry */
733 if (list_empty(tt_list_head
))
736 tt_info
= list_entry(tt
, struct xhci_tt_bw_info
,
738 } while (tt_info
->slot_id
== slot_id
);
741 int xhci_alloc_tt_info(struct xhci_hcd
*xhci
,
742 struct xhci_virt_device
*virt_dev
,
743 struct usb_device
*hdev
,
744 struct usb_tt
*tt
, gfp_t mem_flags
)
746 struct xhci_tt_bw_info
*tt_info
;
747 unsigned int num_ports
;
753 num_ports
= hdev
->maxchild
;
755 for (i
= 0; i
< num_ports
; i
++, tt_info
++) {
756 struct xhci_interval_bw_table
*bw_table
;
758 tt_info
= kzalloc(sizeof(*tt_info
), mem_flags
);
761 INIT_LIST_HEAD(&tt_info
->tt_list
);
762 list_add(&tt_info
->tt_list
,
763 &xhci
->rh_bw
[virt_dev
->real_port
- 1].tts
);
764 tt_info
->slot_id
= virt_dev
->udev
->slot_id
;
766 tt_info
->ttport
= i
+1;
767 bw_table
= &tt_info
->bw_table
;
768 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
769 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
774 xhci_free_tt_info(xhci
, virt_dev
, virt_dev
->udev
->slot_id
);
779 /* All the xhci_tds in the ring's TD list should be freed at this point.
780 * Should be called with xhci->lock held if there is any chance the TT lists
781 * will be manipulated by the configure endpoint, allocate device, or update
782 * hub functions while this function is removing the TT entries from the list.
784 void xhci_free_virt_device(struct xhci_hcd
*xhci
, int slot_id
)
786 struct xhci_virt_device
*dev
;
788 int old_active_eps
= 0;
790 /* Slot ID 0 is reserved */
791 if (slot_id
== 0 || !xhci
->devs
[slot_id
])
794 dev
= xhci
->devs
[slot_id
];
795 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = 0;
800 old_active_eps
= dev
->tt_info
->active_eps
;
802 for (i
= 0; i
< 31; ++i
) {
803 if (dev
->eps
[i
].ring
)
804 xhci_ring_free(xhci
, dev
->eps
[i
].ring
);
805 if (dev
->eps
[i
].stream_info
)
806 xhci_free_stream_info(xhci
,
807 dev
->eps
[i
].stream_info
);
808 /* Endpoints on the TT/root port lists should have been removed
809 * when usb_disable_device() was called for the device.
810 * We can't drop them anyway, because the udev might have gone
811 * away by this point, and we can't tell what speed it was.
813 if (!list_empty(&dev
->eps
[i
].bw_endpoint_list
))
814 xhci_warn(xhci
, "Slot %u endpoint %u "
815 "not removed from BW list!\n",
818 /* If this is a hub, free the TT(s) from the TT list */
819 xhci_free_tt_info(xhci
, dev
, slot_id
);
820 /* If necessary, update the number of active TTs on this root port */
821 xhci_update_tt_active_eps(xhci
, dev
, old_active_eps
);
823 if (dev
->ring_cache
) {
824 for (i
= 0; i
< dev
->num_rings_cached
; i
++)
825 xhci_ring_free(xhci
, dev
->ring_cache
[i
]);
826 kfree(dev
->ring_cache
);
830 xhci_free_container_ctx(xhci
, dev
->in_ctx
);
832 xhci_free_container_ctx(xhci
, dev
->out_ctx
);
834 kfree(xhci
->devs
[slot_id
]);
835 xhci
->devs
[slot_id
] = NULL
;
838 int xhci_alloc_virt_device(struct xhci_hcd
*xhci
, int slot_id
,
839 struct usb_device
*udev
, gfp_t flags
)
841 struct xhci_virt_device
*dev
;
844 /* Slot ID 0 is reserved */
845 if (slot_id
== 0 || xhci
->devs
[slot_id
]) {
846 xhci_warn(xhci
, "Bad Slot ID %d\n", slot_id
);
850 xhci
->devs
[slot_id
] = kzalloc(sizeof(*xhci
->devs
[slot_id
]), flags
);
851 if (!xhci
->devs
[slot_id
])
853 dev
= xhci
->devs
[slot_id
];
855 /* Allocate the (output) device context that will be used in the HC. */
856 dev
->out_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_DEVICE
, flags
);
860 xhci_dbg(xhci
, "Slot %d output ctx = 0x%llx (dma)\n", slot_id
,
861 (unsigned long long)dev
->out_ctx
->dma
);
863 /* Allocate the (input) device context for address device command */
864 dev
->in_ctx
= xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
, flags
);
868 xhci_dbg(xhci
, "Slot %d input ctx = 0x%llx (dma)\n", slot_id
,
869 (unsigned long long)dev
->in_ctx
->dma
);
871 /* Initialize the cancellation list and watchdog timers for each ep */
872 for (i
= 0; i
< 31; i
++) {
873 xhci_init_endpoint_timer(xhci
, &dev
->eps
[i
]);
874 INIT_LIST_HEAD(&dev
->eps
[i
].cancelled_td_list
);
875 INIT_LIST_HEAD(&dev
->eps
[i
].bw_endpoint_list
);
878 /* Allocate endpoint 0 ring */
879 dev
->eps
[0].ring
= xhci_ring_alloc(xhci
, 1, true, false, flags
);
880 if (!dev
->eps
[0].ring
)
883 /* Allocate pointers to the ring cache */
884 dev
->ring_cache
= kzalloc(
885 sizeof(struct xhci_ring
*)*XHCI_MAX_RINGS_CACHED
,
887 if (!dev
->ring_cache
)
889 dev
->num_rings_cached
= 0;
891 init_completion(&dev
->cmd_completion
);
892 INIT_LIST_HEAD(&dev
->cmd_list
);
895 /* Point to output device context in dcbaa. */
896 xhci
->dcbaa
->dev_context_ptrs
[slot_id
] = cpu_to_le64(dev
->out_ctx
->dma
);
897 xhci_dbg(xhci
, "Set slot id %d dcbaa entry %p to 0x%llx\n",
899 &xhci
->dcbaa
->dev_context_ptrs
[slot_id
],
900 le64_to_cpu(xhci
->dcbaa
->dev_context_ptrs
[slot_id
]));
904 xhci_free_virt_device(xhci
, slot_id
);
908 void xhci_copy_ep0_dequeue_into_input_ctx(struct xhci_hcd
*xhci
,
909 struct usb_device
*udev
)
911 struct xhci_virt_device
*virt_dev
;
912 struct xhci_ep_ctx
*ep0_ctx
;
913 struct xhci_ring
*ep_ring
;
915 virt_dev
= xhci
->devs
[udev
->slot_id
];
916 ep0_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, 0);
917 ep_ring
= virt_dev
->eps
[0].ring
;
919 * FIXME we don't keep track of the dequeue pointer very well after a
920 * Set TR dequeue pointer, so we're setting the dequeue pointer of the
921 * host to our enqueue pointer. This should only be called after a
922 * configured device has reset, so all control transfers should have
923 * been completed or cancelled before the reset.
925 ep0_ctx
->deq
= cpu_to_le64(xhci_trb_virt_to_dma(ep_ring
->enq_seg
,
927 | ep_ring
->cycle_state
);
931 * The xHCI roothub may have ports of differing speeds in any order in the port
932 * status registers. xhci->port_array provides an array of the port speed for
933 * each offset into the port status registers.
935 * The xHCI hardware wants to know the roothub port number that the USB device
936 * is attached to (or the roothub port its ancestor hub is attached to). All we
937 * know is the index of that port under either the USB 2.0 or the USB 3.0
938 * roothub, but that doesn't give us the real index into the HW port status
939 * registers. Scan through the xHCI roothub port array, looking for the Nth
940 * entry of the correct port speed. Return the port number of that entry.
942 static u32
xhci_find_real_port_number(struct xhci_hcd
*xhci
,
943 struct usb_device
*udev
)
945 struct usb_device
*top_dev
;
946 unsigned int num_similar_speed_ports
;
947 unsigned int faked_port_num
;
950 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
951 top_dev
= top_dev
->parent
)
952 /* Found device below root hub */;
953 faked_port_num
= top_dev
->portnum
;
954 for (i
= 0, num_similar_speed_ports
= 0;
955 i
< HCS_MAX_PORTS(xhci
->hcs_params1
); i
++) {
956 u8 port_speed
= xhci
->port_array
[i
];
959 * Skip ports that don't have known speeds, or have duplicate
960 * Extended Capabilities port speed entries.
962 if (port_speed
== 0 || port_speed
== DUPLICATE_ENTRY
)
966 * USB 3.0 ports are always under a USB 3.0 hub. USB 2.0 and
967 * 1.1 ports are under the USB 2.0 hub. If the port speed
968 * matches the device speed, it's a similar speed port.
970 if ((port_speed
== 0x03) == (udev
->speed
== USB_SPEED_SUPER
))
971 num_similar_speed_ports
++;
972 if (num_similar_speed_ports
== faked_port_num
)
973 /* Roothub ports are numbered from 1 to N */
979 /* Setup an xHCI virtual device for a Set Address command */
980 int xhci_setup_addressable_virt_dev(struct xhci_hcd
*xhci
, struct usb_device
*udev
)
982 struct xhci_virt_device
*dev
;
983 struct xhci_ep_ctx
*ep0_ctx
;
984 struct xhci_slot_ctx
*slot_ctx
;
985 struct xhci_input_control_ctx
*ctrl_ctx
;
987 struct usb_device
*top_dev
;
989 dev
= xhci
->devs
[udev
->slot_id
];
990 /* Slot ID 0 is reserved */
991 if (udev
->slot_id
== 0 || !dev
) {
992 xhci_warn(xhci
, "Slot ID %d is not assigned to this device\n",
996 ep0_ctx
= xhci_get_ep_ctx(xhci
, dev
->in_ctx
, 0);
997 ctrl_ctx
= xhci_get_input_control_ctx(xhci
, dev
->in_ctx
);
998 slot_ctx
= xhci_get_slot_ctx(xhci
, dev
->in_ctx
);
1000 /* 2) New slot context and endpoint 0 context are valid*/
1001 ctrl_ctx
->add_flags
= cpu_to_le32(SLOT_FLAG
| EP0_FLAG
);
1003 /* 3) Only the control endpoint is valid - one endpoint context */
1004 slot_ctx
->dev_info
|= cpu_to_le32(LAST_CTX(1) | udev
->route
);
1005 switch (udev
->speed
) {
1006 case USB_SPEED_SUPER
:
1007 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_SS
);
1009 case USB_SPEED_HIGH
:
1010 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_HS
);
1012 case USB_SPEED_FULL
:
1013 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_FS
);
1016 slot_ctx
->dev_info
|= cpu_to_le32(SLOT_SPEED_LS
);
1018 case USB_SPEED_WIRELESS
:
1019 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
1023 /* Speed was set earlier, this shouldn't happen. */
1026 /* Find the root hub port this device is under */
1027 port_num
= xhci_find_real_port_number(xhci
, udev
);
1030 slot_ctx
->dev_info2
|= cpu_to_le32(ROOT_HUB_PORT(port_num
));
1031 /* Set the port number in the virtual_device to the faked port number */
1032 for (top_dev
= udev
; top_dev
->parent
&& top_dev
->parent
->parent
;
1033 top_dev
= top_dev
->parent
)
1034 /* Found device below root hub */;
1035 dev
->fake_port
= top_dev
->portnum
;
1036 dev
->real_port
= port_num
;
1037 xhci_dbg(xhci
, "Set root hub portnum to %d\n", port_num
);
1038 xhci_dbg(xhci
, "Set fake root hub portnum to %d\n", dev
->fake_port
);
1040 /* Find the right bandwidth table that this device will be a part of.
1041 * If this is a full speed device attached directly to a root port (or a
1042 * decendent of one), it counts as a primary bandwidth domain, not a
1043 * secondary bandwidth domain under a TT. An xhci_tt_info structure
1044 * will never be created for the HS root hub.
1046 if (!udev
->tt
|| !udev
->tt
->hub
->parent
) {
1047 dev
->bw_table
= &xhci
->rh_bw
[port_num
- 1].bw_table
;
1049 struct xhci_root_port_bw_info
*rh_bw
;
1050 struct xhci_tt_bw_info
*tt_bw
;
1052 rh_bw
= &xhci
->rh_bw
[port_num
- 1];
1053 /* Find the right TT. */
1054 list_for_each_entry(tt_bw
, &rh_bw
->tts
, tt_list
) {
1055 if (tt_bw
->slot_id
!= udev
->tt
->hub
->slot_id
)
1058 if (!dev
->udev
->tt
->multi
||
1060 tt_bw
->ttport
== dev
->udev
->ttport
)) {
1061 dev
->bw_table
= &tt_bw
->bw_table
;
1062 dev
->tt_info
= tt_bw
;
1067 xhci_warn(xhci
, "WARN: Didn't find a matching TT\n");
1070 /* Is this a LS/FS device under an external HS hub? */
1071 if (udev
->tt
&& udev
->tt
->hub
->parent
) {
1072 slot_ctx
->tt_info
= cpu_to_le32(udev
->tt
->hub
->slot_id
|
1073 (udev
->ttport
<< 8));
1074 if (udev
->tt
->multi
)
1075 slot_ctx
->dev_info
|= cpu_to_le32(DEV_MTT
);
1077 xhci_dbg(xhci
, "udev->tt = %p\n", udev
->tt
);
1078 xhci_dbg(xhci
, "udev->ttport = 0x%x\n", udev
->ttport
);
1080 /* Step 4 - ring already allocated */
1082 ep0_ctx
->ep_info2
= cpu_to_le32(EP_TYPE(CTRL_EP
));
1084 * XXX: Not sure about wireless USB devices.
1086 switch (udev
->speed
) {
1087 case USB_SPEED_SUPER
:
1088 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(512));
1090 case USB_SPEED_HIGH
:
1091 /* USB core guesses at a 64-byte max packet first for FS devices */
1092 case USB_SPEED_FULL
:
1093 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(64));
1096 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(8));
1098 case USB_SPEED_WIRELESS
:
1099 xhci_dbg(xhci
, "FIXME xHCI doesn't support wireless speeds\n");
1106 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
1107 ep0_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(0) | ERROR_COUNT(3));
1109 ep0_ctx
->deq
= cpu_to_le64(dev
->eps
[0].ring
->first_seg
->dma
|
1110 dev
->eps
[0].ring
->cycle_state
);
1112 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
1118 * Convert interval expressed as 2^(bInterval - 1) == interval into
1119 * straight exponent value 2^n == interval.
1122 static unsigned int xhci_parse_exponent_interval(struct usb_device
*udev
,
1123 struct usb_host_endpoint
*ep
)
1125 unsigned int interval
;
1127 interval
= clamp_val(ep
->desc
.bInterval
, 1, 16) - 1;
1128 if (interval
!= ep
->desc
.bInterval
- 1)
1129 dev_warn(&udev
->dev
,
1130 "ep %#x - rounding interval to %d %sframes\n",
1131 ep
->desc
.bEndpointAddress
,
1133 udev
->speed
== USB_SPEED_FULL
? "" : "micro");
1135 if (udev
->speed
== USB_SPEED_FULL
) {
1137 * Full speed isoc endpoints specify interval in frames,
1138 * not microframes. We are using microframes everywhere,
1139 * so adjust accordingly.
1141 interval
+= 3; /* 1 frame = 2^3 uframes */
1148 * Convert bInterval expressed in frames (in 1-255 range) to exponent of
1149 * microframes, rounded down to nearest power of 2.
1151 static unsigned int xhci_parse_frame_interval(struct usb_device
*udev
,
1152 struct usb_host_endpoint
*ep
)
1154 unsigned int interval
;
1156 interval
= fls(8 * ep
->desc
.bInterval
) - 1;
1157 interval
= clamp_val(interval
, 3, 10);
1158 if ((1 << interval
) != 8 * ep
->desc
.bInterval
)
1159 dev_warn(&udev
->dev
,
1160 "ep %#x - rounding interval to %d microframes, ep desc says %d microframes\n",
1161 ep
->desc
.bEndpointAddress
,
1163 8 * ep
->desc
.bInterval
);
1168 /* Return the polling or NAK interval.
1170 * The polling interval is expressed in "microframes". If xHCI's Interval field
1171 * is set to N, it will service the endpoint every 2^(Interval)*125us.
1173 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
1176 static unsigned int xhci_get_endpoint_interval(struct usb_device
*udev
,
1177 struct usb_host_endpoint
*ep
)
1179 unsigned int interval
= 0;
1181 switch (udev
->speed
) {
1182 case USB_SPEED_HIGH
:
1184 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1185 usb_endpoint_xfer_bulk(&ep
->desc
)) {
1186 interval
= ep
->desc
.bInterval
;
1189 /* Fall through - SS and HS isoc/int have same decoding */
1191 case USB_SPEED_SUPER
:
1192 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1193 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1194 interval
= xhci_parse_exponent_interval(udev
, ep
);
1198 case USB_SPEED_FULL
:
1199 if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1200 interval
= xhci_parse_exponent_interval(udev
, ep
);
1204 * Fall through for interrupt endpoint interval decoding
1205 * since it uses the same rules as low speed interrupt
1210 if (usb_endpoint_xfer_int(&ep
->desc
) ||
1211 usb_endpoint_xfer_isoc(&ep
->desc
)) {
1213 interval
= xhci_parse_frame_interval(udev
, ep
);
1220 return EP_INTERVAL(interval
);
1223 /* The "Mult" field in the endpoint context is only set for SuperSpeed isoc eps.
1224 * High speed endpoint descriptors can define "the number of additional
1225 * transaction opportunities per microframe", but that goes in the Max Burst
1226 * endpoint context field.
1228 static u32
xhci_get_endpoint_mult(struct usb_device
*udev
,
1229 struct usb_host_endpoint
*ep
)
1231 if (udev
->speed
!= USB_SPEED_SUPER
||
1232 !usb_endpoint_xfer_isoc(&ep
->desc
))
1234 return ep
->ss_ep_comp
.bmAttributes
;
1237 static u32
xhci_get_endpoint_type(struct usb_device
*udev
,
1238 struct usb_host_endpoint
*ep
)
1243 in
= usb_endpoint_dir_in(&ep
->desc
);
1244 if (usb_endpoint_xfer_control(&ep
->desc
)) {
1245 type
= EP_TYPE(CTRL_EP
);
1246 } else if (usb_endpoint_xfer_bulk(&ep
->desc
)) {
1248 type
= EP_TYPE(BULK_IN_EP
);
1250 type
= EP_TYPE(BULK_OUT_EP
);
1251 } else if (usb_endpoint_xfer_isoc(&ep
->desc
)) {
1253 type
= EP_TYPE(ISOC_IN_EP
);
1255 type
= EP_TYPE(ISOC_OUT_EP
);
1256 } else if (usb_endpoint_xfer_int(&ep
->desc
)) {
1258 type
= EP_TYPE(INT_IN_EP
);
1260 type
= EP_TYPE(INT_OUT_EP
);
1267 /* Return the maximum endpoint service interval time (ESIT) payload.
1268 * Basically, this is the maxpacket size, multiplied by the burst size
1271 static u32
xhci_get_max_esit_payload(struct xhci_hcd
*xhci
,
1272 struct usb_device
*udev
,
1273 struct usb_host_endpoint
*ep
)
1278 /* Only applies for interrupt or isochronous endpoints */
1279 if (usb_endpoint_xfer_control(&ep
->desc
) ||
1280 usb_endpoint_xfer_bulk(&ep
->desc
))
1283 if (udev
->speed
== USB_SPEED_SUPER
)
1284 return le16_to_cpu(ep
->ss_ep_comp
.wBytesPerInterval
);
1286 max_packet
= GET_MAX_PACKET(usb_endpoint_maxp(&ep
->desc
));
1287 max_burst
= (usb_endpoint_maxp(&ep
->desc
) & 0x1800) >> 11;
1288 /* A 0 in max burst means 1 transfer per ESIT */
1289 return max_packet
* (max_burst
+ 1);
1292 /* Set up an endpoint with one ring segment. Do not allocate stream rings.
1293 * Drivers will have to call usb_alloc_streams() to do that.
1295 int xhci_endpoint_init(struct xhci_hcd
*xhci
,
1296 struct xhci_virt_device
*virt_dev
,
1297 struct usb_device
*udev
,
1298 struct usb_host_endpoint
*ep
,
1301 unsigned int ep_index
;
1302 struct xhci_ep_ctx
*ep_ctx
;
1303 struct xhci_ring
*ep_ring
;
1304 unsigned int max_packet
;
1305 unsigned int max_burst
;
1306 u32 max_esit_payload
;
1308 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1309 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1311 /* Set up the endpoint ring */
1313 * Isochronous endpoint ring needs bigger size because one isoc URB
1314 * carries multiple packets and it will insert multiple tds to the
1316 * This should be replaced with dynamic ring resizing in the future.
1318 if (usb_endpoint_xfer_isoc(&ep
->desc
))
1319 virt_dev
->eps
[ep_index
].new_ring
=
1320 xhci_ring_alloc(xhci
, 8, true, true, mem_flags
);
1322 virt_dev
->eps
[ep_index
].new_ring
=
1323 xhci_ring_alloc(xhci
, 1, true, false, mem_flags
);
1324 if (!virt_dev
->eps
[ep_index
].new_ring
) {
1325 /* Attempt to use the ring cache */
1326 if (virt_dev
->num_rings_cached
== 0)
1328 virt_dev
->eps
[ep_index
].new_ring
=
1329 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
];
1330 virt_dev
->ring_cache
[virt_dev
->num_rings_cached
] = NULL
;
1331 virt_dev
->num_rings_cached
--;
1332 xhci_reinit_cached_ring(xhci
, virt_dev
->eps
[ep_index
].new_ring
,
1333 usb_endpoint_xfer_isoc(&ep
->desc
) ? true : false);
1335 virt_dev
->eps
[ep_index
].skip
= false;
1336 ep_ring
= virt_dev
->eps
[ep_index
].new_ring
;
1337 ep_ctx
->deq
= cpu_to_le64(ep_ring
->first_seg
->dma
| ep_ring
->cycle_state
);
1339 ep_ctx
->ep_info
= cpu_to_le32(xhci_get_endpoint_interval(udev
, ep
)
1340 | EP_MULT(xhci_get_endpoint_mult(udev
, ep
)));
1342 /* FIXME dig Mult and streams info out of ep companion desc */
1344 /* Allow 3 retries for everything but isoc;
1345 * CErr shall be set to 0 for Isoch endpoints.
1347 if (!usb_endpoint_xfer_isoc(&ep
->desc
))
1348 ep_ctx
->ep_info2
= cpu_to_le32(ERROR_COUNT(3));
1350 ep_ctx
->ep_info2
= cpu_to_le32(ERROR_COUNT(0));
1352 ep_ctx
->ep_info2
|= cpu_to_le32(xhci_get_endpoint_type(udev
, ep
));
1354 /* Set the max packet size and max burst */
1355 switch (udev
->speed
) {
1356 case USB_SPEED_SUPER
:
1357 max_packet
= usb_endpoint_maxp(&ep
->desc
);
1358 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet
));
1359 /* dig out max burst from ep companion desc */
1360 max_packet
= ep
->ss_ep_comp
.bMaxBurst
;
1361 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(max_packet
));
1363 case USB_SPEED_HIGH
:
1364 /* bits 11:12 specify the number of additional transaction
1365 * opportunities per microframe (USB 2.0, section 9.6.6)
1367 if (usb_endpoint_xfer_isoc(&ep
->desc
) ||
1368 usb_endpoint_xfer_int(&ep
->desc
)) {
1369 max_burst
= (usb_endpoint_maxp(&ep
->desc
)
1371 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_BURST(max_burst
));
1374 case USB_SPEED_FULL
:
1376 max_packet
= GET_MAX_PACKET(usb_endpoint_maxp(&ep
->desc
));
1377 ep_ctx
->ep_info2
|= cpu_to_le32(MAX_PACKET(max_packet
));
1382 max_esit_payload
= xhci_get_max_esit_payload(xhci
, udev
, ep
);
1383 ep_ctx
->tx_info
= cpu_to_le32(MAX_ESIT_PAYLOAD_FOR_EP(max_esit_payload
));
1386 * XXX no idea how to calculate the average TRB buffer length for bulk
1387 * endpoints, as the driver gives us no clue how big each scatter gather
1388 * list entry (or buffer) is going to be.
1390 * For isochronous and interrupt endpoints, we set it to the max
1391 * available, until we have new API in the USB core to allow drivers to
1392 * declare how much bandwidth they actually need.
1394 * Normally, it would be calculated by taking the total of the buffer
1395 * lengths in the TD and then dividing by the number of TRBs in a TD,
1396 * including link TRBs, No-op TRBs, and Event data TRBs. Since we don't
1397 * use Event Data TRBs, and we don't chain in a link TRB on short
1398 * transfers, we're basically dividing by 1.
1400 * xHCI 1.0 specification indicates that the Average TRB Length should
1401 * be set to 8 for control endpoints.
1403 if (usb_endpoint_xfer_control(&ep
->desc
) && xhci
->hci_version
== 0x100)
1404 ep_ctx
->tx_info
|= cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(8));
1407 cpu_to_le32(AVG_TRB_LENGTH_FOR_EP(max_esit_payload
));
1409 /* FIXME Debug endpoint context */
1413 void xhci_endpoint_zero(struct xhci_hcd
*xhci
,
1414 struct xhci_virt_device
*virt_dev
,
1415 struct usb_host_endpoint
*ep
)
1417 unsigned int ep_index
;
1418 struct xhci_ep_ctx
*ep_ctx
;
1420 ep_index
= xhci_get_endpoint_index(&ep
->desc
);
1421 ep_ctx
= xhci_get_ep_ctx(xhci
, virt_dev
->in_ctx
, ep_index
);
1423 ep_ctx
->ep_info
= 0;
1424 ep_ctx
->ep_info2
= 0;
1426 ep_ctx
->tx_info
= 0;
1427 /* Don't free the endpoint ring until the set interface or configuration
1432 void xhci_clear_endpoint_bw_info(struct xhci_bw_info
*bw_info
)
1434 bw_info
->ep_interval
= 0;
1436 bw_info
->num_packets
= 0;
1437 bw_info
->max_packet_size
= 0;
1439 bw_info
->max_esit_payload
= 0;
1442 void xhci_update_bw_info(struct xhci_hcd
*xhci
,
1443 struct xhci_container_ctx
*in_ctx
,
1444 struct xhci_input_control_ctx
*ctrl_ctx
,
1445 struct xhci_virt_device
*virt_dev
)
1447 struct xhci_bw_info
*bw_info
;
1448 struct xhci_ep_ctx
*ep_ctx
;
1449 unsigned int ep_type
;
1452 for (i
= 1; i
< 31; ++i
) {
1453 bw_info
= &virt_dev
->eps
[i
].bw_info
;
1455 /* We can't tell what endpoint type is being dropped, but
1456 * unconditionally clearing the bandwidth info for non-periodic
1457 * endpoints should be harmless because the info will never be
1458 * set in the first place.
1460 if (!EP_IS_ADDED(ctrl_ctx
, i
) && EP_IS_DROPPED(ctrl_ctx
, i
)) {
1461 /* Dropped endpoint */
1462 xhci_clear_endpoint_bw_info(bw_info
);
1466 if (EP_IS_ADDED(ctrl_ctx
, i
)) {
1467 ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, i
);
1468 ep_type
= CTX_TO_EP_TYPE(le32_to_cpu(ep_ctx
->ep_info2
));
1470 /* Ignore non-periodic endpoints */
1471 if (ep_type
!= ISOC_OUT_EP
&& ep_type
!= INT_OUT_EP
&&
1472 ep_type
!= ISOC_IN_EP
&&
1473 ep_type
!= INT_IN_EP
)
1476 /* Added or changed endpoint */
1477 bw_info
->ep_interval
= CTX_TO_EP_INTERVAL(
1478 le32_to_cpu(ep_ctx
->ep_info
));
1479 /* Number of packets and mult are zero-based in the
1480 * input context, but we want one-based for the
1483 bw_info
->mult
= CTX_TO_EP_MULT(
1484 le32_to_cpu(ep_ctx
->ep_info
)) + 1;
1485 bw_info
->num_packets
= CTX_TO_MAX_BURST(
1486 le32_to_cpu(ep_ctx
->ep_info2
)) + 1;
1487 bw_info
->max_packet_size
= MAX_PACKET_DECODED(
1488 le32_to_cpu(ep_ctx
->ep_info2
));
1489 bw_info
->type
= ep_type
;
1490 bw_info
->max_esit_payload
= CTX_TO_MAX_ESIT_PAYLOAD(
1491 le32_to_cpu(ep_ctx
->tx_info
));
1496 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
1497 * Useful when you want to change one particular aspect of the endpoint and then
1498 * issue a configure endpoint command.
1500 void xhci_endpoint_copy(struct xhci_hcd
*xhci
,
1501 struct xhci_container_ctx
*in_ctx
,
1502 struct xhci_container_ctx
*out_ctx
,
1503 unsigned int ep_index
)
1505 struct xhci_ep_ctx
*out_ep_ctx
;
1506 struct xhci_ep_ctx
*in_ep_ctx
;
1508 out_ep_ctx
= xhci_get_ep_ctx(xhci
, out_ctx
, ep_index
);
1509 in_ep_ctx
= xhci_get_ep_ctx(xhci
, in_ctx
, ep_index
);
1511 in_ep_ctx
->ep_info
= out_ep_ctx
->ep_info
;
1512 in_ep_ctx
->ep_info2
= out_ep_ctx
->ep_info2
;
1513 in_ep_ctx
->deq
= out_ep_ctx
->deq
;
1514 in_ep_ctx
->tx_info
= out_ep_ctx
->tx_info
;
1517 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
1518 * Useful when you want to change one particular aspect of the endpoint and then
1519 * issue a configure endpoint command. Only the context entries field matters,
1520 * but we'll copy the whole thing anyway.
1522 void xhci_slot_copy(struct xhci_hcd
*xhci
,
1523 struct xhci_container_ctx
*in_ctx
,
1524 struct xhci_container_ctx
*out_ctx
)
1526 struct xhci_slot_ctx
*in_slot_ctx
;
1527 struct xhci_slot_ctx
*out_slot_ctx
;
1529 in_slot_ctx
= xhci_get_slot_ctx(xhci
, in_ctx
);
1530 out_slot_ctx
= xhci_get_slot_ctx(xhci
, out_ctx
);
1532 in_slot_ctx
->dev_info
= out_slot_ctx
->dev_info
;
1533 in_slot_ctx
->dev_info2
= out_slot_ctx
->dev_info2
;
1534 in_slot_ctx
->tt_info
= out_slot_ctx
->tt_info
;
1535 in_slot_ctx
->dev_state
= out_slot_ctx
->dev_state
;
1538 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
1539 static int scratchpad_alloc(struct xhci_hcd
*xhci
, gfp_t flags
)
1542 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
1543 int num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1545 xhci_dbg(xhci
, "Allocating %d scratchpad buffers\n", num_sp
);
1550 xhci
->scratchpad
= kzalloc(sizeof(*xhci
->scratchpad
), flags
);
1551 if (!xhci
->scratchpad
)
1554 xhci
->scratchpad
->sp_array
= dma_alloc_coherent(dev
,
1555 num_sp
* sizeof(u64
),
1556 &xhci
->scratchpad
->sp_dma
, flags
);
1557 if (!xhci
->scratchpad
->sp_array
)
1560 xhci
->scratchpad
->sp_buffers
= kzalloc(sizeof(void *) * num_sp
, flags
);
1561 if (!xhci
->scratchpad
->sp_buffers
)
1564 xhci
->scratchpad
->sp_dma_buffers
=
1565 kzalloc(sizeof(dma_addr_t
) * num_sp
, flags
);
1567 if (!xhci
->scratchpad
->sp_dma_buffers
)
1570 xhci
->dcbaa
->dev_context_ptrs
[0] = cpu_to_le64(xhci
->scratchpad
->sp_dma
);
1571 for (i
= 0; i
< num_sp
; i
++) {
1573 void *buf
= dma_alloc_coherent(dev
, xhci
->page_size
, &dma
,
1578 xhci
->scratchpad
->sp_array
[i
] = dma
;
1579 xhci
->scratchpad
->sp_buffers
[i
] = buf
;
1580 xhci
->scratchpad
->sp_dma_buffers
[i
] = dma
;
1586 for (i
= i
- 1; i
>= 0; i
--) {
1587 dma_free_coherent(dev
, xhci
->page_size
,
1588 xhci
->scratchpad
->sp_buffers
[i
],
1589 xhci
->scratchpad
->sp_dma_buffers
[i
]);
1591 kfree(xhci
->scratchpad
->sp_dma_buffers
);
1594 kfree(xhci
->scratchpad
->sp_buffers
);
1597 dma_free_coherent(dev
, num_sp
* sizeof(u64
),
1598 xhci
->scratchpad
->sp_array
,
1599 xhci
->scratchpad
->sp_dma
);
1602 kfree(xhci
->scratchpad
);
1603 xhci
->scratchpad
= NULL
;
1609 static void scratchpad_free(struct xhci_hcd
*xhci
)
1613 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
1615 if (!xhci
->scratchpad
)
1618 num_sp
= HCS_MAX_SCRATCHPAD(xhci
->hcs_params2
);
1620 for (i
= 0; i
< num_sp
; i
++) {
1621 dma_free_coherent(&pdev
->dev
, xhci
->page_size
,
1622 xhci
->scratchpad
->sp_buffers
[i
],
1623 xhci
->scratchpad
->sp_dma_buffers
[i
]);
1625 kfree(xhci
->scratchpad
->sp_dma_buffers
);
1626 kfree(xhci
->scratchpad
->sp_buffers
);
1627 dma_free_coherent(&pdev
->dev
, num_sp
* sizeof(u64
),
1628 xhci
->scratchpad
->sp_array
,
1629 xhci
->scratchpad
->sp_dma
);
1630 kfree(xhci
->scratchpad
);
1631 xhci
->scratchpad
= NULL
;
1634 struct xhci_command
*xhci_alloc_command(struct xhci_hcd
*xhci
,
1635 bool allocate_in_ctx
, bool allocate_completion
,
1638 struct xhci_command
*command
;
1640 command
= kzalloc(sizeof(*command
), mem_flags
);
1644 if (allocate_in_ctx
) {
1646 xhci_alloc_container_ctx(xhci
, XHCI_CTX_TYPE_INPUT
,
1648 if (!command
->in_ctx
) {
1654 if (allocate_completion
) {
1655 command
->completion
=
1656 kzalloc(sizeof(struct completion
), mem_flags
);
1657 if (!command
->completion
) {
1658 xhci_free_container_ctx(xhci
, command
->in_ctx
);
1662 init_completion(command
->completion
);
1665 command
->status
= 0;
1666 INIT_LIST_HEAD(&command
->cmd_list
);
1670 void xhci_urb_free_priv(struct xhci_hcd
*xhci
, struct urb_priv
*urb_priv
)
1673 kfree(urb_priv
->td
[0]);
1678 void xhci_free_command(struct xhci_hcd
*xhci
,
1679 struct xhci_command
*command
)
1681 xhci_free_container_ctx(xhci
,
1683 kfree(command
->completion
);
1687 void xhci_mem_cleanup(struct xhci_hcd
*xhci
)
1689 struct pci_dev
*pdev
= to_pci_dev(xhci_to_hcd(xhci
)->self
.controller
);
1690 struct dev_info
*dev_info
, *next
;
1691 unsigned long flags
;
1695 /* Free the Event Ring Segment Table and the actual Event Ring */
1697 xhci_writel(xhci
, 0, &xhci
->ir_set
->erst_size
);
1698 xhci_write_64(xhci
, 0, &xhci
->ir_set
->erst_base
);
1699 xhci_write_64(xhci
, 0, &xhci
->ir_set
->erst_dequeue
);
1701 size
= sizeof(struct xhci_erst_entry
)*(xhci
->erst
.num_entries
);
1702 if (xhci
->erst
.entries
)
1703 dma_free_coherent(&pdev
->dev
, size
,
1704 xhci
->erst
.entries
, xhci
->erst
.erst_dma_addr
);
1705 xhci
->erst
.entries
= NULL
;
1706 xhci_dbg(xhci
, "Freed ERST\n");
1707 if (xhci
->event_ring
)
1708 xhci_ring_free(xhci
, xhci
->event_ring
);
1709 xhci
->event_ring
= NULL
;
1710 xhci_dbg(xhci
, "Freed event ring\n");
1712 xhci_write_64(xhci
, 0, &xhci
->op_regs
->cmd_ring
);
1714 xhci_ring_free(xhci
, xhci
->cmd_ring
);
1715 xhci
->cmd_ring
= NULL
;
1716 xhci_dbg(xhci
, "Freed command ring\n");
1718 for (i
= 1; i
< MAX_HC_SLOTS
; ++i
)
1719 xhci_free_virt_device(xhci
, i
);
1721 if (xhci
->segment_pool
)
1722 dma_pool_destroy(xhci
->segment_pool
);
1723 xhci
->segment_pool
= NULL
;
1724 xhci_dbg(xhci
, "Freed segment pool\n");
1726 if (xhci
->device_pool
)
1727 dma_pool_destroy(xhci
->device_pool
);
1728 xhci
->device_pool
= NULL
;
1729 xhci_dbg(xhci
, "Freed device context pool\n");
1731 if (xhci
->small_streams_pool
)
1732 dma_pool_destroy(xhci
->small_streams_pool
);
1733 xhci
->small_streams_pool
= NULL
;
1734 xhci_dbg(xhci
, "Freed small stream array pool\n");
1736 if (xhci
->medium_streams_pool
)
1737 dma_pool_destroy(xhci
->medium_streams_pool
);
1738 xhci
->medium_streams_pool
= NULL
;
1739 xhci_dbg(xhci
, "Freed medium stream array pool\n");
1741 xhci_write_64(xhci
, 0, &xhci
->op_regs
->dcbaa_ptr
);
1743 dma_free_coherent(&pdev
->dev
, sizeof(*xhci
->dcbaa
),
1744 xhci
->dcbaa
, xhci
->dcbaa
->dma
);
1747 scratchpad_free(xhci
);
1749 spin_lock_irqsave(&xhci
->lock
, flags
);
1750 list_for_each_entry_safe(dev_info
, next
, &xhci
->lpm_failed_devs
, list
) {
1751 list_del(&dev_info
->list
);
1754 spin_unlock_irqrestore(&xhci
->lock
, flags
);
1756 xhci
->num_usb2_ports
= 0;
1757 xhci
->num_usb3_ports
= 0;
1758 kfree(xhci
->usb2_ports
);
1759 kfree(xhci
->usb3_ports
);
1760 kfree(xhci
->port_array
);
1763 xhci
->page_size
= 0;
1764 xhci
->page_shift
= 0;
1765 xhci
->bus_state
[0].bus_suspended
= 0;
1766 xhci
->bus_state
[1].bus_suspended
= 0;
1769 static int xhci_test_trb_in_td(struct xhci_hcd
*xhci
,
1770 struct xhci_segment
*input_seg
,
1771 union xhci_trb
*start_trb
,
1772 union xhci_trb
*end_trb
,
1773 dma_addr_t input_dma
,
1774 struct xhci_segment
*result_seg
,
1775 char *test_name
, int test_number
)
1777 unsigned long long start_dma
;
1778 unsigned long long end_dma
;
1779 struct xhci_segment
*seg
;
1781 start_dma
= xhci_trb_virt_to_dma(input_seg
, start_trb
);
1782 end_dma
= xhci_trb_virt_to_dma(input_seg
, end_trb
);
1784 seg
= trb_in_td(input_seg
, start_trb
, end_trb
, input_dma
);
1785 if (seg
!= result_seg
) {
1786 xhci_warn(xhci
, "WARN: %s TRB math test %d failed!\n",
1787 test_name
, test_number
);
1788 xhci_warn(xhci
, "Tested TRB math w/ seg %p and "
1789 "input DMA 0x%llx\n",
1791 (unsigned long long) input_dma
);
1792 xhci_warn(xhci
, "starting TRB %p (0x%llx DMA), "
1793 "ending TRB %p (0x%llx DMA)\n",
1794 start_trb
, start_dma
,
1796 xhci_warn(xhci
, "Expected seg %p, got seg %p\n",
1803 /* TRB math checks for xhci_trb_in_td(), using the command and event rings. */
1804 static int xhci_check_trb_in_td_math(struct xhci_hcd
*xhci
, gfp_t mem_flags
)
1807 dma_addr_t input_dma
;
1808 struct xhci_segment
*result_seg
;
1809 } simple_test_vector
[] = {
1810 /* A zeroed DMA field should fail */
1812 /* One TRB before the ring start should fail */
1813 { xhci
->event_ring
->first_seg
->dma
- 16, NULL
},
1814 /* One byte before the ring start should fail */
1815 { xhci
->event_ring
->first_seg
->dma
- 1, NULL
},
1816 /* Starting TRB should succeed */
1817 { xhci
->event_ring
->first_seg
->dma
, xhci
->event_ring
->first_seg
},
1818 /* Ending TRB should succeed */
1819 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16,
1820 xhci
->event_ring
->first_seg
},
1821 /* One byte after the ring end should fail */
1822 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 1)*16 + 1, NULL
},
1823 /* One TRB after the ring end should fail */
1824 { xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
)*16, NULL
},
1825 /* An address of all ones should fail */
1826 { (dma_addr_t
) (~0), NULL
},
1829 struct xhci_segment
*input_seg
;
1830 union xhci_trb
*start_trb
;
1831 union xhci_trb
*end_trb
;
1832 dma_addr_t input_dma
;
1833 struct xhci_segment
*result_seg
;
1834 } complex_test_vector
[] = {
1835 /* Test feeding a valid DMA address from a different ring */
1836 { .input_seg
= xhci
->event_ring
->first_seg
,
1837 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1838 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1839 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1842 /* Test feeding a valid end TRB from a different ring */
1843 { .input_seg
= xhci
->event_ring
->first_seg
,
1844 .start_trb
= xhci
->event_ring
->first_seg
->trbs
,
1845 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1846 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1849 /* Test feeding a valid start and end TRB from a different ring */
1850 { .input_seg
= xhci
->event_ring
->first_seg
,
1851 .start_trb
= xhci
->cmd_ring
->first_seg
->trbs
,
1852 .end_trb
= &xhci
->cmd_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1853 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
,
1856 /* TRB in this ring, but after this TD */
1857 { .input_seg
= xhci
->event_ring
->first_seg
,
1858 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[0],
1859 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1860 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 4*16,
1863 /* TRB in this ring, but before this TD */
1864 { .input_seg
= xhci
->event_ring
->first_seg
,
1865 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[3],
1866 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[6],
1867 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1870 /* TRB in this ring, but after this wrapped TD */
1871 { .input_seg
= xhci
->event_ring
->first_seg
,
1872 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1873 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1874 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ 2*16,
1877 /* TRB in this ring, but before this wrapped TD */
1878 { .input_seg
= xhci
->event_ring
->first_seg
,
1879 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1880 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1881 .input_dma
= xhci
->event_ring
->first_seg
->dma
+ (TRBS_PER_SEGMENT
- 4)*16,
1884 /* TRB not in this ring, and we have a wrapped TD */
1885 { .input_seg
= xhci
->event_ring
->first_seg
,
1886 .start_trb
= &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 3],
1887 .end_trb
= &xhci
->event_ring
->first_seg
->trbs
[1],
1888 .input_dma
= xhci
->cmd_ring
->first_seg
->dma
+ 2*16,
1893 unsigned int num_tests
;
1896 num_tests
= ARRAY_SIZE(simple_test_vector
);
1897 for (i
= 0; i
< num_tests
; i
++) {
1898 ret
= xhci_test_trb_in_td(xhci
,
1899 xhci
->event_ring
->first_seg
,
1900 xhci
->event_ring
->first_seg
->trbs
,
1901 &xhci
->event_ring
->first_seg
->trbs
[TRBS_PER_SEGMENT
- 1],
1902 simple_test_vector
[i
].input_dma
,
1903 simple_test_vector
[i
].result_seg
,
1909 num_tests
= ARRAY_SIZE(complex_test_vector
);
1910 for (i
= 0; i
< num_tests
; i
++) {
1911 ret
= xhci_test_trb_in_td(xhci
,
1912 complex_test_vector
[i
].input_seg
,
1913 complex_test_vector
[i
].start_trb
,
1914 complex_test_vector
[i
].end_trb
,
1915 complex_test_vector
[i
].input_dma
,
1916 complex_test_vector
[i
].result_seg
,
1921 xhci_dbg(xhci
, "TRB math tests passed.\n");
1925 static void xhci_set_hc_event_deq(struct xhci_hcd
*xhci
)
1930 deq
= xhci_trb_virt_to_dma(xhci
->event_ring
->deq_seg
,
1931 xhci
->event_ring
->dequeue
);
1932 if (deq
== 0 && !in_interrupt())
1933 xhci_warn(xhci
, "WARN something wrong with SW event ring "
1935 /* Update HC event ring dequeue pointer */
1936 temp
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_dequeue
);
1937 temp
&= ERST_PTR_MASK
;
1938 /* Don't clear the EHB bit (which is RW1C) because
1939 * there might be more events to service.
1942 xhci_dbg(xhci
, "// Write event ring dequeue pointer, "
1943 "preserving EHB bit\n");
1944 xhci_write_64(xhci
, ((u64
) deq
& (u64
) ~ERST_PTR_MASK
) | temp
,
1945 &xhci
->ir_set
->erst_dequeue
);
1948 static void xhci_add_in_port(struct xhci_hcd
*xhci
, unsigned int num_ports
,
1949 __le32 __iomem
*addr
, u8 major_revision
)
1951 u32 temp
, port_offset
, port_count
;
1954 if (major_revision
> 0x03) {
1955 xhci_warn(xhci
, "Ignoring unknown port speed, "
1956 "Ext Cap %p, revision = 0x%x\n",
1957 addr
, major_revision
);
1958 /* Ignoring port protocol we can't understand. FIXME */
1962 /* Port offset and count in the third dword, see section 7.2 */
1963 temp
= xhci_readl(xhci
, addr
+ 2);
1964 port_offset
= XHCI_EXT_PORT_OFF(temp
);
1965 port_count
= XHCI_EXT_PORT_COUNT(temp
);
1966 xhci_dbg(xhci
, "Ext Cap %p, port offset = %u, "
1967 "count = %u, revision = 0x%x\n",
1968 addr
, port_offset
, port_count
, major_revision
);
1969 /* Port count includes the current port offset */
1970 if (port_offset
== 0 || (port_offset
+ port_count
- 1) > num_ports
)
1971 /* WTF? "Valid values are ‘1’ to MaxPorts" */
1974 /* Check the host's USB2 LPM capability */
1975 if ((xhci
->hci_version
== 0x96) && (major_revision
!= 0x03) &&
1976 (temp
& XHCI_L1C
)) {
1977 xhci_dbg(xhci
, "xHCI 0.96: support USB2 software lpm\n");
1978 xhci
->sw_lpm_support
= 1;
1981 if ((xhci
->hci_version
>= 0x100) && (major_revision
!= 0x03)) {
1982 xhci_dbg(xhci
, "xHCI 1.0: support USB2 software lpm\n");
1983 xhci
->sw_lpm_support
= 1;
1984 if (temp
& XHCI_HLC
) {
1985 xhci_dbg(xhci
, "xHCI 1.0: support USB2 hardware lpm\n");
1986 xhci
->hw_lpm_support
= 1;
1991 for (i
= port_offset
; i
< (port_offset
+ port_count
); i
++) {
1992 /* Duplicate entry. Ignore the port if the revisions differ. */
1993 if (xhci
->port_array
[i
] != 0) {
1994 xhci_warn(xhci
, "Duplicate port entry, Ext Cap %p,"
1995 " port %u\n", addr
, i
);
1996 xhci_warn(xhci
, "Port was marked as USB %u, "
1997 "duplicated as USB %u\n",
1998 xhci
->port_array
[i
], major_revision
);
1999 /* Only adjust the roothub port counts if we haven't
2000 * found a similar duplicate.
2002 if (xhci
->port_array
[i
] != major_revision
&&
2003 xhci
->port_array
[i
] != DUPLICATE_ENTRY
) {
2004 if (xhci
->port_array
[i
] == 0x03)
2005 xhci
->num_usb3_ports
--;
2007 xhci
->num_usb2_ports
--;
2008 xhci
->port_array
[i
] = DUPLICATE_ENTRY
;
2010 /* FIXME: Should we disable the port? */
2013 xhci
->port_array
[i
] = major_revision
;
2014 if (major_revision
== 0x03)
2015 xhci
->num_usb3_ports
++;
2017 xhci
->num_usb2_ports
++;
2019 /* FIXME: Should we disable ports not in the Extended Capabilities? */
2023 * Scan the Extended Capabilities for the "Supported Protocol Capabilities" that
2024 * specify what speeds each port is supposed to be. We can't count on the port
2025 * speed bits in the PORTSC register being correct until a device is connected,
2026 * but we need to set up the two fake roothubs with the correct number of USB
2027 * 3.0 and USB 2.0 ports at host controller initialization time.
2029 static int xhci_setup_port_arrays(struct xhci_hcd
*xhci
, gfp_t flags
)
2031 __le32 __iomem
*addr
;
2033 unsigned int num_ports
;
2034 int i
, j
, port_index
;
2036 addr
= &xhci
->cap_regs
->hcc_params
;
2037 offset
= XHCI_HCC_EXT_CAPS(xhci_readl(xhci
, addr
));
2039 xhci_err(xhci
, "No Extended Capability registers, "
2040 "unable to set up roothub.\n");
2044 num_ports
= HCS_MAX_PORTS(xhci
->hcs_params1
);
2045 xhci
->port_array
= kzalloc(sizeof(*xhci
->port_array
)*num_ports
, flags
);
2046 if (!xhci
->port_array
)
2049 xhci
->rh_bw
= kzalloc(sizeof(*xhci
->rh_bw
)*num_ports
, flags
);
2052 for (i
= 0; i
< num_ports
; i
++) {
2053 struct xhci_interval_bw_table
*bw_table
;
2055 INIT_LIST_HEAD(&xhci
->rh_bw
[i
].tts
);
2056 bw_table
= &xhci
->rh_bw
[i
].bw_table
;
2057 for (j
= 0; j
< XHCI_MAX_INTERVAL
; j
++)
2058 INIT_LIST_HEAD(&bw_table
->interval_bw
[j
].endpoints
);
2062 * For whatever reason, the first capability offset is from the
2063 * capability register base, not from the HCCPARAMS register.
2064 * See section 5.3.6 for offset calculation.
2066 addr
= &xhci
->cap_regs
->hc_capbase
+ offset
;
2070 cap_id
= xhci_readl(xhci
, addr
);
2071 if (XHCI_EXT_CAPS_ID(cap_id
) == XHCI_EXT_CAPS_PROTOCOL
)
2072 xhci_add_in_port(xhci
, num_ports
, addr
,
2073 (u8
) XHCI_EXT_PORT_MAJOR(cap_id
));
2074 offset
= XHCI_EXT_CAPS_NEXT(cap_id
);
2075 if (!offset
|| (xhci
->num_usb2_ports
+ xhci
->num_usb3_ports
)
2079 * Once you're into the Extended Capabilities, the offset is
2080 * always relative to the register holding the offset.
2085 if (xhci
->num_usb2_ports
== 0 && xhci
->num_usb3_ports
== 0) {
2086 xhci_warn(xhci
, "No ports on the roothubs?\n");
2089 xhci_dbg(xhci
, "Found %u USB 2.0 ports and %u USB 3.0 ports.\n",
2090 xhci
->num_usb2_ports
, xhci
->num_usb3_ports
);
2092 /* Place limits on the number of roothub ports so that the hub
2093 * descriptors aren't longer than the USB core will allocate.
2095 if (xhci
->num_usb3_ports
> 15) {
2096 xhci_dbg(xhci
, "Limiting USB 3.0 roothub ports to 15.\n");
2097 xhci
->num_usb3_ports
= 15;
2099 if (xhci
->num_usb2_ports
> USB_MAXCHILDREN
) {
2100 xhci_dbg(xhci
, "Limiting USB 2.0 roothub ports to %u.\n",
2102 xhci
->num_usb2_ports
= USB_MAXCHILDREN
;
2106 * Note we could have all USB 3.0 ports, or all USB 2.0 ports.
2107 * Not sure how the USB core will handle a hub with no ports...
2109 if (xhci
->num_usb2_ports
) {
2110 xhci
->usb2_ports
= kmalloc(sizeof(*xhci
->usb2_ports
)*
2111 xhci
->num_usb2_ports
, flags
);
2112 if (!xhci
->usb2_ports
)
2116 for (i
= 0; i
< num_ports
; i
++) {
2117 if (xhci
->port_array
[i
] == 0x03 ||
2118 xhci
->port_array
[i
] == 0 ||
2119 xhci
->port_array
[i
] == DUPLICATE_ENTRY
)
2122 xhci
->usb2_ports
[port_index
] =
2123 &xhci
->op_regs
->port_status_base
+
2125 xhci_dbg(xhci
, "USB 2.0 port at index %u, "
2127 xhci
->usb2_ports
[port_index
]);
2129 if (port_index
== xhci
->num_usb2_ports
)
2133 if (xhci
->num_usb3_ports
) {
2134 xhci
->usb3_ports
= kmalloc(sizeof(*xhci
->usb3_ports
)*
2135 xhci
->num_usb3_ports
, flags
);
2136 if (!xhci
->usb3_ports
)
2140 for (i
= 0; i
< num_ports
; i
++)
2141 if (xhci
->port_array
[i
] == 0x03) {
2142 xhci
->usb3_ports
[port_index
] =
2143 &xhci
->op_regs
->port_status_base
+
2145 xhci_dbg(xhci
, "USB 3.0 port at index %u, "
2147 xhci
->usb3_ports
[port_index
]);
2149 if (port_index
== xhci
->num_usb3_ports
)
2156 int xhci_mem_init(struct xhci_hcd
*xhci
, gfp_t flags
)
2159 struct device
*dev
= xhci_to_hcd(xhci
)->self
.controller
;
2160 unsigned int val
, val2
;
2162 struct xhci_segment
*seg
;
2166 page_size
= xhci_readl(xhci
, &xhci
->op_regs
->page_size
);
2167 xhci_dbg(xhci
, "Supported page size register = 0x%x\n", page_size
);
2168 for (i
= 0; i
< 16; i
++) {
2169 if ((0x1 & page_size
) != 0)
2171 page_size
= page_size
>> 1;
2174 xhci_dbg(xhci
, "Supported page size of %iK\n", (1 << (i
+12)) / 1024);
2176 xhci_warn(xhci
, "WARN: no supported page size\n");
2177 /* Use 4K pages, since that's common and the minimum the HC supports */
2178 xhci
->page_shift
= 12;
2179 xhci
->page_size
= 1 << xhci
->page_shift
;
2180 xhci_dbg(xhci
, "HCD page size set to %iK\n", xhci
->page_size
/ 1024);
2183 * Program the Number of Device Slots Enabled field in the CONFIG
2184 * register with the max value of slots the HC can handle.
2186 val
= HCS_MAX_SLOTS(xhci_readl(xhci
, &xhci
->cap_regs
->hcs_params1
));
2187 xhci_dbg(xhci
, "// xHC can handle at most %d device slots.\n",
2188 (unsigned int) val
);
2189 val2
= xhci_readl(xhci
, &xhci
->op_regs
->config_reg
);
2190 val
|= (val2
& ~HCS_SLOTS_MASK
);
2191 xhci_dbg(xhci
, "// Setting Max device slots reg = 0x%x.\n",
2192 (unsigned int) val
);
2193 xhci_writel(xhci
, val
, &xhci
->op_regs
->config_reg
);
2196 * Section 5.4.8 - doorbell array must be
2197 * "physically contiguous and 64-byte (cache line) aligned".
2199 xhci
->dcbaa
= dma_alloc_coherent(dev
, sizeof(*xhci
->dcbaa
), &dma
,
2203 memset(xhci
->dcbaa
, 0, sizeof *(xhci
->dcbaa
));
2204 xhci
->dcbaa
->dma
= dma
;
2205 xhci_dbg(xhci
, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
2206 (unsigned long long)xhci
->dcbaa
->dma
, xhci
->dcbaa
);
2207 xhci_write_64(xhci
, dma
, &xhci
->op_regs
->dcbaa_ptr
);
2210 * Initialize the ring segment pool. The ring must be a contiguous
2211 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
2212 * however, the command ring segment needs 64-byte aligned segments,
2213 * so we pick the greater alignment need.
2215 xhci
->segment_pool
= dma_pool_create("xHCI ring segments", dev
,
2216 SEGMENT_SIZE
, 64, xhci
->page_size
);
2218 /* See Table 46 and Note on Figure 55 */
2219 xhci
->device_pool
= dma_pool_create("xHCI input/output contexts", dev
,
2220 2112, 64, xhci
->page_size
);
2221 if (!xhci
->segment_pool
|| !xhci
->device_pool
)
2224 /* Linear stream context arrays don't have any boundary restrictions,
2225 * and only need to be 16-byte aligned.
2227 xhci
->small_streams_pool
=
2228 dma_pool_create("xHCI 256 byte stream ctx arrays",
2229 dev
, SMALL_STREAM_ARRAY_SIZE
, 16, 0);
2230 xhci
->medium_streams_pool
=
2231 dma_pool_create("xHCI 1KB stream ctx arrays",
2232 dev
, MEDIUM_STREAM_ARRAY_SIZE
, 16, 0);
2233 /* Any stream context array bigger than MEDIUM_STREAM_ARRAY_SIZE
2234 * will be allocated with dma_alloc_coherent()
2237 if (!xhci
->small_streams_pool
|| !xhci
->medium_streams_pool
)
2240 /* Set up the command ring to have one segments for now. */
2241 xhci
->cmd_ring
= xhci_ring_alloc(xhci
, 1, true, false, flags
);
2242 if (!xhci
->cmd_ring
)
2244 xhci_dbg(xhci
, "Allocated command ring at %p\n", xhci
->cmd_ring
);
2245 xhci_dbg(xhci
, "First segment DMA is 0x%llx\n",
2246 (unsigned long long)xhci
->cmd_ring
->first_seg
->dma
);
2248 /* Set the address in the Command Ring Control register */
2249 val_64
= xhci_read_64(xhci
, &xhci
->op_regs
->cmd_ring
);
2250 val_64
= (val_64
& (u64
) CMD_RING_RSVD_BITS
) |
2251 (xhci
->cmd_ring
->first_seg
->dma
& (u64
) ~CMD_RING_RSVD_BITS
) |
2252 xhci
->cmd_ring
->cycle_state
;
2253 xhci_dbg(xhci
, "// Setting command ring address to 0x%x\n", val
);
2254 xhci_write_64(xhci
, val_64
, &xhci
->op_regs
->cmd_ring
);
2255 xhci_dbg_cmd_ptrs(xhci
);
2257 val
= xhci_readl(xhci
, &xhci
->cap_regs
->db_off
);
2259 xhci_dbg(xhci
, "// Doorbell array is located at offset 0x%x"
2260 " from cap regs base addr\n", val
);
2261 xhci
->dba
= (void __iomem
*) xhci
->cap_regs
+ val
;
2262 xhci_dbg_regs(xhci
);
2263 xhci_print_run_regs(xhci
);
2264 /* Set ir_set to interrupt register set 0 */
2265 xhci
->ir_set
= &xhci
->run_regs
->ir_set
[0];
2268 * Event ring setup: Allocate a normal ring, but also setup
2269 * the event ring segment table (ERST). Section 4.9.3.
2271 xhci_dbg(xhci
, "// Allocating event ring\n");
2272 xhci
->event_ring
= xhci_ring_alloc(xhci
, ERST_NUM_SEGS
, false, false,
2274 if (!xhci
->event_ring
)
2276 if (xhci_check_trb_in_td_math(xhci
, flags
) < 0)
2279 xhci
->erst
.entries
= dma_alloc_coherent(dev
,
2280 sizeof(struct xhci_erst_entry
) * ERST_NUM_SEGS
, &dma
,
2282 if (!xhci
->erst
.entries
)
2284 xhci_dbg(xhci
, "// Allocated event ring segment table at 0x%llx\n",
2285 (unsigned long long)dma
);
2287 memset(xhci
->erst
.entries
, 0, sizeof(struct xhci_erst_entry
)*ERST_NUM_SEGS
);
2288 xhci
->erst
.num_entries
= ERST_NUM_SEGS
;
2289 xhci
->erst
.erst_dma_addr
= dma
;
2290 xhci_dbg(xhci
, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
2291 xhci
->erst
.num_entries
,
2293 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2295 /* set ring base address and size for each segment table entry */
2296 for (val
= 0, seg
= xhci
->event_ring
->first_seg
; val
< ERST_NUM_SEGS
; val
++) {
2297 struct xhci_erst_entry
*entry
= &xhci
->erst
.entries
[val
];
2298 entry
->seg_addr
= cpu_to_le64(seg
->dma
);
2299 entry
->seg_size
= cpu_to_le32(TRBS_PER_SEGMENT
);
2304 /* set ERST count with the number of entries in the segment table */
2305 val
= xhci_readl(xhci
, &xhci
->ir_set
->erst_size
);
2306 val
&= ERST_SIZE_MASK
;
2307 val
|= ERST_NUM_SEGS
;
2308 xhci_dbg(xhci
, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
2310 xhci_writel(xhci
, val
, &xhci
->ir_set
->erst_size
);
2312 xhci_dbg(xhci
, "// Set ERST entries to point to event ring.\n");
2313 /* set the segment table base address */
2314 xhci_dbg(xhci
, "// Set ERST base address for ir_set 0 = 0x%llx\n",
2315 (unsigned long long)xhci
->erst
.erst_dma_addr
);
2316 val_64
= xhci_read_64(xhci
, &xhci
->ir_set
->erst_base
);
2317 val_64
&= ERST_PTR_MASK
;
2318 val_64
|= (xhci
->erst
.erst_dma_addr
& (u64
) ~ERST_PTR_MASK
);
2319 xhci_write_64(xhci
, val_64
, &xhci
->ir_set
->erst_base
);
2321 /* Set the event ring dequeue address */
2322 xhci_set_hc_event_deq(xhci
);
2323 xhci_dbg(xhci
, "Wrote ERST address to ir_set 0.\n");
2324 xhci_print_ir_set(xhci
, 0);
2327 * XXX: Might need to set the Interrupter Moderation Register to
2328 * something other than the default (~1ms minimum between interrupts).
2329 * See section 5.5.1.2.
2331 init_completion(&xhci
->addr_dev
);
2332 for (i
= 0; i
< MAX_HC_SLOTS
; ++i
)
2333 xhci
->devs
[i
] = NULL
;
2334 for (i
= 0; i
< USB_MAXCHILDREN
; ++i
) {
2335 xhci
->bus_state
[0].resume_done
[i
] = 0;
2336 xhci
->bus_state
[1].resume_done
[i
] = 0;
2339 if (scratchpad_alloc(xhci
, flags
))
2341 if (xhci_setup_port_arrays(xhci
, flags
))
2344 INIT_LIST_HEAD(&xhci
->lpm_failed_devs
);
2349 xhci_warn(xhci
, "Couldn't initialize memory\n");
2350 xhci_mem_cleanup(xhci
);