USB: serial: option: add support for Telit ME910 PID 0x1101
[linux/fpc-iii.git] / drivers / usb / core / message.c
blob77001bcfc504e69d5d7371117991eeb7494cef4c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * message.c - synchronous message handling
5 * Released under the GPLv2 only.
6 */
8 #include <linux/pci.h> /* for scatterlist macros */
9 #include <linux/usb.h>
10 #include <linux/module.h>
11 #include <linux/slab.h>
12 #include <linux/mm.h>
13 #include <linux/timer.h>
14 #include <linux/ctype.h>
15 #include <linux/nls.h>
16 #include <linux/device.h>
17 #include <linux/scatterlist.h>
18 #include <linux/usb/cdc.h>
19 #include <linux/usb/quirks.h>
20 #include <linux/usb/hcd.h> /* for usbcore internals */
21 #include <asm/byteorder.h>
23 #include "usb.h"
25 static void cancel_async_set_config(struct usb_device *udev);
27 struct api_context {
28 struct completion done;
29 int status;
32 static void usb_api_blocking_completion(struct urb *urb)
34 struct api_context *ctx = urb->context;
36 ctx->status = urb->status;
37 complete(&ctx->done);
42 * Starts urb and waits for completion or timeout. Note that this call
43 * is NOT interruptible. Many device driver i/o requests should be
44 * interruptible and therefore these drivers should implement their
45 * own interruptible routines.
47 static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
49 struct api_context ctx;
50 unsigned long expire;
51 int retval;
53 init_completion(&ctx.done);
54 urb->context = &ctx;
55 urb->actual_length = 0;
56 retval = usb_submit_urb(urb, GFP_NOIO);
57 if (unlikely(retval))
58 goto out;
60 expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
61 if (!wait_for_completion_timeout(&ctx.done, expire)) {
62 usb_kill_urb(urb);
63 retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
65 dev_dbg(&urb->dev->dev,
66 "%s timed out on ep%d%s len=%u/%u\n",
67 current->comm,
68 usb_endpoint_num(&urb->ep->desc),
69 usb_urb_dir_in(urb) ? "in" : "out",
70 urb->actual_length,
71 urb->transfer_buffer_length);
72 } else
73 retval = ctx.status;
74 out:
75 if (actual_length)
76 *actual_length = urb->actual_length;
78 usb_free_urb(urb);
79 return retval;
82 /*-------------------------------------------------------------------*/
83 /* returns status (negative) or length (positive) */
84 static int usb_internal_control_msg(struct usb_device *usb_dev,
85 unsigned int pipe,
86 struct usb_ctrlrequest *cmd,
87 void *data, int len, int timeout)
89 struct urb *urb;
90 int retv;
91 int length;
93 urb = usb_alloc_urb(0, GFP_NOIO);
94 if (!urb)
95 return -ENOMEM;
97 usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
98 len, usb_api_blocking_completion, NULL);
100 retv = usb_start_wait_urb(urb, timeout, &length);
101 if (retv < 0)
102 return retv;
103 else
104 return length;
108 * usb_control_msg - Builds a control urb, sends it off and waits for completion
109 * @dev: pointer to the usb device to send the message to
110 * @pipe: endpoint "pipe" to send the message to
111 * @request: USB message request value
112 * @requesttype: USB message request type value
113 * @value: USB message value
114 * @index: USB message index value
115 * @data: pointer to the data to send
116 * @size: length in bytes of the data to send
117 * @timeout: time in msecs to wait for the message to complete before timing
118 * out (if 0 the wait is forever)
120 * Context: !in_interrupt ()
122 * This function sends a simple control message to a specified endpoint and
123 * waits for the message to complete, or timeout.
125 * Don't use this function from within an interrupt context. If you need
126 * an asynchronous message, or need to send a message from within interrupt
127 * context, use usb_submit_urb(). If a thread in your driver uses this call,
128 * make sure your disconnect() method can wait for it to complete. Since you
129 * don't have a handle on the URB used, you can't cancel the request.
131 * Return: If successful, the number of bytes transferred. Otherwise, a negative
132 * error number.
134 int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
135 __u8 requesttype, __u16 value, __u16 index, void *data,
136 __u16 size, int timeout)
138 struct usb_ctrlrequest *dr;
139 int ret;
141 dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
142 if (!dr)
143 return -ENOMEM;
145 dr->bRequestType = requesttype;
146 dr->bRequest = request;
147 dr->wValue = cpu_to_le16(value);
148 dr->wIndex = cpu_to_le16(index);
149 dr->wLength = cpu_to_le16(size);
151 ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
153 kfree(dr);
155 return ret;
157 EXPORT_SYMBOL_GPL(usb_control_msg);
160 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
161 * @usb_dev: pointer to the usb device to send the message to
162 * @pipe: endpoint "pipe" to send the message to
163 * @data: pointer to the data to send
164 * @len: length in bytes of the data to send
165 * @actual_length: pointer to a location to put the actual length transferred
166 * in bytes
167 * @timeout: time in msecs to wait for the message to complete before
168 * timing out (if 0 the wait is forever)
170 * Context: !in_interrupt ()
172 * This function sends a simple interrupt message to a specified endpoint and
173 * waits for the message to complete, or timeout.
175 * Don't use this function from within an interrupt context. If you need
176 * an asynchronous message, or need to send a message from within interrupt
177 * context, use usb_submit_urb() If a thread in your driver uses this call,
178 * make sure your disconnect() method can wait for it to complete. Since you
179 * don't have a handle on the URB used, you can't cancel the request.
181 * Return:
182 * If successful, 0. Otherwise a negative error number. The number of actual
183 * bytes transferred will be stored in the @actual_length parameter.
185 int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
186 void *data, int len, int *actual_length, int timeout)
188 return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
190 EXPORT_SYMBOL_GPL(usb_interrupt_msg);
193 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
194 * @usb_dev: pointer to the usb device to send the message to
195 * @pipe: endpoint "pipe" to send the message to
196 * @data: pointer to the data to send
197 * @len: length in bytes of the data to send
198 * @actual_length: pointer to a location to put the actual length transferred
199 * in bytes
200 * @timeout: time in msecs to wait for the message to complete before
201 * timing out (if 0 the wait is forever)
203 * Context: !in_interrupt ()
205 * This function sends a simple bulk message to a specified endpoint
206 * and waits for the message to complete, or timeout.
208 * Don't use this function from within an interrupt context. If you need
209 * an asynchronous message, or need to send a message from within interrupt
210 * context, use usb_submit_urb() If a thread in your driver uses this call,
211 * make sure your disconnect() method can wait for it to complete. Since you
212 * don't have a handle on the URB used, you can't cancel the request.
214 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
215 * users are forced to abuse this routine by using it to submit URBs for
216 * interrupt endpoints. We will take the liberty of creating an interrupt URB
217 * (with the default interval) if the target is an interrupt endpoint.
219 * Return:
220 * If successful, 0. Otherwise a negative error number. The number of actual
221 * bytes transferred will be stored in the @actual_length parameter.
224 int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
225 void *data, int len, int *actual_length, int timeout)
227 struct urb *urb;
228 struct usb_host_endpoint *ep;
230 ep = usb_pipe_endpoint(usb_dev, pipe);
231 if (!ep || len < 0)
232 return -EINVAL;
234 urb = usb_alloc_urb(0, GFP_KERNEL);
235 if (!urb)
236 return -ENOMEM;
238 if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
239 USB_ENDPOINT_XFER_INT) {
240 pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
241 usb_fill_int_urb(urb, usb_dev, pipe, data, len,
242 usb_api_blocking_completion, NULL,
243 ep->desc.bInterval);
244 } else
245 usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
246 usb_api_blocking_completion, NULL);
248 return usb_start_wait_urb(urb, timeout, actual_length);
250 EXPORT_SYMBOL_GPL(usb_bulk_msg);
252 /*-------------------------------------------------------------------*/
254 static void sg_clean(struct usb_sg_request *io)
256 if (io->urbs) {
257 while (io->entries--)
258 usb_free_urb(io->urbs[io->entries]);
259 kfree(io->urbs);
260 io->urbs = NULL;
262 io->dev = NULL;
265 static void sg_complete(struct urb *urb)
267 struct usb_sg_request *io = urb->context;
268 int status = urb->status;
270 spin_lock(&io->lock);
272 /* In 2.5 we require hcds' endpoint queues not to progress after fault
273 * reports, until the completion callback (this!) returns. That lets
274 * device driver code (like this routine) unlink queued urbs first,
275 * if it needs to, since the HC won't work on them at all. So it's
276 * not possible for page N+1 to overwrite page N, and so on.
278 * That's only for "hard" faults; "soft" faults (unlinks) sometimes
279 * complete before the HCD can get requests away from hardware,
280 * though never during cleanup after a hard fault.
282 if (io->status
283 && (io->status != -ECONNRESET
284 || status != -ECONNRESET)
285 && urb->actual_length) {
286 dev_err(io->dev->bus->controller,
287 "dev %s ep%d%s scatterlist error %d/%d\n",
288 io->dev->devpath,
289 usb_endpoint_num(&urb->ep->desc),
290 usb_urb_dir_in(urb) ? "in" : "out",
291 status, io->status);
292 /* BUG (); */
295 if (io->status == 0 && status && status != -ECONNRESET) {
296 int i, found, retval;
298 io->status = status;
300 /* the previous urbs, and this one, completed already.
301 * unlink pending urbs so they won't rx/tx bad data.
302 * careful: unlink can sometimes be synchronous...
304 spin_unlock(&io->lock);
305 for (i = 0, found = 0; i < io->entries; i++) {
306 if (!io->urbs[i])
307 continue;
308 if (found) {
309 usb_block_urb(io->urbs[i]);
310 retval = usb_unlink_urb(io->urbs[i]);
311 if (retval != -EINPROGRESS &&
312 retval != -ENODEV &&
313 retval != -EBUSY &&
314 retval != -EIDRM)
315 dev_err(&io->dev->dev,
316 "%s, unlink --> %d\n",
317 __func__, retval);
318 } else if (urb == io->urbs[i])
319 found = 1;
321 spin_lock(&io->lock);
324 /* on the last completion, signal usb_sg_wait() */
325 io->bytes += urb->actual_length;
326 io->count--;
327 if (!io->count)
328 complete(&io->complete);
330 spin_unlock(&io->lock);
335 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
336 * @io: request block being initialized. until usb_sg_wait() returns,
337 * treat this as a pointer to an opaque block of memory,
338 * @dev: the usb device that will send or receive the data
339 * @pipe: endpoint "pipe" used to transfer the data
340 * @period: polling rate for interrupt endpoints, in frames or
341 * (for high speed endpoints) microframes; ignored for bulk
342 * @sg: scatterlist entries
343 * @nents: how many entries in the scatterlist
344 * @length: how many bytes to send from the scatterlist, or zero to
345 * send every byte identified in the list.
346 * @mem_flags: SLAB_* flags affecting memory allocations in this call
348 * This initializes a scatter/gather request, allocating resources such as
349 * I/O mappings and urb memory (except maybe memory used by USB controller
350 * drivers).
352 * The request must be issued using usb_sg_wait(), which waits for the I/O to
353 * complete (or to be canceled) and then cleans up all resources allocated by
354 * usb_sg_init().
356 * The request may be canceled with usb_sg_cancel(), either before or after
357 * usb_sg_wait() is called.
359 * Return: Zero for success, else a negative errno value.
361 int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
362 unsigned pipe, unsigned period, struct scatterlist *sg,
363 int nents, size_t length, gfp_t mem_flags)
365 int i;
366 int urb_flags;
367 int use_sg;
369 if (!io || !dev || !sg
370 || usb_pipecontrol(pipe)
371 || usb_pipeisoc(pipe)
372 || nents <= 0)
373 return -EINVAL;
375 spin_lock_init(&io->lock);
376 io->dev = dev;
377 io->pipe = pipe;
379 if (dev->bus->sg_tablesize > 0) {
380 use_sg = true;
381 io->entries = 1;
382 } else {
383 use_sg = false;
384 io->entries = nents;
387 /* initialize all the urbs we'll use */
388 io->urbs = kmalloc(io->entries * sizeof(*io->urbs), mem_flags);
389 if (!io->urbs)
390 goto nomem;
392 urb_flags = URB_NO_INTERRUPT;
393 if (usb_pipein(pipe))
394 urb_flags |= URB_SHORT_NOT_OK;
396 for_each_sg(sg, sg, io->entries, i) {
397 struct urb *urb;
398 unsigned len;
400 urb = usb_alloc_urb(0, mem_flags);
401 if (!urb) {
402 io->entries = i;
403 goto nomem;
405 io->urbs[i] = urb;
407 urb->dev = NULL;
408 urb->pipe = pipe;
409 urb->interval = period;
410 urb->transfer_flags = urb_flags;
411 urb->complete = sg_complete;
412 urb->context = io;
413 urb->sg = sg;
415 if (use_sg) {
416 /* There is no single transfer buffer */
417 urb->transfer_buffer = NULL;
418 urb->num_sgs = nents;
420 /* A length of zero means transfer the whole sg list */
421 len = length;
422 if (len == 0) {
423 struct scatterlist *sg2;
424 int j;
426 for_each_sg(sg, sg2, nents, j)
427 len += sg2->length;
429 } else {
431 * Some systems can't use DMA; they use PIO instead.
432 * For their sakes, transfer_buffer is set whenever
433 * possible.
435 if (!PageHighMem(sg_page(sg)))
436 urb->transfer_buffer = sg_virt(sg);
437 else
438 urb->transfer_buffer = NULL;
440 len = sg->length;
441 if (length) {
442 len = min_t(size_t, len, length);
443 length -= len;
444 if (length == 0)
445 io->entries = i + 1;
448 urb->transfer_buffer_length = len;
450 io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
452 /* transaction state */
453 io->count = io->entries;
454 io->status = 0;
455 io->bytes = 0;
456 init_completion(&io->complete);
457 return 0;
459 nomem:
460 sg_clean(io);
461 return -ENOMEM;
463 EXPORT_SYMBOL_GPL(usb_sg_init);
466 * usb_sg_wait - synchronously execute scatter/gather request
467 * @io: request block handle, as initialized with usb_sg_init().
468 * some fields become accessible when this call returns.
469 * Context: !in_interrupt ()
471 * This function blocks until the specified I/O operation completes. It
472 * leverages the grouping of the related I/O requests to get good transfer
473 * rates, by queueing the requests. At higher speeds, such queuing can
474 * significantly improve USB throughput.
476 * There are three kinds of completion for this function.
478 * (1) success, where io->status is zero. The number of io->bytes
479 * transferred is as requested.
480 * (2) error, where io->status is a negative errno value. The number
481 * of io->bytes transferred before the error is usually less
482 * than requested, and can be nonzero.
483 * (3) cancellation, a type of error with status -ECONNRESET that
484 * is initiated by usb_sg_cancel().
486 * When this function returns, all memory allocated through usb_sg_init() or
487 * this call will have been freed. The request block parameter may still be
488 * passed to usb_sg_cancel(), or it may be freed. It could also be
489 * reinitialized and then reused.
491 * Data Transfer Rates:
493 * Bulk transfers are valid for full or high speed endpoints.
494 * The best full speed data rate is 19 packets of 64 bytes each
495 * per frame, or 1216 bytes per millisecond.
496 * The best high speed data rate is 13 packets of 512 bytes each
497 * per microframe, or 52 KBytes per millisecond.
499 * The reason to use interrupt transfers through this API would most likely
500 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
501 * could be transferred. That capability is less useful for low or full
502 * speed interrupt endpoints, which allow at most one packet per millisecond,
503 * of at most 8 or 64 bytes (respectively).
505 * It is not necessary to call this function to reserve bandwidth for devices
506 * under an xHCI host controller, as the bandwidth is reserved when the
507 * configuration or interface alt setting is selected.
509 void usb_sg_wait(struct usb_sg_request *io)
511 int i;
512 int entries = io->entries;
514 /* queue the urbs. */
515 spin_lock_irq(&io->lock);
516 i = 0;
517 while (i < entries && !io->status) {
518 int retval;
520 io->urbs[i]->dev = io->dev;
521 spin_unlock_irq(&io->lock);
523 retval = usb_submit_urb(io->urbs[i], GFP_NOIO);
525 switch (retval) {
526 /* maybe we retrying will recover */
527 case -ENXIO: /* hc didn't queue this one */
528 case -EAGAIN:
529 case -ENOMEM:
530 retval = 0;
531 yield();
532 break;
534 /* no error? continue immediately.
536 * NOTE: to work better with UHCI (4K I/O buffer may
537 * need 3K of TDs) it may be good to limit how many
538 * URBs are queued at once; N milliseconds?
540 case 0:
541 ++i;
542 cpu_relax();
543 break;
545 /* fail any uncompleted urbs */
546 default:
547 io->urbs[i]->status = retval;
548 dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
549 __func__, retval);
550 usb_sg_cancel(io);
552 spin_lock_irq(&io->lock);
553 if (retval && (io->status == 0 || io->status == -ECONNRESET))
554 io->status = retval;
556 io->count -= entries - i;
557 if (io->count == 0)
558 complete(&io->complete);
559 spin_unlock_irq(&io->lock);
561 /* OK, yes, this could be packaged as non-blocking.
562 * So could the submit loop above ... but it's easier to
563 * solve neither problem than to solve both!
565 wait_for_completion(&io->complete);
567 sg_clean(io);
569 EXPORT_SYMBOL_GPL(usb_sg_wait);
572 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
573 * @io: request block, initialized with usb_sg_init()
575 * This stops a request after it has been started by usb_sg_wait().
576 * It can also prevents one initialized by usb_sg_init() from starting,
577 * so that call just frees resources allocated to the request.
579 void usb_sg_cancel(struct usb_sg_request *io)
581 unsigned long flags;
582 int i, retval;
584 spin_lock_irqsave(&io->lock, flags);
585 if (io->status) {
586 spin_unlock_irqrestore(&io->lock, flags);
587 return;
589 /* shut everything down */
590 io->status = -ECONNRESET;
591 spin_unlock_irqrestore(&io->lock, flags);
593 for (i = io->entries - 1; i >= 0; --i) {
594 usb_block_urb(io->urbs[i]);
596 retval = usb_unlink_urb(io->urbs[i]);
597 if (retval != -EINPROGRESS
598 && retval != -ENODEV
599 && retval != -EBUSY
600 && retval != -EIDRM)
601 dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
602 __func__, retval);
605 EXPORT_SYMBOL_GPL(usb_sg_cancel);
607 /*-------------------------------------------------------------------*/
610 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
611 * @dev: the device whose descriptor is being retrieved
612 * @type: the descriptor type (USB_DT_*)
613 * @index: the number of the descriptor
614 * @buf: where to put the descriptor
615 * @size: how big is "buf"?
616 * Context: !in_interrupt ()
618 * Gets a USB descriptor. Convenience functions exist to simplify
619 * getting some types of descriptors. Use
620 * usb_get_string() or usb_string() for USB_DT_STRING.
621 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
622 * are part of the device structure.
623 * In addition to a number of USB-standard descriptors, some
624 * devices also use class-specific or vendor-specific descriptors.
626 * This call is synchronous, and may not be used in an interrupt context.
628 * Return: The number of bytes received on success, or else the status code
629 * returned by the underlying usb_control_msg() call.
631 int usb_get_descriptor(struct usb_device *dev, unsigned char type,
632 unsigned char index, void *buf, int size)
634 int i;
635 int result;
637 memset(buf, 0, size); /* Make sure we parse really received data */
639 for (i = 0; i < 3; ++i) {
640 /* retry on length 0 or error; some devices are flakey */
641 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
642 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
643 (type << 8) + index, 0, buf, size,
644 USB_CTRL_GET_TIMEOUT);
645 if (result <= 0 && result != -ETIMEDOUT)
646 continue;
647 if (result > 1 && ((u8 *)buf)[1] != type) {
648 result = -ENODATA;
649 continue;
651 break;
653 return result;
655 EXPORT_SYMBOL_GPL(usb_get_descriptor);
658 * usb_get_string - gets a string descriptor
659 * @dev: the device whose string descriptor is being retrieved
660 * @langid: code for language chosen (from string descriptor zero)
661 * @index: the number of the descriptor
662 * @buf: where to put the string
663 * @size: how big is "buf"?
664 * Context: !in_interrupt ()
666 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
667 * in little-endian byte order).
668 * The usb_string() function will often be a convenient way to turn
669 * these strings into kernel-printable form.
671 * Strings may be referenced in device, configuration, interface, or other
672 * descriptors, and could also be used in vendor-specific ways.
674 * This call is synchronous, and may not be used in an interrupt context.
676 * Return: The number of bytes received on success, or else the status code
677 * returned by the underlying usb_control_msg() call.
679 static int usb_get_string(struct usb_device *dev, unsigned short langid,
680 unsigned char index, void *buf, int size)
682 int i;
683 int result;
685 for (i = 0; i < 3; ++i) {
686 /* retry on length 0 or stall; some devices are flakey */
687 result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
688 USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
689 (USB_DT_STRING << 8) + index, langid, buf, size,
690 USB_CTRL_GET_TIMEOUT);
691 if (result == 0 || result == -EPIPE)
692 continue;
693 if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
694 result = -ENODATA;
695 continue;
697 break;
699 return result;
702 static void usb_try_string_workarounds(unsigned char *buf, int *length)
704 int newlength, oldlength = *length;
706 for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
707 if (!isprint(buf[newlength]) || buf[newlength + 1])
708 break;
710 if (newlength > 2) {
711 buf[0] = newlength;
712 *length = newlength;
716 static int usb_string_sub(struct usb_device *dev, unsigned int langid,
717 unsigned int index, unsigned char *buf)
719 int rc;
721 /* Try to read the string descriptor by asking for the maximum
722 * possible number of bytes */
723 if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
724 rc = -EIO;
725 else
726 rc = usb_get_string(dev, langid, index, buf, 255);
728 /* If that failed try to read the descriptor length, then
729 * ask for just that many bytes */
730 if (rc < 2) {
731 rc = usb_get_string(dev, langid, index, buf, 2);
732 if (rc == 2)
733 rc = usb_get_string(dev, langid, index, buf, buf[0]);
736 if (rc >= 2) {
737 if (!buf[0] && !buf[1])
738 usb_try_string_workarounds(buf, &rc);
740 /* There might be extra junk at the end of the descriptor */
741 if (buf[0] < rc)
742 rc = buf[0];
744 rc = rc - (rc & 1); /* force a multiple of two */
747 if (rc < 2)
748 rc = (rc < 0 ? rc : -EINVAL);
750 return rc;
753 static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
755 int err;
757 if (dev->have_langid)
758 return 0;
760 if (dev->string_langid < 0)
761 return -EPIPE;
763 err = usb_string_sub(dev, 0, 0, tbuf);
765 /* If the string was reported but is malformed, default to english
766 * (0x0409) */
767 if (err == -ENODATA || (err > 0 && err < 4)) {
768 dev->string_langid = 0x0409;
769 dev->have_langid = 1;
770 dev_err(&dev->dev,
771 "language id specifier not provided by device, defaulting to English\n");
772 return 0;
775 /* In case of all other errors, we assume the device is not able to
776 * deal with strings at all. Set string_langid to -1 in order to
777 * prevent any string to be retrieved from the device */
778 if (err < 0) {
779 dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
780 err);
781 dev->string_langid = -1;
782 return -EPIPE;
785 /* always use the first langid listed */
786 dev->string_langid = tbuf[2] | (tbuf[3] << 8);
787 dev->have_langid = 1;
788 dev_dbg(&dev->dev, "default language 0x%04x\n",
789 dev->string_langid);
790 return 0;
794 * usb_string - returns UTF-8 version of a string descriptor
795 * @dev: the device whose string descriptor is being retrieved
796 * @index: the number of the descriptor
797 * @buf: where to put the string
798 * @size: how big is "buf"?
799 * Context: !in_interrupt ()
801 * This converts the UTF-16LE encoded strings returned by devices, from
802 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
803 * that are more usable in most kernel contexts. Note that this function
804 * chooses strings in the first language supported by the device.
806 * This call is synchronous, and may not be used in an interrupt context.
808 * Return: length of the string (>= 0) or usb_control_msg status (< 0).
810 int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
812 unsigned char *tbuf;
813 int err;
815 if (dev->state == USB_STATE_SUSPENDED)
816 return -EHOSTUNREACH;
817 if (size <= 0 || !buf || !index)
818 return -EINVAL;
819 buf[0] = 0;
820 tbuf = kmalloc(256, GFP_NOIO);
821 if (!tbuf)
822 return -ENOMEM;
824 err = usb_get_langid(dev, tbuf);
825 if (err < 0)
826 goto errout;
828 err = usb_string_sub(dev, dev->string_langid, index, tbuf);
829 if (err < 0)
830 goto errout;
832 size--; /* leave room for trailing NULL char in output buffer */
833 err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
834 UTF16_LITTLE_ENDIAN, buf, size);
835 buf[err] = 0;
837 if (tbuf[1] != USB_DT_STRING)
838 dev_dbg(&dev->dev,
839 "wrong descriptor type %02x for string %d (\"%s\")\n",
840 tbuf[1], index, buf);
842 errout:
843 kfree(tbuf);
844 return err;
846 EXPORT_SYMBOL_GPL(usb_string);
848 /* one UTF-8-encoded 16-bit character has at most three bytes */
849 #define MAX_USB_STRING_SIZE (127 * 3 + 1)
852 * usb_cache_string - read a string descriptor and cache it for later use
853 * @udev: the device whose string descriptor is being read
854 * @index: the descriptor index
856 * Return: A pointer to a kmalloc'ed buffer containing the descriptor string,
857 * or %NULL if the index is 0 or the string could not be read.
859 char *usb_cache_string(struct usb_device *udev, int index)
861 char *buf;
862 char *smallbuf = NULL;
863 int len;
865 if (index <= 0)
866 return NULL;
868 buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
869 if (buf) {
870 len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
871 if (len > 0) {
872 smallbuf = kmalloc(++len, GFP_NOIO);
873 if (!smallbuf)
874 return buf;
875 memcpy(smallbuf, buf, len);
877 kfree(buf);
879 return smallbuf;
883 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
884 * @dev: the device whose device descriptor is being updated
885 * @size: how much of the descriptor to read
886 * Context: !in_interrupt ()
888 * Updates the copy of the device descriptor stored in the device structure,
889 * which dedicates space for this purpose.
891 * Not exported, only for use by the core. If drivers really want to read
892 * the device descriptor directly, they can call usb_get_descriptor() with
893 * type = USB_DT_DEVICE and index = 0.
895 * This call is synchronous, and may not be used in an interrupt context.
897 * Return: The number of bytes received on success, or else the status code
898 * returned by the underlying usb_control_msg() call.
900 int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
902 struct usb_device_descriptor *desc;
903 int ret;
905 if (size > sizeof(*desc))
906 return -EINVAL;
907 desc = kmalloc(sizeof(*desc), GFP_NOIO);
908 if (!desc)
909 return -ENOMEM;
911 ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
912 if (ret >= 0)
913 memcpy(&dev->descriptor, desc, size);
914 kfree(desc);
915 return ret;
919 * usb_get_status - issues a GET_STATUS call
920 * @dev: the device whose status is being checked
921 * @recip: USB_RECIP_*; for device, interface, or endpoint
922 * @type: USB_STATUS_TYPE_*; for standard or PTM status types
923 * @target: zero (for device), else interface or endpoint number
924 * @data: pointer to two bytes of bitmap data
925 * Context: !in_interrupt ()
927 * Returns device, interface, or endpoint status. Normally only of
928 * interest to see if the device is self powered, or has enabled the
929 * remote wakeup facility; or whether a bulk or interrupt endpoint
930 * is halted ("stalled").
932 * Bits in these status bitmaps are set using the SET_FEATURE request,
933 * and cleared using the CLEAR_FEATURE request. The usb_clear_halt()
934 * function should be used to clear halt ("stall") status.
936 * This call is synchronous, and may not be used in an interrupt context.
938 * Returns 0 and the status value in *@data (in host byte order) on success,
939 * or else the status code from the underlying usb_control_msg() call.
941 int usb_get_status(struct usb_device *dev, int recip, int type, int target,
942 void *data)
944 int ret;
945 void *status;
946 int length;
948 switch (type) {
949 case USB_STATUS_TYPE_STANDARD:
950 length = 2;
951 break;
952 case USB_STATUS_TYPE_PTM:
953 if (recip != USB_RECIP_DEVICE)
954 return -EINVAL;
956 length = 4;
957 break;
958 default:
959 return -EINVAL;
962 status = kmalloc(length, GFP_KERNEL);
963 if (!status)
964 return -ENOMEM;
966 ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
967 USB_REQ_GET_STATUS, USB_DIR_IN | recip, USB_STATUS_TYPE_STANDARD,
968 target, status, length, USB_CTRL_GET_TIMEOUT);
970 switch (ret) {
971 case 4:
972 if (type != USB_STATUS_TYPE_PTM) {
973 ret = -EIO;
974 break;
977 *(u32 *) data = le32_to_cpu(*(__le32 *) status);
978 ret = 0;
979 break;
980 case 2:
981 if (type != USB_STATUS_TYPE_STANDARD) {
982 ret = -EIO;
983 break;
986 *(u16 *) data = le16_to_cpu(*(__le16 *) status);
987 ret = 0;
988 break;
989 default:
990 ret = -EIO;
993 kfree(status);
994 return ret;
996 EXPORT_SYMBOL_GPL(usb_get_status);
999 * usb_clear_halt - tells device to clear endpoint halt/stall condition
1000 * @dev: device whose endpoint is halted
1001 * @pipe: endpoint "pipe" being cleared
1002 * Context: !in_interrupt ()
1004 * This is used to clear halt conditions for bulk and interrupt endpoints,
1005 * as reported by URB completion status. Endpoints that are halted are
1006 * sometimes referred to as being "stalled". Such endpoints are unable
1007 * to transmit or receive data until the halt status is cleared. Any URBs
1008 * queued for such an endpoint should normally be unlinked by the driver
1009 * before clearing the halt condition, as described in sections 5.7.5
1010 * and 5.8.5 of the USB 2.0 spec.
1012 * Note that control and isochronous endpoints don't halt, although control
1013 * endpoints report "protocol stall" (for unsupported requests) using the
1014 * same status code used to report a true stall.
1016 * This call is synchronous, and may not be used in an interrupt context.
1018 * Return: Zero on success, or else the status code returned by the
1019 * underlying usb_control_msg() call.
1021 int usb_clear_halt(struct usb_device *dev, int pipe)
1023 int result;
1024 int endp = usb_pipeendpoint(pipe);
1026 if (usb_pipein(pipe))
1027 endp |= USB_DIR_IN;
1029 /* we don't care if it wasn't halted first. in fact some devices
1030 * (like some ibmcam model 1 units) seem to expect hosts to make
1031 * this request for iso endpoints, which can't halt!
1033 result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1034 USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
1035 USB_ENDPOINT_HALT, endp, NULL, 0,
1036 USB_CTRL_SET_TIMEOUT);
1038 /* don't un-halt or force to DATA0 except on success */
1039 if (result < 0)
1040 return result;
1042 /* NOTE: seems like Microsoft and Apple don't bother verifying
1043 * the clear "took", so some devices could lock up if you check...
1044 * such as the Hagiwara FlashGate DUAL. So we won't bother.
1046 * NOTE: make sure the logic here doesn't diverge much from
1047 * the copy in usb-storage, for as long as we need two copies.
1050 usb_reset_endpoint(dev, endp);
1052 return 0;
1054 EXPORT_SYMBOL_GPL(usb_clear_halt);
1056 static int create_intf_ep_devs(struct usb_interface *intf)
1058 struct usb_device *udev = interface_to_usbdev(intf);
1059 struct usb_host_interface *alt = intf->cur_altsetting;
1060 int i;
1062 if (intf->ep_devs_created || intf->unregistering)
1063 return 0;
1065 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1066 (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1067 intf->ep_devs_created = 1;
1068 return 0;
1071 static void remove_intf_ep_devs(struct usb_interface *intf)
1073 struct usb_host_interface *alt = intf->cur_altsetting;
1074 int i;
1076 if (!intf->ep_devs_created)
1077 return;
1079 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1080 usb_remove_ep_devs(&alt->endpoint[i]);
1081 intf->ep_devs_created = 0;
1085 * usb_disable_endpoint -- Disable an endpoint by address
1086 * @dev: the device whose endpoint is being disabled
1087 * @epaddr: the endpoint's address. Endpoint number for output,
1088 * endpoint number + USB_DIR_IN for input
1089 * @reset_hardware: flag to erase any endpoint state stored in the
1090 * controller hardware
1092 * Disables the endpoint for URB submission and nukes all pending URBs.
1093 * If @reset_hardware is set then also deallocates hcd/hardware state
1094 * for the endpoint.
1096 void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1097 bool reset_hardware)
1099 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1100 struct usb_host_endpoint *ep;
1102 if (!dev)
1103 return;
1105 if (usb_endpoint_out(epaddr)) {
1106 ep = dev->ep_out[epnum];
1107 if (reset_hardware)
1108 dev->ep_out[epnum] = NULL;
1109 } else {
1110 ep = dev->ep_in[epnum];
1111 if (reset_hardware)
1112 dev->ep_in[epnum] = NULL;
1114 if (ep) {
1115 ep->enabled = 0;
1116 usb_hcd_flush_endpoint(dev, ep);
1117 if (reset_hardware)
1118 usb_hcd_disable_endpoint(dev, ep);
1123 * usb_reset_endpoint - Reset an endpoint's state.
1124 * @dev: the device whose endpoint is to be reset
1125 * @epaddr: the endpoint's address. Endpoint number for output,
1126 * endpoint number + USB_DIR_IN for input
1128 * Resets any host-side endpoint state such as the toggle bit,
1129 * sequence number or current window.
1131 void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1133 unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1134 struct usb_host_endpoint *ep;
1136 if (usb_endpoint_out(epaddr))
1137 ep = dev->ep_out[epnum];
1138 else
1139 ep = dev->ep_in[epnum];
1140 if (ep)
1141 usb_hcd_reset_endpoint(dev, ep);
1143 EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1147 * usb_disable_interface -- Disable all endpoints for an interface
1148 * @dev: the device whose interface is being disabled
1149 * @intf: pointer to the interface descriptor
1150 * @reset_hardware: flag to erase any endpoint state stored in the
1151 * controller hardware
1153 * Disables all the endpoints for the interface's current altsetting.
1155 void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1156 bool reset_hardware)
1158 struct usb_host_interface *alt = intf->cur_altsetting;
1159 int i;
1161 for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1162 usb_disable_endpoint(dev,
1163 alt->endpoint[i].desc.bEndpointAddress,
1164 reset_hardware);
1169 * usb_disable_device - Disable all the endpoints for a USB device
1170 * @dev: the device whose endpoints are being disabled
1171 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1173 * Disables all the device's endpoints, potentially including endpoint 0.
1174 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1175 * pending urbs) and usbcore state for the interfaces, so that usbcore
1176 * must usb_set_configuration() before any interfaces could be used.
1178 void usb_disable_device(struct usb_device *dev, int skip_ep0)
1180 int i;
1181 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1183 /* getting rid of interfaces will disconnect
1184 * any drivers bound to them (a key side effect)
1186 if (dev->actconfig) {
1188 * FIXME: In order to avoid self-deadlock involving the
1189 * bandwidth_mutex, we have to mark all the interfaces
1190 * before unregistering any of them.
1192 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1193 dev->actconfig->interface[i]->unregistering = 1;
1195 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1196 struct usb_interface *interface;
1198 /* remove this interface if it has been registered */
1199 interface = dev->actconfig->interface[i];
1200 if (!device_is_registered(&interface->dev))
1201 continue;
1202 dev_dbg(&dev->dev, "unregistering interface %s\n",
1203 dev_name(&interface->dev));
1204 remove_intf_ep_devs(interface);
1205 device_del(&interface->dev);
1208 /* Now that the interfaces are unbound, nobody should
1209 * try to access them.
1211 for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1212 put_device(&dev->actconfig->interface[i]->dev);
1213 dev->actconfig->interface[i] = NULL;
1216 if (dev->usb2_hw_lpm_enabled == 1)
1217 usb_set_usb2_hardware_lpm(dev, 0);
1218 usb_unlocked_disable_lpm(dev);
1219 usb_disable_ltm(dev);
1221 dev->actconfig = NULL;
1222 if (dev->state == USB_STATE_CONFIGURED)
1223 usb_set_device_state(dev, USB_STATE_ADDRESS);
1226 dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1227 skip_ep0 ? "non-ep0" : "all");
1228 if (hcd->driver->check_bandwidth) {
1229 /* First pass: Cancel URBs, leave endpoint pointers intact. */
1230 for (i = skip_ep0; i < 16; ++i) {
1231 usb_disable_endpoint(dev, i, false);
1232 usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1234 /* Remove endpoints from the host controller internal state */
1235 mutex_lock(hcd->bandwidth_mutex);
1236 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1237 mutex_unlock(hcd->bandwidth_mutex);
1238 /* Second pass: remove endpoint pointers */
1240 for (i = skip_ep0; i < 16; ++i) {
1241 usb_disable_endpoint(dev, i, true);
1242 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1247 * usb_enable_endpoint - Enable an endpoint for USB communications
1248 * @dev: the device whose interface is being enabled
1249 * @ep: the endpoint
1250 * @reset_ep: flag to reset the endpoint state
1252 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1253 * For control endpoints, both the input and output sides are handled.
1255 void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1256 bool reset_ep)
1258 int epnum = usb_endpoint_num(&ep->desc);
1259 int is_out = usb_endpoint_dir_out(&ep->desc);
1260 int is_control = usb_endpoint_xfer_control(&ep->desc);
1262 if (reset_ep)
1263 usb_hcd_reset_endpoint(dev, ep);
1264 if (is_out || is_control)
1265 dev->ep_out[epnum] = ep;
1266 if (!is_out || is_control)
1267 dev->ep_in[epnum] = ep;
1268 ep->enabled = 1;
1272 * usb_enable_interface - Enable all the endpoints for an interface
1273 * @dev: the device whose interface is being enabled
1274 * @intf: pointer to the interface descriptor
1275 * @reset_eps: flag to reset the endpoints' state
1277 * Enables all the endpoints for the interface's current altsetting.
1279 void usb_enable_interface(struct usb_device *dev,
1280 struct usb_interface *intf, bool reset_eps)
1282 struct usb_host_interface *alt = intf->cur_altsetting;
1283 int i;
1285 for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1286 usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1290 * usb_set_interface - Makes a particular alternate setting be current
1291 * @dev: the device whose interface is being updated
1292 * @interface: the interface being updated
1293 * @alternate: the setting being chosen.
1294 * Context: !in_interrupt ()
1296 * This is used to enable data transfers on interfaces that may not
1297 * be enabled by default. Not all devices support such configurability.
1298 * Only the driver bound to an interface may change its setting.
1300 * Within any given configuration, each interface may have several
1301 * alternative settings. These are often used to control levels of
1302 * bandwidth consumption. For example, the default setting for a high
1303 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1304 * while interrupt transfers of up to 3KBytes per microframe are legal.
1305 * Also, isochronous endpoints may never be part of an
1306 * interface's default setting. To access such bandwidth, alternate
1307 * interface settings must be made current.
1309 * Note that in the Linux USB subsystem, bandwidth associated with
1310 * an endpoint in a given alternate setting is not reserved until an URB
1311 * is submitted that needs that bandwidth. Some other operating systems
1312 * allocate bandwidth early, when a configuration is chosen.
1314 * This call is synchronous, and may not be used in an interrupt context.
1315 * Also, drivers must not change altsettings while urbs are scheduled for
1316 * endpoints in that interface; all such urbs must first be completed
1317 * (perhaps forced by unlinking).
1319 * Return: Zero on success, or else the status code returned by the
1320 * underlying usb_control_msg() call.
1322 int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1324 struct usb_interface *iface;
1325 struct usb_host_interface *alt;
1326 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1327 int i, ret, manual = 0;
1328 unsigned int epaddr;
1329 unsigned int pipe;
1331 if (dev->state == USB_STATE_SUSPENDED)
1332 return -EHOSTUNREACH;
1334 iface = usb_ifnum_to_if(dev, interface);
1335 if (!iface) {
1336 dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1337 interface);
1338 return -EINVAL;
1340 if (iface->unregistering)
1341 return -ENODEV;
1343 alt = usb_altnum_to_altsetting(iface, alternate);
1344 if (!alt) {
1345 dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1346 alternate);
1347 return -EINVAL;
1350 /* Make sure we have enough bandwidth for this alternate interface.
1351 * Remove the current alt setting and add the new alt setting.
1353 mutex_lock(hcd->bandwidth_mutex);
1354 /* Disable LPM, and re-enable it once the new alt setting is installed,
1355 * so that the xHCI driver can recalculate the U1/U2 timeouts.
1357 if (usb_disable_lpm(dev)) {
1358 dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1359 mutex_unlock(hcd->bandwidth_mutex);
1360 return -ENOMEM;
1362 /* Changing alt-setting also frees any allocated streams */
1363 for (i = 0; i < iface->cur_altsetting->desc.bNumEndpoints; i++)
1364 iface->cur_altsetting->endpoint[i].streams = 0;
1366 ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1367 if (ret < 0) {
1368 dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1369 alternate);
1370 usb_enable_lpm(dev);
1371 mutex_unlock(hcd->bandwidth_mutex);
1372 return ret;
1375 if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1376 ret = -EPIPE;
1377 else
1378 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1379 USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1380 alternate, interface, NULL, 0, 5000);
1382 /* 9.4.10 says devices don't need this and are free to STALL the
1383 * request if the interface only has one alternate setting.
1385 if (ret == -EPIPE && iface->num_altsetting == 1) {
1386 dev_dbg(&dev->dev,
1387 "manual set_interface for iface %d, alt %d\n",
1388 interface, alternate);
1389 manual = 1;
1390 } else if (ret < 0) {
1391 /* Re-instate the old alt setting */
1392 usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1393 usb_enable_lpm(dev);
1394 mutex_unlock(hcd->bandwidth_mutex);
1395 return ret;
1397 mutex_unlock(hcd->bandwidth_mutex);
1399 /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1400 * when they implement async or easily-killable versions of this or
1401 * other "should-be-internal" functions (like clear_halt).
1402 * should hcd+usbcore postprocess control requests?
1405 /* prevent submissions using previous endpoint settings */
1406 if (iface->cur_altsetting != alt) {
1407 remove_intf_ep_devs(iface);
1408 usb_remove_sysfs_intf_files(iface);
1410 usb_disable_interface(dev, iface, true);
1412 iface->cur_altsetting = alt;
1414 /* Now that the interface is installed, re-enable LPM. */
1415 usb_unlocked_enable_lpm(dev);
1417 /* If the interface only has one altsetting and the device didn't
1418 * accept the request, we attempt to carry out the equivalent action
1419 * by manually clearing the HALT feature for each endpoint in the
1420 * new altsetting.
1422 if (manual) {
1423 for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1424 epaddr = alt->endpoint[i].desc.bEndpointAddress;
1425 pipe = __create_pipe(dev,
1426 USB_ENDPOINT_NUMBER_MASK & epaddr) |
1427 (usb_endpoint_out(epaddr) ?
1428 USB_DIR_OUT : USB_DIR_IN);
1430 usb_clear_halt(dev, pipe);
1434 /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1436 * Note:
1437 * Despite EP0 is always present in all interfaces/AS, the list of
1438 * endpoints from the descriptor does not contain EP0. Due to its
1439 * omnipresence one might expect EP0 being considered "affected" by
1440 * any SetInterface request and hence assume toggles need to be reset.
1441 * However, EP0 toggles are re-synced for every individual transfer
1442 * during the SETUP stage - hence EP0 toggles are "don't care" here.
1443 * (Likewise, EP0 never "halts" on well designed devices.)
1445 usb_enable_interface(dev, iface, true);
1446 if (device_is_registered(&iface->dev)) {
1447 usb_create_sysfs_intf_files(iface);
1448 create_intf_ep_devs(iface);
1450 return 0;
1452 EXPORT_SYMBOL_GPL(usb_set_interface);
1455 * usb_reset_configuration - lightweight device reset
1456 * @dev: the device whose configuration is being reset
1458 * This issues a standard SET_CONFIGURATION request to the device using
1459 * the current configuration. The effect is to reset most USB-related
1460 * state in the device, including interface altsettings (reset to zero),
1461 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1462 * endpoints). Other usbcore state is unchanged, including bindings of
1463 * usb device drivers to interfaces.
1465 * Because this affects multiple interfaces, avoid using this with composite
1466 * (multi-interface) devices. Instead, the driver for each interface may
1467 * use usb_set_interface() on the interfaces it claims. Be careful though;
1468 * some devices don't support the SET_INTERFACE request, and others won't
1469 * reset all the interface state (notably endpoint state). Resetting the whole
1470 * configuration would affect other drivers' interfaces.
1472 * The caller must own the device lock.
1474 * Return: Zero on success, else a negative error code.
1476 int usb_reset_configuration(struct usb_device *dev)
1478 int i, retval;
1479 struct usb_host_config *config;
1480 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1482 if (dev->state == USB_STATE_SUSPENDED)
1483 return -EHOSTUNREACH;
1485 /* caller must have locked the device and must own
1486 * the usb bus readlock (so driver bindings are stable);
1487 * calls during probe() are fine
1490 for (i = 1; i < 16; ++i) {
1491 usb_disable_endpoint(dev, i, true);
1492 usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1495 config = dev->actconfig;
1496 retval = 0;
1497 mutex_lock(hcd->bandwidth_mutex);
1498 /* Disable LPM, and re-enable it once the configuration is reset, so
1499 * that the xHCI driver can recalculate the U1/U2 timeouts.
1501 if (usb_disable_lpm(dev)) {
1502 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1503 mutex_unlock(hcd->bandwidth_mutex);
1504 return -ENOMEM;
1506 /* Make sure we have enough bandwidth for each alternate setting 0 */
1507 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1508 struct usb_interface *intf = config->interface[i];
1509 struct usb_host_interface *alt;
1511 alt = usb_altnum_to_altsetting(intf, 0);
1512 if (!alt)
1513 alt = &intf->altsetting[0];
1514 if (alt != intf->cur_altsetting)
1515 retval = usb_hcd_alloc_bandwidth(dev, NULL,
1516 intf->cur_altsetting, alt);
1517 if (retval < 0)
1518 break;
1520 /* If not, reinstate the old alternate settings */
1521 if (retval < 0) {
1522 reset_old_alts:
1523 for (i--; i >= 0; i--) {
1524 struct usb_interface *intf = config->interface[i];
1525 struct usb_host_interface *alt;
1527 alt = usb_altnum_to_altsetting(intf, 0);
1528 if (!alt)
1529 alt = &intf->altsetting[0];
1530 if (alt != intf->cur_altsetting)
1531 usb_hcd_alloc_bandwidth(dev, NULL,
1532 alt, intf->cur_altsetting);
1534 usb_enable_lpm(dev);
1535 mutex_unlock(hcd->bandwidth_mutex);
1536 return retval;
1538 retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1539 USB_REQ_SET_CONFIGURATION, 0,
1540 config->desc.bConfigurationValue, 0,
1541 NULL, 0, USB_CTRL_SET_TIMEOUT);
1542 if (retval < 0)
1543 goto reset_old_alts;
1544 mutex_unlock(hcd->bandwidth_mutex);
1546 /* re-init hc/hcd interface/endpoint state */
1547 for (i = 0; i < config->desc.bNumInterfaces; i++) {
1548 struct usb_interface *intf = config->interface[i];
1549 struct usb_host_interface *alt;
1551 alt = usb_altnum_to_altsetting(intf, 0);
1553 /* No altsetting 0? We'll assume the first altsetting.
1554 * We could use a GetInterface call, but if a device is
1555 * so non-compliant that it doesn't have altsetting 0
1556 * then I wouldn't trust its reply anyway.
1558 if (!alt)
1559 alt = &intf->altsetting[0];
1561 if (alt != intf->cur_altsetting) {
1562 remove_intf_ep_devs(intf);
1563 usb_remove_sysfs_intf_files(intf);
1565 intf->cur_altsetting = alt;
1566 usb_enable_interface(dev, intf, true);
1567 if (device_is_registered(&intf->dev)) {
1568 usb_create_sysfs_intf_files(intf);
1569 create_intf_ep_devs(intf);
1572 /* Now that the interfaces are installed, re-enable LPM. */
1573 usb_unlocked_enable_lpm(dev);
1574 return 0;
1576 EXPORT_SYMBOL_GPL(usb_reset_configuration);
1578 static void usb_release_interface(struct device *dev)
1580 struct usb_interface *intf = to_usb_interface(dev);
1581 struct usb_interface_cache *intfc =
1582 altsetting_to_usb_interface_cache(intf->altsetting);
1584 kref_put(&intfc->ref, usb_release_interface_cache);
1585 usb_put_dev(interface_to_usbdev(intf));
1586 kfree(intf);
1590 * usb_deauthorize_interface - deauthorize an USB interface
1592 * @intf: USB interface structure
1594 void usb_deauthorize_interface(struct usb_interface *intf)
1596 struct device *dev = &intf->dev;
1598 device_lock(dev->parent);
1600 if (intf->authorized) {
1601 device_lock(dev);
1602 intf->authorized = 0;
1603 device_unlock(dev);
1605 usb_forced_unbind_intf(intf);
1608 device_unlock(dev->parent);
1612 * usb_authorize_interface - authorize an USB interface
1614 * @intf: USB interface structure
1616 void usb_authorize_interface(struct usb_interface *intf)
1618 struct device *dev = &intf->dev;
1620 if (!intf->authorized) {
1621 device_lock(dev);
1622 intf->authorized = 1; /* authorize interface */
1623 device_unlock(dev);
1627 static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1629 struct usb_device *usb_dev;
1630 struct usb_interface *intf;
1631 struct usb_host_interface *alt;
1633 intf = to_usb_interface(dev);
1634 usb_dev = interface_to_usbdev(intf);
1635 alt = intf->cur_altsetting;
1637 if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1638 alt->desc.bInterfaceClass,
1639 alt->desc.bInterfaceSubClass,
1640 alt->desc.bInterfaceProtocol))
1641 return -ENOMEM;
1643 if (add_uevent_var(env,
1644 "MODALIAS=usb:"
1645 "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1646 le16_to_cpu(usb_dev->descriptor.idVendor),
1647 le16_to_cpu(usb_dev->descriptor.idProduct),
1648 le16_to_cpu(usb_dev->descriptor.bcdDevice),
1649 usb_dev->descriptor.bDeviceClass,
1650 usb_dev->descriptor.bDeviceSubClass,
1651 usb_dev->descriptor.bDeviceProtocol,
1652 alt->desc.bInterfaceClass,
1653 alt->desc.bInterfaceSubClass,
1654 alt->desc.bInterfaceProtocol,
1655 alt->desc.bInterfaceNumber))
1656 return -ENOMEM;
1658 return 0;
1661 struct device_type usb_if_device_type = {
1662 .name = "usb_interface",
1663 .release = usb_release_interface,
1664 .uevent = usb_if_uevent,
1667 static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1668 struct usb_host_config *config,
1669 u8 inum)
1671 struct usb_interface_assoc_descriptor *retval = NULL;
1672 struct usb_interface_assoc_descriptor *intf_assoc;
1673 int first_intf;
1674 int last_intf;
1675 int i;
1677 for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1678 intf_assoc = config->intf_assoc[i];
1679 if (intf_assoc->bInterfaceCount == 0)
1680 continue;
1682 first_intf = intf_assoc->bFirstInterface;
1683 last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1684 if (inum >= first_intf && inum <= last_intf) {
1685 if (!retval)
1686 retval = intf_assoc;
1687 else
1688 dev_err(&dev->dev, "Interface #%d referenced"
1689 " by multiple IADs\n", inum);
1693 return retval;
1698 * Internal function to queue a device reset
1699 * See usb_queue_reset_device() for more details
1701 static void __usb_queue_reset_device(struct work_struct *ws)
1703 int rc;
1704 struct usb_interface *iface =
1705 container_of(ws, struct usb_interface, reset_ws);
1706 struct usb_device *udev = interface_to_usbdev(iface);
1708 rc = usb_lock_device_for_reset(udev, iface);
1709 if (rc >= 0) {
1710 usb_reset_device(udev);
1711 usb_unlock_device(udev);
1713 usb_put_intf(iface); /* Undo _get_ in usb_queue_reset_device() */
1718 * usb_set_configuration - Makes a particular device setting be current
1719 * @dev: the device whose configuration is being updated
1720 * @configuration: the configuration being chosen.
1721 * Context: !in_interrupt(), caller owns the device lock
1723 * This is used to enable non-default device modes. Not all devices
1724 * use this kind of configurability; many devices only have one
1725 * configuration.
1727 * @configuration is the value of the configuration to be installed.
1728 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1729 * must be non-zero; a value of zero indicates that the device in
1730 * unconfigured. However some devices erroneously use 0 as one of their
1731 * configuration values. To help manage such devices, this routine will
1732 * accept @configuration = -1 as indicating the device should be put in
1733 * an unconfigured state.
1735 * USB device configurations may affect Linux interoperability,
1736 * power consumption and the functionality available. For example,
1737 * the default configuration is limited to using 100mA of bus power,
1738 * so that when certain device functionality requires more power,
1739 * and the device is bus powered, that functionality should be in some
1740 * non-default device configuration. Other device modes may also be
1741 * reflected as configuration options, such as whether two ISDN
1742 * channels are available independently; and choosing between open
1743 * standard device protocols (like CDC) or proprietary ones.
1745 * Note that a non-authorized device (dev->authorized == 0) will only
1746 * be put in unconfigured mode.
1748 * Note that USB has an additional level of device configurability,
1749 * associated with interfaces. That configurability is accessed using
1750 * usb_set_interface().
1752 * This call is synchronous. The calling context must be able to sleep,
1753 * must own the device lock, and must not hold the driver model's USB
1754 * bus mutex; usb interface driver probe() methods cannot use this routine.
1756 * Returns zero on success, or else the status code returned by the
1757 * underlying call that failed. On successful completion, each interface
1758 * in the original device configuration has been destroyed, and each one
1759 * in the new configuration has been probed by all relevant usb device
1760 * drivers currently known to the kernel.
1762 int usb_set_configuration(struct usb_device *dev, int configuration)
1764 int i, ret;
1765 struct usb_host_config *cp = NULL;
1766 struct usb_interface **new_interfaces = NULL;
1767 struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1768 int n, nintf;
1770 if (dev->authorized == 0 || configuration == -1)
1771 configuration = 0;
1772 else {
1773 for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1774 if (dev->config[i].desc.bConfigurationValue ==
1775 configuration) {
1776 cp = &dev->config[i];
1777 break;
1781 if ((!cp && configuration != 0))
1782 return -EINVAL;
1784 /* The USB spec says configuration 0 means unconfigured.
1785 * But if a device includes a configuration numbered 0,
1786 * we will accept it as a correctly configured state.
1787 * Use -1 if you really want to unconfigure the device.
1789 if (cp && configuration == 0)
1790 dev_warn(&dev->dev, "config 0 descriptor??\n");
1792 /* Allocate memory for new interfaces before doing anything else,
1793 * so that if we run out then nothing will have changed. */
1794 n = nintf = 0;
1795 if (cp) {
1796 nintf = cp->desc.bNumInterfaces;
1797 new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1798 GFP_NOIO);
1799 if (!new_interfaces)
1800 return -ENOMEM;
1802 for (; n < nintf; ++n) {
1803 new_interfaces[n] = kzalloc(
1804 sizeof(struct usb_interface),
1805 GFP_NOIO);
1806 if (!new_interfaces[n]) {
1807 ret = -ENOMEM;
1808 free_interfaces:
1809 while (--n >= 0)
1810 kfree(new_interfaces[n]);
1811 kfree(new_interfaces);
1812 return ret;
1816 i = dev->bus_mA - usb_get_max_power(dev, cp);
1817 if (i < 0)
1818 dev_warn(&dev->dev, "new config #%d exceeds power "
1819 "limit by %dmA\n",
1820 configuration, -i);
1823 /* Wake up the device so we can send it the Set-Config request */
1824 ret = usb_autoresume_device(dev);
1825 if (ret)
1826 goto free_interfaces;
1828 /* if it's already configured, clear out old state first.
1829 * getting rid of old interfaces means unbinding their drivers.
1831 if (dev->state != USB_STATE_ADDRESS)
1832 usb_disable_device(dev, 1); /* Skip ep0 */
1834 /* Get rid of pending async Set-Config requests for this device */
1835 cancel_async_set_config(dev);
1837 /* Make sure we have bandwidth (and available HCD resources) for this
1838 * configuration. Remove endpoints from the schedule if we're dropping
1839 * this configuration to set configuration 0. After this point, the
1840 * host controller will not allow submissions to dropped endpoints. If
1841 * this call fails, the device state is unchanged.
1843 mutex_lock(hcd->bandwidth_mutex);
1844 /* Disable LPM, and re-enable it once the new configuration is
1845 * installed, so that the xHCI driver can recalculate the U1/U2
1846 * timeouts.
1848 if (dev->actconfig && usb_disable_lpm(dev)) {
1849 dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1850 mutex_unlock(hcd->bandwidth_mutex);
1851 ret = -ENOMEM;
1852 goto free_interfaces;
1854 ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1855 if (ret < 0) {
1856 if (dev->actconfig)
1857 usb_enable_lpm(dev);
1858 mutex_unlock(hcd->bandwidth_mutex);
1859 usb_autosuspend_device(dev);
1860 goto free_interfaces;
1864 * Initialize the new interface structures and the
1865 * hc/hcd/usbcore interface/endpoint state.
1867 for (i = 0; i < nintf; ++i) {
1868 struct usb_interface_cache *intfc;
1869 struct usb_interface *intf;
1870 struct usb_host_interface *alt;
1872 cp->interface[i] = intf = new_interfaces[i];
1873 intfc = cp->intf_cache[i];
1874 intf->altsetting = intfc->altsetting;
1875 intf->num_altsetting = intfc->num_altsetting;
1876 intf->authorized = !!HCD_INTF_AUTHORIZED(hcd);
1877 kref_get(&intfc->ref);
1879 alt = usb_altnum_to_altsetting(intf, 0);
1881 /* No altsetting 0? We'll assume the first altsetting.
1882 * We could use a GetInterface call, but if a device is
1883 * so non-compliant that it doesn't have altsetting 0
1884 * then I wouldn't trust its reply anyway.
1886 if (!alt)
1887 alt = &intf->altsetting[0];
1889 intf->intf_assoc =
1890 find_iad(dev, cp, alt->desc.bInterfaceNumber);
1891 intf->cur_altsetting = alt;
1892 usb_enable_interface(dev, intf, true);
1893 intf->dev.parent = &dev->dev;
1894 intf->dev.driver = NULL;
1895 intf->dev.bus = &usb_bus_type;
1896 intf->dev.type = &usb_if_device_type;
1897 intf->dev.groups = usb_interface_groups;
1899 * Please refer to usb_alloc_dev() to see why we set
1900 * dma_mask and dma_pfn_offset.
1902 intf->dev.dma_mask = dev->dev.dma_mask;
1903 intf->dev.dma_pfn_offset = dev->dev.dma_pfn_offset;
1904 INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1905 intf->minor = -1;
1906 device_initialize(&intf->dev);
1907 pm_runtime_no_callbacks(&intf->dev);
1908 dev_set_name(&intf->dev, "%d-%s:%d.%d",
1909 dev->bus->busnum, dev->devpath,
1910 configuration, alt->desc.bInterfaceNumber);
1911 usb_get_dev(dev);
1913 kfree(new_interfaces);
1915 ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1916 USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1917 NULL, 0, USB_CTRL_SET_TIMEOUT);
1918 if (ret < 0 && cp) {
1920 * All the old state is gone, so what else can we do?
1921 * The device is probably useless now anyway.
1923 usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1924 for (i = 0; i < nintf; ++i) {
1925 usb_disable_interface(dev, cp->interface[i], true);
1926 put_device(&cp->interface[i]->dev);
1927 cp->interface[i] = NULL;
1929 cp = NULL;
1932 dev->actconfig = cp;
1933 mutex_unlock(hcd->bandwidth_mutex);
1935 if (!cp) {
1936 usb_set_device_state(dev, USB_STATE_ADDRESS);
1938 /* Leave LPM disabled while the device is unconfigured. */
1939 usb_autosuspend_device(dev);
1940 return ret;
1942 usb_set_device_state(dev, USB_STATE_CONFIGURED);
1944 if (cp->string == NULL &&
1945 !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1946 cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1948 /* Now that the interfaces are installed, re-enable LPM. */
1949 usb_unlocked_enable_lpm(dev);
1950 /* Enable LTM if it was turned off by usb_disable_device. */
1951 usb_enable_ltm(dev);
1953 /* Now that all the interfaces are set up, register them
1954 * to trigger binding of drivers to interfaces. probe()
1955 * routines may install different altsettings and may
1956 * claim() any interfaces not yet bound. Many class drivers
1957 * need that: CDC, audio, video, etc.
1959 for (i = 0; i < nintf; ++i) {
1960 struct usb_interface *intf = cp->interface[i];
1962 dev_dbg(&dev->dev,
1963 "adding %s (config #%d, interface %d)\n",
1964 dev_name(&intf->dev), configuration,
1965 intf->cur_altsetting->desc.bInterfaceNumber);
1966 device_enable_async_suspend(&intf->dev);
1967 ret = device_add(&intf->dev);
1968 if (ret != 0) {
1969 dev_err(&dev->dev, "device_add(%s) --> %d\n",
1970 dev_name(&intf->dev), ret);
1971 continue;
1973 create_intf_ep_devs(intf);
1976 usb_autosuspend_device(dev);
1977 return 0;
1979 EXPORT_SYMBOL_GPL(usb_set_configuration);
1981 static LIST_HEAD(set_config_list);
1982 static DEFINE_SPINLOCK(set_config_lock);
1984 struct set_config_request {
1985 struct usb_device *udev;
1986 int config;
1987 struct work_struct work;
1988 struct list_head node;
1991 /* Worker routine for usb_driver_set_configuration() */
1992 static void driver_set_config_work(struct work_struct *work)
1994 struct set_config_request *req =
1995 container_of(work, struct set_config_request, work);
1996 struct usb_device *udev = req->udev;
1998 usb_lock_device(udev);
1999 spin_lock(&set_config_lock);
2000 list_del(&req->node);
2001 spin_unlock(&set_config_lock);
2003 if (req->config >= -1) /* Is req still valid? */
2004 usb_set_configuration(udev, req->config);
2005 usb_unlock_device(udev);
2006 usb_put_dev(udev);
2007 kfree(req);
2010 /* Cancel pending Set-Config requests for a device whose configuration
2011 * was just changed
2013 static void cancel_async_set_config(struct usb_device *udev)
2015 struct set_config_request *req;
2017 spin_lock(&set_config_lock);
2018 list_for_each_entry(req, &set_config_list, node) {
2019 if (req->udev == udev)
2020 req->config = -999; /* Mark as cancelled */
2022 spin_unlock(&set_config_lock);
2026 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
2027 * @udev: the device whose configuration is being updated
2028 * @config: the configuration being chosen.
2029 * Context: In process context, must be able to sleep
2031 * Device interface drivers are not allowed to change device configurations.
2032 * This is because changing configurations will destroy the interface the
2033 * driver is bound to and create new ones; it would be like a floppy-disk
2034 * driver telling the computer to replace the floppy-disk drive with a
2035 * tape drive!
2037 * Still, in certain specialized circumstances the need may arise. This
2038 * routine gets around the normal restrictions by using a work thread to
2039 * submit the change-config request.
2041 * Return: 0 if the request was successfully queued, error code otherwise.
2042 * The caller has no way to know whether the queued request will eventually
2043 * succeed.
2045 int usb_driver_set_configuration(struct usb_device *udev, int config)
2047 struct set_config_request *req;
2049 req = kmalloc(sizeof(*req), GFP_KERNEL);
2050 if (!req)
2051 return -ENOMEM;
2052 req->udev = udev;
2053 req->config = config;
2054 INIT_WORK(&req->work, driver_set_config_work);
2056 spin_lock(&set_config_lock);
2057 list_add(&req->node, &set_config_list);
2058 spin_unlock(&set_config_lock);
2060 usb_get_dev(udev);
2061 schedule_work(&req->work);
2062 return 0;
2064 EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
2067 * cdc_parse_cdc_header - parse the extra headers present in CDC devices
2068 * @hdr: the place to put the results of the parsing
2069 * @intf: the interface for which parsing is requested
2070 * @buffer: pointer to the extra headers to be parsed
2071 * @buflen: length of the extra headers
2073 * This evaluates the extra headers present in CDC devices which
2074 * bind the interfaces for data and control and provide details
2075 * about the capabilities of the device.
2077 * Return: number of descriptors parsed or -EINVAL
2078 * if the header is contradictory beyond salvage
2081 int cdc_parse_cdc_header(struct usb_cdc_parsed_header *hdr,
2082 struct usb_interface *intf,
2083 u8 *buffer,
2084 int buflen)
2086 /* duplicates are ignored */
2087 struct usb_cdc_union_desc *union_header = NULL;
2089 /* duplicates are not tolerated */
2090 struct usb_cdc_header_desc *header = NULL;
2091 struct usb_cdc_ether_desc *ether = NULL;
2092 struct usb_cdc_mdlm_detail_desc *detail = NULL;
2093 struct usb_cdc_mdlm_desc *desc = NULL;
2095 unsigned int elength;
2096 int cnt = 0;
2098 memset(hdr, 0x00, sizeof(struct usb_cdc_parsed_header));
2099 hdr->phonet_magic_present = false;
2100 while (buflen > 0) {
2101 elength = buffer[0];
2102 if (!elength) {
2103 dev_err(&intf->dev, "skipping garbage byte\n");
2104 elength = 1;
2105 goto next_desc;
2107 if ((buflen < elength) || (elength < 3)) {
2108 dev_err(&intf->dev, "invalid descriptor buffer length\n");
2109 break;
2111 if (buffer[1] != USB_DT_CS_INTERFACE) {
2112 dev_err(&intf->dev, "skipping garbage\n");
2113 goto next_desc;
2116 switch (buffer[2]) {
2117 case USB_CDC_UNION_TYPE: /* we've found it */
2118 if (elength < sizeof(struct usb_cdc_union_desc))
2119 goto next_desc;
2120 if (union_header) {
2121 dev_err(&intf->dev, "More than one union descriptor, skipping ...\n");
2122 goto next_desc;
2124 union_header = (struct usb_cdc_union_desc *)buffer;
2125 break;
2126 case USB_CDC_COUNTRY_TYPE:
2127 if (elength < sizeof(struct usb_cdc_country_functional_desc))
2128 goto next_desc;
2129 hdr->usb_cdc_country_functional_desc =
2130 (struct usb_cdc_country_functional_desc *)buffer;
2131 break;
2132 case USB_CDC_HEADER_TYPE:
2133 if (elength != sizeof(struct usb_cdc_header_desc))
2134 goto next_desc;
2135 if (header)
2136 return -EINVAL;
2137 header = (struct usb_cdc_header_desc *)buffer;
2138 break;
2139 case USB_CDC_ACM_TYPE:
2140 if (elength < sizeof(struct usb_cdc_acm_descriptor))
2141 goto next_desc;
2142 hdr->usb_cdc_acm_descriptor =
2143 (struct usb_cdc_acm_descriptor *)buffer;
2144 break;
2145 case USB_CDC_ETHERNET_TYPE:
2146 if (elength != sizeof(struct usb_cdc_ether_desc))
2147 goto next_desc;
2148 if (ether)
2149 return -EINVAL;
2150 ether = (struct usb_cdc_ether_desc *)buffer;
2151 break;
2152 case USB_CDC_CALL_MANAGEMENT_TYPE:
2153 if (elength < sizeof(struct usb_cdc_call_mgmt_descriptor))
2154 goto next_desc;
2155 hdr->usb_cdc_call_mgmt_descriptor =
2156 (struct usb_cdc_call_mgmt_descriptor *)buffer;
2157 break;
2158 case USB_CDC_DMM_TYPE:
2159 if (elength < sizeof(struct usb_cdc_dmm_desc))
2160 goto next_desc;
2161 hdr->usb_cdc_dmm_desc =
2162 (struct usb_cdc_dmm_desc *)buffer;
2163 break;
2164 case USB_CDC_MDLM_TYPE:
2165 if (elength < sizeof(struct usb_cdc_mdlm_desc *))
2166 goto next_desc;
2167 if (desc)
2168 return -EINVAL;
2169 desc = (struct usb_cdc_mdlm_desc *)buffer;
2170 break;
2171 case USB_CDC_MDLM_DETAIL_TYPE:
2172 if (elength < sizeof(struct usb_cdc_mdlm_detail_desc *))
2173 goto next_desc;
2174 if (detail)
2175 return -EINVAL;
2176 detail = (struct usb_cdc_mdlm_detail_desc *)buffer;
2177 break;
2178 case USB_CDC_NCM_TYPE:
2179 if (elength < sizeof(struct usb_cdc_ncm_desc))
2180 goto next_desc;
2181 hdr->usb_cdc_ncm_desc = (struct usb_cdc_ncm_desc *)buffer;
2182 break;
2183 case USB_CDC_MBIM_TYPE:
2184 if (elength < sizeof(struct usb_cdc_mbim_desc))
2185 goto next_desc;
2187 hdr->usb_cdc_mbim_desc = (struct usb_cdc_mbim_desc *)buffer;
2188 break;
2189 case USB_CDC_MBIM_EXTENDED_TYPE:
2190 if (elength < sizeof(struct usb_cdc_mbim_extended_desc))
2191 break;
2192 hdr->usb_cdc_mbim_extended_desc =
2193 (struct usb_cdc_mbim_extended_desc *)buffer;
2194 break;
2195 case CDC_PHONET_MAGIC_NUMBER:
2196 hdr->phonet_magic_present = true;
2197 break;
2198 default:
2200 * there are LOTS more CDC descriptors that
2201 * could legitimately be found here.
2203 dev_dbg(&intf->dev, "Ignoring descriptor: type %02x, length %ud\n",
2204 buffer[2], elength);
2205 goto next_desc;
2207 cnt++;
2208 next_desc:
2209 buflen -= elength;
2210 buffer += elength;
2212 hdr->usb_cdc_union_desc = union_header;
2213 hdr->usb_cdc_header_desc = header;
2214 hdr->usb_cdc_mdlm_detail_desc = detail;
2215 hdr->usb_cdc_mdlm_desc = desc;
2216 hdr->usb_cdc_ether_desc = ether;
2217 return cnt;
2220 EXPORT_SYMBOL(cdc_parse_cdc_header);