drm/radeon: fix voltage setup on hawaii
[linux/fpc-iii.git] / arch / cris / include / asm / pgtable.h
blob8b8c86793225fd1f1df33a334cf1ec41bd581d78
1 /*
2 * CRIS pgtable.h - macros and functions to manipulate page tables.
3 */
5 #ifndef _CRIS_PGTABLE_H
6 #define _CRIS_PGTABLE_H
8 #include <asm/page.h>
9 #include <asm-generic/pgtable-nopmd.h>
11 #ifndef __ASSEMBLY__
12 #include <linux/sched.h>
13 #include <asm/mmu.h>
14 #endif
15 #include <arch/pgtable.h>
18 * The Linux memory management assumes a three-level page table setup. On
19 * CRIS, we use that, but "fold" the mid level into the top-level page
20 * table. Since the MMU TLB is software loaded through an interrupt, it
21 * supports any page table structure, so we could have used a three-level
22 * setup, but for the amounts of memory we normally use, a two-level is
23 * probably more efficient.
25 * This file contains the functions and defines necessary to modify and use
26 * the CRIS page table tree.
28 #ifndef __ASSEMBLY__
29 extern void paging_init(void);
30 #endif
32 /* Certain architectures need to do special things when pte's
33 * within a page table are directly modified. Thus, the following
34 * hook is made available.
36 #define set_pte(pteptr, pteval) ((*(pteptr)) = (pteval))
37 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
40 * (pmds are folded into pgds so this doesn't get actually called,
41 * but the define is needed for a generic inline function.)
43 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
44 #define set_pgu(pudptr, pudval) (*(pudptr) = pudval)
46 /* PGDIR_SHIFT determines the size of the area a second-level page table can
47 * map. It is equal to the page size times the number of PTE's that fit in
48 * a PMD page. A PTE is 4-bytes in CRIS. Hence the following number.
51 #define PGDIR_SHIFT (PAGE_SHIFT + (PAGE_SHIFT-2))
52 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
53 #define PGDIR_MASK (~(PGDIR_SIZE-1))
56 * entries per page directory level: we use a two-level, so
57 * we don't really have any PMD directory physically.
58 * pointers are 4 bytes so we can use the page size and
59 * divide it by 4 (shift by 2).
61 #define PTRS_PER_PTE (1UL << (PAGE_SHIFT-2))
62 #define PTRS_PER_PGD (1UL << (PAGE_SHIFT-2))
64 /* calculate how many PGD entries a user-level program can use
65 * the first mappable virtual address is 0
66 * (TASK_SIZE is the maximum virtual address space)
69 #define USER_PTRS_PER_PGD (TASK_SIZE/PGDIR_SIZE)
70 #define FIRST_USER_ADDRESS 0
72 /* zero page used for uninitialized stuff */
73 #ifndef __ASSEMBLY__
74 extern unsigned long empty_zero_page;
75 #define ZERO_PAGE(vaddr) (virt_to_page(empty_zero_page))
76 #endif
78 /* number of bits that fit into a memory pointer */
79 #define BITS_PER_PTR (8*sizeof(unsigned long))
81 /* to align the pointer to a pointer address */
82 #define PTR_MASK (~(sizeof(void*)-1))
84 /* sizeof(void*)==1<<SIZEOF_PTR_LOG2 */
85 /* 64-bit machines, beware! SRB. */
86 #define SIZEOF_PTR_LOG2 2
88 /* to find an entry in a page-table */
89 #define PAGE_PTR(address) \
90 ((unsigned long)(address)>>(PAGE_SHIFT-SIZEOF_PTR_LOG2)&PTR_MASK&~PAGE_MASK)
92 /* to set the page-dir */
93 #define SET_PAGE_DIR(tsk,pgdir)
95 #define pte_none(x) (!pte_val(x))
96 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
97 #define pte_clear(mm,addr,xp) do { pte_val(*(xp)) = 0; } while (0)
99 #define pmd_none(x) (!pmd_val(x))
100 /* by removing the _PAGE_KERNEL bit from the comparison, the same pmd_bad
101 * works for both _PAGE_TABLE and _KERNPG_TABLE pmd entries.
103 #define pmd_bad(x) ((pmd_val(x) & (~PAGE_MASK & ~_PAGE_KERNEL)) != _PAGE_TABLE)
104 #define pmd_present(x) (pmd_val(x) & _PAGE_PRESENT)
105 #define pmd_clear(xp) do { pmd_val(*(xp)) = 0; } while (0)
107 #ifndef __ASSEMBLY__
110 * The following only work if pte_present() is true.
111 * Undefined behaviour if not..
114 static inline int pte_write(pte_t pte) { return pte_val(pte) & _PAGE_WRITE; }
115 static inline int pte_dirty(pte_t pte) { return pte_val(pte) & _PAGE_MODIFIED; }
116 static inline int pte_young(pte_t pte) { return pte_val(pte) & _PAGE_ACCESSED; }
117 static inline int pte_file(pte_t pte) { return pte_val(pte) & _PAGE_FILE; }
118 static inline int pte_special(pte_t pte) { return 0; }
120 static inline pte_t pte_wrprotect(pte_t pte)
122 pte_val(pte) &= ~(_PAGE_WRITE | _PAGE_SILENT_WRITE);
123 return pte;
126 static inline pte_t pte_mkclean(pte_t pte)
128 pte_val(pte) &= ~(_PAGE_MODIFIED | _PAGE_SILENT_WRITE);
129 return pte;
132 static inline pte_t pte_mkold(pte_t pte)
134 pte_val(pte) &= ~(_PAGE_ACCESSED | _PAGE_SILENT_READ);
135 return pte;
138 static inline pte_t pte_mkwrite(pte_t pte)
140 pte_val(pte) |= _PAGE_WRITE;
141 if (pte_val(pte) & _PAGE_MODIFIED)
142 pte_val(pte) |= _PAGE_SILENT_WRITE;
143 return pte;
146 static inline pte_t pte_mkdirty(pte_t pte)
148 pte_val(pte) |= _PAGE_MODIFIED;
149 if (pte_val(pte) & _PAGE_WRITE)
150 pte_val(pte) |= _PAGE_SILENT_WRITE;
151 return pte;
154 static inline pte_t pte_mkyoung(pte_t pte)
156 pte_val(pte) |= _PAGE_ACCESSED;
157 if (pte_val(pte) & _PAGE_READ)
159 pte_val(pte) |= _PAGE_SILENT_READ;
160 if ((pte_val(pte) & (_PAGE_WRITE | _PAGE_MODIFIED)) ==
161 (_PAGE_WRITE | _PAGE_MODIFIED))
162 pte_val(pte) |= _PAGE_SILENT_WRITE;
164 return pte;
166 static inline pte_t pte_mkspecial(pte_t pte) { return pte; }
169 * Conversion functions: convert a page and protection to a page entry,
170 * and a page entry and page directory to the page they refer to.
173 /* What actually goes as arguments to the various functions is less than
174 * obvious, but a rule of thumb is that struct page's goes as struct page *,
175 * really physical DRAM addresses are unsigned long's, and DRAM "virtual"
176 * addresses (the 0xc0xxxxxx's) goes as void *'s.
179 static inline pte_t __mk_pte(void * page, pgprot_t pgprot)
181 pte_t pte;
182 /* the PTE needs a physical address */
183 pte_val(pte) = __pa(page) | pgprot_val(pgprot);
184 return pte;
187 #define mk_pte(page, pgprot) __mk_pte(page_address(page), (pgprot))
189 #define mk_pte_phys(physpage, pgprot) \
190 ({ \
191 pte_t __pte; \
193 pte_val(__pte) = (physpage) + pgprot_val(pgprot); \
194 __pte; \
197 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
198 { pte_val(pte) = (pte_val(pte) & _PAGE_CHG_MASK) | pgprot_val(newprot); return pte; }
200 #define pgprot_noncached(prot) __pgprot((pgprot_val(prot) | _PAGE_NO_CACHE))
203 /* pte_val refers to a page in the 0x4xxxxxxx physical DRAM interval
204 * __pte_page(pte_val) refers to the "virtual" DRAM interval
205 * pte_pagenr refers to the page-number counted starting from the virtual DRAM start
208 static inline unsigned long __pte_page(pte_t pte)
210 /* the PTE contains a physical address */
211 return (unsigned long)__va(pte_val(pte) & PAGE_MASK);
214 #define pte_pagenr(pte) ((__pte_page(pte) - PAGE_OFFSET) >> PAGE_SHIFT)
216 /* permanent address of a page */
218 #define __page_address(page) (PAGE_OFFSET + (((page) - mem_map) << PAGE_SHIFT))
219 #define pte_page(pte) (mem_map+pte_pagenr(pte))
221 /* only the pte's themselves need to point to physical DRAM (see above)
222 * the pagetable links are purely handled within the kernel SW and thus
223 * don't need the __pa and __va transformations.
226 static inline void pmd_set(pmd_t * pmdp, pte_t * ptep)
227 { pmd_val(*pmdp) = _PAGE_TABLE | (unsigned long) ptep; }
229 #define pmd_page(pmd) (pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT))
230 #define pmd_page_vaddr(pmd) ((unsigned long) __va(pmd_val(pmd) & PAGE_MASK))
232 /* to find an entry in a page-table-directory. */
233 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
235 /* to find an entry in a page-table-directory */
236 static inline pgd_t * pgd_offset(const struct mm_struct *mm, unsigned long address)
238 return mm->pgd + pgd_index(address);
241 /* to find an entry in a kernel page-table-directory */
242 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
244 /* Find an entry in the third-level page table.. */
245 #define __pte_offset(address) \
246 (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
247 #define pte_offset_kernel(dir, address) \
248 ((pte_t *) pmd_page_vaddr(*(dir)) + __pte_offset(address))
249 #define pte_offset_map(dir, address) \
250 ((pte_t *)page_address(pmd_page(*(dir))) + __pte_offset(address))
252 #define pte_unmap(pte) do { } while (0)
253 #define pte_pfn(x) ((unsigned long)(__va((x).pte)) >> PAGE_SHIFT)
254 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
256 #define pte_ERROR(e) \
257 printk("%s:%d: bad pte %p(%08lx).\n", __FILE__, __LINE__, &(e), pte_val(e))
258 #define pgd_ERROR(e) \
259 printk("%s:%d: bad pgd %p(%08lx).\n", __FILE__, __LINE__, &(e), pgd_val(e))
262 extern pgd_t swapper_pg_dir[PTRS_PER_PGD]; /* defined in head.S */
265 * CRIS doesn't have any external MMU info: the kernel page
266 * tables contain all the necessary information.
268 * Actually I am not sure on what this could be used for.
270 static inline void update_mmu_cache(struct vm_area_struct * vma,
271 unsigned long address, pte_t *ptep)
275 /* Encode and de-code a swap entry (must be !pte_none(e) && !pte_present(e)) */
276 /* Since the PAGE_PRESENT bit is bit 4, we can use the bits above */
278 #define __swp_type(x) (((x).val >> 5) & 0x7f)
279 #define __swp_offset(x) ((x).val >> 12)
280 #define __swp_entry(type, offset) ((swp_entry_t) { ((type) << 5) | ((offset) << 12) })
281 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
282 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
284 #define kern_addr_valid(addr) (1)
286 #include <asm-generic/pgtable.h>
289 * No page table caches to initialise
291 #define pgtable_cache_init() do { } while (0)
293 #define pte_to_pgoff(x) (pte_val(x) >> 6)
294 #define pgoff_to_pte(x) __pte(((x) << 6) | _PAGE_FILE)
296 typedef pte_t *pte_addr_t;
298 #endif /* __ASSEMBLY__ */
299 #endif /* _CRIS_PGTABLE_H */