1 /* cassini.c: Sun Microsystems Cassini(+) ethernet driver.
3 * Copyright (C) 2004 Sun Microsystems Inc.
4 * Copyright (C) 2003 Adrian Sun (asun@darksunrising.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
21 * This driver uses the sungem driver (c) David Miller
22 * (davem@redhat.com) as its basis.
24 * The cassini chip has a number of features that distinguish it from
26 * 4 transmit descriptor rings that are used for either QoS (VLAN) or
27 * load balancing (non-VLAN mode)
28 * batching of multiple packets
29 * multiple CPU dispatching
30 * page-based RX descriptor engine with separate completion rings
31 * Gigabit support (GMII and PCS interface)
32 * MIF link up/down detection works
34 * RX is handled by page sized buffers that are attached as fragments to
35 * the skb. here's what's done:
36 * -- driver allocates pages at a time and keeps reference counts
38 * -- the upper protocol layers assume that the header is in the skb
39 * itself. as a result, cassini will copy a small amount (64 bytes)
41 * -- driver appends the rest of the data pages as frags to skbuffs
42 * and increments the reference count
43 * -- on page reclamation, the driver swaps the page with a spare page.
44 * if that page is still in use, it frees its reference to that page,
45 * and allocates a new page for use. otherwise, it just recycles the
48 * NOTE: cassini can parse the header. however, it's not worth it
49 * as long as the network stack requires a header copy.
51 * TX has 4 queues. currently these queues are used in a round-robin
52 * fashion for load balancing. They can also be used for QoS. for that
53 * to work, however, QoS information needs to be exposed down to the driver
54 * level so that subqueues get targeted to particular transmit rings.
55 * alternatively, the queues can be configured via use of the all-purpose
58 * RX DATA: the rx completion ring has all the info, but the rx desc
59 * ring has all of the data. RX can conceivably come in under multiple
60 * interrupts, but the INT# assignment needs to be set up properly by
61 * the BIOS and conveyed to the driver. PCI BIOSes don't know how to do
62 * that. also, the two descriptor rings are designed to distinguish between
63 * encrypted and non-encrypted packets, but we use them for buffering
66 * by default, the selective clear mask is set up to process rx packets.
69 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
71 #include <linux/module.h>
72 #include <linux/kernel.h>
73 #include <linux/types.h>
74 #include <linux/compiler.h>
75 #include <linux/slab.h>
76 #include <linux/delay.h>
77 #include <linux/init.h>
78 #include <linux/interrupt.h>
79 #include <linux/vmalloc.h>
80 #include <linux/ioport.h>
81 #include <linux/pci.h>
83 #include <linux/highmem.h>
84 #include <linux/list.h>
85 #include <linux/dma-mapping.h>
87 #include <linux/netdevice.h>
88 #include <linux/etherdevice.h>
89 #include <linux/skbuff.h>
90 #include <linux/ethtool.h>
91 #include <linux/crc32.h>
92 #include <linux/random.h>
93 #include <linux/mii.h>
95 #include <linux/tcp.h>
96 #include <linux/mutex.h>
97 #include <linux/firmware.h>
99 #include <net/checksum.h>
101 #include <linux/atomic.h>
103 #include <asm/byteorder.h>
104 #include <asm/uaccess.h>
106 #define cas_page_map(x) kmap_atomic((x))
107 #define cas_page_unmap(x) kunmap_atomic((x))
108 #define CAS_NCPUS num_online_cpus()
110 #define cas_skb_release(x) netif_rx(x)
112 /* select which firmware to use */
113 #define USE_HP_WORKAROUND
114 #define HP_WORKAROUND_DEFAULT /* select which firmware to use as default */
115 #define CAS_HP_ALT_FIRMWARE cas_prog_null /* alternate firmware */
119 #define USE_TX_COMPWB /* use completion writeback registers */
120 #define USE_CSMA_CD_PROTO /* standard CSMA/CD */
121 #define USE_RX_BLANK /* hw interrupt mitigation */
122 #undef USE_ENTROPY_DEV /* don't test for entropy device */
124 /* NOTE: these aren't useable unless PCI interrupts can be assigned.
125 * also, we need to make cp->lock finer-grained.
132 #undef USE_VPD_DEBUG /* debug vpd information if defined */
134 /* rx processing options */
135 #define USE_PAGE_ORDER /* specify to allocate large rx pages */
136 #define RX_DONT_BATCH 0 /* if 1, don't batch flows */
137 #define RX_COPY_ALWAYS 0 /* if 0, use frags */
138 #define RX_COPY_MIN 64 /* copy a little to make upper layers happy */
139 #undef RX_COUNT_BUFFERS /* define to calculate RX buffer stats */
141 #define DRV_MODULE_NAME "cassini"
142 #define DRV_MODULE_VERSION "1.6"
143 #define DRV_MODULE_RELDATE "21 May 2008"
145 #define CAS_DEF_MSG_ENABLE \
155 /* length of time before we decide the hardware is borked,
156 * and dev->tx_timeout() should be called to fix the problem
158 #define CAS_TX_TIMEOUT (HZ)
159 #define CAS_LINK_TIMEOUT (22*HZ/10)
160 #define CAS_LINK_FAST_TIMEOUT (1)
162 /* timeout values for state changing. these specify the number
163 * of 10us delays to be used before giving up.
165 #define STOP_TRIES_PHY 1000
166 #define STOP_TRIES 5000
168 /* specify a minimum frame size to deal with some fifo issues
169 * max mtu == 2 * page size - ethernet header - 64 - swivel =
170 * 2 * page_size - 0x50
172 #define CAS_MIN_FRAME 97
173 #define CAS_1000MB_MIN_FRAME 255
174 #define CAS_MIN_MTU 60
175 #define CAS_MAX_MTU min(((cp->page_size << 1) - 0x50), 9000)
179 * Eliminate these and use separate atomic counters for each, to
180 * avoid a race condition.
183 #define CAS_RESET_MTU 1
184 #define CAS_RESET_ALL 2
185 #define CAS_RESET_SPARE 3
188 static char version
[] __devinitdata
=
189 DRV_MODULE_NAME
".c:v" DRV_MODULE_VERSION
" (" DRV_MODULE_RELDATE
")\n";
191 static int cassini_debug
= -1; /* -1 == use CAS_DEF_MSG_ENABLE as value */
192 static int link_mode
;
194 MODULE_AUTHOR("Adrian Sun (asun@darksunrising.com)");
195 MODULE_DESCRIPTION("Sun Cassini(+) ethernet driver");
196 MODULE_LICENSE("GPL");
197 MODULE_FIRMWARE("sun/cassini.bin");
198 module_param(cassini_debug
, int, 0);
199 MODULE_PARM_DESC(cassini_debug
, "Cassini bitmapped debugging message enable value");
200 module_param(link_mode
, int, 0);
201 MODULE_PARM_DESC(link_mode
, "default link mode");
204 * Work around for a PCS bug in which the link goes down due to the chip
205 * being confused and never showing a link status of "up."
207 #define DEFAULT_LINKDOWN_TIMEOUT 5
209 * Value in seconds, for user input.
211 static int linkdown_timeout
= DEFAULT_LINKDOWN_TIMEOUT
;
212 module_param(linkdown_timeout
, int, 0);
213 MODULE_PARM_DESC(linkdown_timeout
,
214 "min reset interval in sec. for PCS linkdown issue; disabled if not positive");
217 * value in 'ticks' (units used by jiffies). Set when we init the
218 * module because 'HZ' in actually a function call on some flavors of
219 * Linux. This will default to DEFAULT_LINKDOWN_TIMEOUT * HZ.
221 static int link_transition_timeout
;
225 static u16 link_modes
[] __devinitdata
= {
226 BMCR_ANENABLE
, /* 0 : autoneg */
227 0, /* 1 : 10bt half duplex */
228 BMCR_SPEED100
, /* 2 : 100bt half duplex */
229 BMCR_FULLDPLX
, /* 3 : 10bt full duplex */
230 BMCR_SPEED100
|BMCR_FULLDPLX
, /* 4 : 100bt full duplex */
231 CAS_BMCR_SPEED1000
|BMCR_FULLDPLX
/* 5 : 1000bt full duplex */
234 static DEFINE_PCI_DEVICE_TABLE(cas_pci_tbl
) = {
235 { PCI_VENDOR_ID_SUN
, PCI_DEVICE_ID_SUN_CASSINI
,
236 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
237 { PCI_VENDOR_ID_NS
, PCI_DEVICE_ID_NS_SATURN
,
238 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0UL },
242 MODULE_DEVICE_TABLE(pci
, cas_pci_tbl
);
244 static void cas_set_link_modes(struct cas
*cp
);
246 static inline void cas_lock_tx(struct cas
*cp
)
250 for (i
= 0; i
< N_TX_RINGS
; i
++)
251 spin_lock(&cp
->tx_lock
[i
]);
254 static inline void cas_lock_all(struct cas
*cp
)
256 spin_lock_irq(&cp
->lock
);
260 /* WTZ: QA was finding deadlock problems with the previous
261 * versions after long test runs with multiple cards per machine.
262 * See if replacing cas_lock_all with safer versions helps. The
263 * symptoms QA is reporting match those we'd expect if interrupts
264 * aren't being properly restored, and we fixed a previous deadlock
265 * with similar symptoms by using save/restore versions in other
268 #define cas_lock_all_save(cp, flags) \
270 struct cas *xxxcp = (cp); \
271 spin_lock_irqsave(&xxxcp->lock, flags); \
272 cas_lock_tx(xxxcp); \
275 static inline void cas_unlock_tx(struct cas
*cp
)
279 for (i
= N_TX_RINGS
; i
> 0; i
--)
280 spin_unlock(&cp
->tx_lock
[i
- 1]);
283 static inline void cas_unlock_all(struct cas
*cp
)
286 spin_unlock_irq(&cp
->lock
);
289 #define cas_unlock_all_restore(cp, flags) \
291 struct cas *xxxcp = (cp); \
292 cas_unlock_tx(xxxcp); \
293 spin_unlock_irqrestore(&xxxcp->lock, flags); \
296 static void cas_disable_irq(struct cas
*cp
, const int ring
)
298 /* Make sure we won't get any more interrupts */
300 writel(0xFFFFFFFF, cp
->regs
+ REG_INTR_MASK
);
304 /* disable completion interrupts and selectively mask */
305 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
307 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
317 writel(INTRN_MASK_CLEAR_ALL
| INTRN_MASK_RX_EN
,
318 cp
->regs
+ REG_PLUS_INTRN_MASK(ring
));
322 writel(INTRN_MASK_CLEAR_ALL
, cp
->regs
+
323 REG_PLUS_INTRN_MASK(ring
));
329 static inline void cas_mask_intr(struct cas
*cp
)
333 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
334 cas_disable_irq(cp
, i
);
337 static void cas_enable_irq(struct cas
*cp
, const int ring
)
339 if (ring
== 0) { /* all but TX_DONE */
340 writel(INTR_TX_DONE
, cp
->regs
+ REG_INTR_MASK
);
344 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
346 #if defined (USE_PCI_INTB) || defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
356 writel(INTRN_MASK_RX_EN
, cp
->regs
+
357 REG_PLUS_INTRN_MASK(ring
));
366 static inline void cas_unmask_intr(struct cas
*cp
)
370 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
371 cas_enable_irq(cp
, i
);
374 static inline void cas_entropy_gather(struct cas
*cp
)
376 #ifdef USE_ENTROPY_DEV
377 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
380 batch_entropy_store(readl(cp
->regs
+ REG_ENTROPY_IV
),
381 readl(cp
->regs
+ REG_ENTROPY_IV
),
386 static inline void cas_entropy_reset(struct cas
*cp
)
388 #ifdef USE_ENTROPY_DEV
389 if ((cp
->cas_flags
& CAS_FLAG_ENTROPY_DEV
) == 0)
392 writel(BIM_LOCAL_DEV_PAD
| BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_EXT
,
393 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
394 writeb(ENTROPY_RESET_STC_MODE
, cp
->regs
+ REG_ENTROPY_RESET
);
395 writeb(0x55, cp
->regs
+ REG_ENTROPY_RAND_REG
);
397 /* if we read back 0x0, we don't have an entropy device */
398 if (readb(cp
->regs
+ REG_ENTROPY_RAND_REG
) == 0)
399 cp
->cas_flags
&= ~CAS_FLAG_ENTROPY_DEV
;
403 /* access to the phy. the following assumes that we've initialized the MIF to
404 * be in frame rather than bit-bang mode
406 static u16
cas_phy_read(struct cas
*cp
, int reg
)
409 int limit
= STOP_TRIES_PHY
;
411 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_READ
;
412 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
413 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
414 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
415 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
417 /* poll for completion */
418 while (limit
-- > 0) {
420 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
421 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
422 return cmd
& MIF_FRAME_DATA_MASK
;
424 return 0xFFFF; /* -1 */
427 static int cas_phy_write(struct cas
*cp
, int reg
, u16 val
)
429 int limit
= STOP_TRIES_PHY
;
432 cmd
= MIF_FRAME_ST
| MIF_FRAME_OP_WRITE
;
433 cmd
|= CAS_BASE(MIF_FRAME_PHY_ADDR
, cp
->phy_addr
);
434 cmd
|= CAS_BASE(MIF_FRAME_REG_ADDR
, reg
);
435 cmd
|= MIF_FRAME_TURN_AROUND_MSB
;
436 cmd
|= val
& MIF_FRAME_DATA_MASK
;
437 writel(cmd
, cp
->regs
+ REG_MIF_FRAME
);
439 /* poll for completion */
440 while (limit
-- > 0) {
442 cmd
= readl(cp
->regs
+ REG_MIF_FRAME
);
443 if (cmd
& MIF_FRAME_TURN_AROUND_LSB
)
449 static void cas_phy_powerup(struct cas
*cp
)
451 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
453 if ((ctl
& BMCR_PDOWN
) == 0)
456 cas_phy_write(cp
, MII_BMCR
, ctl
);
459 static void cas_phy_powerdown(struct cas
*cp
)
461 u16 ctl
= cas_phy_read(cp
, MII_BMCR
);
463 if (ctl
& BMCR_PDOWN
)
466 cas_phy_write(cp
, MII_BMCR
, ctl
);
469 /* cp->lock held. note: the last put_page will free the buffer */
470 static int cas_page_free(struct cas
*cp
, cas_page_t
*page
)
472 pci_unmap_page(cp
->pdev
, page
->dma_addr
, cp
->page_size
,
474 __free_pages(page
->buffer
, cp
->page_order
);
479 #ifdef RX_COUNT_BUFFERS
480 #define RX_USED_ADD(x, y) ((x)->used += (y))
481 #define RX_USED_SET(x, y) ((x)->used = (y))
483 #define RX_USED_ADD(x, y)
484 #define RX_USED_SET(x, y)
487 /* local page allocation routines for the receive buffers. jumbo pages
488 * require at least 8K contiguous and 8K aligned buffers.
490 static cas_page_t
*cas_page_alloc(struct cas
*cp
, const gfp_t flags
)
494 page
= kmalloc(sizeof(cas_page_t
), flags
);
498 INIT_LIST_HEAD(&page
->list
);
499 RX_USED_SET(page
, 0);
500 page
->buffer
= alloc_pages(flags
, cp
->page_order
);
503 page
->dma_addr
= pci_map_page(cp
->pdev
, page
->buffer
, 0,
504 cp
->page_size
, PCI_DMA_FROMDEVICE
);
512 /* initialize spare pool of rx buffers, but allocate during the open */
513 static void cas_spare_init(struct cas
*cp
)
515 spin_lock(&cp
->rx_inuse_lock
);
516 INIT_LIST_HEAD(&cp
->rx_inuse_list
);
517 spin_unlock(&cp
->rx_inuse_lock
);
519 spin_lock(&cp
->rx_spare_lock
);
520 INIT_LIST_HEAD(&cp
->rx_spare_list
);
521 cp
->rx_spares_needed
= RX_SPARE_COUNT
;
522 spin_unlock(&cp
->rx_spare_lock
);
525 /* used on close. free all the spare buffers. */
526 static void cas_spare_free(struct cas
*cp
)
528 struct list_head list
, *elem
, *tmp
;
530 /* free spare buffers */
531 INIT_LIST_HEAD(&list
);
532 spin_lock(&cp
->rx_spare_lock
);
533 list_splice_init(&cp
->rx_spare_list
, &list
);
534 spin_unlock(&cp
->rx_spare_lock
);
535 list_for_each_safe(elem
, tmp
, &list
) {
536 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
539 INIT_LIST_HEAD(&list
);
542 * Looks like Adrian had protected this with a different
543 * lock than used everywhere else to manipulate this list.
545 spin_lock(&cp
->rx_inuse_lock
);
546 list_splice_init(&cp
->rx_inuse_list
, &list
);
547 spin_unlock(&cp
->rx_inuse_lock
);
549 spin_lock(&cp
->rx_spare_lock
);
550 list_splice_init(&cp
->rx_inuse_list
, &list
);
551 spin_unlock(&cp
->rx_spare_lock
);
553 list_for_each_safe(elem
, tmp
, &list
) {
554 cas_page_free(cp
, list_entry(elem
, cas_page_t
, list
));
558 /* replenish spares if needed */
559 static void cas_spare_recover(struct cas
*cp
, const gfp_t flags
)
561 struct list_head list
, *elem
, *tmp
;
564 /* check inuse list. if we don't need any more free buffers,
568 /* make a local copy of the list */
569 INIT_LIST_HEAD(&list
);
570 spin_lock(&cp
->rx_inuse_lock
);
571 list_splice_init(&cp
->rx_inuse_list
, &list
);
572 spin_unlock(&cp
->rx_inuse_lock
);
574 list_for_each_safe(elem
, tmp
, &list
) {
575 cas_page_t
*page
= list_entry(elem
, cas_page_t
, list
);
578 * With the lockless pagecache, cassini buffering scheme gets
579 * slightly less accurate: we might find that a page has an
580 * elevated reference count here, due to a speculative ref,
581 * and skip it as in-use. Ideally we would be able to reclaim
582 * it. However this would be such a rare case, it doesn't
583 * matter too much as we should pick it up the next time round.
585 * Importantly, if we find that the page has a refcount of 1
586 * here (our refcount), then we know it is definitely not inuse
587 * so we can reuse it.
589 if (page_count(page
->buffer
) > 1)
593 spin_lock(&cp
->rx_spare_lock
);
594 if (cp
->rx_spares_needed
> 0) {
595 list_add(elem
, &cp
->rx_spare_list
);
596 cp
->rx_spares_needed
--;
597 spin_unlock(&cp
->rx_spare_lock
);
599 spin_unlock(&cp
->rx_spare_lock
);
600 cas_page_free(cp
, page
);
604 /* put any inuse buffers back on the list */
605 if (!list_empty(&list
)) {
606 spin_lock(&cp
->rx_inuse_lock
);
607 list_splice(&list
, &cp
->rx_inuse_list
);
608 spin_unlock(&cp
->rx_inuse_lock
);
611 spin_lock(&cp
->rx_spare_lock
);
612 needed
= cp
->rx_spares_needed
;
613 spin_unlock(&cp
->rx_spare_lock
);
617 /* we still need spares, so try to allocate some */
618 INIT_LIST_HEAD(&list
);
621 cas_page_t
*spare
= cas_page_alloc(cp
, flags
);
624 list_add(&spare
->list
, &list
);
628 spin_lock(&cp
->rx_spare_lock
);
629 list_splice(&list
, &cp
->rx_spare_list
);
630 cp
->rx_spares_needed
-= i
;
631 spin_unlock(&cp
->rx_spare_lock
);
634 /* pull a page from the list. */
635 static cas_page_t
*cas_page_dequeue(struct cas
*cp
)
637 struct list_head
*entry
;
640 spin_lock(&cp
->rx_spare_lock
);
641 if (list_empty(&cp
->rx_spare_list
)) {
642 /* try to do a quick recovery */
643 spin_unlock(&cp
->rx_spare_lock
);
644 cas_spare_recover(cp
, GFP_ATOMIC
);
645 spin_lock(&cp
->rx_spare_lock
);
646 if (list_empty(&cp
->rx_spare_list
)) {
647 netif_err(cp
, rx_err
, cp
->dev
,
648 "no spare buffers available\n");
649 spin_unlock(&cp
->rx_spare_lock
);
654 entry
= cp
->rx_spare_list
.next
;
656 recover
= ++cp
->rx_spares_needed
;
657 spin_unlock(&cp
->rx_spare_lock
);
659 /* trigger the timer to do the recovery */
660 if ((recover
& (RX_SPARE_RECOVER_VAL
- 1)) == 0) {
662 atomic_inc(&cp
->reset_task_pending
);
663 atomic_inc(&cp
->reset_task_pending_spare
);
664 schedule_work(&cp
->reset_task
);
666 atomic_set(&cp
->reset_task_pending
, CAS_RESET_SPARE
);
667 schedule_work(&cp
->reset_task
);
670 return list_entry(entry
, cas_page_t
, list
);
674 static void cas_mif_poll(struct cas
*cp
, const int enable
)
678 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
679 cfg
&= (MIF_CFG_MDIO_0
| MIF_CFG_MDIO_1
);
681 if (cp
->phy_type
& CAS_PHY_MII_MDIO1
)
682 cfg
|= MIF_CFG_PHY_SELECT
;
684 /* poll and interrupt on link status change. */
686 cfg
|= MIF_CFG_POLL_EN
;
687 cfg
|= CAS_BASE(MIF_CFG_POLL_REG
, MII_BMSR
);
688 cfg
|= CAS_BASE(MIF_CFG_POLL_PHY
, cp
->phy_addr
);
690 writel((enable
) ? ~(BMSR_LSTATUS
| BMSR_ANEGCOMPLETE
) : 0xFFFF,
691 cp
->regs
+ REG_MIF_MASK
);
692 writel(cfg
, cp
->regs
+ REG_MIF_CFG
);
695 /* Must be invoked under cp->lock */
696 static void cas_begin_auto_negotiation(struct cas
*cp
, struct ethtool_cmd
*ep
)
702 int oldstate
= cp
->lstate
;
703 int link_was_not_down
= !(oldstate
== link_down
);
705 /* Setup link parameters */
708 lcntl
= cp
->link_cntl
;
709 if (ep
->autoneg
== AUTONEG_ENABLE
)
710 cp
->link_cntl
= BMCR_ANENABLE
;
712 u32 speed
= ethtool_cmd_speed(ep
);
714 if (speed
== SPEED_100
)
715 cp
->link_cntl
|= BMCR_SPEED100
;
716 else if (speed
== SPEED_1000
)
717 cp
->link_cntl
|= CAS_BMCR_SPEED1000
;
718 if (ep
->duplex
== DUPLEX_FULL
)
719 cp
->link_cntl
|= BMCR_FULLDPLX
;
722 changed
= (lcntl
!= cp
->link_cntl
);
725 if (cp
->lstate
== link_up
) {
726 netdev_info(cp
->dev
, "PCS link down\n");
729 netdev_info(cp
->dev
, "link configuration changed\n");
732 cp
->lstate
= link_down
;
733 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
738 * WTZ: If the old state was link_up, we turn off the carrier
739 * to replicate everything we do elsewhere on a link-down
740 * event when we were already in a link-up state..
742 if (oldstate
== link_up
)
743 netif_carrier_off(cp
->dev
);
744 if (changed
&& link_was_not_down
) {
746 * WTZ: This branch will simply schedule a full reset after
747 * we explicitly changed link modes in an ioctl. See if this
748 * fixes the link-problems we were having for forced mode.
750 atomic_inc(&cp
->reset_task_pending
);
751 atomic_inc(&cp
->reset_task_pending_all
);
752 schedule_work(&cp
->reset_task
);
754 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
758 if (cp
->phy_type
& CAS_PHY_SERDES
) {
759 u32 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
761 if (cp
->link_cntl
& BMCR_ANENABLE
) {
762 val
|= (PCS_MII_RESTART_AUTONEG
| PCS_MII_AUTONEG_EN
);
763 cp
->lstate
= link_aneg
;
765 if (cp
->link_cntl
& BMCR_FULLDPLX
)
766 val
|= PCS_MII_CTRL_DUPLEX
;
767 val
&= ~PCS_MII_AUTONEG_EN
;
768 cp
->lstate
= link_force_ok
;
770 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
771 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
775 ctl
= cas_phy_read(cp
, MII_BMCR
);
776 ctl
&= ~(BMCR_FULLDPLX
| BMCR_SPEED100
|
777 CAS_BMCR_SPEED1000
| BMCR_ANENABLE
);
778 ctl
|= cp
->link_cntl
;
779 if (ctl
& BMCR_ANENABLE
) {
780 ctl
|= BMCR_ANRESTART
;
781 cp
->lstate
= link_aneg
;
783 cp
->lstate
= link_force_ok
;
785 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
786 cas_phy_write(cp
, MII_BMCR
, ctl
);
791 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
794 /* Must be invoked under cp->lock. */
795 static int cas_reset_mii_phy(struct cas
*cp
)
797 int limit
= STOP_TRIES_PHY
;
800 cas_phy_write(cp
, MII_BMCR
, BMCR_RESET
);
803 val
= cas_phy_read(cp
, MII_BMCR
);
804 if ((val
& BMCR_RESET
) == 0)
811 static int cas_saturn_firmware_init(struct cas
*cp
)
813 const struct firmware
*fw
;
814 const char fw_name
[] = "sun/cassini.bin";
817 if (PHY_NS_DP83065
!= cp
->phy_id
)
820 err
= request_firmware(&fw
, fw_name
, &cp
->pdev
->dev
);
822 pr_err("Failed to load firmware \"%s\"\n",
827 pr_err("bogus length %zu in \"%s\"\n",
832 cp
->fw_load_addr
= fw
->data
[1] << 8 | fw
->data
[0];
833 cp
->fw_size
= fw
->size
- 2;
834 cp
->fw_data
= vmalloc(cp
->fw_size
);
839 memcpy(cp
->fw_data
, &fw
->data
[2], cp
->fw_size
);
841 release_firmware(fw
);
845 static void cas_saturn_firmware_load(struct cas
*cp
)
849 cas_phy_powerdown(cp
);
851 /* expanded memory access mode */
852 cas_phy_write(cp
, DP83065_MII_MEM
, 0x0);
854 /* pointer configuration for new firmware */
855 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff9);
856 cas_phy_write(cp
, DP83065_MII_REGD
, 0xbd);
857 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffa);
858 cas_phy_write(cp
, DP83065_MII_REGD
, 0x82);
859 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffb);
860 cas_phy_write(cp
, DP83065_MII_REGD
, 0x0);
861 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ffc);
862 cas_phy_write(cp
, DP83065_MII_REGD
, 0x39);
864 /* download new firmware */
865 cas_phy_write(cp
, DP83065_MII_MEM
, 0x1);
866 cas_phy_write(cp
, DP83065_MII_REGE
, cp
->fw_load_addr
);
867 for (i
= 0; i
< cp
->fw_size
; i
++)
868 cas_phy_write(cp
, DP83065_MII_REGD
, cp
->fw_data
[i
]);
870 /* enable firmware */
871 cas_phy_write(cp
, DP83065_MII_REGE
, 0x8ff8);
872 cas_phy_write(cp
, DP83065_MII_REGD
, 0x1);
876 /* phy initialization */
877 static void cas_phy_init(struct cas
*cp
)
881 /* if we're in MII/GMII mode, set up phy */
882 if (CAS_PHY_MII(cp
->phy_type
)) {
883 writel(PCS_DATAPATH_MODE_MII
,
884 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
887 cas_reset_mii_phy(cp
); /* take out of isolate mode */
889 if (PHY_LUCENT_B0
== cp
->phy_id
) {
890 /* workaround link up/down issue with lucent */
891 cas_phy_write(cp
, LUCENT_MII_REG
, 0x8000);
892 cas_phy_write(cp
, MII_BMCR
, 0x00f1);
893 cas_phy_write(cp
, LUCENT_MII_REG
, 0x0);
895 } else if (PHY_BROADCOM_B0
== (cp
->phy_id
& 0xFFFFFFFC)) {
896 /* workarounds for broadcom phy */
897 cas_phy_write(cp
, BROADCOM_MII_REG8
, 0x0C20);
898 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0012);
899 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1804);
900 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x0013);
901 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x1204);
902 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
903 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0132);
904 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x8006);
905 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0232);
906 cas_phy_write(cp
, BROADCOM_MII_REG7
, 0x201F);
907 cas_phy_write(cp
, BROADCOM_MII_REG5
, 0x0A20);
909 } else if (PHY_BROADCOM_5411
== cp
->phy_id
) {
910 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
911 val
= cas_phy_read(cp
, BROADCOM_MII_REG4
);
913 /* link workaround */
914 cas_phy_write(cp
, BROADCOM_MII_REG4
,
918 } else if (cp
->cas_flags
& CAS_FLAG_SATURN
) {
919 writel((cp
->phy_type
& CAS_PHY_MII_MDIO0
) ?
920 SATURN_PCFG_FSI
: 0x0,
921 cp
->regs
+ REG_SATURN_PCFG
);
923 /* load firmware to address 10Mbps auto-negotiation
924 * issue. NOTE: this will need to be changed if the
925 * default firmware gets fixed.
927 if (PHY_NS_DP83065
== cp
->phy_id
) {
928 cas_saturn_firmware_load(cp
);
933 /* advertise capabilities */
934 val
= cas_phy_read(cp
, MII_BMCR
);
935 val
&= ~BMCR_ANENABLE
;
936 cas_phy_write(cp
, MII_BMCR
, val
);
939 cas_phy_write(cp
, MII_ADVERTISE
,
940 cas_phy_read(cp
, MII_ADVERTISE
) |
941 (ADVERTISE_10HALF
| ADVERTISE_10FULL
|
942 ADVERTISE_100HALF
| ADVERTISE_100FULL
|
943 CAS_ADVERTISE_PAUSE
|
944 CAS_ADVERTISE_ASYM_PAUSE
));
946 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
947 /* make sure that we don't advertise half
948 * duplex to avoid a chip issue
950 val
= cas_phy_read(cp
, CAS_MII_1000_CTRL
);
951 val
&= ~CAS_ADVERTISE_1000HALF
;
952 val
|= CAS_ADVERTISE_1000FULL
;
953 cas_phy_write(cp
, CAS_MII_1000_CTRL
, val
);
957 /* reset pcs for serdes */
961 writel(PCS_DATAPATH_MODE_SERDES
,
962 cp
->regs
+ REG_PCS_DATAPATH_MODE
);
964 /* enable serdes pins on saturn */
965 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
966 writel(0, cp
->regs
+ REG_SATURN_PCFG
);
968 /* Reset PCS unit. */
969 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
970 val
|= PCS_MII_RESET
;
971 writel(val
, cp
->regs
+ REG_PCS_MII_CTRL
);
974 while (--limit
> 0) {
976 if ((readl(cp
->regs
+ REG_PCS_MII_CTRL
) &
981 netdev_warn(cp
->dev
, "PCS reset bit would not clear [%08x]\n",
982 readl(cp
->regs
+ REG_PCS_STATE_MACHINE
));
984 /* Make sure PCS is disabled while changing advertisement
987 writel(0x0, cp
->regs
+ REG_PCS_CFG
);
989 /* Advertise all capabilities except half-duplex. */
990 val
= readl(cp
->regs
+ REG_PCS_MII_ADVERT
);
991 val
&= ~PCS_MII_ADVERT_HD
;
992 val
|= (PCS_MII_ADVERT_FD
| PCS_MII_ADVERT_SYM_PAUSE
|
993 PCS_MII_ADVERT_ASYM_PAUSE
);
994 writel(val
, cp
->regs
+ REG_PCS_MII_ADVERT
);
997 writel(PCS_CFG_EN
, cp
->regs
+ REG_PCS_CFG
);
999 /* pcs workaround: enable sync detect */
1000 writel(PCS_SERDES_CTRL_SYNCD_EN
,
1001 cp
->regs
+ REG_PCS_SERDES_CTRL
);
1006 static int cas_pcs_link_check(struct cas
*cp
)
1008 u32 stat
, state_machine
;
1011 /* The link status bit latches on zero, so you must
1012 * read it twice in such a case to see a transition
1013 * to the link being up.
1015 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1016 if ((stat
& PCS_MII_STATUS_LINK_STATUS
) == 0)
1017 stat
= readl(cp
->regs
+ REG_PCS_MII_STATUS
);
1019 /* The remote-fault indication is only valid
1020 * when autoneg has completed.
1022 if ((stat
& (PCS_MII_STATUS_AUTONEG_COMP
|
1023 PCS_MII_STATUS_REMOTE_FAULT
)) ==
1024 (PCS_MII_STATUS_AUTONEG_COMP
| PCS_MII_STATUS_REMOTE_FAULT
))
1025 netif_info(cp
, link
, cp
->dev
, "PCS RemoteFault\n");
1027 /* work around link detection issue by querying the PCS state
1030 state_machine
= readl(cp
->regs
+ REG_PCS_STATE_MACHINE
);
1031 if ((state_machine
& PCS_SM_LINK_STATE_MASK
) != SM_LINK_STATE_UP
) {
1032 stat
&= ~PCS_MII_STATUS_LINK_STATUS
;
1033 } else if (state_machine
& PCS_SM_WORD_SYNC_STATE_MASK
) {
1034 stat
|= PCS_MII_STATUS_LINK_STATUS
;
1037 if (stat
& PCS_MII_STATUS_LINK_STATUS
) {
1038 if (cp
->lstate
!= link_up
) {
1040 cp
->lstate
= link_up
;
1041 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1043 cas_set_link_modes(cp
);
1044 netif_carrier_on(cp
->dev
);
1047 } else if (cp
->lstate
== link_up
) {
1048 cp
->lstate
= link_down
;
1049 if (link_transition_timeout
!= 0 &&
1050 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1051 !cp
->link_transition_jiffies_valid
) {
1053 * force a reset, as a workaround for the
1054 * link-failure problem. May want to move this to a
1055 * point a bit earlier in the sequence. If we had
1056 * generated a reset a short time ago, we'll wait for
1057 * the link timer to check the status until a
1058 * timer expires (link_transistion_jiffies_valid is
1059 * true when the timer is running.) Instead of using
1060 * a system timer, we just do a check whenever the
1061 * link timer is running - this clears the flag after
1065 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1066 cp
->link_transition_jiffies
= jiffies
;
1067 cp
->link_transition_jiffies_valid
= 1;
1069 cp
->link_transition
= LINK_TRANSITION_ON_FAILURE
;
1071 netif_carrier_off(cp
->dev
);
1073 netif_info(cp
, link
, cp
->dev
, "PCS link down\n");
1075 /* Cassini only: if you force a mode, there can be
1076 * sync problems on link down. to fix that, the following
1077 * things need to be checked:
1078 * 1) read serialink state register
1079 * 2) read pcs status register to verify link down.
1080 * 3) if link down and serial link == 0x03, then you need
1081 * to global reset the chip.
1083 if ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0) {
1084 /* should check to see if we're in a forced mode */
1085 stat
= readl(cp
->regs
+ REG_PCS_SERDES_STATE
);
1089 } else if (cp
->lstate
== link_down
) {
1090 if (link_transition_timeout
!= 0 &&
1091 cp
->link_transition
!= LINK_TRANSITION_REQUESTED_RESET
&&
1092 !cp
->link_transition_jiffies_valid
) {
1093 /* force a reset, as a workaround for the
1094 * link-failure problem. May want to move
1095 * this to a point a bit earlier in the
1099 cp
->link_transition
= LINK_TRANSITION_REQUESTED_RESET
;
1100 cp
->link_transition_jiffies
= jiffies
;
1101 cp
->link_transition_jiffies_valid
= 1;
1103 cp
->link_transition
= LINK_TRANSITION_STILL_FAILED
;
1110 static int cas_pcs_interrupt(struct net_device
*dev
,
1111 struct cas
*cp
, u32 status
)
1113 u32 stat
= readl(cp
->regs
+ REG_PCS_INTR_STATUS
);
1115 if ((stat
& PCS_INTR_STATUS_LINK_CHANGE
) == 0)
1117 return cas_pcs_link_check(cp
);
1120 static int cas_txmac_interrupt(struct net_device
*dev
,
1121 struct cas
*cp
, u32 status
)
1123 u32 txmac_stat
= readl(cp
->regs
+ REG_MAC_TX_STATUS
);
1128 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1129 "txmac interrupt, txmac_stat: 0x%x\n", txmac_stat
);
1131 /* Defer timer expiration is quite normal,
1132 * don't even log the event.
1134 if ((txmac_stat
& MAC_TX_DEFER_TIMER
) &&
1135 !(txmac_stat
& ~MAC_TX_DEFER_TIMER
))
1138 spin_lock(&cp
->stat_lock
[0]);
1139 if (txmac_stat
& MAC_TX_UNDERRUN
) {
1140 netdev_err(dev
, "TX MAC xmit underrun\n");
1141 cp
->net_stats
[0].tx_fifo_errors
++;
1144 if (txmac_stat
& MAC_TX_MAX_PACKET_ERR
) {
1145 netdev_err(dev
, "TX MAC max packet size error\n");
1146 cp
->net_stats
[0].tx_errors
++;
1149 /* The rest are all cases of one of the 16-bit TX
1150 * counters expiring.
1152 if (txmac_stat
& MAC_TX_COLL_NORMAL
)
1153 cp
->net_stats
[0].collisions
+= 0x10000;
1155 if (txmac_stat
& MAC_TX_COLL_EXCESS
) {
1156 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1157 cp
->net_stats
[0].collisions
+= 0x10000;
1160 if (txmac_stat
& MAC_TX_COLL_LATE
) {
1161 cp
->net_stats
[0].tx_aborted_errors
+= 0x10000;
1162 cp
->net_stats
[0].collisions
+= 0x10000;
1164 spin_unlock(&cp
->stat_lock
[0]);
1166 /* We do not keep track of MAC_TX_COLL_FIRST and
1167 * MAC_TX_PEAK_ATTEMPTS events.
1172 static void cas_load_firmware(struct cas
*cp
, cas_hp_inst_t
*firmware
)
1174 cas_hp_inst_t
*inst
;
1179 while ((inst
= firmware
) && inst
->note
) {
1180 writel(i
, cp
->regs
+ REG_HP_INSTR_RAM_ADDR
);
1182 val
= CAS_BASE(HP_INSTR_RAM_HI_VAL
, inst
->val
);
1183 val
|= CAS_BASE(HP_INSTR_RAM_HI_MASK
, inst
->mask
);
1184 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_HI
);
1186 val
= CAS_BASE(HP_INSTR_RAM_MID_OUTARG
, inst
->outarg
>> 10);
1187 val
|= CAS_BASE(HP_INSTR_RAM_MID_OUTOP
, inst
->outop
);
1188 val
|= CAS_BASE(HP_INSTR_RAM_MID_FNEXT
, inst
->fnext
);
1189 val
|= CAS_BASE(HP_INSTR_RAM_MID_FOFF
, inst
->foff
);
1190 val
|= CAS_BASE(HP_INSTR_RAM_MID_SNEXT
, inst
->snext
);
1191 val
|= CAS_BASE(HP_INSTR_RAM_MID_SOFF
, inst
->soff
);
1192 val
|= CAS_BASE(HP_INSTR_RAM_MID_OP
, inst
->op
);
1193 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_MID
);
1195 val
= CAS_BASE(HP_INSTR_RAM_LOW_OUTMASK
, inst
->outmask
);
1196 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTSHIFT
, inst
->outshift
);
1197 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTEN
, inst
->outenab
);
1198 val
|= CAS_BASE(HP_INSTR_RAM_LOW_OUTARG
, inst
->outarg
);
1199 writel(val
, cp
->regs
+ REG_HP_INSTR_RAM_DATA_LOW
);
1205 static void cas_init_rx_dma(struct cas
*cp
)
1207 u64 desc_dma
= cp
->block_dvma
;
1211 /* rx free descriptors */
1212 val
= CAS_BASE(RX_CFG_SWIVEL
, RX_SWIVEL_OFF_VAL
);
1213 val
|= CAS_BASE(RX_CFG_DESC_RING
, RX_DESC_RINGN_INDEX(0));
1214 val
|= CAS_BASE(RX_CFG_COMP_RING
, RX_COMP_RINGN_INDEX(0));
1215 if ((N_RX_DESC_RINGS
> 1) &&
1216 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)) /* do desc 2 */
1217 val
|= CAS_BASE(RX_CFG_DESC_RING1
, RX_DESC_RINGN_INDEX(1));
1218 writel(val
, cp
->regs
+ REG_RX_CFG
);
1220 val
= (unsigned long) cp
->init_rxds
[0] -
1221 (unsigned long) cp
->init_block
;
1222 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_DB_HI
);
1223 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_DB_LOW
);
1224 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
1226 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1227 /* rx desc 2 is for IPSEC packets. however,
1228 * we don't it that for that purpose.
1230 val
= (unsigned long) cp
->init_rxds
[1] -
1231 (unsigned long) cp
->init_block
;
1232 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_PLUS_RX_DB1_HI
);
1233 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1234 REG_PLUS_RX_DB1_LOW
);
1235 writel(RX_DESC_RINGN_SIZE(1) - 4, cp
->regs
+
1239 /* rx completion registers */
1240 val
= (unsigned long) cp
->init_rxcs
[0] -
1241 (unsigned long) cp
->init_block
;
1242 writel((desc_dma
+ val
) >> 32, cp
->regs
+ REG_RX_CB_HI
);
1243 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+ REG_RX_CB_LOW
);
1245 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1247 for (i
= 1; i
< MAX_RX_COMP_RINGS
; i
++) {
1248 val
= (unsigned long) cp
->init_rxcs
[i
] -
1249 (unsigned long) cp
->init_block
;
1250 writel((desc_dma
+ val
) >> 32, cp
->regs
+
1251 REG_PLUS_RX_CBN_HI(i
));
1252 writel((desc_dma
+ val
) & 0xffffffff, cp
->regs
+
1253 REG_PLUS_RX_CBN_LOW(i
));
1257 /* read selective clear regs to prevent spurious interrupts
1258 * on reset because complete == kick.
1259 * selective clear set up to prevent interrupts on resets
1261 readl(cp
->regs
+ REG_INTR_STATUS_ALIAS
);
1262 writel(INTR_RX_DONE
| INTR_RX_BUF_UNAVAIL
, cp
->regs
+ REG_ALIAS_CLEAR
);
1263 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1264 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
1265 readl(cp
->regs
+ REG_PLUS_INTRN_STATUS_ALIAS(i
));
1267 /* 2 is different from 3 and 4 */
1268 if (N_RX_COMP_RINGS
> 1)
1269 writel(INTR_RX_DONE_ALT
| INTR_RX_BUF_UNAVAIL_1
,
1270 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(1));
1272 for (i
= 2; i
< N_RX_COMP_RINGS
; i
++)
1273 writel(INTR_RX_DONE_ALT
,
1274 cp
->regs
+ REG_PLUS_ALIASN_CLEAR(i
));
1277 /* set up pause thresholds */
1278 val
= CAS_BASE(RX_PAUSE_THRESH_OFF
,
1279 cp
->rx_pause_off
/ RX_PAUSE_THRESH_QUANTUM
);
1280 val
|= CAS_BASE(RX_PAUSE_THRESH_ON
,
1281 cp
->rx_pause_on
/ RX_PAUSE_THRESH_QUANTUM
);
1282 writel(val
, cp
->regs
+ REG_RX_PAUSE_THRESH
);
1284 /* zero out dma reassembly buffers */
1285 for (i
= 0; i
< 64; i
++) {
1286 writel(i
, cp
->regs
+ REG_RX_TABLE_ADDR
);
1287 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_LOW
);
1288 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_MID
);
1289 writel(0x0, cp
->regs
+ REG_RX_TABLE_DATA_HI
);
1292 /* make sure address register is 0 for normal operation */
1293 writel(0x0, cp
->regs
+ REG_RX_CTRL_FIFO_ADDR
);
1294 writel(0x0, cp
->regs
+ REG_RX_IPP_FIFO_ADDR
);
1296 /* interrupt mitigation */
1298 val
= CAS_BASE(RX_BLANK_INTR_TIME
, RX_BLANK_INTR_TIME_VAL
);
1299 val
|= CAS_BASE(RX_BLANK_INTR_PKT
, RX_BLANK_INTR_PKT_VAL
);
1300 writel(val
, cp
->regs
+ REG_RX_BLANK
);
1302 writel(0x0, cp
->regs
+ REG_RX_BLANK
);
1305 /* interrupt generation as a function of low water marks for
1306 * free desc and completion entries. these are used to trigger
1307 * housekeeping for rx descs. we don't use the free interrupt
1308 * as it's not very useful
1310 /* val = CAS_BASE(RX_AE_THRESH_FREE, RX_AE_FREEN_VAL(0)); */
1311 val
= CAS_BASE(RX_AE_THRESH_COMP
, RX_AE_COMP_VAL
);
1312 writel(val
, cp
->regs
+ REG_RX_AE_THRESH
);
1313 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
1314 val
= CAS_BASE(RX_AE1_THRESH_FREE
, RX_AE_FREEN_VAL(1));
1315 writel(val
, cp
->regs
+ REG_PLUS_RX_AE1_THRESH
);
1318 /* Random early detect registers. useful for congestion avoidance.
1319 * this should be tunable.
1321 writel(0x0, cp
->regs
+ REG_RX_RED
);
1323 /* receive page sizes. default == 2K (0x800) */
1325 if (cp
->page_size
== 0x1000)
1327 else if (cp
->page_size
== 0x2000)
1329 else if (cp
->page_size
== 0x4000)
1332 /* round mtu + offset. constrain to page size. */
1333 size
= cp
->dev
->mtu
+ 64;
1334 if (size
> cp
->page_size
)
1335 size
= cp
->page_size
;
1339 else if (size
<= 0x800)
1341 else if (size
<= 0x1000)
1346 cp
->mtu_stride
= 1 << (i
+ 10);
1347 val
= CAS_BASE(RX_PAGE_SIZE
, val
);
1348 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_STRIDE
, i
);
1349 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_COUNT
, cp
->page_size
>> (i
+ 10));
1350 val
|= CAS_BASE(RX_PAGE_SIZE_MTU_OFF
, 0x1);
1351 writel(val
, cp
->regs
+ REG_RX_PAGE_SIZE
);
1353 /* enable the header parser if desired */
1354 if (CAS_HP_FIRMWARE
== cas_prog_null
)
1357 val
= CAS_BASE(HP_CFG_NUM_CPU
, CAS_NCPUS
> 63 ? 0 : CAS_NCPUS
);
1358 val
|= HP_CFG_PARSE_EN
| HP_CFG_SYN_INC_MASK
;
1359 val
|= CAS_BASE(HP_CFG_TCP_THRESH
, HP_TCP_THRESH_VAL
);
1360 writel(val
, cp
->regs
+ REG_HP_CFG
);
1363 static inline void cas_rxc_init(struct cas_rx_comp
*rxc
)
1365 memset(rxc
, 0, sizeof(*rxc
));
1366 rxc
->word4
= cpu_to_le64(RX_COMP4_ZERO
);
1369 /* NOTE: we use the ENC RX DESC ring for spares. the rx_page[0,1]
1370 * flipping is protected by the fact that the chip will not
1371 * hand back the same page index while it's being processed.
1373 static inline cas_page_t
*cas_page_spare(struct cas
*cp
, const int index
)
1375 cas_page_t
*page
= cp
->rx_pages
[1][index
];
1378 if (page_count(page
->buffer
) == 1)
1381 new = cas_page_dequeue(cp
);
1383 spin_lock(&cp
->rx_inuse_lock
);
1384 list_add(&page
->list
, &cp
->rx_inuse_list
);
1385 spin_unlock(&cp
->rx_inuse_lock
);
1390 /* this needs to be changed if we actually use the ENC RX DESC ring */
1391 static cas_page_t
*cas_page_swap(struct cas
*cp
, const int ring
,
1394 cas_page_t
**page0
= cp
->rx_pages
[0];
1395 cas_page_t
**page1
= cp
->rx_pages
[1];
1397 /* swap if buffer is in use */
1398 if (page_count(page0
[index
]->buffer
) > 1) {
1399 cas_page_t
*new = cas_page_spare(cp
, index
);
1401 page1
[index
] = page0
[index
];
1405 RX_USED_SET(page0
[index
], 0);
1406 return page0
[index
];
1409 static void cas_clean_rxds(struct cas
*cp
)
1411 /* only clean ring 0 as ring 1 is used for spare buffers */
1412 struct cas_rx_desc
*rxd
= cp
->init_rxds
[0];
1415 /* release all rx flows */
1416 for (i
= 0; i
< N_RX_FLOWS
; i
++) {
1417 struct sk_buff
*skb
;
1418 while ((skb
= __skb_dequeue(&cp
->rx_flows
[i
]))) {
1419 cas_skb_release(skb
);
1423 /* initialize descriptors */
1424 size
= RX_DESC_RINGN_SIZE(0);
1425 for (i
= 0; i
< size
; i
++) {
1426 cas_page_t
*page
= cas_page_swap(cp
, 0, i
);
1427 rxd
[i
].buffer
= cpu_to_le64(page
->dma_addr
);
1428 rxd
[i
].index
= cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, i
) |
1429 CAS_BASE(RX_INDEX_RING
, 0));
1432 cp
->rx_old
[0] = RX_DESC_RINGN_SIZE(0) - 4;
1434 cp
->cas_flags
&= ~CAS_FLAG_RXD_POST(0);
1437 static void cas_clean_rxcs(struct cas
*cp
)
1441 /* take ownership of rx comp descriptors */
1442 memset(cp
->rx_cur
, 0, sizeof(*cp
->rx_cur
)*N_RX_COMP_RINGS
);
1443 memset(cp
->rx_new
, 0, sizeof(*cp
->rx_new
)*N_RX_COMP_RINGS
);
1444 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
1445 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[i
];
1446 for (j
= 0; j
< RX_COMP_RINGN_SIZE(i
); j
++) {
1447 cas_rxc_init(rxc
+ j
);
1453 /* When we get a RX fifo overflow, the RX unit is probably hung
1454 * so we do the following.
1456 * If any part of the reset goes wrong, we return 1 and that causes the
1457 * whole chip to be reset.
1459 static int cas_rxmac_reset(struct cas
*cp
)
1461 struct net_device
*dev
= cp
->dev
;
1465 /* First, reset MAC RX. */
1466 writel(cp
->mac_rx_cfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1467 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1468 if (!(readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
))
1472 if (limit
== STOP_TRIES
) {
1473 netdev_err(dev
, "RX MAC will not disable, resetting whole chip\n");
1477 /* Second, disable RX DMA. */
1478 writel(0, cp
->regs
+ REG_RX_CFG
);
1479 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1480 if (!(readl(cp
->regs
+ REG_RX_CFG
) & RX_CFG_DMA_EN
))
1484 if (limit
== STOP_TRIES
) {
1485 netdev_err(dev
, "RX DMA will not disable, resetting whole chip\n");
1491 /* Execute RX reset command. */
1492 writel(SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
1493 for (limit
= 0; limit
< STOP_TRIES
; limit
++) {
1494 if (!(readl(cp
->regs
+ REG_SW_RESET
) & SW_RESET_RX
))
1498 if (limit
== STOP_TRIES
) {
1499 netdev_err(dev
, "RX reset command will not execute, resetting whole chip\n");
1503 /* reset driver rx state */
1507 /* Now, reprogram the rest of RX unit. */
1508 cas_init_rx_dma(cp
);
1511 val
= readl(cp
->regs
+ REG_RX_CFG
);
1512 writel(val
| RX_CFG_DMA_EN
, cp
->regs
+ REG_RX_CFG
);
1513 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
1514 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
1515 writel(val
| MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
1520 static int cas_rxmac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1523 u32 stat
= readl(cp
->regs
+ REG_MAC_RX_STATUS
);
1528 netif_dbg(cp
, intr
, cp
->dev
, "rxmac interrupt, stat: 0x%x\n", stat
);
1530 /* these are all rollovers */
1531 spin_lock(&cp
->stat_lock
[0]);
1532 if (stat
& MAC_RX_ALIGN_ERR
)
1533 cp
->net_stats
[0].rx_frame_errors
+= 0x10000;
1535 if (stat
& MAC_RX_CRC_ERR
)
1536 cp
->net_stats
[0].rx_crc_errors
+= 0x10000;
1538 if (stat
& MAC_RX_LEN_ERR
)
1539 cp
->net_stats
[0].rx_length_errors
+= 0x10000;
1541 if (stat
& MAC_RX_OVERFLOW
) {
1542 cp
->net_stats
[0].rx_over_errors
++;
1543 cp
->net_stats
[0].rx_fifo_errors
++;
1546 /* We do not track MAC_RX_FRAME_COUNT and MAC_RX_VIOL_ERR
1549 spin_unlock(&cp
->stat_lock
[0]);
1553 static int cas_mac_interrupt(struct net_device
*dev
, struct cas
*cp
,
1556 u32 stat
= readl(cp
->regs
+ REG_MAC_CTRL_STATUS
);
1561 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1562 "mac interrupt, stat: 0x%x\n", stat
);
1564 /* This interrupt is just for pause frame and pause
1565 * tracking. It is useful for diagnostics and debug
1566 * but probably by default we will mask these events.
1568 if (stat
& MAC_CTRL_PAUSE_STATE
)
1569 cp
->pause_entered
++;
1571 if (stat
& MAC_CTRL_PAUSE_RECEIVED
)
1572 cp
->pause_last_time_recvd
= (stat
>> 16);
1578 /* Must be invoked under cp->lock. */
1579 static inline int cas_mdio_link_not_up(struct cas
*cp
)
1583 switch (cp
->lstate
) {
1584 case link_force_ret
:
1585 netif_info(cp
, link
, cp
->dev
, "Autoneg failed again, keeping forced mode\n");
1586 cas_phy_write(cp
, MII_BMCR
, cp
->link_fcntl
);
1587 cp
->timer_ticks
= 5;
1588 cp
->lstate
= link_force_ok
;
1589 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1593 val
= cas_phy_read(cp
, MII_BMCR
);
1595 /* Try forced modes. we try things in the following order:
1596 * 1000 full -> 100 full/half -> 10 half
1598 val
&= ~(BMCR_ANRESTART
| BMCR_ANENABLE
);
1599 val
|= BMCR_FULLDPLX
;
1600 val
|= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
1601 CAS_BMCR_SPEED1000
: BMCR_SPEED100
;
1602 cas_phy_write(cp
, MII_BMCR
, val
);
1603 cp
->timer_ticks
= 5;
1604 cp
->lstate
= link_force_try
;
1605 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1608 case link_force_try
:
1609 /* Downgrade from 1000 to 100 to 10 Mbps if necessary. */
1610 val
= cas_phy_read(cp
, MII_BMCR
);
1611 cp
->timer_ticks
= 5;
1612 if (val
& CAS_BMCR_SPEED1000
) { /* gigabit */
1613 val
&= ~CAS_BMCR_SPEED1000
;
1614 val
|= (BMCR_SPEED100
| BMCR_FULLDPLX
);
1615 cas_phy_write(cp
, MII_BMCR
, val
);
1619 if (val
& BMCR_SPEED100
) {
1620 if (val
& BMCR_FULLDPLX
) /* fd failed */
1621 val
&= ~BMCR_FULLDPLX
;
1622 else { /* 100Mbps failed */
1623 val
&= ~BMCR_SPEED100
;
1625 cas_phy_write(cp
, MII_BMCR
, val
);
1635 /* must be invoked with cp->lock held */
1636 static int cas_mii_link_check(struct cas
*cp
, const u16 bmsr
)
1640 if (bmsr
& BMSR_LSTATUS
) {
1641 /* Ok, here we got a link. If we had it due to a forced
1642 * fallback, and we were configured for autoneg, we
1643 * retry a short autoneg pass. If you know your hub is
1644 * broken, use ethtool ;)
1646 if ((cp
->lstate
== link_force_try
) &&
1647 (cp
->link_cntl
& BMCR_ANENABLE
)) {
1648 cp
->lstate
= link_force_ret
;
1649 cp
->link_transition
= LINK_TRANSITION_LINK_CONFIG
;
1650 cas_mif_poll(cp
, 0);
1651 cp
->link_fcntl
= cas_phy_read(cp
, MII_BMCR
);
1652 cp
->timer_ticks
= 5;
1654 netif_info(cp
, link
, cp
->dev
,
1655 "Got link after fallback, retrying autoneg once...\n");
1656 cas_phy_write(cp
, MII_BMCR
,
1657 cp
->link_fcntl
| BMCR_ANENABLE
|
1659 cas_mif_poll(cp
, 1);
1661 } else if (cp
->lstate
!= link_up
) {
1662 cp
->lstate
= link_up
;
1663 cp
->link_transition
= LINK_TRANSITION_LINK_UP
;
1666 cas_set_link_modes(cp
);
1667 netif_carrier_on(cp
->dev
);
1673 /* link not up. if the link was previously up, we restart the
1677 if (cp
->lstate
== link_up
) {
1678 cp
->lstate
= link_down
;
1679 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
1681 netif_carrier_off(cp
->dev
);
1683 netif_info(cp
, link
, cp
->dev
, "Link down\n");
1686 } else if (++cp
->timer_ticks
> 10)
1687 cas_mdio_link_not_up(cp
);
1692 static int cas_mif_interrupt(struct net_device
*dev
, struct cas
*cp
,
1695 u32 stat
= readl(cp
->regs
+ REG_MIF_STATUS
);
1698 /* check for a link change */
1699 if (CAS_VAL(MIF_STATUS_POLL_STATUS
, stat
) == 0)
1702 bmsr
= CAS_VAL(MIF_STATUS_POLL_DATA
, stat
);
1703 return cas_mii_link_check(cp
, bmsr
);
1706 static int cas_pci_interrupt(struct net_device
*dev
, struct cas
*cp
,
1709 u32 stat
= readl(cp
->regs
+ REG_PCI_ERR_STATUS
);
1714 netdev_err(dev
, "PCI error [%04x:%04x]",
1715 stat
, readl(cp
->regs
+ REG_BIM_DIAG
));
1717 /* cassini+ has this reserved */
1718 if ((stat
& PCI_ERR_BADACK
) &&
1719 ((cp
->cas_flags
& CAS_FLAG_REG_PLUS
) == 0))
1720 pr_cont(" <No ACK64# during ABS64 cycle>");
1722 if (stat
& PCI_ERR_DTRTO
)
1723 pr_cont(" <Delayed transaction timeout>");
1724 if (stat
& PCI_ERR_OTHER
)
1725 pr_cont(" <other>");
1726 if (stat
& PCI_ERR_BIM_DMA_WRITE
)
1727 pr_cont(" <BIM DMA 0 write req>");
1728 if (stat
& PCI_ERR_BIM_DMA_READ
)
1729 pr_cont(" <BIM DMA 0 read req>");
1732 if (stat
& PCI_ERR_OTHER
) {
1735 /* Interrogate PCI config space for the
1738 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &cfg
);
1739 netdev_err(dev
, "Read PCI cfg space status [%04x]\n", cfg
);
1740 if (cfg
& PCI_STATUS_PARITY
)
1741 netdev_err(dev
, "PCI parity error detected\n");
1742 if (cfg
& PCI_STATUS_SIG_TARGET_ABORT
)
1743 netdev_err(dev
, "PCI target abort\n");
1744 if (cfg
& PCI_STATUS_REC_TARGET_ABORT
)
1745 netdev_err(dev
, "PCI master acks target abort\n");
1746 if (cfg
& PCI_STATUS_REC_MASTER_ABORT
)
1747 netdev_err(dev
, "PCI master abort\n");
1748 if (cfg
& PCI_STATUS_SIG_SYSTEM_ERROR
)
1749 netdev_err(dev
, "PCI system error SERR#\n");
1750 if (cfg
& PCI_STATUS_DETECTED_PARITY
)
1751 netdev_err(dev
, "PCI parity error\n");
1753 /* Write the error bits back to clear them. */
1754 cfg
&= (PCI_STATUS_PARITY
|
1755 PCI_STATUS_SIG_TARGET_ABORT
|
1756 PCI_STATUS_REC_TARGET_ABORT
|
1757 PCI_STATUS_REC_MASTER_ABORT
|
1758 PCI_STATUS_SIG_SYSTEM_ERROR
|
1759 PCI_STATUS_DETECTED_PARITY
);
1760 pci_write_config_word(cp
->pdev
, PCI_STATUS
, cfg
);
1763 /* For all PCI errors, we should reset the chip. */
1767 /* All non-normal interrupt conditions get serviced here.
1768 * Returns non-zero if we should just exit the interrupt
1769 * handler right now (ie. if we reset the card which invalidates
1770 * all of the other original irq status bits).
1772 static int cas_abnormal_irq(struct net_device
*dev
, struct cas
*cp
,
1775 if (status
& INTR_RX_TAG_ERROR
) {
1776 /* corrupt RX tag framing */
1777 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1778 "corrupt rx tag framing\n");
1779 spin_lock(&cp
->stat_lock
[0]);
1780 cp
->net_stats
[0].rx_errors
++;
1781 spin_unlock(&cp
->stat_lock
[0]);
1785 if (status
& INTR_RX_LEN_MISMATCH
) {
1786 /* length mismatch. */
1787 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
1788 "length mismatch for rx frame\n");
1789 spin_lock(&cp
->stat_lock
[0]);
1790 cp
->net_stats
[0].rx_errors
++;
1791 spin_unlock(&cp
->stat_lock
[0]);
1795 if (status
& INTR_PCS_STATUS
) {
1796 if (cas_pcs_interrupt(dev
, cp
, status
))
1800 if (status
& INTR_TX_MAC_STATUS
) {
1801 if (cas_txmac_interrupt(dev
, cp
, status
))
1805 if (status
& INTR_RX_MAC_STATUS
) {
1806 if (cas_rxmac_interrupt(dev
, cp
, status
))
1810 if (status
& INTR_MAC_CTRL_STATUS
) {
1811 if (cas_mac_interrupt(dev
, cp
, status
))
1815 if (status
& INTR_MIF_STATUS
) {
1816 if (cas_mif_interrupt(dev
, cp
, status
))
1820 if (status
& INTR_PCI_ERROR_STATUS
) {
1821 if (cas_pci_interrupt(dev
, cp
, status
))
1828 atomic_inc(&cp
->reset_task_pending
);
1829 atomic_inc(&cp
->reset_task_pending_all
);
1830 netdev_err(dev
, "reset called in cas_abnormal_irq [0x%x]\n", status
);
1831 schedule_work(&cp
->reset_task
);
1833 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
1834 netdev_err(dev
, "reset called in cas_abnormal_irq\n");
1835 schedule_work(&cp
->reset_task
);
1840 /* NOTE: CAS_TABORT returns 1 or 2 so that it can be used when
1841 * determining whether to do a netif_stop/wakeup
1843 #define CAS_TABORT(x) (((x)->cas_flags & CAS_FLAG_TARGET_ABORT) ? 2 : 1)
1844 #define CAS_ROUND_PAGE(x) (((x) + PAGE_SIZE - 1) & PAGE_MASK)
1845 static inline int cas_calc_tabort(struct cas
*cp
, const unsigned long addr
,
1848 unsigned long off
= addr
+ len
;
1850 if (CAS_TABORT(cp
) == 1)
1852 if ((CAS_ROUND_PAGE(off
) - off
) > TX_TARGET_ABORT_LEN
)
1854 return TX_TARGET_ABORT_LEN
;
1857 static inline void cas_tx_ringN(struct cas
*cp
, int ring
, int limit
)
1859 struct cas_tx_desc
*txds
;
1860 struct sk_buff
**skbs
;
1861 struct net_device
*dev
= cp
->dev
;
1864 spin_lock(&cp
->tx_lock
[ring
]);
1865 txds
= cp
->init_txds
[ring
];
1866 skbs
= cp
->tx_skbs
[ring
];
1867 entry
= cp
->tx_old
[ring
];
1869 count
= TX_BUFF_COUNT(ring
, entry
, limit
);
1870 while (entry
!= limit
) {
1871 struct sk_buff
*skb
= skbs
[entry
];
1877 /* this should never occur */
1878 entry
= TX_DESC_NEXT(ring
, entry
);
1882 /* however, we might get only a partial skb release. */
1883 count
-= skb_shinfo(skb
)->nr_frags
+
1884 + cp
->tx_tiny_use
[ring
][entry
].nbufs
+ 1;
1888 netif_printk(cp
, tx_done
, KERN_DEBUG
, cp
->dev
,
1889 "tx[%d] done, slot %d\n", ring
, entry
);
1892 cp
->tx_tiny_use
[ring
][entry
].nbufs
= 0;
1894 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
1895 struct cas_tx_desc
*txd
= txds
+ entry
;
1897 daddr
= le64_to_cpu(txd
->buffer
);
1898 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
1899 le64_to_cpu(txd
->control
));
1900 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
1902 entry
= TX_DESC_NEXT(ring
, entry
);
1904 /* tiny buffer may follow */
1905 if (cp
->tx_tiny_use
[ring
][entry
].used
) {
1906 cp
->tx_tiny_use
[ring
][entry
].used
= 0;
1907 entry
= TX_DESC_NEXT(ring
, entry
);
1911 spin_lock(&cp
->stat_lock
[ring
]);
1912 cp
->net_stats
[ring
].tx_packets
++;
1913 cp
->net_stats
[ring
].tx_bytes
+= skb
->len
;
1914 spin_unlock(&cp
->stat_lock
[ring
]);
1915 dev_kfree_skb_irq(skb
);
1917 cp
->tx_old
[ring
] = entry
;
1919 /* this is wrong for multiple tx rings. the net device needs
1920 * multiple queues for this to do the right thing. we wait
1921 * for 2*packets to be available when using tiny buffers
1923 if (netif_queue_stopped(dev
) &&
1924 (TX_BUFFS_AVAIL(cp
, ring
) > CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1)))
1925 netif_wake_queue(dev
);
1926 spin_unlock(&cp
->tx_lock
[ring
]);
1929 static void cas_tx(struct net_device
*dev
, struct cas
*cp
,
1933 #ifdef USE_TX_COMPWB
1934 u64 compwb
= le64_to_cpu(cp
->init_block
->tx_compwb
);
1936 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
1937 "tx interrupt, status: 0x%x, %llx\n",
1938 status
, (unsigned long long)compwb
);
1939 /* process all the rings */
1940 for (ring
= 0; ring
< N_TX_RINGS
; ring
++) {
1941 #ifdef USE_TX_COMPWB
1942 /* use the completion writeback registers */
1943 limit
= (CAS_VAL(TX_COMPWB_MSB
, compwb
) << 8) |
1944 CAS_VAL(TX_COMPWB_LSB
, compwb
);
1945 compwb
= TX_COMPWB_NEXT(compwb
);
1947 limit
= readl(cp
->regs
+ REG_TX_COMPN(ring
));
1949 if (cp
->tx_old
[ring
] != limit
)
1950 cas_tx_ringN(cp
, ring
, limit
);
1955 static int cas_rx_process_pkt(struct cas
*cp
, struct cas_rx_comp
*rxc
,
1956 int entry
, const u64
*words
,
1957 struct sk_buff
**skbref
)
1959 int dlen
, hlen
, len
, i
, alloclen
;
1960 int off
, swivel
= RX_SWIVEL_OFF_VAL
;
1961 struct cas_page
*page
;
1962 struct sk_buff
*skb
;
1963 void *addr
, *crcaddr
;
1967 hlen
= CAS_VAL(RX_COMP2_HDR_SIZE
, words
[1]);
1968 dlen
= CAS_VAL(RX_COMP1_DATA_SIZE
, words
[0]);
1971 if (RX_COPY_ALWAYS
|| (words
[2] & RX_COMP3_SMALL_PKT
))
1974 alloclen
= max(hlen
, RX_COPY_MIN
);
1976 skb
= netdev_alloc_skb(cp
->dev
, alloclen
+ swivel
+ cp
->crc_size
);
1981 skb_reserve(skb
, swivel
);
1984 addr
= crcaddr
= NULL
;
1985 if (hlen
) { /* always copy header pages */
1986 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
1987 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
1988 off
= CAS_VAL(RX_COMP2_HDR_OFF
, words
[1]) * 0x100 +
1992 if (!dlen
) /* attach FCS */
1994 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
1995 PCI_DMA_FROMDEVICE
);
1996 addr
= cas_page_map(page
->buffer
);
1997 memcpy(p
, addr
+ off
, i
);
1998 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
1999 PCI_DMA_FROMDEVICE
);
2000 cas_page_unmap(addr
);
2001 RX_USED_ADD(page
, 0x100);
2007 if (alloclen
< (hlen
+ dlen
)) {
2008 skb_frag_t
*frag
= skb_shinfo(skb
)->frags
;
2010 /* normal or jumbo packets. we use frags */
2011 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2012 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2013 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2015 hlen
= min(cp
->page_size
- off
, dlen
);
2017 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2018 "rx page overflow: %d\n", hlen
);
2019 dev_kfree_skb_irq(skb
);
2023 if (i
== dlen
) /* attach FCS */
2025 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2026 PCI_DMA_FROMDEVICE
);
2028 /* make sure we always copy a header */
2030 if (p
== (char *) skb
->data
) { /* not split */
2031 addr
= cas_page_map(page
->buffer
);
2032 memcpy(p
, addr
+ off
, RX_COPY_MIN
);
2033 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2034 PCI_DMA_FROMDEVICE
);
2035 cas_page_unmap(addr
);
2037 swivel
= RX_COPY_MIN
;
2038 RX_USED_ADD(page
, cp
->mtu_stride
);
2040 RX_USED_ADD(page
, hlen
);
2042 skb_put(skb
, alloclen
);
2044 skb_shinfo(skb
)->nr_frags
++;
2045 skb
->data_len
+= hlen
- swivel
;
2046 skb
->truesize
+= hlen
- swivel
;
2047 skb
->len
+= hlen
- swivel
;
2049 __skb_frag_set_page(frag
, page
->buffer
);
2050 __skb_frag_ref(frag
);
2051 frag
->page_offset
= off
;
2052 skb_frag_size_set(frag
, hlen
- swivel
);
2054 /* any more data? */
2055 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2059 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2060 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2061 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2062 hlen
+ cp
->crc_size
,
2063 PCI_DMA_FROMDEVICE
);
2064 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2065 hlen
+ cp
->crc_size
,
2066 PCI_DMA_FROMDEVICE
);
2068 skb_shinfo(skb
)->nr_frags
++;
2069 skb
->data_len
+= hlen
;
2073 __skb_frag_set_page(frag
, page
->buffer
);
2074 __skb_frag_ref(frag
);
2075 frag
->page_offset
= 0;
2076 skb_frag_size_set(frag
, hlen
);
2077 RX_USED_ADD(page
, hlen
+ cp
->crc_size
);
2081 addr
= cas_page_map(page
->buffer
);
2082 crcaddr
= addr
+ off
+ hlen
;
2086 /* copying packet */
2090 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2091 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2092 off
= CAS_VAL(RX_COMP1_DATA_OFF
, words
[0]) + swivel
;
2093 hlen
= min(cp
->page_size
- off
, dlen
);
2095 netif_printk(cp
, rx_err
, KERN_DEBUG
, cp
->dev
,
2096 "rx page overflow: %d\n", hlen
);
2097 dev_kfree_skb_irq(skb
);
2101 if (i
== dlen
) /* attach FCS */
2103 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
+ off
, i
,
2104 PCI_DMA_FROMDEVICE
);
2105 addr
= cas_page_map(page
->buffer
);
2106 memcpy(p
, addr
+ off
, i
);
2107 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
+ off
, i
,
2108 PCI_DMA_FROMDEVICE
);
2109 cas_page_unmap(addr
);
2110 if (p
== (char *) skb
->data
) /* not split */
2111 RX_USED_ADD(page
, cp
->mtu_stride
);
2113 RX_USED_ADD(page
, i
);
2115 /* any more data? */
2116 if ((words
[0] & RX_COMP1_SPLIT_PKT
) && ((dlen
-= hlen
) > 0)) {
2118 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2119 page
= cp
->rx_pages
[CAS_VAL(RX_INDEX_RING
, i
)][CAS_VAL(RX_INDEX_NUM
, i
)];
2120 pci_dma_sync_single_for_cpu(cp
->pdev
, page
->dma_addr
,
2121 dlen
+ cp
->crc_size
,
2122 PCI_DMA_FROMDEVICE
);
2123 addr
= cas_page_map(page
->buffer
);
2124 memcpy(p
, addr
, dlen
+ cp
->crc_size
);
2125 pci_dma_sync_single_for_device(cp
->pdev
, page
->dma_addr
,
2126 dlen
+ cp
->crc_size
,
2127 PCI_DMA_FROMDEVICE
);
2128 cas_page_unmap(addr
);
2129 RX_USED_ADD(page
, dlen
+ cp
->crc_size
);
2134 crcaddr
= skb
->data
+ alloclen
;
2136 skb_put(skb
, alloclen
);
2139 csum
= (__force __sum16
)htons(CAS_VAL(RX_COMP4_TCP_CSUM
, words
[3]));
2141 /* checksum includes FCS. strip it out. */
2142 csum
= csum_fold(csum_partial(crcaddr
, cp
->crc_size
,
2143 csum_unfold(csum
)));
2145 cas_page_unmap(addr
);
2147 skb
->protocol
= eth_type_trans(skb
, cp
->dev
);
2148 if (skb
->protocol
== htons(ETH_P_IP
)) {
2149 skb
->csum
= csum_unfold(~csum
);
2150 skb
->ip_summed
= CHECKSUM_COMPLETE
;
2152 skb_checksum_none_assert(skb
);
2157 /* we can handle up to 64 rx flows at a time. we do the same thing
2158 * as nonreassm except that we batch up the buffers.
2159 * NOTE: we currently just treat each flow as a bunch of packets that
2160 * we pass up. a better way would be to coalesce the packets
2161 * into a jumbo packet. to do that, we need to do the following:
2162 * 1) the first packet will have a clean split between header and
2164 * 2) each time the next flow packet comes in, extend the
2165 * data length and merge the checksums.
2166 * 3) on flow release, fix up the header.
2167 * 4) make sure the higher layer doesn't care.
2168 * because packets get coalesced, we shouldn't run into fragment count
2171 static inline void cas_rx_flow_pkt(struct cas
*cp
, const u64
*words
,
2172 struct sk_buff
*skb
)
2174 int flowid
= CAS_VAL(RX_COMP3_FLOWID
, words
[2]) & (N_RX_FLOWS
- 1);
2175 struct sk_buff_head
*flow
= &cp
->rx_flows
[flowid
];
2177 /* this is protected at a higher layer, so no need to
2178 * do any additional locking here. stick the buffer
2181 __skb_queue_tail(flow
, skb
);
2182 if (words
[0] & RX_COMP1_RELEASE_FLOW
) {
2183 while ((skb
= __skb_dequeue(flow
))) {
2184 cas_skb_release(skb
);
2189 /* put rx descriptor back on ring. if a buffer is in use by a higher
2190 * layer, this will need to put in a replacement.
2192 static void cas_post_page(struct cas
*cp
, const int ring
, const int index
)
2197 entry
= cp
->rx_old
[ring
];
2199 new = cas_page_swap(cp
, ring
, index
);
2200 cp
->init_rxds
[ring
][entry
].buffer
= cpu_to_le64(new->dma_addr
);
2201 cp
->init_rxds
[ring
][entry
].index
=
2202 cpu_to_le64(CAS_BASE(RX_INDEX_NUM
, index
) |
2203 CAS_BASE(RX_INDEX_RING
, ring
));
2205 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2206 cp
->rx_old
[ring
] = entry
;
2212 writel(entry
, cp
->regs
+ REG_RX_KICK
);
2213 else if ((N_RX_DESC_RINGS
> 1) &&
2214 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2215 writel(entry
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2219 /* only when things are bad */
2220 static int cas_post_rxds_ringN(struct cas
*cp
, int ring
, int num
)
2222 unsigned int entry
, last
, count
, released
;
2224 cas_page_t
**page
= cp
->rx_pages
[ring
];
2226 entry
= cp
->rx_old
[ring
];
2228 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2229 "rxd[%d] interrupt, done: %d\n", ring
, entry
);
2232 count
= entry
& 0x3;
2233 last
= RX_DESC_ENTRY(ring
, num
? entry
+ num
- 4: entry
- 4);
2235 while (entry
!= last
) {
2236 /* make a new buffer if it's still in use */
2237 if (page_count(page
[entry
]->buffer
) > 1) {
2238 cas_page_t
*new = cas_page_dequeue(cp
);
2240 /* let the timer know that we need to
2243 cp
->cas_flags
|= CAS_FLAG_RXD_POST(ring
);
2244 if (!timer_pending(&cp
->link_timer
))
2245 mod_timer(&cp
->link_timer
, jiffies
+
2246 CAS_LINK_FAST_TIMEOUT
);
2247 cp
->rx_old
[ring
] = entry
;
2248 cp
->rx_last
[ring
] = num
? num
- released
: 0;
2251 spin_lock(&cp
->rx_inuse_lock
);
2252 list_add(&page
[entry
]->list
, &cp
->rx_inuse_list
);
2253 spin_unlock(&cp
->rx_inuse_lock
);
2254 cp
->init_rxds
[ring
][entry
].buffer
=
2255 cpu_to_le64(new->dma_addr
);
2265 entry
= RX_DESC_ENTRY(ring
, entry
+ 1);
2267 cp
->rx_old
[ring
] = entry
;
2273 writel(cluster
, cp
->regs
+ REG_RX_KICK
);
2274 else if ((N_RX_DESC_RINGS
> 1) &&
2275 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
))
2276 writel(cluster
, cp
->regs
+ REG_PLUS_RX_KICK1
);
2281 /* process a completion ring. packets are set up in three basic ways:
2282 * small packets: should be copied header + data in single buffer.
2283 * large packets: header and data in a single buffer.
2284 * split packets: header in a separate buffer from data.
2285 * data may be in multiple pages. data may be > 256
2286 * bytes but in a single page.
2288 * NOTE: RX page posting is done in this routine as well. while there's
2289 * the capability of using multiple RX completion rings, it isn't
2290 * really worthwhile due to the fact that the page posting will
2291 * force serialization on the single descriptor ring.
2293 static int cas_rx_ringN(struct cas
*cp
, int ring
, int budget
)
2295 struct cas_rx_comp
*rxcs
= cp
->init_rxcs
[ring
];
2299 netif_printk(cp
, intr
, KERN_DEBUG
, cp
->dev
,
2300 "rx[%d] interrupt, done: %d/%d\n",
2302 readl(cp
->regs
+ REG_RX_COMP_HEAD
), cp
->rx_new
[ring
]);
2304 entry
= cp
->rx_new
[ring
];
2307 struct cas_rx_comp
*rxc
= rxcs
+ entry
;
2308 struct sk_buff
*uninitialized_var(skb
);
2313 words
[0] = le64_to_cpu(rxc
->word1
);
2314 words
[1] = le64_to_cpu(rxc
->word2
);
2315 words
[2] = le64_to_cpu(rxc
->word3
);
2316 words
[3] = le64_to_cpu(rxc
->word4
);
2318 /* don't touch if still owned by hw */
2319 type
= CAS_VAL(RX_COMP1_TYPE
, words
[0]);
2323 /* hw hasn't cleared the zero bit yet */
2324 if (words
[3] & RX_COMP4_ZERO
) {
2328 /* get info on the packet */
2329 if (words
[3] & (RX_COMP4_LEN_MISMATCH
| RX_COMP4_BAD
)) {
2330 spin_lock(&cp
->stat_lock
[ring
]);
2331 cp
->net_stats
[ring
].rx_errors
++;
2332 if (words
[3] & RX_COMP4_LEN_MISMATCH
)
2333 cp
->net_stats
[ring
].rx_length_errors
++;
2334 if (words
[3] & RX_COMP4_BAD
)
2335 cp
->net_stats
[ring
].rx_crc_errors
++;
2336 spin_unlock(&cp
->stat_lock
[ring
]);
2338 /* We'll just return it to Cassini. */
2340 spin_lock(&cp
->stat_lock
[ring
]);
2341 ++cp
->net_stats
[ring
].rx_dropped
;
2342 spin_unlock(&cp
->stat_lock
[ring
]);
2346 len
= cas_rx_process_pkt(cp
, rxc
, entry
, words
, &skb
);
2352 /* see if it's a flow re-assembly or not. the driver
2353 * itself handles release back up.
2355 if (RX_DONT_BATCH
|| (type
== 0x2)) {
2356 /* non-reassm: these always get released */
2357 cas_skb_release(skb
);
2359 cas_rx_flow_pkt(cp
, words
, skb
);
2362 spin_lock(&cp
->stat_lock
[ring
]);
2363 cp
->net_stats
[ring
].rx_packets
++;
2364 cp
->net_stats
[ring
].rx_bytes
+= len
;
2365 spin_unlock(&cp
->stat_lock
[ring
]);
2370 /* should it be released? */
2371 if (words
[0] & RX_COMP1_RELEASE_HDR
) {
2372 i
= CAS_VAL(RX_COMP2_HDR_INDEX
, words
[1]);
2373 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2374 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2375 cas_post_page(cp
, dring
, i
);
2378 if (words
[0] & RX_COMP1_RELEASE_DATA
) {
2379 i
= CAS_VAL(RX_COMP1_DATA_INDEX
, words
[0]);
2380 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2381 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2382 cas_post_page(cp
, dring
, i
);
2385 if (words
[0] & RX_COMP1_RELEASE_NEXT
) {
2386 i
= CAS_VAL(RX_COMP2_NEXT_INDEX
, words
[1]);
2387 dring
= CAS_VAL(RX_INDEX_RING
, i
);
2388 i
= CAS_VAL(RX_INDEX_NUM
, i
);
2389 cas_post_page(cp
, dring
, i
);
2392 /* skip to the next entry */
2393 entry
= RX_COMP_ENTRY(ring
, entry
+ 1 +
2394 CAS_VAL(RX_COMP1_SKIP
, words
[0]));
2396 if (budget
&& (npackets
>= budget
))
2400 cp
->rx_new
[ring
] = entry
;
2403 netdev_info(cp
->dev
, "Memory squeeze, deferring packet\n");
2408 /* put completion entries back on the ring */
2409 static void cas_post_rxcs_ringN(struct net_device
*dev
,
2410 struct cas
*cp
, int ring
)
2412 struct cas_rx_comp
*rxc
= cp
->init_rxcs
[ring
];
2415 last
= cp
->rx_cur
[ring
];
2416 entry
= cp
->rx_new
[ring
];
2417 netif_printk(cp
, intr
, KERN_DEBUG
, dev
,
2418 "rxc[%d] interrupt, done: %d/%d\n",
2419 ring
, readl(cp
->regs
+ REG_RX_COMP_HEAD
), entry
);
2421 /* zero and re-mark descriptors */
2422 while (last
!= entry
) {
2423 cas_rxc_init(rxc
+ last
);
2424 last
= RX_COMP_ENTRY(ring
, last
+ 1);
2426 cp
->rx_cur
[ring
] = last
;
2429 writel(last
, cp
->regs
+ REG_RX_COMP_TAIL
);
2430 else if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
)
2431 writel(last
, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(ring
));
2436 /* cassini can use all four PCI interrupts for the completion ring.
2437 * rings 3 and 4 are identical
2439 #if defined(USE_PCI_INTC) || defined(USE_PCI_INTD)
2440 static inline void cas_handle_irqN(struct net_device
*dev
,
2441 struct cas
*cp
, const u32 status
,
2444 if (status
& (INTR_RX_COMP_FULL_ALT
| INTR_RX_COMP_AF_ALT
))
2445 cas_post_rxcs_ringN(dev
, cp
, ring
);
2448 static irqreturn_t
cas_interruptN(int irq
, void *dev_id
)
2450 struct net_device
*dev
= dev_id
;
2451 struct cas
*cp
= netdev_priv(dev
);
2452 unsigned long flags
;
2453 int ring
= (irq
== cp
->pci_irq_INTC
) ? 2 : 3;
2454 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(ring
));
2456 /* check for shared irq */
2460 spin_lock_irqsave(&cp
->lock
, flags
);
2461 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2464 napi_schedule(&cp
->napi
);
2466 cas_rx_ringN(cp
, ring
, 0);
2468 status
&= ~INTR_RX_DONE_ALT
;
2472 cas_handle_irqN(dev
, cp
, status
, ring
);
2473 spin_unlock_irqrestore(&cp
->lock
, flags
);
2479 /* everything but rx packets */
2480 static inline void cas_handle_irq1(struct cas
*cp
, const u32 status
)
2482 if (status
& INTR_RX_BUF_UNAVAIL_1
) {
2483 /* Frame arrived, no free RX buffers available.
2484 * NOTE: we can get this on a link transition. */
2485 cas_post_rxds_ringN(cp
, 1, 0);
2486 spin_lock(&cp
->stat_lock
[1]);
2487 cp
->net_stats
[1].rx_dropped
++;
2488 spin_unlock(&cp
->stat_lock
[1]);
2491 if (status
& INTR_RX_BUF_AE_1
)
2492 cas_post_rxds_ringN(cp
, 1, RX_DESC_RINGN_SIZE(1) -
2493 RX_AE_FREEN_VAL(1));
2495 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2496 cas_post_rxcs_ringN(cp
, 1);
2499 /* ring 2 handles a few more events than 3 and 4 */
2500 static irqreturn_t
cas_interrupt1(int irq
, void *dev_id
)
2502 struct net_device
*dev
= dev_id
;
2503 struct cas
*cp
= netdev_priv(dev
);
2504 unsigned long flags
;
2505 u32 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2507 /* check for shared interrupt */
2511 spin_lock_irqsave(&cp
->lock
, flags
);
2512 if (status
& INTR_RX_DONE_ALT
) { /* handle rx separately */
2515 napi_schedule(&cp
->napi
);
2517 cas_rx_ringN(cp
, 1, 0);
2519 status
&= ~INTR_RX_DONE_ALT
;
2522 cas_handle_irq1(cp
, status
);
2523 spin_unlock_irqrestore(&cp
->lock
, flags
);
2528 static inline void cas_handle_irq(struct net_device
*dev
,
2529 struct cas
*cp
, const u32 status
)
2531 /* housekeeping interrupts */
2532 if (status
& INTR_ERROR_MASK
)
2533 cas_abnormal_irq(dev
, cp
, status
);
2535 if (status
& INTR_RX_BUF_UNAVAIL
) {
2536 /* Frame arrived, no free RX buffers available.
2537 * NOTE: we can get this on a link transition.
2539 cas_post_rxds_ringN(cp
, 0, 0);
2540 spin_lock(&cp
->stat_lock
[0]);
2541 cp
->net_stats
[0].rx_dropped
++;
2542 spin_unlock(&cp
->stat_lock
[0]);
2543 } else if (status
& INTR_RX_BUF_AE
) {
2544 cas_post_rxds_ringN(cp
, 0, RX_DESC_RINGN_SIZE(0) -
2545 RX_AE_FREEN_VAL(0));
2548 if (status
& (INTR_RX_COMP_AF
| INTR_RX_COMP_FULL
))
2549 cas_post_rxcs_ringN(dev
, cp
, 0);
2552 static irqreturn_t
cas_interrupt(int irq
, void *dev_id
)
2554 struct net_device
*dev
= dev_id
;
2555 struct cas
*cp
= netdev_priv(dev
);
2556 unsigned long flags
;
2557 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2562 spin_lock_irqsave(&cp
->lock
, flags
);
2563 if (status
& (INTR_TX_ALL
| INTR_TX_INTME
)) {
2564 cas_tx(dev
, cp
, status
);
2565 status
&= ~(INTR_TX_ALL
| INTR_TX_INTME
);
2568 if (status
& INTR_RX_DONE
) {
2571 napi_schedule(&cp
->napi
);
2573 cas_rx_ringN(cp
, 0, 0);
2575 status
&= ~INTR_RX_DONE
;
2579 cas_handle_irq(dev
, cp
, status
);
2580 spin_unlock_irqrestore(&cp
->lock
, flags
);
2586 static int cas_poll(struct napi_struct
*napi
, int budget
)
2588 struct cas
*cp
= container_of(napi
, struct cas
, napi
);
2589 struct net_device
*dev
= cp
->dev
;
2590 int i
, enable_intr
, credits
;
2591 u32 status
= readl(cp
->regs
+ REG_INTR_STATUS
);
2592 unsigned long flags
;
2594 spin_lock_irqsave(&cp
->lock
, flags
);
2595 cas_tx(dev
, cp
, status
);
2596 spin_unlock_irqrestore(&cp
->lock
, flags
);
2598 /* NAPI rx packets. we spread the credits across all of the
2601 * to make sure we're fair with the work we loop through each
2602 * ring N_RX_COMP_RING times with a request of
2603 * budget / N_RX_COMP_RINGS
2607 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++) {
2609 for (j
= 0; j
< N_RX_COMP_RINGS
; j
++) {
2610 credits
+= cas_rx_ringN(cp
, j
, budget
/ N_RX_COMP_RINGS
);
2611 if (credits
>= budget
) {
2619 /* final rx completion */
2620 spin_lock_irqsave(&cp
->lock
, flags
);
2622 cas_handle_irq(dev
, cp
, status
);
2625 if (N_RX_COMP_RINGS
> 1) {
2626 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(1));
2628 cas_handle_irq1(dev
, cp
, status
);
2633 if (N_RX_COMP_RINGS
> 2) {
2634 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(2));
2636 cas_handle_irqN(dev
, cp
, status
, 2);
2641 if (N_RX_COMP_RINGS
> 3) {
2642 status
= readl(cp
->regs
+ REG_PLUS_INTRN_STATUS(3));
2644 cas_handle_irqN(dev
, cp
, status
, 3);
2647 spin_unlock_irqrestore(&cp
->lock
, flags
);
2649 napi_complete(napi
);
2650 cas_unmask_intr(cp
);
2656 #ifdef CONFIG_NET_POLL_CONTROLLER
2657 static void cas_netpoll(struct net_device
*dev
)
2659 struct cas
*cp
= netdev_priv(dev
);
2661 cas_disable_irq(cp
, 0);
2662 cas_interrupt(cp
->pdev
->irq
, dev
);
2663 cas_enable_irq(cp
, 0);
2666 if (N_RX_COMP_RINGS
> 1) {
2667 /* cas_interrupt1(); */
2671 if (N_RX_COMP_RINGS
> 2) {
2672 /* cas_interruptN(); */
2676 if (N_RX_COMP_RINGS
> 3) {
2677 /* cas_interruptN(); */
2683 static void cas_tx_timeout(struct net_device
*dev
)
2685 struct cas
*cp
= netdev_priv(dev
);
2687 netdev_err(dev
, "transmit timed out, resetting\n");
2688 if (!cp
->hw_running
) {
2689 netdev_err(dev
, "hrm.. hw not running!\n");
2693 netdev_err(dev
, "MIF_STATE[%08x]\n",
2694 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
2696 netdev_err(dev
, "MAC_STATE[%08x]\n",
2697 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
2699 netdev_err(dev
, "TX_STATE[%08x:%08x:%08x] FIFO[%08x:%08x:%08x] SM1[%08x] SM2[%08x]\n",
2700 readl(cp
->regs
+ REG_TX_CFG
),
2701 readl(cp
->regs
+ REG_MAC_TX_STATUS
),
2702 readl(cp
->regs
+ REG_MAC_TX_CFG
),
2703 readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
),
2704 readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
),
2705 readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
),
2706 readl(cp
->regs
+ REG_TX_SM_1
),
2707 readl(cp
->regs
+ REG_TX_SM_2
));
2709 netdev_err(dev
, "RX_STATE[%08x:%08x:%08x]\n",
2710 readl(cp
->regs
+ REG_RX_CFG
),
2711 readl(cp
->regs
+ REG_MAC_RX_STATUS
),
2712 readl(cp
->regs
+ REG_MAC_RX_CFG
));
2714 netdev_err(dev
, "HP_STATE[%08x:%08x:%08x:%08x]\n",
2715 readl(cp
->regs
+ REG_HP_STATE_MACHINE
),
2716 readl(cp
->regs
+ REG_HP_STATUS0
),
2717 readl(cp
->regs
+ REG_HP_STATUS1
),
2718 readl(cp
->regs
+ REG_HP_STATUS2
));
2721 atomic_inc(&cp
->reset_task_pending
);
2722 atomic_inc(&cp
->reset_task_pending_all
);
2723 schedule_work(&cp
->reset_task
);
2725 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
2726 schedule_work(&cp
->reset_task
);
2730 static inline int cas_intme(int ring
, int entry
)
2732 /* Algorithm: IRQ every 1/2 of descriptors. */
2733 if (!(entry
& ((TX_DESC_RINGN_SIZE(ring
) >> 1) - 1)))
2739 static void cas_write_txd(struct cas
*cp
, int ring
, int entry
,
2740 dma_addr_t mapping
, int len
, u64 ctrl
, int last
)
2742 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
] + entry
;
2744 ctrl
|= CAS_BASE(TX_DESC_BUFLEN
, len
);
2745 if (cas_intme(ring
, entry
))
2746 ctrl
|= TX_DESC_INTME
;
2748 ctrl
|= TX_DESC_EOF
;
2749 txd
->control
= cpu_to_le64(ctrl
);
2750 txd
->buffer
= cpu_to_le64(mapping
);
2753 static inline void *tx_tiny_buf(struct cas
*cp
, const int ring
,
2756 return cp
->tx_tiny_bufs
[ring
] + TX_TINY_BUF_LEN
*entry
;
2759 static inline dma_addr_t
tx_tiny_map(struct cas
*cp
, const int ring
,
2760 const int entry
, const int tentry
)
2762 cp
->tx_tiny_use
[ring
][tentry
].nbufs
++;
2763 cp
->tx_tiny_use
[ring
][entry
].used
= 1;
2764 return cp
->tx_tiny_dvma
[ring
] + TX_TINY_BUF_LEN
*entry
;
2767 static inline int cas_xmit_tx_ringN(struct cas
*cp
, int ring
,
2768 struct sk_buff
*skb
)
2770 struct net_device
*dev
= cp
->dev
;
2771 int entry
, nr_frags
, frag
, tabort
, tentry
;
2773 unsigned long flags
;
2777 spin_lock_irqsave(&cp
->tx_lock
[ring
], flags
);
2779 /* This is a hard error, log it. */
2780 if (TX_BUFFS_AVAIL(cp
, ring
) <=
2781 CAS_TABORT(cp
)*(skb_shinfo(skb
)->nr_frags
+ 1)) {
2782 netif_stop_queue(dev
);
2783 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2784 netdev_err(dev
, "BUG! Tx Ring full when queue awake!\n");
2789 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2790 const u64 csum_start_off
= skb_checksum_start_offset(skb
);
2791 const u64 csum_stuff_off
= csum_start_off
+ skb
->csum_offset
;
2793 ctrl
= TX_DESC_CSUM_EN
|
2794 CAS_BASE(TX_DESC_CSUM_START
, csum_start_off
) |
2795 CAS_BASE(TX_DESC_CSUM_STUFF
, csum_stuff_off
);
2798 entry
= cp
->tx_new
[ring
];
2799 cp
->tx_skbs
[ring
][entry
] = skb
;
2801 nr_frags
= skb_shinfo(skb
)->nr_frags
;
2802 len
= skb_headlen(skb
);
2803 mapping
= pci_map_page(cp
->pdev
, virt_to_page(skb
->data
),
2804 offset_in_page(skb
->data
), len
,
2808 tabort
= cas_calc_tabort(cp
, (unsigned long) skb
->data
, len
);
2809 if (unlikely(tabort
)) {
2810 /* NOTE: len is always > tabort */
2811 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2812 ctrl
| TX_DESC_SOF
, 0);
2813 entry
= TX_DESC_NEXT(ring
, entry
);
2815 skb_copy_from_linear_data_offset(skb
, len
- tabort
,
2816 tx_tiny_buf(cp
, ring
, entry
), tabort
);
2817 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2818 cas_write_txd(cp
, ring
, entry
, mapping
, tabort
, ctrl
,
2821 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
|
2822 TX_DESC_SOF
, (nr_frags
== 0));
2824 entry
= TX_DESC_NEXT(ring
, entry
);
2826 for (frag
= 0; frag
< nr_frags
; frag
++) {
2827 const skb_frag_t
*fragp
= &skb_shinfo(skb
)->frags
[frag
];
2829 len
= skb_frag_size(fragp
);
2830 mapping
= skb_frag_dma_map(&cp
->pdev
->dev
, fragp
, 0, len
,
2833 tabort
= cas_calc_tabort(cp
, fragp
->page_offset
, len
);
2834 if (unlikely(tabort
)) {
2837 /* NOTE: len is always > tabort */
2838 cas_write_txd(cp
, ring
, entry
, mapping
, len
- tabort
,
2840 entry
= TX_DESC_NEXT(ring
, entry
);
2842 addr
= cas_page_map(skb_frag_page(fragp
));
2843 memcpy(tx_tiny_buf(cp
, ring
, entry
),
2844 addr
+ fragp
->page_offset
+ len
- tabort
,
2846 cas_page_unmap(addr
);
2847 mapping
= tx_tiny_map(cp
, ring
, entry
, tentry
);
2851 cas_write_txd(cp
, ring
, entry
, mapping
, len
, ctrl
,
2852 (frag
+ 1 == nr_frags
));
2853 entry
= TX_DESC_NEXT(ring
, entry
);
2856 cp
->tx_new
[ring
] = entry
;
2857 if (TX_BUFFS_AVAIL(cp
, ring
) <= CAS_TABORT(cp
)*(MAX_SKB_FRAGS
+ 1))
2858 netif_stop_queue(dev
);
2860 netif_printk(cp
, tx_queued
, KERN_DEBUG
, dev
,
2861 "tx[%d] queued, slot %d, skblen %d, avail %d\n",
2862 ring
, entry
, skb
->len
, TX_BUFFS_AVAIL(cp
, ring
));
2863 writel(entry
, cp
->regs
+ REG_TX_KICKN(ring
));
2864 spin_unlock_irqrestore(&cp
->tx_lock
[ring
], flags
);
2868 static netdev_tx_t
cas_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
2870 struct cas
*cp
= netdev_priv(dev
);
2872 /* this is only used as a load-balancing hint, so it doesn't
2873 * need to be SMP safe
2877 if (skb_padto(skb
, cp
->min_frame_size
))
2878 return NETDEV_TX_OK
;
2880 /* XXX: we need some higher-level QoS hooks to steer packets to
2881 * individual queues.
2883 if (cas_xmit_tx_ringN(cp
, ring
++ & N_TX_RINGS_MASK
, skb
))
2884 return NETDEV_TX_BUSY
;
2885 return NETDEV_TX_OK
;
2888 static void cas_init_tx_dma(struct cas
*cp
)
2890 u64 desc_dma
= cp
->block_dvma
;
2895 /* set up tx completion writeback registers. must be 8-byte aligned */
2896 #ifdef USE_TX_COMPWB
2897 off
= offsetof(struct cas_init_block
, tx_compwb
);
2898 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_COMPWB_DB_HI
);
2899 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+ REG_TX_COMPWB_DB_LOW
);
2902 /* enable completion writebacks, enable paced mode,
2903 * disable read pipe, and disable pre-interrupt compwbs
2905 val
= TX_CFG_COMPWB_Q1
| TX_CFG_COMPWB_Q2
|
2906 TX_CFG_COMPWB_Q3
| TX_CFG_COMPWB_Q4
|
2907 TX_CFG_DMA_RDPIPE_DIS
| TX_CFG_PACED_MODE
|
2908 TX_CFG_INTR_COMPWB_DIS
;
2910 /* write out tx ring info and tx desc bases */
2911 for (i
= 0; i
< MAX_TX_RINGS
; i
++) {
2912 off
= (unsigned long) cp
->init_txds
[i
] -
2913 (unsigned long) cp
->init_block
;
2915 val
|= CAS_TX_RINGN_BASE(i
);
2916 writel((desc_dma
+ off
) >> 32, cp
->regs
+ REG_TX_DBN_HI(i
));
2917 writel((desc_dma
+ off
) & 0xffffffff, cp
->regs
+
2919 /* don't zero out the kick register here as the system
2923 writel(val
, cp
->regs
+ REG_TX_CFG
);
2925 /* program max burst sizes. these numbers should be different
2929 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2930 writel(0x1600, cp
->regs
+ REG_TX_MAXBURST_1
);
2931 writel(0x2400, cp
->regs
+ REG_TX_MAXBURST_2
);
2932 writel(0x4800, cp
->regs
+ REG_TX_MAXBURST_3
);
2934 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_0
);
2935 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_1
);
2936 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_2
);
2937 writel(0x800, cp
->regs
+ REG_TX_MAXBURST_3
);
2941 /* Must be invoked under cp->lock. */
2942 static inline void cas_init_dma(struct cas
*cp
)
2944 cas_init_tx_dma(cp
);
2945 cas_init_rx_dma(cp
);
2948 static void cas_process_mc_list(struct cas
*cp
)
2952 struct netdev_hw_addr
*ha
;
2955 memset(hash_table
, 0, sizeof(hash_table
));
2956 netdev_for_each_mc_addr(ha
, cp
->dev
) {
2957 if (i
<= CAS_MC_EXACT_MATCH_SIZE
) {
2958 /* use the alternate mac address registers for the
2959 * first 15 multicast addresses
2961 writel((ha
->addr
[4] << 8) | ha
->addr
[5],
2962 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 0));
2963 writel((ha
->addr
[2] << 8) | ha
->addr
[3],
2964 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 1));
2965 writel((ha
->addr
[0] << 8) | ha
->addr
[1],
2966 cp
->regs
+ REG_MAC_ADDRN(i
*3 + 2));
2970 /* use hw hash table for the next series of
2971 * multicast addresses
2973 crc
= ether_crc_le(ETH_ALEN
, ha
->addr
);
2975 hash_table
[crc
>> 4] |= 1 << (15 - (crc
& 0xf));
2978 for (i
= 0; i
< 16; i
++)
2979 writel(hash_table
[i
], cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2982 /* Must be invoked under cp->lock. */
2983 static u32
cas_setup_multicast(struct cas
*cp
)
2988 if (cp
->dev
->flags
& IFF_PROMISC
) {
2989 rxcfg
|= MAC_RX_CFG_PROMISC_EN
;
2991 } else if (cp
->dev
->flags
& IFF_ALLMULTI
) {
2992 for (i
=0; i
< 16; i
++)
2993 writel(0xFFFF, cp
->regs
+ REG_MAC_HASH_TABLEN(i
));
2994 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
2997 cas_process_mc_list(cp
);
2998 rxcfg
|= MAC_RX_CFG_HASH_FILTER_EN
;
3004 /* must be invoked under cp->stat_lock[N_TX_RINGS] */
3005 static void cas_clear_mac_err(struct cas
*cp
)
3007 writel(0, cp
->regs
+ REG_MAC_COLL_NORMAL
);
3008 writel(0, cp
->regs
+ REG_MAC_COLL_FIRST
);
3009 writel(0, cp
->regs
+ REG_MAC_COLL_EXCESS
);
3010 writel(0, cp
->regs
+ REG_MAC_COLL_LATE
);
3011 writel(0, cp
->regs
+ REG_MAC_TIMER_DEFER
);
3012 writel(0, cp
->regs
+ REG_MAC_ATTEMPTS_PEAK
);
3013 writel(0, cp
->regs
+ REG_MAC_RECV_FRAME
);
3014 writel(0, cp
->regs
+ REG_MAC_LEN_ERR
);
3015 writel(0, cp
->regs
+ REG_MAC_ALIGN_ERR
);
3016 writel(0, cp
->regs
+ REG_MAC_FCS_ERR
);
3017 writel(0, cp
->regs
+ REG_MAC_RX_CODE_ERR
);
3021 static void cas_mac_reset(struct cas
*cp
)
3025 /* do both TX and RX reset */
3026 writel(0x1, cp
->regs
+ REG_MAC_TX_RESET
);
3027 writel(0x1, cp
->regs
+ REG_MAC_RX_RESET
);
3032 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) == 0)
3040 if (readl(cp
->regs
+ REG_MAC_RX_RESET
) == 0)
3045 if (readl(cp
->regs
+ REG_MAC_TX_RESET
) |
3046 readl(cp
->regs
+ REG_MAC_RX_RESET
))
3047 netdev_err(cp
->dev
, "mac tx[%d]/rx[%d] reset failed [%08x]\n",
3048 readl(cp
->regs
+ REG_MAC_TX_RESET
),
3049 readl(cp
->regs
+ REG_MAC_RX_RESET
),
3050 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3054 /* Must be invoked under cp->lock. */
3055 static void cas_init_mac(struct cas
*cp
)
3057 unsigned char *e
= &cp
->dev
->dev_addr
[0];
3061 /* setup core arbitration weight register */
3062 writel(CAWR_RR_DIS
, cp
->regs
+ REG_CAWR
);
3064 /* XXX Use pci_dma_burst_advice() */
3065 #if !defined(CONFIG_SPARC64) && !defined(CONFIG_ALPHA)
3066 /* set the infinite burst register for chips that don't have
3069 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) == 0)
3070 writel(INF_BURST_EN
, cp
->regs
+ REG_INF_BURST
);
3073 writel(0x1BF0, cp
->regs
+ REG_MAC_SEND_PAUSE
);
3075 writel(0x00, cp
->regs
+ REG_MAC_IPG0
);
3076 writel(0x08, cp
->regs
+ REG_MAC_IPG1
);
3077 writel(0x04, cp
->regs
+ REG_MAC_IPG2
);
3079 /* change later for 802.3z */
3080 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3082 /* min frame + FCS */
3083 writel(ETH_ZLEN
+ 4, cp
->regs
+ REG_MAC_FRAMESIZE_MIN
);
3085 /* Ethernet payload + header + FCS + optional VLAN tag. NOTE: we
3086 * specify the maximum frame size to prevent RX tag errors on
3089 writel(CAS_BASE(MAC_FRAMESIZE_MAX_BURST
, 0x2000) |
3090 CAS_BASE(MAC_FRAMESIZE_MAX_FRAME
,
3091 (CAS_MAX_MTU
+ ETH_HLEN
+ 4 + 4)),
3092 cp
->regs
+ REG_MAC_FRAMESIZE_MAX
);
3094 /* NOTE: crc_size is used as a surrogate for half-duplex.
3095 * workaround saturn half-duplex issue by increasing preamble
3098 if ((cp
->cas_flags
& CAS_FLAG_SATURN
) && cp
->crc_size
)
3099 writel(0x41, cp
->regs
+ REG_MAC_PA_SIZE
);
3101 writel(0x07, cp
->regs
+ REG_MAC_PA_SIZE
);
3102 writel(0x04, cp
->regs
+ REG_MAC_JAM_SIZE
);
3103 writel(0x10, cp
->regs
+ REG_MAC_ATTEMPT_LIMIT
);
3104 writel(0x8808, cp
->regs
+ REG_MAC_CTRL_TYPE
);
3106 writel((e
[5] | (e
[4] << 8)) & 0x3ff, cp
->regs
+ REG_MAC_RANDOM_SEED
);
3108 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0
);
3109 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER1
);
3110 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2
);
3111 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER2_1_MASK
);
3112 writel(0, cp
->regs
+ REG_MAC_ADDR_FILTER0_MASK
);
3114 /* setup mac address in perfect filter array */
3115 for (i
= 0; i
< 45; i
++)
3116 writel(0x0, cp
->regs
+ REG_MAC_ADDRN(i
));
3118 writel((e
[4] << 8) | e
[5], cp
->regs
+ REG_MAC_ADDRN(0));
3119 writel((e
[2] << 8) | e
[3], cp
->regs
+ REG_MAC_ADDRN(1));
3120 writel((e
[0] << 8) | e
[1], cp
->regs
+ REG_MAC_ADDRN(2));
3122 writel(0x0001, cp
->regs
+ REG_MAC_ADDRN(42));
3123 writel(0xc200, cp
->regs
+ REG_MAC_ADDRN(43));
3124 writel(0x0180, cp
->regs
+ REG_MAC_ADDRN(44));
3126 cp
->mac_rx_cfg
= cas_setup_multicast(cp
);
3128 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3129 cas_clear_mac_err(cp
);
3130 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3132 /* Setup MAC interrupts. We want to get all of the interesting
3133 * counter expiration events, but we do not want to hear about
3134 * normal rx/tx as the DMA engine tells us that.
3136 writel(MAC_TX_FRAME_XMIT
, cp
->regs
+ REG_MAC_TX_MASK
);
3137 writel(MAC_RX_FRAME_RECV
, cp
->regs
+ REG_MAC_RX_MASK
);
3139 /* Don't enable even the PAUSE interrupts for now, we
3140 * make no use of those events other than to record them.
3142 writel(0xffffffff, cp
->regs
+ REG_MAC_CTRL_MASK
);
3145 /* Must be invoked under cp->lock. */
3146 static void cas_init_pause_thresholds(struct cas
*cp
)
3148 /* Calculate pause thresholds. Setting the OFF threshold to the
3149 * full RX fifo size effectively disables PAUSE generation
3151 if (cp
->rx_fifo_size
<= (2 * 1024)) {
3152 cp
->rx_pause_off
= cp
->rx_pause_on
= cp
->rx_fifo_size
;
3154 int max_frame
= (cp
->dev
->mtu
+ ETH_HLEN
+ 4 + 4 + 64) & ~63;
3155 if (max_frame
* 3 > cp
->rx_fifo_size
) {
3156 cp
->rx_pause_off
= 7104;
3157 cp
->rx_pause_on
= 960;
3159 int off
= (cp
->rx_fifo_size
- (max_frame
* 2));
3160 int on
= off
- max_frame
;
3161 cp
->rx_pause_off
= off
;
3162 cp
->rx_pause_on
= on
;
3167 static int cas_vpd_match(const void __iomem
*p
, const char *str
)
3169 int len
= strlen(str
) + 1;
3172 for (i
= 0; i
< len
; i
++) {
3173 if (readb(p
+ i
) != str
[i
])
3180 /* get the mac address by reading the vpd information in the rom.
3181 * also get the phy type and determine if there's an entropy generator.
3182 * NOTE: this is a bit convoluted for the following reasons:
3183 * 1) vpd info has order-dependent mac addresses for multinic cards
3184 * 2) the only way to determine the nic order is to use the slot
3186 * 3) fiber cards don't have bridges, so their slot numbers don't
3188 * 4) we don't actually know we have a fiber card until after
3189 * the mac addresses are parsed.
3191 static int cas_get_vpd_info(struct cas
*cp
, unsigned char *dev_addr
,
3194 void __iomem
*p
= cp
->regs
+ REG_EXPANSION_ROM_RUN_START
;
3195 void __iomem
*base
, *kstart
;
3198 #define VPD_FOUND_MAC 0x01
3199 #define VPD_FOUND_PHY 0x02
3201 int phy_type
= CAS_PHY_MII_MDIO0
; /* default phy type */
3204 #if defined(CONFIG_SPARC)
3205 const unsigned char *addr
;
3208 /* give us access to the PROM */
3209 writel(BIM_LOCAL_DEV_PROM
| BIM_LOCAL_DEV_PAD
,
3210 cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3212 /* check for an expansion rom */
3213 if (readb(p
) != 0x55 || readb(p
+ 1) != 0xaa)
3214 goto use_random_mac_addr
;
3216 /* search for beginning of vpd */
3218 for (i
= 2; i
< EXPANSION_ROM_SIZE
; i
++) {
3219 /* check for PCIR */
3220 if ((readb(p
+ i
+ 0) == 0x50) &&
3221 (readb(p
+ i
+ 1) == 0x43) &&
3222 (readb(p
+ i
+ 2) == 0x49) &&
3223 (readb(p
+ i
+ 3) == 0x52)) {
3224 base
= p
+ (readb(p
+ i
+ 8) |
3225 (readb(p
+ i
+ 9) << 8));
3230 if (!base
|| (readb(base
) != 0x82))
3231 goto use_random_mac_addr
;
3233 i
= (readb(base
+ 1) | (readb(base
+ 2) << 8)) + 3;
3234 while (i
< EXPANSION_ROM_SIZE
) {
3235 if (readb(base
+ i
) != 0x90) /* no vpd found */
3236 goto use_random_mac_addr
;
3238 /* found a vpd field */
3239 len
= readb(base
+ i
+ 1) | (readb(base
+ i
+ 2) << 8);
3241 /* extract keywords */
3242 kstart
= base
+ i
+ 3;
3244 while ((p
- kstart
) < len
) {
3245 int klen
= readb(p
+ 2);
3251 /* look for the following things:
3252 * -- correct length == 29
3253 * 3 (type) + 2 (size) +
3254 * 18 (strlen("local-mac-address") + 1) +
3256 * -- VPD Instance 'I'
3257 * -- VPD Type Bytes 'B'
3258 * -- VPD data length == 6
3259 * -- property string == local-mac-address
3261 * -- correct length == 24
3262 * 3 (type) + 2 (size) +
3263 * 12 (strlen("entropy-dev") + 1) +
3264 * 7 (strlen("vms110") + 1)
3265 * -- VPD Instance 'I'
3266 * -- VPD Type String 'B'
3267 * -- VPD data length == 7
3268 * -- property string == entropy-dev
3270 * -- correct length == 18
3271 * 3 (type) + 2 (size) +
3272 * 9 (strlen("phy-type") + 1) +
3273 * 4 (strlen("pcs") + 1)
3274 * -- VPD Instance 'I'
3275 * -- VPD Type String 'S'
3276 * -- VPD data length == 4
3277 * -- property string == phy-type
3279 * -- correct length == 23
3280 * 3 (type) + 2 (size) +
3281 * 14 (strlen("phy-interface") + 1) +
3282 * 4 (strlen("pcs") + 1)
3283 * -- VPD Instance 'I'
3284 * -- VPD Type String 'S'
3285 * -- VPD data length == 4
3286 * -- property string == phy-interface
3288 if (readb(p
) != 'I')
3291 /* finally, check string and length */
3292 type
= readb(p
+ 3);
3294 if ((klen
== 29) && readb(p
+ 4) == 6 &&
3295 cas_vpd_match(p
+ 5,
3296 "local-mac-address")) {
3297 if (mac_off
++ > offset
)
3300 /* set mac address */
3301 for (j
= 0; j
< 6; j
++)
3311 #ifdef USE_ENTROPY_DEV
3313 cas_vpd_match(p
+ 5, "entropy-dev") &&
3314 cas_vpd_match(p
+ 17, "vms110")) {
3315 cp
->cas_flags
|= CAS_FLAG_ENTROPY_DEV
;
3320 if (found
& VPD_FOUND_PHY
)
3323 if ((klen
== 18) && readb(p
+ 4) == 4 &&
3324 cas_vpd_match(p
+ 5, "phy-type")) {
3325 if (cas_vpd_match(p
+ 14, "pcs")) {
3326 phy_type
= CAS_PHY_SERDES
;
3331 if ((klen
== 23) && readb(p
+ 4) == 4 &&
3332 cas_vpd_match(p
+ 5, "phy-interface")) {
3333 if (cas_vpd_match(p
+ 19, "pcs")) {
3334 phy_type
= CAS_PHY_SERDES
;
3339 found
|= VPD_FOUND_MAC
;
3343 found
|= VPD_FOUND_PHY
;
3351 use_random_mac_addr
:
3352 if (found
& VPD_FOUND_MAC
)
3355 #if defined(CONFIG_SPARC)
3356 addr
= of_get_property(cp
->of_node
, "local-mac-address", NULL
);
3358 memcpy(dev_addr
, addr
, 6);
3363 /* Sun MAC prefix then 3 random bytes. */
3364 pr_info("MAC address not found in ROM VPD\n");
3368 get_random_bytes(dev_addr
+ 3, 3);
3371 writel(0, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3375 /* check pci invariants */
3376 static void cas_check_pci_invariants(struct cas
*cp
)
3378 struct pci_dev
*pdev
= cp
->pdev
;
3381 if ((pdev
->vendor
== PCI_VENDOR_ID_SUN
) &&
3382 (pdev
->device
== PCI_DEVICE_ID_SUN_CASSINI
)) {
3383 if (pdev
->revision
>= CAS_ID_REVPLUS
)
3384 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3385 if (pdev
->revision
< CAS_ID_REVPLUS02u
)
3386 cp
->cas_flags
|= CAS_FLAG_TARGET_ABORT
;
3388 /* Original Cassini supports HW CSUM, but it's not
3389 * enabled by default as it can trigger TX hangs.
3391 if (pdev
->revision
< CAS_ID_REV2
)
3392 cp
->cas_flags
|= CAS_FLAG_NO_HW_CSUM
;
3394 /* Only sun has original cassini chips. */
3395 cp
->cas_flags
|= CAS_FLAG_REG_PLUS
;
3397 /* We use a flag because the same phy might be externally
3400 if ((pdev
->vendor
== PCI_VENDOR_ID_NS
) &&
3401 (pdev
->device
== PCI_DEVICE_ID_NS_SATURN
))
3402 cp
->cas_flags
|= CAS_FLAG_SATURN
;
3407 static int cas_check_invariants(struct cas
*cp
)
3409 struct pci_dev
*pdev
= cp
->pdev
;
3413 /* get page size for rx buffers. */
3415 #ifdef USE_PAGE_ORDER
3416 if (PAGE_SHIFT
< CAS_JUMBO_PAGE_SHIFT
) {
3417 /* see if we can allocate larger pages */
3418 struct page
*page
= alloc_pages(GFP_ATOMIC
,
3419 CAS_JUMBO_PAGE_SHIFT
-
3422 __free_pages(page
, CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
);
3423 cp
->page_order
= CAS_JUMBO_PAGE_SHIFT
- PAGE_SHIFT
;
3425 printk("MTU limited to %d bytes\n", CAS_MAX_MTU
);
3429 cp
->page_size
= (PAGE_SIZE
<< cp
->page_order
);
3431 /* Fetch the FIFO configurations. */
3432 cp
->tx_fifo_size
= readl(cp
->regs
+ REG_TX_FIFO_SIZE
) * 64;
3433 cp
->rx_fifo_size
= RX_FIFO_SIZE
;
3435 /* finish phy determination. MDIO1 takes precedence over MDIO0 if
3436 * they're both connected.
3438 cp
->phy_type
= cas_get_vpd_info(cp
, cp
->dev
->dev_addr
,
3439 PCI_SLOT(pdev
->devfn
));
3440 if (cp
->phy_type
& CAS_PHY_SERDES
) {
3441 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3442 return 0; /* no more checking needed */
3446 cfg
= readl(cp
->regs
+ REG_MIF_CFG
);
3447 if (cfg
& MIF_CFG_MDIO_1
) {
3448 cp
->phy_type
= CAS_PHY_MII_MDIO1
;
3449 } else if (cfg
& MIF_CFG_MDIO_0
) {
3450 cp
->phy_type
= CAS_PHY_MII_MDIO0
;
3453 cas_mif_poll(cp
, 0);
3454 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3456 for (i
= 0; i
< 32; i
++) {
3460 for (j
= 0; j
< 3; j
++) {
3462 phy_id
= cas_phy_read(cp
, MII_PHYSID1
) << 16;
3463 phy_id
|= cas_phy_read(cp
, MII_PHYSID2
);
3464 if (phy_id
&& (phy_id
!= 0xFFFFFFFF)) {
3465 cp
->phy_id
= phy_id
;
3470 pr_err("MII phy did not respond [%08x]\n",
3471 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
));
3475 /* see if we can do gigabit */
3476 cfg
= cas_phy_read(cp
, MII_BMSR
);
3477 if ((cfg
& CAS_BMSR_1000_EXTEND
) &&
3478 cas_phy_read(cp
, CAS_MII_1000_EXTEND
))
3479 cp
->cas_flags
|= CAS_FLAG_1000MB_CAP
;
3483 /* Must be invoked under cp->lock. */
3484 static inline void cas_start_dma(struct cas
*cp
)
3491 val
= readl(cp
->regs
+ REG_TX_CFG
) | TX_CFG_DMA_EN
;
3492 writel(val
, cp
->regs
+ REG_TX_CFG
);
3493 val
= readl(cp
->regs
+ REG_RX_CFG
) | RX_CFG_DMA_EN
;
3494 writel(val
, cp
->regs
+ REG_RX_CFG
);
3496 /* enable the mac */
3497 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
) | MAC_TX_CFG_EN
;
3498 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3499 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
) | MAC_RX_CFG_EN
;
3500 writel(val
, cp
->regs
+ REG_MAC_RX_CFG
);
3504 val
= readl(cp
->regs
+ REG_MAC_TX_CFG
);
3505 if ((val
& MAC_TX_CFG_EN
))
3509 if (i
< 0) txfailed
= 1;
3512 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3513 if ((val
& MAC_RX_CFG_EN
)) {
3516 "enabling mac failed [tx:%08x:%08x]\n",
3517 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3518 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3520 goto enable_rx_done
;
3524 netdev_err(cp
->dev
, "enabling mac failed [%s:%08x:%08x]\n",
3525 (txfailed
? "tx,rx" : "rx"),
3526 readl(cp
->regs
+ REG_MIF_STATE_MACHINE
),
3527 readl(cp
->regs
+ REG_MAC_STATE_MACHINE
));
3530 cas_unmask_intr(cp
); /* enable interrupts */
3531 writel(RX_DESC_RINGN_SIZE(0) - 4, cp
->regs
+ REG_RX_KICK
);
3532 writel(0, cp
->regs
+ REG_RX_COMP_TAIL
);
3534 if (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) {
3535 if (N_RX_DESC_RINGS
> 1)
3536 writel(RX_DESC_RINGN_SIZE(1) - 4,
3537 cp
->regs
+ REG_PLUS_RX_KICK1
);
3539 for (i
= 1; i
< N_RX_COMP_RINGS
; i
++)
3540 writel(0, cp
->regs
+ REG_PLUS_RX_COMPN_TAIL(i
));
3544 /* Must be invoked under cp->lock. */
3545 static void cas_read_pcs_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3548 u32 val
= readl(cp
->regs
+ REG_PCS_MII_LPA
);
3549 *fd
= (val
& PCS_MII_LPA_FD
) ? 1 : 0;
3550 *pause
= (val
& PCS_MII_LPA_SYM_PAUSE
) ? 0x01 : 0x00;
3551 if (val
& PCS_MII_LPA_ASYM_PAUSE
)
3556 /* Must be invoked under cp->lock. */
3557 static void cas_read_mii_link_mode(struct cas
*cp
, int *fd
, int *spd
,
3566 /* use GMII registers */
3567 val
= cas_phy_read(cp
, MII_LPA
);
3568 if (val
& CAS_LPA_PAUSE
)
3571 if (val
& CAS_LPA_ASYM_PAUSE
)
3574 if (val
& LPA_DUPLEX
)
3579 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
3580 val
= cas_phy_read(cp
, CAS_MII_1000_STATUS
);
3581 if (val
& (CAS_LPA_1000FULL
| CAS_LPA_1000HALF
))
3583 if (val
& CAS_LPA_1000FULL
)
3588 /* A link-up condition has occurred, initialize and enable the
3591 * Must be invoked under cp->lock.
3593 static void cas_set_link_modes(struct cas
*cp
)
3596 int full_duplex
, speed
, pause
;
3602 if (CAS_PHY_MII(cp
->phy_type
)) {
3603 cas_mif_poll(cp
, 0);
3604 val
= cas_phy_read(cp
, MII_BMCR
);
3605 if (val
& BMCR_ANENABLE
) {
3606 cas_read_mii_link_mode(cp
, &full_duplex
, &speed
,
3609 if (val
& BMCR_FULLDPLX
)
3612 if (val
& BMCR_SPEED100
)
3614 else if (val
& CAS_BMCR_SPEED1000
)
3615 speed
= (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) ?
3618 cas_mif_poll(cp
, 1);
3621 val
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
3622 cas_read_pcs_link_mode(cp
, &full_duplex
, &speed
, &pause
);
3623 if ((val
& PCS_MII_AUTONEG_EN
) == 0) {
3624 if (val
& PCS_MII_CTRL_DUPLEX
)
3629 netif_info(cp
, link
, cp
->dev
, "Link up at %d Mbps, %s-duplex\n",
3630 speed
, full_duplex
? "full" : "half");
3632 val
= MAC_XIF_TX_MII_OUTPUT_EN
| MAC_XIF_LINK_LED
;
3633 if (CAS_PHY_MII(cp
->phy_type
)) {
3634 val
|= MAC_XIF_MII_BUFFER_OUTPUT_EN
;
3636 val
|= MAC_XIF_DISABLE_ECHO
;
3639 val
|= MAC_XIF_FDPLX_LED
;
3641 val
|= MAC_XIF_GMII_MODE
;
3642 writel(val
, cp
->regs
+ REG_MAC_XIF_CFG
);
3644 /* deal with carrier and collision detect. */
3645 val
= MAC_TX_CFG_IPG_EN
;
3647 val
|= MAC_TX_CFG_IGNORE_CARRIER
;
3648 val
|= MAC_TX_CFG_IGNORE_COLL
;
3650 #ifndef USE_CSMA_CD_PROTO
3651 val
|= MAC_TX_CFG_NEVER_GIVE_UP_EN
;
3652 val
|= MAC_TX_CFG_NEVER_GIVE_UP_LIM
;
3655 /* val now set up for REG_MAC_TX_CFG */
3657 /* If gigabit and half-duplex, enable carrier extension
3658 * mode. increase slot time to 512 bytes as well.
3659 * else, disable it and make sure slot time is 64 bytes.
3660 * also activate checksum bug workaround
3662 if ((speed
== 1000) && !full_duplex
) {
3663 writel(val
| MAC_TX_CFG_CARRIER_EXTEND
,
3664 cp
->regs
+ REG_MAC_TX_CFG
);
3666 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3667 val
&= ~MAC_RX_CFG_STRIP_FCS
; /* checksum workaround */
3668 writel(val
| MAC_RX_CFG_CARRIER_EXTEND
,
3669 cp
->regs
+ REG_MAC_RX_CFG
);
3671 writel(0x200, cp
->regs
+ REG_MAC_SLOT_TIME
);
3674 /* minimum size gigabit frame at half duplex */
3675 cp
->min_frame_size
= CAS_1000MB_MIN_FRAME
;
3678 writel(val
, cp
->regs
+ REG_MAC_TX_CFG
);
3680 /* checksum bug workaround. don't strip FCS when in
3683 val
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
3685 val
|= MAC_RX_CFG_STRIP_FCS
;
3687 cp
->min_frame_size
= CAS_MIN_MTU
;
3689 val
&= ~MAC_RX_CFG_STRIP_FCS
;
3691 cp
->min_frame_size
= CAS_MIN_FRAME
;
3693 writel(val
& ~MAC_RX_CFG_CARRIER_EXTEND
,
3694 cp
->regs
+ REG_MAC_RX_CFG
);
3695 writel(0x40, cp
->regs
+ REG_MAC_SLOT_TIME
);
3698 if (netif_msg_link(cp
)) {
3700 netdev_info(cp
->dev
, "Pause is enabled (rxfifo: %d off: %d on: %d)\n",
3704 } else if (pause
& 0x10) {
3705 netdev_info(cp
->dev
, "TX pause enabled\n");
3707 netdev_info(cp
->dev
, "Pause is disabled\n");
3711 val
= readl(cp
->regs
+ REG_MAC_CTRL_CFG
);
3712 val
&= ~(MAC_CTRL_CFG_SEND_PAUSE_EN
| MAC_CTRL_CFG_RECV_PAUSE_EN
);
3713 if (pause
) { /* symmetric or asymmetric pause */
3714 val
|= MAC_CTRL_CFG_SEND_PAUSE_EN
;
3715 if (pause
& 0x01) { /* symmetric pause */
3716 val
|= MAC_CTRL_CFG_RECV_PAUSE_EN
;
3719 writel(val
, cp
->regs
+ REG_MAC_CTRL_CFG
);
3723 /* Must be invoked under cp->lock. */
3724 static void cas_init_hw(struct cas
*cp
, int restart_link
)
3729 cas_init_pause_thresholds(cp
);
3734 /* Default aneg parameters */
3735 cp
->timer_ticks
= 0;
3736 cas_begin_auto_negotiation(cp
, NULL
);
3737 } else if (cp
->lstate
== link_up
) {
3738 cas_set_link_modes(cp
);
3739 netif_carrier_on(cp
->dev
);
3743 /* Must be invoked under cp->lock. on earlier cassini boards,
3744 * SOFT_0 is tied to PCI reset. we use this to force a pci reset,
3745 * let it settle out, and then restore pci state.
3747 static void cas_hard_reset(struct cas
*cp
)
3749 writel(BIM_LOCAL_DEV_SOFT_0
, cp
->regs
+ REG_BIM_LOCAL_DEV_EN
);
3751 pci_restore_state(cp
->pdev
);
3755 static void cas_global_reset(struct cas
*cp
, int blkflag
)
3759 /* issue a global reset. don't use RSTOUT. */
3760 if (blkflag
&& !CAS_PHY_MII(cp
->phy_type
)) {
3761 /* For PCS, when the blkflag is set, we should set the
3762 * SW_REST_BLOCK_PCS_SLINK bit to prevent the results of
3763 * the last autonegotiation from being cleared. We'll
3764 * need some special handling if the chip is set into a
3767 writel((SW_RESET_TX
| SW_RESET_RX
| SW_RESET_BLOCK_PCS_SLINK
),
3768 cp
->regs
+ REG_SW_RESET
);
3770 writel(SW_RESET_TX
| SW_RESET_RX
, cp
->regs
+ REG_SW_RESET
);
3773 /* need to wait at least 3ms before polling register */
3777 while (limit
-- > 0) {
3778 u32 val
= readl(cp
->regs
+ REG_SW_RESET
);
3779 if ((val
& (SW_RESET_TX
| SW_RESET_RX
)) == 0)
3783 netdev_err(cp
->dev
, "sw reset failed\n");
3786 /* enable various BIM interrupts */
3787 writel(BIM_CFG_DPAR_INTR_ENABLE
| BIM_CFG_RMA_INTR_ENABLE
|
3788 BIM_CFG_RTA_INTR_ENABLE
, cp
->regs
+ REG_BIM_CFG
);
3790 /* clear out pci error status mask for handled errors.
3791 * we don't deal with DMA counter overflows as they happen
3794 writel(0xFFFFFFFFU
& ~(PCI_ERR_BADACK
| PCI_ERR_DTRTO
|
3795 PCI_ERR_OTHER
| PCI_ERR_BIM_DMA_WRITE
|
3796 PCI_ERR_BIM_DMA_READ
), cp
->regs
+
3797 REG_PCI_ERR_STATUS_MASK
);
3799 /* set up for MII by default to address mac rx reset timeout
3802 writel(PCS_DATAPATH_MODE_MII
, cp
->regs
+ REG_PCS_DATAPATH_MODE
);
3805 static void cas_reset(struct cas
*cp
, int blkflag
)
3810 cas_global_reset(cp
, blkflag
);
3812 cas_entropy_reset(cp
);
3814 /* disable dma engines. */
3815 val
= readl(cp
->regs
+ REG_TX_CFG
);
3816 val
&= ~TX_CFG_DMA_EN
;
3817 writel(val
, cp
->regs
+ REG_TX_CFG
);
3819 val
= readl(cp
->regs
+ REG_RX_CFG
);
3820 val
&= ~RX_CFG_DMA_EN
;
3821 writel(val
, cp
->regs
+ REG_RX_CFG
);
3823 /* program header parser */
3824 if ((cp
->cas_flags
& CAS_FLAG_TARGET_ABORT
) ||
3825 (CAS_HP_ALT_FIRMWARE
== cas_prog_null
)) {
3826 cas_load_firmware(cp
, CAS_HP_FIRMWARE
);
3828 cas_load_firmware(cp
, CAS_HP_ALT_FIRMWARE
);
3831 /* clear out error registers */
3832 spin_lock(&cp
->stat_lock
[N_TX_RINGS
]);
3833 cas_clear_mac_err(cp
);
3834 spin_unlock(&cp
->stat_lock
[N_TX_RINGS
]);
3837 /* Shut down the chip, must be called with pm_mutex held. */
3838 static void cas_shutdown(struct cas
*cp
)
3840 unsigned long flags
;
3842 /* Make us not-running to avoid timers respawning */
3845 del_timer_sync(&cp
->link_timer
);
3847 /* Stop the reset task */
3849 while (atomic_read(&cp
->reset_task_pending_mtu
) ||
3850 atomic_read(&cp
->reset_task_pending_spare
) ||
3851 atomic_read(&cp
->reset_task_pending_all
))
3855 while (atomic_read(&cp
->reset_task_pending
))
3858 /* Actually stop the chip */
3859 cas_lock_all_save(cp
, flags
);
3861 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
3862 cas_phy_powerdown(cp
);
3863 cas_unlock_all_restore(cp
, flags
);
3866 static int cas_change_mtu(struct net_device
*dev
, int new_mtu
)
3868 struct cas
*cp
= netdev_priv(dev
);
3870 if (new_mtu
< CAS_MIN_MTU
|| new_mtu
> CAS_MAX_MTU
)
3874 if (!netif_running(dev
) || !netif_device_present(dev
))
3877 /* let the reset task handle it */
3879 atomic_inc(&cp
->reset_task_pending
);
3880 if ((cp
->phy_type
& CAS_PHY_SERDES
)) {
3881 atomic_inc(&cp
->reset_task_pending_all
);
3883 atomic_inc(&cp
->reset_task_pending_mtu
);
3885 schedule_work(&cp
->reset_task
);
3887 atomic_set(&cp
->reset_task_pending
, (cp
->phy_type
& CAS_PHY_SERDES
) ?
3888 CAS_RESET_ALL
: CAS_RESET_MTU
);
3889 pr_err("reset called in cas_change_mtu\n");
3890 schedule_work(&cp
->reset_task
);
3893 flush_work_sync(&cp
->reset_task
);
3897 static void cas_clean_txd(struct cas
*cp
, int ring
)
3899 struct cas_tx_desc
*txd
= cp
->init_txds
[ring
];
3900 struct sk_buff
*skb
, **skbs
= cp
->tx_skbs
[ring
];
3904 size
= TX_DESC_RINGN_SIZE(ring
);
3905 for (i
= 0; i
< size
; i
++) {
3908 if (skbs
[i
] == NULL
)
3914 for (frag
= 0; frag
<= skb_shinfo(skb
)->nr_frags
; frag
++) {
3915 int ent
= i
& (size
- 1);
3917 /* first buffer is never a tiny buffer and so
3918 * needs to be unmapped.
3920 daddr
= le64_to_cpu(txd
[ent
].buffer
);
3921 dlen
= CAS_VAL(TX_DESC_BUFLEN
,
3922 le64_to_cpu(txd
[ent
].control
));
3923 pci_unmap_page(cp
->pdev
, daddr
, dlen
,
3926 if (frag
!= skb_shinfo(skb
)->nr_frags
) {
3929 /* next buffer might by a tiny buffer.
3932 ent
= i
& (size
- 1);
3933 if (cp
->tx_tiny_use
[ring
][ent
].used
)
3937 dev_kfree_skb_any(skb
);
3940 /* zero out tiny buf usage */
3941 memset(cp
->tx_tiny_use
[ring
], 0, size
*sizeof(*cp
->tx_tiny_use
[ring
]));
3944 /* freed on close */
3945 static inline void cas_free_rx_desc(struct cas
*cp
, int ring
)
3947 cas_page_t
**page
= cp
->rx_pages
[ring
];
3950 size
= RX_DESC_RINGN_SIZE(ring
);
3951 for (i
= 0; i
< size
; i
++) {
3953 cas_page_free(cp
, page
[i
]);
3959 static void cas_free_rxds(struct cas
*cp
)
3963 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
3964 cas_free_rx_desc(cp
, i
);
3967 /* Must be invoked under cp->lock. */
3968 static void cas_clean_rings(struct cas
*cp
)
3972 /* need to clean all tx rings */
3973 memset(cp
->tx_old
, 0, sizeof(*cp
->tx_old
)*N_TX_RINGS
);
3974 memset(cp
->tx_new
, 0, sizeof(*cp
->tx_new
)*N_TX_RINGS
);
3975 for (i
= 0; i
< N_TX_RINGS
; i
++)
3976 cas_clean_txd(cp
, i
);
3978 /* zero out init block */
3979 memset(cp
->init_block
, 0, sizeof(struct cas_init_block
));
3984 /* allocated on open */
3985 static inline int cas_alloc_rx_desc(struct cas
*cp
, int ring
)
3987 cas_page_t
**page
= cp
->rx_pages
[ring
];
3990 size
= RX_DESC_RINGN_SIZE(ring
);
3991 for (i
= 0; i
< size
; i
++) {
3992 if ((page
[i
] = cas_page_alloc(cp
, GFP_KERNEL
)) == NULL
)
3998 static int cas_alloc_rxds(struct cas
*cp
)
4002 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++) {
4003 if (cas_alloc_rx_desc(cp
, i
) < 0) {
4011 static void cas_reset_task(struct work_struct
*work
)
4013 struct cas
*cp
= container_of(work
, struct cas
, reset_task
);
4015 int pending
= atomic_read(&cp
->reset_task_pending
);
4017 int pending_all
= atomic_read(&cp
->reset_task_pending_all
);
4018 int pending_spare
= atomic_read(&cp
->reset_task_pending_spare
);
4019 int pending_mtu
= atomic_read(&cp
->reset_task_pending_mtu
);
4021 if (pending_all
== 0 && pending_spare
== 0 && pending_mtu
== 0) {
4022 /* We can have more tasks scheduled than actually
4025 atomic_dec(&cp
->reset_task_pending
);
4029 /* The link went down, we reset the ring, but keep
4030 * DMA stopped. Use this function for reset
4033 if (cp
->hw_running
) {
4034 unsigned long flags
;
4036 /* Make sure we don't get interrupts or tx packets */
4037 netif_device_detach(cp
->dev
);
4038 cas_lock_all_save(cp
, flags
);
4041 /* We call cas_spare_recover when we call cas_open.
4042 * but we do not initialize the lists cas_spare_recover
4043 * uses until cas_open is called.
4045 cas_spare_recover(cp
, GFP_ATOMIC
);
4048 /* test => only pending_spare set */
4049 if (!pending_all
&& !pending_mtu
)
4052 if (pending
== CAS_RESET_SPARE
)
4055 /* when pending == CAS_RESET_ALL, the following
4056 * call to cas_init_hw will restart auto negotiation.
4057 * Setting the second argument of cas_reset to
4058 * !(pending == CAS_RESET_ALL) will set this argument
4059 * to 1 (avoiding reinitializing the PHY for the normal
4060 * PCS case) when auto negotiation is not restarted.
4063 cas_reset(cp
, !(pending_all
> 0));
4065 cas_clean_rings(cp
);
4066 cas_init_hw(cp
, (pending_all
> 0));
4068 cas_reset(cp
, !(pending
== CAS_RESET_ALL
));
4070 cas_clean_rings(cp
);
4071 cas_init_hw(cp
, pending
== CAS_RESET_ALL
);
4075 cas_unlock_all_restore(cp
, flags
);
4076 netif_device_attach(cp
->dev
);
4079 atomic_sub(pending_all
, &cp
->reset_task_pending_all
);
4080 atomic_sub(pending_spare
, &cp
->reset_task_pending_spare
);
4081 atomic_sub(pending_mtu
, &cp
->reset_task_pending_mtu
);
4082 atomic_dec(&cp
->reset_task_pending
);
4084 atomic_set(&cp
->reset_task_pending
, 0);
4088 static void cas_link_timer(unsigned long data
)
4090 struct cas
*cp
= (struct cas
*) data
;
4091 int mask
, pending
= 0, reset
= 0;
4092 unsigned long flags
;
4094 if (link_transition_timeout
!= 0 &&
4095 cp
->link_transition_jiffies_valid
&&
4096 ((jiffies
- cp
->link_transition_jiffies
) >
4097 (link_transition_timeout
))) {
4098 /* One-second counter so link-down workaround doesn't
4099 * cause resets to occur so fast as to fool the switch
4100 * into thinking the link is down.
4102 cp
->link_transition_jiffies_valid
= 0;
4105 if (!cp
->hw_running
)
4108 spin_lock_irqsave(&cp
->lock
, flags
);
4110 cas_entropy_gather(cp
);
4112 /* If the link task is still pending, we just
4113 * reschedule the link timer
4116 if (atomic_read(&cp
->reset_task_pending_all
) ||
4117 atomic_read(&cp
->reset_task_pending_spare
) ||
4118 atomic_read(&cp
->reset_task_pending_mtu
))
4121 if (atomic_read(&cp
->reset_task_pending
))
4125 /* check for rx cleaning */
4126 if ((mask
= (cp
->cas_flags
& CAS_FLAG_RXD_POST_MASK
))) {
4129 for (i
= 0; i
< MAX_RX_DESC_RINGS
; i
++) {
4130 rmask
= CAS_FLAG_RXD_POST(i
);
4131 if ((mask
& rmask
) == 0)
4134 /* post_rxds will do a mod_timer */
4135 if (cas_post_rxds_ringN(cp
, i
, cp
->rx_last
[i
]) < 0) {
4139 cp
->cas_flags
&= ~rmask
;
4143 if (CAS_PHY_MII(cp
->phy_type
)) {
4145 cas_mif_poll(cp
, 0);
4146 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4147 /* WTZ: Solaris driver reads this twice, but that
4148 * may be due to the PCS case and the use of a
4149 * common implementation. Read it twice here to be
4152 bmsr
= cas_phy_read(cp
, MII_BMSR
);
4153 cas_mif_poll(cp
, 1);
4154 readl(cp
->regs
+ REG_MIF_STATUS
); /* avoid dups */
4155 reset
= cas_mii_link_check(cp
, bmsr
);
4157 reset
= cas_pcs_link_check(cp
);
4163 /* check for tx state machine confusion */
4164 if ((readl(cp
->regs
+ REG_MAC_TX_STATUS
) & MAC_TX_FRAME_XMIT
) == 0) {
4165 u32 val
= readl(cp
->regs
+ REG_MAC_STATE_MACHINE
);
4167 int tlm
= CAS_VAL(MAC_SM_TLM
, val
);
4169 if (((tlm
== 0x5) || (tlm
== 0x3)) &&
4170 (CAS_VAL(MAC_SM_ENCAP_SM
, val
) == 0)) {
4171 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4172 "tx err: MAC_STATE[%08x]\n", val
);
4177 val
= readl(cp
->regs
+ REG_TX_FIFO_PKT_CNT
);
4178 wptr
= readl(cp
->regs
+ REG_TX_FIFO_WRITE_PTR
);
4179 rptr
= readl(cp
->regs
+ REG_TX_FIFO_READ_PTR
);
4180 if ((val
== 0) && (wptr
!= rptr
)) {
4181 netif_printk(cp
, tx_err
, KERN_DEBUG
, cp
->dev
,
4182 "tx err: TX_FIFO[%08x:%08x:%08x]\n",
4194 atomic_inc(&cp
->reset_task_pending
);
4195 atomic_inc(&cp
->reset_task_pending_all
);
4196 schedule_work(&cp
->reset_task
);
4198 atomic_set(&cp
->reset_task_pending
, CAS_RESET_ALL
);
4199 pr_err("reset called in cas_link_timer\n");
4200 schedule_work(&cp
->reset_task
);
4205 mod_timer(&cp
->link_timer
, jiffies
+ CAS_LINK_TIMEOUT
);
4207 spin_unlock_irqrestore(&cp
->lock
, flags
);
4210 /* tiny buffers are used to avoid target abort issues with
4213 static void cas_tx_tiny_free(struct cas
*cp
)
4215 struct pci_dev
*pdev
= cp
->pdev
;
4218 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4219 if (!cp
->tx_tiny_bufs
[i
])
4222 pci_free_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4223 cp
->tx_tiny_bufs
[i
],
4224 cp
->tx_tiny_dvma
[i
]);
4225 cp
->tx_tiny_bufs
[i
] = NULL
;
4229 static int cas_tx_tiny_alloc(struct cas
*cp
)
4231 struct pci_dev
*pdev
= cp
->pdev
;
4234 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4235 cp
->tx_tiny_bufs
[i
] =
4236 pci_alloc_consistent(pdev
, TX_TINY_BUF_BLOCK
,
4237 &cp
->tx_tiny_dvma
[i
]);
4238 if (!cp
->tx_tiny_bufs
[i
]) {
4239 cas_tx_tiny_free(cp
);
4247 static int cas_open(struct net_device
*dev
)
4249 struct cas
*cp
= netdev_priv(dev
);
4251 unsigned long flags
;
4253 mutex_lock(&cp
->pm_mutex
);
4255 hw_was_up
= cp
->hw_running
;
4257 /* The power-management mutex protects the hw_running
4258 * etc. state so it is safe to do this bit without cp->lock
4260 if (!cp
->hw_running
) {
4261 /* Reset the chip */
4262 cas_lock_all_save(cp
, flags
);
4263 /* We set the second arg to cas_reset to zero
4264 * because cas_init_hw below will have its second
4265 * argument set to non-zero, which will force
4266 * autonegotiation to start.
4270 cas_unlock_all_restore(cp
, flags
);
4274 if (cas_tx_tiny_alloc(cp
) < 0)
4277 /* alloc rx descriptors */
4278 if (cas_alloc_rxds(cp
) < 0)
4281 /* allocate spares */
4283 cas_spare_recover(cp
, GFP_KERNEL
);
4285 /* We can now request the interrupt as we know it's masked
4286 * on the controller. cassini+ has up to 4 interrupts
4287 * that can be used, but you need to do explicit pci interrupt
4288 * mapping to expose them
4290 if (request_irq(cp
->pdev
->irq
, cas_interrupt
,
4291 IRQF_SHARED
, dev
->name
, (void *) dev
)) {
4292 netdev_err(cp
->dev
, "failed to request irq !\n");
4298 napi_enable(&cp
->napi
);
4301 cas_lock_all_save(cp
, flags
);
4302 cas_clean_rings(cp
);
4303 cas_init_hw(cp
, !hw_was_up
);
4305 cas_unlock_all_restore(cp
, flags
);
4307 netif_start_queue(dev
);
4308 mutex_unlock(&cp
->pm_mutex
);
4315 cas_tx_tiny_free(cp
);
4317 mutex_unlock(&cp
->pm_mutex
);
4321 static int cas_close(struct net_device
*dev
)
4323 unsigned long flags
;
4324 struct cas
*cp
= netdev_priv(dev
);
4327 napi_disable(&cp
->napi
);
4329 /* Make sure we don't get distracted by suspend/resume */
4330 mutex_lock(&cp
->pm_mutex
);
4332 netif_stop_queue(dev
);
4334 /* Stop traffic, mark us closed */
4335 cas_lock_all_save(cp
, flags
);
4339 cas_begin_auto_negotiation(cp
, NULL
);
4340 cas_clean_rings(cp
);
4341 cas_unlock_all_restore(cp
, flags
);
4343 free_irq(cp
->pdev
->irq
, (void *) dev
);
4346 cas_tx_tiny_free(cp
);
4347 mutex_unlock(&cp
->pm_mutex
);
4352 const char name
[ETH_GSTRING_LEN
];
4353 } ethtool_cassini_statnames
[] = {
4360 {"rx_frame_errors"},
4361 {"rx_length_errors"},
4364 {"tx_aborted_errors"},
4371 #define CAS_NUM_STAT_KEYS ARRAY_SIZE(ethtool_cassini_statnames)
4374 const int offsets
; /* neg. values for 2nd arg to cas_read_phy */
4375 } ethtool_register_table
[] = {
4390 {REG_PCS_MII_STATUS
},
4391 {REG_PCS_STATE_MACHINE
},
4392 {REG_MAC_COLL_EXCESS
},
4395 #define CAS_REG_LEN ARRAY_SIZE(ethtool_register_table)
4396 #define CAS_MAX_REGS (sizeof (u32)*CAS_REG_LEN)
4398 static void cas_read_regs(struct cas
*cp
, u8
*ptr
, int len
)
4402 unsigned long flags
;
4404 spin_lock_irqsave(&cp
->lock
, flags
);
4405 for (i
= 0, p
= ptr
; i
< len
; i
++, p
+= sizeof(u32
)) {
4408 if (ethtool_register_table
[i
].offsets
< 0) {
4409 hval
= cas_phy_read(cp
,
4410 -ethtool_register_table
[i
].offsets
);
4413 val
= readl(cp
->regs
+ethtool_register_table
[i
].offsets
);
4415 memcpy(p
, (u8
*)&val
, sizeof(u32
));
4417 spin_unlock_irqrestore(&cp
->lock
, flags
);
4420 static struct net_device_stats
*cas_get_stats(struct net_device
*dev
)
4422 struct cas
*cp
= netdev_priv(dev
);
4423 struct net_device_stats
*stats
= cp
->net_stats
;
4424 unsigned long flags
;
4428 /* we collate all of the stats into net_stats[N_TX_RING] */
4429 if (!cp
->hw_running
)
4430 return stats
+ N_TX_RINGS
;
4432 /* collect outstanding stats */
4433 /* WTZ: the Cassini spec gives these as 16 bit counters but
4434 * stored in 32-bit words. Added a mask of 0xffff to be safe,
4435 * in case the chip somehow puts any garbage in the other bits.
4436 * Also, counter usage didn't seem to mach what Adrian did
4437 * in the parts of the code that set these quantities. Made
4440 spin_lock_irqsave(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4441 stats
[N_TX_RINGS
].rx_crc_errors
+=
4442 readl(cp
->regs
+ REG_MAC_FCS_ERR
) & 0xffff;
4443 stats
[N_TX_RINGS
].rx_frame_errors
+=
4444 readl(cp
->regs
+ REG_MAC_ALIGN_ERR
) &0xffff;
4445 stats
[N_TX_RINGS
].rx_length_errors
+=
4446 readl(cp
->regs
+ REG_MAC_LEN_ERR
) & 0xffff;
4448 tmp
= (readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) & 0xffff) +
4449 (readl(cp
->regs
+ REG_MAC_COLL_LATE
) & 0xffff);
4450 stats
[N_TX_RINGS
].tx_aborted_errors
+= tmp
;
4451 stats
[N_TX_RINGS
].collisions
+=
4452 tmp
+ (readl(cp
->regs
+ REG_MAC_COLL_NORMAL
) & 0xffff);
4454 stats
[N_TX_RINGS
].tx_aborted_errors
+=
4455 readl(cp
->regs
+ REG_MAC_COLL_EXCESS
);
4456 stats
[N_TX_RINGS
].collisions
+= readl(cp
->regs
+ REG_MAC_COLL_EXCESS
) +
4457 readl(cp
->regs
+ REG_MAC_COLL_LATE
);
4459 cas_clear_mac_err(cp
);
4461 /* saved bits that are unique to ring 0 */
4462 spin_lock(&cp
->stat_lock
[0]);
4463 stats
[N_TX_RINGS
].collisions
+= stats
[0].collisions
;
4464 stats
[N_TX_RINGS
].rx_over_errors
+= stats
[0].rx_over_errors
;
4465 stats
[N_TX_RINGS
].rx_frame_errors
+= stats
[0].rx_frame_errors
;
4466 stats
[N_TX_RINGS
].rx_fifo_errors
+= stats
[0].rx_fifo_errors
;
4467 stats
[N_TX_RINGS
].tx_aborted_errors
+= stats
[0].tx_aborted_errors
;
4468 stats
[N_TX_RINGS
].tx_fifo_errors
+= stats
[0].tx_fifo_errors
;
4469 spin_unlock(&cp
->stat_lock
[0]);
4471 for (i
= 0; i
< N_TX_RINGS
; i
++) {
4472 spin_lock(&cp
->stat_lock
[i
]);
4473 stats
[N_TX_RINGS
].rx_length_errors
+=
4474 stats
[i
].rx_length_errors
;
4475 stats
[N_TX_RINGS
].rx_crc_errors
+= stats
[i
].rx_crc_errors
;
4476 stats
[N_TX_RINGS
].rx_packets
+= stats
[i
].rx_packets
;
4477 stats
[N_TX_RINGS
].tx_packets
+= stats
[i
].tx_packets
;
4478 stats
[N_TX_RINGS
].rx_bytes
+= stats
[i
].rx_bytes
;
4479 stats
[N_TX_RINGS
].tx_bytes
+= stats
[i
].tx_bytes
;
4480 stats
[N_TX_RINGS
].rx_errors
+= stats
[i
].rx_errors
;
4481 stats
[N_TX_RINGS
].tx_errors
+= stats
[i
].tx_errors
;
4482 stats
[N_TX_RINGS
].rx_dropped
+= stats
[i
].rx_dropped
;
4483 stats
[N_TX_RINGS
].tx_dropped
+= stats
[i
].tx_dropped
;
4484 memset(stats
+ i
, 0, sizeof(struct net_device_stats
));
4485 spin_unlock(&cp
->stat_lock
[i
]);
4487 spin_unlock_irqrestore(&cp
->stat_lock
[N_TX_RINGS
], flags
);
4488 return stats
+ N_TX_RINGS
;
4492 static void cas_set_multicast(struct net_device
*dev
)
4494 struct cas
*cp
= netdev_priv(dev
);
4495 u32 rxcfg
, rxcfg_new
;
4496 unsigned long flags
;
4497 int limit
= STOP_TRIES
;
4499 if (!cp
->hw_running
)
4502 spin_lock_irqsave(&cp
->lock
, flags
);
4503 rxcfg
= readl(cp
->regs
+ REG_MAC_RX_CFG
);
4505 /* disable RX MAC and wait for completion */
4506 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4507 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_EN
) {
4513 /* disable hash filter and wait for completion */
4515 rxcfg
&= ~(MAC_RX_CFG_PROMISC_EN
| MAC_RX_CFG_HASH_FILTER_EN
);
4516 writel(rxcfg
& ~MAC_RX_CFG_EN
, cp
->regs
+ REG_MAC_RX_CFG
);
4517 while (readl(cp
->regs
+ REG_MAC_RX_CFG
) & MAC_RX_CFG_HASH_FILTER_EN
) {
4523 /* program hash filters */
4524 cp
->mac_rx_cfg
= rxcfg_new
= cas_setup_multicast(cp
);
4526 writel(rxcfg
, cp
->regs
+ REG_MAC_RX_CFG
);
4527 spin_unlock_irqrestore(&cp
->lock
, flags
);
4530 static void cas_get_drvinfo(struct net_device
*dev
, struct ethtool_drvinfo
*info
)
4532 struct cas
*cp
= netdev_priv(dev
);
4533 strlcpy(info
->driver
, DRV_MODULE_NAME
, sizeof(info
->driver
));
4534 strlcpy(info
->version
, DRV_MODULE_VERSION
, sizeof(info
->version
));
4535 strlcpy(info
->bus_info
, pci_name(cp
->pdev
), sizeof(info
->bus_info
));
4536 info
->regdump_len
= cp
->casreg_len
< CAS_MAX_REGS
?
4537 cp
->casreg_len
: CAS_MAX_REGS
;
4538 info
->n_stats
= CAS_NUM_STAT_KEYS
;
4541 static int cas_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4543 struct cas
*cp
= netdev_priv(dev
);
4545 int full_duplex
, speed
, pause
;
4546 unsigned long flags
;
4547 enum link_state linkstate
= link_up
;
4549 cmd
->advertising
= 0;
4550 cmd
->supported
= SUPPORTED_Autoneg
;
4551 if (cp
->cas_flags
& CAS_FLAG_1000MB_CAP
) {
4552 cmd
->supported
|= SUPPORTED_1000baseT_Full
;
4553 cmd
->advertising
|= ADVERTISED_1000baseT_Full
;
4556 /* Record PHY settings if HW is on. */
4557 spin_lock_irqsave(&cp
->lock
, flags
);
4559 linkstate
= cp
->lstate
;
4560 if (CAS_PHY_MII(cp
->phy_type
)) {
4561 cmd
->port
= PORT_MII
;
4562 cmd
->transceiver
= (cp
->cas_flags
& CAS_FLAG_SATURN
) ?
4563 XCVR_INTERNAL
: XCVR_EXTERNAL
;
4564 cmd
->phy_address
= cp
->phy_addr
;
4565 cmd
->advertising
|= ADVERTISED_TP
| ADVERTISED_MII
|
4566 ADVERTISED_10baseT_Half
|
4567 ADVERTISED_10baseT_Full
|
4568 ADVERTISED_100baseT_Half
|
4569 ADVERTISED_100baseT_Full
;
4572 (SUPPORTED_10baseT_Half
|
4573 SUPPORTED_10baseT_Full
|
4574 SUPPORTED_100baseT_Half
|
4575 SUPPORTED_100baseT_Full
|
4576 SUPPORTED_TP
| SUPPORTED_MII
);
4578 if (cp
->hw_running
) {
4579 cas_mif_poll(cp
, 0);
4580 bmcr
= cas_phy_read(cp
, MII_BMCR
);
4581 cas_read_mii_link_mode(cp
, &full_duplex
,
4583 cas_mif_poll(cp
, 1);
4587 cmd
->port
= PORT_FIBRE
;
4588 cmd
->transceiver
= XCVR_INTERNAL
;
4589 cmd
->phy_address
= 0;
4590 cmd
->supported
|= SUPPORTED_FIBRE
;
4591 cmd
->advertising
|= ADVERTISED_FIBRE
;
4593 if (cp
->hw_running
) {
4594 /* pcs uses the same bits as mii */
4595 bmcr
= readl(cp
->regs
+ REG_PCS_MII_CTRL
);
4596 cas_read_pcs_link_mode(cp
, &full_duplex
,
4600 spin_unlock_irqrestore(&cp
->lock
, flags
);
4602 if (bmcr
& BMCR_ANENABLE
) {
4603 cmd
->advertising
|= ADVERTISED_Autoneg
;
4604 cmd
->autoneg
= AUTONEG_ENABLE
;
4605 ethtool_cmd_speed_set(cmd
, ((speed
== 10) ?
4608 SPEED_1000
: SPEED_100
)));
4609 cmd
->duplex
= full_duplex
? DUPLEX_FULL
: DUPLEX_HALF
;
4611 cmd
->autoneg
= AUTONEG_DISABLE
;
4612 ethtool_cmd_speed_set(cmd
, ((bmcr
& CAS_BMCR_SPEED1000
) ?
4614 ((bmcr
& BMCR_SPEED100
) ?
4615 SPEED_100
: SPEED_10
)));
4617 (bmcr
& BMCR_FULLDPLX
) ?
4618 DUPLEX_FULL
: DUPLEX_HALF
;
4620 if (linkstate
!= link_up
) {
4621 /* Force these to "unknown" if the link is not up and
4622 * autonogotiation in enabled. We can set the link
4623 * speed to 0, but not cmd->duplex,
4624 * because its legal values are 0 and 1. Ethtool will
4625 * print the value reported in parentheses after the
4626 * word "Unknown" for unrecognized values.
4628 * If in forced mode, we report the speed and duplex
4629 * settings that we configured.
4631 if (cp
->link_cntl
& BMCR_ANENABLE
) {
4632 ethtool_cmd_speed_set(cmd
, 0);
4635 ethtool_cmd_speed_set(cmd
, SPEED_10
);
4636 if (cp
->link_cntl
& BMCR_SPEED100
) {
4637 ethtool_cmd_speed_set(cmd
, SPEED_100
);
4638 } else if (cp
->link_cntl
& CAS_BMCR_SPEED1000
) {
4639 ethtool_cmd_speed_set(cmd
, SPEED_1000
);
4641 cmd
->duplex
= (cp
->link_cntl
& BMCR_FULLDPLX
)?
4642 DUPLEX_FULL
: DUPLEX_HALF
;
4648 static int cas_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
4650 struct cas
*cp
= netdev_priv(dev
);
4651 unsigned long flags
;
4652 u32 speed
= ethtool_cmd_speed(cmd
);
4654 /* Verify the settings we care about. */
4655 if (cmd
->autoneg
!= AUTONEG_ENABLE
&&
4656 cmd
->autoneg
!= AUTONEG_DISABLE
)
4659 if (cmd
->autoneg
== AUTONEG_DISABLE
&&
4660 ((speed
!= SPEED_1000
&&
4661 speed
!= SPEED_100
&&
4662 speed
!= SPEED_10
) ||
4663 (cmd
->duplex
!= DUPLEX_HALF
&&
4664 cmd
->duplex
!= DUPLEX_FULL
)))
4667 /* Apply settings and restart link process. */
4668 spin_lock_irqsave(&cp
->lock
, flags
);
4669 cas_begin_auto_negotiation(cp
, cmd
);
4670 spin_unlock_irqrestore(&cp
->lock
, flags
);
4674 static int cas_nway_reset(struct net_device
*dev
)
4676 struct cas
*cp
= netdev_priv(dev
);
4677 unsigned long flags
;
4679 if ((cp
->link_cntl
& BMCR_ANENABLE
) == 0)
4682 /* Restart link process. */
4683 spin_lock_irqsave(&cp
->lock
, flags
);
4684 cas_begin_auto_negotiation(cp
, NULL
);
4685 spin_unlock_irqrestore(&cp
->lock
, flags
);
4690 static u32
cas_get_link(struct net_device
*dev
)
4692 struct cas
*cp
= netdev_priv(dev
);
4693 return cp
->lstate
== link_up
;
4696 static u32
cas_get_msglevel(struct net_device
*dev
)
4698 struct cas
*cp
= netdev_priv(dev
);
4699 return cp
->msg_enable
;
4702 static void cas_set_msglevel(struct net_device
*dev
, u32 value
)
4704 struct cas
*cp
= netdev_priv(dev
);
4705 cp
->msg_enable
= value
;
4708 static int cas_get_regs_len(struct net_device
*dev
)
4710 struct cas
*cp
= netdev_priv(dev
);
4711 return cp
->casreg_len
< CAS_MAX_REGS
? cp
->casreg_len
: CAS_MAX_REGS
;
4714 static void cas_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
4717 struct cas
*cp
= netdev_priv(dev
);
4719 /* cas_read_regs handles locks (cp->lock). */
4720 cas_read_regs(cp
, p
, regs
->len
/ sizeof(u32
));
4723 static int cas_get_sset_count(struct net_device
*dev
, int sset
)
4727 return CAS_NUM_STAT_KEYS
;
4733 static void cas_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
4735 memcpy(data
, ðtool_cassini_statnames
,
4736 CAS_NUM_STAT_KEYS
* ETH_GSTRING_LEN
);
4739 static void cas_get_ethtool_stats(struct net_device
*dev
,
4740 struct ethtool_stats
*estats
, u64
*data
)
4742 struct cas
*cp
= netdev_priv(dev
);
4743 struct net_device_stats
*stats
= cas_get_stats(cp
->dev
);
4745 data
[i
++] = stats
->collisions
;
4746 data
[i
++] = stats
->rx_bytes
;
4747 data
[i
++] = stats
->rx_crc_errors
;
4748 data
[i
++] = stats
->rx_dropped
;
4749 data
[i
++] = stats
->rx_errors
;
4750 data
[i
++] = stats
->rx_fifo_errors
;
4751 data
[i
++] = stats
->rx_frame_errors
;
4752 data
[i
++] = stats
->rx_length_errors
;
4753 data
[i
++] = stats
->rx_over_errors
;
4754 data
[i
++] = stats
->rx_packets
;
4755 data
[i
++] = stats
->tx_aborted_errors
;
4756 data
[i
++] = stats
->tx_bytes
;
4757 data
[i
++] = stats
->tx_dropped
;
4758 data
[i
++] = stats
->tx_errors
;
4759 data
[i
++] = stats
->tx_fifo_errors
;
4760 data
[i
++] = stats
->tx_packets
;
4761 BUG_ON(i
!= CAS_NUM_STAT_KEYS
);
4764 static const struct ethtool_ops cas_ethtool_ops
= {
4765 .get_drvinfo
= cas_get_drvinfo
,
4766 .get_settings
= cas_get_settings
,
4767 .set_settings
= cas_set_settings
,
4768 .nway_reset
= cas_nway_reset
,
4769 .get_link
= cas_get_link
,
4770 .get_msglevel
= cas_get_msglevel
,
4771 .set_msglevel
= cas_set_msglevel
,
4772 .get_regs_len
= cas_get_regs_len
,
4773 .get_regs
= cas_get_regs
,
4774 .get_sset_count
= cas_get_sset_count
,
4775 .get_strings
= cas_get_strings
,
4776 .get_ethtool_stats
= cas_get_ethtool_stats
,
4779 static int cas_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
4781 struct cas
*cp
= netdev_priv(dev
);
4782 struct mii_ioctl_data
*data
= if_mii(ifr
);
4783 unsigned long flags
;
4784 int rc
= -EOPNOTSUPP
;
4786 /* Hold the PM mutex while doing ioctl's or we may collide
4787 * with open/close and power management and oops.
4789 mutex_lock(&cp
->pm_mutex
);
4791 case SIOCGMIIPHY
: /* Get address of MII PHY in use. */
4792 data
->phy_id
= cp
->phy_addr
;
4793 /* Fallthrough... */
4795 case SIOCGMIIREG
: /* Read MII PHY register. */
4796 spin_lock_irqsave(&cp
->lock
, flags
);
4797 cas_mif_poll(cp
, 0);
4798 data
->val_out
= cas_phy_read(cp
, data
->reg_num
& 0x1f);
4799 cas_mif_poll(cp
, 1);
4800 spin_unlock_irqrestore(&cp
->lock
, flags
);
4804 case SIOCSMIIREG
: /* Write MII PHY register. */
4805 spin_lock_irqsave(&cp
->lock
, flags
);
4806 cas_mif_poll(cp
, 0);
4807 rc
= cas_phy_write(cp
, data
->reg_num
& 0x1f, data
->val_in
);
4808 cas_mif_poll(cp
, 1);
4809 spin_unlock_irqrestore(&cp
->lock
, flags
);
4815 mutex_unlock(&cp
->pm_mutex
);
4819 /* When this chip sits underneath an Intel 31154 bridge, it is the
4820 * only subordinate device and we can tweak the bridge settings to
4821 * reflect that fact.
4823 static void __devinit
cas_program_bridge(struct pci_dev
*cas_pdev
)
4825 struct pci_dev
*pdev
= cas_pdev
->bus
->self
;
4831 if (pdev
->vendor
!= 0x8086 || pdev
->device
!= 0x537c)
4834 /* Clear bit 10 (Bus Parking Control) in the Secondary
4835 * Arbiter Control/Status Register which lives at offset
4836 * 0x41. Using a 32-bit word read/modify/write at 0x40
4837 * is much simpler so that's how we do this.
4839 pci_read_config_dword(pdev
, 0x40, &val
);
4841 pci_write_config_dword(pdev
, 0x40, val
);
4843 /* Max out the Multi-Transaction Timer settings since
4844 * Cassini is the only device present.
4846 * The register is 16-bit and lives at 0x50. When the
4847 * settings are enabled, it extends the GRANT# signal
4848 * for a requestor after a transaction is complete. This
4849 * allows the next request to run without first needing
4850 * to negotiate the GRANT# signal back.
4852 * Bits 12:10 define the grant duration:
4860 * All other values are illegal.
4862 * Bits 09:00 define which REQ/GNT signal pairs get the
4863 * GRANT# signal treatment. We set them all.
4865 pci_write_config_word(pdev
, 0x50, (5 << 10) | 0x3ff);
4867 /* The Read Prefecth Policy register is 16-bit and sits at
4868 * offset 0x52. It enables a "smart" pre-fetch policy. We
4869 * enable it and max out all of the settings since only one
4870 * device is sitting underneath and thus bandwidth sharing is
4873 * The register has several 3 bit fields, which indicates a
4874 * multiplier applied to the base amount of prefetching the
4875 * chip would do. These fields are at:
4877 * 15:13 --- ReRead Primary Bus
4878 * 12:10 --- FirstRead Primary Bus
4879 * 09:07 --- ReRead Secondary Bus
4880 * 06:04 --- FirstRead Secondary Bus
4882 * Bits 03:00 control which REQ/GNT pairs the prefetch settings
4883 * get enabled on. Bit 3 is a grouped enabler which controls
4884 * all of the REQ/GNT pairs from [8:3]. Bits 2 to 0 control
4885 * the individual REQ/GNT pairs [2:0].
4887 pci_write_config_word(pdev
, 0x52,
4894 /* Force cacheline size to 0x8 */
4895 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, 0x08);
4897 /* Force latency timer to maximum setting so Cassini can
4898 * sit on the bus as long as it likes.
4900 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xff);
4903 static const struct net_device_ops cas_netdev_ops
= {
4904 .ndo_open
= cas_open
,
4905 .ndo_stop
= cas_close
,
4906 .ndo_start_xmit
= cas_start_xmit
,
4907 .ndo_get_stats
= cas_get_stats
,
4908 .ndo_set_rx_mode
= cas_set_multicast
,
4909 .ndo_do_ioctl
= cas_ioctl
,
4910 .ndo_tx_timeout
= cas_tx_timeout
,
4911 .ndo_change_mtu
= cas_change_mtu
,
4912 .ndo_set_mac_address
= eth_mac_addr
,
4913 .ndo_validate_addr
= eth_validate_addr
,
4914 #ifdef CONFIG_NET_POLL_CONTROLLER
4915 .ndo_poll_controller
= cas_netpoll
,
4919 static int __devinit
cas_init_one(struct pci_dev
*pdev
,
4920 const struct pci_device_id
*ent
)
4922 static int cas_version_printed
= 0;
4923 unsigned long casreg_len
;
4924 struct net_device
*dev
;
4926 int i
, err
, pci_using_dac
;
4928 u8 orig_cacheline_size
= 0, cas_cacheline_size
= 0;
4930 if (cas_version_printed
++ == 0)
4931 pr_info("%s", version
);
4933 err
= pci_enable_device(pdev
);
4935 dev_err(&pdev
->dev
, "Cannot enable PCI device, aborting\n");
4939 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
4940 dev_err(&pdev
->dev
, "Cannot find proper PCI device "
4941 "base address, aborting\n");
4943 goto err_out_disable_pdev
;
4946 dev
= alloc_etherdev(sizeof(*cp
));
4949 goto err_out_disable_pdev
;
4951 SET_NETDEV_DEV(dev
, &pdev
->dev
);
4953 err
= pci_request_regions(pdev
, dev
->name
);
4955 dev_err(&pdev
->dev
, "Cannot obtain PCI resources, aborting\n");
4956 goto err_out_free_netdev
;
4958 pci_set_master(pdev
);
4960 /* we must always turn on parity response or else parity
4961 * doesn't get generated properly. disable SERR/PERR as well.
4962 * in addition, we want to turn MWI on.
4964 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
4965 pci_cmd
&= ~PCI_COMMAND_SERR
;
4966 pci_cmd
|= PCI_COMMAND_PARITY
;
4967 pci_write_config_word(pdev
, PCI_COMMAND
, pci_cmd
);
4968 if (pci_try_set_mwi(pdev
))
4969 pr_warning("Could not enable MWI for %s\n", pci_name(pdev
));
4971 cas_program_bridge(pdev
);
4974 * On some architectures, the default cache line size set
4975 * by pci_try_set_mwi reduces perforamnce. We have to increase
4976 * it for this case. To start, we'll print some configuration
4980 pci_read_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
4981 &orig_cacheline_size
);
4982 if (orig_cacheline_size
< CAS_PREF_CACHELINE_SIZE
) {
4983 cas_cacheline_size
=
4984 (CAS_PREF_CACHELINE_SIZE
< SMP_CACHE_BYTES
) ?
4985 CAS_PREF_CACHELINE_SIZE
: SMP_CACHE_BYTES
;
4986 if (pci_write_config_byte(pdev
,
4987 PCI_CACHE_LINE_SIZE
,
4988 cas_cacheline_size
)) {
4989 dev_err(&pdev
->dev
, "Could not set PCI cache "
4991 goto err_write_cacheline
;
4997 /* Configure DMA attributes. */
4998 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
5000 err
= pci_set_consistent_dma_mask(pdev
,
5003 dev_err(&pdev
->dev
, "Unable to obtain 64-bit DMA "
5004 "for consistent allocations\n");
5005 goto err_out_free_res
;
5009 err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32));
5011 dev_err(&pdev
->dev
, "No usable DMA configuration, "
5013 goto err_out_free_res
;
5018 casreg_len
= pci_resource_len(pdev
, 0);
5020 cp
= netdev_priv(dev
);
5023 /* A value of 0 indicates we never explicitly set it */
5024 cp
->orig_cacheline_size
= cas_cacheline_size
? orig_cacheline_size
: 0;
5027 cp
->msg_enable
= (cassini_debug
< 0) ? CAS_DEF_MSG_ENABLE
:
5030 #if defined(CONFIG_SPARC)
5031 cp
->of_node
= pci_device_to_OF_node(pdev
);
5034 cp
->link_transition
= LINK_TRANSITION_UNKNOWN
;
5035 cp
->link_transition_jiffies_valid
= 0;
5037 spin_lock_init(&cp
->lock
);
5038 spin_lock_init(&cp
->rx_inuse_lock
);
5039 spin_lock_init(&cp
->rx_spare_lock
);
5040 for (i
= 0; i
< N_TX_RINGS
; i
++) {
5041 spin_lock_init(&cp
->stat_lock
[i
]);
5042 spin_lock_init(&cp
->tx_lock
[i
]);
5044 spin_lock_init(&cp
->stat_lock
[N_TX_RINGS
]);
5045 mutex_init(&cp
->pm_mutex
);
5047 init_timer(&cp
->link_timer
);
5048 cp
->link_timer
.function
= cas_link_timer
;
5049 cp
->link_timer
.data
= (unsigned long) cp
;
5052 /* Just in case the implementation of atomic operations
5053 * change so that an explicit initialization is necessary.
5055 atomic_set(&cp
->reset_task_pending
, 0);
5056 atomic_set(&cp
->reset_task_pending_all
, 0);
5057 atomic_set(&cp
->reset_task_pending_spare
, 0);
5058 atomic_set(&cp
->reset_task_pending_mtu
, 0);
5060 INIT_WORK(&cp
->reset_task
, cas_reset_task
);
5062 /* Default link parameters */
5063 if (link_mode
>= 0 && link_mode
< 6)
5064 cp
->link_cntl
= link_modes
[link_mode
];
5066 cp
->link_cntl
= BMCR_ANENABLE
;
5067 cp
->lstate
= link_down
;
5068 cp
->link_transition
= LINK_TRANSITION_LINK_DOWN
;
5069 netif_carrier_off(cp
->dev
);
5070 cp
->timer_ticks
= 0;
5072 /* give us access to cassini registers */
5073 cp
->regs
= pci_iomap(pdev
, 0, casreg_len
);
5075 dev_err(&pdev
->dev
, "Cannot map device registers, aborting\n");
5076 goto err_out_free_res
;
5078 cp
->casreg_len
= casreg_len
;
5080 pci_save_state(pdev
);
5081 cas_check_pci_invariants(cp
);
5084 if (cas_check_invariants(cp
))
5085 goto err_out_iounmap
;
5086 if (cp
->cas_flags
& CAS_FLAG_SATURN
)
5087 if (cas_saturn_firmware_init(cp
))
5088 goto err_out_iounmap
;
5090 cp
->init_block
= (struct cas_init_block
*)
5091 pci_alloc_consistent(pdev
, sizeof(struct cas_init_block
),
5093 if (!cp
->init_block
) {
5094 dev_err(&pdev
->dev
, "Cannot allocate init block, aborting\n");
5095 goto err_out_iounmap
;
5098 for (i
= 0; i
< N_TX_RINGS
; i
++)
5099 cp
->init_txds
[i
] = cp
->init_block
->txds
[i
];
5101 for (i
= 0; i
< N_RX_DESC_RINGS
; i
++)
5102 cp
->init_rxds
[i
] = cp
->init_block
->rxds
[i
];
5104 for (i
= 0; i
< N_RX_COMP_RINGS
; i
++)
5105 cp
->init_rxcs
[i
] = cp
->init_block
->rxcs
[i
];
5107 for (i
= 0; i
< N_RX_FLOWS
; i
++)
5108 skb_queue_head_init(&cp
->rx_flows
[i
]);
5110 dev
->netdev_ops
= &cas_netdev_ops
;
5111 dev
->ethtool_ops
= &cas_ethtool_ops
;
5112 dev
->watchdog_timeo
= CAS_TX_TIMEOUT
;
5115 netif_napi_add(dev
, &cp
->napi
, cas_poll
, 64);
5117 dev
->irq
= pdev
->irq
;
5120 /* Cassini features. */
5121 if ((cp
->cas_flags
& CAS_FLAG_NO_HW_CSUM
) == 0)
5122 dev
->features
|= NETIF_F_HW_CSUM
| NETIF_F_SG
;
5125 dev
->features
|= NETIF_F_HIGHDMA
;
5127 if (register_netdev(dev
)) {
5128 dev_err(&pdev
->dev
, "Cannot register net device, aborting\n");
5129 goto err_out_free_consistent
;
5132 i
= readl(cp
->regs
+ REG_BIM_CFG
);
5133 netdev_info(dev
, "Sun Cassini%s (%sbit/%sMHz PCI/%s) Ethernet[%d] %pM\n",
5134 (cp
->cas_flags
& CAS_FLAG_REG_PLUS
) ? "+" : "",
5135 (i
& BIM_CFG_32BIT
) ? "32" : "64",
5136 (i
& BIM_CFG_66MHZ
) ? "66" : "33",
5137 (cp
->phy_type
== CAS_PHY_SERDES
) ? "Fi" : "Cu", pdev
->irq
,
5140 pci_set_drvdata(pdev
, dev
);
5142 cas_entropy_reset(cp
);
5144 cas_begin_auto_negotiation(cp
, NULL
);
5147 err_out_free_consistent
:
5148 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5149 cp
->init_block
, cp
->block_dvma
);
5152 mutex_lock(&cp
->pm_mutex
);
5155 mutex_unlock(&cp
->pm_mutex
);
5157 pci_iounmap(pdev
, cp
->regs
);
5161 pci_release_regions(pdev
);
5163 err_write_cacheline
:
5164 /* Try to restore it in case the error occurred after we
5167 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
, orig_cacheline_size
);
5169 err_out_free_netdev
:
5172 err_out_disable_pdev
:
5173 pci_disable_device(pdev
);
5174 pci_set_drvdata(pdev
, NULL
);
5178 static void __devexit
cas_remove_one(struct pci_dev
*pdev
)
5180 struct net_device
*dev
= pci_get_drvdata(pdev
);
5185 cp
= netdev_priv(dev
);
5186 unregister_netdev(dev
);
5191 mutex_lock(&cp
->pm_mutex
);
5192 cancel_work_sync(&cp
->reset_task
);
5195 mutex_unlock(&cp
->pm_mutex
);
5198 if (cp
->orig_cacheline_size
) {
5199 /* Restore the cache line size if we had modified
5202 pci_write_config_byte(pdev
, PCI_CACHE_LINE_SIZE
,
5203 cp
->orig_cacheline_size
);
5206 pci_free_consistent(pdev
, sizeof(struct cas_init_block
),
5207 cp
->init_block
, cp
->block_dvma
);
5208 pci_iounmap(pdev
, cp
->regs
);
5210 pci_release_regions(pdev
);
5211 pci_disable_device(pdev
);
5212 pci_set_drvdata(pdev
, NULL
);
5216 static int cas_suspend(struct pci_dev
*pdev
, pm_message_t state
)
5218 struct net_device
*dev
= pci_get_drvdata(pdev
);
5219 struct cas
*cp
= netdev_priv(dev
);
5220 unsigned long flags
;
5222 mutex_lock(&cp
->pm_mutex
);
5224 /* If the driver is opened, we stop the DMA */
5226 netif_device_detach(dev
);
5228 cas_lock_all_save(cp
, flags
);
5230 /* We can set the second arg of cas_reset to 0
5231 * because on resume, we'll call cas_init_hw with
5232 * its second arg set so that autonegotiation is
5236 cas_clean_rings(cp
);
5237 cas_unlock_all_restore(cp
, flags
);
5242 mutex_unlock(&cp
->pm_mutex
);
5247 static int cas_resume(struct pci_dev
*pdev
)
5249 struct net_device
*dev
= pci_get_drvdata(pdev
);
5250 struct cas
*cp
= netdev_priv(dev
);
5252 netdev_info(dev
, "resuming\n");
5254 mutex_lock(&cp
->pm_mutex
);
5257 unsigned long flags
;
5258 cas_lock_all_save(cp
, flags
);
5261 cas_clean_rings(cp
);
5263 cas_unlock_all_restore(cp
, flags
);
5265 netif_device_attach(dev
);
5267 mutex_unlock(&cp
->pm_mutex
);
5270 #endif /* CONFIG_PM */
5272 static struct pci_driver cas_driver
= {
5273 .name
= DRV_MODULE_NAME
,
5274 .id_table
= cas_pci_tbl
,
5275 .probe
= cas_init_one
,
5276 .remove
= __devexit_p(cas_remove_one
),
5278 .suspend
= cas_suspend
,
5279 .resume
= cas_resume
5283 static int __init
cas_init(void)
5285 if (linkdown_timeout
> 0)
5286 link_transition_timeout
= linkdown_timeout
* HZ
;
5288 link_transition_timeout
= 0;
5290 return pci_register_driver(&cas_driver
);
5293 static void __exit
cas_cleanup(void)
5295 pci_unregister_driver(&cas_driver
);
5298 module_init(cas_init
);
5299 module_exit(cas_cleanup
);