ALSA: Provide a CLOCK_MONOTONIC_RAW timestamp type
[linux/fpc-iii.git] / mm / hugetlb.c
blob2024bbd573d2a9ca8a08842cdf0b99d2062cbee1
1 /*
2 * Generic hugetlb support.
3 * (C) Nadia Yvette Chambers, April 2004
4 */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
38 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
39 unsigned long hugepages_treat_as_movable;
41 int hugetlb_max_hstate __read_mostly;
42 unsigned int default_hstate_idx;
43 struct hstate hstates[HUGE_MAX_HSTATE];
45 __initdata LIST_HEAD(huge_boot_pages);
47 /* for command line parsing */
48 static struct hstate * __initdata parsed_hstate;
49 static unsigned long __initdata default_hstate_max_huge_pages;
50 static unsigned long __initdata default_hstate_size;
53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54 * free_huge_pages, and surplus_huge_pages.
56 DEFINE_SPINLOCK(hugetlb_lock);
59 * Serializes faults on the same logical page. This is used to
60 * prevent spurious OOMs when the hugepage pool is fully utilized.
62 static int num_fault_mutexes;
63 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
65 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
67 bool free = (spool->count == 0) && (spool->used_hpages == 0);
69 spin_unlock(&spool->lock);
71 /* If no pages are used, and no other handles to the subpool
72 * remain, free the subpool the subpool remain */
73 if (free)
74 kfree(spool);
77 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
79 struct hugepage_subpool *spool;
81 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
82 if (!spool)
83 return NULL;
85 spin_lock_init(&spool->lock);
86 spool->count = 1;
87 spool->max_hpages = nr_blocks;
88 spool->used_hpages = 0;
90 return spool;
93 void hugepage_put_subpool(struct hugepage_subpool *spool)
95 spin_lock(&spool->lock);
96 BUG_ON(!spool->count);
97 spool->count--;
98 unlock_or_release_subpool(spool);
101 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
102 long delta)
104 int ret = 0;
106 if (!spool)
107 return 0;
109 spin_lock(&spool->lock);
110 if ((spool->used_hpages + delta) <= spool->max_hpages) {
111 spool->used_hpages += delta;
112 } else {
113 ret = -ENOMEM;
115 spin_unlock(&spool->lock);
117 return ret;
120 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
121 long delta)
123 if (!spool)
124 return;
126 spin_lock(&spool->lock);
127 spool->used_hpages -= delta;
128 /* If hugetlbfs_put_super couldn't free spool due to
129 * an outstanding quota reference, free it now. */
130 unlock_or_release_subpool(spool);
133 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
135 return HUGETLBFS_SB(inode->i_sb)->spool;
138 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
140 return subpool_inode(file_inode(vma->vm_file));
144 * Region tracking -- allows tracking of reservations and instantiated pages
145 * across the pages in a mapping.
147 * The region data structures are embedded into a resv_map and
148 * protected by a resv_map's lock
150 struct file_region {
151 struct list_head link;
152 long from;
153 long to;
156 static long region_add(struct resv_map *resv, long f, long t)
158 struct list_head *head = &resv->regions;
159 struct file_region *rg, *nrg, *trg;
161 spin_lock(&resv->lock);
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (f <= rg->to)
165 break;
167 /* Round our left edge to the current segment if it encloses us. */
168 if (f > rg->from)
169 f = rg->from;
171 /* Check for and consume any regions we now overlap with. */
172 nrg = rg;
173 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
174 if (&rg->link == head)
175 break;
176 if (rg->from > t)
177 break;
179 /* If this area reaches higher then extend our area to
180 * include it completely. If this is not the first area
181 * which we intend to reuse, free it. */
182 if (rg->to > t)
183 t = rg->to;
184 if (rg != nrg) {
185 list_del(&rg->link);
186 kfree(rg);
189 nrg->from = f;
190 nrg->to = t;
191 spin_unlock(&resv->lock);
192 return 0;
195 static long region_chg(struct resv_map *resv, long f, long t)
197 struct list_head *head = &resv->regions;
198 struct file_region *rg, *nrg = NULL;
199 long chg = 0;
201 retry:
202 spin_lock(&resv->lock);
203 /* Locate the region we are before or in. */
204 list_for_each_entry(rg, head, link)
205 if (f <= rg->to)
206 break;
208 /* If we are below the current region then a new region is required.
209 * Subtle, allocate a new region at the position but make it zero
210 * size such that we can guarantee to record the reservation. */
211 if (&rg->link == head || t < rg->from) {
212 if (!nrg) {
213 spin_unlock(&resv->lock);
214 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
215 if (!nrg)
216 return -ENOMEM;
218 nrg->from = f;
219 nrg->to = f;
220 INIT_LIST_HEAD(&nrg->link);
221 goto retry;
224 list_add(&nrg->link, rg->link.prev);
225 chg = t - f;
226 goto out_nrg;
229 /* Round our left edge to the current segment if it encloses us. */
230 if (f > rg->from)
231 f = rg->from;
232 chg = t - f;
234 /* Check for and consume any regions we now overlap with. */
235 list_for_each_entry(rg, rg->link.prev, link) {
236 if (&rg->link == head)
237 break;
238 if (rg->from > t)
239 goto out;
241 /* We overlap with this area, if it extends further than
242 * us then we must extend ourselves. Account for its
243 * existing reservation. */
244 if (rg->to > t) {
245 chg += rg->to - t;
246 t = rg->to;
248 chg -= rg->to - rg->from;
251 out:
252 spin_unlock(&resv->lock);
253 /* We already know we raced and no longer need the new region */
254 kfree(nrg);
255 return chg;
256 out_nrg:
257 spin_unlock(&resv->lock);
258 return chg;
261 static long region_truncate(struct resv_map *resv, long end)
263 struct list_head *head = &resv->regions;
264 struct file_region *rg, *trg;
265 long chg = 0;
267 spin_lock(&resv->lock);
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (end <= rg->to)
271 break;
272 if (&rg->link == head)
273 goto out;
275 /* If we are in the middle of a region then adjust it. */
276 if (end > rg->from) {
277 chg = rg->to - end;
278 rg->to = end;
279 rg = list_entry(rg->link.next, typeof(*rg), link);
282 /* Drop any remaining regions. */
283 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
284 if (&rg->link == head)
285 break;
286 chg += rg->to - rg->from;
287 list_del(&rg->link);
288 kfree(rg);
291 out:
292 spin_unlock(&resv->lock);
293 return chg;
296 static long region_count(struct resv_map *resv, long f, long t)
298 struct list_head *head = &resv->regions;
299 struct file_region *rg;
300 long chg = 0;
302 spin_lock(&resv->lock);
303 /* Locate each segment we overlap with, and count that overlap. */
304 list_for_each_entry(rg, head, link) {
305 long seg_from;
306 long seg_to;
308 if (rg->to <= f)
309 continue;
310 if (rg->from >= t)
311 break;
313 seg_from = max(rg->from, f);
314 seg_to = min(rg->to, t);
316 chg += seg_to - seg_from;
318 spin_unlock(&resv->lock);
320 return chg;
324 * Convert the address within this vma to the page offset within
325 * the mapping, in pagecache page units; huge pages here.
327 static pgoff_t vma_hugecache_offset(struct hstate *h,
328 struct vm_area_struct *vma, unsigned long address)
330 return ((address - vma->vm_start) >> huge_page_shift(h)) +
331 (vma->vm_pgoff >> huge_page_order(h));
334 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
335 unsigned long address)
337 return vma_hugecache_offset(hstate_vma(vma), vma, address);
341 * Return the size of the pages allocated when backing a VMA. In the majority
342 * cases this will be same size as used by the page table entries.
344 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
346 struct hstate *hstate;
348 if (!is_vm_hugetlb_page(vma))
349 return PAGE_SIZE;
351 hstate = hstate_vma(vma);
353 return 1UL << huge_page_shift(hstate);
355 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
358 * Return the page size being used by the MMU to back a VMA. In the majority
359 * of cases, the page size used by the kernel matches the MMU size. On
360 * architectures where it differs, an architecture-specific version of this
361 * function is required.
363 #ifndef vma_mmu_pagesize
364 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
366 return vma_kernel_pagesize(vma);
368 #endif
371 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
372 * bits of the reservation map pointer, which are always clear due to
373 * alignment.
375 #define HPAGE_RESV_OWNER (1UL << 0)
376 #define HPAGE_RESV_UNMAPPED (1UL << 1)
377 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
380 * These helpers are used to track how many pages are reserved for
381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382 * is guaranteed to have their future faults succeed.
384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385 * the reserve counters are updated with the hugetlb_lock held. It is safe
386 * to reset the VMA at fork() time as it is not in use yet and there is no
387 * chance of the global counters getting corrupted as a result of the values.
389 * The private mapping reservation is represented in a subtly different
390 * manner to a shared mapping. A shared mapping has a region map associated
391 * with the underlying file, this region map represents the backing file
392 * pages which have ever had a reservation assigned which this persists even
393 * after the page is instantiated. A private mapping has a region map
394 * associated with the original mmap which is attached to all VMAs which
395 * reference it, this region map represents those offsets which have consumed
396 * reservation ie. where pages have been instantiated.
398 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
400 return (unsigned long)vma->vm_private_data;
403 static void set_vma_private_data(struct vm_area_struct *vma,
404 unsigned long value)
406 vma->vm_private_data = (void *)value;
409 struct resv_map *resv_map_alloc(void)
411 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
412 if (!resv_map)
413 return NULL;
415 kref_init(&resv_map->refs);
416 spin_lock_init(&resv_map->lock);
417 INIT_LIST_HEAD(&resv_map->regions);
419 return resv_map;
422 void resv_map_release(struct kref *ref)
424 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
426 /* Clear out any active regions before we release the map. */
427 region_truncate(resv_map, 0);
428 kfree(resv_map);
431 static inline struct resv_map *inode_resv_map(struct inode *inode)
433 return inode->i_mapping->private_data;
436 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
438 VM_BUG_ON(!is_vm_hugetlb_page(vma));
439 if (vma->vm_flags & VM_MAYSHARE) {
440 struct address_space *mapping = vma->vm_file->f_mapping;
441 struct inode *inode = mapping->host;
443 return inode_resv_map(inode);
445 } else {
446 return (struct resv_map *)(get_vma_private_data(vma) &
447 ~HPAGE_RESV_MASK);
451 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
453 VM_BUG_ON(!is_vm_hugetlb_page(vma));
454 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
456 set_vma_private_data(vma, (get_vma_private_data(vma) &
457 HPAGE_RESV_MASK) | (unsigned long)map);
460 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
462 VM_BUG_ON(!is_vm_hugetlb_page(vma));
463 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
465 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
468 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
470 VM_BUG_ON(!is_vm_hugetlb_page(vma));
472 return (get_vma_private_data(vma) & flag) != 0;
475 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
476 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
478 VM_BUG_ON(!is_vm_hugetlb_page(vma));
479 if (!(vma->vm_flags & VM_MAYSHARE))
480 vma->vm_private_data = (void *)0;
483 /* Returns true if the VMA has associated reserve pages */
484 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
486 if (vma->vm_flags & VM_NORESERVE) {
488 * This address is already reserved by other process(chg == 0),
489 * so, we should decrement reserved count. Without decrementing,
490 * reserve count remains after releasing inode, because this
491 * allocated page will go into page cache and is regarded as
492 * coming from reserved pool in releasing step. Currently, we
493 * don't have any other solution to deal with this situation
494 * properly, so add work-around here.
496 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
497 return 1;
498 else
499 return 0;
502 /* Shared mappings always use reserves */
503 if (vma->vm_flags & VM_MAYSHARE)
504 return 1;
507 * Only the process that called mmap() has reserves for
508 * private mappings.
510 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
511 return 1;
513 return 0;
516 static void enqueue_huge_page(struct hstate *h, struct page *page)
518 int nid = page_to_nid(page);
519 list_move(&page->lru, &h->hugepage_freelists[nid]);
520 h->free_huge_pages++;
521 h->free_huge_pages_node[nid]++;
524 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
526 struct page *page;
528 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
529 if (!is_migrate_isolate_page(page))
530 break;
532 * if 'non-isolated free hugepage' not found on the list,
533 * the allocation fails.
535 if (&h->hugepage_freelists[nid] == &page->lru)
536 return NULL;
537 list_move(&page->lru, &h->hugepage_activelist);
538 set_page_refcounted(page);
539 h->free_huge_pages--;
540 h->free_huge_pages_node[nid]--;
541 return page;
544 /* Movability of hugepages depends on migration support. */
545 static inline gfp_t htlb_alloc_mask(struct hstate *h)
547 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
548 return GFP_HIGHUSER_MOVABLE;
549 else
550 return GFP_HIGHUSER;
553 static struct page *dequeue_huge_page_vma(struct hstate *h,
554 struct vm_area_struct *vma,
555 unsigned long address, int avoid_reserve,
556 long chg)
558 struct page *page = NULL;
559 struct mempolicy *mpol;
560 nodemask_t *nodemask;
561 struct zonelist *zonelist;
562 struct zone *zone;
563 struct zoneref *z;
564 unsigned int cpuset_mems_cookie;
567 * A child process with MAP_PRIVATE mappings created by their parent
568 * have no page reserves. This check ensures that reservations are
569 * not "stolen". The child may still get SIGKILLed
571 if (!vma_has_reserves(vma, chg) &&
572 h->free_huge_pages - h->resv_huge_pages == 0)
573 goto err;
575 /* If reserves cannot be used, ensure enough pages are in the pool */
576 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
577 goto err;
579 retry_cpuset:
580 cpuset_mems_cookie = read_mems_allowed_begin();
581 zonelist = huge_zonelist(vma, address,
582 htlb_alloc_mask(h), &mpol, &nodemask);
584 for_each_zone_zonelist_nodemask(zone, z, zonelist,
585 MAX_NR_ZONES - 1, nodemask) {
586 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
587 page = dequeue_huge_page_node(h, zone_to_nid(zone));
588 if (page) {
589 if (avoid_reserve)
590 break;
591 if (!vma_has_reserves(vma, chg))
592 break;
594 SetPagePrivate(page);
595 h->resv_huge_pages--;
596 break;
601 mpol_cond_put(mpol);
602 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
603 goto retry_cpuset;
604 return page;
606 err:
607 return NULL;
611 * common helper functions for hstate_next_node_to_{alloc|free}.
612 * We may have allocated or freed a huge page based on a different
613 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
614 * be outside of *nodes_allowed. Ensure that we use an allowed
615 * node for alloc or free.
617 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
619 nid = next_node(nid, *nodes_allowed);
620 if (nid == MAX_NUMNODES)
621 nid = first_node(*nodes_allowed);
622 VM_BUG_ON(nid >= MAX_NUMNODES);
624 return nid;
627 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
629 if (!node_isset(nid, *nodes_allowed))
630 nid = next_node_allowed(nid, nodes_allowed);
631 return nid;
635 * returns the previously saved node ["this node"] from which to
636 * allocate a persistent huge page for the pool and advance the
637 * next node from which to allocate, handling wrap at end of node
638 * mask.
640 static int hstate_next_node_to_alloc(struct hstate *h,
641 nodemask_t *nodes_allowed)
643 int nid;
645 VM_BUG_ON(!nodes_allowed);
647 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
648 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
650 return nid;
654 * helper for free_pool_huge_page() - return the previously saved
655 * node ["this node"] from which to free a huge page. Advance the
656 * next node id whether or not we find a free huge page to free so
657 * that the next attempt to free addresses the next node.
659 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
661 int nid;
663 VM_BUG_ON(!nodes_allowed);
665 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
666 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
668 return nid;
671 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
672 for (nr_nodes = nodes_weight(*mask); \
673 nr_nodes > 0 && \
674 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
675 nr_nodes--)
677 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
678 for (nr_nodes = nodes_weight(*mask); \
679 nr_nodes > 0 && \
680 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
681 nr_nodes--)
683 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
684 static void destroy_compound_gigantic_page(struct page *page,
685 unsigned long order)
687 int i;
688 int nr_pages = 1 << order;
689 struct page *p = page + 1;
691 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
692 __ClearPageTail(p);
693 set_page_refcounted(p);
694 p->first_page = NULL;
697 set_compound_order(page, 0);
698 __ClearPageHead(page);
701 static void free_gigantic_page(struct page *page, unsigned order)
703 free_contig_range(page_to_pfn(page), 1 << order);
706 static int __alloc_gigantic_page(unsigned long start_pfn,
707 unsigned long nr_pages)
709 unsigned long end_pfn = start_pfn + nr_pages;
710 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
713 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
714 unsigned long nr_pages)
716 unsigned long i, end_pfn = start_pfn + nr_pages;
717 struct page *page;
719 for (i = start_pfn; i < end_pfn; i++) {
720 if (!pfn_valid(i))
721 return false;
723 page = pfn_to_page(i);
725 if (PageReserved(page))
726 return false;
728 if (page_count(page) > 0)
729 return false;
731 if (PageHuge(page))
732 return false;
735 return true;
738 static bool zone_spans_last_pfn(const struct zone *zone,
739 unsigned long start_pfn, unsigned long nr_pages)
741 unsigned long last_pfn = start_pfn + nr_pages - 1;
742 return zone_spans_pfn(zone, last_pfn);
745 static struct page *alloc_gigantic_page(int nid, unsigned order)
747 unsigned long nr_pages = 1 << order;
748 unsigned long ret, pfn, flags;
749 struct zone *z;
751 z = NODE_DATA(nid)->node_zones;
752 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
753 spin_lock_irqsave(&z->lock, flags);
755 pfn = ALIGN(z->zone_start_pfn, nr_pages);
756 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
757 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
759 * We release the zone lock here because
760 * alloc_contig_range() will also lock the zone
761 * at some point. If there's an allocation
762 * spinning on this lock, it may win the race
763 * and cause alloc_contig_range() to fail...
765 spin_unlock_irqrestore(&z->lock, flags);
766 ret = __alloc_gigantic_page(pfn, nr_pages);
767 if (!ret)
768 return pfn_to_page(pfn);
769 spin_lock_irqsave(&z->lock, flags);
771 pfn += nr_pages;
774 spin_unlock_irqrestore(&z->lock, flags);
777 return NULL;
780 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
781 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
783 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
785 struct page *page;
787 page = alloc_gigantic_page(nid, huge_page_order(h));
788 if (page) {
789 prep_compound_gigantic_page(page, huge_page_order(h));
790 prep_new_huge_page(h, page, nid);
793 return page;
796 static int alloc_fresh_gigantic_page(struct hstate *h,
797 nodemask_t *nodes_allowed)
799 struct page *page = NULL;
800 int nr_nodes, node;
802 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
803 page = alloc_fresh_gigantic_page_node(h, node);
804 if (page)
805 return 1;
808 return 0;
811 static inline bool gigantic_page_supported(void) { return true; }
812 #else
813 static inline bool gigantic_page_supported(void) { return false; }
814 static inline void free_gigantic_page(struct page *page, unsigned order) { }
815 static inline void destroy_compound_gigantic_page(struct page *page,
816 unsigned long order) { }
817 static inline int alloc_fresh_gigantic_page(struct hstate *h,
818 nodemask_t *nodes_allowed) { return 0; }
819 #endif
821 static void update_and_free_page(struct hstate *h, struct page *page)
823 int i;
825 if (hstate_is_gigantic(h) && !gigantic_page_supported())
826 return;
828 h->nr_huge_pages--;
829 h->nr_huge_pages_node[page_to_nid(page)]--;
830 for (i = 0; i < pages_per_huge_page(h); i++) {
831 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
832 1 << PG_referenced | 1 << PG_dirty |
833 1 << PG_active | 1 << PG_private |
834 1 << PG_writeback);
836 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
837 set_compound_page_dtor(page, NULL);
838 set_page_refcounted(page);
839 if (hstate_is_gigantic(h)) {
840 destroy_compound_gigantic_page(page, huge_page_order(h));
841 free_gigantic_page(page, huge_page_order(h));
842 } else {
843 arch_release_hugepage(page);
844 __free_pages(page, huge_page_order(h));
848 struct hstate *size_to_hstate(unsigned long size)
850 struct hstate *h;
852 for_each_hstate(h) {
853 if (huge_page_size(h) == size)
854 return h;
856 return NULL;
859 static void free_huge_page(struct page *page)
862 * Can't pass hstate in here because it is called from the
863 * compound page destructor.
865 struct hstate *h = page_hstate(page);
866 int nid = page_to_nid(page);
867 struct hugepage_subpool *spool =
868 (struct hugepage_subpool *)page_private(page);
869 bool restore_reserve;
871 set_page_private(page, 0);
872 page->mapping = NULL;
873 BUG_ON(page_count(page));
874 BUG_ON(page_mapcount(page));
875 restore_reserve = PagePrivate(page);
876 ClearPagePrivate(page);
878 spin_lock(&hugetlb_lock);
879 hugetlb_cgroup_uncharge_page(hstate_index(h),
880 pages_per_huge_page(h), page);
881 if (restore_reserve)
882 h->resv_huge_pages++;
884 if (h->surplus_huge_pages_node[nid]) {
885 /* remove the page from active list */
886 list_del(&page->lru);
887 update_and_free_page(h, page);
888 h->surplus_huge_pages--;
889 h->surplus_huge_pages_node[nid]--;
890 } else {
891 arch_clear_hugepage_flags(page);
892 enqueue_huge_page(h, page);
894 spin_unlock(&hugetlb_lock);
895 hugepage_subpool_put_pages(spool, 1);
898 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
900 INIT_LIST_HEAD(&page->lru);
901 set_compound_page_dtor(page, free_huge_page);
902 spin_lock(&hugetlb_lock);
903 set_hugetlb_cgroup(page, NULL);
904 h->nr_huge_pages++;
905 h->nr_huge_pages_node[nid]++;
906 spin_unlock(&hugetlb_lock);
907 put_page(page); /* free it into the hugepage allocator */
910 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
912 int i;
913 int nr_pages = 1 << order;
914 struct page *p = page + 1;
916 /* we rely on prep_new_huge_page to set the destructor */
917 set_compound_order(page, order);
918 __SetPageHead(page);
919 __ClearPageReserved(page);
920 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
921 __SetPageTail(p);
923 * For gigantic hugepages allocated through bootmem at
924 * boot, it's safer to be consistent with the not-gigantic
925 * hugepages and clear the PG_reserved bit from all tail pages
926 * too. Otherwse drivers using get_user_pages() to access tail
927 * pages may get the reference counting wrong if they see
928 * PG_reserved set on a tail page (despite the head page not
929 * having PG_reserved set). Enforcing this consistency between
930 * head and tail pages allows drivers to optimize away a check
931 * on the head page when they need know if put_page() is needed
932 * after get_user_pages().
934 __ClearPageReserved(p);
935 set_page_count(p, 0);
936 p->first_page = page;
941 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
942 * transparent huge pages. See the PageTransHuge() documentation for more
943 * details.
945 int PageHuge(struct page *page)
947 if (!PageCompound(page))
948 return 0;
950 page = compound_head(page);
951 return get_compound_page_dtor(page) == free_huge_page;
953 EXPORT_SYMBOL_GPL(PageHuge);
956 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
957 * normal or transparent huge pages.
959 int PageHeadHuge(struct page *page_head)
961 if (!PageHead(page_head))
962 return 0;
964 return get_compound_page_dtor(page_head) == free_huge_page;
967 pgoff_t __basepage_index(struct page *page)
969 struct page *page_head = compound_head(page);
970 pgoff_t index = page_index(page_head);
971 unsigned long compound_idx;
973 if (!PageHuge(page_head))
974 return page_index(page);
976 if (compound_order(page_head) >= MAX_ORDER)
977 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
978 else
979 compound_idx = page - page_head;
981 return (index << compound_order(page_head)) + compound_idx;
984 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
986 struct page *page;
988 page = alloc_pages_exact_node(nid,
989 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
990 __GFP_REPEAT|__GFP_NOWARN,
991 huge_page_order(h));
992 if (page) {
993 if (arch_prepare_hugepage(page)) {
994 __free_pages(page, huge_page_order(h));
995 return NULL;
997 prep_new_huge_page(h, page, nid);
1000 return page;
1003 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1005 struct page *page;
1006 int nr_nodes, node;
1007 int ret = 0;
1009 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1010 page = alloc_fresh_huge_page_node(h, node);
1011 if (page) {
1012 ret = 1;
1013 break;
1017 if (ret)
1018 count_vm_event(HTLB_BUDDY_PGALLOC);
1019 else
1020 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1022 return ret;
1026 * Free huge page from pool from next node to free.
1027 * Attempt to keep persistent huge pages more or less
1028 * balanced over allowed nodes.
1029 * Called with hugetlb_lock locked.
1031 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1032 bool acct_surplus)
1034 int nr_nodes, node;
1035 int ret = 0;
1037 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1039 * If we're returning unused surplus pages, only examine
1040 * nodes with surplus pages.
1042 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1043 !list_empty(&h->hugepage_freelists[node])) {
1044 struct page *page =
1045 list_entry(h->hugepage_freelists[node].next,
1046 struct page, lru);
1047 list_del(&page->lru);
1048 h->free_huge_pages--;
1049 h->free_huge_pages_node[node]--;
1050 if (acct_surplus) {
1051 h->surplus_huge_pages--;
1052 h->surplus_huge_pages_node[node]--;
1054 update_and_free_page(h, page);
1055 ret = 1;
1056 break;
1060 return ret;
1064 * Dissolve a given free hugepage into free buddy pages. This function does
1065 * nothing for in-use (including surplus) hugepages.
1067 static void dissolve_free_huge_page(struct page *page)
1069 spin_lock(&hugetlb_lock);
1070 if (PageHuge(page) && !page_count(page)) {
1071 struct hstate *h = page_hstate(page);
1072 int nid = page_to_nid(page);
1073 list_del(&page->lru);
1074 h->free_huge_pages--;
1075 h->free_huge_pages_node[nid]--;
1076 update_and_free_page(h, page);
1078 spin_unlock(&hugetlb_lock);
1082 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1083 * make specified memory blocks removable from the system.
1084 * Note that start_pfn should aligned with (minimum) hugepage size.
1086 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1088 unsigned int order = 8 * sizeof(void *);
1089 unsigned long pfn;
1090 struct hstate *h;
1092 /* Set scan step to minimum hugepage size */
1093 for_each_hstate(h)
1094 if (order > huge_page_order(h))
1095 order = huge_page_order(h);
1096 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
1097 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
1098 dissolve_free_huge_page(pfn_to_page(pfn));
1101 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1103 struct page *page;
1104 unsigned int r_nid;
1106 if (hstate_is_gigantic(h))
1107 return NULL;
1110 * Assume we will successfully allocate the surplus page to
1111 * prevent racing processes from causing the surplus to exceed
1112 * overcommit
1114 * This however introduces a different race, where a process B
1115 * tries to grow the static hugepage pool while alloc_pages() is
1116 * called by process A. B will only examine the per-node
1117 * counters in determining if surplus huge pages can be
1118 * converted to normal huge pages in adjust_pool_surplus(). A
1119 * won't be able to increment the per-node counter, until the
1120 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1121 * no more huge pages can be converted from surplus to normal
1122 * state (and doesn't try to convert again). Thus, we have a
1123 * case where a surplus huge page exists, the pool is grown, and
1124 * the surplus huge page still exists after, even though it
1125 * should just have been converted to a normal huge page. This
1126 * does not leak memory, though, as the hugepage will be freed
1127 * once it is out of use. It also does not allow the counters to
1128 * go out of whack in adjust_pool_surplus() as we don't modify
1129 * the node values until we've gotten the hugepage and only the
1130 * per-node value is checked there.
1132 spin_lock(&hugetlb_lock);
1133 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1134 spin_unlock(&hugetlb_lock);
1135 return NULL;
1136 } else {
1137 h->nr_huge_pages++;
1138 h->surplus_huge_pages++;
1140 spin_unlock(&hugetlb_lock);
1142 if (nid == NUMA_NO_NODE)
1143 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1144 __GFP_REPEAT|__GFP_NOWARN,
1145 huge_page_order(h));
1146 else
1147 page = alloc_pages_exact_node(nid,
1148 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1149 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1151 if (page && arch_prepare_hugepage(page)) {
1152 __free_pages(page, huge_page_order(h));
1153 page = NULL;
1156 spin_lock(&hugetlb_lock);
1157 if (page) {
1158 INIT_LIST_HEAD(&page->lru);
1159 r_nid = page_to_nid(page);
1160 set_compound_page_dtor(page, free_huge_page);
1161 set_hugetlb_cgroup(page, NULL);
1163 * We incremented the global counters already
1165 h->nr_huge_pages_node[r_nid]++;
1166 h->surplus_huge_pages_node[r_nid]++;
1167 __count_vm_event(HTLB_BUDDY_PGALLOC);
1168 } else {
1169 h->nr_huge_pages--;
1170 h->surplus_huge_pages--;
1171 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1173 spin_unlock(&hugetlb_lock);
1175 return page;
1179 * This allocation function is useful in the context where vma is irrelevant.
1180 * E.g. soft-offlining uses this function because it only cares physical
1181 * address of error page.
1183 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1185 struct page *page = NULL;
1187 spin_lock(&hugetlb_lock);
1188 if (h->free_huge_pages - h->resv_huge_pages > 0)
1189 page = dequeue_huge_page_node(h, nid);
1190 spin_unlock(&hugetlb_lock);
1192 if (!page)
1193 page = alloc_buddy_huge_page(h, nid);
1195 return page;
1199 * Increase the hugetlb pool such that it can accommodate a reservation
1200 * of size 'delta'.
1202 static int gather_surplus_pages(struct hstate *h, int delta)
1204 struct list_head surplus_list;
1205 struct page *page, *tmp;
1206 int ret, i;
1207 int needed, allocated;
1208 bool alloc_ok = true;
1210 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1211 if (needed <= 0) {
1212 h->resv_huge_pages += delta;
1213 return 0;
1216 allocated = 0;
1217 INIT_LIST_HEAD(&surplus_list);
1219 ret = -ENOMEM;
1220 retry:
1221 spin_unlock(&hugetlb_lock);
1222 for (i = 0; i < needed; i++) {
1223 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1224 if (!page) {
1225 alloc_ok = false;
1226 break;
1228 list_add(&page->lru, &surplus_list);
1230 allocated += i;
1233 * After retaking hugetlb_lock, we need to recalculate 'needed'
1234 * because either resv_huge_pages or free_huge_pages may have changed.
1236 spin_lock(&hugetlb_lock);
1237 needed = (h->resv_huge_pages + delta) -
1238 (h->free_huge_pages + allocated);
1239 if (needed > 0) {
1240 if (alloc_ok)
1241 goto retry;
1243 * We were not able to allocate enough pages to
1244 * satisfy the entire reservation so we free what
1245 * we've allocated so far.
1247 goto free;
1250 * The surplus_list now contains _at_least_ the number of extra pages
1251 * needed to accommodate the reservation. Add the appropriate number
1252 * of pages to the hugetlb pool and free the extras back to the buddy
1253 * allocator. Commit the entire reservation here to prevent another
1254 * process from stealing the pages as they are added to the pool but
1255 * before they are reserved.
1257 needed += allocated;
1258 h->resv_huge_pages += delta;
1259 ret = 0;
1261 /* Free the needed pages to the hugetlb pool */
1262 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1263 if ((--needed) < 0)
1264 break;
1266 * This page is now managed by the hugetlb allocator and has
1267 * no users -- drop the buddy allocator's reference.
1269 put_page_testzero(page);
1270 VM_BUG_ON_PAGE(page_count(page), page);
1271 enqueue_huge_page(h, page);
1273 free:
1274 spin_unlock(&hugetlb_lock);
1276 /* Free unnecessary surplus pages to the buddy allocator */
1277 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1278 put_page(page);
1279 spin_lock(&hugetlb_lock);
1281 return ret;
1285 * When releasing a hugetlb pool reservation, any surplus pages that were
1286 * allocated to satisfy the reservation must be explicitly freed if they were
1287 * never used.
1288 * Called with hugetlb_lock held.
1290 static void return_unused_surplus_pages(struct hstate *h,
1291 unsigned long unused_resv_pages)
1293 unsigned long nr_pages;
1295 /* Uncommit the reservation */
1296 h->resv_huge_pages -= unused_resv_pages;
1298 /* Cannot return gigantic pages currently */
1299 if (hstate_is_gigantic(h))
1300 return;
1302 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1305 * We want to release as many surplus pages as possible, spread
1306 * evenly across all nodes with memory. Iterate across these nodes
1307 * until we can no longer free unreserved surplus pages. This occurs
1308 * when the nodes with surplus pages have no free pages.
1309 * free_pool_huge_page() will balance the the freed pages across the
1310 * on-line nodes with memory and will handle the hstate accounting.
1312 while (nr_pages--) {
1313 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1314 break;
1315 cond_resched_lock(&hugetlb_lock);
1320 * Determine if the huge page at addr within the vma has an associated
1321 * reservation. Where it does not we will need to logically increase
1322 * reservation and actually increase subpool usage before an allocation
1323 * can occur. Where any new reservation would be required the
1324 * reservation change is prepared, but not committed. Once the page
1325 * has been allocated from the subpool and instantiated the change should
1326 * be committed via vma_commit_reservation. No action is required on
1327 * failure.
1329 static long vma_needs_reservation(struct hstate *h,
1330 struct vm_area_struct *vma, unsigned long addr)
1332 struct resv_map *resv;
1333 pgoff_t idx;
1334 long chg;
1336 resv = vma_resv_map(vma);
1337 if (!resv)
1338 return 1;
1340 idx = vma_hugecache_offset(h, vma, addr);
1341 chg = region_chg(resv, idx, idx + 1);
1343 if (vma->vm_flags & VM_MAYSHARE)
1344 return chg;
1345 else
1346 return chg < 0 ? chg : 0;
1348 static void vma_commit_reservation(struct hstate *h,
1349 struct vm_area_struct *vma, unsigned long addr)
1351 struct resv_map *resv;
1352 pgoff_t idx;
1354 resv = vma_resv_map(vma);
1355 if (!resv)
1356 return;
1358 idx = vma_hugecache_offset(h, vma, addr);
1359 region_add(resv, idx, idx + 1);
1362 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1363 unsigned long addr, int avoid_reserve)
1365 struct hugepage_subpool *spool = subpool_vma(vma);
1366 struct hstate *h = hstate_vma(vma);
1367 struct page *page;
1368 long chg;
1369 int ret, idx;
1370 struct hugetlb_cgroup *h_cg;
1372 idx = hstate_index(h);
1374 * Processes that did not create the mapping will have no
1375 * reserves and will not have accounted against subpool
1376 * limit. Check that the subpool limit can be made before
1377 * satisfying the allocation MAP_NORESERVE mappings may also
1378 * need pages and subpool limit allocated allocated if no reserve
1379 * mapping overlaps.
1381 chg = vma_needs_reservation(h, vma, addr);
1382 if (chg < 0)
1383 return ERR_PTR(-ENOMEM);
1384 if (chg || avoid_reserve)
1385 if (hugepage_subpool_get_pages(spool, 1))
1386 return ERR_PTR(-ENOSPC);
1388 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1389 if (ret)
1390 goto out_subpool_put;
1392 spin_lock(&hugetlb_lock);
1393 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1394 if (!page) {
1395 spin_unlock(&hugetlb_lock);
1396 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1397 if (!page)
1398 goto out_uncharge_cgroup;
1400 spin_lock(&hugetlb_lock);
1401 list_move(&page->lru, &h->hugepage_activelist);
1402 /* Fall through */
1404 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1405 spin_unlock(&hugetlb_lock);
1407 set_page_private(page, (unsigned long)spool);
1409 vma_commit_reservation(h, vma, addr);
1410 return page;
1412 out_uncharge_cgroup:
1413 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1414 out_subpool_put:
1415 if (chg || avoid_reserve)
1416 hugepage_subpool_put_pages(spool, 1);
1417 return ERR_PTR(-ENOSPC);
1421 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1422 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1423 * where no ERR_VALUE is expected to be returned.
1425 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1426 unsigned long addr, int avoid_reserve)
1428 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1429 if (IS_ERR(page))
1430 page = NULL;
1431 return page;
1434 int __weak alloc_bootmem_huge_page(struct hstate *h)
1436 struct huge_bootmem_page *m;
1437 int nr_nodes, node;
1439 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1440 void *addr;
1442 addr = memblock_virt_alloc_try_nid_nopanic(
1443 huge_page_size(h), huge_page_size(h),
1444 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1445 if (addr) {
1447 * Use the beginning of the huge page to store the
1448 * huge_bootmem_page struct (until gather_bootmem
1449 * puts them into the mem_map).
1451 m = addr;
1452 goto found;
1455 return 0;
1457 found:
1458 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1459 /* Put them into a private list first because mem_map is not up yet */
1460 list_add(&m->list, &huge_boot_pages);
1461 m->hstate = h;
1462 return 1;
1465 static void __init prep_compound_huge_page(struct page *page, int order)
1467 if (unlikely(order > (MAX_ORDER - 1)))
1468 prep_compound_gigantic_page(page, order);
1469 else
1470 prep_compound_page(page, order);
1473 /* Put bootmem huge pages into the standard lists after mem_map is up */
1474 static void __init gather_bootmem_prealloc(void)
1476 struct huge_bootmem_page *m;
1478 list_for_each_entry(m, &huge_boot_pages, list) {
1479 struct hstate *h = m->hstate;
1480 struct page *page;
1482 #ifdef CONFIG_HIGHMEM
1483 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1484 memblock_free_late(__pa(m),
1485 sizeof(struct huge_bootmem_page));
1486 #else
1487 page = virt_to_page(m);
1488 #endif
1489 WARN_ON(page_count(page) != 1);
1490 prep_compound_huge_page(page, h->order);
1491 WARN_ON(PageReserved(page));
1492 prep_new_huge_page(h, page, page_to_nid(page));
1494 * If we had gigantic hugepages allocated at boot time, we need
1495 * to restore the 'stolen' pages to totalram_pages in order to
1496 * fix confusing memory reports from free(1) and another
1497 * side-effects, like CommitLimit going negative.
1499 if (hstate_is_gigantic(h))
1500 adjust_managed_page_count(page, 1 << h->order);
1504 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1506 unsigned long i;
1508 for (i = 0; i < h->max_huge_pages; ++i) {
1509 if (hstate_is_gigantic(h)) {
1510 if (!alloc_bootmem_huge_page(h))
1511 break;
1512 } else if (!alloc_fresh_huge_page(h,
1513 &node_states[N_MEMORY]))
1514 break;
1516 h->max_huge_pages = i;
1519 static void __init hugetlb_init_hstates(void)
1521 struct hstate *h;
1523 for_each_hstate(h) {
1524 /* oversize hugepages were init'ed in early boot */
1525 if (!hstate_is_gigantic(h))
1526 hugetlb_hstate_alloc_pages(h);
1530 static char * __init memfmt(char *buf, unsigned long n)
1532 if (n >= (1UL << 30))
1533 sprintf(buf, "%lu GB", n >> 30);
1534 else if (n >= (1UL << 20))
1535 sprintf(buf, "%lu MB", n >> 20);
1536 else
1537 sprintf(buf, "%lu KB", n >> 10);
1538 return buf;
1541 static void __init report_hugepages(void)
1543 struct hstate *h;
1545 for_each_hstate(h) {
1546 char buf[32];
1547 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1548 memfmt(buf, huge_page_size(h)),
1549 h->free_huge_pages);
1553 #ifdef CONFIG_HIGHMEM
1554 static void try_to_free_low(struct hstate *h, unsigned long count,
1555 nodemask_t *nodes_allowed)
1557 int i;
1559 if (hstate_is_gigantic(h))
1560 return;
1562 for_each_node_mask(i, *nodes_allowed) {
1563 struct page *page, *next;
1564 struct list_head *freel = &h->hugepage_freelists[i];
1565 list_for_each_entry_safe(page, next, freel, lru) {
1566 if (count >= h->nr_huge_pages)
1567 return;
1568 if (PageHighMem(page))
1569 continue;
1570 list_del(&page->lru);
1571 update_and_free_page(h, page);
1572 h->free_huge_pages--;
1573 h->free_huge_pages_node[page_to_nid(page)]--;
1577 #else
1578 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1579 nodemask_t *nodes_allowed)
1582 #endif
1585 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1586 * balanced by operating on them in a round-robin fashion.
1587 * Returns 1 if an adjustment was made.
1589 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1590 int delta)
1592 int nr_nodes, node;
1594 VM_BUG_ON(delta != -1 && delta != 1);
1596 if (delta < 0) {
1597 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1598 if (h->surplus_huge_pages_node[node])
1599 goto found;
1601 } else {
1602 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1603 if (h->surplus_huge_pages_node[node] <
1604 h->nr_huge_pages_node[node])
1605 goto found;
1608 return 0;
1610 found:
1611 h->surplus_huge_pages += delta;
1612 h->surplus_huge_pages_node[node] += delta;
1613 return 1;
1616 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1617 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1618 nodemask_t *nodes_allowed)
1620 unsigned long min_count, ret;
1622 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1623 return h->max_huge_pages;
1626 * Increase the pool size
1627 * First take pages out of surplus state. Then make up the
1628 * remaining difference by allocating fresh huge pages.
1630 * We might race with alloc_buddy_huge_page() here and be unable
1631 * to convert a surplus huge page to a normal huge page. That is
1632 * not critical, though, it just means the overall size of the
1633 * pool might be one hugepage larger than it needs to be, but
1634 * within all the constraints specified by the sysctls.
1636 spin_lock(&hugetlb_lock);
1637 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1638 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1639 break;
1642 while (count > persistent_huge_pages(h)) {
1644 * If this allocation races such that we no longer need the
1645 * page, free_huge_page will handle it by freeing the page
1646 * and reducing the surplus.
1648 spin_unlock(&hugetlb_lock);
1649 if (hstate_is_gigantic(h))
1650 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1651 else
1652 ret = alloc_fresh_huge_page(h, nodes_allowed);
1653 spin_lock(&hugetlb_lock);
1654 if (!ret)
1655 goto out;
1657 /* Bail for signals. Probably ctrl-c from user */
1658 if (signal_pending(current))
1659 goto out;
1663 * Decrease the pool size
1664 * First return free pages to the buddy allocator (being careful
1665 * to keep enough around to satisfy reservations). Then place
1666 * pages into surplus state as needed so the pool will shrink
1667 * to the desired size as pages become free.
1669 * By placing pages into the surplus state independent of the
1670 * overcommit value, we are allowing the surplus pool size to
1671 * exceed overcommit. There are few sane options here. Since
1672 * alloc_buddy_huge_page() is checking the global counter,
1673 * though, we'll note that we're not allowed to exceed surplus
1674 * and won't grow the pool anywhere else. Not until one of the
1675 * sysctls are changed, or the surplus pages go out of use.
1677 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1678 min_count = max(count, min_count);
1679 try_to_free_low(h, min_count, nodes_allowed);
1680 while (min_count < persistent_huge_pages(h)) {
1681 if (!free_pool_huge_page(h, nodes_allowed, 0))
1682 break;
1683 cond_resched_lock(&hugetlb_lock);
1685 while (count < persistent_huge_pages(h)) {
1686 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1687 break;
1689 out:
1690 ret = persistent_huge_pages(h);
1691 spin_unlock(&hugetlb_lock);
1692 return ret;
1695 #define HSTATE_ATTR_RO(_name) \
1696 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1698 #define HSTATE_ATTR(_name) \
1699 static struct kobj_attribute _name##_attr = \
1700 __ATTR(_name, 0644, _name##_show, _name##_store)
1702 static struct kobject *hugepages_kobj;
1703 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1705 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1707 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1709 int i;
1711 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1712 if (hstate_kobjs[i] == kobj) {
1713 if (nidp)
1714 *nidp = NUMA_NO_NODE;
1715 return &hstates[i];
1718 return kobj_to_node_hstate(kobj, nidp);
1721 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1722 struct kobj_attribute *attr, char *buf)
1724 struct hstate *h;
1725 unsigned long nr_huge_pages;
1726 int nid;
1728 h = kobj_to_hstate(kobj, &nid);
1729 if (nid == NUMA_NO_NODE)
1730 nr_huge_pages = h->nr_huge_pages;
1731 else
1732 nr_huge_pages = h->nr_huge_pages_node[nid];
1734 return sprintf(buf, "%lu\n", nr_huge_pages);
1737 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1738 struct kobject *kobj, struct kobj_attribute *attr,
1739 const char *buf, size_t len)
1741 int err;
1742 int nid;
1743 unsigned long count;
1744 struct hstate *h;
1745 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1747 err = kstrtoul(buf, 10, &count);
1748 if (err)
1749 goto out;
1751 h = kobj_to_hstate(kobj, &nid);
1752 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1753 err = -EINVAL;
1754 goto out;
1757 if (nid == NUMA_NO_NODE) {
1759 * global hstate attribute
1761 if (!(obey_mempolicy &&
1762 init_nodemask_of_mempolicy(nodes_allowed))) {
1763 NODEMASK_FREE(nodes_allowed);
1764 nodes_allowed = &node_states[N_MEMORY];
1766 } else if (nodes_allowed) {
1768 * per node hstate attribute: adjust count to global,
1769 * but restrict alloc/free to the specified node.
1771 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1772 init_nodemask_of_node(nodes_allowed, nid);
1773 } else
1774 nodes_allowed = &node_states[N_MEMORY];
1776 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1778 if (nodes_allowed != &node_states[N_MEMORY])
1779 NODEMASK_FREE(nodes_allowed);
1781 return len;
1782 out:
1783 NODEMASK_FREE(nodes_allowed);
1784 return err;
1787 static ssize_t nr_hugepages_show(struct kobject *kobj,
1788 struct kobj_attribute *attr, char *buf)
1790 return nr_hugepages_show_common(kobj, attr, buf);
1793 static ssize_t nr_hugepages_store(struct kobject *kobj,
1794 struct kobj_attribute *attr, const char *buf, size_t len)
1796 return nr_hugepages_store_common(false, kobj, attr, buf, len);
1798 HSTATE_ATTR(nr_hugepages);
1800 #ifdef CONFIG_NUMA
1803 * hstate attribute for optionally mempolicy-based constraint on persistent
1804 * huge page alloc/free.
1806 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1807 struct kobj_attribute *attr, char *buf)
1809 return nr_hugepages_show_common(kobj, attr, buf);
1812 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1813 struct kobj_attribute *attr, const char *buf, size_t len)
1815 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1817 HSTATE_ATTR(nr_hugepages_mempolicy);
1818 #endif
1821 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1822 struct kobj_attribute *attr, char *buf)
1824 struct hstate *h = kobj_to_hstate(kobj, NULL);
1825 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1828 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1829 struct kobj_attribute *attr, const char *buf, size_t count)
1831 int err;
1832 unsigned long input;
1833 struct hstate *h = kobj_to_hstate(kobj, NULL);
1835 if (hstate_is_gigantic(h))
1836 return -EINVAL;
1838 err = kstrtoul(buf, 10, &input);
1839 if (err)
1840 return err;
1842 spin_lock(&hugetlb_lock);
1843 h->nr_overcommit_huge_pages = input;
1844 spin_unlock(&hugetlb_lock);
1846 return count;
1848 HSTATE_ATTR(nr_overcommit_hugepages);
1850 static ssize_t free_hugepages_show(struct kobject *kobj,
1851 struct kobj_attribute *attr, char *buf)
1853 struct hstate *h;
1854 unsigned long free_huge_pages;
1855 int nid;
1857 h = kobj_to_hstate(kobj, &nid);
1858 if (nid == NUMA_NO_NODE)
1859 free_huge_pages = h->free_huge_pages;
1860 else
1861 free_huge_pages = h->free_huge_pages_node[nid];
1863 return sprintf(buf, "%lu\n", free_huge_pages);
1865 HSTATE_ATTR_RO(free_hugepages);
1867 static ssize_t resv_hugepages_show(struct kobject *kobj,
1868 struct kobj_attribute *attr, char *buf)
1870 struct hstate *h = kobj_to_hstate(kobj, NULL);
1871 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1873 HSTATE_ATTR_RO(resv_hugepages);
1875 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1876 struct kobj_attribute *attr, char *buf)
1878 struct hstate *h;
1879 unsigned long surplus_huge_pages;
1880 int nid;
1882 h = kobj_to_hstate(kobj, &nid);
1883 if (nid == NUMA_NO_NODE)
1884 surplus_huge_pages = h->surplus_huge_pages;
1885 else
1886 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1888 return sprintf(buf, "%lu\n", surplus_huge_pages);
1890 HSTATE_ATTR_RO(surplus_hugepages);
1892 static struct attribute *hstate_attrs[] = {
1893 &nr_hugepages_attr.attr,
1894 &nr_overcommit_hugepages_attr.attr,
1895 &free_hugepages_attr.attr,
1896 &resv_hugepages_attr.attr,
1897 &surplus_hugepages_attr.attr,
1898 #ifdef CONFIG_NUMA
1899 &nr_hugepages_mempolicy_attr.attr,
1900 #endif
1901 NULL,
1904 static struct attribute_group hstate_attr_group = {
1905 .attrs = hstate_attrs,
1908 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1909 struct kobject **hstate_kobjs,
1910 struct attribute_group *hstate_attr_group)
1912 int retval;
1913 int hi = hstate_index(h);
1915 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1916 if (!hstate_kobjs[hi])
1917 return -ENOMEM;
1919 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1920 if (retval)
1921 kobject_put(hstate_kobjs[hi]);
1923 return retval;
1926 static void __init hugetlb_sysfs_init(void)
1928 struct hstate *h;
1929 int err;
1931 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1932 if (!hugepages_kobj)
1933 return;
1935 for_each_hstate(h) {
1936 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1937 hstate_kobjs, &hstate_attr_group);
1938 if (err)
1939 pr_err("Hugetlb: Unable to add hstate %s", h->name);
1943 #ifdef CONFIG_NUMA
1946 * node_hstate/s - associate per node hstate attributes, via their kobjects,
1947 * with node devices in node_devices[] using a parallel array. The array
1948 * index of a node device or _hstate == node id.
1949 * This is here to avoid any static dependency of the node device driver, in
1950 * the base kernel, on the hugetlb module.
1952 struct node_hstate {
1953 struct kobject *hugepages_kobj;
1954 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1956 struct node_hstate node_hstates[MAX_NUMNODES];
1959 * A subset of global hstate attributes for node devices
1961 static struct attribute *per_node_hstate_attrs[] = {
1962 &nr_hugepages_attr.attr,
1963 &free_hugepages_attr.attr,
1964 &surplus_hugepages_attr.attr,
1965 NULL,
1968 static struct attribute_group per_node_hstate_attr_group = {
1969 .attrs = per_node_hstate_attrs,
1973 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1974 * Returns node id via non-NULL nidp.
1976 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1978 int nid;
1980 for (nid = 0; nid < nr_node_ids; nid++) {
1981 struct node_hstate *nhs = &node_hstates[nid];
1982 int i;
1983 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1984 if (nhs->hstate_kobjs[i] == kobj) {
1985 if (nidp)
1986 *nidp = nid;
1987 return &hstates[i];
1991 BUG();
1992 return NULL;
1996 * Unregister hstate attributes from a single node device.
1997 * No-op if no hstate attributes attached.
1999 static void hugetlb_unregister_node(struct node *node)
2001 struct hstate *h;
2002 struct node_hstate *nhs = &node_hstates[node->dev.id];
2004 if (!nhs->hugepages_kobj)
2005 return; /* no hstate attributes */
2007 for_each_hstate(h) {
2008 int idx = hstate_index(h);
2009 if (nhs->hstate_kobjs[idx]) {
2010 kobject_put(nhs->hstate_kobjs[idx]);
2011 nhs->hstate_kobjs[idx] = NULL;
2015 kobject_put(nhs->hugepages_kobj);
2016 nhs->hugepages_kobj = NULL;
2020 * hugetlb module exit: unregister hstate attributes from node devices
2021 * that have them.
2023 static void hugetlb_unregister_all_nodes(void)
2025 int nid;
2028 * disable node device registrations.
2030 register_hugetlbfs_with_node(NULL, NULL);
2033 * remove hstate attributes from any nodes that have them.
2035 for (nid = 0; nid < nr_node_ids; nid++)
2036 hugetlb_unregister_node(node_devices[nid]);
2040 * Register hstate attributes for a single node device.
2041 * No-op if attributes already registered.
2043 static void hugetlb_register_node(struct node *node)
2045 struct hstate *h;
2046 struct node_hstate *nhs = &node_hstates[node->dev.id];
2047 int err;
2049 if (nhs->hugepages_kobj)
2050 return; /* already allocated */
2052 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2053 &node->dev.kobj);
2054 if (!nhs->hugepages_kobj)
2055 return;
2057 for_each_hstate(h) {
2058 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2059 nhs->hstate_kobjs,
2060 &per_node_hstate_attr_group);
2061 if (err) {
2062 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2063 h->name, node->dev.id);
2064 hugetlb_unregister_node(node);
2065 break;
2071 * hugetlb init time: register hstate attributes for all registered node
2072 * devices of nodes that have memory. All on-line nodes should have
2073 * registered their associated device by this time.
2075 static void hugetlb_register_all_nodes(void)
2077 int nid;
2079 for_each_node_state(nid, N_MEMORY) {
2080 struct node *node = node_devices[nid];
2081 if (node->dev.id == nid)
2082 hugetlb_register_node(node);
2086 * Let the node device driver know we're here so it can
2087 * [un]register hstate attributes on node hotplug.
2089 register_hugetlbfs_with_node(hugetlb_register_node,
2090 hugetlb_unregister_node);
2092 #else /* !CONFIG_NUMA */
2094 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2096 BUG();
2097 if (nidp)
2098 *nidp = -1;
2099 return NULL;
2102 static void hugetlb_unregister_all_nodes(void) { }
2104 static void hugetlb_register_all_nodes(void) { }
2106 #endif
2108 static void __exit hugetlb_exit(void)
2110 struct hstate *h;
2112 hugetlb_unregister_all_nodes();
2114 for_each_hstate(h) {
2115 kobject_put(hstate_kobjs[hstate_index(h)]);
2118 kobject_put(hugepages_kobj);
2119 kfree(htlb_fault_mutex_table);
2121 module_exit(hugetlb_exit);
2123 static int __init hugetlb_init(void)
2125 int i;
2127 if (!hugepages_supported())
2128 return 0;
2130 if (!size_to_hstate(default_hstate_size)) {
2131 default_hstate_size = HPAGE_SIZE;
2132 if (!size_to_hstate(default_hstate_size))
2133 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2135 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2136 if (default_hstate_max_huge_pages)
2137 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2139 hugetlb_init_hstates();
2140 gather_bootmem_prealloc();
2141 report_hugepages();
2143 hugetlb_sysfs_init();
2144 hugetlb_register_all_nodes();
2145 hugetlb_cgroup_file_init();
2147 #ifdef CONFIG_SMP
2148 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2149 #else
2150 num_fault_mutexes = 1;
2151 #endif
2152 htlb_fault_mutex_table =
2153 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2154 BUG_ON(!htlb_fault_mutex_table);
2156 for (i = 0; i < num_fault_mutexes; i++)
2157 mutex_init(&htlb_fault_mutex_table[i]);
2158 return 0;
2160 module_init(hugetlb_init);
2162 /* Should be called on processing a hugepagesz=... option */
2163 void __init hugetlb_add_hstate(unsigned order)
2165 struct hstate *h;
2166 unsigned long i;
2168 if (size_to_hstate(PAGE_SIZE << order)) {
2169 pr_warning("hugepagesz= specified twice, ignoring\n");
2170 return;
2172 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2173 BUG_ON(order == 0);
2174 h = &hstates[hugetlb_max_hstate++];
2175 h->order = order;
2176 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2177 h->nr_huge_pages = 0;
2178 h->free_huge_pages = 0;
2179 for (i = 0; i < MAX_NUMNODES; ++i)
2180 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2181 INIT_LIST_HEAD(&h->hugepage_activelist);
2182 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2183 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2184 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2185 huge_page_size(h)/1024);
2187 parsed_hstate = h;
2190 static int __init hugetlb_nrpages_setup(char *s)
2192 unsigned long *mhp;
2193 static unsigned long *last_mhp;
2196 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2197 * so this hugepages= parameter goes to the "default hstate".
2199 if (!hugetlb_max_hstate)
2200 mhp = &default_hstate_max_huge_pages;
2201 else
2202 mhp = &parsed_hstate->max_huge_pages;
2204 if (mhp == last_mhp) {
2205 pr_warning("hugepages= specified twice without "
2206 "interleaving hugepagesz=, ignoring\n");
2207 return 1;
2210 if (sscanf(s, "%lu", mhp) <= 0)
2211 *mhp = 0;
2214 * Global state is always initialized later in hugetlb_init.
2215 * But we need to allocate >= MAX_ORDER hstates here early to still
2216 * use the bootmem allocator.
2218 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2219 hugetlb_hstate_alloc_pages(parsed_hstate);
2221 last_mhp = mhp;
2223 return 1;
2225 __setup("hugepages=", hugetlb_nrpages_setup);
2227 static int __init hugetlb_default_setup(char *s)
2229 default_hstate_size = memparse(s, &s);
2230 return 1;
2232 __setup("default_hugepagesz=", hugetlb_default_setup);
2234 static unsigned int cpuset_mems_nr(unsigned int *array)
2236 int node;
2237 unsigned int nr = 0;
2239 for_each_node_mask(node, cpuset_current_mems_allowed)
2240 nr += array[node];
2242 return nr;
2245 #ifdef CONFIG_SYSCTL
2246 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2247 struct ctl_table *table, int write,
2248 void __user *buffer, size_t *length, loff_t *ppos)
2250 struct hstate *h = &default_hstate;
2251 unsigned long tmp;
2252 int ret;
2254 if (!hugepages_supported())
2255 return -ENOTSUPP;
2257 tmp = h->max_huge_pages;
2259 if (write && hstate_is_gigantic(h) && !gigantic_page_supported())
2260 return -EINVAL;
2262 table->data = &tmp;
2263 table->maxlen = sizeof(unsigned long);
2264 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2265 if (ret)
2266 goto out;
2268 if (write) {
2269 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2270 GFP_KERNEL | __GFP_NORETRY);
2271 if (!(obey_mempolicy &&
2272 init_nodemask_of_mempolicy(nodes_allowed))) {
2273 NODEMASK_FREE(nodes_allowed);
2274 nodes_allowed = &node_states[N_MEMORY];
2276 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2278 if (nodes_allowed != &node_states[N_MEMORY])
2279 NODEMASK_FREE(nodes_allowed);
2281 out:
2282 return ret;
2285 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2286 void __user *buffer, size_t *length, loff_t *ppos)
2289 return hugetlb_sysctl_handler_common(false, table, write,
2290 buffer, length, ppos);
2293 #ifdef CONFIG_NUMA
2294 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2295 void __user *buffer, size_t *length, loff_t *ppos)
2297 return hugetlb_sysctl_handler_common(true, table, write,
2298 buffer, length, ppos);
2300 #endif /* CONFIG_NUMA */
2302 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2303 void __user *buffer,
2304 size_t *length, loff_t *ppos)
2306 struct hstate *h = &default_hstate;
2307 unsigned long tmp;
2308 int ret;
2310 if (!hugepages_supported())
2311 return -ENOTSUPP;
2313 tmp = h->nr_overcommit_huge_pages;
2315 if (write && hstate_is_gigantic(h))
2316 return -EINVAL;
2318 table->data = &tmp;
2319 table->maxlen = sizeof(unsigned long);
2320 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2321 if (ret)
2322 goto out;
2324 if (write) {
2325 spin_lock(&hugetlb_lock);
2326 h->nr_overcommit_huge_pages = tmp;
2327 spin_unlock(&hugetlb_lock);
2329 out:
2330 return ret;
2333 #endif /* CONFIG_SYSCTL */
2335 void hugetlb_report_meminfo(struct seq_file *m)
2337 struct hstate *h = &default_hstate;
2338 if (!hugepages_supported())
2339 return;
2340 seq_printf(m,
2341 "HugePages_Total: %5lu\n"
2342 "HugePages_Free: %5lu\n"
2343 "HugePages_Rsvd: %5lu\n"
2344 "HugePages_Surp: %5lu\n"
2345 "Hugepagesize: %8lu kB\n",
2346 h->nr_huge_pages,
2347 h->free_huge_pages,
2348 h->resv_huge_pages,
2349 h->surplus_huge_pages,
2350 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2353 int hugetlb_report_node_meminfo(int nid, char *buf)
2355 struct hstate *h = &default_hstate;
2356 if (!hugepages_supported())
2357 return 0;
2358 return sprintf(buf,
2359 "Node %d HugePages_Total: %5u\n"
2360 "Node %d HugePages_Free: %5u\n"
2361 "Node %d HugePages_Surp: %5u\n",
2362 nid, h->nr_huge_pages_node[nid],
2363 nid, h->free_huge_pages_node[nid],
2364 nid, h->surplus_huge_pages_node[nid]);
2367 void hugetlb_show_meminfo(void)
2369 struct hstate *h;
2370 int nid;
2372 if (!hugepages_supported())
2373 return;
2375 for_each_node_state(nid, N_MEMORY)
2376 for_each_hstate(h)
2377 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2378 nid,
2379 h->nr_huge_pages_node[nid],
2380 h->free_huge_pages_node[nid],
2381 h->surplus_huge_pages_node[nid],
2382 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2385 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2386 unsigned long hugetlb_total_pages(void)
2388 struct hstate *h;
2389 unsigned long nr_total_pages = 0;
2391 for_each_hstate(h)
2392 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2393 return nr_total_pages;
2396 static int hugetlb_acct_memory(struct hstate *h, long delta)
2398 int ret = -ENOMEM;
2400 spin_lock(&hugetlb_lock);
2402 * When cpuset is configured, it breaks the strict hugetlb page
2403 * reservation as the accounting is done on a global variable. Such
2404 * reservation is completely rubbish in the presence of cpuset because
2405 * the reservation is not checked against page availability for the
2406 * current cpuset. Application can still potentially OOM'ed by kernel
2407 * with lack of free htlb page in cpuset that the task is in.
2408 * Attempt to enforce strict accounting with cpuset is almost
2409 * impossible (or too ugly) because cpuset is too fluid that
2410 * task or memory node can be dynamically moved between cpusets.
2412 * The change of semantics for shared hugetlb mapping with cpuset is
2413 * undesirable. However, in order to preserve some of the semantics,
2414 * we fall back to check against current free page availability as
2415 * a best attempt and hopefully to minimize the impact of changing
2416 * semantics that cpuset has.
2418 if (delta > 0) {
2419 if (gather_surplus_pages(h, delta) < 0)
2420 goto out;
2422 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2423 return_unused_surplus_pages(h, delta);
2424 goto out;
2428 ret = 0;
2429 if (delta < 0)
2430 return_unused_surplus_pages(h, (unsigned long) -delta);
2432 out:
2433 spin_unlock(&hugetlb_lock);
2434 return ret;
2437 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2439 struct resv_map *resv = vma_resv_map(vma);
2442 * This new VMA should share its siblings reservation map if present.
2443 * The VMA will only ever have a valid reservation map pointer where
2444 * it is being copied for another still existing VMA. As that VMA
2445 * has a reference to the reservation map it cannot disappear until
2446 * after this open call completes. It is therefore safe to take a
2447 * new reference here without additional locking.
2449 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2450 kref_get(&resv->refs);
2453 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2455 struct hstate *h = hstate_vma(vma);
2456 struct resv_map *resv = vma_resv_map(vma);
2457 struct hugepage_subpool *spool = subpool_vma(vma);
2458 unsigned long reserve, start, end;
2460 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2461 return;
2463 start = vma_hugecache_offset(h, vma, vma->vm_start);
2464 end = vma_hugecache_offset(h, vma, vma->vm_end);
2466 reserve = (end - start) - region_count(resv, start, end);
2468 kref_put(&resv->refs, resv_map_release);
2470 if (reserve) {
2471 hugetlb_acct_memory(h, -reserve);
2472 hugepage_subpool_put_pages(spool, reserve);
2477 * We cannot handle pagefaults against hugetlb pages at all. They cause
2478 * handle_mm_fault() to try to instantiate regular-sized pages in the
2479 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2480 * this far.
2482 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2484 BUG();
2485 return 0;
2488 const struct vm_operations_struct hugetlb_vm_ops = {
2489 .fault = hugetlb_vm_op_fault,
2490 .open = hugetlb_vm_op_open,
2491 .close = hugetlb_vm_op_close,
2494 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2495 int writable)
2497 pte_t entry;
2499 if (writable) {
2500 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2501 vma->vm_page_prot)));
2502 } else {
2503 entry = huge_pte_wrprotect(mk_huge_pte(page,
2504 vma->vm_page_prot));
2506 entry = pte_mkyoung(entry);
2507 entry = pte_mkhuge(entry);
2508 entry = arch_make_huge_pte(entry, vma, page, writable);
2510 return entry;
2513 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2514 unsigned long address, pte_t *ptep)
2516 pte_t entry;
2518 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2519 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2520 update_mmu_cache(vma, address, ptep);
2523 static int is_hugetlb_entry_migration(pte_t pte)
2525 swp_entry_t swp;
2527 if (huge_pte_none(pte) || pte_present(pte))
2528 return 0;
2529 swp = pte_to_swp_entry(pte);
2530 if (non_swap_entry(swp) && is_migration_entry(swp))
2531 return 1;
2532 else
2533 return 0;
2536 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2538 swp_entry_t swp;
2540 if (huge_pte_none(pte) || pte_present(pte))
2541 return 0;
2542 swp = pte_to_swp_entry(pte);
2543 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2544 return 1;
2545 else
2546 return 0;
2549 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2550 struct vm_area_struct *vma)
2552 pte_t *src_pte, *dst_pte, entry;
2553 struct page *ptepage;
2554 unsigned long addr;
2555 int cow;
2556 struct hstate *h = hstate_vma(vma);
2557 unsigned long sz = huge_page_size(h);
2558 unsigned long mmun_start; /* For mmu_notifiers */
2559 unsigned long mmun_end; /* For mmu_notifiers */
2560 int ret = 0;
2562 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2564 mmun_start = vma->vm_start;
2565 mmun_end = vma->vm_end;
2566 if (cow)
2567 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2569 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2570 spinlock_t *src_ptl, *dst_ptl;
2571 src_pte = huge_pte_offset(src, addr);
2572 if (!src_pte)
2573 continue;
2574 dst_pte = huge_pte_alloc(dst, addr, sz);
2575 if (!dst_pte) {
2576 ret = -ENOMEM;
2577 break;
2580 /* If the pagetables are shared don't copy or take references */
2581 if (dst_pte == src_pte)
2582 continue;
2584 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2585 src_ptl = huge_pte_lockptr(h, src, src_pte);
2586 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2587 entry = huge_ptep_get(src_pte);
2588 if (huge_pte_none(entry)) { /* skip none entry */
2590 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2591 is_hugetlb_entry_hwpoisoned(entry))) {
2592 swp_entry_t swp_entry = pte_to_swp_entry(entry);
2594 if (is_write_migration_entry(swp_entry) && cow) {
2596 * COW mappings require pages in both
2597 * parent and child to be set to read.
2599 make_migration_entry_read(&swp_entry);
2600 entry = swp_entry_to_pte(swp_entry);
2601 set_huge_pte_at(src, addr, src_pte, entry);
2603 set_huge_pte_at(dst, addr, dst_pte, entry);
2604 } else {
2605 if (cow)
2606 huge_ptep_set_wrprotect(src, addr, src_pte);
2607 ptepage = pte_page(entry);
2608 get_page(ptepage);
2609 page_dup_rmap(ptepage);
2610 set_huge_pte_at(dst, addr, dst_pte, entry);
2612 spin_unlock(src_ptl);
2613 spin_unlock(dst_ptl);
2616 if (cow)
2617 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2619 return ret;
2622 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2623 unsigned long start, unsigned long end,
2624 struct page *ref_page)
2626 int force_flush = 0;
2627 struct mm_struct *mm = vma->vm_mm;
2628 unsigned long address;
2629 pte_t *ptep;
2630 pte_t pte;
2631 spinlock_t *ptl;
2632 struct page *page;
2633 struct hstate *h = hstate_vma(vma);
2634 unsigned long sz = huge_page_size(h);
2635 const unsigned long mmun_start = start; /* For mmu_notifiers */
2636 const unsigned long mmun_end = end; /* For mmu_notifiers */
2638 WARN_ON(!is_vm_hugetlb_page(vma));
2639 BUG_ON(start & ~huge_page_mask(h));
2640 BUG_ON(end & ~huge_page_mask(h));
2642 tlb_start_vma(tlb, vma);
2643 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2644 again:
2645 for (address = start; address < end; address += sz) {
2646 ptep = huge_pte_offset(mm, address);
2647 if (!ptep)
2648 continue;
2650 ptl = huge_pte_lock(h, mm, ptep);
2651 if (huge_pmd_unshare(mm, &address, ptep))
2652 goto unlock;
2654 pte = huge_ptep_get(ptep);
2655 if (huge_pte_none(pte))
2656 goto unlock;
2659 * HWPoisoned hugepage is already unmapped and dropped reference
2661 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2662 huge_pte_clear(mm, address, ptep);
2663 goto unlock;
2666 page = pte_page(pte);
2668 * If a reference page is supplied, it is because a specific
2669 * page is being unmapped, not a range. Ensure the page we
2670 * are about to unmap is the actual page of interest.
2672 if (ref_page) {
2673 if (page != ref_page)
2674 goto unlock;
2677 * Mark the VMA as having unmapped its page so that
2678 * future faults in this VMA will fail rather than
2679 * looking like data was lost
2681 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2684 pte = huge_ptep_get_and_clear(mm, address, ptep);
2685 tlb_remove_tlb_entry(tlb, ptep, address);
2686 if (huge_pte_dirty(pte))
2687 set_page_dirty(page);
2689 page_remove_rmap(page);
2690 force_flush = !__tlb_remove_page(tlb, page);
2691 if (force_flush) {
2692 spin_unlock(ptl);
2693 break;
2695 /* Bail out after unmapping reference page if supplied */
2696 if (ref_page) {
2697 spin_unlock(ptl);
2698 break;
2700 unlock:
2701 spin_unlock(ptl);
2704 * mmu_gather ran out of room to batch pages, we break out of
2705 * the PTE lock to avoid doing the potential expensive TLB invalidate
2706 * and page-free while holding it.
2708 if (force_flush) {
2709 force_flush = 0;
2710 tlb_flush_mmu(tlb);
2711 if (address < end && !ref_page)
2712 goto again;
2714 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2715 tlb_end_vma(tlb, vma);
2718 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2719 struct vm_area_struct *vma, unsigned long start,
2720 unsigned long end, struct page *ref_page)
2722 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2725 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2726 * test will fail on a vma being torn down, and not grab a page table
2727 * on its way out. We're lucky that the flag has such an appropriate
2728 * name, and can in fact be safely cleared here. We could clear it
2729 * before the __unmap_hugepage_range above, but all that's necessary
2730 * is to clear it before releasing the i_mmap_mutex. This works
2731 * because in the context this is called, the VMA is about to be
2732 * destroyed and the i_mmap_mutex is held.
2734 vma->vm_flags &= ~VM_MAYSHARE;
2737 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2738 unsigned long end, struct page *ref_page)
2740 struct mm_struct *mm;
2741 struct mmu_gather tlb;
2743 mm = vma->vm_mm;
2745 tlb_gather_mmu(&tlb, mm, start, end);
2746 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2747 tlb_finish_mmu(&tlb, start, end);
2751 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2752 * mappping it owns the reserve page for. The intention is to unmap the page
2753 * from other VMAs and let the children be SIGKILLed if they are faulting the
2754 * same region.
2756 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2757 struct page *page, unsigned long address)
2759 struct hstate *h = hstate_vma(vma);
2760 struct vm_area_struct *iter_vma;
2761 struct address_space *mapping;
2762 pgoff_t pgoff;
2765 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2766 * from page cache lookup which is in HPAGE_SIZE units.
2768 address = address & huge_page_mask(h);
2769 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2770 vma->vm_pgoff;
2771 mapping = file_inode(vma->vm_file)->i_mapping;
2774 * Take the mapping lock for the duration of the table walk. As
2775 * this mapping should be shared between all the VMAs,
2776 * __unmap_hugepage_range() is called as the lock is already held
2778 mutex_lock(&mapping->i_mmap_mutex);
2779 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2780 /* Do not unmap the current VMA */
2781 if (iter_vma == vma)
2782 continue;
2785 * Unmap the page from other VMAs without their own reserves.
2786 * They get marked to be SIGKILLed if they fault in these
2787 * areas. This is because a future no-page fault on this VMA
2788 * could insert a zeroed page instead of the data existing
2789 * from the time of fork. This would look like data corruption
2791 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2792 unmap_hugepage_range(iter_vma, address,
2793 address + huge_page_size(h), page);
2795 mutex_unlock(&mapping->i_mmap_mutex);
2797 return 1;
2801 * Hugetlb_cow() should be called with page lock of the original hugepage held.
2802 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2803 * cannot race with other handlers or page migration.
2804 * Keep the pte_same checks anyway to make transition from the mutex easier.
2806 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2807 unsigned long address, pte_t *ptep, pte_t pte,
2808 struct page *pagecache_page, spinlock_t *ptl)
2810 struct hstate *h = hstate_vma(vma);
2811 struct page *old_page, *new_page;
2812 int outside_reserve = 0;
2813 unsigned long mmun_start; /* For mmu_notifiers */
2814 unsigned long mmun_end; /* For mmu_notifiers */
2816 old_page = pte_page(pte);
2818 retry_avoidcopy:
2819 /* If no-one else is actually using this page, avoid the copy
2820 * and just make the page writable */
2821 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2822 page_move_anon_rmap(old_page, vma, address);
2823 set_huge_ptep_writable(vma, address, ptep);
2824 return 0;
2828 * If the process that created a MAP_PRIVATE mapping is about to
2829 * perform a COW due to a shared page count, attempt to satisfy
2830 * the allocation without using the existing reserves. The pagecache
2831 * page is used to determine if the reserve at this address was
2832 * consumed or not. If reserves were used, a partial faulted mapping
2833 * at the time of fork() could consume its reserves on COW instead
2834 * of the full address range.
2836 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2837 old_page != pagecache_page)
2838 outside_reserve = 1;
2840 page_cache_get(old_page);
2842 /* Drop page table lock as buddy allocator may be called */
2843 spin_unlock(ptl);
2844 new_page = alloc_huge_page(vma, address, outside_reserve);
2846 if (IS_ERR(new_page)) {
2847 long err = PTR_ERR(new_page);
2848 page_cache_release(old_page);
2851 * If a process owning a MAP_PRIVATE mapping fails to COW,
2852 * it is due to references held by a child and an insufficient
2853 * huge page pool. To guarantee the original mappers
2854 * reliability, unmap the page from child processes. The child
2855 * may get SIGKILLed if it later faults.
2857 if (outside_reserve) {
2858 BUG_ON(huge_pte_none(pte));
2859 if (unmap_ref_private(mm, vma, old_page, address)) {
2860 BUG_ON(huge_pte_none(pte));
2861 spin_lock(ptl);
2862 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2863 if (likely(ptep &&
2864 pte_same(huge_ptep_get(ptep), pte)))
2865 goto retry_avoidcopy;
2867 * race occurs while re-acquiring page table
2868 * lock, and our job is done.
2870 return 0;
2872 WARN_ON_ONCE(1);
2875 /* Caller expects lock to be held */
2876 spin_lock(ptl);
2877 if (err == -ENOMEM)
2878 return VM_FAULT_OOM;
2879 else
2880 return VM_FAULT_SIGBUS;
2884 * When the original hugepage is shared one, it does not have
2885 * anon_vma prepared.
2887 if (unlikely(anon_vma_prepare(vma))) {
2888 page_cache_release(new_page);
2889 page_cache_release(old_page);
2890 /* Caller expects lock to be held */
2891 spin_lock(ptl);
2892 return VM_FAULT_OOM;
2895 copy_user_huge_page(new_page, old_page, address, vma,
2896 pages_per_huge_page(h));
2897 __SetPageUptodate(new_page);
2899 mmun_start = address & huge_page_mask(h);
2900 mmun_end = mmun_start + huge_page_size(h);
2901 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2903 * Retake the page table lock to check for racing updates
2904 * before the page tables are altered
2906 spin_lock(ptl);
2907 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2908 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
2909 ClearPagePrivate(new_page);
2911 /* Break COW */
2912 huge_ptep_clear_flush(vma, address, ptep);
2913 set_huge_pte_at(mm, address, ptep,
2914 make_huge_pte(vma, new_page, 1));
2915 page_remove_rmap(old_page);
2916 hugepage_add_new_anon_rmap(new_page, vma, address);
2917 /* Make the old page be freed below */
2918 new_page = old_page;
2920 spin_unlock(ptl);
2921 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2922 page_cache_release(new_page);
2923 page_cache_release(old_page);
2925 /* Caller expects lock to be held */
2926 spin_lock(ptl);
2927 return 0;
2930 /* Return the pagecache page at a given address within a VMA */
2931 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2932 struct vm_area_struct *vma, unsigned long address)
2934 struct address_space *mapping;
2935 pgoff_t idx;
2937 mapping = vma->vm_file->f_mapping;
2938 idx = vma_hugecache_offset(h, vma, address);
2940 return find_lock_page(mapping, idx);
2944 * Return whether there is a pagecache page to back given address within VMA.
2945 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2947 static bool hugetlbfs_pagecache_present(struct hstate *h,
2948 struct vm_area_struct *vma, unsigned long address)
2950 struct address_space *mapping;
2951 pgoff_t idx;
2952 struct page *page;
2954 mapping = vma->vm_file->f_mapping;
2955 idx = vma_hugecache_offset(h, vma, address);
2957 page = find_get_page(mapping, idx);
2958 if (page)
2959 put_page(page);
2960 return page != NULL;
2963 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2964 struct address_space *mapping, pgoff_t idx,
2965 unsigned long address, pte_t *ptep, unsigned int flags)
2967 struct hstate *h = hstate_vma(vma);
2968 int ret = VM_FAULT_SIGBUS;
2969 int anon_rmap = 0;
2970 unsigned long size;
2971 struct page *page;
2972 pte_t new_pte;
2973 spinlock_t *ptl;
2976 * Currently, we are forced to kill the process in the event the
2977 * original mapper has unmapped pages from the child due to a failed
2978 * COW. Warn that such a situation has occurred as it may not be obvious
2980 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2981 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2982 current->pid);
2983 return ret;
2987 * Use page lock to guard against racing truncation
2988 * before we get page_table_lock.
2990 retry:
2991 page = find_lock_page(mapping, idx);
2992 if (!page) {
2993 size = i_size_read(mapping->host) >> huge_page_shift(h);
2994 if (idx >= size)
2995 goto out;
2996 page = alloc_huge_page(vma, address, 0);
2997 if (IS_ERR(page)) {
2998 ret = PTR_ERR(page);
2999 if (ret == -ENOMEM)
3000 ret = VM_FAULT_OOM;
3001 else
3002 ret = VM_FAULT_SIGBUS;
3003 goto out;
3005 clear_huge_page(page, address, pages_per_huge_page(h));
3006 __SetPageUptodate(page);
3008 if (vma->vm_flags & VM_MAYSHARE) {
3009 int err;
3010 struct inode *inode = mapping->host;
3012 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3013 if (err) {
3014 put_page(page);
3015 if (err == -EEXIST)
3016 goto retry;
3017 goto out;
3019 ClearPagePrivate(page);
3021 spin_lock(&inode->i_lock);
3022 inode->i_blocks += blocks_per_huge_page(h);
3023 spin_unlock(&inode->i_lock);
3024 } else {
3025 lock_page(page);
3026 if (unlikely(anon_vma_prepare(vma))) {
3027 ret = VM_FAULT_OOM;
3028 goto backout_unlocked;
3030 anon_rmap = 1;
3032 } else {
3034 * If memory error occurs between mmap() and fault, some process
3035 * don't have hwpoisoned swap entry for errored virtual address.
3036 * So we need to block hugepage fault by PG_hwpoison bit check.
3038 if (unlikely(PageHWPoison(page))) {
3039 ret = VM_FAULT_HWPOISON |
3040 VM_FAULT_SET_HINDEX(hstate_index(h));
3041 goto backout_unlocked;
3046 * If we are going to COW a private mapping later, we examine the
3047 * pending reservations for this page now. This will ensure that
3048 * any allocations necessary to record that reservation occur outside
3049 * the spinlock.
3051 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3052 if (vma_needs_reservation(h, vma, address) < 0) {
3053 ret = VM_FAULT_OOM;
3054 goto backout_unlocked;
3057 ptl = huge_pte_lockptr(h, mm, ptep);
3058 spin_lock(ptl);
3059 size = i_size_read(mapping->host) >> huge_page_shift(h);
3060 if (idx >= size)
3061 goto backout;
3063 ret = 0;
3064 if (!huge_pte_none(huge_ptep_get(ptep)))
3065 goto backout;
3067 if (anon_rmap) {
3068 ClearPagePrivate(page);
3069 hugepage_add_new_anon_rmap(page, vma, address);
3070 } else
3071 page_dup_rmap(page);
3072 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3073 && (vma->vm_flags & VM_SHARED)));
3074 set_huge_pte_at(mm, address, ptep, new_pte);
3076 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3077 /* Optimization, do the COW without a second fault */
3078 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3081 spin_unlock(ptl);
3082 unlock_page(page);
3083 out:
3084 return ret;
3086 backout:
3087 spin_unlock(ptl);
3088 backout_unlocked:
3089 unlock_page(page);
3090 put_page(page);
3091 goto out;
3094 #ifdef CONFIG_SMP
3095 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3096 struct vm_area_struct *vma,
3097 struct address_space *mapping,
3098 pgoff_t idx, unsigned long address)
3100 unsigned long key[2];
3101 u32 hash;
3103 if (vma->vm_flags & VM_SHARED) {
3104 key[0] = (unsigned long) mapping;
3105 key[1] = idx;
3106 } else {
3107 key[0] = (unsigned long) mm;
3108 key[1] = address >> huge_page_shift(h);
3111 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3113 return hash & (num_fault_mutexes - 1);
3115 #else
3117 * For uniprocesor systems we always use a single mutex, so just
3118 * return 0 and avoid the hashing overhead.
3120 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3121 struct vm_area_struct *vma,
3122 struct address_space *mapping,
3123 pgoff_t idx, unsigned long address)
3125 return 0;
3127 #endif
3129 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3130 unsigned long address, unsigned int flags)
3132 pte_t *ptep, entry;
3133 spinlock_t *ptl;
3134 int ret;
3135 u32 hash;
3136 pgoff_t idx;
3137 struct page *page = NULL;
3138 struct page *pagecache_page = NULL;
3139 struct hstate *h = hstate_vma(vma);
3140 struct address_space *mapping;
3142 address &= huge_page_mask(h);
3144 ptep = huge_pte_offset(mm, address);
3145 if (ptep) {
3146 entry = huge_ptep_get(ptep);
3147 if (unlikely(is_hugetlb_entry_migration(entry))) {
3148 migration_entry_wait_huge(vma, mm, ptep);
3149 return 0;
3150 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3151 return VM_FAULT_HWPOISON_LARGE |
3152 VM_FAULT_SET_HINDEX(hstate_index(h));
3155 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3156 if (!ptep)
3157 return VM_FAULT_OOM;
3159 mapping = vma->vm_file->f_mapping;
3160 idx = vma_hugecache_offset(h, vma, address);
3163 * Serialize hugepage allocation and instantiation, so that we don't
3164 * get spurious allocation failures if two CPUs race to instantiate
3165 * the same page in the page cache.
3167 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3168 mutex_lock(&htlb_fault_mutex_table[hash]);
3170 entry = huge_ptep_get(ptep);
3171 if (huge_pte_none(entry)) {
3172 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3173 goto out_mutex;
3176 ret = 0;
3179 * If we are going to COW the mapping later, we examine the pending
3180 * reservations for this page now. This will ensure that any
3181 * allocations necessary to record that reservation occur outside the
3182 * spinlock. For private mappings, we also lookup the pagecache
3183 * page now as it is used to determine if a reservation has been
3184 * consumed.
3186 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3187 if (vma_needs_reservation(h, vma, address) < 0) {
3188 ret = VM_FAULT_OOM;
3189 goto out_mutex;
3192 if (!(vma->vm_flags & VM_MAYSHARE))
3193 pagecache_page = hugetlbfs_pagecache_page(h,
3194 vma, address);
3198 * hugetlb_cow() requires page locks of pte_page(entry) and
3199 * pagecache_page, so here we need take the former one
3200 * when page != pagecache_page or !pagecache_page.
3201 * Note that locking order is always pagecache_page -> page,
3202 * so no worry about deadlock.
3204 page = pte_page(entry);
3205 get_page(page);
3206 if (page != pagecache_page)
3207 lock_page(page);
3209 ptl = huge_pte_lockptr(h, mm, ptep);
3210 spin_lock(ptl);
3211 /* Check for a racing update before calling hugetlb_cow */
3212 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3213 goto out_ptl;
3216 if (flags & FAULT_FLAG_WRITE) {
3217 if (!huge_pte_write(entry)) {
3218 ret = hugetlb_cow(mm, vma, address, ptep, entry,
3219 pagecache_page, ptl);
3220 goto out_ptl;
3222 entry = huge_pte_mkdirty(entry);
3224 entry = pte_mkyoung(entry);
3225 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3226 flags & FAULT_FLAG_WRITE))
3227 update_mmu_cache(vma, address, ptep);
3229 out_ptl:
3230 spin_unlock(ptl);
3232 if (pagecache_page) {
3233 unlock_page(pagecache_page);
3234 put_page(pagecache_page);
3236 if (page != pagecache_page)
3237 unlock_page(page);
3238 put_page(page);
3240 out_mutex:
3241 mutex_unlock(&htlb_fault_mutex_table[hash]);
3242 return ret;
3245 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3246 struct page **pages, struct vm_area_struct **vmas,
3247 unsigned long *position, unsigned long *nr_pages,
3248 long i, unsigned int flags)
3250 unsigned long pfn_offset;
3251 unsigned long vaddr = *position;
3252 unsigned long remainder = *nr_pages;
3253 struct hstate *h = hstate_vma(vma);
3255 while (vaddr < vma->vm_end && remainder) {
3256 pte_t *pte;
3257 spinlock_t *ptl = NULL;
3258 int absent;
3259 struct page *page;
3262 * Some archs (sparc64, sh*) have multiple pte_ts to
3263 * each hugepage. We have to make sure we get the
3264 * first, for the page indexing below to work.
3266 * Note that page table lock is not held when pte is null.
3268 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3269 if (pte)
3270 ptl = huge_pte_lock(h, mm, pte);
3271 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3274 * When coredumping, it suits get_dump_page if we just return
3275 * an error where there's an empty slot with no huge pagecache
3276 * to back it. This way, we avoid allocating a hugepage, and
3277 * the sparse dumpfile avoids allocating disk blocks, but its
3278 * huge holes still show up with zeroes where they need to be.
3280 if (absent && (flags & FOLL_DUMP) &&
3281 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3282 if (pte)
3283 spin_unlock(ptl);
3284 remainder = 0;
3285 break;
3289 * We need call hugetlb_fault for both hugepages under migration
3290 * (in which case hugetlb_fault waits for the migration,) and
3291 * hwpoisoned hugepages (in which case we need to prevent the
3292 * caller from accessing to them.) In order to do this, we use
3293 * here is_swap_pte instead of is_hugetlb_entry_migration and
3294 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3295 * both cases, and because we can't follow correct pages
3296 * directly from any kind of swap entries.
3298 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3299 ((flags & FOLL_WRITE) &&
3300 !huge_pte_write(huge_ptep_get(pte)))) {
3301 int ret;
3303 if (pte)
3304 spin_unlock(ptl);
3305 ret = hugetlb_fault(mm, vma, vaddr,
3306 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3307 if (!(ret & VM_FAULT_ERROR))
3308 continue;
3310 remainder = 0;
3311 break;
3314 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3315 page = pte_page(huge_ptep_get(pte));
3316 same_page:
3317 if (pages) {
3318 pages[i] = mem_map_offset(page, pfn_offset);
3319 get_page_foll(pages[i]);
3322 if (vmas)
3323 vmas[i] = vma;
3325 vaddr += PAGE_SIZE;
3326 ++pfn_offset;
3327 --remainder;
3328 ++i;
3329 if (vaddr < vma->vm_end && remainder &&
3330 pfn_offset < pages_per_huge_page(h)) {
3332 * We use pfn_offset to avoid touching the pageframes
3333 * of this compound page.
3335 goto same_page;
3337 spin_unlock(ptl);
3339 *nr_pages = remainder;
3340 *position = vaddr;
3342 return i ? i : -EFAULT;
3345 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3346 unsigned long address, unsigned long end, pgprot_t newprot)
3348 struct mm_struct *mm = vma->vm_mm;
3349 unsigned long start = address;
3350 pte_t *ptep;
3351 pte_t pte;
3352 struct hstate *h = hstate_vma(vma);
3353 unsigned long pages = 0;
3355 BUG_ON(address >= end);
3356 flush_cache_range(vma, address, end);
3358 mmu_notifier_invalidate_range_start(mm, start, end);
3359 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3360 for (; address < end; address += huge_page_size(h)) {
3361 spinlock_t *ptl;
3362 ptep = huge_pte_offset(mm, address);
3363 if (!ptep)
3364 continue;
3365 ptl = huge_pte_lock(h, mm, ptep);
3366 if (huge_pmd_unshare(mm, &address, ptep)) {
3367 pages++;
3368 spin_unlock(ptl);
3369 continue;
3371 if (!huge_pte_none(huge_ptep_get(ptep))) {
3372 pte = huge_ptep_get_and_clear(mm, address, ptep);
3373 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3374 pte = arch_make_huge_pte(pte, vma, NULL, 0);
3375 set_huge_pte_at(mm, address, ptep, pte);
3376 pages++;
3378 spin_unlock(ptl);
3381 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3382 * may have cleared our pud entry and done put_page on the page table:
3383 * once we release i_mmap_mutex, another task can do the final put_page
3384 * and that page table be reused and filled with junk.
3386 flush_tlb_range(vma, start, end);
3387 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3388 mmu_notifier_invalidate_range_end(mm, start, end);
3390 return pages << h->order;
3393 int hugetlb_reserve_pages(struct inode *inode,
3394 long from, long to,
3395 struct vm_area_struct *vma,
3396 vm_flags_t vm_flags)
3398 long ret, chg;
3399 struct hstate *h = hstate_inode(inode);
3400 struct hugepage_subpool *spool = subpool_inode(inode);
3401 struct resv_map *resv_map;
3404 * Only apply hugepage reservation if asked. At fault time, an
3405 * attempt will be made for VM_NORESERVE to allocate a page
3406 * without using reserves
3408 if (vm_flags & VM_NORESERVE)
3409 return 0;
3412 * Shared mappings base their reservation on the number of pages that
3413 * are already allocated on behalf of the file. Private mappings need
3414 * to reserve the full area even if read-only as mprotect() may be
3415 * called to make the mapping read-write. Assume !vma is a shm mapping
3417 if (!vma || vma->vm_flags & VM_MAYSHARE) {
3418 resv_map = inode_resv_map(inode);
3420 chg = region_chg(resv_map, from, to);
3422 } else {
3423 resv_map = resv_map_alloc();
3424 if (!resv_map)
3425 return -ENOMEM;
3427 chg = to - from;
3429 set_vma_resv_map(vma, resv_map);
3430 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3433 if (chg < 0) {
3434 ret = chg;
3435 goto out_err;
3438 /* There must be enough pages in the subpool for the mapping */
3439 if (hugepage_subpool_get_pages(spool, chg)) {
3440 ret = -ENOSPC;
3441 goto out_err;
3445 * Check enough hugepages are available for the reservation.
3446 * Hand the pages back to the subpool if there are not
3448 ret = hugetlb_acct_memory(h, chg);
3449 if (ret < 0) {
3450 hugepage_subpool_put_pages(spool, chg);
3451 goto out_err;
3455 * Account for the reservations made. Shared mappings record regions
3456 * that have reservations as they are shared by multiple VMAs.
3457 * When the last VMA disappears, the region map says how much
3458 * the reservation was and the page cache tells how much of
3459 * the reservation was consumed. Private mappings are per-VMA and
3460 * only the consumed reservations are tracked. When the VMA
3461 * disappears, the original reservation is the VMA size and the
3462 * consumed reservations are stored in the map. Hence, nothing
3463 * else has to be done for private mappings here
3465 if (!vma || vma->vm_flags & VM_MAYSHARE)
3466 region_add(resv_map, from, to);
3467 return 0;
3468 out_err:
3469 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3470 kref_put(&resv_map->refs, resv_map_release);
3471 return ret;
3474 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3476 struct hstate *h = hstate_inode(inode);
3477 struct resv_map *resv_map = inode_resv_map(inode);
3478 long chg = 0;
3479 struct hugepage_subpool *spool = subpool_inode(inode);
3481 if (resv_map)
3482 chg = region_truncate(resv_map, offset);
3483 spin_lock(&inode->i_lock);
3484 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3485 spin_unlock(&inode->i_lock);
3487 hugepage_subpool_put_pages(spool, (chg - freed));
3488 hugetlb_acct_memory(h, -(chg - freed));
3491 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3492 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3493 struct vm_area_struct *vma,
3494 unsigned long addr, pgoff_t idx)
3496 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3497 svma->vm_start;
3498 unsigned long sbase = saddr & PUD_MASK;
3499 unsigned long s_end = sbase + PUD_SIZE;
3501 /* Allow segments to share if only one is marked locked */
3502 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3503 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3506 * match the virtual addresses, permission and the alignment of the
3507 * page table page.
3509 if (pmd_index(addr) != pmd_index(saddr) ||
3510 vm_flags != svm_flags ||
3511 sbase < svma->vm_start || svma->vm_end < s_end)
3512 return 0;
3514 return saddr;
3517 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3519 unsigned long base = addr & PUD_MASK;
3520 unsigned long end = base + PUD_SIZE;
3523 * check on proper vm_flags and page table alignment
3525 if (vma->vm_flags & VM_MAYSHARE &&
3526 vma->vm_start <= base && end <= vma->vm_end)
3527 return 1;
3528 return 0;
3532 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3533 * and returns the corresponding pte. While this is not necessary for the
3534 * !shared pmd case because we can allocate the pmd later as well, it makes the
3535 * code much cleaner. pmd allocation is essential for the shared case because
3536 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3537 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3538 * bad pmd for sharing.
3540 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3542 struct vm_area_struct *vma = find_vma(mm, addr);
3543 struct address_space *mapping = vma->vm_file->f_mapping;
3544 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3545 vma->vm_pgoff;
3546 struct vm_area_struct *svma;
3547 unsigned long saddr;
3548 pte_t *spte = NULL;
3549 pte_t *pte;
3550 spinlock_t *ptl;
3552 if (!vma_shareable(vma, addr))
3553 return (pte_t *)pmd_alloc(mm, pud, addr);
3555 mutex_lock(&mapping->i_mmap_mutex);
3556 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3557 if (svma == vma)
3558 continue;
3560 saddr = page_table_shareable(svma, vma, addr, idx);
3561 if (saddr) {
3562 spte = huge_pte_offset(svma->vm_mm, saddr);
3563 if (spte) {
3564 get_page(virt_to_page(spte));
3565 break;
3570 if (!spte)
3571 goto out;
3573 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3574 spin_lock(ptl);
3575 if (pud_none(*pud))
3576 pud_populate(mm, pud,
3577 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3578 else
3579 put_page(virt_to_page(spte));
3580 spin_unlock(ptl);
3581 out:
3582 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3583 mutex_unlock(&mapping->i_mmap_mutex);
3584 return pte;
3588 * unmap huge page backed by shared pte.
3590 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3591 * indicated by page_count > 1, unmap is achieved by clearing pud and
3592 * decrementing the ref count. If count == 1, the pte page is not shared.
3594 * called with page table lock held.
3596 * returns: 1 successfully unmapped a shared pte page
3597 * 0 the underlying pte page is not shared, or it is the last user
3599 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3601 pgd_t *pgd = pgd_offset(mm, *addr);
3602 pud_t *pud = pud_offset(pgd, *addr);
3604 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3605 if (page_count(virt_to_page(ptep)) == 1)
3606 return 0;
3608 pud_clear(pud);
3609 put_page(virt_to_page(ptep));
3610 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3611 return 1;
3613 #define want_pmd_share() (1)
3614 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3615 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3617 return NULL;
3619 #define want_pmd_share() (0)
3620 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3622 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3623 pte_t *huge_pte_alloc(struct mm_struct *mm,
3624 unsigned long addr, unsigned long sz)
3626 pgd_t *pgd;
3627 pud_t *pud;
3628 pte_t *pte = NULL;
3630 pgd = pgd_offset(mm, addr);
3631 pud = pud_alloc(mm, pgd, addr);
3632 if (pud) {
3633 if (sz == PUD_SIZE) {
3634 pte = (pte_t *)pud;
3635 } else {
3636 BUG_ON(sz != PMD_SIZE);
3637 if (want_pmd_share() && pud_none(*pud))
3638 pte = huge_pmd_share(mm, addr, pud);
3639 else
3640 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3643 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3645 return pte;
3648 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3650 pgd_t *pgd;
3651 pud_t *pud;
3652 pmd_t *pmd = NULL;
3654 pgd = pgd_offset(mm, addr);
3655 if (pgd_present(*pgd)) {
3656 pud = pud_offset(pgd, addr);
3657 if (pud_present(*pud)) {
3658 if (pud_huge(*pud))
3659 return (pte_t *)pud;
3660 pmd = pmd_offset(pud, addr);
3663 return (pte_t *) pmd;
3666 struct page *
3667 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3668 pmd_t *pmd, int write)
3670 struct page *page;
3672 page = pte_page(*(pte_t *)pmd);
3673 if (page)
3674 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3675 return page;
3678 struct page *
3679 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3680 pud_t *pud, int write)
3682 struct page *page;
3684 page = pte_page(*(pte_t *)pud);
3685 if (page)
3686 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3687 return page;
3690 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3692 /* Can be overriden by architectures */
3693 struct page * __weak
3694 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3695 pud_t *pud, int write)
3697 BUG();
3698 return NULL;
3701 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3703 #ifdef CONFIG_MEMORY_FAILURE
3705 /* Should be called in hugetlb_lock */
3706 static int is_hugepage_on_freelist(struct page *hpage)
3708 struct page *page;
3709 struct page *tmp;
3710 struct hstate *h = page_hstate(hpage);
3711 int nid = page_to_nid(hpage);
3713 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3714 if (page == hpage)
3715 return 1;
3716 return 0;
3720 * This function is called from memory failure code.
3721 * Assume the caller holds page lock of the head page.
3723 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3725 struct hstate *h = page_hstate(hpage);
3726 int nid = page_to_nid(hpage);
3727 int ret = -EBUSY;
3729 spin_lock(&hugetlb_lock);
3730 if (is_hugepage_on_freelist(hpage)) {
3732 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3733 * but dangling hpage->lru can trigger list-debug warnings
3734 * (this happens when we call unpoison_memory() on it),
3735 * so let it point to itself with list_del_init().
3737 list_del_init(&hpage->lru);
3738 set_page_refcounted(hpage);
3739 h->free_huge_pages--;
3740 h->free_huge_pages_node[nid]--;
3741 ret = 0;
3743 spin_unlock(&hugetlb_lock);
3744 return ret;
3746 #endif
3748 bool isolate_huge_page(struct page *page, struct list_head *list)
3750 VM_BUG_ON_PAGE(!PageHead(page), page);
3751 if (!get_page_unless_zero(page))
3752 return false;
3753 spin_lock(&hugetlb_lock);
3754 list_move_tail(&page->lru, list);
3755 spin_unlock(&hugetlb_lock);
3756 return true;
3759 void putback_active_hugepage(struct page *page)
3761 VM_BUG_ON_PAGE(!PageHead(page), page);
3762 spin_lock(&hugetlb_lock);
3763 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3764 spin_unlock(&hugetlb_lock);
3765 put_page(page);
3768 bool is_hugepage_active(struct page *page)
3770 VM_BUG_ON_PAGE(!PageHuge(page), page);
3772 * This function can be called for a tail page because the caller,
3773 * scan_movable_pages, scans through a given pfn-range which typically
3774 * covers one memory block. In systems using gigantic hugepage (1GB
3775 * for x86_64,) a hugepage is larger than a memory block, and we don't
3776 * support migrating such large hugepages for now, so return false
3777 * when called for tail pages.
3779 if (PageTail(page))
3780 return false;
3782 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3783 * so we should return false for them.
3785 if (unlikely(PageHWPoison(page)))
3786 return false;
3787 return page_count(page) > 0;