Linux 3.12.39
[linux/fpc-iii.git] / drivers / tty / tty_io.c
blob39988fa91294a547a4ced872877e98b9ed736cba
1 /*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 */
5 /*
6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
7 * or rs-channels. It also implements echoing, cooked mode etc.
9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
12 * tty_struct and tty_queue structures. Previously there was an array
13 * of 256 tty_struct's which was statically allocated, and the
14 * tty_queue structures were allocated at boot time. Both are now
15 * dynamically allocated only when the tty is open.
17 * Also restructured routines so that there is more of a separation
18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
19 * the low-level tty routines (serial.c, pty.c, console.c). This
20 * makes for cleaner and more compact code. -TYT, 9/17/92
22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
23 * which can be dynamically activated and de-activated by the line
24 * discipline handling modules (like SLIP).
26 * NOTE: pay no attention to the line discipline code (yet); its
27 * interface is still subject to change in this version...
28 * -- TYT, 1/31/92
30 * Added functionality to the OPOST tty handling. No delays, but all
31 * other bits should be there.
32 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
34 * Rewrote canonical mode and added more termios flags.
35 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
37 * Reorganized FASYNC support so mouse code can share it.
38 * -- ctm@ardi.com, 9Sep95
40 * New TIOCLINUX variants added.
41 * -- mj@k332.feld.cvut.cz, 19-Nov-95
43 * Restrict vt switching via ioctl()
44 * -- grif@cs.ucr.edu, 5-Dec-95
46 * Move console and virtual terminal code to more appropriate files,
47 * implement CONFIG_VT and generalize console device interface.
48 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
51 * -- Bill Hawes <whawes@star.net>, June 97
53 * Added devfs support.
54 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
56 * Added support for a Unix98-style ptmx device.
57 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
59 * Reduced memory usage for older ARM systems
60 * -- Russell King <rmk@arm.linux.org.uk>
62 * Move do_SAK() into process context. Less stack use in devfs functions.
63 * alloc_tty_struct() always uses kmalloc()
64 * -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
67 #include <linux/types.h>
68 #include <linux/major.h>
69 #include <linux/errno.h>
70 #include <linux/signal.h>
71 #include <linux/fcntl.h>
72 #include <linux/sched.h>
73 #include <linux/interrupt.h>
74 #include <linux/tty.h>
75 #include <linux/tty_driver.h>
76 #include <linux/tty_flip.h>
77 #include <linux/devpts_fs.h>
78 #include <linux/file.h>
79 #include <linux/fdtable.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/device.h>
92 #include <linux/wait.h>
93 #include <linux/bitops.h>
94 #include <linux/delay.h>
95 #include <linux/seq_file.h>
96 #include <linux/serial.h>
97 #include <linux/ratelimit.h>
99 #include <linux/uaccess.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
106 #include <linux/nsproxy.h>
108 #undef TTY_DEBUG_HANGUP
110 #define TTY_PARANOIA_CHECK 1
111 #define CHECK_TTY_COUNT 1
113 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
114 .c_iflag = ICRNL | IXON,
115 .c_oflag = OPOST | ONLCR,
116 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
117 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
118 ECHOCTL | ECHOKE | IEXTEN,
119 .c_cc = INIT_C_CC,
120 .c_ispeed = 38400,
121 .c_ospeed = 38400
124 EXPORT_SYMBOL(tty_std_termios);
126 /* This list gets poked at by procfs and various bits of boot up code. This
127 could do with some rationalisation such as pulling the tty proc function
128 into this file */
130 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
132 /* Mutex to protect creating and releasing a tty. This is shared with
133 vt.c for deeply disgusting hack reasons */
134 DEFINE_MUTEX(tty_mutex);
135 EXPORT_SYMBOL(tty_mutex);
137 /* Spinlock to protect the tty->tty_files list */
138 DEFINE_SPINLOCK(tty_files_lock);
140 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
141 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
142 ssize_t redirected_tty_write(struct file *, const char __user *,
143 size_t, loff_t *);
144 static unsigned int tty_poll(struct file *, poll_table *);
145 static int tty_open(struct inode *, struct file *);
146 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
147 #ifdef CONFIG_COMPAT
148 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
149 unsigned long arg);
150 #else
151 #define tty_compat_ioctl NULL
152 #endif
153 static int __tty_fasync(int fd, struct file *filp, int on);
154 static int tty_fasync(int fd, struct file *filp, int on);
155 static void release_tty(struct tty_struct *tty, int idx);
156 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
157 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
160 * alloc_tty_struct - allocate a tty object
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
165 * Locking: none
168 struct tty_struct *alloc_tty_struct(void)
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
174 * free_tty_struct - free a disused tty
175 * @tty: tty struct to free
177 * Free the write buffers, tty queue and tty memory itself.
179 * Locking: none. Must be called after tty is definitely unused
182 void free_tty_struct(struct tty_struct *tty)
184 if (!tty)
185 return;
186 if (tty->dev)
187 put_device(tty->dev);
188 kfree(tty->write_buf);
189 tty->magic = 0xDEADDEAD;
190 kfree(tty);
193 static inline struct tty_struct *file_tty(struct file *file)
195 return ((struct tty_file_private *)file->private_data)->tty;
198 int tty_alloc_file(struct file *file)
200 struct tty_file_private *priv;
202 priv = kmalloc(sizeof(*priv), GFP_KERNEL);
203 if (!priv)
204 return -ENOMEM;
206 file->private_data = priv;
208 return 0;
211 /* Associate a new file with the tty structure */
212 void tty_add_file(struct tty_struct *tty, struct file *file)
214 struct tty_file_private *priv = file->private_data;
216 priv->tty = tty;
217 priv->file = file;
219 spin_lock(&tty_files_lock);
220 list_add(&priv->list, &tty->tty_files);
221 spin_unlock(&tty_files_lock);
225 * tty_free_file - free file->private_data
227 * This shall be used only for fail path handling when tty_add_file was not
228 * called yet.
230 void tty_free_file(struct file *file)
232 struct tty_file_private *priv = file->private_data;
234 file->private_data = NULL;
235 kfree(priv);
238 /* Delete file from its tty */
239 static void tty_del_file(struct file *file)
241 struct tty_file_private *priv = file->private_data;
243 spin_lock(&tty_files_lock);
244 list_del(&priv->list);
245 spin_unlock(&tty_files_lock);
246 tty_free_file(file);
250 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
253 * tty_name - return tty naming
254 * @tty: tty structure
255 * @buf: buffer for output
257 * Convert a tty structure into a name. The name reflects the kernel
258 * naming policy and if udev is in use may not reflect user space
260 * Locking: none
263 char *tty_name(struct tty_struct *tty, char *buf)
265 if (!tty) /* Hmm. NULL pointer. That's fun. */
266 strcpy(buf, "NULL tty");
267 else
268 strcpy(buf, tty->name);
269 return buf;
272 EXPORT_SYMBOL(tty_name);
274 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
275 const char *routine)
277 #ifdef TTY_PARANOIA_CHECK
278 if (!tty) {
279 printk(KERN_WARNING
280 "null TTY for (%d:%d) in %s\n",
281 imajor(inode), iminor(inode), routine);
282 return 1;
284 if (tty->magic != TTY_MAGIC) {
285 printk(KERN_WARNING
286 "bad magic number for tty struct (%d:%d) in %s\n",
287 imajor(inode), iminor(inode), routine);
288 return 1;
290 #endif
291 return 0;
294 static int check_tty_count(struct tty_struct *tty, const char *routine)
296 #ifdef CHECK_TTY_COUNT
297 struct list_head *p;
298 int count = 0;
300 spin_lock(&tty_files_lock);
301 list_for_each(p, &tty->tty_files) {
302 count++;
304 spin_unlock(&tty_files_lock);
305 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
306 tty->driver->subtype == PTY_TYPE_SLAVE &&
307 tty->link && tty->link->count)
308 count++;
309 if (tty->count != count) {
310 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
311 "!= #fd's(%d) in %s\n",
312 tty->name, tty->count, count, routine);
313 return count;
315 #endif
316 return 0;
320 * get_tty_driver - find device of a tty
321 * @dev_t: device identifier
322 * @index: returns the index of the tty
324 * This routine returns a tty driver structure, given a device number
325 * and also passes back the index number.
327 * Locking: caller must hold tty_mutex
330 static struct tty_driver *get_tty_driver(dev_t device, int *index)
332 struct tty_driver *p;
334 list_for_each_entry(p, &tty_drivers, tty_drivers) {
335 dev_t base = MKDEV(p->major, p->minor_start);
336 if (device < base || device >= base + p->num)
337 continue;
338 *index = device - base;
339 return tty_driver_kref_get(p);
341 return NULL;
344 #ifdef CONFIG_CONSOLE_POLL
347 * tty_find_polling_driver - find device of a polled tty
348 * @name: name string to match
349 * @line: pointer to resulting tty line nr
351 * This routine returns a tty driver structure, given a name
352 * and the condition that the tty driver is capable of polled
353 * operation.
355 struct tty_driver *tty_find_polling_driver(char *name, int *line)
357 struct tty_driver *p, *res = NULL;
358 int tty_line = 0;
359 int len;
360 char *str, *stp;
362 for (str = name; *str; str++)
363 if ((*str >= '0' && *str <= '9') || *str == ',')
364 break;
365 if (!*str)
366 return NULL;
368 len = str - name;
369 tty_line = simple_strtoul(str, &str, 10);
371 mutex_lock(&tty_mutex);
372 /* Search through the tty devices to look for a match */
373 list_for_each_entry(p, &tty_drivers, tty_drivers) {
374 if (strncmp(name, p->name, len) != 0)
375 continue;
376 stp = str;
377 if (*stp == ',')
378 stp++;
379 if (*stp == '\0')
380 stp = NULL;
382 if (tty_line >= 0 && tty_line < p->num && p->ops &&
383 p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
384 res = tty_driver_kref_get(p);
385 *line = tty_line;
386 break;
389 mutex_unlock(&tty_mutex);
391 return res;
393 EXPORT_SYMBOL_GPL(tty_find_polling_driver);
394 #endif
397 * tty_check_change - check for POSIX terminal changes
398 * @tty: tty to check
400 * If we try to write to, or set the state of, a terminal and we're
401 * not in the foreground, send a SIGTTOU. If the signal is blocked or
402 * ignored, go ahead and perform the operation. (POSIX 7.2)
404 * Locking: ctrl_lock
407 int tty_check_change(struct tty_struct *tty)
409 unsigned long flags;
410 int ret = 0;
412 if (current->signal->tty != tty)
413 return 0;
415 spin_lock_irqsave(&tty->ctrl_lock, flags);
417 if (!tty->pgrp) {
418 printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
419 goto out_unlock;
421 if (task_pgrp(current) == tty->pgrp)
422 goto out_unlock;
423 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
424 if (is_ignored(SIGTTOU))
425 goto out;
426 if (is_current_pgrp_orphaned()) {
427 ret = -EIO;
428 goto out;
430 kill_pgrp(task_pgrp(current), SIGTTOU, 1);
431 set_thread_flag(TIF_SIGPENDING);
432 ret = -ERESTARTSYS;
433 out:
434 return ret;
435 out_unlock:
436 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
437 return ret;
440 EXPORT_SYMBOL(tty_check_change);
442 static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
443 size_t count, loff_t *ppos)
445 return 0;
448 static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
449 size_t count, loff_t *ppos)
451 return -EIO;
454 /* No kernel lock held - none needed ;) */
455 static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
457 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
460 static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
461 unsigned long arg)
463 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
466 static long hung_up_tty_compat_ioctl(struct file *file,
467 unsigned int cmd, unsigned long arg)
469 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
472 static const struct file_operations tty_fops = {
473 .llseek = no_llseek,
474 .read = tty_read,
475 .write = tty_write,
476 .poll = tty_poll,
477 .unlocked_ioctl = tty_ioctl,
478 .compat_ioctl = tty_compat_ioctl,
479 .open = tty_open,
480 .release = tty_release,
481 .fasync = tty_fasync,
484 static const struct file_operations console_fops = {
485 .llseek = no_llseek,
486 .read = tty_read,
487 .write = redirected_tty_write,
488 .poll = tty_poll,
489 .unlocked_ioctl = tty_ioctl,
490 .compat_ioctl = tty_compat_ioctl,
491 .open = tty_open,
492 .release = tty_release,
493 .fasync = tty_fasync,
496 static const struct file_operations hung_up_tty_fops = {
497 .llseek = no_llseek,
498 .read = hung_up_tty_read,
499 .write = hung_up_tty_write,
500 .poll = hung_up_tty_poll,
501 .unlocked_ioctl = hung_up_tty_ioctl,
502 .compat_ioctl = hung_up_tty_compat_ioctl,
503 .release = tty_release,
506 static DEFINE_SPINLOCK(redirect_lock);
507 static struct file *redirect;
510 * tty_wakeup - request more data
511 * @tty: terminal
513 * Internal and external helper for wakeups of tty. This function
514 * informs the line discipline if present that the driver is ready
515 * to receive more output data.
518 void tty_wakeup(struct tty_struct *tty)
520 struct tty_ldisc *ld;
522 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
523 ld = tty_ldisc_ref(tty);
524 if (ld) {
525 if (ld->ops->write_wakeup)
526 ld->ops->write_wakeup(tty);
527 tty_ldisc_deref(ld);
530 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
533 EXPORT_SYMBOL_GPL(tty_wakeup);
536 * tty_signal_session_leader - sends SIGHUP to session leader
537 * @tty controlling tty
538 * @exit_session if non-zero, signal all foreground group processes
540 * Send SIGHUP and SIGCONT to the session leader and its process group.
541 * Optionally, signal all processes in the foreground process group.
543 * Returns the number of processes in the session with this tty
544 * as their controlling terminal. This value is used to drop
545 * tty references for those processes.
547 static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
549 struct task_struct *p;
550 int refs = 0;
551 struct pid *tty_pgrp = NULL;
553 read_lock(&tasklist_lock);
554 if (tty->session) {
555 do_each_pid_task(tty->session, PIDTYPE_SID, p) {
556 spin_lock_irq(&p->sighand->siglock);
557 if (p->signal->tty == tty) {
558 p->signal->tty = NULL;
559 /* We defer the dereferences outside fo
560 the tasklist lock */
561 refs++;
563 if (!p->signal->leader) {
564 spin_unlock_irq(&p->sighand->siglock);
565 continue;
567 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
568 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
569 put_pid(p->signal->tty_old_pgrp); /* A noop */
570 spin_lock(&tty->ctrl_lock);
571 tty_pgrp = get_pid(tty->pgrp);
572 if (tty->pgrp)
573 p->signal->tty_old_pgrp = get_pid(tty->pgrp);
574 spin_unlock(&tty->ctrl_lock);
575 spin_unlock_irq(&p->sighand->siglock);
576 } while_each_pid_task(tty->session, PIDTYPE_SID, p);
578 read_unlock(&tasklist_lock);
580 if (tty_pgrp) {
581 if (exit_session)
582 kill_pgrp(tty_pgrp, SIGHUP, exit_session);
583 put_pid(tty_pgrp);
586 return refs;
590 * __tty_hangup - actual handler for hangup events
591 * @work: tty device
593 * This can be called by a "kworker" kernel thread. That is process
594 * synchronous but doesn't hold any locks, so we need to make sure we
595 * have the appropriate locks for what we're doing.
597 * The hangup event clears any pending redirections onto the hung up
598 * device. It ensures future writes will error and it does the needed
599 * line discipline hangup and signal delivery. The tty object itself
600 * remains intact.
602 * Locking:
603 * BTM
604 * redirect lock for undoing redirection
605 * file list lock for manipulating list of ttys
606 * tty_ldiscs_lock from called functions
607 * termios_rwsem resetting termios data
608 * tasklist_lock to walk task list for hangup event
609 * ->siglock to protect ->signal/->sighand
611 static void __tty_hangup(struct tty_struct *tty, int exit_session)
613 struct file *cons_filp = NULL;
614 struct file *filp, *f = NULL;
615 struct tty_file_private *priv;
616 int closecount = 0, n;
617 int refs;
619 if (!tty)
620 return;
623 spin_lock(&redirect_lock);
624 if (redirect && file_tty(redirect) == tty) {
625 f = redirect;
626 redirect = NULL;
628 spin_unlock(&redirect_lock);
630 tty_lock(tty);
632 if (test_bit(TTY_HUPPED, &tty->flags)) {
633 tty_unlock(tty);
634 return;
637 /* some functions below drop BTM, so we need this bit */
638 set_bit(TTY_HUPPING, &tty->flags);
640 /* inuse_filps is protected by the single tty lock,
641 this really needs to change if we want to flush the
642 workqueue with the lock held */
643 check_tty_count(tty, "tty_hangup");
645 spin_lock(&tty_files_lock);
646 /* This breaks for file handles being sent over AF_UNIX sockets ? */
647 list_for_each_entry(priv, &tty->tty_files, list) {
648 filp = priv->file;
649 if (filp->f_op->write == redirected_tty_write)
650 cons_filp = filp;
651 if (filp->f_op->write != tty_write)
652 continue;
653 closecount++;
654 __tty_fasync(-1, filp, 0); /* can't block */
655 filp->f_op = &hung_up_tty_fops;
657 spin_unlock(&tty_files_lock);
659 refs = tty_signal_session_leader(tty, exit_session);
660 /* Account for the p->signal references we killed */
661 while (refs--)
662 tty_kref_put(tty);
665 * it drops BTM and thus races with reopen
666 * we protect the race by TTY_HUPPING
668 tty_ldisc_hangup(tty);
670 spin_lock_irq(&tty->ctrl_lock);
671 clear_bit(TTY_THROTTLED, &tty->flags);
672 clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
673 put_pid(tty->session);
674 put_pid(tty->pgrp);
675 tty->session = NULL;
676 tty->pgrp = NULL;
677 tty->ctrl_status = 0;
678 spin_unlock_irq(&tty->ctrl_lock);
681 * If one of the devices matches a console pointer, we
682 * cannot just call hangup() because that will cause
683 * tty->count and state->count to go out of sync.
684 * So we just call close() the right number of times.
686 if (cons_filp) {
687 if (tty->ops->close)
688 for (n = 0; n < closecount; n++)
689 tty->ops->close(tty, cons_filp);
690 } else if (tty->ops->hangup)
691 (tty->ops->hangup)(tty);
693 * We don't want to have driver/ldisc interactions beyond
694 * the ones we did here. The driver layer expects no
695 * calls after ->hangup() from the ldisc side. However we
696 * can't yet guarantee all that.
698 set_bit(TTY_HUPPED, &tty->flags);
699 clear_bit(TTY_HUPPING, &tty->flags);
701 tty_unlock(tty);
703 if (f)
704 fput(f);
707 static void do_tty_hangup(struct work_struct *work)
709 struct tty_struct *tty =
710 container_of(work, struct tty_struct, hangup_work);
712 __tty_hangup(tty, 0);
716 * tty_hangup - trigger a hangup event
717 * @tty: tty to hangup
719 * A carrier loss (virtual or otherwise) has occurred on this like
720 * schedule a hangup sequence to run after this event.
723 void tty_hangup(struct tty_struct *tty)
725 #ifdef TTY_DEBUG_HANGUP
726 char buf[64];
727 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
728 #endif
729 schedule_work(&tty->hangup_work);
732 EXPORT_SYMBOL(tty_hangup);
735 * tty_vhangup - process vhangup
736 * @tty: tty to hangup
738 * The user has asked via system call for the terminal to be hung up.
739 * We do this synchronously so that when the syscall returns the process
740 * is complete. That guarantee is necessary for security reasons.
743 void tty_vhangup(struct tty_struct *tty)
745 #ifdef TTY_DEBUG_HANGUP
746 char buf[64];
748 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
749 #endif
750 __tty_hangup(tty, 0);
753 EXPORT_SYMBOL(tty_vhangup);
757 * tty_vhangup_self - process vhangup for own ctty
759 * Perform a vhangup on the current controlling tty
762 void tty_vhangup_self(void)
764 struct tty_struct *tty;
766 tty = get_current_tty();
767 if (tty) {
768 tty_vhangup(tty);
769 tty_kref_put(tty);
774 * tty_vhangup_session - hangup session leader exit
775 * @tty: tty to hangup
777 * The session leader is exiting and hanging up its controlling terminal.
778 * Every process in the foreground process group is signalled SIGHUP.
780 * We do this synchronously so that when the syscall returns the process
781 * is complete. That guarantee is necessary for security reasons.
784 static void tty_vhangup_session(struct tty_struct *tty)
786 #ifdef TTY_DEBUG_HANGUP
787 char buf[64];
789 printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
790 #endif
791 __tty_hangup(tty, 1);
795 * tty_hung_up_p - was tty hung up
796 * @filp: file pointer of tty
798 * Return true if the tty has been subject to a vhangup or a carrier
799 * loss
802 int tty_hung_up_p(struct file *filp)
804 return (filp->f_op == &hung_up_tty_fops);
807 EXPORT_SYMBOL(tty_hung_up_p);
809 static void session_clear_tty(struct pid *session)
811 struct task_struct *p;
812 do_each_pid_task(session, PIDTYPE_SID, p) {
813 proc_clear_tty(p);
814 } while_each_pid_task(session, PIDTYPE_SID, p);
818 * disassociate_ctty - disconnect controlling tty
819 * @on_exit: true if exiting so need to "hang up" the session
821 * This function is typically called only by the session leader, when
822 * it wants to disassociate itself from its controlling tty.
824 * It performs the following functions:
825 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
826 * (2) Clears the tty from being controlling the session
827 * (3) Clears the controlling tty for all processes in the
828 * session group.
830 * The argument on_exit is set to 1 if called when a process is
831 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
833 * Locking:
834 * BTM is taken for hysterical raisins, and held when
835 * called from no_tty().
836 * tty_mutex is taken to protect tty
837 * ->siglock is taken to protect ->signal/->sighand
838 * tasklist_lock is taken to walk process list for sessions
839 * ->siglock is taken to protect ->signal/->sighand
842 void disassociate_ctty(int on_exit)
844 struct tty_struct *tty;
846 if (!current->signal->leader)
847 return;
849 tty = get_current_tty();
850 if (tty) {
851 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
852 tty_vhangup_session(tty);
853 } else {
854 struct pid *tty_pgrp = tty_get_pgrp(tty);
855 if (tty_pgrp) {
856 kill_pgrp(tty_pgrp, SIGHUP, on_exit);
857 if (!on_exit)
858 kill_pgrp(tty_pgrp, SIGCONT, on_exit);
859 put_pid(tty_pgrp);
862 tty_kref_put(tty);
864 } else if (on_exit) {
865 struct pid *old_pgrp;
866 spin_lock_irq(&current->sighand->siglock);
867 old_pgrp = current->signal->tty_old_pgrp;
868 current->signal->tty_old_pgrp = NULL;
869 spin_unlock_irq(&current->sighand->siglock);
870 if (old_pgrp) {
871 kill_pgrp(old_pgrp, SIGHUP, on_exit);
872 kill_pgrp(old_pgrp, SIGCONT, on_exit);
873 put_pid(old_pgrp);
875 return;
878 spin_lock_irq(&current->sighand->siglock);
879 put_pid(current->signal->tty_old_pgrp);
880 current->signal->tty_old_pgrp = NULL;
881 spin_unlock_irq(&current->sighand->siglock);
883 tty = get_current_tty();
884 if (tty) {
885 unsigned long flags;
886 spin_lock_irqsave(&tty->ctrl_lock, flags);
887 put_pid(tty->session);
888 put_pid(tty->pgrp);
889 tty->session = NULL;
890 tty->pgrp = NULL;
891 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
892 tty_kref_put(tty);
893 } else {
894 #ifdef TTY_DEBUG_HANGUP
895 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
896 " = NULL", tty);
897 #endif
900 /* Now clear signal->tty under the lock */
901 read_lock(&tasklist_lock);
902 session_clear_tty(task_session(current));
903 read_unlock(&tasklist_lock);
908 * no_tty - Ensure the current process does not have a controlling tty
910 void no_tty(void)
912 /* FIXME: Review locking here. The tty_lock never covered any race
913 between a new association and proc_clear_tty but possible we need
914 to protect against this anyway */
915 struct task_struct *tsk = current;
916 disassociate_ctty(0);
917 proc_clear_tty(tsk);
922 * stop_tty - propagate flow control
923 * @tty: tty to stop
925 * Perform flow control to the driver. For PTY/TTY pairs we
926 * must also propagate the TIOCKPKT status. May be called
927 * on an already stopped device and will not re-call the driver
928 * method.
930 * This functionality is used by both the line disciplines for
931 * halting incoming flow and by the driver. It may therefore be
932 * called from any context, may be under the tty atomic_write_lock
933 * but not always.
935 * Locking:
936 * Uses the tty control lock internally
939 void stop_tty(struct tty_struct *tty)
941 unsigned long flags;
942 spin_lock_irqsave(&tty->ctrl_lock, flags);
943 if (tty->stopped) {
944 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
945 return;
947 tty->stopped = 1;
948 if (tty->link && tty->link->packet) {
949 tty->ctrl_status &= ~TIOCPKT_START;
950 tty->ctrl_status |= TIOCPKT_STOP;
951 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
953 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
954 if (tty->ops->stop)
955 (tty->ops->stop)(tty);
958 EXPORT_SYMBOL(stop_tty);
961 * start_tty - propagate flow control
962 * @tty: tty to start
964 * Start a tty that has been stopped if at all possible. Perform
965 * any necessary wakeups and propagate the TIOCPKT status. If this
966 * is the tty was previous stopped and is being started then the
967 * driver start method is invoked and the line discipline woken.
969 * Locking:
970 * ctrl_lock
973 void start_tty(struct tty_struct *tty)
975 unsigned long flags;
976 spin_lock_irqsave(&tty->ctrl_lock, flags);
977 if (!tty->stopped || tty->flow_stopped) {
978 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
979 return;
981 tty->stopped = 0;
982 if (tty->link && tty->link->packet) {
983 tty->ctrl_status &= ~TIOCPKT_STOP;
984 tty->ctrl_status |= TIOCPKT_START;
985 wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
987 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
988 if (tty->ops->start)
989 (tty->ops->start)(tty);
990 /* If we have a running line discipline it may need kicking */
991 tty_wakeup(tty);
994 EXPORT_SYMBOL(start_tty);
996 /* We limit tty time update visibility to every 8 seconds or so. */
997 static void tty_update_time(struct timespec *time)
999 unsigned long sec = get_seconds();
1000 if (abs(sec - time->tv_sec) & ~7)
1001 time->tv_sec = sec;
1005 * tty_read - read method for tty device files
1006 * @file: pointer to tty file
1007 * @buf: user buffer
1008 * @count: size of user buffer
1009 * @ppos: unused
1011 * Perform the read system call function on this terminal device. Checks
1012 * for hung up devices before calling the line discipline method.
1014 * Locking:
1015 * Locks the line discipline internally while needed. Multiple
1016 * read calls may be outstanding in parallel.
1019 static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1020 loff_t *ppos)
1022 int i;
1023 struct inode *inode = file_inode(file);
1024 struct tty_struct *tty = file_tty(file);
1025 struct tty_ldisc *ld;
1027 if (tty_paranoia_check(tty, inode, "tty_read"))
1028 return -EIO;
1029 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1030 return -EIO;
1032 /* We want to wait for the line discipline to sort out in this
1033 situation */
1034 ld = tty_ldisc_ref_wait(tty);
1035 if (ld->ops->read)
1036 i = (ld->ops->read)(tty, file, buf, count);
1037 else
1038 i = -EIO;
1039 tty_ldisc_deref(ld);
1041 if (i > 0)
1042 tty_update_time(&inode->i_atime);
1044 return i;
1047 void tty_write_unlock(struct tty_struct *tty)
1048 __releases(&tty->atomic_write_lock)
1050 mutex_unlock(&tty->atomic_write_lock);
1051 wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1054 int tty_write_lock(struct tty_struct *tty, int ndelay)
1055 __acquires(&tty->atomic_write_lock)
1057 if (!mutex_trylock(&tty->atomic_write_lock)) {
1058 if (ndelay)
1059 return -EAGAIN;
1060 if (mutex_lock_interruptible(&tty->atomic_write_lock))
1061 return -ERESTARTSYS;
1063 return 0;
1067 * Split writes up in sane blocksizes to avoid
1068 * denial-of-service type attacks
1070 static inline ssize_t do_tty_write(
1071 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1072 struct tty_struct *tty,
1073 struct file *file,
1074 const char __user *buf,
1075 size_t count)
1077 ssize_t ret, written = 0;
1078 unsigned int chunk;
1080 ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1081 if (ret < 0)
1082 return ret;
1085 * We chunk up writes into a temporary buffer. This
1086 * simplifies low-level drivers immensely, since they
1087 * don't have locking issues and user mode accesses.
1089 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1090 * big chunk-size..
1092 * The default chunk-size is 2kB, because the NTTY
1093 * layer has problems with bigger chunks. It will
1094 * claim to be able to handle more characters than
1095 * it actually does.
1097 * FIXME: This can probably go away now except that 64K chunks
1098 * are too likely to fail unless switched to vmalloc...
1100 chunk = 2048;
1101 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1102 chunk = 65536;
1103 if (count < chunk)
1104 chunk = count;
1106 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1107 if (tty->write_cnt < chunk) {
1108 unsigned char *buf_chunk;
1110 if (chunk < 1024)
1111 chunk = 1024;
1113 buf_chunk = kmalloc(chunk, GFP_KERNEL);
1114 if (!buf_chunk) {
1115 ret = -ENOMEM;
1116 goto out;
1118 kfree(tty->write_buf);
1119 tty->write_cnt = chunk;
1120 tty->write_buf = buf_chunk;
1123 /* Do the write .. */
1124 for (;;) {
1125 size_t size = count;
1126 if (size > chunk)
1127 size = chunk;
1128 ret = -EFAULT;
1129 if (copy_from_user(tty->write_buf, buf, size))
1130 break;
1131 ret = write(tty, file, tty->write_buf, size);
1132 if (ret <= 0)
1133 break;
1134 written += ret;
1135 buf += ret;
1136 count -= ret;
1137 if (!count)
1138 break;
1139 ret = -ERESTARTSYS;
1140 if (signal_pending(current))
1141 break;
1142 cond_resched();
1144 if (written) {
1145 tty_update_time(&file_inode(file)->i_mtime);
1146 ret = written;
1148 out:
1149 tty_write_unlock(tty);
1150 return ret;
1154 * tty_write_message - write a message to a certain tty, not just the console.
1155 * @tty: the destination tty_struct
1156 * @msg: the message to write
1158 * This is used for messages that need to be redirected to a specific tty.
1159 * We don't put it into the syslog queue right now maybe in the future if
1160 * really needed.
1162 * We must still hold the BTM and test the CLOSING flag for the moment.
1165 void tty_write_message(struct tty_struct *tty, char *msg)
1167 if (tty) {
1168 mutex_lock(&tty->atomic_write_lock);
1169 tty_lock(tty);
1170 if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1171 tty_unlock(tty);
1172 tty->ops->write(tty, msg, strlen(msg));
1173 } else
1174 tty_unlock(tty);
1175 tty_write_unlock(tty);
1177 return;
1182 * tty_write - write method for tty device file
1183 * @file: tty file pointer
1184 * @buf: user data to write
1185 * @count: bytes to write
1186 * @ppos: unused
1188 * Write data to a tty device via the line discipline.
1190 * Locking:
1191 * Locks the line discipline as required
1192 * Writes to the tty driver are serialized by the atomic_write_lock
1193 * and are then processed in chunks to the device. The line discipline
1194 * write method will not be invoked in parallel for each device.
1197 static ssize_t tty_write(struct file *file, const char __user *buf,
1198 size_t count, loff_t *ppos)
1200 struct tty_struct *tty = file_tty(file);
1201 struct tty_ldisc *ld;
1202 ssize_t ret;
1204 if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1205 return -EIO;
1206 if (!tty || !tty->ops->write ||
1207 (test_bit(TTY_IO_ERROR, &tty->flags)))
1208 return -EIO;
1209 /* Short term debug to catch buggy drivers */
1210 if (tty->ops->write_room == NULL)
1211 printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1212 tty->driver->name);
1213 ld = tty_ldisc_ref_wait(tty);
1214 if (!ld->ops->write)
1215 ret = -EIO;
1216 else
1217 ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1218 tty_ldisc_deref(ld);
1219 return ret;
1222 ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1223 size_t count, loff_t *ppos)
1225 struct file *p = NULL;
1227 spin_lock(&redirect_lock);
1228 if (redirect)
1229 p = get_file(redirect);
1230 spin_unlock(&redirect_lock);
1232 if (p) {
1233 ssize_t res;
1234 res = vfs_write(p, buf, count, &p->f_pos);
1235 fput(p);
1236 return res;
1238 return tty_write(file, buf, count, ppos);
1241 static char ptychar[] = "pqrstuvwxyzabcde";
1244 * pty_line_name - generate name for a pty
1245 * @driver: the tty driver in use
1246 * @index: the minor number
1247 * @p: output buffer of at least 6 bytes
1249 * Generate a name from a driver reference and write it to the output
1250 * buffer.
1252 * Locking: None
1254 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1256 int i = index + driver->name_base;
1257 /* ->name is initialized to "ttyp", but "tty" is expected */
1258 sprintf(p, "%s%c%x",
1259 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1260 ptychar[i >> 4 & 0xf], i & 0xf);
1264 * tty_line_name - generate name for a tty
1265 * @driver: the tty driver in use
1266 * @index: the minor number
1267 * @p: output buffer of at least 7 bytes
1269 * Generate a name from a driver reference and write it to the output
1270 * buffer.
1272 * Locking: None
1274 static ssize_t tty_line_name(struct tty_driver *driver, int index, char *p)
1276 if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1277 return sprintf(p, "%s", driver->name);
1278 else
1279 return sprintf(p, "%s%d", driver->name,
1280 index + driver->name_base);
1284 * tty_driver_lookup_tty() - find an existing tty, if any
1285 * @driver: the driver for the tty
1286 * @idx: the minor number
1288 * Return the tty, if found or ERR_PTR() otherwise.
1290 * Locking: tty_mutex must be held. If tty is found, the mutex must
1291 * be held until the 'fast-open' is also done. Will change once we
1292 * have refcounting in the driver and per driver locking
1294 static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1295 struct inode *inode, int idx)
1297 if (driver->ops->lookup)
1298 return driver->ops->lookup(driver, inode, idx);
1300 return driver->ttys[idx];
1304 * tty_init_termios - helper for termios setup
1305 * @tty: the tty to set up
1307 * Initialise the termios structures for this tty. Thus runs under
1308 * the tty_mutex currently so we can be relaxed about ordering.
1311 int tty_init_termios(struct tty_struct *tty)
1313 struct ktermios *tp;
1314 int idx = tty->index;
1316 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1317 tty->termios = tty->driver->init_termios;
1318 else {
1319 /* Check for lazy saved data */
1320 tp = tty->driver->termios[idx];
1321 if (tp != NULL)
1322 tty->termios = *tp;
1323 else
1324 tty->termios = tty->driver->init_termios;
1326 /* Compatibility until drivers always set this */
1327 tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1328 tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1329 return 0;
1331 EXPORT_SYMBOL_GPL(tty_init_termios);
1333 int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1335 int ret = tty_init_termios(tty);
1336 if (ret)
1337 return ret;
1339 tty_driver_kref_get(driver);
1340 tty->count++;
1341 driver->ttys[tty->index] = tty;
1342 return 0;
1344 EXPORT_SYMBOL_GPL(tty_standard_install);
1347 * tty_driver_install_tty() - install a tty entry in the driver
1348 * @driver: the driver for the tty
1349 * @tty: the tty
1351 * Install a tty object into the driver tables. The tty->index field
1352 * will be set by the time this is called. This method is responsible
1353 * for ensuring any need additional structures are allocated and
1354 * configured.
1356 * Locking: tty_mutex for now
1358 static int tty_driver_install_tty(struct tty_driver *driver,
1359 struct tty_struct *tty)
1361 return driver->ops->install ? driver->ops->install(driver, tty) :
1362 tty_standard_install(driver, tty);
1366 * tty_driver_remove_tty() - remove a tty from the driver tables
1367 * @driver: the driver for the tty
1368 * @idx: the minor number
1370 * Remvoe a tty object from the driver tables. The tty->index field
1371 * will be set by the time this is called.
1373 * Locking: tty_mutex for now
1375 void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1377 if (driver->ops->remove)
1378 driver->ops->remove(driver, tty);
1379 else
1380 driver->ttys[tty->index] = NULL;
1384 * tty_reopen() - fast re-open of an open tty
1385 * @tty - the tty to open
1387 * Return 0 on success, -errno on error.
1389 * Locking: tty_mutex must be held from the time the tty was found
1390 * till this open completes.
1392 static int tty_reopen(struct tty_struct *tty)
1394 struct tty_driver *driver = tty->driver;
1396 if (test_bit(TTY_CLOSING, &tty->flags) ||
1397 test_bit(TTY_HUPPING, &tty->flags))
1398 return -EIO;
1400 if (driver->type == TTY_DRIVER_TYPE_PTY &&
1401 driver->subtype == PTY_TYPE_MASTER) {
1403 * special case for PTY masters: only one open permitted,
1404 * and the slave side open count is incremented as well.
1406 if (tty->count)
1407 return -EIO;
1409 tty->link->count++;
1411 tty->count++;
1413 WARN_ON(!tty->ldisc);
1415 return 0;
1419 * tty_init_dev - initialise a tty device
1420 * @driver: tty driver we are opening a device on
1421 * @idx: device index
1422 * @ret_tty: returned tty structure
1424 * Prepare a tty device. This may not be a "new" clean device but
1425 * could also be an active device. The pty drivers require special
1426 * handling because of this.
1428 * Locking:
1429 * The function is called under the tty_mutex, which
1430 * protects us from the tty struct or driver itself going away.
1432 * On exit the tty device has the line discipline attached and
1433 * a reference count of 1. If a pair was created for pty/tty use
1434 * and the other was a pty master then it too has a reference count of 1.
1436 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1437 * failed open. The new code protects the open with a mutex, so it's
1438 * really quite straightforward. The mutex locking can probably be
1439 * relaxed for the (most common) case of reopening a tty.
1442 struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1444 struct tty_struct *tty;
1445 int retval;
1448 * First time open is complex, especially for PTY devices.
1449 * This code guarantees that either everything succeeds and the
1450 * TTY is ready for operation, or else the table slots are vacated
1451 * and the allocated memory released. (Except that the termios
1452 * and locked termios may be retained.)
1455 if (!try_module_get(driver->owner))
1456 return ERR_PTR(-ENODEV);
1458 tty = alloc_tty_struct();
1459 if (!tty) {
1460 retval = -ENOMEM;
1461 goto err_module_put;
1463 initialize_tty_struct(tty, driver, idx);
1465 tty_lock(tty);
1466 retval = tty_driver_install_tty(driver, tty);
1467 if (retval < 0)
1468 goto err_deinit_tty;
1470 if (!tty->port)
1471 tty->port = driver->ports[idx];
1473 WARN_RATELIMIT(!tty->port,
1474 "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1475 __func__, tty->driver->name);
1477 tty->port->itty = tty;
1480 * Structures all installed ... call the ldisc open routines.
1481 * If we fail here just call release_tty to clean up. No need
1482 * to decrement the use counts, as release_tty doesn't care.
1484 retval = tty_ldisc_setup(tty, tty->link);
1485 if (retval)
1486 goto err_release_tty;
1487 /* Return the tty locked so that it cannot vanish under the caller */
1488 return tty;
1490 err_deinit_tty:
1491 tty_unlock(tty);
1492 deinitialize_tty_struct(tty);
1493 free_tty_struct(tty);
1494 err_module_put:
1495 module_put(driver->owner);
1496 return ERR_PTR(retval);
1498 /* call the tty release_tty routine to clean out this slot */
1499 err_release_tty:
1500 tty_unlock(tty);
1501 printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1502 "clearing slot %d\n", idx);
1503 release_tty(tty, idx);
1504 return ERR_PTR(retval);
1507 void tty_free_termios(struct tty_struct *tty)
1509 struct ktermios *tp;
1510 int idx = tty->index;
1512 /* If the port is going to reset then it has no termios to save */
1513 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1514 return;
1516 /* Stash the termios data */
1517 tp = tty->driver->termios[idx];
1518 if (tp == NULL) {
1519 tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1520 if (tp == NULL) {
1521 pr_warn("tty: no memory to save termios state.\n");
1522 return;
1524 tty->driver->termios[idx] = tp;
1526 *tp = tty->termios;
1528 EXPORT_SYMBOL(tty_free_termios);
1531 * tty_flush_works - flush all works of a tty
1532 * @tty: tty device to flush works for
1534 * Sync flush all works belonging to @tty.
1536 static void tty_flush_works(struct tty_struct *tty)
1538 flush_work(&tty->SAK_work);
1539 flush_work(&tty->hangup_work);
1543 * release_one_tty - release tty structure memory
1544 * @kref: kref of tty we are obliterating
1546 * Releases memory associated with a tty structure, and clears out the
1547 * driver table slots. This function is called when a device is no longer
1548 * in use. It also gets called when setup of a device fails.
1550 * Locking:
1551 * takes the file list lock internally when working on the list
1552 * of ttys that the driver keeps.
1554 * This method gets called from a work queue so that the driver private
1555 * cleanup ops can sleep (needed for USB at least)
1557 static void release_one_tty(struct work_struct *work)
1559 struct tty_struct *tty =
1560 container_of(work, struct tty_struct, hangup_work);
1561 struct tty_driver *driver = tty->driver;
1563 if (tty->ops->cleanup)
1564 tty->ops->cleanup(tty);
1566 tty->magic = 0;
1567 tty_driver_kref_put(driver);
1568 module_put(driver->owner);
1570 spin_lock(&tty_files_lock);
1571 list_del_init(&tty->tty_files);
1572 spin_unlock(&tty_files_lock);
1574 put_pid(tty->pgrp);
1575 put_pid(tty->session);
1576 free_tty_struct(tty);
1579 static void queue_release_one_tty(struct kref *kref)
1581 struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1583 /* The hangup queue is now free so we can reuse it rather than
1584 waste a chunk of memory for each port */
1585 INIT_WORK(&tty->hangup_work, release_one_tty);
1586 schedule_work(&tty->hangup_work);
1590 * tty_kref_put - release a tty kref
1591 * @tty: tty device
1593 * Release a reference to a tty device and if need be let the kref
1594 * layer destruct the object for us
1597 void tty_kref_put(struct tty_struct *tty)
1599 if (tty)
1600 kref_put(&tty->kref, queue_release_one_tty);
1602 EXPORT_SYMBOL(tty_kref_put);
1605 * release_tty - release tty structure memory
1607 * Release both @tty and a possible linked partner (think pty pair),
1608 * and decrement the refcount of the backing module.
1610 * Locking:
1611 * tty_mutex
1612 * takes the file list lock internally when working on the list
1613 * of ttys that the driver keeps.
1616 static void release_tty(struct tty_struct *tty, int idx)
1618 /* This should always be true but check for the moment */
1619 WARN_ON(tty->index != idx);
1620 WARN_ON(!mutex_is_locked(&tty_mutex));
1621 if (tty->ops->shutdown)
1622 tty->ops->shutdown(tty);
1623 tty_free_termios(tty);
1624 tty_driver_remove_tty(tty->driver, tty);
1625 tty->port->itty = NULL;
1626 if (tty->link)
1627 tty->link->port->itty = NULL;
1628 cancel_work_sync(&tty->port->buf.work);
1630 if (tty->link)
1631 tty_kref_put(tty->link);
1632 tty_kref_put(tty);
1636 * tty_release_checks - check a tty before real release
1637 * @tty: tty to check
1638 * @o_tty: link of @tty (if any)
1639 * @idx: index of the tty
1641 * Performs some paranoid checking before true release of the @tty.
1642 * This is a no-op unless TTY_PARANOIA_CHECK is defined.
1644 static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1645 int idx)
1647 #ifdef TTY_PARANOIA_CHECK
1648 if (idx < 0 || idx >= tty->driver->num) {
1649 printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1650 __func__, tty->name);
1651 return -1;
1654 /* not much to check for devpts */
1655 if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1656 return 0;
1658 if (tty != tty->driver->ttys[idx]) {
1659 printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1660 __func__, idx, tty->name);
1661 return -1;
1663 if (tty->driver->other) {
1664 if (o_tty != tty->driver->other->ttys[idx]) {
1665 printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1666 __func__, idx, tty->name);
1667 return -1;
1669 if (o_tty->link != tty) {
1670 printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1671 return -1;
1674 #endif
1675 return 0;
1679 * tty_release - vfs callback for close
1680 * @inode: inode of tty
1681 * @filp: file pointer for handle to tty
1683 * Called the last time each file handle is closed that references
1684 * this tty. There may however be several such references.
1686 * Locking:
1687 * Takes bkl. See tty_release_dev
1689 * Even releasing the tty structures is a tricky business.. We have
1690 * to be very careful that the structures are all released at the
1691 * same time, as interrupts might otherwise get the wrong pointers.
1693 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1694 * lead to double frees or releasing memory still in use.
1697 int tty_release(struct inode *inode, struct file *filp)
1699 struct tty_struct *tty = file_tty(filp);
1700 struct tty_struct *o_tty;
1701 int pty_master, tty_closing, o_tty_closing, do_sleep;
1702 int idx;
1703 char buf[64];
1704 long timeout = 0;
1706 if (tty_paranoia_check(tty, inode, __func__))
1707 return 0;
1709 tty_lock(tty);
1710 check_tty_count(tty, __func__);
1712 __tty_fasync(-1, filp, 0);
1714 idx = tty->index;
1715 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1716 tty->driver->subtype == PTY_TYPE_MASTER);
1717 /* Review: parallel close */
1718 o_tty = tty->link;
1720 if (tty_release_checks(tty, o_tty, idx)) {
1721 tty_unlock(tty);
1722 return 0;
1725 #ifdef TTY_DEBUG_HANGUP
1726 printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1727 tty_name(tty, buf), tty->count);
1728 #endif
1730 if (tty->ops->close)
1731 tty->ops->close(tty, filp);
1733 tty_unlock(tty);
1735 * Sanity check: if tty->count is going to zero, there shouldn't be
1736 * any waiters on tty->read_wait or tty->write_wait. We test the
1737 * wait queues and kick everyone out _before_ actually starting to
1738 * close. This ensures that we won't block while releasing the tty
1739 * structure.
1741 * The test for the o_tty closing is necessary, since the master and
1742 * slave sides may close in any order. If the slave side closes out
1743 * first, its count will be one, since the master side holds an open.
1744 * Thus this test wouldn't be triggered at the time the slave closes,
1745 * so we do it now.
1747 * Note that it's possible for the tty to be opened again while we're
1748 * flushing out waiters. By recalculating the closing flags before
1749 * each iteration we avoid any problems.
1751 while (1) {
1752 /* Guard against races with tty->count changes elsewhere and
1753 opens on /dev/tty */
1755 mutex_lock(&tty_mutex);
1756 tty_lock_pair(tty, o_tty);
1757 tty_closing = tty->count <= 1;
1758 o_tty_closing = o_tty &&
1759 (o_tty->count <= (pty_master ? 1 : 0));
1760 do_sleep = 0;
1762 if (tty_closing) {
1763 if (waitqueue_active(&tty->read_wait)) {
1764 wake_up_poll(&tty->read_wait, POLLIN);
1765 do_sleep++;
1767 if (waitqueue_active(&tty->write_wait)) {
1768 wake_up_poll(&tty->write_wait, POLLOUT);
1769 do_sleep++;
1772 if (o_tty_closing) {
1773 if (waitqueue_active(&o_tty->read_wait)) {
1774 wake_up_poll(&o_tty->read_wait, POLLIN);
1775 do_sleep++;
1777 if (waitqueue_active(&o_tty->write_wait)) {
1778 wake_up_poll(&o_tty->write_wait, POLLOUT);
1779 do_sleep++;
1782 if (!do_sleep)
1783 break;
1785 printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1786 __func__, tty_name(tty, buf));
1787 tty_unlock_pair(tty, o_tty);
1788 mutex_unlock(&tty_mutex);
1789 schedule_timeout_killable(timeout);
1790 if (timeout < 120 * HZ)
1791 timeout = 2 * timeout + 1;
1792 else
1793 timeout = MAX_SCHEDULE_TIMEOUT;
1797 * The closing flags are now consistent with the open counts on
1798 * both sides, and we've completed the last operation that could
1799 * block, so it's safe to proceed with closing.
1801 * We must *not* drop the tty_mutex until we ensure that a further
1802 * entry into tty_open can not pick up this tty.
1804 if (pty_master) {
1805 if (--o_tty->count < 0) {
1806 printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1807 __func__, o_tty->count, tty_name(o_tty, buf));
1808 o_tty->count = 0;
1811 if (--tty->count < 0) {
1812 printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1813 __func__, tty->count, tty_name(tty, buf));
1814 tty->count = 0;
1818 * We've decremented tty->count, so we need to remove this file
1819 * descriptor off the tty->tty_files list; this serves two
1820 * purposes:
1821 * - check_tty_count sees the correct number of file descriptors
1822 * associated with this tty.
1823 * - do_tty_hangup no longer sees this file descriptor as
1824 * something that needs to be handled for hangups.
1826 tty_del_file(filp);
1829 * Perform some housekeeping before deciding whether to return.
1831 * Set the TTY_CLOSING flag if this was the last open. In the
1832 * case of a pty we may have to wait around for the other side
1833 * to close, and TTY_CLOSING makes sure we can't be reopened.
1835 if (tty_closing)
1836 set_bit(TTY_CLOSING, &tty->flags);
1837 if (o_tty_closing)
1838 set_bit(TTY_CLOSING, &o_tty->flags);
1841 * If _either_ side is closing, make sure there aren't any
1842 * processes that still think tty or o_tty is their controlling
1843 * tty.
1845 if (tty_closing || o_tty_closing) {
1846 read_lock(&tasklist_lock);
1847 session_clear_tty(tty->session);
1848 if (o_tty)
1849 session_clear_tty(o_tty->session);
1850 read_unlock(&tasklist_lock);
1853 mutex_unlock(&tty_mutex);
1854 tty_unlock_pair(tty, o_tty);
1855 /* At this point the TTY_CLOSING flag should ensure a dead tty
1856 cannot be re-opened by a racing opener */
1858 /* check whether both sides are closing ... */
1859 if (!tty_closing || (o_tty && !o_tty_closing))
1860 return 0;
1862 #ifdef TTY_DEBUG_HANGUP
1863 printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1864 #endif
1866 * Ask the line discipline code to release its structures
1868 tty_ldisc_release(tty, o_tty);
1870 /* Wait for pending work before tty destruction commmences */
1871 tty_flush_works(tty);
1872 if (o_tty)
1873 tty_flush_works(o_tty);
1875 #ifdef TTY_DEBUG_HANGUP
1876 printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1877 #endif
1879 * The release_tty function takes care of the details of clearing
1880 * the slots and preserving the termios structure. The tty_unlock_pair
1881 * should be safe as we keep a kref while the tty is locked (so the
1882 * unlock never unlocks a freed tty).
1884 mutex_lock(&tty_mutex);
1885 release_tty(tty, idx);
1886 mutex_unlock(&tty_mutex);
1888 return 0;
1892 * tty_open_current_tty - get tty of current task for open
1893 * @device: device number
1894 * @filp: file pointer to tty
1895 * @return: tty of the current task iff @device is /dev/tty
1897 * We cannot return driver and index like for the other nodes because
1898 * devpts will not work then. It expects inodes to be from devpts FS.
1900 * We need to move to returning a refcounted object from all the lookup
1901 * paths including this one.
1903 static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1905 struct tty_struct *tty;
1907 if (device != MKDEV(TTYAUX_MAJOR, 0))
1908 return NULL;
1910 tty = get_current_tty();
1911 if (!tty)
1912 return ERR_PTR(-ENXIO);
1914 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1915 /* noctty = 1; */
1916 tty_kref_put(tty);
1917 /* FIXME: we put a reference and return a TTY! */
1918 /* This is only safe because the caller holds tty_mutex */
1919 return tty;
1923 * tty_lookup_driver - lookup a tty driver for a given device file
1924 * @device: device number
1925 * @filp: file pointer to tty
1926 * @noctty: set if the device should not become a controlling tty
1927 * @index: index for the device in the @return driver
1928 * @return: driver for this inode (with increased refcount)
1930 * If @return is not erroneous, the caller is responsible to decrement the
1931 * refcount by tty_driver_kref_put.
1933 * Locking: tty_mutex protects get_tty_driver
1935 static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1936 int *noctty, int *index)
1938 struct tty_driver *driver;
1940 switch (device) {
1941 #ifdef CONFIG_VT
1942 case MKDEV(TTY_MAJOR, 0): {
1943 extern struct tty_driver *console_driver;
1944 driver = tty_driver_kref_get(console_driver);
1945 *index = fg_console;
1946 *noctty = 1;
1947 break;
1949 #endif
1950 case MKDEV(TTYAUX_MAJOR, 1): {
1951 struct tty_driver *console_driver = console_device(index);
1952 if (console_driver) {
1953 driver = tty_driver_kref_get(console_driver);
1954 if (driver) {
1955 /* Don't let /dev/console block */
1956 filp->f_flags |= O_NONBLOCK;
1957 *noctty = 1;
1958 break;
1961 return ERR_PTR(-ENODEV);
1963 default:
1964 driver = get_tty_driver(device, index);
1965 if (!driver)
1966 return ERR_PTR(-ENODEV);
1967 break;
1969 return driver;
1973 * tty_open - open a tty device
1974 * @inode: inode of device file
1975 * @filp: file pointer to tty
1977 * tty_open and tty_release keep up the tty count that contains the
1978 * number of opens done on a tty. We cannot use the inode-count, as
1979 * different inodes might point to the same tty.
1981 * Open-counting is needed for pty masters, as well as for keeping
1982 * track of serial lines: DTR is dropped when the last close happens.
1983 * (This is not done solely through tty->count, now. - Ted 1/27/92)
1985 * The termios state of a pty is reset on first open so that
1986 * settings don't persist across reuse.
1988 * Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1989 * tty->count should protect the rest.
1990 * ->siglock protects ->signal/->sighand
1992 * Note: the tty_unlock/lock cases without a ref are only safe due to
1993 * tty_mutex
1996 static int tty_open(struct inode *inode, struct file *filp)
1998 struct tty_struct *tty;
1999 int noctty, retval;
2000 struct tty_driver *driver = NULL;
2001 int index;
2002 dev_t device = inode->i_rdev;
2003 unsigned saved_flags = filp->f_flags;
2005 nonseekable_open(inode, filp);
2007 retry_open:
2008 retval = tty_alloc_file(filp);
2009 if (retval)
2010 return -ENOMEM;
2012 noctty = filp->f_flags & O_NOCTTY;
2013 index = -1;
2014 retval = 0;
2016 mutex_lock(&tty_mutex);
2017 /* This is protected by the tty_mutex */
2018 tty = tty_open_current_tty(device, filp);
2019 if (IS_ERR(tty)) {
2020 retval = PTR_ERR(tty);
2021 goto err_unlock;
2022 } else if (!tty) {
2023 driver = tty_lookup_driver(device, filp, &noctty, &index);
2024 if (IS_ERR(driver)) {
2025 retval = PTR_ERR(driver);
2026 goto err_unlock;
2029 /* check whether we're reopening an existing tty */
2030 tty = tty_driver_lookup_tty(driver, inode, index);
2031 if (IS_ERR(tty)) {
2032 retval = PTR_ERR(tty);
2033 goto err_unlock;
2037 if (tty) {
2038 tty_lock(tty);
2039 retval = tty_reopen(tty);
2040 if (retval < 0) {
2041 tty_unlock(tty);
2042 tty = ERR_PTR(retval);
2044 } else /* Returns with the tty_lock held for now */
2045 tty = tty_init_dev(driver, index);
2047 mutex_unlock(&tty_mutex);
2048 if (driver)
2049 tty_driver_kref_put(driver);
2050 if (IS_ERR(tty)) {
2051 retval = PTR_ERR(tty);
2052 goto err_file;
2055 tty_add_file(tty, filp);
2057 check_tty_count(tty, __func__);
2058 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2059 tty->driver->subtype == PTY_TYPE_MASTER)
2060 noctty = 1;
2061 #ifdef TTY_DEBUG_HANGUP
2062 printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2063 #endif
2064 if (tty->ops->open)
2065 retval = tty->ops->open(tty, filp);
2066 else
2067 retval = -ENODEV;
2068 filp->f_flags = saved_flags;
2070 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2071 !capable(CAP_SYS_ADMIN))
2072 retval = -EBUSY;
2074 if (retval) {
2075 #ifdef TTY_DEBUG_HANGUP
2076 printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2077 retval, tty->name);
2078 #endif
2079 tty_unlock(tty); /* need to call tty_release without BTM */
2080 tty_release(inode, filp);
2081 if (retval != -ERESTARTSYS)
2082 return retval;
2084 if (signal_pending(current))
2085 return retval;
2087 schedule();
2089 * Need to reset f_op in case a hangup happened.
2091 if (filp->f_op == &hung_up_tty_fops)
2092 filp->f_op = &tty_fops;
2093 goto retry_open;
2095 clear_bit(TTY_HUPPED, &tty->flags);
2096 tty_unlock(tty);
2099 mutex_lock(&tty_mutex);
2100 tty_lock(tty);
2101 spin_lock_irq(&current->sighand->siglock);
2102 if (!noctty &&
2103 current->signal->leader &&
2104 !current->signal->tty &&
2105 tty->session == NULL)
2106 __proc_set_tty(current, tty);
2107 spin_unlock_irq(&current->sighand->siglock);
2108 tty_unlock(tty);
2109 mutex_unlock(&tty_mutex);
2110 return 0;
2111 err_unlock:
2112 mutex_unlock(&tty_mutex);
2113 /* after locks to avoid deadlock */
2114 if (!IS_ERR_OR_NULL(driver))
2115 tty_driver_kref_put(driver);
2116 err_file:
2117 tty_free_file(filp);
2118 return retval;
2124 * tty_poll - check tty status
2125 * @filp: file being polled
2126 * @wait: poll wait structures to update
2128 * Call the line discipline polling method to obtain the poll
2129 * status of the device.
2131 * Locking: locks called line discipline but ldisc poll method
2132 * may be re-entered freely by other callers.
2135 static unsigned int tty_poll(struct file *filp, poll_table *wait)
2137 struct tty_struct *tty = file_tty(filp);
2138 struct tty_ldisc *ld;
2139 int ret = 0;
2141 if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2142 return 0;
2144 ld = tty_ldisc_ref_wait(tty);
2145 if (ld->ops->poll)
2146 ret = (ld->ops->poll)(tty, filp, wait);
2147 tty_ldisc_deref(ld);
2148 return ret;
2151 static int __tty_fasync(int fd, struct file *filp, int on)
2153 struct tty_struct *tty = file_tty(filp);
2154 struct tty_ldisc *ldisc;
2155 unsigned long flags;
2156 int retval = 0;
2158 if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2159 goto out;
2161 retval = fasync_helper(fd, filp, on, &tty->fasync);
2162 if (retval <= 0)
2163 goto out;
2165 ldisc = tty_ldisc_ref(tty);
2166 if (ldisc) {
2167 if (ldisc->ops->fasync)
2168 ldisc->ops->fasync(tty, on);
2169 tty_ldisc_deref(ldisc);
2172 if (on) {
2173 enum pid_type type;
2174 struct pid *pid;
2176 spin_lock_irqsave(&tty->ctrl_lock, flags);
2177 if (tty->pgrp) {
2178 pid = tty->pgrp;
2179 type = PIDTYPE_PGID;
2180 } else {
2181 pid = task_pid(current);
2182 type = PIDTYPE_PID;
2184 get_pid(pid);
2185 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2186 retval = __f_setown(filp, pid, type, 0);
2187 put_pid(pid);
2189 out:
2190 return retval;
2193 static int tty_fasync(int fd, struct file *filp, int on)
2195 struct tty_struct *tty = file_tty(filp);
2196 int retval;
2198 tty_lock(tty);
2199 retval = __tty_fasync(fd, filp, on);
2200 tty_unlock(tty);
2202 return retval;
2206 * tiocsti - fake input character
2207 * @tty: tty to fake input into
2208 * @p: pointer to character
2210 * Fake input to a tty device. Does the necessary locking and
2211 * input management.
2213 * FIXME: does not honour flow control ??
2215 * Locking:
2216 * Called functions take tty_ldiscs_lock
2217 * current->signal->tty check is safe without locks
2219 * FIXME: may race normal receive processing
2222 static int tiocsti(struct tty_struct *tty, char __user *p)
2224 char ch, mbz = 0;
2225 struct tty_ldisc *ld;
2227 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2228 return -EPERM;
2229 if (get_user(ch, p))
2230 return -EFAULT;
2231 tty_audit_tiocsti(tty, ch);
2232 ld = tty_ldisc_ref_wait(tty);
2233 ld->ops->receive_buf(tty, &ch, &mbz, 1);
2234 tty_ldisc_deref(ld);
2235 return 0;
2239 * tiocgwinsz - implement window query ioctl
2240 * @tty; tty
2241 * @arg: user buffer for result
2243 * Copies the kernel idea of the window size into the user buffer.
2245 * Locking: tty->winsize_mutex is taken to ensure the winsize data
2246 * is consistent.
2249 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2251 int err;
2253 mutex_lock(&tty->winsize_mutex);
2254 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2255 mutex_unlock(&tty->winsize_mutex);
2257 return err ? -EFAULT: 0;
2261 * tty_do_resize - resize event
2262 * @tty: tty being resized
2263 * @rows: rows (character)
2264 * @cols: cols (character)
2266 * Update the termios variables and send the necessary signals to
2267 * peform a terminal resize correctly
2270 int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2272 struct pid *pgrp;
2273 unsigned long flags;
2275 /* Lock the tty */
2276 mutex_lock(&tty->winsize_mutex);
2277 if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2278 goto done;
2279 /* Get the PID values and reference them so we can
2280 avoid holding the tty ctrl lock while sending signals */
2281 spin_lock_irqsave(&tty->ctrl_lock, flags);
2282 pgrp = get_pid(tty->pgrp);
2283 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2285 if (pgrp)
2286 kill_pgrp(pgrp, SIGWINCH, 1);
2287 put_pid(pgrp);
2289 tty->winsize = *ws;
2290 done:
2291 mutex_unlock(&tty->winsize_mutex);
2292 return 0;
2294 EXPORT_SYMBOL(tty_do_resize);
2297 * tiocswinsz - implement window size set ioctl
2298 * @tty; tty side of tty
2299 * @arg: user buffer for result
2301 * Copies the user idea of the window size to the kernel. Traditionally
2302 * this is just advisory information but for the Linux console it
2303 * actually has driver level meaning and triggers a VC resize.
2305 * Locking:
2306 * Driver dependent. The default do_resize method takes the
2307 * tty termios mutex and ctrl_lock. The console takes its own lock
2308 * then calls into the default method.
2311 static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2313 struct winsize tmp_ws;
2314 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2315 return -EFAULT;
2317 if (tty->ops->resize)
2318 return tty->ops->resize(tty, &tmp_ws);
2319 else
2320 return tty_do_resize(tty, &tmp_ws);
2324 * tioccons - allow admin to move logical console
2325 * @file: the file to become console
2327 * Allow the administrator to move the redirected console device
2329 * Locking: uses redirect_lock to guard the redirect information
2332 static int tioccons(struct file *file)
2334 if (!capable(CAP_SYS_ADMIN))
2335 return -EPERM;
2336 if (file->f_op->write == redirected_tty_write) {
2337 struct file *f;
2338 spin_lock(&redirect_lock);
2339 f = redirect;
2340 redirect = NULL;
2341 spin_unlock(&redirect_lock);
2342 if (f)
2343 fput(f);
2344 return 0;
2346 spin_lock(&redirect_lock);
2347 if (redirect) {
2348 spin_unlock(&redirect_lock);
2349 return -EBUSY;
2351 redirect = get_file(file);
2352 spin_unlock(&redirect_lock);
2353 return 0;
2357 * fionbio - non blocking ioctl
2358 * @file: file to set blocking value
2359 * @p: user parameter
2361 * Historical tty interfaces had a blocking control ioctl before
2362 * the generic functionality existed. This piece of history is preserved
2363 * in the expected tty API of posix OS's.
2365 * Locking: none, the open file handle ensures it won't go away.
2368 static int fionbio(struct file *file, int __user *p)
2370 int nonblock;
2372 if (get_user(nonblock, p))
2373 return -EFAULT;
2375 spin_lock(&file->f_lock);
2376 if (nonblock)
2377 file->f_flags |= O_NONBLOCK;
2378 else
2379 file->f_flags &= ~O_NONBLOCK;
2380 spin_unlock(&file->f_lock);
2381 return 0;
2385 * tiocsctty - set controlling tty
2386 * @tty: tty structure
2387 * @arg: user argument
2389 * This ioctl is used to manage job control. It permits a session
2390 * leader to set this tty as the controlling tty for the session.
2392 * Locking:
2393 * Takes tty_mutex() to protect tty instance
2394 * Takes tasklist_lock internally to walk sessions
2395 * Takes ->siglock() when updating signal->tty
2398 static int tiocsctty(struct tty_struct *tty, int arg)
2400 int ret = 0;
2401 if (current->signal->leader && (task_session(current) == tty->session))
2402 return ret;
2404 mutex_lock(&tty_mutex);
2406 * The process must be a session leader and
2407 * not have a controlling tty already.
2409 if (!current->signal->leader || current->signal->tty) {
2410 ret = -EPERM;
2411 goto unlock;
2414 if (tty->session) {
2416 * This tty is already the controlling
2417 * tty for another session group!
2419 if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2421 * Steal it away
2423 read_lock(&tasklist_lock);
2424 session_clear_tty(tty->session);
2425 read_unlock(&tasklist_lock);
2426 } else {
2427 ret = -EPERM;
2428 goto unlock;
2431 proc_set_tty(current, tty);
2432 unlock:
2433 mutex_unlock(&tty_mutex);
2434 return ret;
2438 * tty_get_pgrp - return a ref counted pgrp pid
2439 * @tty: tty to read
2441 * Returns a refcounted instance of the pid struct for the process
2442 * group controlling the tty.
2445 struct pid *tty_get_pgrp(struct tty_struct *tty)
2447 unsigned long flags;
2448 struct pid *pgrp;
2450 spin_lock_irqsave(&tty->ctrl_lock, flags);
2451 pgrp = get_pid(tty->pgrp);
2452 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2454 return pgrp;
2456 EXPORT_SYMBOL_GPL(tty_get_pgrp);
2459 * tiocgpgrp - get process group
2460 * @tty: tty passed by user
2461 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2462 * @p: returned pid
2464 * Obtain the process group of the tty. If there is no process group
2465 * return an error.
2467 * Locking: none. Reference to current->signal->tty is safe.
2470 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2472 struct pid *pid;
2473 int ret;
2475 * (tty == real_tty) is a cheap way of
2476 * testing if the tty is NOT a master pty.
2478 if (tty == real_tty && current->signal->tty != real_tty)
2479 return -ENOTTY;
2480 pid = tty_get_pgrp(real_tty);
2481 ret = put_user(pid_vnr(pid), p);
2482 put_pid(pid);
2483 return ret;
2487 * tiocspgrp - attempt to set process group
2488 * @tty: tty passed by user
2489 * @real_tty: tty side device matching tty passed by user
2490 * @p: pid pointer
2492 * Set the process group of the tty to the session passed. Only
2493 * permitted where the tty session is our session.
2495 * Locking: RCU, ctrl lock
2498 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2500 struct pid *pgrp;
2501 pid_t pgrp_nr;
2502 int retval = tty_check_change(real_tty);
2503 unsigned long flags;
2505 if (retval == -EIO)
2506 return -ENOTTY;
2507 if (retval)
2508 return retval;
2509 if (!current->signal->tty ||
2510 (current->signal->tty != real_tty) ||
2511 (real_tty->session != task_session(current)))
2512 return -ENOTTY;
2513 if (get_user(pgrp_nr, p))
2514 return -EFAULT;
2515 if (pgrp_nr < 0)
2516 return -EINVAL;
2517 rcu_read_lock();
2518 pgrp = find_vpid(pgrp_nr);
2519 retval = -ESRCH;
2520 if (!pgrp)
2521 goto out_unlock;
2522 retval = -EPERM;
2523 if (session_of_pgrp(pgrp) != task_session(current))
2524 goto out_unlock;
2525 retval = 0;
2526 spin_lock_irqsave(&tty->ctrl_lock, flags);
2527 put_pid(real_tty->pgrp);
2528 real_tty->pgrp = get_pid(pgrp);
2529 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2530 out_unlock:
2531 rcu_read_unlock();
2532 return retval;
2536 * tiocgsid - get session id
2537 * @tty: tty passed by user
2538 * @real_tty: tty side of the tty passed by the user if a pty else the tty
2539 * @p: pointer to returned session id
2541 * Obtain the session id of the tty. If there is no session
2542 * return an error.
2544 * Locking: none. Reference to current->signal->tty is safe.
2547 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2550 * (tty == real_tty) is a cheap way of
2551 * testing if the tty is NOT a master pty.
2553 if (tty == real_tty && current->signal->tty != real_tty)
2554 return -ENOTTY;
2555 if (!real_tty->session)
2556 return -ENOTTY;
2557 return put_user(pid_vnr(real_tty->session), p);
2561 * tiocsetd - set line discipline
2562 * @tty: tty device
2563 * @p: pointer to user data
2565 * Set the line discipline according to user request.
2567 * Locking: see tty_set_ldisc, this function is just a helper
2570 static int tiocsetd(struct tty_struct *tty, int __user *p)
2572 int ldisc;
2573 int ret;
2575 if (get_user(ldisc, p))
2576 return -EFAULT;
2578 ret = tty_set_ldisc(tty, ldisc);
2580 return ret;
2584 * send_break - performed time break
2585 * @tty: device to break on
2586 * @duration: timeout in mS
2588 * Perform a timed break on hardware that lacks its own driver level
2589 * timed break functionality.
2591 * Locking:
2592 * atomic_write_lock serializes
2596 static int send_break(struct tty_struct *tty, unsigned int duration)
2598 int retval;
2600 if (tty->ops->break_ctl == NULL)
2601 return 0;
2603 if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2604 retval = tty->ops->break_ctl(tty, duration);
2605 else {
2606 /* Do the work ourselves */
2607 if (tty_write_lock(tty, 0) < 0)
2608 return -EINTR;
2609 retval = tty->ops->break_ctl(tty, -1);
2610 if (retval)
2611 goto out;
2612 if (!signal_pending(current))
2613 msleep_interruptible(duration);
2614 retval = tty->ops->break_ctl(tty, 0);
2615 out:
2616 tty_write_unlock(tty);
2617 if (signal_pending(current))
2618 retval = -EINTR;
2620 return retval;
2624 * tty_tiocmget - get modem status
2625 * @tty: tty device
2626 * @file: user file pointer
2627 * @p: pointer to result
2629 * Obtain the modem status bits from the tty driver if the feature
2630 * is supported. Return -EINVAL if it is not available.
2632 * Locking: none (up to the driver)
2635 static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2637 int retval = -EINVAL;
2639 if (tty->ops->tiocmget) {
2640 retval = tty->ops->tiocmget(tty);
2642 if (retval >= 0)
2643 retval = put_user(retval, p);
2645 return retval;
2649 * tty_tiocmset - set modem status
2650 * @tty: tty device
2651 * @cmd: command - clear bits, set bits or set all
2652 * @p: pointer to desired bits
2654 * Set the modem status bits from the tty driver if the feature
2655 * is supported. Return -EINVAL if it is not available.
2657 * Locking: none (up to the driver)
2660 static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2661 unsigned __user *p)
2663 int retval;
2664 unsigned int set, clear, val;
2666 if (tty->ops->tiocmset == NULL)
2667 return -EINVAL;
2669 retval = get_user(val, p);
2670 if (retval)
2671 return retval;
2672 set = clear = 0;
2673 switch (cmd) {
2674 case TIOCMBIS:
2675 set = val;
2676 break;
2677 case TIOCMBIC:
2678 clear = val;
2679 break;
2680 case TIOCMSET:
2681 set = val;
2682 clear = ~val;
2683 break;
2685 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2686 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2687 return tty->ops->tiocmset(tty, set, clear);
2690 static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2692 int retval = -EINVAL;
2693 struct serial_icounter_struct icount;
2694 memset(&icount, 0, sizeof(icount));
2695 if (tty->ops->get_icount)
2696 retval = tty->ops->get_icount(tty, &icount);
2697 if (retval != 0)
2698 return retval;
2699 if (copy_to_user(arg, &icount, sizeof(icount)))
2700 return -EFAULT;
2701 return 0;
2704 struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2706 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2707 tty->driver->subtype == PTY_TYPE_MASTER)
2708 tty = tty->link;
2709 return tty;
2711 EXPORT_SYMBOL(tty_pair_get_tty);
2713 struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2715 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2716 tty->driver->subtype == PTY_TYPE_MASTER)
2717 return tty;
2718 return tty->link;
2720 EXPORT_SYMBOL(tty_pair_get_pty);
2723 * Split this up, as gcc can choke on it otherwise..
2725 long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2727 struct tty_struct *tty = file_tty(file);
2728 struct tty_struct *real_tty;
2729 void __user *p = (void __user *)arg;
2730 int retval;
2731 struct tty_ldisc *ld;
2733 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2734 return -EINVAL;
2736 real_tty = tty_pair_get_tty(tty);
2739 * Factor out some common prep work
2741 switch (cmd) {
2742 case TIOCSETD:
2743 case TIOCSBRK:
2744 case TIOCCBRK:
2745 case TCSBRK:
2746 case TCSBRKP:
2747 retval = tty_check_change(tty);
2748 if (retval)
2749 return retval;
2750 if (cmd != TIOCCBRK) {
2751 tty_wait_until_sent(tty, 0);
2752 if (signal_pending(current))
2753 return -EINTR;
2755 break;
2759 * Now do the stuff.
2761 switch (cmd) {
2762 case TIOCSTI:
2763 return tiocsti(tty, p);
2764 case TIOCGWINSZ:
2765 return tiocgwinsz(real_tty, p);
2766 case TIOCSWINSZ:
2767 return tiocswinsz(real_tty, p);
2768 case TIOCCONS:
2769 return real_tty != tty ? -EINVAL : tioccons(file);
2770 case FIONBIO:
2771 return fionbio(file, p);
2772 case TIOCEXCL:
2773 set_bit(TTY_EXCLUSIVE, &tty->flags);
2774 return 0;
2775 case TIOCNXCL:
2776 clear_bit(TTY_EXCLUSIVE, &tty->flags);
2777 return 0;
2778 case TIOCGEXCL:
2780 int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2781 return put_user(excl, (int __user *)p);
2783 case TIOCNOTTY:
2784 if (current->signal->tty != tty)
2785 return -ENOTTY;
2786 no_tty();
2787 return 0;
2788 case TIOCSCTTY:
2789 return tiocsctty(tty, arg);
2790 case TIOCGPGRP:
2791 return tiocgpgrp(tty, real_tty, p);
2792 case TIOCSPGRP:
2793 return tiocspgrp(tty, real_tty, p);
2794 case TIOCGSID:
2795 return tiocgsid(tty, real_tty, p);
2796 case TIOCGETD:
2797 return put_user(tty->ldisc->ops->num, (int __user *)p);
2798 case TIOCSETD:
2799 return tiocsetd(tty, p);
2800 case TIOCVHANGUP:
2801 if (!capable(CAP_SYS_ADMIN))
2802 return -EPERM;
2803 tty_vhangup(tty);
2804 return 0;
2805 case TIOCGDEV:
2807 unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2808 return put_user(ret, (unsigned int __user *)p);
2811 * Break handling
2813 case TIOCSBRK: /* Turn break on, unconditionally */
2814 if (tty->ops->break_ctl)
2815 return tty->ops->break_ctl(tty, -1);
2816 return 0;
2817 case TIOCCBRK: /* Turn break off, unconditionally */
2818 if (tty->ops->break_ctl)
2819 return tty->ops->break_ctl(tty, 0);
2820 return 0;
2821 case TCSBRK: /* SVID version: non-zero arg --> no break */
2822 /* non-zero arg means wait for all output data
2823 * to be sent (performed above) but don't send break.
2824 * This is used by the tcdrain() termios function.
2826 if (!arg)
2827 return send_break(tty, 250);
2828 return 0;
2829 case TCSBRKP: /* support for POSIX tcsendbreak() */
2830 return send_break(tty, arg ? arg*100 : 250);
2832 case TIOCMGET:
2833 return tty_tiocmget(tty, p);
2834 case TIOCMSET:
2835 case TIOCMBIC:
2836 case TIOCMBIS:
2837 return tty_tiocmset(tty, cmd, p);
2838 case TIOCGICOUNT:
2839 retval = tty_tiocgicount(tty, p);
2840 /* For the moment allow fall through to the old method */
2841 if (retval != -EINVAL)
2842 return retval;
2843 break;
2844 case TCFLSH:
2845 switch (arg) {
2846 case TCIFLUSH:
2847 case TCIOFLUSH:
2848 /* flush tty buffer and allow ldisc to process ioctl */
2849 tty_buffer_flush(tty);
2850 break;
2852 break;
2854 if (tty->ops->ioctl) {
2855 retval = (tty->ops->ioctl)(tty, cmd, arg);
2856 if (retval != -ENOIOCTLCMD)
2857 return retval;
2859 ld = tty_ldisc_ref_wait(tty);
2860 retval = -EINVAL;
2861 if (ld->ops->ioctl) {
2862 retval = ld->ops->ioctl(tty, file, cmd, arg);
2863 if (retval == -ENOIOCTLCMD)
2864 retval = -ENOTTY;
2866 tty_ldisc_deref(ld);
2867 return retval;
2870 #ifdef CONFIG_COMPAT
2871 static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2872 unsigned long arg)
2874 struct tty_struct *tty = file_tty(file);
2875 struct tty_ldisc *ld;
2876 int retval = -ENOIOCTLCMD;
2878 if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2879 return -EINVAL;
2881 if (tty->ops->compat_ioctl) {
2882 retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2883 if (retval != -ENOIOCTLCMD)
2884 return retval;
2887 ld = tty_ldisc_ref_wait(tty);
2888 if (ld->ops->compat_ioctl)
2889 retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2890 else
2891 retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2892 tty_ldisc_deref(ld);
2894 return retval;
2896 #endif
2898 static int this_tty(const void *t, struct file *file, unsigned fd)
2900 if (likely(file->f_op->read != tty_read))
2901 return 0;
2902 return file_tty(file) != t ? 0 : fd + 1;
2906 * This implements the "Secure Attention Key" --- the idea is to
2907 * prevent trojan horses by killing all processes associated with this
2908 * tty when the user hits the "Secure Attention Key". Required for
2909 * super-paranoid applications --- see the Orange Book for more details.
2911 * This code could be nicer; ideally it should send a HUP, wait a few
2912 * seconds, then send a INT, and then a KILL signal. But you then
2913 * have to coordinate with the init process, since all processes associated
2914 * with the current tty must be dead before the new getty is allowed
2915 * to spawn.
2917 * Now, if it would be correct ;-/ The current code has a nasty hole -
2918 * it doesn't catch files in flight. We may send the descriptor to ourselves
2919 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2921 * Nasty bug: do_SAK is being called in interrupt context. This can
2922 * deadlock. We punt it up to process context. AKPM - 16Mar2001
2924 void __do_SAK(struct tty_struct *tty)
2926 #ifdef TTY_SOFT_SAK
2927 tty_hangup(tty);
2928 #else
2929 struct task_struct *g, *p;
2930 struct pid *session;
2931 int i;
2933 if (!tty)
2934 return;
2935 session = tty->session;
2937 tty_ldisc_flush(tty);
2939 tty_driver_flush_buffer(tty);
2941 read_lock(&tasklist_lock);
2942 /* Kill the entire session */
2943 do_each_pid_task(session, PIDTYPE_SID, p) {
2944 printk(KERN_NOTICE "SAK: killed process %d"
2945 " (%s): task_session(p)==tty->session\n",
2946 task_pid_nr(p), p->comm);
2947 send_sig(SIGKILL, p, 1);
2948 } while_each_pid_task(session, PIDTYPE_SID, p);
2949 /* Now kill any processes that happen to have the
2950 * tty open.
2952 do_each_thread(g, p) {
2953 if (p->signal->tty == tty) {
2954 printk(KERN_NOTICE "SAK: killed process %d"
2955 " (%s): task_session(p)==tty->session\n",
2956 task_pid_nr(p), p->comm);
2957 send_sig(SIGKILL, p, 1);
2958 continue;
2960 task_lock(p);
2961 i = iterate_fd(p->files, 0, this_tty, tty);
2962 if (i != 0) {
2963 printk(KERN_NOTICE "SAK: killed process %d"
2964 " (%s): fd#%d opened to the tty\n",
2965 task_pid_nr(p), p->comm, i - 1);
2966 force_sig(SIGKILL, p);
2968 task_unlock(p);
2969 } while_each_thread(g, p);
2970 read_unlock(&tasklist_lock);
2971 #endif
2974 static void do_SAK_work(struct work_struct *work)
2976 struct tty_struct *tty =
2977 container_of(work, struct tty_struct, SAK_work);
2978 __do_SAK(tty);
2982 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2983 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2984 * the values which we write to it will be identical to the values which it
2985 * already has. --akpm
2987 void do_SAK(struct tty_struct *tty)
2989 if (!tty)
2990 return;
2991 schedule_work(&tty->SAK_work);
2994 EXPORT_SYMBOL(do_SAK);
2996 static int dev_match_devt(struct device *dev, const void *data)
2998 const dev_t *devt = data;
2999 return dev->devt == *devt;
3002 /* Must put_device() after it's unused! */
3003 static struct device *tty_get_device(struct tty_struct *tty)
3005 dev_t devt = tty_devnum(tty);
3006 return class_find_device(tty_class, NULL, &devt, dev_match_devt);
3011 * initialize_tty_struct
3012 * @tty: tty to initialize
3014 * This subroutine initializes a tty structure that has been newly
3015 * allocated.
3017 * Locking: none - tty in question must not be exposed at this point
3020 void initialize_tty_struct(struct tty_struct *tty,
3021 struct tty_driver *driver, int idx)
3023 memset(tty, 0, sizeof(struct tty_struct));
3024 kref_init(&tty->kref);
3025 tty->magic = TTY_MAGIC;
3026 tty_ldisc_init(tty);
3027 tty->session = NULL;
3028 tty->pgrp = NULL;
3029 mutex_init(&tty->legacy_mutex);
3030 mutex_init(&tty->throttle_mutex);
3031 init_rwsem(&tty->termios_rwsem);
3032 mutex_init(&tty->winsize_mutex);
3033 init_ldsem(&tty->ldisc_sem);
3034 init_waitqueue_head(&tty->write_wait);
3035 init_waitqueue_head(&tty->read_wait);
3036 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3037 mutex_init(&tty->atomic_write_lock);
3038 spin_lock_init(&tty->ctrl_lock);
3039 INIT_LIST_HEAD(&tty->tty_files);
3040 INIT_WORK(&tty->SAK_work, do_SAK_work);
3042 tty->driver = driver;
3043 tty->ops = driver->ops;
3044 tty->index = idx;
3045 tty_line_name(driver, idx, tty->name);
3046 tty->dev = tty_get_device(tty);
3050 * deinitialize_tty_struct
3051 * @tty: tty to deinitialize
3053 * This subroutine deinitializes a tty structure that has been newly
3054 * allocated but tty_release cannot be called on that yet.
3056 * Locking: none - tty in question must not be exposed at this point
3058 void deinitialize_tty_struct(struct tty_struct *tty)
3060 tty_ldisc_deinit(tty);
3064 * tty_put_char - write one character to a tty
3065 * @tty: tty
3066 * @ch: character
3068 * Write one byte to the tty using the provided put_char method
3069 * if present. Returns the number of characters successfully output.
3071 * Note: the specific put_char operation in the driver layer may go
3072 * away soon. Don't call it directly, use this method
3075 int tty_put_char(struct tty_struct *tty, unsigned char ch)
3077 if (tty->ops->put_char)
3078 return tty->ops->put_char(tty, ch);
3079 return tty->ops->write(tty, &ch, 1);
3081 EXPORT_SYMBOL_GPL(tty_put_char);
3083 struct class *tty_class;
3085 static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3086 unsigned int index, unsigned int count)
3088 /* init here, since reused cdevs cause crashes */
3089 cdev_init(&driver->cdevs[index], &tty_fops);
3090 driver->cdevs[index].owner = driver->owner;
3091 return cdev_add(&driver->cdevs[index], dev, count);
3095 * tty_register_device - register a tty device
3096 * @driver: the tty driver that describes the tty device
3097 * @index: the index in the tty driver for this tty device
3098 * @device: a struct device that is associated with this tty device.
3099 * This field is optional, if there is no known struct device
3100 * for this tty device it can be set to NULL safely.
3102 * Returns a pointer to the struct device for this tty device
3103 * (or ERR_PTR(-EFOO) on error).
3105 * This call is required to be made to register an individual tty device
3106 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3107 * that bit is not set, this function should not be called by a tty
3108 * driver.
3110 * Locking: ??
3113 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3114 struct device *device)
3116 return tty_register_device_attr(driver, index, device, NULL, NULL);
3118 EXPORT_SYMBOL(tty_register_device);
3120 static void tty_device_create_release(struct device *dev)
3122 pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3123 kfree(dev);
3127 * tty_register_device_attr - register a tty device
3128 * @driver: the tty driver that describes the tty device
3129 * @index: the index in the tty driver for this tty device
3130 * @device: a struct device that is associated with this tty device.
3131 * This field is optional, if there is no known struct device
3132 * for this tty device it can be set to NULL safely.
3133 * @drvdata: Driver data to be set to device.
3134 * @attr_grp: Attribute group to be set on device.
3136 * Returns a pointer to the struct device for this tty device
3137 * (or ERR_PTR(-EFOO) on error).
3139 * This call is required to be made to register an individual tty device
3140 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3141 * that bit is not set, this function should not be called by a tty
3142 * driver.
3144 * Locking: ??
3146 struct device *tty_register_device_attr(struct tty_driver *driver,
3147 unsigned index, struct device *device,
3148 void *drvdata,
3149 const struct attribute_group **attr_grp)
3151 char name[64];
3152 dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3153 struct device *dev = NULL;
3154 int retval = -ENODEV;
3155 bool cdev = false;
3157 if (index >= driver->num) {
3158 printk(KERN_ERR "Attempt to register invalid tty line number "
3159 " (%d).\n", index);
3160 return ERR_PTR(-EINVAL);
3163 if (driver->type == TTY_DRIVER_TYPE_PTY)
3164 pty_line_name(driver, index, name);
3165 else
3166 tty_line_name(driver, index, name);
3168 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3169 retval = tty_cdev_add(driver, devt, index, 1);
3170 if (retval)
3171 goto error;
3172 cdev = true;
3175 dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3176 if (!dev) {
3177 retval = -ENOMEM;
3178 goto error;
3181 dev->devt = devt;
3182 dev->class = tty_class;
3183 dev->parent = device;
3184 dev->release = tty_device_create_release;
3185 dev_set_name(dev, "%s", name);
3186 dev->groups = attr_grp;
3187 dev_set_drvdata(dev, drvdata);
3189 retval = device_register(dev);
3190 if (retval)
3191 goto error;
3193 return dev;
3195 error:
3196 put_device(dev);
3197 if (cdev)
3198 cdev_del(&driver->cdevs[index]);
3199 return ERR_PTR(retval);
3201 EXPORT_SYMBOL_GPL(tty_register_device_attr);
3204 * tty_unregister_device - unregister a tty device
3205 * @driver: the tty driver that describes the tty device
3206 * @index: the index in the tty driver for this tty device
3208 * If a tty device is registered with a call to tty_register_device() then
3209 * this function must be called when the tty device is gone.
3211 * Locking: ??
3214 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3216 device_destroy(tty_class,
3217 MKDEV(driver->major, driver->minor_start) + index);
3218 if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3219 cdev_del(&driver->cdevs[index]);
3221 EXPORT_SYMBOL(tty_unregister_device);
3224 * __tty_alloc_driver -- allocate tty driver
3225 * @lines: count of lines this driver can handle at most
3226 * @owner: module which is repsonsible for this driver
3227 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3229 * This should not be called directly, some of the provided macros should be
3230 * used instead. Use IS_ERR and friends on @retval.
3232 struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3233 unsigned long flags)
3235 struct tty_driver *driver;
3236 unsigned int cdevs = 1;
3237 int err;
3239 if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3240 return ERR_PTR(-EINVAL);
3242 driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3243 if (!driver)
3244 return ERR_PTR(-ENOMEM);
3246 kref_init(&driver->kref);
3247 driver->magic = TTY_DRIVER_MAGIC;
3248 driver->num = lines;
3249 driver->owner = owner;
3250 driver->flags = flags;
3252 if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3253 driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3254 GFP_KERNEL);
3255 driver->termios = kcalloc(lines, sizeof(*driver->termios),
3256 GFP_KERNEL);
3257 if (!driver->ttys || !driver->termios) {
3258 err = -ENOMEM;
3259 goto err_free_all;
3263 if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3264 driver->ports = kcalloc(lines, sizeof(*driver->ports),
3265 GFP_KERNEL);
3266 if (!driver->ports) {
3267 err = -ENOMEM;
3268 goto err_free_all;
3270 cdevs = lines;
3273 driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3274 if (!driver->cdevs) {
3275 err = -ENOMEM;
3276 goto err_free_all;
3279 return driver;
3280 err_free_all:
3281 kfree(driver->ports);
3282 kfree(driver->ttys);
3283 kfree(driver->termios);
3284 kfree(driver);
3285 return ERR_PTR(err);
3287 EXPORT_SYMBOL(__tty_alloc_driver);
3289 static void destruct_tty_driver(struct kref *kref)
3291 struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3292 int i;
3293 struct ktermios *tp;
3295 if (driver->flags & TTY_DRIVER_INSTALLED) {
3297 * Free the termios and termios_locked structures because
3298 * we don't want to get memory leaks when modular tty
3299 * drivers are removed from the kernel.
3301 for (i = 0; i < driver->num; i++) {
3302 tp = driver->termios[i];
3303 if (tp) {
3304 driver->termios[i] = NULL;
3305 kfree(tp);
3307 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3308 tty_unregister_device(driver, i);
3310 proc_tty_unregister_driver(driver);
3311 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3312 cdev_del(&driver->cdevs[0]);
3314 kfree(driver->cdevs);
3315 kfree(driver->ports);
3316 kfree(driver->termios);
3317 kfree(driver->ttys);
3318 kfree(driver);
3321 void tty_driver_kref_put(struct tty_driver *driver)
3323 kref_put(&driver->kref, destruct_tty_driver);
3325 EXPORT_SYMBOL(tty_driver_kref_put);
3327 void tty_set_operations(struct tty_driver *driver,
3328 const struct tty_operations *op)
3330 driver->ops = op;
3332 EXPORT_SYMBOL(tty_set_operations);
3334 void put_tty_driver(struct tty_driver *d)
3336 tty_driver_kref_put(d);
3338 EXPORT_SYMBOL(put_tty_driver);
3341 * Called by a tty driver to register itself.
3343 int tty_register_driver(struct tty_driver *driver)
3345 int error;
3346 int i;
3347 dev_t dev;
3348 struct device *d;
3350 if (!driver->major) {
3351 error = alloc_chrdev_region(&dev, driver->minor_start,
3352 driver->num, driver->name);
3353 if (!error) {
3354 driver->major = MAJOR(dev);
3355 driver->minor_start = MINOR(dev);
3357 } else {
3358 dev = MKDEV(driver->major, driver->minor_start);
3359 error = register_chrdev_region(dev, driver->num, driver->name);
3361 if (error < 0)
3362 goto err;
3364 if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3365 error = tty_cdev_add(driver, dev, 0, driver->num);
3366 if (error)
3367 goto err_unreg_char;
3370 mutex_lock(&tty_mutex);
3371 list_add(&driver->tty_drivers, &tty_drivers);
3372 mutex_unlock(&tty_mutex);
3374 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3375 for (i = 0; i < driver->num; i++) {
3376 d = tty_register_device(driver, i, NULL);
3377 if (IS_ERR(d)) {
3378 error = PTR_ERR(d);
3379 goto err_unreg_devs;
3383 proc_tty_register_driver(driver);
3384 driver->flags |= TTY_DRIVER_INSTALLED;
3385 return 0;
3387 err_unreg_devs:
3388 for (i--; i >= 0; i--)
3389 tty_unregister_device(driver, i);
3391 mutex_lock(&tty_mutex);
3392 list_del(&driver->tty_drivers);
3393 mutex_unlock(&tty_mutex);
3395 err_unreg_char:
3396 unregister_chrdev_region(dev, driver->num);
3397 err:
3398 return error;
3400 EXPORT_SYMBOL(tty_register_driver);
3403 * Called by a tty driver to unregister itself.
3405 int tty_unregister_driver(struct tty_driver *driver)
3407 #if 0
3408 /* FIXME */
3409 if (driver->refcount)
3410 return -EBUSY;
3411 #endif
3412 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3413 driver->num);
3414 mutex_lock(&tty_mutex);
3415 list_del(&driver->tty_drivers);
3416 mutex_unlock(&tty_mutex);
3417 return 0;
3420 EXPORT_SYMBOL(tty_unregister_driver);
3422 dev_t tty_devnum(struct tty_struct *tty)
3424 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3426 EXPORT_SYMBOL(tty_devnum);
3428 void proc_clear_tty(struct task_struct *p)
3430 unsigned long flags;
3431 struct tty_struct *tty;
3432 spin_lock_irqsave(&p->sighand->siglock, flags);
3433 tty = p->signal->tty;
3434 p->signal->tty = NULL;
3435 spin_unlock_irqrestore(&p->sighand->siglock, flags);
3436 tty_kref_put(tty);
3439 /* Called under the sighand lock */
3441 static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3443 if (tty) {
3444 unsigned long flags;
3445 /* We should not have a session or pgrp to put here but.... */
3446 spin_lock_irqsave(&tty->ctrl_lock, flags);
3447 put_pid(tty->session);
3448 put_pid(tty->pgrp);
3449 tty->pgrp = get_pid(task_pgrp(tsk));
3450 spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3451 tty->session = get_pid(task_session(tsk));
3452 if (tsk->signal->tty) {
3453 printk(KERN_DEBUG "tty not NULL!!\n");
3454 tty_kref_put(tsk->signal->tty);
3457 put_pid(tsk->signal->tty_old_pgrp);
3458 tsk->signal->tty = tty_kref_get(tty);
3459 tsk->signal->tty_old_pgrp = NULL;
3462 static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3464 spin_lock_irq(&tsk->sighand->siglock);
3465 __proc_set_tty(tsk, tty);
3466 spin_unlock_irq(&tsk->sighand->siglock);
3469 struct tty_struct *get_current_tty(void)
3471 struct tty_struct *tty;
3472 unsigned long flags;
3474 spin_lock_irqsave(&current->sighand->siglock, flags);
3475 tty = tty_kref_get(current->signal->tty);
3476 spin_unlock_irqrestore(&current->sighand->siglock, flags);
3477 return tty;
3479 EXPORT_SYMBOL_GPL(get_current_tty);
3481 void tty_default_fops(struct file_operations *fops)
3483 *fops = tty_fops;
3487 * Initialize the console device. This is called *early*, so
3488 * we can't necessarily depend on lots of kernel help here.
3489 * Just do some early initializations, and do the complex setup
3490 * later.
3492 void __init console_init(void)
3494 initcall_t *call;
3496 /* Setup the default TTY line discipline. */
3497 tty_ldisc_begin();
3500 * set up the console device so that later boot sequences can
3501 * inform about problems etc..
3503 call = __con_initcall_start;
3504 while (call < __con_initcall_end) {
3505 (*call)();
3506 call++;
3510 static char *tty_devnode(struct device *dev, umode_t *mode)
3512 if (!mode)
3513 return NULL;
3514 if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3515 dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3516 *mode = 0666;
3517 return NULL;
3520 static int __init tty_class_init(void)
3522 tty_class = class_create(THIS_MODULE, "tty");
3523 if (IS_ERR(tty_class))
3524 return PTR_ERR(tty_class);
3525 tty_class->devnode = tty_devnode;
3526 return 0;
3529 postcore_initcall(tty_class_init);
3531 /* 3/2004 jmc: why do these devices exist? */
3532 static struct cdev tty_cdev, console_cdev;
3534 static ssize_t show_cons_active(struct device *dev,
3535 struct device_attribute *attr, char *buf)
3537 struct console *cs[16];
3538 int i = 0;
3539 struct console *c;
3540 ssize_t count = 0;
3542 console_lock();
3543 for_each_console(c) {
3544 if (!c->device)
3545 continue;
3546 if (!c->write)
3547 continue;
3548 if ((c->flags & CON_ENABLED) == 0)
3549 continue;
3550 cs[i++] = c;
3551 if (i >= ARRAY_SIZE(cs))
3552 break;
3554 while (i--) {
3555 int index = cs[i]->index;
3556 struct tty_driver *drv = cs[i]->device(cs[i], &index);
3558 /* don't resolve tty0 as some programs depend on it */
3559 if (drv && (cs[i]->index > 0 || drv->major != TTY_MAJOR))
3560 count += tty_line_name(drv, index, buf + count);
3561 else
3562 count += sprintf(buf + count, "%s%d",
3563 cs[i]->name, cs[i]->index);
3565 count += sprintf(buf + count, "%c", i ? ' ':'\n');
3567 console_unlock();
3569 return count;
3571 static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3573 static struct device *consdev;
3575 void console_sysfs_notify(void)
3577 if (consdev)
3578 sysfs_notify(&consdev->kobj, NULL, "active");
3582 * Ok, now we can initialize the rest of the tty devices and can count
3583 * on memory allocations, interrupts etc..
3585 int __init tty_init(void)
3587 cdev_init(&tty_cdev, &tty_fops);
3588 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3589 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3590 panic("Couldn't register /dev/tty driver\n");
3591 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3593 cdev_init(&console_cdev, &console_fops);
3594 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3595 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3596 panic("Couldn't register /dev/console driver\n");
3597 consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3598 "console");
3599 if (IS_ERR(consdev))
3600 consdev = NULL;
3601 else
3602 WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3604 #ifdef CONFIG_VT
3605 vty_init(&console_fops);
3606 #endif
3607 return 0;