1 /*****************************************************************************
5 * $Date: 2005/06/21 18:29:48 $ *
8 * part of the Chelsio 10Gb Ethernet Driver. *
10 * This program is free software; you can redistribute it and/or modify *
11 * it under the terms of the GNU General Public License, version 2, as *
12 * published by the Free Software Foundation. *
14 * You should have received a copy of the GNU General Public License along *
15 * with this program; if not, write to the Free Software Foundation, Inc., *
16 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
18 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND WITHOUT ANY EXPRESS OR IMPLIED *
19 * WARRANTIES, INCLUDING, WITHOUT LIMITATION, THE IMPLIED WARRANTIES OF *
20 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. *
22 * http://www.chelsio.com *
24 * Copyright (c) 2003 - 2005 Chelsio Communications, Inc. *
25 * All rights reserved. *
27 * Maintainers: maintainers@chelsio.com *
29 * Authors: Dimitrios Michailidis <dm@chelsio.com> *
30 * Tina Yang <tainay@chelsio.com> *
31 * Felix Marti <felix@chelsio.com> *
32 * Scott Bardone <sbardone@chelsio.com> *
33 * Kurt Ottaway <kottaway@chelsio.com> *
34 * Frank DiMambro <frank@chelsio.com> *
38 ****************************************************************************/
42 #include <linux/config.h>
43 #include <linux/types.h>
44 #include <linux/errno.h>
45 #include <linux/pci.h>
46 #include <linux/netdevice.h>
47 #include <linux/etherdevice.h>
48 #include <linux/if_vlan.h>
49 #include <linux/skbuff.h>
50 #include <linux/init.h>
54 #include <linux/if_arp.h>
63 #include <linux/tcp.h>
67 #define SGE_FREELQ_N 2
68 #define SGE_CMDQ0_E_N 1024
69 #define SGE_CMDQ1_E_N 128
70 #define SGE_FREEL_SIZE 4096
71 #define SGE_JUMBO_FREEL_SIZE 512
72 #define SGE_FREEL_REFILL_THRESH 16
73 #define SGE_RESPQ_E_N 1024
74 #define SGE_INTRTIMER_NRES 1000
75 #define SGE_RX_COPY_THRES 256
76 #define SGE_RX_SM_BUF_SIZE 1536
78 # define SGE_RX_DROP_THRES 2
80 #define SGE_RESPQ_REPLENISH_THRES (SGE_RESPQ_E_N / 4)
83 * Period of the TX buffer reclaim timer. This timer does not need to run
84 * frequently as TX buffers are usually reclaimed by new TX packets.
86 #define TX_RECLAIM_PERIOD (HZ / 4)
89 # define NET_IP_ALIGN 2
92 #define M_CMD_LEN 0x7fffffff
93 #define V_CMD_LEN(v) (v)
94 #define G_CMD_LEN(v) ((v) & M_CMD_LEN)
95 #define V_CMD_GEN1(v) ((v) << 31)
96 #define V_CMD_GEN2(v) (v)
97 #define F_CMD_DATAVALID (1 << 1)
98 #define F_CMD_SOP (1 << 2)
99 #define V_CMD_EOP(v) ((v) << 3)
102 * Command queue, receive buffer list, and response queue descriptors.
104 #if defined(__BIG_ENDIAN_BITFIELD)
121 u32 Cmdq1CreditReturn
: 5;
122 u32 Cmdq1DmaComplete
: 5;
123 u32 Cmdq0CreditReturn
: 5;
124 u32 Cmdq0DmaComplete
: 5;
131 u32 GenerationBit
: 1;
134 #elif defined(__LITTLE_ENDIAN_BITFIELD)
151 u32 GenerationBit
: 1;
158 u32 Cmdq0DmaComplete
: 5;
159 u32 Cmdq0CreditReturn
: 5;
160 u32 Cmdq1DmaComplete
: 5;
161 u32 Cmdq1CreditReturn
: 5;
167 * SW Context Command and Freelist Queue Descriptors
171 DECLARE_PCI_UNMAP_ADDR(dma_addr
);
172 DECLARE_PCI_UNMAP_LEN(dma_len
);
177 DECLARE_PCI_UNMAP_ADDR(dma_addr
);
178 DECLARE_PCI_UNMAP_LEN(dma_len
);
182 * SW command, freelist and response rings
185 unsigned long status
; /* HW DMA fetch status */
186 unsigned int in_use
; /* # of in-use command descriptors */
187 unsigned int size
; /* # of descriptors */
188 unsigned int processed
; /* total # of descs HW has processed */
189 unsigned int cleaned
; /* total # of descs SW has reclaimed */
190 unsigned int stop_thres
; /* SW TX queue suspend threshold */
191 u16 pidx
; /* producer index (SW) */
192 u16 cidx
; /* consumer index (HW) */
193 u8 genbit
; /* current generation (=valid) bit */
194 u8 sop
; /* is next entry start of packet? */
195 struct cmdQ_e
*entries
; /* HW command descriptor Q */
196 struct cmdQ_ce
*centries
; /* SW command context descriptor Q */
197 spinlock_t lock
; /* Lock to protect cmdQ enqueuing */
198 dma_addr_t dma_addr
; /* DMA addr HW command descriptor Q */
202 unsigned int credits
; /* # of available RX buffers */
203 unsigned int size
; /* free list capacity */
204 u16 pidx
; /* producer index (SW) */
205 u16 cidx
; /* consumer index (HW) */
206 u16 rx_buffer_size
; /* Buffer size on this free list */
207 u16 dma_offset
; /* DMA offset to align IP headers */
208 u16 recycleq_idx
; /* skb recycle q to use */
209 u8 genbit
; /* current generation (=valid) bit */
210 struct freelQ_e
*entries
; /* HW freelist descriptor Q */
211 struct freelQ_ce
*centries
; /* SW freelist context descriptor Q */
212 dma_addr_t dma_addr
; /* DMA addr HW freelist descriptor Q */
216 unsigned int credits
; /* credits to be returned to SGE */
217 unsigned int size
; /* # of response Q descriptors */
218 u16 cidx
; /* consumer index (SW) */
219 u8 genbit
; /* current generation(=valid) bit */
220 struct respQ_e
*entries
; /* HW response descriptor Q */
221 dma_addr_t dma_addr
; /* DMA addr HW response descriptor Q */
224 /* Bit flags for cmdQ.status */
226 CMDQ_STAT_RUNNING
= 1, /* fetch engine is running */
227 CMDQ_STAT_LAST_PKT_DB
= 2 /* last packet rung the doorbell */
231 * Main SGE data structure
233 * Interrupts are handled by a single CPU and it is likely that on a MP system
234 * the application is migrated to another CPU. In that scenario, we try to
235 * seperate the RX(in irq context) and TX state in order to decrease memory
239 struct adapter
*adapter
; /* adapter backpointer */
240 struct net_device
*netdev
; /* netdevice backpointer */
241 struct freelQ freelQ
[SGE_FREELQ_N
]; /* buffer free lists */
242 struct respQ respQ
; /* response Q */
243 unsigned long stopped_tx_queues
; /* bitmap of suspended Tx queues */
244 unsigned int rx_pkt_pad
; /* RX padding for L2 packets */
245 unsigned int jumbo_fl
; /* jumbo freelist Q index */
246 unsigned int intrtimer_nres
; /* no-resource interrupt timer */
247 unsigned int fixed_intrtimer
;/* non-adaptive interrupt timer */
248 struct timer_list tx_reclaim_timer
; /* reclaims TX buffers */
249 struct timer_list espibug_timer
;
250 unsigned int espibug_timeout
;
251 struct sk_buff
*espibug_skb
;
252 u32 sge_control
; /* shadow value of sge control reg */
253 struct sge_intr_counts stats
;
254 struct sge_port_stats port_stats
[MAX_NPORTS
];
255 struct cmdQ cmdQ
[SGE_CMDQ_N
] ____cacheline_aligned_in_smp
;
259 * PIO to indicate that memory mapped Q contains valid descriptor(s).
261 static inline void doorbell_pio(struct adapter
*adapter
, u32 val
)
264 writel(val
, adapter
->regs
+ A_SG_DOORBELL
);
268 * Frees all RX buffers on the freelist Q. The caller must make sure that
269 * the SGE is turned off before calling this function.
271 static void free_freelQ_buffers(struct pci_dev
*pdev
, struct freelQ
*q
)
273 unsigned int cidx
= q
->cidx
;
275 while (q
->credits
--) {
276 struct freelQ_ce
*ce
= &q
->centries
[cidx
];
278 pci_unmap_single(pdev
, pci_unmap_addr(ce
, dma_addr
),
279 pci_unmap_len(ce
, dma_len
),
281 dev_kfree_skb(ce
->skb
);
283 if (++cidx
== q
->size
)
289 * Free RX free list and response queue resources.
291 static void free_rx_resources(struct sge
*sge
)
293 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
294 unsigned int size
, i
;
296 if (sge
->respQ
.entries
) {
297 size
= sizeof(struct respQ_e
) * sge
->respQ
.size
;
298 pci_free_consistent(pdev
, size
, sge
->respQ
.entries
,
299 sge
->respQ
.dma_addr
);
302 for (i
= 0; i
< SGE_FREELQ_N
; i
++) {
303 struct freelQ
*q
= &sge
->freelQ
[i
];
306 free_freelQ_buffers(pdev
, q
);
310 size
= sizeof(struct freelQ_e
) * q
->size
;
311 pci_free_consistent(pdev
, size
, q
->entries
,
318 * Allocates basic RX resources, consisting of memory mapped freelist Qs and a
321 static int alloc_rx_resources(struct sge
*sge
, struct sge_params
*p
)
323 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
324 unsigned int size
, i
;
326 for (i
= 0; i
< SGE_FREELQ_N
; i
++) {
327 struct freelQ
*q
= &sge
->freelQ
[i
];
330 q
->size
= p
->freelQ_size
[i
];
331 q
->dma_offset
= sge
->rx_pkt_pad
? 0 : NET_IP_ALIGN
;
332 size
= sizeof(struct freelQ_e
) * q
->size
;
333 q
->entries
= (struct freelQ_e
*)
334 pci_alloc_consistent(pdev
, size
, &q
->dma_addr
);
337 memset(q
->entries
, 0, size
);
338 size
= sizeof(struct freelQ_ce
) * q
->size
;
339 q
->centries
= kmalloc(size
, GFP_KERNEL
);
342 memset(q
->centries
, 0, size
);
346 * Calculate the buffer sizes for the two free lists. FL0 accommodates
347 * regular sized Ethernet frames, FL1 is sized not to exceed 16K,
348 * including all the sk_buff overhead.
350 * Note: For T2 FL0 and FL1 are reversed.
352 sge
->freelQ
[!sge
->jumbo_fl
].rx_buffer_size
= SGE_RX_SM_BUF_SIZE
+
353 sizeof(struct cpl_rx_data
) +
354 sge
->freelQ
[!sge
->jumbo_fl
].dma_offset
;
355 sge
->freelQ
[sge
->jumbo_fl
].rx_buffer_size
= (16 * 1024) -
356 SKB_DATA_ALIGN(sizeof(struct skb_shared_info
));
359 * Setup which skb recycle Q should be used when recycling buffers from
362 sge
->freelQ
[!sge
->jumbo_fl
].recycleq_idx
= 0;
363 sge
->freelQ
[sge
->jumbo_fl
].recycleq_idx
= 1;
365 sge
->respQ
.genbit
= 1;
366 sge
->respQ
.size
= SGE_RESPQ_E_N
;
367 sge
->respQ
.credits
= 0;
368 size
= sizeof(struct respQ_e
) * sge
->respQ
.size
;
369 sge
->respQ
.entries
= (struct respQ_e
*)
370 pci_alloc_consistent(pdev
, size
, &sge
->respQ
.dma_addr
);
371 if (!sge
->respQ
.entries
)
373 memset(sge
->respQ
.entries
, 0, size
);
377 free_rx_resources(sge
);
382 * Reclaims n TX descriptors and frees the buffers associated with them.
384 static void free_cmdQ_buffers(struct sge
*sge
, struct cmdQ
*q
, unsigned int n
)
387 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
388 unsigned int cidx
= q
->cidx
;
391 ce
= &q
->centries
[cidx
];
394 pci_unmap_single(pdev
, pci_unmap_addr(ce
, dma_addr
),
395 pci_unmap_len(ce
, dma_len
),
398 pci_unmap_page(pdev
, pci_unmap_addr(ce
, dma_addr
),
399 pci_unmap_len(ce
, dma_len
),
403 dev_kfree_skb(ce
->skb
);
407 if (++cidx
== q
->size
) {
418 * Assumes that SGE is stopped and all interrupts are disabled.
420 static void free_tx_resources(struct sge
*sge
)
422 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
423 unsigned int size
, i
;
425 for (i
= 0; i
< SGE_CMDQ_N
; i
++) {
426 struct cmdQ
*q
= &sge
->cmdQ
[i
];
430 free_cmdQ_buffers(sge
, q
, q
->in_use
);
434 size
= sizeof(struct cmdQ_e
) * q
->size
;
435 pci_free_consistent(pdev
, size
, q
->entries
,
442 * Allocates basic TX resources, consisting of memory mapped command Qs.
444 static int alloc_tx_resources(struct sge
*sge
, struct sge_params
*p
)
446 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
447 unsigned int size
, i
;
449 for (i
= 0; i
< SGE_CMDQ_N
; i
++) {
450 struct cmdQ
*q
= &sge
->cmdQ
[i
];
454 q
->size
= p
->cmdQ_size
[i
];
457 q
->processed
= q
->cleaned
= 0;
459 spin_lock_init(&q
->lock
);
460 size
= sizeof(struct cmdQ_e
) * q
->size
;
461 q
->entries
= (struct cmdQ_e
*)
462 pci_alloc_consistent(pdev
, size
, &q
->dma_addr
);
465 memset(q
->entries
, 0, size
);
466 size
= sizeof(struct cmdQ_ce
) * q
->size
;
467 q
->centries
= kmalloc(size
, GFP_KERNEL
);
470 memset(q
->centries
, 0, size
);
474 * CommandQ 0 handles Ethernet and TOE packets, while queue 1 is TOE
475 * only. For queue 0 set the stop threshold so we can handle one more
476 * packet from each port, plus reserve an additional 24 entries for
477 * Ethernet packets only. Queue 1 never suspends nor do we reserve
478 * space for Ethernet packets.
480 sge
->cmdQ
[0].stop_thres
= sge
->adapter
->params
.nports
*
485 free_tx_resources(sge
);
489 static inline void setup_ring_params(struct adapter
*adapter
, u64 addr
,
490 u32 size
, int base_reg_lo
,
491 int base_reg_hi
, int size_reg
)
493 writel((u32
)addr
, adapter
->regs
+ base_reg_lo
);
494 writel(addr
>> 32, adapter
->regs
+ base_reg_hi
);
495 writel(size
, adapter
->regs
+ size_reg
);
499 * Enable/disable VLAN acceleration.
501 void t1_set_vlan_accel(struct adapter
*adapter
, int on_off
)
503 struct sge
*sge
= adapter
->sge
;
505 sge
->sge_control
&= ~F_VLAN_XTRACT
;
507 sge
->sge_control
|= F_VLAN_XTRACT
;
508 if (adapter
->open_device_map
) {
509 writel(sge
->sge_control
, adapter
->regs
+ A_SG_CONTROL
);
510 readl(adapter
->regs
+ A_SG_CONTROL
); /* flush */
515 * Programs the various SGE registers. However, the engine is not yet enabled,
516 * but sge->sge_control is setup and ready to go.
518 static void configure_sge(struct sge
*sge
, struct sge_params
*p
)
520 struct adapter
*ap
= sge
->adapter
;
522 writel(0, ap
->regs
+ A_SG_CONTROL
);
523 setup_ring_params(ap
, sge
->cmdQ
[0].dma_addr
, sge
->cmdQ
[0].size
,
524 A_SG_CMD0BASELWR
, A_SG_CMD0BASEUPR
, A_SG_CMD0SIZE
);
525 setup_ring_params(ap
, sge
->cmdQ
[1].dma_addr
, sge
->cmdQ
[1].size
,
526 A_SG_CMD1BASELWR
, A_SG_CMD1BASEUPR
, A_SG_CMD1SIZE
);
527 setup_ring_params(ap
, sge
->freelQ
[0].dma_addr
,
528 sge
->freelQ
[0].size
, A_SG_FL0BASELWR
,
529 A_SG_FL0BASEUPR
, A_SG_FL0SIZE
);
530 setup_ring_params(ap
, sge
->freelQ
[1].dma_addr
,
531 sge
->freelQ
[1].size
, A_SG_FL1BASELWR
,
532 A_SG_FL1BASEUPR
, A_SG_FL1SIZE
);
534 /* The threshold comparison uses <. */
535 writel(SGE_RX_SM_BUF_SIZE
+ 1, ap
->regs
+ A_SG_FLTHRESHOLD
);
537 setup_ring_params(ap
, sge
->respQ
.dma_addr
, sge
->respQ
.size
,
538 A_SG_RSPBASELWR
, A_SG_RSPBASEUPR
, A_SG_RSPSIZE
);
539 writel((u32
)sge
->respQ
.size
- 1, ap
->regs
+ A_SG_RSPQUEUECREDIT
);
541 sge
->sge_control
= F_CMDQ0_ENABLE
| F_CMDQ1_ENABLE
| F_FL0_ENABLE
|
542 F_FL1_ENABLE
| F_CPL_ENABLE
| F_RESPONSE_QUEUE_ENABLE
|
543 V_CMDQ_PRIORITY(2) | F_DISABLE_CMDQ1_GTS
| F_ISCSI_COALESCE
|
544 F_DISABLE_FL0_GTS
| F_DISABLE_FL1_GTS
|
545 V_RX_PKT_OFFSET(sge
->rx_pkt_pad
);
547 #if defined(__BIG_ENDIAN_BITFIELD)
548 sge
->sge_control
|= F_ENABLE_BIG_ENDIAN
;
551 /* Initialize no-resource timer */
552 sge
->intrtimer_nres
= SGE_INTRTIMER_NRES
* core_ticks_per_usec(ap
);
554 t1_sge_set_coalesce_params(sge
, p
);
558 * Return the payload capacity of the jumbo free-list buffers.
560 static inline unsigned int jumbo_payload_capacity(const struct sge
*sge
)
562 return sge
->freelQ
[sge
->jumbo_fl
].rx_buffer_size
-
563 sge
->freelQ
[sge
->jumbo_fl
].dma_offset
-
564 sizeof(struct cpl_rx_data
);
568 * Frees all SGE related resources and the sge structure itself
570 void t1_sge_destroy(struct sge
*sge
)
572 if (sge
->espibug_skb
)
573 kfree_skb(sge
->espibug_skb
);
575 free_tx_resources(sge
);
576 free_rx_resources(sge
);
581 * Allocates new RX buffers on the freelist Q (and tracks them on the freelist
582 * context Q) until the Q is full or alloc_skb fails.
584 * It is possible that the generation bits already match, indicating that the
585 * buffer is already valid and nothing needs to be done. This happens when we
586 * copied a received buffer into a new sk_buff during the interrupt processing.
588 * If the SGE doesn't automatically align packets properly (!sge->rx_pkt_pad),
589 * we specify a RX_OFFSET in order to make sure that the IP header is 4B
592 static void refill_free_list(struct sge
*sge
, struct freelQ
*q
)
594 struct pci_dev
*pdev
= sge
->adapter
->pdev
;
595 struct freelQ_ce
*ce
= &q
->centries
[q
->pidx
];
596 struct freelQ_e
*e
= &q
->entries
[q
->pidx
];
597 unsigned int dma_len
= q
->rx_buffer_size
- q
->dma_offset
;
600 while (q
->credits
< q
->size
) {
604 skb
= alloc_skb(q
->rx_buffer_size
, GFP_ATOMIC
);
608 skb_reserve(skb
, q
->dma_offset
);
609 mapping
= pci_map_single(pdev
, skb
->data
, dma_len
,
612 pci_unmap_addr_set(ce
, dma_addr
, mapping
);
613 pci_unmap_len_set(ce
, dma_len
, dma_len
);
614 e
->addr_lo
= (u32
)mapping
;
615 e
->addr_hi
= (u64
)mapping
>> 32;
616 e
->len_gen
= V_CMD_LEN(dma_len
) | V_CMD_GEN1(q
->genbit
);
618 e
->gen2
= V_CMD_GEN2(q
->genbit
);
622 if (++q
->pidx
== q
->size
) {
634 * Calls refill_free_list for both free lists. If we cannot fill at least 1/4
635 * of both rings, we go into 'few interrupt mode' in order to give the system
636 * time to free up resources.
638 static void freelQs_empty(struct sge
*sge
)
640 struct adapter
*adapter
= sge
->adapter
;
641 u32 irq_reg
= readl(adapter
->regs
+ A_SG_INT_ENABLE
);
644 refill_free_list(sge
, &sge
->freelQ
[0]);
645 refill_free_list(sge
, &sge
->freelQ
[1]);
647 if (sge
->freelQ
[0].credits
> (sge
->freelQ
[0].size
>> 2) &&
648 sge
->freelQ
[1].credits
> (sge
->freelQ
[1].size
>> 2)) {
649 irq_reg
|= F_FL_EXHAUSTED
;
650 irqholdoff_reg
= sge
->fixed_intrtimer
;
652 /* Clear the F_FL_EXHAUSTED interrupts for now */
653 irq_reg
&= ~F_FL_EXHAUSTED
;
654 irqholdoff_reg
= sge
->intrtimer_nres
;
656 writel(irqholdoff_reg
, adapter
->regs
+ A_SG_INTRTIMER
);
657 writel(irq_reg
, adapter
->regs
+ A_SG_INT_ENABLE
);
659 /* We reenable the Qs to force a freelist GTS interrupt later */
660 doorbell_pio(adapter
, F_FL0_ENABLE
| F_FL1_ENABLE
);
663 #define SGE_PL_INTR_MASK (F_PL_INTR_SGE_ERR | F_PL_INTR_SGE_DATA)
664 #define SGE_INT_FATAL (F_RESPQ_OVERFLOW | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
665 #define SGE_INT_ENABLE (F_RESPQ_EXHAUSTED | F_RESPQ_OVERFLOW | \
666 F_FL_EXHAUSTED | F_PACKET_TOO_BIG | F_PACKET_MISMATCH)
669 * Disable SGE Interrupts
671 void t1_sge_intr_disable(struct sge
*sge
)
673 u32 val
= readl(sge
->adapter
->regs
+ A_PL_ENABLE
);
675 writel(val
& ~SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_ENABLE
);
676 writel(0, sge
->adapter
->regs
+ A_SG_INT_ENABLE
);
680 * Enable SGE interrupts.
682 void t1_sge_intr_enable(struct sge
*sge
)
684 u32 en
= SGE_INT_ENABLE
;
685 u32 val
= readl(sge
->adapter
->regs
+ A_PL_ENABLE
);
687 if (sge
->adapter
->flags
& TSO_CAPABLE
)
688 en
&= ~F_PACKET_TOO_BIG
;
689 writel(en
, sge
->adapter
->regs
+ A_SG_INT_ENABLE
);
690 writel(val
| SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_ENABLE
);
694 * Clear SGE interrupts.
696 void t1_sge_intr_clear(struct sge
*sge
)
698 writel(SGE_PL_INTR_MASK
, sge
->adapter
->regs
+ A_PL_CAUSE
);
699 writel(0xffffffff, sge
->adapter
->regs
+ A_SG_INT_CAUSE
);
703 * SGE 'Error' interrupt handler
705 int t1_sge_intr_error_handler(struct sge
*sge
)
707 struct adapter
*adapter
= sge
->adapter
;
708 u32 cause
= readl(adapter
->regs
+ A_SG_INT_CAUSE
);
710 if (adapter
->flags
& TSO_CAPABLE
)
711 cause
&= ~F_PACKET_TOO_BIG
;
712 if (cause
& F_RESPQ_EXHAUSTED
)
713 sge
->stats
.respQ_empty
++;
714 if (cause
& F_RESPQ_OVERFLOW
) {
715 sge
->stats
.respQ_overflow
++;
716 CH_ALERT("%s: SGE response queue overflow\n",
719 if (cause
& F_FL_EXHAUSTED
) {
720 sge
->stats
.freelistQ_empty
++;
723 if (cause
& F_PACKET_TOO_BIG
) {
724 sge
->stats
.pkt_too_big
++;
725 CH_ALERT("%s: SGE max packet size exceeded\n",
728 if (cause
& F_PACKET_MISMATCH
) {
729 sge
->stats
.pkt_mismatch
++;
730 CH_ALERT("%s: SGE packet mismatch\n", adapter
->name
);
732 if (cause
& SGE_INT_FATAL
)
733 t1_fatal_err(adapter
);
735 writel(cause
, adapter
->regs
+ A_SG_INT_CAUSE
);
739 const struct sge_intr_counts
*t1_sge_get_intr_counts(struct sge
*sge
)
744 const struct sge_port_stats
*t1_sge_get_port_stats(struct sge
*sge
, int port
)
746 return &sge
->port_stats
[port
];
750 * recycle_fl_buf - recycle a free list buffer
752 * @idx: index of buffer to recycle
754 * Recycles the specified buffer on the given free list by adding it at
755 * the next available slot on the list.
757 static void recycle_fl_buf(struct freelQ
*fl
, int idx
)
759 struct freelQ_e
*from
= &fl
->entries
[idx
];
760 struct freelQ_e
*to
= &fl
->entries
[fl
->pidx
];
762 fl
->centries
[fl
->pidx
] = fl
->centries
[idx
];
763 to
->addr_lo
= from
->addr_lo
;
764 to
->addr_hi
= from
->addr_hi
;
765 to
->len_gen
= G_CMD_LEN(from
->len_gen
) | V_CMD_GEN1(fl
->genbit
);
767 to
->gen2
= V_CMD_GEN2(fl
->genbit
);
770 if (++fl
->pidx
== fl
->size
) {
777 * get_packet - return the next ingress packet buffer
778 * @pdev: the PCI device that received the packet
779 * @fl: the SGE free list holding the packet
780 * @len: the actual packet length, excluding any SGE padding
781 * @dma_pad: padding at beginning of buffer left by SGE DMA
782 * @skb_pad: padding to be used if the packet is copied
783 * @copy_thres: length threshold under which a packet should be copied
784 * @drop_thres: # of remaining buffers before we start dropping packets
786 * Get the next packet from a free list and complete setup of the
787 * sk_buff. If the packet is small we make a copy and recycle the
788 * original buffer, otherwise we use the original buffer itself. If a
789 * positive drop threshold is supplied packets are dropped and their
790 * buffers recycled if (a) the number of remaining buffers is under the
791 * threshold and the packet is too big to copy, or (b) the packet should
792 * be copied but there is no memory for the copy.
794 static inline struct sk_buff
*get_packet(struct pci_dev
*pdev
,
795 struct freelQ
*fl
, unsigned int len
,
796 int dma_pad
, int skb_pad
,
797 unsigned int copy_thres
,
798 unsigned int drop_thres
)
801 struct freelQ_ce
*ce
= &fl
->centries
[fl
->cidx
];
803 if (len
< copy_thres
) {
804 skb
= alloc_skb(len
+ skb_pad
, GFP_ATOMIC
);
805 if (likely(skb
!= NULL
)) {
806 skb_reserve(skb
, skb_pad
);
808 pci_dma_sync_single_for_cpu(pdev
,
809 pci_unmap_addr(ce
, dma_addr
),
810 pci_unmap_len(ce
, dma_len
),
812 memcpy(skb
->data
, ce
->skb
->data
+ dma_pad
, len
);
813 pci_dma_sync_single_for_device(pdev
,
814 pci_unmap_addr(ce
, dma_addr
),
815 pci_unmap_len(ce
, dma_len
),
817 } else if (!drop_thres
)
820 recycle_fl_buf(fl
, fl
->cidx
);
824 if (fl
->credits
< drop_thres
) {
825 recycle_fl_buf(fl
, fl
->cidx
);
830 pci_unmap_single(pdev
, pci_unmap_addr(ce
, dma_addr
),
831 pci_unmap_len(ce
, dma_len
), PCI_DMA_FROMDEVICE
);
833 skb_reserve(skb
, dma_pad
);
839 * unexpected_offload - handle an unexpected offload packet
840 * @adapter: the adapter
841 * @fl: the free list that received the packet
843 * Called when we receive an unexpected offload packet (e.g., the TOE
844 * function is disabled or the card is a NIC). Prints a message and
845 * recycles the buffer.
847 static void unexpected_offload(struct adapter
*adapter
, struct freelQ
*fl
)
849 struct freelQ_ce
*ce
= &fl
->centries
[fl
->cidx
];
850 struct sk_buff
*skb
= ce
->skb
;
852 pci_dma_sync_single_for_cpu(adapter
->pdev
, pci_unmap_addr(ce
, dma_addr
),
853 pci_unmap_len(ce
, dma_len
), PCI_DMA_FROMDEVICE
);
854 CH_ERR("%s: unexpected offload packet, cmd %u\n",
855 adapter
->name
, *skb
->data
);
856 recycle_fl_buf(fl
, fl
->cidx
);
860 * Write the command descriptors to transmit the given skb starting at
861 * descriptor pidx with the given generation.
863 static inline void write_tx_descs(struct adapter
*adapter
, struct sk_buff
*skb
,
864 unsigned int pidx
, unsigned int gen
,
868 struct cmdQ_e
*e
, *e1
;
870 unsigned int i
, flags
, nfrags
= skb_shinfo(skb
)->nr_frags
;
872 mapping
= pci_map_single(adapter
->pdev
, skb
->data
,
873 skb
->len
- skb
->data_len
, PCI_DMA_TODEVICE
);
874 ce
= &q
->centries
[pidx
];
876 pci_unmap_addr_set(ce
, dma_addr
, mapping
);
877 pci_unmap_len_set(ce
, dma_len
, skb
->len
- skb
->data_len
);
879 flags
= F_CMD_DATAVALID
| F_CMD_SOP
| V_CMD_EOP(nfrags
== 0) |
881 e
= &q
->entries
[pidx
];
882 e
->addr_lo
= (u32
)mapping
;
883 e
->addr_hi
= (u64
)mapping
>> 32;
884 e
->len_gen
= V_CMD_LEN(skb
->len
- skb
->data_len
) | V_CMD_GEN1(gen
);
885 for (e1
= e
, i
= 0; nfrags
--; i
++) {
886 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
890 if (++pidx
== q
->size
) {
897 mapping
= pci_map_page(adapter
->pdev
, frag
->page
,
898 frag
->page_offset
, frag
->size
,
901 pci_unmap_addr_set(ce
, dma_addr
, mapping
);
902 pci_unmap_len_set(ce
, dma_len
, frag
->size
);
904 e1
->addr_lo
= (u32
)mapping
;
905 e1
->addr_hi
= (u64
)mapping
>> 32;
906 e1
->len_gen
= V_CMD_LEN(frag
->size
) | V_CMD_GEN1(gen
);
907 e1
->flags
= F_CMD_DATAVALID
| V_CMD_EOP(nfrags
== 0) |
917 * Clean up completed Tx buffers.
919 static inline void reclaim_completed_tx(struct sge
*sge
, struct cmdQ
*q
)
921 unsigned int reclaim
= q
->processed
- q
->cleaned
;
924 free_cmdQ_buffers(sge
, q
, reclaim
);
925 q
->cleaned
+= reclaim
;
929 #ifndef SET_ETHTOOL_OPS
930 # define __netif_rx_complete(dev) netif_rx_complete(dev)
934 * We cannot use the standard netif_rx_schedule_prep() because we have multiple
935 * ports plus the TOE all multiplexing onto a single response queue, therefore
936 * accepting new responses cannot depend on the state of any particular port.
937 * So define our own equivalent that omits the netif_running() test.
939 static inline int napi_schedule_prep(struct net_device
*dev
)
941 return !test_and_set_bit(__LINK_STATE_RX_SCHED
, &dev
->state
);
946 * sge_rx - process an ingress ethernet packet
947 * @sge: the sge structure
948 * @fl: the free list that contains the packet buffer
949 * @len: the packet length
951 * Process an ingress ethernet pakcet and deliver it to the stack.
953 static int sge_rx(struct sge
*sge
, struct freelQ
*fl
, unsigned int len
)
956 struct cpl_rx_pkt
*p
;
957 struct adapter
*adapter
= sge
->adapter
;
959 sge
->stats
.ethernet_pkts
++;
960 skb
= get_packet(adapter
->pdev
, fl
, len
- sge
->rx_pkt_pad
,
961 sge
->rx_pkt_pad
, 2, SGE_RX_COPY_THRES
,
964 sge
->port_stats
[0].rx_drops
++; /* charge only port 0 for now */
968 p
= (struct cpl_rx_pkt
*)skb
->data
;
969 skb_pull(skb
, sizeof(*p
));
970 skb
->dev
= adapter
->port
[p
->iff
].dev
;
971 skb
->dev
->last_rx
= jiffies
;
972 skb
->protocol
= eth_type_trans(skb
, skb
->dev
);
973 if ((adapter
->flags
& RX_CSUM_ENABLED
) && p
->csum
== 0xffff &&
974 skb
->protocol
== htons(ETH_P_IP
) &&
975 (skb
->data
[9] == IPPROTO_TCP
|| skb
->data
[9] == IPPROTO_UDP
)) {
976 sge
->port_stats
[p
->iff
].rx_cso_good
++;
977 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
979 skb
->ip_summed
= CHECKSUM_NONE
;
981 if (unlikely(adapter
->vlan_grp
&& p
->vlan_valid
)) {
982 sge
->port_stats
[p
->iff
].vlan_xtract
++;
983 if (adapter
->params
.sge
.polling
)
984 vlan_hwaccel_receive_skb(skb
, adapter
->vlan_grp
,
987 vlan_hwaccel_rx(skb
, adapter
->vlan_grp
,
989 } else if (adapter
->params
.sge
.polling
)
990 netif_receive_skb(skb
);
997 * Returns true if a command queue has enough available descriptors that
998 * we can resume Tx operation after temporarily disabling its packet queue.
1000 static inline int enough_free_Tx_descs(const struct cmdQ
*q
)
1002 unsigned int r
= q
->processed
- q
->cleaned
;
1004 return q
->in_use
- r
< (q
->size
>> 1);
1008 * Called when sufficient space has become available in the SGE command queues
1009 * after the Tx packet schedulers have been suspended to restart the Tx path.
1011 static void restart_tx_queues(struct sge
*sge
)
1013 struct adapter
*adap
= sge
->adapter
;
1015 if (enough_free_Tx_descs(&sge
->cmdQ
[0])) {
1018 for_each_port(adap
, i
) {
1019 struct net_device
*nd
= adap
->port
[i
].dev
;
1021 if (test_and_clear_bit(nd
->if_port
,
1022 &sge
->stopped_tx_queues
) &&
1023 netif_running(nd
)) {
1024 sge
->stats
.cmdQ_restarted
[3]++;
1025 netif_wake_queue(nd
);
1032 * update_tx_info is called from the interrupt handler/NAPI to return cmdQ0
1035 static unsigned int update_tx_info(struct adapter
*adapter
,
1039 struct sge
*sge
= adapter
->sge
;
1040 struct cmdQ
*cmdq
= &sge
->cmdQ
[0];
1042 cmdq
->processed
+= pr0
;
1044 if (flags
& F_CMDQ0_ENABLE
) {
1045 clear_bit(CMDQ_STAT_RUNNING
, &cmdq
->status
);
1047 if (cmdq
->cleaned
+ cmdq
->in_use
!= cmdq
->processed
&&
1048 !test_and_set_bit(CMDQ_STAT_LAST_PKT_DB
, &cmdq
->status
)) {
1049 set_bit(CMDQ_STAT_RUNNING
, &cmdq
->status
);
1050 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1052 flags
&= ~F_CMDQ0_ENABLE
;
1055 if (unlikely(sge
->stopped_tx_queues
!= 0))
1056 restart_tx_queues(sge
);
1062 * Process SGE responses, up to the supplied budget. Returns the number of
1063 * responses processed. A negative budget is effectively unlimited.
1065 static int process_responses(struct adapter
*adapter
, int budget
)
1067 struct sge
*sge
= adapter
->sge
;
1068 struct respQ
*q
= &sge
->respQ
;
1069 struct respQ_e
*e
= &q
->entries
[q
->cidx
];
1070 int budget_left
= budget
;
1071 unsigned int flags
= 0;
1072 unsigned int cmdq_processed
[SGE_CMDQ_N
] = {0, 0};
1075 while (likely(budget_left
&& e
->GenerationBit
== q
->genbit
)) {
1076 flags
|= e
->Qsleeping
;
1078 cmdq_processed
[0] += e
->Cmdq0CreditReturn
;
1079 cmdq_processed
[1] += e
->Cmdq1CreditReturn
;
1081 /* We batch updates to the TX side to avoid cacheline
1082 * ping-pong of TX state information on MP where the sender
1083 * might run on a different CPU than this function...
1085 if (unlikely(flags
& F_CMDQ0_ENABLE
|| cmdq_processed
[0] > 64)) {
1086 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1087 cmdq_processed
[0] = 0;
1089 if (unlikely(cmdq_processed
[1] > 16)) {
1090 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1091 cmdq_processed
[1] = 0;
1093 if (likely(e
->DataValid
)) {
1094 struct freelQ
*fl
= &sge
->freelQ
[e
->FreelistQid
];
1096 if (unlikely(!e
->Sop
|| !e
->Eop
))
1098 if (unlikely(e
->Offload
))
1099 unexpected_offload(adapter
, fl
);
1101 sge_rx(sge
, fl
, e
->BufferLength
);
1104 * Note: this depends on each packet consuming a
1105 * single free-list buffer; cf. the BUG above.
1107 if (++fl
->cidx
== fl
->size
)
1109 if (unlikely(--fl
->credits
<
1110 fl
->size
- SGE_FREEL_REFILL_THRESH
))
1111 refill_free_list(sge
, fl
);
1113 sge
->stats
.pure_rsps
++;
1116 if (unlikely(++q
->cidx
== q
->size
)) {
1123 if (++q
->credits
> SGE_RESPQ_REPLENISH_THRES
) {
1124 writel(q
->credits
, adapter
->regs
+ A_SG_RSPQUEUECREDIT
);
1130 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1131 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1133 budget
-= budget_left
;
1138 * A simpler version of process_responses() that handles only pure (i.e.,
1139 * non data-carrying) responses. Such respones are too light-weight to justify
1140 * calling a softirq when using NAPI, so we handle them specially in hard
1141 * interrupt context. The function is called with a pointer to a response,
1142 * which the caller must ensure is a valid pure response. Returns 1 if it
1143 * encounters a valid data-carrying response, 0 otherwise.
1145 static int process_pure_responses(struct adapter
*adapter
, struct respQ_e
*e
)
1147 struct sge
*sge
= adapter
->sge
;
1148 struct respQ
*q
= &sge
->respQ
;
1149 unsigned int flags
= 0;
1150 unsigned int cmdq_processed
[SGE_CMDQ_N
] = {0, 0};
1153 flags
|= e
->Qsleeping
;
1155 cmdq_processed
[0] += e
->Cmdq0CreditReturn
;
1156 cmdq_processed
[1] += e
->Cmdq1CreditReturn
;
1159 if (unlikely(++q
->cidx
== q
->size
)) {
1166 if (++q
->credits
> SGE_RESPQ_REPLENISH_THRES
) {
1167 writel(q
->credits
, adapter
->regs
+ A_SG_RSPQUEUECREDIT
);
1170 sge
->stats
.pure_rsps
++;
1171 } while (e
->GenerationBit
== q
->genbit
&& !e
->DataValid
);
1173 flags
= update_tx_info(adapter
, flags
, cmdq_processed
[0]);
1174 sge
->cmdQ
[1].processed
+= cmdq_processed
[1];
1176 return e
->GenerationBit
== q
->genbit
;
1180 * Handler for new data events when using NAPI. This does not need any locking
1181 * or protection from interrupts as data interrupts are off at this point and
1182 * other adapter interrupts do not interfere.
1184 static int t1_poll(struct net_device
*dev
, int *budget
)
1186 struct adapter
*adapter
= dev
->priv
;
1187 int effective_budget
= min(*budget
, dev
->quota
);
1189 int work_done
= process_responses(adapter
, effective_budget
);
1190 *budget
-= work_done
;
1191 dev
->quota
-= work_done
;
1193 if (work_done
>= effective_budget
)
1196 __netif_rx_complete(dev
);
1199 * Because we don't atomically flush the following write it is
1200 * possible that in very rare cases it can reach the device in a way
1201 * that races with a new response being written plus an error interrupt
1202 * causing the NAPI interrupt handler below to return unhandled status
1203 * to the OS. To protect against this would require flushing the write
1204 * and doing both the write and the flush with interrupts off. Way too
1205 * expensive and unjustifiable given the rarity of the race.
1207 writel(adapter
->sge
->respQ
.cidx
, adapter
->regs
+ A_SG_SLEEPING
);
1212 * Returns true if the device is already scheduled for polling.
1214 static inline int napi_is_scheduled(struct net_device
*dev
)
1216 return test_bit(__LINK_STATE_RX_SCHED
, &dev
->state
);
1220 * NAPI version of the main interrupt handler.
1222 static irqreturn_t
t1_interrupt_napi(int irq
, void *data
, struct pt_regs
*regs
)
1225 struct adapter
*adapter
= data
;
1226 struct sge
*sge
= adapter
->sge
;
1227 struct respQ
*q
= &adapter
->sge
->respQ
;
1230 * Clear the SGE_DATA interrupt first thing. Normally the NAPI
1231 * handler has control of the response queue and the interrupt handler
1232 * can look at the queue reliably only once it knows NAPI is off.
1233 * We can't wait that long to clear the SGE_DATA interrupt because we
1234 * could race with t1_poll rearming the SGE interrupt, so we need to
1235 * clear the interrupt speculatively and really early on.
1237 writel(F_PL_INTR_SGE_DATA
, adapter
->regs
+ A_PL_CAUSE
);
1239 spin_lock(&adapter
->async_lock
);
1240 if (!napi_is_scheduled(sge
->netdev
)) {
1241 struct respQ_e
*e
= &q
->entries
[q
->cidx
];
1243 if (e
->GenerationBit
== q
->genbit
) {
1245 process_pure_responses(adapter
, e
)) {
1246 if (likely(napi_schedule_prep(sge
->netdev
)))
1247 __netif_rx_schedule(sge
->netdev
);
1250 "NAPI schedule failure!\n");
1252 writel(q
->cidx
, adapter
->regs
+ A_SG_SLEEPING
);
1256 writel(q
->cidx
, adapter
->regs
+ A_SG_SLEEPING
);
1258 if (readl(adapter
->regs
+ A_PL_CAUSE
) & F_PL_INTR_SGE_DATA
)
1259 printk(KERN_ERR
"data interrupt while NAPI running\n");
1261 handled
= t1_slow_intr_handler(adapter
);
1263 sge
->stats
.unhandled_irqs
++;
1265 spin_unlock(&adapter
->async_lock
);
1266 return IRQ_RETVAL(handled
!= 0);
1270 * Main interrupt handler, optimized assuming that we took a 'DATA'
1273 * 1. Clear the interrupt
1274 * 2. Loop while we find valid descriptors and process them; accumulate
1275 * information that can be processed after the loop
1276 * 3. Tell the SGE at which index we stopped processing descriptors
1277 * 4. Bookkeeping; free TX buffers, ring doorbell if there are any
1278 * outstanding TX buffers waiting, replenish RX buffers, potentially
1279 * reenable upper layers if they were turned off due to lack of TX
1280 * resources which are available again.
1281 * 5. If we took an interrupt, but no valid respQ descriptors was found we
1282 * let the slow_intr_handler run and do error handling.
1284 static irqreturn_t
t1_interrupt(int irq
, void *cookie
, struct pt_regs
*regs
)
1288 struct adapter
*adapter
= cookie
;
1289 struct respQ
*Q
= &adapter
->sge
->respQ
;
1291 spin_lock(&adapter
->async_lock
);
1292 e
= &Q
->entries
[Q
->cidx
];
1295 writel(F_PL_INTR_SGE_DATA
, adapter
->regs
+ A_PL_CAUSE
);
1297 if (likely(e
->GenerationBit
== Q
->genbit
))
1298 work_done
= process_responses(adapter
, -1);
1300 work_done
= t1_slow_intr_handler(adapter
);
1303 * The unconditional clearing of the PL_CAUSE above may have raced
1304 * with DMA completion and the corresponding generation of a response
1305 * to cause us to miss the resulting data interrupt. The next write
1306 * is also unconditional to recover the missed interrupt and render
1307 * this race harmless.
1309 writel(Q
->cidx
, adapter
->regs
+ A_SG_SLEEPING
);
1312 adapter
->sge
->stats
.unhandled_irqs
++;
1313 spin_unlock(&adapter
->async_lock
);
1314 return IRQ_RETVAL(work_done
!= 0);
1317 intr_handler_t
t1_select_intr_handler(adapter_t
*adapter
)
1319 return adapter
->params
.sge
.polling
? t1_interrupt_napi
: t1_interrupt
;
1323 * Enqueues the sk_buff onto the cmdQ[qid] and has hardware fetch it.
1325 * The code figures out how many entries the sk_buff will require in the
1326 * cmdQ and updates the cmdQ data structure with the state once the enqueue
1327 * has complete. Then, it doesn't access the global structure anymore, but
1328 * uses the corresponding fields on the stack. In conjuction with a spinlock
1329 * around that code, we can make the function reentrant without holding the
1330 * lock when we actually enqueue (which might be expensive, especially on
1331 * architectures with IO MMUs).
1333 * This runs with softirqs disabled.
1335 unsigned int t1_sge_tx(struct sk_buff
*skb
, struct adapter
*adapter
,
1336 unsigned int qid
, struct net_device
*dev
)
1338 struct sge
*sge
= adapter
->sge
;
1339 struct cmdQ
*q
= &sge
->cmdQ
[qid
];
1340 unsigned int credits
, pidx
, genbit
, count
;
1342 spin_lock(&q
->lock
);
1343 reclaim_completed_tx(sge
, q
);
1346 credits
= q
->size
- q
->in_use
;
1347 count
= 1 + skb_shinfo(skb
)->nr_frags
;
1349 { /* Ethernet packet */
1350 if (unlikely(credits
< count
)) {
1351 netif_stop_queue(dev
);
1352 set_bit(dev
->if_port
, &sge
->stopped_tx_queues
);
1353 sge
->stats
.cmdQ_full
[3]++;
1354 spin_unlock(&q
->lock
);
1355 CH_ERR("%s: Tx ring full while queue awake!\n",
1359 if (unlikely(credits
- count
< q
->stop_thres
)) {
1360 sge
->stats
.cmdQ_full
[3]++;
1361 netif_stop_queue(dev
);
1362 set_bit(dev
->if_port
, &sge
->stopped_tx_queues
);
1368 if (q
->pidx
>= q
->size
) {
1372 spin_unlock(&q
->lock
);
1374 write_tx_descs(adapter
, skb
, pidx
, genbit
, q
);
1377 * We always ring the doorbell for cmdQ1. For cmdQ0, we only ring
1378 * the doorbell if the Q is asleep. There is a natural race, where
1379 * the hardware is going to sleep just after we checked, however,
1380 * then the interrupt handler will detect the outstanding TX packet
1381 * and ring the doorbell for us.
1384 doorbell_pio(adapter
, F_CMDQ1_ENABLE
);
1386 clear_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1387 if (test_and_set_bit(CMDQ_STAT_RUNNING
, &q
->status
) == 0) {
1388 set_bit(CMDQ_STAT_LAST_PKT_DB
, &q
->status
);
1389 writel(F_CMDQ0_ENABLE
, adapter
->regs
+ A_SG_DOORBELL
);
1395 #define MK_ETH_TYPE_MSS(type, mss) (((mss) & 0x3FFF) | ((type) << 14))
1398 * eth_hdr_len - return the length of an Ethernet header
1399 * @data: pointer to the start of the Ethernet header
1401 * Returns the length of an Ethernet header, including optional VLAN tag.
1403 static inline int eth_hdr_len(const void *data
)
1405 const struct ethhdr
*e
= data
;
1407 return e
->h_proto
== htons(ETH_P_8021Q
) ? VLAN_ETH_HLEN
: ETH_HLEN
;
1411 * Adds the CPL header to the sk_buff and passes it to t1_sge_tx.
1413 int t1_start_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
1415 struct adapter
*adapter
= dev
->priv
;
1416 struct sge_port_stats
*st
= &adapter
->sge
->port_stats
[dev
->if_port
];
1417 struct sge
*sge
= adapter
->sge
;
1418 struct cpl_tx_pkt
*cpl
;
1421 if (skb_shinfo(skb
)->tso_size
) {
1423 struct cpl_tx_pkt_lso
*hdr
;
1427 eth_type
= skb
->nh
.raw
- skb
->data
== ETH_HLEN
?
1428 CPL_ETH_II
: CPL_ETH_II_VLAN
;
1430 hdr
= (struct cpl_tx_pkt_lso
*)skb_push(skb
, sizeof(*hdr
));
1431 hdr
->opcode
= CPL_TX_PKT_LSO
;
1432 hdr
->ip_csum_dis
= hdr
->l4_csum_dis
= 0;
1433 hdr
->ip_hdr_words
= skb
->nh
.iph
->ihl
;
1434 hdr
->tcp_hdr_words
= skb
->h
.th
->doff
;
1435 hdr
->eth_type_mss
= htons(MK_ETH_TYPE_MSS(eth_type
,
1436 skb_shinfo(skb
)->tso_size
));
1437 hdr
->len
= htonl(skb
->len
- sizeof(*hdr
));
1438 cpl
= (struct cpl_tx_pkt
*)hdr
;
1439 sge
->stats
.tx_lso_pkts
++;
1444 * Packets shorter than ETH_HLEN can break the MAC, drop them
1445 * early. Also, we may get oversized packets because some
1446 * parts of the kernel don't handle our unusual hard_header_len
1447 * right, drop those too.
1449 if (unlikely(skb
->len
< ETH_HLEN
||
1450 skb
->len
> dev
->mtu
+ eth_hdr_len(skb
->data
))) {
1451 dev_kfree_skb_any(skb
);
1452 return NET_XMIT_SUCCESS
;
1456 * We are using a non-standard hard_header_len and some kernel
1457 * components, such as pktgen, do not handle it right.
1458 * Complain when this happens but try to fix things up.
1460 if (unlikely(skb_headroom(skb
) <
1461 dev
->hard_header_len
- ETH_HLEN
)) {
1462 struct sk_buff
*orig_skb
= skb
;
1464 if (net_ratelimit())
1465 printk(KERN_ERR
"%s: inadequate headroom in "
1466 "Tx packet\n", dev
->name
);
1467 skb
= skb_realloc_headroom(skb
, sizeof(*cpl
));
1468 dev_kfree_skb_any(orig_skb
);
1473 if (!(adapter
->flags
& UDP_CSUM_CAPABLE
) &&
1474 skb
->ip_summed
== CHECKSUM_HW
&&
1475 skb
->nh
.iph
->protocol
== IPPROTO_UDP
)
1476 if (unlikely(skb_checksum_help(skb
, 0))) {
1477 dev_kfree_skb_any(skb
);
1481 /* Hmmm, assuming to catch the gratious arp... and we'll use
1482 * it to flush out stuck espi packets...
1484 if (unlikely(!adapter
->sge
->espibug_skb
)) {
1485 if (skb
->protocol
== htons(ETH_P_ARP
) &&
1486 skb
->nh
.arph
->ar_op
== htons(ARPOP_REQUEST
)) {
1487 adapter
->sge
->espibug_skb
= skb
;
1488 /* We want to re-use this skb later. We
1489 * simply bump the reference count and it
1490 * will not be freed...
1496 cpl
= (struct cpl_tx_pkt
*)__skb_push(skb
, sizeof(*cpl
));
1497 cpl
->opcode
= CPL_TX_PKT
;
1498 cpl
->ip_csum_dis
= 1; /* SW calculates IP csum */
1499 cpl
->l4_csum_dis
= skb
->ip_summed
== CHECKSUM_HW
? 0 : 1;
1500 /* the length field isn't used so don't bother setting it */
1502 st
->tx_cso
+= (skb
->ip_summed
== CHECKSUM_HW
);
1503 sge
->stats
.tx_do_cksum
+= (skb
->ip_summed
== CHECKSUM_HW
);
1504 sge
->stats
.tx_reg_pkts
++;
1506 cpl
->iff
= dev
->if_port
;
1508 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
1509 if (adapter
->vlan_grp
&& vlan_tx_tag_present(skb
)) {
1510 cpl
->vlan_valid
= 1;
1511 cpl
->vlan
= htons(vlan_tx_tag_get(skb
));
1515 cpl
->vlan_valid
= 0;
1517 dev
->trans_start
= jiffies
;
1518 return t1_sge_tx(skb
, adapter
, 0, dev
);
1522 * Callback for the Tx buffer reclaim timer. Runs with softirqs disabled.
1524 static void sge_tx_reclaim_cb(unsigned long data
)
1527 struct sge
*sge
= (struct sge
*)data
;
1529 for (i
= 0; i
< SGE_CMDQ_N
; ++i
) {
1530 struct cmdQ
*q
= &sge
->cmdQ
[i
];
1532 if (!spin_trylock(&q
->lock
))
1535 reclaim_completed_tx(sge
, q
);
1536 if (i
== 0 && q
->in_use
) /* flush pending credits */
1537 writel(F_CMDQ0_ENABLE
,
1538 sge
->adapter
->regs
+ A_SG_DOORBELL
);
1540 spin_unlock(&q
->lock
);
1542 mod_timer(&sge
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
1546 * Propagate changes of the SGE coalescing parameters to the HW.
1548 int t1_sge_set_coalesce_params(struct sge
*sge
, struct sge_params
*p
)
1550 sge
->netdev
->poll
= t1_poll
;
1551 sge
->fixed_intrtimer
= p
->rx_coalesce_usecs
*
1552 core_ticks_per_usec(sge
->adapter
);
1553 writel(sge
->fixed_intrtimer
, sge
->adapter
->regs
+ A_SG_INTRTIMER
);
1558 * Allocates both RX and TX resources and configures the SGE. However,
1559 * the hardware is not enabled yet.
1561 int t1_sge_configure(struct sge
*sge
, struct sge_params
*p
)
1563 if (alloc_rx_resources(sge
, p
))
1565 if (alloc_tx_resources(sge
, p
)) {
1566 free_rx_resources(sge
);
1569 configure_sge(sge
, p
);
1572 * Now that we have sized the free lists calculate the payload
1573 * capacity of the large buffers. Other parts of the driver use
1574 * this to set the max offload coalescing size so that RX packets
1575 * do not overflow our large buffers.
1577 p
->large_buf_capacity
= jumbo_payload_capacity(sge
);
1582 * Disables the DMA engine.
1584 void t1_sge_stop(struct sge
*sge
)
1586 writel(0, sge
->adapter
->regs
+ A_SG_CONTROL
);
1587 (void) readl(sge
->adapter
->regs
+ A_SG_CONTROL
); /* flush */
1588 if (is_T2(sge
->adapter
))
1589 del_timer_sync(&sge
->espibug_timer
);
1590 del_timer_sync(&sge
->tx_reclaim_timer
);
1594 * Enables the DMA engine.
1596 void t1_sge_start(struct sge
*sge
)
1598 refill_free_list(sge
, &sge
->freelQ
[0]);
1599 refill_free_list(sge
, &sge
->freelQ
[1]);
1601 writel(sge
->sge_control
, sge
->adapter
->regs
+ A_SG_CONTROL
);
1602 doorbell_pio(sge
->adapter
, F_FL0_ENABLE
| F_FL1_ENABLE
);
1603 (void) readl(sge
->adapter
->regs
+ A_SG_CONTROL
); /* flush */
1605 mod_timer(&sge
->tx_reclaim_timer
, jiffies
+ TX_RECLAIM_PERIOD
);
1607 if (is_T2(sge
->adapter
))
1608 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
1612 * Callback for the T2 ESPI 'stuck packet feature' workaorund
1614 static void espibug_workaround(void *data
)
1616 struct adapter
*adapter
= (struct adapter
*)data
;
1617 struct sge
*sge
= adapter
->sge
;
1619 if (netif_running(adapter
->port
[0].dev
)) {
1620 struct sk_buff
*skb
= sge
->espibug_skb
;
1622 u32 seop
= t1_espi_get_mon(adapter
, 0x930, 0);
1624 if ((seop
& 0xfff0fff) == 0xfff && skb
) {
1626 u8 ch_mac_addr
[ETH_ALEN
] =
1627 {0x0, 0x7, 0x43, 0x0, 0x0, 0x0};
1628 memcpy(skb
->data
+ sizeof(struct cpl_tx_pkt
),
1629 ch_mac_addr
, ETH_ALEN
);
1630 memcpy(skb
->data
+ skb
->len
- 10, ch_mac_addr
,
1635 /* bump the reference count to avoid freeing of the
1636 * skb once the DMA has completed.
1639 t1_sge_tx(skb
, adapter
, 0, adapter
->port
[0].dev
);
1642 mod_timer(&sge
->espibug_timer
, jiffies
+ sge
->espibug_timeout
);
1646 * Creates a t1_sge structure and returns suggested resource parameters.
1648 struct sge
* __devinit
t1_sge_create(struct adapter
*adapter
,
1649 struct sge_params
*p
)
1651 struct sge
*sge
= kmalloc(sizeof(*sge
), GFP_KERNEL
);
1655 memset(sge
, 0, sizeof(*sge
));
1657 sge
->adapter
= adapter
;
1658 sge
->netdev
= adapter
->port
[0].dev
;
1659 sge
->rx_pkt_pad
= t1_is_T1B(adapter
) ? 0 : 2;
1660 sge
->jumbo_fl
= t1_is_T1B(adapter
) ? 1 : 0;
1662 init_timer(&sge
->tx_reclaim_timer
);
1663 sge
->tx_reclaim_timer
.data
= (unsigned long)sge
;
1664 sge
->tx_reclaim_timer
.function
= sge_tx_reclaim_cb
;
1666 if (is_T2(sge
->adapter
)) {
1667 init_timer(&sge
->espibug_timer
);
1668 sge
->espibug_timer
.function
= (void *)&espibug_workaround
;
1669 sge
->espibug_timer
.data
= (unsigned long)sge
->adapter
;
1670 sge
->espibug_timeout
= 1;
1674 p
->cmdQ_size
[0] = SGE_CMDQ0_E_N
;
1675 p
->cmdQ_size
[1] = SGE_CMDQ1_E_N
;
1676 p
->freelQ_size
[!sge
->jumbo_fl
] = SGE_FREEL_SIZE
;
1677 p
->freelQ_size
[sge
->jumbo_fl
] = SGE_JUMBO_FREEL_SIZE
;
1678 p
->rx_coalesce_usecs
= 50;
1679 p
->coalesce_enable
= 0;
1680 p
->sample_interval_usecs
= 0;