mmc: core: Cleanup BKOPS support
[linux/fpc-iii.git] / drivers / mmc / core / block.c
blob48386473dcd7dcbf151dee6e736a5b3091f10689
1 /*
2 * Block driver for media (i.e., flash cards)
4 * Copyright 2002 Hewlett-Packard Company
5 * Copyright 2005-2008 Pierre Ossman
7 * Use consistent with the GNU GPL is permitted,
8 * provided that this copyright notice is
9 * preserved in its entirety in all copies and derived works.
11 * HEWLETT-PACKARD COMPANY MAKES NO WARRANTIES, EXPRESSED OR IMPLIED,
12 * AS TO THE USEFULNESS OR CORRECTNESS OF THIS CODE OR ITS
13 * FITNESS FOR ANY PARTICULAR PURPOSE.
15 * Many thanks to Alessandro Rubini and Jonathan Corbet!
17 * Author: Andrew Christian
18 * 28 May 2002
20 #include <linux/moduleparam.h>
21 #include <linux/module.h>
22 #include <linux/init.h>
24 #include <linux/kernel.h>
25 #include <linux/fs.h>
26 #include <linux/slab.h>
27 #include <linux/errno.h>
28 #include <linux/hdreg.h>
29 #include <linux/kdev_t.h>
30 #include <linux/blkdev.h>
31 #include <linux/cdev.h>
32 #include <linux/mutex.h>
33 #include <linux/scatterlist.h>
34 #include <linux/string_helpers.h>
35 #include <linux/delay.h>
36 #include <linux/capability.h>
37 #include <linux/compat.h>
38 #include <linux/pm_runtime.h>
39 #include <linux/idr.h>
40 #include <linux/debugfs.h>
42 #include <linux/mmc/ioctl.h>
43 #include <linux/mmc/card.h>
44 #include <linux/mmc/host.h>
45 #include <linux/mmc/mmc.h>
46 #include <linux/mmc/sd.h>
48 #include <linux/uaccess.h>
50 #include "queue.h"
51 #include "block.h"
52 #include "core.h"
53 #include "card.h"
54 #include "host.h"
55 #include "bus.h"
56 #include "mmc_ops.h"
57 #include "quirks.h"
58 #include "sd_ops.h"
60 MODULE_ALIAS("mmc:block");
61 #ifdef MODULE_PARAM_PREFIX
62 #undef MODULE_PARAM_PREFIX
63 #endif
64 #define MODULE_PARAM_PREFIX "mmcblk."
67 * Set a 10 second timeout for polling write request busy state. Note, mmc core
68 * is setting a 3 second timeout for SD cards, and SDHCI has long had a 10
69 * second software timer to timeout the whole request, so 10 seconds should be
70 * ample.
72 #define MMC_BLK_TIMEOUT_MS (10 * 1000)
73 #define MMC_SANITIZE_REQ_TIMEOUT 240000
74 #define MMC_EXTRACT_INDEX_FROM_ARG(x) ((x & 0x00FF0000) >> 16)
75 #define MMC_EXTRACT_VALUE_FROM_ARG(x) ((x & 0x0000FF00) >> 8)
77 #define mmc_req_rel_wr(req) ((req->cmd_flags & REQ_FUA) && \
78 (rq_data_dir(req) == WRITE))
79 static DEFINE_MUTEX(block_mutex);
82 * The defaults come from config options but can be overriden by module
83 * or bootarg options.
85 static int perdev_minors = CONFIG_MMC_BLOCK_MINORS;
88 * We've only got one major, so number of mmcblk devices is
89 * limited to (1 << 20) / number of minors per device. It is also
90 * limited by the MAX_DEVICES below.
92 static int max_devices;
94 #define MAX_DEVICES 256
96 static DEFINE_IDA(mmc_blk_ida);
97 static DEFINE_IDA(mmc_rpmb_ida);
100 * There is one mmc_blk_data per slot.
102 struct mmc_blk_data {
103 spinlock_t lock;
104 struct device *parent;
105 struct gendisk *disk;
106 struct mmc_queue queue;
107 struct list_head part;
108 struct list_head rpmbs;
110 unsigned int flags;
111 #define MMC_BLK_CMD23 (1 << 0) /* Can do SET_BLOCK_COUNT for multiblock */
112 #define MMC_BLK_REL_WR (1 << 1) /* MMC Reliable write support */
114 unsigned int usage;
115 unsigned int read_only;
116 unsigned int part_type;
117 unsigned int reset_done;
118 #define MMC_BLK_READ BIT(0)
119 #define MMC_BLK_WRITE BIT(1)
120 #define MMC_BLK_DISCARD BIT(2)
121 #define MMC_BLK_SECDISCARD BIT(3)
122 #define MMC_BLK_CQE_RECOVERY BIT(4)
125 * Only set in main mmc_blk_data associated
126 * with mmc_card with dev_set_drvdata, and keeps
127 * track of the current selected device partition.
129 unsigned int part_curr;
130 struct device_attribute force_ro;
131 struct device_attribute power_ro_lock;
132 int area_type;
134 /* debugfs files (only in main mmc_blk_data) */
135 struct dentry *status_dentry;
136 struct dentry *ext_csd_dentry;
139 /* Device type for RPMB character devices */
140 static dev_t mmc_rpmb_devt;
142 /* Bus type for RPMB character devices */
143 static struct bus_type mmc_rpmb_bus_type = {
144 .name = "mmc_rpmb",
148 * struct mmc_rpmb_data - special RPMB device type for these areas
149 * @dev: the device for the RPMB area
150 * @chrdev: character device for the RPMB area
151 * @id: unique device ID number
152 * @part_index: partition index (0 on first)
153 * @md: parent MMC block device
154 * @node: list item, so we can put this device on a list
156 struct mmc_rpmb_data {
157 struct device dev;
158 struct cdev chrdev;
159 int id;
160 unsigned int part_index;
161 struct mmc_blk_data *md;
162 struct list_head node;
165 static DEFINE_MUTEX(open_lock);
167 module_param(perdev_minors, int, 0444);
168 MODULE_PARM_DESC(perdev_minors, "Minors numbers to allocate per device");
170 static inline int mmc_blk_part_switch(struct mmc_card *card,
171 unsigned int part_type);
173 static struct mmc_blk_data *mmc_blk_get(struct gendisk *disk)
175 struct mmc_blk_data *md;
177 mutex_lock(&open_lock);
178 md = disk->private_data;
179 if (md && md->usage == 0)
180 md = NULL;
181 if (md)
182 md->usage++;
183 mutex_unlock(&open_lock);
185 return md;
188 static inline int mmc_get_devidx(struct gendisk *disk)
190 int devidx = disk->first_minor / perdev_minors;
191 return devidx;
194 static void mmc_blk_put(struct mmc_blk_data *md)
196 mutex_lock(&open_lock);
197 md->usage--;
198 if (md->usage == 0) {
199 int devidx = mmc_get_devidx(md->disk);
200 blk_put_queue(md->queue.queue);
201 ida_simple_remove(&mmc_blk_ida, devidx);
202 put_disk(md->disk);
203 kfree(md);
205 mutex_unlock(&open_lock);
208 static ssize_t power_ro_lock_show(struct device *dev,
209 struct device_attribute *attr, char *buf)
211 int ret;
212 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
213 struct mmc_card *card = md->queue.card;
214 int locked = 0;
216 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PERM_WP_EN)
217 locked = 2;
218 else if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_EN)
219 locked = 1;
221 ret = snprintf(buf, PAGE_SIZE, "%d\n", locked);
223 mmc_blk_put(md);
225 return ret;
228 static ssize_t power_ro_lock_store(struct device *dev,
229 struct device_attribute *attr, const char *buf, size_t count)
231 int ret;
232 struct mmc_blk_data *md, *part_md;
233 struct mmc_queue *mq;
234 struct request *req;
235 unsigned long set;
237 if (kstrtoul(buf, 0, &set))
238 return -EINVAL;
240 if (set != 1)
241 return count;
243 md = mmc_blk_get(dev_to_disk(dev));
244 mq = &md->queue;
246 /* Dispatch locking to the block layer */
247 req = blk_get_request(mq->queue, REQ_OP_DRV_OUT, 0);
248 if (IS_ERR(req)) {
249 count = PTR_ERR(req);
250 goto out_put;
252 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_BOOT_WP;
253 blk_execute_rq(mq->queue, NULL, req, 0);
254 ret = req_to_mmc_queue_req(req)->drv_op_result;
255 blk_put_request(req);
257 if (!ret) {
258 pr_info("%s: Locking boot partition ro until next power on\n",
259 md->disk->disk_name);
260 set_disk_ro(md->disk, 1);
262 list_for_each_entry(part_md, &md->part, part)
263 if (part_md->area_type == MMC_BLK_DATA_AREA_BOOT) {
264 pr_info("%s: Locking boot partition ro until next power on\n", part_md->disk->disk_name);
265 set_disk_ro(part_md->disk, 1);
268 out_put:
269 mmc_blk_put(md);
270 return count;
273 static ssize_t force_ro_show(struct device *dev, struct device_attribute *attr,
274 char *buf)
276 int ret;
277 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
279 ret = snprintf(buf, PAGE_SIZE, "%d\n",
280 get_disk_ro(dev_to_disk(dev)) ^
281 md->read_only);
282 mmc_blk_put(md);
283 return ret;
286 static ssize_t force_ro_store(struct device *dev, struct device_attribute *attr,
287 const char *buf, size_t count)
289 int ret;
290 char *end;
291 struct mmc_blk_data *md = mmc_blk_get(dev_to_disk(dev));
292 unsigned long set = simple_strtoul(buf, &end, 0);
293 if (end == buf) {
294 ret = -EINVAL;
295 goto out;
298 set_disk_ro(dev_to_disk(dev), set || md->read_only);
299 ret = count;
300 out:
301 mmc_blk_put(md);
302 return ret;
305 static int mmc_blk_open(struct block_device *bdev, fmode_t mode)
307 struct mmc_blk_data *md = mmc_blk_get(bdev->bd_disk);
308 int ret = -ENXIO;
310 mutex_lock(&block_mutex);
311 if (md) {
312 if (md->usage == 2)
313 check_disk_change(bdev);
314 ret = 0;
316 if ((mode & FMODE_WRITE) && md->read_only) {
317 mmc_blk_put(md);
318 ret = -EROFS;
321 mutex_unlock(&block_mutex);
323 return ret;
326 static void mmc_blk_release(struct gendisk *disk, fmode_t mode)
328 struct mmc_blk_data *md = disk->private_data;
330 mutex_lock(&block_mutex);
331 mmc_blk_put(md);
332 mutex_unlock(&block_mutex);
335 static int
336 mmc_blk_getgeo(struct block_device *bdev, struct hd_geometry *geo)
338 geo->cylinders = get_capacity(bdev->bd_disk) / (4 * 16);
339 geo->heads = 4;
340 geo->sectors = 16;
341 return 0;
344 struct mmc_blk_ioc_data {
345 struct mmc_ioc_cmd ic;
346 unsigned char *buf;
347 u64 buf_bytes;
348 struct mmc_rpmb_data *rpmb;
351 static struct mmc_blk_ioc_data *mmc_blk_ioctl_copy_from_user(
352 struct mmc_ioc_cmd __user *user)
354 struct mmc_blk_ioc_data *idata;
355 int err;
357 idata = kmalloc(sizeof(*idata), GFP_KERNEL);
358 if (!idata) {
359 err = -ENOMEM;
360 goto out;
363 if (copy_from_user(&idata->ic, user, sizeof(idata->ic))) {
364 err = -EFAULT;
365 goto idata_err;
368 idata->buf_bytes = (u64) idata->ic.blksz * idata->ic.blocks;
369 if (idata->buf_bytes > MMC_IOC_MAX_BYTES) {
370 err = -EOVERFLOW;
371 goto idata_err;
374 if (!idata->buf_bytes) {
375 idata->buf = NULL;
376 return idata;
379 idata->buf = memdup_user((void __user *)(unsigned long)
380 idata->ic.data_ptr, idata->buf_bytes);
381 if (IS_ERR(idata->buf)) {
382 err = PTR_ERR(idata->buf);
383 goto idata_err;
386 return idata;
388 idata_err:
389 kfree(idata);
390 out:
391 return ERR_PTR(err);
394 static int mmc_blk_ioctl_copy_to_user(struct mmc_ioc_cmd __user *ic_ptr,
395 struct mmc_blk_ioc_data *idata)
397 struct mmc_ioc_cmd *ic = &idata->ic;
399 if (copy_to_user(&(ic_ptr->response), ic->response,
400 sizeof(ic->response)))
401 return -EFAULT;
403 if (!idata->ic.write_flag) {
404 if (copy_to_user((void __user *)(unsigned long)ic->data_ptr,
405 idata->buf, idata->buf_bytes))
406 return -EFAULT;
409 return 0;
412 static int ioctl_rpmb_card_status_poll(struct mmc_card *card, u32 *status,
413 u32 retries_max)
415 int err;
416 u32 retry_count = 0;
418 if (!status || !retries_max)
419 return -EINVAL;
421 do {
422 err = __mmc_send_status(card, status, 5);
423 if (err)
424 break;
426 if (!R1_STATUS(*status) &&
427 (R1_CURRENT_STATE(*status) != R1_STATE_PRG))
428 break; /* RPMB programming operation complete */
431 * Rechedule to give the MMC device a chance to continue
432 * processing the previous command without being polled too
433 * frequently.
435 usleep_range(1000, 5000);
436 } while (++retry_count < retries_max);
438 if (retry_count == retries_max)
439 err = -EPERM;
441 return err;
444 static int ioctl_do_sanitize(struct mmc_card *card)
446 int err;
448 if (!mmc_can_sanitize(card)) {
449 pr_warn("%s: %s - SANITIZE is not supported\n",
450 mmc_hostname(card->host), __func__);
451 err = -EOPNOTSUPP;
452 goto out;
455 pr_debug("%s: %s - SANITIZE IN PROGRESS...\n",
456 mmc_hostname(card->host), __func__);
458 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
459 EXT_CSD_SANITIZE_START, 1,
460 MMC_SANITIZE_REQ_TIMEOUT);
462 if (err)
463 pr_err("%s: %s - EXT_CSD_SANITIZE_START failed. err=%d\n",
464 mmc_hostname(card->host), __func__, err);
466 pr_debug("%s: %s - SANITIZE COMPLETED\n", mmc_hostname(card->host),
467 __func__);
468 out:
469 return err;
472 static int __mmc_blk_ioctl_cmd(struct mmc_card *card, struct mmc_blk_data *md,
473 struct mmc_blk_ioc_data *idata)
475 struct mmc_command cmd = {}, sbc = {};
476 struct mmc_data data = {};
477 struct mmc_request mrq = {};
478 struct scatterlist sg;
479 int err;
480 unsigned int target_part;
481 u32 status = 0;
483 if (!card || !md || !idata)
484 return -EINVAL;
487 * The RPMB accesses comes in from the character device, so we
488 * need to target these explicitly. Else we just target the
489 * partition type for the block device the ioctl() was issued
490 * on.
492 if (idata->rpmb) {
493 /* Support multiple RPMB partitions */
494 target_part = idata->rpmb->part_index;
495 target_part |= EXT_CSD_PART_CONFIG_ACC_RPMB;
496 } else {
497 target_part = md->part_type;
500 cmd.opcode = idata->ic.opcode;
501 cmd.arg = idata->ic.arg;
502 cmd.flags = idata->ic.flags;
504 if (idata->buf_bytes) {
505 data.sg = &sg;
506 data.sg_len = 1;
507 data.blksz = idata->ic.blksz;
508 data.blocks = idata->ic.blocks;
510 sg_init_one(data.sg, idata->buf, idata->buf_bytes);
512 if (idata->ic.write_flag)
513 data.flags = MMC_DATA_WRITE;
514 else
515 data.flags = MMC_DATA_READ;
517 /* data.flags must already be set before doing this. */
518 mmc_set_data_timeout(&data, card);
520 /* Allow overriding the timeout_ns for empirical tuning. */
521 if (idata->ic.data_timeout_ns)
522 data.timeout_ns = idata->ic.data_timeout_ns;
524 if ((cmd.flags & MMC_RSP_R1B) == MMC_RSP_R1B) {
526 * Pretend this is a data transfer and rely on the
527 * host driver to compute timeout. When all host
528 * drivers support cmd.cmd_timeout for R1B, this
529 * can be changed to:
531 * mrq.data = NULL;
532 * cmd.cmd_timeout = idata->ic.cmd_timeout_ms;
534 data.timeout_ns = idata->ic.cmd_timeout_ms * 1000000;
537 mrq.data = &data;
540 mrq.cmd = &cmd;
542 err = mmc_blk_part_switch(card, target_part);
543 if (err)
544 return err;
546 if (idata->ic.is_acmd) {
547 err = mmc_app_cmd(card->host, card);
548 if (err)
549 return err;
552 if (idata->rpmb) {
553 sbc.opcode = MMC_SET_BLOCK_COUNT;
555 * We don't do any blockcount validation because the max size
556 * may be increased by a future standard. We just copy the
557 * 'Reliable Write' bit here.
559 sbc.arg = data.blocks | (idata->ic.write_flag & BIT(31));
560 sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
561 mrq.sbc = &sbc;
564 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_SANITIZE_START) &&
565 (cmd.opcode == MMC_SWITCH)) {
566 err = ioctl_do_sanitize(card);
568 if (err)
569 pr_err("%s: ioctl_do_sanitize() failed. err = %d",
570 __func__, err);
572 return err;
575 mmc_wait_for_req(card->host, &mrq);
577 if (cmd.error) {
578 dev_err(mmc_dev(card->host), "%s: cmd error %d\n",
579 __func__, cmd.error);
580 return cmd.error;
582 if (data.error) {
583 dev_err(mmc_dev(card->host), "%s: data error %d\n",
584 __func__, data.error);
585 return data.error;
589 * Make sure the cache of the PARTITION_CONFIG register and
590 * PARTITION_ACCESS bits is updated in case the ioctl ext_csd write
591 * changed it successfully.
593 if ((MMC_EXTRACT_INDEX_FROM_ARG(cmd.arg) == EXT_CSD_PART_CONFIG) &&
594 (cmd.opcode == MMC_SWITCH)) {
595 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
596 u8 value = MMC_EXTRACT_VALUE_FROM_ARG(cmd.arg);
599 * Update cache so the next mmc_blk_part_switch call operates
600 * on up-to-date data.
602 card->ext_csd.part_config = value;
603 main_md->part_curr = value & EXT_CSD_PART_CONFIG_ACC_MASK;
607 * According to the SD specs, some commands require a delay after
608 * issuing the command.
610 if (idata->ic.postsleep_min_us)
611 usleep_range(idata->ic.postsleep_min_us, idata->ic.postsleep_max_us);
613 memcpy(&(idata->ic.response), cmd.resp, sizeof(cmd.resp));
615 if (idata->rpmb) {
617 * Ensure RPMB command has completed by polling CMD13
618 * "Send Status".
620 err = ioctl_rpmb_card_status_poll(card, &status, 5);
621 if (err)
622 dev_err(mmc_dev(card->host),
623 "%s: Card Status=0x%08X, error %d\n",
624 __func__, status, err);
627 return err;
630 static int mmc_blk_ioctl_cmd(struct mmc_blk_data *md,
631 struct mmc_ioc_cmd __user *ic_ptr,
632 struct mmc_rpmb_data *rpmb)
634 struct mmc_blk_ioc_data *idata;
635 struct mmc_blk_ioc_data *idatas[1];
636 struct mmc_queue *mq;
637 struct mmc_card *card;
638 int err = 0, ioc_err = 0;
639 struct request *req;
641 idata = mmc_blk_ioctl_copy_from_user(ic_ptr);
642 if (IS_ERR(idata))
643 return PTR_ERR(idata);
644 /* This will be NULL on non-RPMB ioctl():s */
645 idata->rpmb = rpmb;
647 card = md->queue.card;
648 if (IS_ERR(card)) {
649 err = PTR_ERR(card);
650 goto cmd_done;
654 * Dispatch the ioctl() into the block request queue.
656 mq = &md->queue;
657 req = blk_get_request(mq->queue,
658 idata->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
659 if (IS_ERR(req)) {
660 err = PTR_ERR(req);
661 goto cmd_done;
663 idatas[0] = idata;
664 req_to_mmc_queue_req(req)->drv_op =
665 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
666 req_to_mmc_queue_req(req)->drv_op_data = idatas;
667 req_to_mmc_queue_req(req)->ioc_count = 1;
668 blk_execute_rq(mq->queue, NULL, req, 0);
669 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
670 err = mmc_blk_ioctl_copy_to_user(ic_ptr, idata);
671 blk_put_request(req);
673 cmd_done:
674 kfree(idata->buf);
675 kfree(idata);
676 return ioc_err ? ioc_err : err;
679 static int mmc_blk_ioctl_multi_cmd(struct mmc_blk_data *md,
680 struct mmc_ioc_multi_cmd __user *user,
681 struct mmc_rpmb_data *rpmb)
683 struct mmc_blk_ioc_data **idata = NULL;
684 struct mmc_ioc_cmd __user *cmds = user->cmds;
685 struct mmc_card *card;
686 struct mmc_queue *mq;
687 int i, err = 0, ioc_err = 0;
688 __u64 num_of_cmds;
689 struct request *req;
691 if (copy_from_user(&num_of_cmds, &user->num_of_cmds,
692 sizeof(num_of_cmds)))
693 return -EFAULT;
695 if (!num_of_cmds)
696 return 0;
698 if (num_of_cmds > MMC_IOC_MAX_CMDS)
699 return -EINVAL;
701 idata = kcalloc(num_of_cmds, sizeof(*idata), GFP_KERNEL);
702 if (!idata)
703 return -ENOMEM;
705 for (i = 0; i < num_of_cmds; i++) {
706 idata[i] = mmc_blk_ioctl_copy_from_user(&cmds[i]);
707 if (IS_ERR(idata[i])) {
708 err = PTR_ERR(idata[i]);
709 num_of_cmds = i;
710 goto cmd_err;
712 /* This will be NULL on non-RPMB ioctl():s */
713 idata[i]->rpmb = rpmb;
716 card = md->queue.card;
717 if (IS_ERR(card)) {
718 err = PTR_ERR(card);
719 goto cmd_err;
724 * Dispatch the ioctl()s into the block request queue.
726 mq = &md->queue;
727 req = blk_get_request(mq->queue,
728 idata[0]->ic.write_flag ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN, 0);
729 if (IS_ERR(req)) {
730 err = PTR_ERR(req);
731 goto cmd_err;
733 req_to_mmc_queue_req(req)->drv_op =
734 rpmb ? MMC_DRV_OP_IOCTL_RPMB : MMC_DRV_OP_IOCTL;
735 req_to_mmc_queue_req(req)->drv_op_data = idata;
736 req_to_mmc_queue_req(req)->ioc_count = num_of_cmds;
737 blk_execute_rq(mq->queue, NULL, req, 0);
738 ioc_err = req_to_mmc_queue_req(req)->drv_op_result;
740 /* copy to user if data and response */
741 for (i = 0; i < num_of_cmds && !err; i++)
742 err = mmc_blk_ioctl_copy_to_user(&cmds[i], idata[i]);
744 blk_put_request(req);
746 cmd_err:
747 for (i = 0; i < num_of_cmds; i++) {
748 kfree(idata[i]->buf);
749 kfree(idata[i]);
751 kfree(idata);
752 return ioc_err ? ioc_err : err;
755 static int mmc_blk_check_blkdev(struct block_device *bdev)
758 * The caller must have CAP_SYS_RAWIO, and must be calling this on the
759 * whole block device, not on a partition. This prevents overspray
760 * between sibling partitions.
762 if ((!capable(CAP_SYS_RAWIO)) || (bdev != bdev->bd_contains))
763 return -EPERM;
764 return 0;
767 static int mmc_blk_ioctl(struct block_device *bdev, fmode_t mode,
768 unsigned int cmd, unsigned long arg)
770 struct mmc_blk_data *md;
771 int ret;
773 switch (cmd) {
774 case MMC_IOC_CMD:
775 ret = mmc_blk_check_blkdev(bdev);
776 if (ret)
777 return ret;
778 md = mmc_blk_get(bdev->bd_disk);
779 if (!md)
780 return -EINVAL;
781 ret = mmc_blk_ioctl_cmd(md,
782 (struct mmc_ioc_cmd __user *)arg,
783 NULL);
784 mmc_blk_put(md);
785 return ret;
786 case MMC_IOC_MULTI_CMD:
787 ret = mmc_blk_check_blkdev(bdev);
788 if (ret)
789 return ret;
790 md = mmc_blk_get(bdev->bd_disk);
791 if (!md)
792 return -EINVAL;
793 ret = mmc_blk_ioctl_multi_cmd(md,
794 (struct mmc_ioc_multi_cmd __user *)arg,
795 NULL);
796 mmc_blk_put(md);
797 return ret;
798 default:
799 return -EINVAL;
803 #ifdef CONFIG_COMPAT
804 static int mmc_blk_compat_ioctl(struct block_device *bdev, fmode_t mode,
805 unsigned int cmd, unsigned long arg)
807 return mmc_blk_ioctl(bdev, mode, cmd, (unsigned long) compat_ptr(arg));
809 #endif
811 static const struct block_device_operations mmc_bdops = {
812 .open = mmc_blk_open,
813 .release = mmc_blk_release,
814 .getgeo = mmc_blk_getgeo,
815 .owner = THIS_MODULE,
816 .ioctl = mmc_blk_ioctl,
817 #ifdef CONFIG_COMPAT
818 .compat_ioctl = mmc_blk_compat_ioctl,
819 #endif
822 static int mmc_blk_part_switch_pre(struct mmc_card *card,
823 unsigned int part_type)
825 int ret = 0;
827 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
828 if (card->ext_csd.cmdq_en) {
829 ret = mmc_cmdq_disable(card);
830 if (ret)
831 return ret;
833 mmc_retune_pause(card->host);
836 return ret;
839 static int mmc_blk_part_switch_post(struct mmc_card *card,
840 unsigned int part_type)
842 int ret = 0;
844 if (part_type == EXT_CSD_PART_CONFIG_ACC_RPMB) {
845 mmc_retune_unpause(card->host);
846 if (card->reenable_cmdq && !card->ext_csd.cmdq_en)
847 ret = mmc_cmdq_enable(card);
850 return ret;
853 static inline int mmc_blk_part_switch(struct mmc_card *card,
854 unsigned int part_type)
856 int ret = 0;
857 struct mmc_blk_data *main_md = dev_get_drvdata(&card->dev);
859 if (main_md->part_curr == part_type)
860 return 0;
862 if (mmc_card_mmc(card)) {
863 u8 part_config = card->ext_csd.part_config;
865 ret = mmc_blk_part_switch_pre(card, part_type);
866 if (ret)
867 return ret;
869 part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
870 part_config |= part_type;
872 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
873 EXT_CSD_PART_CONFIG, part_config,
874 card->ext_csd.part_time);
875 if (ret) {
876 mmc_blk_part_switch_post(card, part_type);
877 return ret;
880 card->ext_csd.part_config = part_config;
882 ret = mmc_blk_part_switch_post(card, main_md->part_curr);
885 main_md->part_curr = part_type;
886 return ret;
889 static int mmc_sd_num_wr_blocks(struct mmc_card *card, u32 *written_blocks)
891 int err;
892 u32 result;
893 __be32 *blocks;
895 struct mmc_request mrq = {};
896 struct mmc_command cmd = {};
897 struct mmc_data data = {};
899 struct scatterlist sg;
901 cmd.opcode = MMC_APP_CMD;
902 cmd.arg = card->rca << 16;
903 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
905 err = mmc_wait_for_cmd(card->host, &cmd, 0);
906 if (err)
907 return err;
908 if (!mmc_host_is_spi(card->host) && !(cmd.resp[0] & R1_APP_CMD))
909 return -EIO;
911 memset(&cmd, 0, sizeof(struct mmc_command));
913 cmd.opcode = SD_APP_SEND_NUM_WR_BLKS;
914 cmd.arg = 0;
915 cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
917 data.blksz = 4;
918 data.blocks = 1;
919 data.flags = MMC_DATA_READ;
920 data.sg = &sg;
921 data.sg_len = 1;
922 mmc_set_data_timeout(&data, card);
924 mrq.cmd = &cmd;
925 mrq.data = &data;
927 blocks = kmalloc(4, GFP_KERNEL);
928 if (!blocks)
929 return -ENOMEM;
931 sg_init_one(&sg, blocks, 4);
933 mmc_wait_for_req(card->host, &mrq);
935 result = ntohl(*blocks);
936 kfree(blocks);
938 if (cmd.error || data.error)
939 return -EIO;
941 *written_blocks = result;
943 return 0;
946 static unsigned int mmc_blk_clock_khz(struct mmc_host *host)
948 if (host->actual_clock)
949 return host->actual_clock / 1000;
951 /* Clock may be subject to a divisor, fudge it by a factor of 2. */
952 if (host->ios.clock)
953 return host->ios.clock / 2000;
955 /* How can there be no clock */
956 WARN_ON_ONCE(1);
957 return 100; /* 100 kHz is minimum possible value */
960 static unsigned int mmc_blk_data_timeout_ms(struct mmc_host *host,
961 struct mmc_data *data)
963 unsigned int ms = DIV_ROUND_UP(data->timeout_ns, 1000000);
964 unsigned int khz;
966 if (data->timeout_clks) {
967 khz = mmc_blk_clock_khz(host);
968 ms += DIV_ROUND_UP(data->timeout_clks, khz);
971 return ms;
974 static inline bool mmc_blk_in_tran_state(u32 status)
977 * Some cards mishandle the status bits, so make sure to check both the
978 * busy indication and the card state.
980 return status & R1_READY_FOR_DATA &&
981 (R1_CURRENT_STATE(status) == R1_STATE_TRAN);
984 static int card_busy_detect(struct mmc_card *card, unsigned int timeout_ms,
985 struct request *req, u32 *resp_errs)
987 unsigned long timeout = jiffies + msecs_to_jiffies(timeout_ms);
988 int err = 0;
989 u32 status;
991 do {
992 bool done = time_after(jiffies, timeout);
994 err = __mmc_send_status(card, &status, 5);
995 if (err) {
996 pr_err("%s: error %d requesting status\n",
997 req->rq_disk->disk_name, err);
998 return err;
1001 /* Accumulate any response error bits seen */
1002 if (resp_errs)
1003 *resp_errs |= status;
1006 * Timeout if the device never becomes ready for data and never
1007 * leaves the program state.
1009 if (done) {
1010 pr_err("%s: Card stuck in wrong state! %s %s status: %#x\n",
1011 mmc_hostname(card->host),
1012 req->rq_disk->disk_name, __func__, status);
1013 return -ETIMEDOUT;
1017 * Some cards mishandle the status bits,
1018 * so make sure to check both the busy
1019 * indication and the card state.
1021 } while (!mmc_blk_in_tran_state(status));
1023 return err;
1026 static int mmc_blk_reset(struct mmc_blk_data *md, struct mmc_host *host,
1027 int type)
1029 int err;
1031 if (md->reset_done & type)
1032 return -EEXIST;
1034 md->reset_done |= type;
1035 err = mmc_hw_reset(host);
1036 /* Ensure we switch back to the correct partition */
1037 if (err != -EOPNOTSUPP) {
1038 struct mmc_blk_data *main_md =
1039 dev_get_drvdata(&host->card->dev);
1040 int part_err;
1042 main_md->part_curr = main_md->part_type;
1043 part_err = mmc_blk_part_switch(host->card, md->part_type);
1044 if (part_err) {
1046 * We have failed to get back into the correct
1047 * partition, so we need to abort the whole request.
1049 return -ENODEV;
1052 return err;
1055 static inline void mmc_blk_reset_success(struct mmc_blk_data *md, int type)
1057 md->reset_done &= ~type;
1061 * The non-block commands come back from the block layer after it queued it and
1062 * processed it with all other requests and then they get issued in this
1063 * function.
1065 static void mmc_blk_issue_drv_op(struct mmc_queue *mq, struct request *req)
1067 struct mmc_queue_req *mq_rq;
1068 struct mmc_card *card = mq->card;
1069 struct mmc_blk_data *md = mq->blkdata;
1070 struct mmc_blk_ioc_data **idata;
1071 bool rpmb_ioctl;
1072 u8 **ext_csd;
1073 u32 status;
1074 int ret;
1075 int i;
1077 mq_rq = req_to_mmc_queue_req(req);
1078 rpmb_ioctl = (mq_rq->drv_op == MMC_DRV_OP_IOCTL_RPMB);
1080 switch (mq_rq->drv_op) {
1081 case MMC_DRV_OP_IOCTL:
1082 case MMC_DRV_OP_IOCTL_RPMB:
1083 idata = mq_rq->drv_op_data;
1084 for (i = 0, ret = 0; i < mq_rq->ioc_count; i++) {
1085 ret = __mmc_blk_ioctl_cmd(card, md, idata[i]);
1086 if (ret)
1087 break;
1089 /* Always switch back to main area after RPMB access */
1090 if (rpmb_ioctl)
1091 mmc_blk_part_switch(card, 0);
1092 break;
1093 case MMC_DRV_OP_BOOT_WP:
1094 ret = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BOOT_WP,
1095 card->ext_csd.boot_ro_lock |
1096 EXT_CSD_BOOT_WP_B_PWR_WP_EN,
1097 card->ext_csd.part_time);
1098 if (ret)
1099 pr_err("%s: Locking boot partition ro until next power on failed: %d\n",
1100 md->disk->disk_name, ret);
1101 else
1102 card->ext_csd.boot_ro_lock |=
1103 EXT_CSD_BOOT_WP_B_PWR_WP_EN;
1104 break;
1105 case MMC_DRV_OP_GET_CARD_STATUS:
1106 ret = mmc_send_status(card, &status);
1107 if (!ret)
1108 ret = status;
1109 break;
1110 case MMC_DRV_OP_GET_EXT_CSD:
1111 ext_csd = mq_rq->drv_op_data;
1112 ret = mmc_get_ext_csd(card, ext_csd);
1113 break;
1114 default:
1115 pr_err("%s: unknown driver specific operation\n",
1116 md->disk->disk_name);
1117 ret = -EINVAL;
1118 break;
1120 mq_rq->drv_op_result = ret;
1121 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1124 static void mmc_blk_issue_discard_rq(struct mmc_queue *mq, struct request *req)
1126 struct mmc_blk_data *md = mq->blkdata;
1127 struct mmc_card *card = md->queue.card;
1128 unsigned int from, nr, arg;
1129 int err = 0, type = MMC_BLK_DISCARD;
1130 blk_status_t status = BLK_STS_OK;
1132 if (!mmc_can_erase(card)) {
1133 status = BLK_STS_NOTSUPP;
1134 goto fail;
1137 from = blk_rq_pos(req);
1138 nr = blk_rq_sectors(req);
1140 if (mmc_can_discard(card))
1141 arg = MMC_DISCARD_ARG;
1142 else if (mmc_can_trim(card))
1143 arg = MMC_TRIM_ARG;
1144 else
1145 arg = MMC_ERASE_ARG;
1146 do {
1147 err = 0;
1148 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1149 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1150 INAND_CMD38_ARG_EXT_CSD,
1151 arg == MMC_TRIM_ARG ?
1152 INAND_CMD38_ARG_TRIM :
1153 INAND_CMD38_ARG_ERASE,
1156 if (!err)
1157 err = mmc_erase(card, from, nr, arg);
1158 } while (err == -EIO && !mmc_blk_reset(md, card->host, type));
1159 if (err)
1160 status = BLK_STS_IOERR;
1161 else
1162 mmc_blk_reset_success(md, type);
1163 fail:
1164 blk_mq_end_request(req, status);
1167 static void mmc_blk_issue_secdiscard_rq(struct mmc_queue *mq,
1168 struct request *req)
1170 struct mmc_blk_data *md = mq->blkdata;
1171 struct mmc_card *card = md->queue.card;
1172 unsigned int from, nr, arg;
1173 int err = 0, type = MMC_BLK_SECDISCARD;
1174 blk_status_t status = BLK_STS_OK;
1176 if (!(mmc_can_secure_erase_trim(card))) {
1177 status = BLK_STS_NOTSUPP;
1178 goto out;
1181 from = blk_rq_pos(req);
1182 nr = blk_rq_sectors(req);
1184 if (mmc_can_trim(card) && !mmc_erase_group_aligned(card, from, nr))
1185 arg = MMC_SECURE_TRIM1_ARG;
1186 else
1187 arg = MMC_SECURE_ERASE_ARG;
1189 retry:
1190 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1191 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1192 INAND_CMD38_ARG_EXT_CSD,
1193 arg == MMC_SECURE_TRIM1_ARG ?
1194 INAND_CMD38_ARG_SECTRIM1 :
1195 INAND_CMD38_ARG_SECERASE,
1197 if (err)
1198 goto out_retry;
1201 err = mmc_erase(card, from, nr, arg);
1202 if (err == -EIO)
1203 goto out_retry;
1204 if (err) {
1205 status = BLK_STS_IOERR;
1206 goto out;
1209 if (arg == MMC_SECURE_TRIM1_ARG) {
1210 if (card->quirks & MMC_QUIRK_INAND_CMD38) {
1211 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1212 INAND_CMD38_ARG_EXT_CSD,
1213 INAND_CMD38_ARG_SECTRIM2,
1215 if (err)
1216 goto out_retry;
1219 err = mmc_erase(card, from, nr, MMC_SECURE_TRIM2_ARG);
1220 if (err == -EIO)
1221 goto out_retry;
1222 if (err) {
1223 status = BLK_STS_IOERR;
1224 goto out;
1228 out_retry:
1229 if (err && !mmc_blk_reset(md, card->host, type))
1230 goto retry;
1231 if (!err)
1232 mmc_blk_reset_success(md, type);
1233 out:
1234 blk_mq_end_request(req, status);
1237 static void mmc_blk_issue_flush(struct mmc_queue *mq, struct request *req)
1239 struct mmc_blk_data *md = mq->blkdata;
1240 struct mmc_card *card = md->queue.card;
1241 int ret = 0;
1243 ret = mmc_flush_cache(card);
1244 blk_mq_end_request(req, ret ? BLK_STS_IOERR : BLK_STS_OK);
1248 * Reformat current write as a reliable write, supporting
1249 * both legacy and the enhanced reliable write MMC cards.
1250 * In each transfer we'll handle only as much as a single
1251 * reliable write can handle, thus finish the request in
1252 * partial completions.
1254 static inline void mmc_apply_rel_rw(struct mmc_blk_request *brq,
1255 struct mmc_card *card,
1256 struct request *req)
1258 if (!(card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN)) {
1259 /* Legacy mode imposes restrictions on transfers. */
1260 if (!IS_ALIGNED(blk_rq_pos(req), card->ext_csd.rel_sectors))
1261 brq->data.blocks = 1;
1263 if (brq->data.blocks > card->ext_csd.rel_sectors)
1264 brq->data.blocks = card->ext_csd.rel_sectors;
1265 else if (brq->data.blocks < card->ext_csd.rel_sectors)
1266 brq->data.blocks = 1;
1270 #define CMD_ERRORS_EXCL_OOR \
1271 (R1_ADDRESS_ERROR | /* Misaligned address */ \
1272 R1_BLOCK_LEN_ERROR | /* Transferred block length incorrect */\
1273 R1_WP_VIOLATION | /* Tried to write to protected block */ \
1274 R1_CARD_ECC_FAILED | /* Card ECC failed */ \
1275 R1_CC_ERROR | /* Card controller error */ \
1276 R1_ERROR) /* General/unknown error */
1278 #define CMD_ERRORS \
1279 (CMD_ERRORS_EXCL_OOR | \
1280 R1_OUT_OF_RANGE) /* Command argument out of range */ \
1282 static void mmc_blk_eval_resp_error(struct mmc_blk_request *brq)
1284 u32 val;
1287 * Per the SD specification(physical layer version 4.10)[1],
1288 * section 4.3.3, it explicitly states that "When the last
1289 * block of user area is read using CMD18, the host should
1290 * ignore OUT_OF_RANGE error that may occur even the sequence
1291 * is correct". And JESD84-B51 for eMMC also has a similar
1292 * statement on section 6.8.3.
1294 * Multiple block read/write could be done by either predefined
1295 * method, namely CMD23, or open-ending mode. For open-ending mode,
1296 * we should ignore the OUT_OF_RANGE error as it's normal behaviour.
1298 * However the spec[1] doesn't tell us whether we should also
1299 * ignore that for predefined method. But per the spec[1], section
1300 * 4.15 Set Block Count Command, it says"If illegal block count
1301 * is set, out of range error will be indicated during read/write
1302 * operation (For example, data transfer is stopped at user area
1303 * boundary)." In another word, we could expect a out of range error
1304 * in the response for the following CMD18/25. And if argument of
1305 * CMD23 + the argument of CMD18/25 exceed the max number of blocks,
1306 * we could also expect to get a -ETIMEDOUT or any error number from
1307 * the host drivers due to missing data response(for write)/data(for
1308 * read), as the cards will stop the data transfer by itself per the
1309 * spec. So we only need to check R1_OUT_OF_RANGE for open-ending mode.
1312 if (!brq->stop.error) {
1313 bool oor_with_open_end;
1314 /* If there is no error yet, check R1 response */
1316 val = brq->stop.resp[0] & CMD_ERRORS;
1317 oor_with_open_end = val & R1_OUT_OF_RANGE && !brq->mrq.sbc;
1319 if (val && !oor_with_open_end)
1320 brq->stop.error = -EIO;
1324 static void mmc_blk_data_prep(struct mmc_queue *mq, struct mmc_queue_req *mqrq,
1325 int disable_multi, bool *do_rel_wr_p,
1326 bool *do_data_tag_p)
1328 struct mmc_blk_data *md = mq->blkdata;
1329 struct mmc_card *card = md->queue.card;
1330 struct mmc_blk_request *brq = &mqrq->brq;
1331 struct request *req = mmc_queue_req_to_req(mqrq);
1332 bool do_rel_wr, do_data_tag;
1335 * Reliable writes are used to implement Forced Unit Access and
1336 * are supported only on MMCs.
1338 do_rel_wr = (req->cmd_flags & REQ_FUA) &&
1339 rq_data_dir(req) == WRITE &&
1340 (md->flags & MMC_BLK_REL_WR);
1342 memset(brq, 0, sizeof(struct mmc_blk_request));
1344 brq->mrq.data = &brq->data;
1345 brq->mrq.tag = req->tag;
1347 brq->stop.opcode = MMC_STOP_TRANSMISSION;
1348 brq->stop.arg = 0;
1350 if (rq_data_dir(req) == READ) {
1351 brq->data.flags = MMC_DATA_READ;
1352 brq->stop.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC;
1353 } else {
1354 brq->data.flags = MMC_DATA_WRITE;
1355 brq->stop.flags = MMC_RSP_SPI_R1B | MMC_RSP_R1B | MMC_CMD_AC;
1358 brq->data.blksz = 512;
1359 brq->data.blocks = blk_rq_sectors(req);
1360 brq->data.blk_addr = blk_rq_pos(req);
1363 * The command queue supports 2 priorities: "high" (1) and "simple" (0).
1364 * The eMMC will give "high" priority tasks priority over "simple"
1365 * priority tasks. Here we always set "simple" priority by not setting
1366 * MMC_DATA_PRIO.
1370 * The block layer doesn't support all sector count
1371 * restrictions, so we need to be prepared for too big
1372 * requests.
1374 if (brq->data.blocks > card->host->max_blk_count)
1375 brq->data.blocks = card->host->max_blk_count;
1377 if (brq->data.blocks > 1) {
1379 * Some SD cards in SPI mode return a CRC error or even lock up
1380 * completely when trying to read the last block using a
1381 * multiblock read command.
1383 if (mmc_host_is_spi(card->host) && (rq_data_dir(req) == READ) &&
1384 (blk_rq_pos(req) + blk_rq_sectors(req) ==
1385 get_capacity(md->disk)))
1386 brq->data.blocks--;
1389 * After a read error, we redo the request one sector
1390 * at a time in order to accurately determine which
1391 * sectors can be read successfully.
1393 if (disable_multi)
1394 brq->data.blocks = 1;
1397 * Some controllers have HW issues while operating
1398 * in multiple I/O mode
1400 if (card->host->ops->multi_io_quirk)
1401 brq->data.blocks = card->host->ops->multi_io_quirk(card,
1402 (rq_data_dir(req) == READ) ?
1403 MMC_DATA_READ : MMC_DATA_WRITE,
1404 brq->data.blocks);
1407 if (do_rel_wr) {
1408 mmc_apply_rel_rw(brq, card, req);
1409 brq->data.flags |= MMC_DATA_REL_WR;
1413 * Data tag is used only during writing meta data to speed
1414 * up write and any subsequent read of this meta data
1416 do_data_tag = card->ext_csd.data_tag_unit_size &&
1417 (req->cmd_flags & REQ_META) &&
1418 (rq_data_dir(req) == WRITE) &&
1419 ((brq->data.blocks * brq->data.blksz) >=
1420 card->ext_csd.data_tag_unit_size);
1422 if (do_data_tag)
1423 brq->data.flags |= MMC_DATA_DAT_TAG;
1425 mmc_set_data_timeout(&brq->data, card);
1427 brq->data.sg = mqrq->sg;
1428 brq->data.sg_len = mmc_queue_map_sg(mq, mqrq);
1431 * Adjust the sg list so it is the same size as the
1432 * request.
1434 if (brq->data.blocks != blk_rq_sectors(req)) {
1435 int i, data_size = brq->data.blocks << 9;
1436 struct scatterlist *sg;
1438 for_each_sg(brq->data.sg, sg, brq->data.sg_len, i) {
1439 data_size -= sg->length;
1440 if (data_size <= 0) {
1441 sg->length += data_size;
1442 i++;
1443 break;
1446 brq->data.sg_len = i;
1449 if (do_rel_wr_p)
1450 *do_rel_wr_p = do_rel_wr;
1452 if (do_data_tag_p)
1453 *do_data_tag_p = do_data_tag;
1456 #define MMC_CQE_RETRIES 2
1458 static void mmc_blk_cqe_complete_rq(struct mmc_queue *mq, struct request *req)
1460 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1461 struct mmc_request *mrq = &mqrq->brq.mrq;
1462 struct request_queue *q = req->q;
1463 struct mmc_host *host = mq->card->host;
1464 unsigned long flags;
1465 bool put_card;
1466 int err;
1468 mmc_cqe_post_req(host, mrq);
1470 if (mrq->cmd && mrq->cmd->error)
1471 err = mrq->cmd->error;
1472 else if (mrq->data && mrq->data->error)
1473 err = mrq->data->error;
1474 else
1475 err = 0;
1477 if (err) {
1478 if (mqrq->retries++ < MMC_CQE_RETRIES)
1479 blk_mq_requeue_request(req, true);
1480 else
1481 blk_mq_end_request(req, BLK_STS_IOERR);
1482 } else if (mrq->data) {
1483 if (blk_update_request(req, BLK_STS_OK, mrq->data->bytes_xfered))
1484 blk_mq_requeue_request(req, true);
1485 else
1486 __blk_mq_end_request(req, BLK_STS_OK);
1487 } else {
1488 blk_mq_end_request(req, BLK_STS_OK);
1491 spin_lock_irqsave(q->queue_lock, flags);
1493 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
1495 put_card = (mmc_tot_in_flight(mq) == 0);
1497 mmc_cqe_check_busy(mq);
1499 spin_unlock_irqrestore(q->queue_lock, flags);
1501 if (!mq->cqe_busy)
1502 blk_mq_run_hw_queues(q, true);
1504 if (put_card)
1505 mmc_put_card(mq->card, &mq->ctx);
1508 void mmc_blk_cqe_recovery(struct mmc_queue *mq)
1510 struct mmc_card *card = mq->card;
1511 struct mmc_host *host = card->host;
1512 int err;
1514 pr_debug("%s: CQE recovery start\n", mmc_hostname(host));
1516 err = mmc_cqe_recovery(host);
1517 if (err)
1518 mmc_blk_reset(mq->blkdata, host, MMC_BLK_CQE_RECOVERY);
1519 else
1520 mmc_blk_reset_success(mq->blkdata, MMC_BLK_CQE_RECOVERY);
1522 pr_debug("%s: CQE recovery done\n", mmc_hostname(host));
1525 static void mmc_blk_cqe_req_done(struct mmc_request *mrq)
1527 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
1528 brq.mrq);
1529 struct request *req = mmc_queue_req_to_req(mqrq);
1530 struct request_queue *q = req->q;
1531 struct mmc_queue *mq = q->queuedata;
1534 * Block layer timeouts race with completions which means the normal
1535 * completion path cannot be used during recovery.
1537 if (mq->in_recovery)
1538 mmc_blk_cqe_complete_rq(mq, req);
1539 else
1540 blk_mq_complete_request(req);
1543 static int mmc_blk_cqe_start_req(struct mmc_host *host, struct mmc_request *mrq)
1545 mrq->done = mmc_blk_cqe_req_done;
1546 mrq->recovery_notifier = mmc_cqe_recovery_notifier;
1548 return mmc_cqe_start_req(host, mrq);
1551 static struct mmc_request *mmc_blk_cqe_prep_dcmd(struct mmc_queue_req *mqrq,
1552 struct request *req)
1554 struct mmc_blk_request *brq = &mqrq->brq;
1556 memset(brq, 0, sizeof(*brq));
1558 brq->mrq.cmd = &brq->cmd;
1559 brq->mrq.tag = req->tag;
1561 return &brq->mrq;
1564 static int mmc_blk_cqe_issue_flush(struct mmc_queue *mq, struct request *req)
1566 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1567 struct mmc_request *mrq = mmc_blk_cqe_prep_dcmd(mqrq, req);
1569 mrq->cmd->opcode = MMC_SWITCH;
1570 mrq->cmd->arg = (MMC_SWITCH_MODE_WRITE_BYTE << 24) |
1571 (EXT_CSD_FLUSH_CACHE << 16) |
1572 (1 << 8) |
1573 EXT_CSD_CMD_SET_NORMAL;
1574 mrq->cmd->flags = MMC_CMD_AC | MMC_RSP_R1B;
1576 return mmc_blk_cqe_start_req(mq->card->host, mrq);
1579 static int mmc_blk_cqe_issue_rw_rq(struct mmc_queue *mq, struct request *req)
1581 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1583 mmc_blk_data_prep(mq, mqrq, 0, NULL, NULL);
1585 return mmc_blk_cqe_start_req(mq->card->host, &mqrq->brq.mrq);
1588 static void mmc_blk_rw_rq_prep(struct mmc_queue_req *mqrq,
1589 struct mmc_card *card,
1590 int disable_multi,
1591 struct mmc_queue *mq)
1593 u32 readcmd, writecmd;
1594 struct mmc_blk_request *brq = &mqrq->brq;
1595 struct request *req = mmc_queue_req_to_req(mqrq);
1596 struct mmc_blk_data *md = mq->blkdata;
1597 bool do_rel_wr, do_data_tag;
1599 mmc_blk_data_prep(mq, mqrq, disable_multi, &do_rel_wr, &do_data_tag);
1601 brq->mrq.cmd = &brq->cmd;
1603 brq->cmd.arg = blk_rq_pos(req);
1604 if (!mmc_card_blockaddr(card))
1605 brq->cmd.arg <<= 9;
1606 brq->cmd.flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_ADTC;
1608 if (brq->data.blocks > 1 || do_rel_wr) {
1609 /* SPI multiblock writes terminate using a special
1610 * token, not a STOP_TRANSMISSION request.
1612 if (!mmc_host_is_spi(card->host) ||
1613 rq_data_dir(req) == READ)
1614 brq->mrq.stop = &brq->stop;
1615 readcmd = MMC_READ_MULTIPLE_BLOCK;
1616 writecmd = MMC_WRITE_MULTIPLE_BLOCK;
1617 } else {
1618 brq->mrq.stop = NULL;
1619 readcmd = MMC_READ_SINGLE_BLOCK;
1620 writecmd = MMC_WRITE_BLOCK;
1622 brq->cmd.opcode = rq_data_dir(req) == READ ? readcmd : writecmd;
1625 * Pre-defined multi-block transfers are preferable to
1626 * open ended-ones (and necessary for reliable writes).
1627 * However, it is not sufficient to just send CMD23,
1628 * and avoid the final CMD12, as on an error condition
1629 * CMD12 (stop) needs to be sent anyway. This, coupled
1630 * with Auto-CMD23 enhancements provided by some
1631 * hosts, means that the complexity of dealing
1632 * with this is best left to the host. If CMD23 is
1633 * supported by card and host, we'll fill sbc in and let
1634 * the host deal with handling it correctly. This means
1635 * that for hosts that don't expose MMC_CAP_CMD23, no
1636 * change of behavior will be observed.
1638 * N.B: Some MMC cards experience perf degradation.
1639 * We'll avoid using CMD23-bounded multiblock writes for
1640 * these, while retaining features like reliable writes.
1642 if ((md->flags & MMC_BLK_CMD23) && mmc_op_multi(brq->cmd.opcode) &&
1643 (do_rel_wr || !(card->quirks & MMC_QUIRK_BLK_NO_CMD23) ||
1644 do_data_tag)) {
1645 brq->sbc.opcode = MMC_SET_BLOCK_COUNT;
1646 brq->sbc.arg = brq->data.blocks |
1647 (do_rel_wr ? (1 << 31) : 0) |
1648 (do_data_tag ? (1 << 29) : 0);
1649 brq->sbc.flags = MMC_RSP_R1 | MMC_CMD_AC;
1650 brq->mrq.sbc = &brq->sbc;
1654 #define MMC_MAX_RETRIES 5
1655 #define MMC_DATA_RETRIES 2
1656 #define MMC_NO_RETRIES (MMC_MAX_RETRIES + 1)
1658 static int mmc_blk_send_stop(struct mmc_card *card, unsigned int timeout)
1660 struct mmc_command cmd = {
1661 .opcode = MMC_STOP_TRANSMISSION,
1662 .flags = MMC_RSP_SPI_R1 | MMC_RSP_R1 | MMC_CMD_AC,
1663 /* Some hosts wait for busy anyway, so provide a busy timeout */
1664 .busy_timeout = timeout,
1667 return mmc_wait_for_cmd(card->host, &cmd, 5);
1670 static int mmc_blk_fix_state(struct mmc_card *card, struct request *req)
1672 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1673 struct mmc_blk_request *brq = &mqrq->brq;
1674 unsigned int timeout = mmc_blk_data_timeout_ms(card->host, &brq->data);
1675 int err;
1677 mmc_retune_hold_now(card->host);
1679 mmc_blk_send_stop(card, timeout);
1681 err = card_busy_detect(card, timeout, req, NULL);
1683 mmc_retune_release(card->host);
1685 return err;
1688 #define MMC_READ_SINGLE_RETRIES 2
1690 /* Single sector read during recovery */
1691 static void mmc_blk_read_single(struct mmc_queue *mq, struct request *req)
1693 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1694 struct mmc_request *mrq = &mqrq->brq.mrq;
1695 struct mmc_card *card = mq->card;
1696 struct mmc_host *host = card->host;
1697 blk_status_t error = BLK_STS_OK;
1698 int retries = 0;
1700 do {
1701 u32 status;
1702 int err;
1704 mmc_blk_rw_rq_prep(mqrq, card, 1, mq);
1706 mmc_wait_for_req(host, mrq);
1708 err = mmc_send_status(card, &status);
1709 if (err)
1710 goto error_exit;
1712 if (!mmc_host_is_spi(host) &&
1713 !mmc_blk_in_tran_state(status)) {
1714 err = mmc_blk_fix_state(card, req);
1715 if (err)
1716 goto error_exit;
1719 if (mrq->cmd->error && retries++ < MMC_READ_SINGLE_RETRIES)
1720 continue;
1722 retries = 0;
1724 if (mrq->cmd->error ||
1725 mrq->data->error ||
1726 (!mmc_host_is_spi(host) &&
1727 (mrq->cmd->resp[0] & CMD_ERRORS || status & CMD_ERRORS)))
1728 error = BLK_STS_IOERR;
1729 else
1730 error = BLK_STS_OK;
1732 } while (blk_update_request(req, error, 512));
1734 return;
1736 error_exit:
1737 mrq->data->bytes_xfered = 0;
1738 blk_update_request(req, BLK_STS_IOERR, 512);
1739 /* Let it try the remaining request again */
1740 if (mqrq->retries > MMC_MAX_RETRIES - 1)
1741 mqrq->retries = MMC_MAX_RETRIES - 1;
1744 static inline bool mmc_blk_oor_valid(struct mmc_blk_request *brq)
1746 return !!brq->mrq.sbc;
1749 static inline u32 mmc_blk_stop_err_bits(struct mmc_blk_request *brq)
1751 return mmc_blk_oor_valid(brq) ? CMD_ERRORS : CMD_ERRORS_EXCL_OOR;
1755 * Check for errors the host controller driver might not have seen such as
1756 * response mode errors or invalid card state.
1758 static bool mmc_blk_status_error(struct request *req, u32 status)
1760 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1761 struct mmc_blk_request *brq = &mqrq->brq;
1762 struct mmc_queue *mq = req->q->queuedata;
1763 u32 stop_err_bits;
1765 if (mmc_host_is_spi(mq->card->host))
1766 return false;
1768 stop_err_bits = mmc_blk_stop_err_bits(brq);
1770 return brq->cmd.resp[0] & CMD_ERRORS ||
1771 brq->stop.resp[0] & stop_err_bits ||
1772 status & stop_err_bits ||
1773 (rq_data_dir(req) == WRITE && !mmc_blk_in_tran_state(status));
1776 static inline bool mmc_blk_cmd_started(struct mmc_blk_request *brq)
1778 return !brq->sbc.error && !brq->cmd.error &&
1779 !(brq->cmd.resp[0] & CMD_ERRORS);
1783 * Requests are completed by mmc_blk_mq_complete_rq() which sets simple
1784 * policy:
1785 * 1. A request that has transferred at least some data is considered
1786 * successful and will be requeued if there is remaining data to
1787 * transfer.
1788 * 2. Otherwise the number of retries is incremented and the request
1789 * will be requeued if there are remaining retries.
1790 * 3. Otherwise the request will be errored out.
1791 * That means mmc_blk_mq_complete_rq() is controlled by bytes_xfered and
1792 * mqrq->retries. So there are only 4 possible actions here:
1793 * 1. do not accept the bytes_xfered value i.e. set it to zero
1794 * 2. change mqrq->retries to determine the number of retries
1795 * 3. try to reset the card
1796 * 4. read one sector at a time
1798 static void mmc_blk_mq_rw_recovery(struct mmc_queue *mq, struct request *req)
1800 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1801 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1802 struct mmc_blk_request *brq = &mqrq->brq;
1803 struct mmc_blk_data *md = mq->blkdata;
1804 struct mmc_card *card = mq->card;
1805 u32 status;
1806 u32 blocks;
1807 int err;
1810 * Some errors the host driver might not have seen. Set the number of
1811 * bytes transferred to zero in that case.
1813 err = __mmc_send_status(card, &status, 0);
1814 if (err || mmc_blk_status_error(req, status))
1815 brq->data.bytes_xfered = 0;
1817 mmc_retune_release(card->host);
1820 * Try again to get the status. This also provides an opportunity for
1821 * re-tuning.
1823 if (err)
1824 err = __mmc_send_status(card, &status, 0);
1827 * Nothing more to do after the number of bytes transferred has been
1828 * updated and there is no card.
1830 if (err && mmc_detect_card_removed(card->host))
1831 return;
1833 /* Try to get back to "tran" state */
1834 if (!mmc_host_is_spi(mq->card->host) &&
1835 (err || !mmc_blk_in_tran_state(status)))
1836 err = mmc_blk_fix_state(mq->card, req);
1839 * Special case for SD cards where the card might record the number of
1840 * blocks written.
1842 if (!err && mmc_blk_cmd_started(brq) && mmc_card_sd(card) &&
1843 rq_data_dir(req) == WRITE) {
1844 if (mmc_sd_num_wr_blocks(card, &blocks))
1845 brq->data.bytes_xfered = 0;
1846 else
1847 brq->data.bytes_xfered = blocks << 9;
1850 /* Reset if the card is in a bad state */
1851 if (!mmc_host_is_spi(mq->card->host) &&
1852 err && mmc_blk_reset(md, card->host, type)) {
1853 pr_err("%s: recovery failed!\n", req->rq_disk->disk_name);
1854 mqrq->retries = MMC_NO_RETRIES;
1855 return;
1859 * If anything was done, just return and if there is anything remaining
1860 * on the request it will get requeued.
1862 if (brq->data.bytes_xfered)
1863 return;
1865 /* Reset before last retry */
1866 if (mqrq->retries + 1 == MMC_MAX_RETRIES)
1867 mmc_blk_reset(md, card->host, type);
1869 /* Command errors fail fast, so use all MMC_MAX_RETRIES */
1870 if (brq->sbc.error || brq->cmd.error)
1871 return;
1873 /* Reduce the remaining retries for data errors */
1874 if (mqrq->retries < MMC_MAX_RETRIES - MMC_DATA_RETRIES) {
1875 mqrq->retries = MMC_MAX_RETRIES - MMC_DATA_RETRIES;
1876 return;
1879 /* FIXME: Missing single sector read for large sector size */
1880 if (!mmc_large_sector(card) && rq_data_dir(req) == READ &&
1881 brq->data.blocks > 1) {
1882 /* Read one sector at a time */
1883 mmc_blk_read_single(mq, req);
1884 return;
1888 static inline bool mmc_blk_rq_error(struct mmc_blk_request *brq)
1890 mmc_blk_eval_resp_error(brq);
1892 return brq->sbc.error || brq->cmd.error || brq->stop.error ||
1893 brq->data.error || brq->cmd.resp[0] & CMD_ERRORS;
1896 static int mmc_blk_card_busy(struct mmc_card *card, struct request *req)
1898 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1899 u32 status = 0;
1900 int err;
1902 if (mmc_host_is_spi(card->host) || rq_data_dir(req) == READ)
1903 return 0;
1905 err = card_busy_detect(card, MMC_BLK_TIMEOUT_MS, req, &status);
1908 * Do not assume data transferred correctly if there are any error bits
1909 * set.
1911 if (status & mmc_blk_stop_err_bits(&mqrq->brq)) {
1912 mqrq->brq.data.bytes_xfered = 0;
1913 err = err ? err : -EIO;
1916 /* Copy the exception bit so it will be seen later on */
1917 if (mmc_card_mmc(card) && status & R1_EXCEPTION_EVENT)
1918 mqrq->brq.cmd.resp[0] |= R1_EXCEPTION_EVENT;
1920 return err;
1923 static inline void mmc_blk_rw_reset_success(struct mmc_queue *mq,
1924 struct request *req)
1926 int type = rq_data_dir(req) == READ ? MMC_BLK_READ : MMC_BLK_WRITE;
1928 mmc_blk_reset_success(mq->blkdata, type);
1931 static void mmc_blk_mq_complete_rq(struct mmc_queue *mq, struct request *req)
1933 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1934 unsigned int nr_bytes = mqrq->brq.data.bytes_xfered;
1936 if (nr_bytes) {
1937 if (blk_update_request(req, BLK_STS_OK, nr_bytes))
1938 blk_mq_requeue_request(req, true);
1939 else
1940 __blk_mq_end_request(req, BLK_STS_OK);
1941 } else if (!blk_rq_bytes(req)) {
1942 __blk_mq_end_request(req, BLK_STS_IOERR);
1943 } else if (mqrq->retries++ < MMC_MAX_RETRIES) {
1944 blk_mq_requeue_request(req, true);
1945 } else {
1946 if (mmc_card_removed(mq->card))
1947 req->rq_flags |= RQF_QUIET;
1948 blk_mq_end_request(req, BLK_STS_IOERR);
1952 static bool mmc_blk_urgent_bkops_needed(struct mmc_queue *mq,
1953 struct mmc_queue_req *mqrq)
1955 return mmc_card_mmc(mq->card) && !mmc_host_is_spi(mq->card->host) &&
1956 (mqrq->brq.cmd.resp[0] & R1_EXCEPTION_EVENT ||
1957 mqrq->brq.stop.resp[0] & R1_EXCEPTION_EVENT);
1960 static void mmc_blk_urgent_bkops(struct mmc_queue *mq,
1961 struct mmc_queue_req *mqrq)
1963 if (mmc_blk_urgent_bkops_needed(mq, mqrq))
1964 mmc_run_bkops(mq->card);
1967 void mmc_blk_mq_complete(struct request *req)
1969 struct mmc_queue *mq = req->q->queuedata;
1971 if (mq->use_cqe)
1972 mmc_blk_cqe_complete_rq(mq, req);
1973 else
1974 mmc_blk_mq_complete_rq(mq, req);
1977 static void mmc_blk_mq_poll_completion(struct mmc_queue *mq,
1978 struct request *req)
1980 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
1981 struct mmc_host *host = mq->card->host;
1983 if (mmc_blk_rq_error(&mqrq->brq) ||
1984 mmc_blk_card_busy(mq->card, req)) {
1985 mmc_blk_mq_rw_recovery(mq, req);
1986 } else {
1987 mmc_blk_rw_reset_success(mq, req);
1988 mmc_retune_release(host);
1991 mmc_blk_urgent_bkops(mq, mqrq);
1994 static void mmc_blk_mq_dec_in_flight(struct mmc_queue *mq, struct request *req)
1996 struct request_queue *q = req->q;
1997 unsigned long flags;
1998 bool put_card;
2000 spin_lock_irqsave(q->queue_lock, flags);
2002 mq->in_flight[mmc_issue_type(mq, req)] -= 1;
2004 put_card = (mmc_tot_in_flight(mq) == 0);
2006 spin_unlock_irqrestore(q->queue_lock, flags);
2008 if (put_card)
2009 mmc_put_card(mq->card, &mq->ctx);
2012 static void mmc_blk_mq_post_req(struct mmc_queue *mq, struct request *req)
2014 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2015 struct mmc_request *mrq = &mqrq->brq.mrq;
2016 struct mmc_host *host = mq->card->host;
2018 mmc_post_req(host, mrq, 0);
2021 * Block layer timeouts race with completions which means the normal
2022 * completion path cannot be used during recovery.
2024 if (mq->in_recovery)
2025 mmc_blk_mq_complete_rq(mq, req);
2026 else
2027 blk_mq_complete_request(req);
2029 mmc_blk_mq_dec_in_flight(mq, req);
2032 void mmc_blk_mq_recovery(struct mmc_queue *mq)
2034 struct request *req = mq->recovery_req;
2035 struct mmc_host *host = mq->card->host;
2036 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2038 mq->recovery_req = NULL;
2039 mq->rw_wait = false;
2041 if (mmc_blk_rq_error(&mqrq->brq)) {
2042 mmc_retune_hold_now(host);
2043 mmc_blk_mq_rw_recovery(mq, req);
2046 mmc_blk_urgent_bkops(mq, mqrq);
2048 mmc_blk_mq_post_req(mq, req);
2051 static void mmc_blk_mq_complete_prev_req(struct mmc_queue *mq,
2052 struct request **prev_req)
2054 if (mmc_host_done_complete(mq->card->host))
2055 return;
2057 mutex_lock(&mq->complete_lock);
2059 if (!mq->complete_req)
2060 goto out_unlock;
2062 mmc_blk_mq_poll_completion(mq, mq->complete_req);
2064 if (prev_req)
2065 *prev_req = mq->complete_req;
2066 else
2067 mmc_blk_mq_post_req(mq, mq->complete_req);
2069 mq->complete_req = NULL;
2071 out_unlock:
2072 mutex_unlock(&mq->complete_lock);
2075 void mmc_blk_mq_complete_work(struct work_struct *work)
2077 struct mmc_queue *mq = container_of(work, struct mmc_queue,
2078 complete_work);
2080 mmc_blk_mq_complete_prev_req(mq, NULL);
2083 static void mmc_blk_mq_req_done(struct mmc_request *mrq)
2085 struct mmc_queue_req *mqrq = container_of(mrq, struct mmc_queue_req,
2086 brq.mrq);
2087 struct request *req = mmc_queue_req_to_req(mqrq);
2088 struct request_queue *q = req->q;
2089 struct mmc_queue *mq = q->queuedata;
2090 struct mmc_host *host = mq->card->host;
2091 unsigned long flags;
2093 if (!mmc_host_done_complete(host)) {
2094 bool waiting;
2097 * We cannot complete the request in this context, so record
2098 * that there is a request to complete, and that a following
2099 * request does not need to wait (although it does need to
2100 * complete complete_req first).
2102 spin_lock_irqsave(q->queue_lock, flags);
2103 mq->complete_req = req;
2104 mq->rw_wait = false;
2105 waiting = mq->waiting;
2106 spin_unlock_irqrestore(q->queue_lock, flags);
2109 * If 'waiting' then the waiting task will complete this
2110 * request, otherwise queue a work to do it. Note that
2111 * complete_work may still race with the dispatch of a following
2112 * request.
2114 if (waiting)
2115 wake_up(&mq->wait);
2116 else
2117 kblockd_schedule_work(&mq->complete_work);
2119 return;
2122 /* Take the recovery path for errors or urgent background operations */
2123 if (mmc_blk_rq_error(&mqrq->brq) ||
2124 mmc_blk_urgent_bkops_needed(mq, mqrq)) {
2125 spin_lock_irqsave(q->queue_lock, flags);
2126 mq->recovery_needed = true;
2127 mq->recovery_req = req;
2128 spin_unlock_irqrestore(q->queue_lock, flags);
2129 wake_up(&mq->wait);
2130 schedule_work(&mq->recovery_work);
2131 return;
2134 mmc_blk_rw_reset_success(mq, req);
2136 mq->rw_wait = false;
2137 wake_up(&mq->wait);
2139 mmc_blk_mq_post_req(mq, req);
2142 static bool mmc_blk_rw_wait_cond(struct mmc_queue *mq, int *err)
2144 struct request_queue *q = mq->queue;
2145 unsigned long flags;
2146 bool done;
2149 * Wait while there is another request in progress, but not if recovery
2150 * is needed. Also indicate whether there is a request waiting to start.
2152 spin_lock_irqsave(q->queue_lock, flags);
2153 if (mq->recovery_needed) {
2154 *err = -EBUSY;
2155 done = true;
2156 } else {
2157 done = !mq->rw_wait;
2159 mq->waiting = !done;
2160 spin_unlock_irqrestore(q->queue_lock, flags);
2162 return done;
2165 static int mmc_blk_rw_wait(struct mmc_queue *mq, struct request **prev_req)
2167 int err = 0;
2169 wait_event(mq->wait, mmc_blk_rw_wait_cond(mq, &err));
2171 /* Always complete the previous request if there is one */
2172 mmc_blk_mq_complete_prev_req(mq, prev_req);
2174 return err;
2177 static int mmc_blk_mq_issue_rw_rq(struct mmc_queue *mq,
2178 struct request *req)
2180 struct mmc_queue_req *mqrq = req_to_mmc_queue_req(req);
2181 struct mmc_host *host = mq->card->host;
2182 struct request *prev_req = NULL;
2183 int err = 0;
2185 mmc_blk_rw_rq_prep(mqrq, mq->card, 0, mq);
2187 mqrq->brq.mrq.done = mmc_blk_mq_req_done;
2189 mmc_pre_req(host, &mqrq->brq.mrq);
2191 err = mmc_blk_rw_wait(mq, &prev_req);
2192 if (err)
2193 goto out_post_req;
2195 mq->rw_wait = true;
2197 err = mmc_start_request(host, &mqrq->brq.mrq);
2199 if (prev_req)
2200 mmc_blk_mq_post_req(mq, prev_req);
2202 if (err)
2203 mq->rw_wait = false;
2205 /* Release re-tuning here where there is no synchronization required */
2206 if (err || mmc_host_done_complete(host))
2207 mmc_retune_release(host);
2209 out_post_req:
2210 if (err)
2211 mmc_post_req(host, &mqrq->brq.mrq, err);
2213 return err;
2216 static int mmc_blk_wait_for_idle(struct mmc_queue *mq, struct mmc_host *host)
2218 if (mq->use_cqe)
2219 return host->cqe_ops->cqe_wait_for_idle(host);
2221 return mmc_blk_rw_wait(mq, NULL);
2224 enum mmc_issued mmc_blk_mq_issue_rq(struct mmc_queue *mq, struct request *req)
2226 struct mmc_blk_data *md = mq->blkdata;
2227 struct mmc_card *card = md->queue.card;
2228 struct mmc_host *host = card->host;
2229 int ret;
2231 ret = mmc_blk_part_switch(card, md->part_type);
2232 if (ret)
2233 return MMC_REQ_FAILED_TO_START;
2235 switch (mmc_issue_type(mq, req)) {
2236 case MMC_ISSUE_SYNC:
2237 ret = mmc_blk_wait_for_idle(mq, host);
2238 if (ret)
2239 return MMC_REQ_BUSY;
2240 switch (req_op(req)) {
2241 case REQ_OP_DRV_IN:
2242 case REQ_OP_DRV_OUT:
2243 mmc_blk_issue_drv_op(mq, req);
2244 break;
2245 case REQ_OP_DISCARD:
2246 mmc_blk_issue_discard_rq(mq, req);
2247 break;
2248 case REQ_OP_SECURE_ERASE:
2249 mmc_blk_issue_secdiscard_rq(mq, req);
2250 break;
2251 case REQ_OP_FLUSH:
2252 mmc_blk_issue_flush(mq, req);
2253 break;
2254 default:
2255 WARN_ON_ONCE(1);
2256 return MMC_REQ_FAILED_TO_START;
2258 return MMC_REQ_FINISHED;
2259 case MMC_ISSUE_DCMD:
2260 case MMC_ISSUE_ASYNC:
2261 switch (req_op(req)) {
2262 case REQ_OP_FLUSH:
2263 ret = mmc_blk_cqe_issue_flush(mq, req);
2264 break;
2265 case REQ_OP_READ:
2266 case REQ_OP_WRITE:
2267 if (mq->use_cqe)
2268 ret = mmc_blk_cqe_issue_rw_rq(mq, req);
2269 else
2270 ret = mmc_blk_mq_issue_rw_rq(mq, req);
2271 break;
2272 default:
2273 WARN_ON_ONCE(1);
2274 ret = -EINVAL;
2276 if (!ret)
2277 return MMC_REQ_STARTED;
2278 return ret == -EBUSY ? MMC_REQ_BUSY : MMC_REQ_FAILED_TO_START;
2279 default:
2280 WARN_ON_ONCE(1);
2281 return MMC_REQ_FAILED_TO_START;
2285 static inline int mmc_blk_readonly(struct mmc_card *card)
2287 return mmc_card_readonly(card) ||
2288 !(card->csd.cmdclass & CCC_BLOCK_WRITE);
2291 static struct mmc_blk_data *mmc_blk_alloc_req(struct mmc_card *card,
2292 struct device *parent,
2293 sector_t size,
2294 bool default_ro,
2295 const char *subname,
2296 int area_type)
2298 struct mmc_blk_data *md;
2299 int devidx, ret;
2301 devidx = ida_simple_get(&mmc_blk_ida, 0, max_devices, GFP_KERNEL);
2302 if (devidx < 0) {
2304 * We get -ENOSPC because there are no more any available
2305 * devidx. The reason may be that, either userspace haven't yet
2306 * unmounted the partitions, which postpones mmc_blk_release()
2307 * from being called, or the device has more partitions than
2308 * what we support.
2310 if (devidx == -ENOSPC)
2311 dev_err(mmc_dev(card->host),
2312 "no more device IDs available\n");
2314 return ERR_PTR(devidx);
2317 md = kzalloc(sizeof(struct mmc_blk_data), GFP_KERNEL);
2318 if (!md) {
2319 ret = -ENOMEM;
2320 goto out;
2323 md->area_type = area_type;
2326 * Set the read-only status based on the supported commands
2327 * and the write protect switch.
2329 md->read_only = mmc_blk_readonly(card);
2331 md->disk = alloc_disk(perdev_minors);
2332 if (md->disk == NULL) {
2333 ret = -ENOMEM;
2334 goto err_kfree;
2337 spin_lock_init(&md->lock);
2338 INIT_LIST_HEAD(&md->part);
2339 INIT_LIST_HEAD(&md->rpmbs);
2340 md->usage = 1;
2342 ret = mmc_init_queue(&md->queue, card, &md->lock, subname);
2343 if (ret)
2344 goto err_putdisk;
2346 md->queue.blkdata = md;
2349 * Keep an extra reference to the queue so that we can shutdown the
2350 * queue (i.e. call blk_cleanup_queue()) while there are still
2351 * references to the 'md'. The corresponding blk_put_queue() is in
2352 * mmc_blk_put().
2354 if (!blk_get_queue(md->queue.queue)) {
2355 mmc_cleanup_queue(&md->queue);
2356 ret = -ENODEV;
2357 goto err_putdisk;
2360 md->disk->major = MMC_BLOCK_MAJOR;
2361 md->disk->first_minor = devidx * perdev_minors;
2362 md->disk->fops = &mmc_bdops;
2363 md->disk->private_data = md;
2364 md->disk->queue = md->queue.queue;
2365 md->parent = parent;
2366 set_disk_ro(md->disk, md->read_only || default_ro);
2367 md->disk->flags = GENHD_FL_EXT_DEVT;
2368 if (area_type & (MMC_BLK_DATA_AREA_RPMB | MMC_BLK_DATA_AREA_BOOT))
2369 md->disk->flags |= GENHD_FL_NO_PART_SCAN
2370 | GENHD_FL_SUPPRESS_PARTITION_INFO;
2373 * As discussed on lkml, GENHD_FL_REMOVABLE should:
2375 * - be set for removable media with permanent block devices
2376 * - be unset for removable block devices with permanent media
2378 * Since MMC block devices clearly fall under the second
2379 * case, we do not set GENHD_FL_REMOVABLE. Userspace
2380 * should use the block device creation/destruction hotplug
2381 * messages to tell when the card is present.
2384 snprintf(md->disk->disk_name, sizeof(md->disk->disk_name),
2385 "mmcblk%u%s", card->host->index, subname ? subname : "");
2387 if (mmc_card_mmc(card))
2388 blk_queue_logical_block_size(md->queue.queue,
2389 card->ext_csd.data_sector_size);
2390 else
2391 blk_queue_logical_block_size(md->queue.queue, 512);
2393 set_capacity(md->disk, size);
2395 if (mmc_host_cmd23(card->host)) {
2396 if ((mmc_card_mmc(card) &&
2397 card->csd.mmca_vsn >= CSD_SPEC_VER_3) ||
2398 (mmc_card_sd(card) &&
2399 card->scr.cmds & SD_SCR_CMD23_SUPPORT))
2400 md->flags |= MMC_BLK_CMD23;
2403 if (mmc_card_mmc(card) &&
2404 md->flags & MMC_BLK_CMD23 &&
2405 ((card->ext_csd.rel_param & EXT_CSD_WR_REL_PARAM_EN) ||
2406 card->ext_csd.rel_sectors)) {
2407 md->flags |= MMC_BLK_REL_WR;
2408 blk_queue_write_cache(md->queue.queue, true, true);
2411 return md;
2413 err_putdisk:
2414 put_disk(md->disk);
2415 err_kfree:
2416 kfree(md);
2417 out:
2418 ida_simple_remove(&mmc_blk_ida, devidx);
2419 return ERR_PTR(ret);
2422 static struct mmc_blk_data *mmc_blk_alloc(struct mmc_card *card)
2424 sector_t size;
2426 if (!mmc_card_sd(card) && mmc_card_blockaddr(card)) {
2428 * The EXT_CSD sector count is in number or 512 byte
2429 * sectors.
2431 size = card->ext_csd.sectors;
2432 } else {
2434 * The CSD capacity field is in units of read_blkbits.
2435 * set_capacity takes units of 512 bytes.
2437 size = (typeof(sector_t))card->csd.capacity
2438 << (card->csd.read_blkbits - 9);
2441 return mmc_blk_alloc_req(card, &card->dev, size, false, NULL,
2442 MMC_BLK_DATA_AREA_MAIN);
2445 static int mmc_blk_alloc_part(struct mmc_card *card,
2446 struct mmc_blk_data *md,
2447 unsigned int part_type,
2448 sector_t size,
2449 bool default_ro,
2450 const char *subname,
2451 int area_type)
2453 char cap_str[10];
2454 struct mmc_blk_data *part_md;
2456 part_md = mmc_blk_alloc_req(card, disk_to_dev(md->disk), size, default_ro,
2457 subname, area_type);
2458 if (IS_ERR(part_md))
2459 return PTR_ERR(part_md);
2460 part_md->part_type = part_type;
2461 list_add(&part_md->part, &md->part);
2463 string_get_size((u64)get_capacity(part_md->disk), 512, STRING_UNITS_2,
2464 cap_str, sizeof(cap_str));
2465 pr_info("%s: %s %s partition %u %s\n",
2466 part_md->disk->disk_name, mmc_card_id(card),
2467 mmc_card_name(card), part_md->part_type, cap_str);
2468 return 0;
2472 * mmc_rpmb_ioctl() - ioctl handler for the RPMB chardev
2473 * @filp: the character device file
2474 * @cmd: the ioctl() command
2475 * @arg: the argument from userspace
2477 * This will essentially just redirect the ioctl()s coming in over to
2478 * the main block device spawning the RPMB character device.
2480 static long mmc_rpmb_ioctl(struct file *filp, unsigned int cmd,
2481 unsigned long arg)
2483 struct mmc_rpmb_data *rpmb = filp->private_data;
2484 int ret;
2486 switch (cmd) {
2487 case MMC_IOC_CMD:
2488 ret = mmc_blk_ioctl_cmd(rpmb->md,
2489 (struct mmc_ioc_cmd __user *)arg,
2490 rpmb);
2491 break;
2492 case MMC_IOC_MULTI_CMD:
2493 ret = mmc_blk_ioctl_multi_cmd(rpmb->md,
2494 (struct mmc_ioc_multi_cmd __user *)arg,
2495 rpmb);
2496 break;
2497 default:
2498 ret = -EINVAL;
2499 break;
2502 return ret;
2505 #ifdef CONFIG_COMPAT
2506 static long mmc_rpmb_ioctl_compat(struct file *filp, unsigned int cmd,
2507 unsigned long arg)
2509 return mmc_rpmb_ioctl(filp, cmd, (unsigned long)compat_ptr(arg));
2511 #endif
2513 static int mmc_rpmb_chrdev_open(struct inode *inode, struct file *filp)
2515 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2516 struct mmc_rpmb_data, chrdev);
2518 get_device(&rpmb->dev);
2519 filp->private_data = rpmb;
2520 mmc_blk_get(rpmb->md->disk);
2522 return nonseekable_open(inode, filp);
2525 static int mmc_rpmb_chrdev_release(struct inode *inode, struct file *filp)
2527 struct mmc_rpmb_data *rpmb = container_of(inode->i_cdev,
2528 struct mmc_rpmb_data, chrdev);
2530 put_device(&rpmb->dev);
2531 mmc_blk_put(rpmb->md);
2533 return 0;
2536 static const struct file_operations mmc_rpmb_fileops = {
2537 .release = mmc_rpmb_chrdev_release,
2538 .open = mmc_rpmb_chrdev_open,
2539 .owner = THIS_MODULE,
2540 .llseek = no_llseek,
2541 .unlocked_ioctl = mmc_rpmb_ioctl,
2542 #ifdef CONFIG_COMPAT
2543 .compat_ioctl = mmc_rpmb_ioctl_compat,
2544 #endif
2547 static void mmc_blk_rpmb_device_release(struct device *dev)
2549 struct mmc_rpmb_data *rpmb = dev_get_drvdata(dev);
2551 ida_simple_remove(&mmc_rpmb_ida, rpmb->id);
2552 kfree(rpmb);
2555 static int mmc_blk_alloc_rpmb_part(struct mmc_card *card,
2556 struct mmc_blk_data *md,
2557 unsigned int part_index,
2558 sector_t size,
2559 const char *subname)
2561 int devidx, ret;
2562 char rpmb_name[DISK_NAME_LEN];
2563 char cap_str[10];
2564 struct mmc_rpmb_data *rpmb;
2566 /* This creates the minor number for the RPMB char device */
2567 devidx = ida_simple_get(&mmc_rpmb_ida, 0, max_devices, GFP_KERNEL);
2568 if (devidx < 0)
2569 return devidx;
2571 rpmb = kzalloc(sizeof(*rpmb), GFP_KERNEL);
2572 if (!rpmb) {
2573 ida_simple_remove(&mmc_rpmb_ida, devidx);
2574 return -ENOMEM;
2577 snprintf(rpmb_name, sizeof(rpmb_name),
2578 "mmcblk%u%s", card->host->index, subname ? subname : "");
2580 rpmb->id = devidx;
2581 rpmb->part_index = part_index;
2582 rpmb->dev.init_name = rpmb_name;
2583 rpmb->dev.bus = &mmc_rpmb_bus_type;
2584 rpmb->dev.devt = MKDEV(MAJOR(mmc_rpmb_devt), rpmb->id);
2585 rpmb->dev.parent = &card->dev;
2586 rpmb->dev.release = mmc_blk_rpmb_device_release;
2587 device_initialize(&rpmb->dev);
2588 dev_set_drvdata(&rpmb->dev, rpmb);
2589 rpmb->md = md;
2591 cdev_init(&rpmb->chrdev, &mmc_rpmb_fileops);
2592 rpmb->chrdev.owner = THIS_MODULE;
2593 ret = cdev_device_add(&rpmb->chrdev, &rpmb->dev);
2594 if (ret) {
2595 pr_err("%s: could not add character device\n", rpmb_name);
2596 goto out_put_device;
2599 list_add(&rpmb->node, &md->rpmbs);
2601 string_get_size((u64)size, 512, STRING_UNITS_2,
2602 cap_str, sizeof(cap_str));
2604 pr_info("%s: %s %s partition %u %s, chardev (%d:%d)\n",
2605 rpmb_name, mmc_card_id(card),
2606 mmc_card_name(card), EXT_CSD_PART_CONFIG_ACC_RPMB, cap_str,
2607 MAJOR(mmc_rpmb_devt), rpmb->id);
2609 return 0;
2611 out_put_device:
2612 put_device(&rpmb->dev);
2613 return ret;
2616 static void mmc_blk_remove_rpmb_part(struct mmc_rpmb_data *rpmb)
2619 cdev_device_del(&rpmb->chrdev, &rpmb->dev);
2620 put_device(&rpmb->dev);
2623 /* MMC Physical partitions consist of two boot partitions and
2624 * up to four general purpose partitions.
2625 * For each partition enabled in EXT_CSD a block device will be allocatedi
2626 * to provide access to the partition.
2629 static int mmc_blk_alloc_parts(struct mmc_card *card, struct mmc_blk_data *md)
2631 int idx, ret;
2633 if (!mmc_card_mmc(card))
2634 return 0;
2636 for (idx = 0; idx < card->nr_parts; idx++) {
2637 if (card->part[idx].area_type & MMC_BLK_DATA_AREA_RPMB) {
2639 * RPMB partitions does not provide block access, they
2640 * are only accessed using ioctl():s. Thus create
2641 * special RPMB block devices that do not have a
2642 * backing block queue for these.
2644 ret = mmc_blk_alloc_rpmb_part(card, md,
2645 card->part[idx].part_cfg,
2646 card->part[idx].size >> 9,
2647 card->part[idx].name);
2648 if (ret)
2649 return ret;
2650 } else if (card->part[idx].size) {
2651 ret = mmc_blk_alloc_part(card, md,
2652 card->part[idx].part_cfg,
2653 card->part[idx].size >> 9,
2654 card->part[idx].force_ro,
2655 card->part[idx].name,
2656 card->part[idx].area_type);
2657 if (ret)
2658 return ret;
2662 return 0;
2665 static void mmc_blk_remove_req(struct mmc_blk_data *md)
2667 struct mmc_card *card;
2669 if (md) {
2671 * Flush remaining requests and free queues. It
2672 * is freeing the queue that stops new requests
2673 * from being accepted.
2675 card = md->queue.card;
2676 if (md->disk->flags & GENHD_FL_UP) {
2677 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2678 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2679 card->ext_csd.boot_ro_lockable)
2680 device_remove_file(disk_to_dev(md->disk),
2681 &md->power_ro_lock);
2683 del_gendisk(md->disk);
2685 mmc_cleanup_queue(&md->queue);
2686 mmc_blk_put(md);
2690 static void mmc_blk_remove_parts(struct mmc_card *card,
2691 struct mmc_blk_data *md)
2693 struct list_head *pos, *q;
2694 struct mmc_blk_data *part_md;
2695 struct mmc_rpmb_data *rpmb;
2697 /* Remove RPMB partitions */
2698 list_for_each_safe(pos, q, &md->rpmbs) {
2699 rpmb = list_entry(pos, struct mmc_rpmb_data, node);
2700 list_del(pos);
2701 mmc_blk_remove_rpmb_part(rpmb);
2703 /* Remove block partitions */
2704 list_for_each_safe(pos, q, &md->part) {
2705 part_md = list_entry(pos, struct mmc_blk_data, part);
2706 list_del(pos);
2707 mmc_blk_remove_req(part_md);
2711 static int mmc_add_disk(struct mmc_blk_data *md)
2713 int ret;
2714 struct mmc_card *card = md->queue.card;
2716 device_add_disk(md->parent, md->disk, NULL);
2717 md->force_ro.show = force_ro_show;
2718 md->force_ro.store = force_ro_store;
2719 sysfs_attr_init(&md->force_ro.attr);
2720 md->force_ro.attr.name = "force_ro";
2721 md->force_ro.attr.mode = S_IRUGO | S_IWUSR;
2722 ret = device_create_file(disk_to_dev(md->disk), &md->force_ro);
2723 if (ret)
2724 goto force_ro_fail;
2726 if ((md->area_type & MMC_BLK_DATA_AREA_BOOT) &&
2727 card->ext_csd.boot_ro_lockable) {
2728 umode_t mode;
2730 if (card->ext_csd.boot_ro_lock & EXT_CSD_BOOT_WP_B_PWR_WP_DIS)
2731 mode = S_IRUGO;
2732 else
2733 mode = S_IRUGO | S_IWUSR;
2735 md->power_ro_lock.show = power_ro_lock_show;
2736 md->power_ro_lock.store = power_ro_lock_store;
2737 sysfs_attr_init(&md->power_ro_lock.attr);
2738 md->power_ro_lock.attr.mode = mode;
2739 md->power_ro_lock.attr.name =
2740 "ro_lock_until_next_power_on";
2741 ret = device_create_file(disk_to_dev(md->disk),
2742 &md->power_ro_lock);
2743 if (ret)
2744 goto power_ro_lock_fail;
2746 return ret;
2748 power_ro_lock_fail:
2749 device_remove_file(disk_to_dev(md->disk), &md->force_ro);
2750 force_ro_fail:
2751 del_gendisk(md->disk);
2753 return ret;
2756 #ifdef CONFIG_DEBUG_FS
2758 static int mmc_dbg_card_status_get(void *data, u64 *val)
2760 struct mmc_card *card = data;
2761 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2762 struct mmc_queue *mq = &md->queue;
2763 struct request *req;
2764 int ret;
2766 /* Ask the block layer about the card status */
2767 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2768 if (IS_ERR(req))
2769 return PTR_ERR(req);
2770 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_CARD_STATUS;
2771 blk_execute_rq(mq->queue, NULL, req, 0);
2772 ret = req_to_mmc_queue_req(req)->drv_op_result;
2773 if (ret >= 0) {
2774 *val = ret;
2775 ret = 0;
2777 blk_put_request(req);
2779 return ret;
2781 DEFINE_SIMPLE_ATTRIBUTE(mmc_dbg_card_status_fops, mmc_dbg_card_status_get,
2782 NULL, "%08llx\n");
2784 /* That is two digits * 512 + 1 for newline */
2785 #define EXT_CSD_STR_LEN 1025
2787 static int mmc_ext_csd_open(struct inode *inode, struct file *filp)
2789 struct mmc_card *card = inode->i_private;
2790 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2791 struct mmc_queue *mq = &md->queue;
2792 struct request *req;
2793 char *buf;
2794 ssize_t n = 0;
2795 u8 *ext_csd;
2796 int err, i;
2798 buf = kmalloc(EXT_CSD_STR_LEN + 1, GFP_KERNEL);
2799 if (!buf)
2800 return -ENOMEM;
2802 /* Ask the block layer for the EXT CSD */
2803 req = blk_get_request(mq->queue, REQ_OP_DRV_IN, 0);
2804 if (IS_ERR(req)) {
2805 err = PTR_ERR(req);
2806 goto out_free;
2808 req_to_mmc_queue_req(req)->drv_op = MMC_DRV_OP_GET_EXT_CSD;
2809 req_to_mmc_queue_req(req)->drv_op_data = &ext_csd;
2810 blk_execute_rq(mq->queue, NULL, req, 0);
2811 err = req_to_mmc_queue_req(req)->drv_op_result;
2812 blk_put_request(req);
2813 if (err) {
2814 pr_err("FAILED %d\n", err);
2815 goto out_free;
2818 for (i = 0; i < 512; i++)
2819 n += sprintf(buf + n, "%02x", ext_csd[i]);
2820 n += sprintf(buf + n, "\n");
2822 if (n != EXT_CSD_STR_LEN) {
2823 err = -EINVAL;
2824 kfree(ext_csd);
2825 goto out_free;
2828 filp->private_data = buf;
2829 kfree(ext_csd);
2830 return 0;
2832 out_free:
2833 kfree(buf);
2834 return err;
2837 static ssize_t mmc_ext_csd_read(struct file *filp, char __user *ubuf,
2838 size_t cnt, loff_t *ppos)
2840 char *buf = filp->private_data;
2842 return simple_read_from_buffer(ubuf, cnt, ppos,
2843 buf, EXT_CSD_STR_LEN);
2846 static int mmc_ext_csd_release(struct inode *inode, struct file *file)
2848 kfree(file->private_data);
2849 return 0;
2852 static const struct file_operations mmc_dbg_ext_csd_fops = {
2853 .open = mmc_ext_csd_open,
2854 .read = mmc_ext_csd_read,
2855 .release = mmc_ext_csd_release,
2856 .llseek = default_llseek,
2859 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2861 struct dentry *root;
2863 if (!card->debugfs_root)
2864 return 0;
2866 root = card->debugfs_root;
2868 if (mmc_card_mmc(card) || mmc_card_sd(card)) {
2869 md->status_dentry =
2870 debugfs_create_file("status", S_IRUSR, root, card,
2871 &mmc_dbg_card_status_fops);
2872 if (!md->status_dentry)
2873 return -EIO;
2876 if (mmc_card_mmc(card)) {
2877 md->ext_csd_dentry =
2878 debugfs_create_file("ext_csd", S_IRUSR, root, card,
2879 &mmc_dbg_ext_csd_fops);
2880 if (!md->ext_csd_dentry)
2881 return -EIO;
2884 return 0;
2887 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2888 struct mmc_blk_data *md)
2890 if (!card->debugfs_root)
2891 return;
2893 if (!IS_ERR_OR_NULL(md->status_dentry)) {
2894 debugfs_remove(md->status_dentry);
2895 md->status_dentry = NULL;
2898 if (!IS_ERR_OR_NULL(md->ext_csd_dentry)) {
2899 debugfs_remove(md->ext_csd_dentry);
2900 md->ext_csd_dentry = NULL;
2904 #else
2906 static int mmc_blk_add_debugfs(struct mmc_card *card, struct mmc_blk_data *md)
2908 return 0;
2911 static void mmc_blk_remove_debugfs(struct mmc_card *card,
2912 struct mmc_blk_data *md)
2916 #endif /* CONFIG_DEBUG_FS */
2918 static int mmc_blk_probe(struct mmc_card *card)
2920 struct mmc_blk_data *md, *part_md;
2921 char cap_str[10];
2924 * Check that the card supports the command class(es) we need.
2926 if (!(card->csd.cmdclass & CCC_BLOCK_READ))
2927 return -ENODEV;
2929 mmc_fixup_device(card, mmc_blk_fixups);
2931 md = mmc_blk_alloc(card);
2932 if (IS_ERR(md))
2933 return PTR_ERR(md);
2935 string_get_size((u64)get_capacity(md->disk), 512, STRING_UNITS_2,
2936 cap_str, sizeof(cap_str));
2937 pr_info("%s: %s %s %s %s\n",
2938 md->disk->disk_name, mmc_card_id(card), mmc_card_name(card),
2939 cap_str, md->read_only ? "(ro)" : "");
2941 if (mmc_blk_alloc_parts(card, md))
2942 goto out;
2944 dev_set_drvdata(&card->dev, md);
2946 if (mmc_add_disk(md))
2947 goto out;
2949 list_for_each_entry(part_md, &md->part, part) {
2950 if (mmc_add_disk(part_md))
2951 goto out;
2954 /* Add two debugfs entries */
2955 mmc_blk_add_debugfs(card, md);
2957 pm_runtime_set_autosuspend_delay(&card->dev, 3000);
2958 pm_runtime_use_autosuspend(&card->dev);
2961 * Don't enable runtime PM for SD-combo cards here. Leave that
2962 * decision to be taken during the SDIO init sequence instead.
2964 if (card->type != MMC_TYPE_SD_COMBO) {
2965 pm_runtime_set_active(&card->dev);
2966 pm_runtime_enable(&card->dev);
2969 return 0;
2971 out:
2972 mmc_blk_remove_parts(card, md);
2973 mmc_blk_remove_req(md);
2974 return 0;
2977 static void mmc_blk_remove(struct mmc_card *card)
2979 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
2981 mmc_blk_remove_debugfs(card, md);
2982 mmc_blk_remove_parts(card, md);
2983 pm_runtime_get_sync(&card->dev);
2984 if (md->part_curr != md->part_type) {
2985 mmc_claim_host(card->host);
2986 mmc_blk_part_switch(card, md->part_type);
2987 mmc_release_host(card->host);
2989 if (card->type != MMC_TYPE_SD_COMBO)
2990 pm_runtime_disable(&card->dev);
2991 pm_runtime_put_noidle(&card->dev);
2992 mmc_blk_remove_req(md);
2993 dev_set_drvdata(&card->dev, NULL);
2996 static int _mmc_blk_suspend(struct mmc_card *card)
2998 struct mmc_blk_data *part_md;
2999 struct mmc_blk_data *md = dev_get_drvdata(&card->dev);
3001 if (md) {
3002 mmc_queue_suspend(&md->queue);
3003 list_for_each_entry(part_md, &md->part, part) {
3004 mmc_queue_suspend(&part_md->queue);
3007 return 0;
3010 static void mmc_blk_shutdown(struct mmc_card *card)
3012 _mmc_blk_suspend(card);
3015 #ifdef CONFIG_PM_SLEEP
3016 static int mmc_blk_suspend(struct device *dev)
3018 struct mmc_card *card = mmc_dev_to_card(dev);
3020 return _mmc_blk_suspend(card);
3023 static int mmc_blk_resume(struct device *dev)
3025 struct mmc_blk_data *part_md;
3026 struct mmc_blk_data *md = dev_get_drvdata(dev);
3028 if (md) {
3030 * Resume involves the card going into idle state,
3031 * so current partition is always the main one.
3033 md->part_curr = md->part_type;
3034 mmc_queue_resume(&md->queue);
3035 list_for_each_entry(part_md, &md->part, part) {
3036 mmc_queue_resume(&part_md->queue);
3039 return 0;
3041 #endif
3043 static SIMPLE_DEV_PM_OPS(mmc_blk_pm_ops, mmc_blk_suspend, mmc_blk_resume);
3045 static struct mmc_driver mmc_driver = {
3046 .drv = {
3047 .name = "mmcblk",
3048 .pm = &mmc_blk_pm_ops,
3050 .probe = mmc_blk_probe,
3051 .remove = mmc_blk_remove,
3052 .shutdown = mmc_blk_shutdown,
3055 static int __init mmc_blk_init(void)
3057 int res;
3059 res = bus_register(&mmc_rpmb_bus_type);
3060 if (res < 0) {
3061 pr_err("mmcblk: could not register RPMB bus type\n");
3062 return res;
3064 res = alloc_chrdev_region(&mmc_rpmb_devt, 0, MAX_DEVICES, "rpmb");
3065 if (res < 0) {
3066 pr_err("mmcblk: failed to allocate rpmb chrdev region\n");
3067 goto out_bus_unreg;
3070 if (perdev_minors != CONFIG_MMC_BLOCK_MINORS)
3071 pr_info("mmcblk: using %d minors per device\n", perdev_minors);
3073 max_devices = min(MAX_DEVICES, (1 << MINORBITS) / perdev_minors);
3075 res = register_blkdev(MMC_BLOCK_MAJOR, "mmc");
3076 if (res)
3077 goto out_chrdev_unreg;
3079 res = mmc_register_driver(&mmc_driver);
3080 if (res)
3081 goto out_blkdev_unreg;
3083 return 0;
3085 out_blkdev_unreg:
3086 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3087 out_chrdev_unreg:
3088 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3089 out_bus_unreg:
3090 bus_unregister(&mmc_rpmb_bus_type);
3091 return res;
3094 static void __exit mmc_blk_exit(void)
3096 mmc_unregister_driver(&mmc_driver);
3097 unregister_blkdev(MMC_BLOCK_MAJOR, "mmc");
3098 unregister_chrdev_region(mmc_rpmb_devt, MAX_DEVICES);
3099 bus_unregister(&mmc_rpmb_bus_type);
3102 module_init(mmc_blk_init);
3103 module_exit(mmc_blk_exit);
3105 MODULE_LICENSE("GPL");
3106 MODULE_DESCRIPTION("Multimedia Card (MMC) block device driver");