2 * Memory merging support.
4 * This code enables dynamic sharing of identical pages found in different
5 * memory areas, even if they are not shared by fork()
7 * Copyright (C) 2008-2009 Red Hat, Inc.
14 * This work is licensed under the terms of the GNU GPL, version 2.
17 #include <linux/errno.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
43 #include <asm/tlbflush.h>
48 #define DO_NUMA(x) do { (x); } while (0)
51 #define DO_NUMA(x) do { } while (0)
55 * A few notes about the KSM scanning process,
56 * to make it easier to understand the data structures below:
58 * In order to reduce excessive scanning, KSM sorts the memory pages by their
59 * contents into a data structure that holds pointers to the pages' locations.
61 * Since the contents of the pages may change at any moment, KSM cannot just
62 * insert the pages into a normal sorted tree and expect it to find anything.
63 * Therefore KSM uses two data structures - the stable and the unstable tree.
65 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
66 * by their contents. Because each such page is write-protected, searching on
67 * this tree is fully assured to be working (except when pages are unmapped),
68 * and therefore this tree is called the stable tree.
70 * In addition to the stable tree, KSM uses a second data structure called the
71 * unstable tree: this tree holds pointers to pages which have been found to
72 * be "unchanged for a period of time". The unstable tree sorts these pages
73 * by their contents, but since they are not write-protected, KSM cannot rely
74 * upon the unstable tree to work correctly - the unstable tree is liable to
75 * be corrupted as its contents are modified, and so it is called unstable.
77 * KSM solves this problem by several techniques:
79 * 1) The unstable tree is flushed every time KSM completes scanning all
80 * memory areas, and then the tree is rebuilt again from the beginning.
81 * 2) KSM will only insert into the unstable tree, pages whose hash value
82 * has not changed since the previous scan of all memory areas.
83 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
84 * colors of the nodes and not on their contents, assuring that even when
85 * the tree gets "corrupted" it won't get out of balance, so scanning time
86 * remains the same (also, searching and inserting nodes in an rbtree uses
87 * the same algorithm, so we have no overhead when we flush and rebuild).
88 * 4) KSM never flushes the stable tree, which means that even if it were to
89 * take 10 attempts to find a page in the unstable tree, once it is found,
90 * it is secured in the stable tree. (When we scan a new page, we first
91 * compare it against the stable tree, and then against the unstable tree.)
93 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
94 * stable trees and multiple unstable trees: one of each for each NUMA node.
98 * struct mm_slot - ksm information per mm that is being scanned
99 * @link: link to the mm_slots hash list
100 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
101 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
102 * @mm: the mm that this information is valid for
105 struct hlist_node link
;
106 struct list_head mm_list
;
107 struct rmap_item
*rmap_list
;
108 struct mm_struct
*mm
;
112 * struct ksm_scan - cursor for scanning
113 * @mm_slot: the current mm_slot we are scanning
114 * @address: the next address inside that to be scanned
115 * @rmap_list: link to the next rmap to be scanned in the rmap_list
116 * @seqnr: count of completed full scans (needed when removing unstable node)
118 * There is only the one ksm_scan instance of this cursor structure.
121 struct mm_slot
*mm_slot
;
122 unsigned long address
;
123 struct rmap_item
**rmap_list
;
128 * struct stable_node - node of the stable rbtree
129 * @node: rb node of this ksm page in the stable tree
130 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
131 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
132 * @list: linked into migrate_nodes, pending placement in the proper node tree
133 * @hlist: hlist head of rmap_items using this ksm page
134 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
135 * @chain_prune_time: time of the last full garbage collection
136 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
137 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
141 struct rb_node node
; /* when node of stable tree */
142 struct { /* when listed for migration */
143 struct list_head
*head
;
145 struct hlist_node hlist_dup
;
146 struct list_head list
;
150 struct hlist_head hlist
;
153 unsigned long chain_prune_time
;
156 * STABLE_NODE_CHAIN can be any negative number in
157 * rmap_hlist_len negative range, but better not -1 to be able
158 * to reliably detect underflows.
160 #define STABLE_NODE_CHAIN -1024
168 * struct rmap_item - reverse mapping item for virtual addresses
169 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
170 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
171 * @nid: NUMA node id of unstable tree in which linked (may not match page)
172 * @mm: the memory structure this rmap_item is pointing into
173 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
174 * @oldchecksum: previous checksum of the page at that virtual address
175 * @node: rb node of this rmap_item in the unstable tree
176 * @head: pointer to stable_node heading this list in the stable tree
177 * @hlist: link into hlist of rmap_items hanging off that stable_node
180 struct rmap_item
*rmap_list
;
182 struct anon_vma
*anon_vma
; /* when stable */
184 int nid
; /* when node of unstable tree */
187 struct mm_struct
*mm
;
188 unsigned long address
; /* + low bits used for flags below */
189 unsigned int oldchecksum
; /* when unstable */
191 struct rb_node node
; /* when node of unstable tree */
192 struct { /* when listed from stable tree */
193 struct stable_node
*head
;
194 struct hlist_node hlist
;
199 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
200 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
201 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
203 /* The stable and unstable tree heads */
204 static struct rb_root one_stable_tree
[1] = { RB_ROOT
};
205 static struct rb_root one_unstable_tree
[1] = { RB_ROOT
};
206 static struct rb_root
*root_stable_tree
= one_stable_tree
;
207 static struct rb_root
*root_unstable_tree
= one_unstable_tree
;
209 /* Recently migrated nodes of stable tree, pending proper placement */
210 static LIST_HEAD(migrate_nodes
);
211 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
213 #define MM_SLOTS_HASH_BITS 10
214 static DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
216 static struct mm_slot ksm_mm_head
= {
217 .mm_list
= LIST_HEAD_INIT(ksm_mm_head
.mm_list
),
219 static struct ksm_scan ksm_scan
= {
220 .mm_slot
= &ksm_mm_head
,
223 static struct kmem_cache
*rmap_item_cache
;
224 static struct kmem_cache
*stable_node_cache
;
225 static struct kmem_cache
*mm_slot_cache
;
227 /* The number of nodes in the stable tree */
228 static unsigned long ksm_pages_shared
;
230 /* The number of page slots additionally sharing those nodes */
231 static unsigned long ksm_pages_sharing
;
233 /* The number of nodes in the unstable tree */
234 static unsigned long ksm_pages_unshared
;
236 /* The number of rmap_items in use: to calculate pages_volatile */
237 static unsigned long ksm_rmap_items
;
239 /* The number of stable_node chains */
240 static unsigned long ksm_stable_node_chains
;
242 /* The number of stable_node dups linked to the stable_node chains */
243 static unsigned long ksm_stable_node_dups
;
245 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
246 static int ksm_stable_node_chains_prune_millisecs
= 2000;
248 /* Maximum number of page slots sharing a stable node */
249 static int ksm_max_page_sharing
= 256;
251 /* Number of pages ksmd should scan in one batch */
252 static unsigned int ksm_thread_pages_to_scan
= 100;
254 /* Milliseconds ksmd should sleep between batches */
255 static unsigned int ksm_thread_sleep_millisecs
= 20;
257 /* Checksum of an empty (zeroed) page */
258 static unsigned int zero_checksum __read_mostly
;
260 /* Whether to merge empty (zeroed) pages with actual zero pages */
261 static bool ksm_use_zero_pages __read_mostly
;
264 /* Zeroed when merging across nodes is not allowed */
265 static unsigned int ksm_merge_across_nodes
= 1;
266 static int ksm_nr_node_ids
= 1;
268 #define ksm_merge_across_nodes 1U
269 #define ksm_nr_node_ids 1
272 #define KSM_RUN_STOP 0
273 #define KSM_RUN_MERGE 1
274 #define KSM_RUN_UNMERGE 2
275 #define KSM_RUN_OFFLINE 4
276 static unsigned long ksm_run
= KSM_RUN_STOP
;
277 static void wait_while_offlining(void);
279 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait
);
280 static DEFINE_MUTEX(ksm_thread_mutex
);
281 static DEFINE_SPINLOCK(ksm_mmlist_lock
);
283 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
284 sizeof(struct __struct), __alignof__(struct __struct),\
287 static int __init
ksm_slab_init(void)
289 rmap_item_cache
= KSM_KMEM_CACHE(rmap_item
, 0);
290 if (!rmap_item_cache
)
293 stable_node_cache
= KSM_KMEM_CACHE(stable_node
, 0);
294 if (!stable_node_cache
)
297 mm_slot_cache
= KSM_KMEM_CACHE(mm_slot
, 0);
304 kmem_cache_destroy(stable_node_cache
);
306 kmem_cache_destroy(rmap_item_cache
);
311 static void __init
ksm_slab_free(void)
313 kmem_cache_destroy(mm_slot_cache
);
314 kmem_cache_destroy(stable_node_cache
);
315 kmem_cache_destroy(rmap_item_cache
);
316 mm_slot_cache
= NULL
;
319 static __always_inline
bool is_stable_node_chain(struct stable_node
*chain
)
321 return chain
->rmap_hlist_len
== STABLE_NODE_CHAIN
;
324 static __always_inline
bool is_stable_node_dup(struct stable_node
*dup
)
326 return dup
->head
== STABLE_NODE_DUP_HEAD
;
329 static inline void stable_node_chain_add_dup(struct stable_node
*dup
,
330 struct stable_node
*chain
)
332 VM_BUG_ON(is_stable_node_dup(dup
));
333 dup
->head
= STABLE_NODE_DUP_HEAD
;
334 VM_BUG_ON(!is_stable_node_chain(chain
));
335 hlist_add_head(&dup
->hlist_dup
, &chain
->hlist
);
336 ksm_stable_node_dups
++;
339 static inline void __stable_node_dup_del(struct stable_node
*dup
)
341 VM_BUG_ON(!is_stable_node_dup(dup
));
342 hlist_del(&dup
->hlist_dup
);
343 ksm_stable_node_dups
--;
346 static inline void stable_node_dup_del(struct stable_node
*dup
)
348 VM_BUG_ON(is_stable_node_chain(dup
));
349 if (is_stable_node_dup(dup
))
350 __stable_node_dup_del(dup
);
352 rb_erase(&dup
->node
, root_stable_tree
+ NUMA(dup
->nid
));
353 #ifdef CONFIG_DEBUG_VM
358 static inline struct rmap_item
*alloc_rmap_item(void)
360 struct rmap_item
*rmap_item
;
362 rmap_item
= kmem_cache_zalloc(rmap_item_cache
, GFP_KERNEL
|
363 __GFP_NORETRY
| __GFP_NOWARN
);
369 static inline void free_rmap_item(struct rmap_item
*rmap_item
)
372 rmap_item
->mm
= NULL
; /* debug safety */
373 kmem_cache_free(rmap_item_cache
, rmap_item
);
376 static inline struct stable_node
*alloc_stable_node(void)
379 * The allocation can take too long with GFP_KERNEL when memory is under
380 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
381 * grants access to memory reserves, helping to avoid this problem.
383 return kmem_cache_alloc(stable_node_cache
, GFP_KERNEL
| __GFP_HIGH
);
386 static inline void free_stable_node(struct stable_node
*stable_node
)
388 VM_BUG_ON(stable_node
->rmap_hlist_len
&&
389 !is_stable_node_chain(stable_node
));
390 kmem_cache_free(stable_node_cache
, stable_node
);
393 static inline struct mm_slot
*alloc_mm_slot(void)
395 if (!mm_slot_cache
) /* initialization failed */
397 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
400 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
402 kmem_cache_free(mm_slot_cache
, mm_slot
);
405 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
407 struct mm_slot
*slot
;
409 hash_for_each_possible(mm_slots_hash
, slot
, link
, (unsigned long)mm
)
416 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
417 struct mm_slot
*mm_slot
)
420 hash_add(mm_slots_hash
, &mm_slot
->link
, (unsigned long)mm
);
424 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
425 * page tables after it has passed through ksm_exit() - which, if necessary,
426 * takes mmap_sem briefly to serialize against them. ksm_exit() does not set
427 * a special flag: they can just back out as soon as mm_users goes to zero.
428 * ksm_test_exit() is used throughout to make this test for exit: in some
429 * places for correctness, in some places just to avoid unnecessary work.
431 static inline bool ksm_test_exit(struct mm_struct
*mm
)
433 return atomic_read(&mm
->mm_users
) == 0;
437 * We use break_ksm to break COW on a ksm page: it's a stripped down
439 * if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
442 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
443 * in case the application has unmapped and remapped mm,addr meanwhile.
444 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
445 * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
447 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
448 * of the process that owns 'vma'. We also do not want to enforce
449 * protection keys here anyway.
451 static int break_ksm(struct vm_area_struct
*vma
, unsigned long addr
)
458 page
= follow_page(vma
, addr
,
459 FOLL_GET
| FOLL_MIGRATION
| FOLL_REMOTE
);
460 if (IS_ERR_OR_NULL(page
))
463 ret
= handle_mm_fault(vma
, addr
,
464 FAULT_FLAG_WRITE
| FAULT_FLAG_REMOTE
);
466 ret
= VM_FAULT_WRITE
;
468 } while (!(ret
& (VM_FAULT_WRITE
| VM_FAULT_SIGBUS
| VM_FAULT_SIGSEGV
| VM_FAULT_OOM
)));
470 * We must loop because handle_mm_fault() may back out if there's
471 * any difficulty e.g. if pte accessed bit gets updated concurrently.
473 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
474 * COW has been broken, even if the vma does not permit VM_WRITE;
475 * but note that a concurrent fault might break PageKsm for us.
477 * VM_FAULT_SIGBUS could occur if we race with truncation of the
478 * backing file, which also invalidates anonymous pages: that's
479 * okay, that truncation will have unmapped the PageKsm for us.
481 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
482 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
483 * current task has TIF_MEMDIE set, and will be OOM killed on return
484 * to user; and ksmd, having no mm, would never be chosen for that.
486 * But if the mm is in a limited mem_cgroup, then the fault may fail
487 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
488 * even ksmd can fail in this way - though it's usually breaking ksm
489 * just to undo a merge it made a moment before, so unlikely to oom.
491 * That's a pity: we might therefore have more kernel pages allocated
492 * than we're counting as nodes in the stable tree; but ksm_do_scan
493 * will retry to break_cow on each pass, so should recover the page
494 * in due course. The important thing is to not let VM_MERGEABLE
495 * be cleared while any such pages might remain in the area.
497 return (ret
& VM_FAULT_OOM
) ? -ENOMEM
: 0;
500 static struct vm_area_struct
*find_mergeable_vma(struct mm_struct
*mm
,
503 struct vm_area_struct
*vma
;
504 if (ksm_test_exit(mm
))
506 vma
= find_vma(mm
, addr
);
507 if (!vma
|| vma
->vm_start
> addr
)
509 if (!(vma
->vm_flags
& VM_MERGEABLE
) || !vma
->anon_vma
)
514 static void break_cow(struct rmap_item
*rmap_item
)
516 struct mm_struct
*mm
= rmap_item
->mm
;
517 unsigned long addr
= rmap_item
->address
;
518 struct vm_area_struct
*vma
;
521 * It is not an accident that whenever we want to break COW
522 * to undo, we also need to drop a reference to the anon_vma.
524 put_anon_vma(rmap_item
->anon_vma
);
526 down_read(&mm
->mmap_sem
);
527 vma
= find_mergeable_vma(mm
, addr
);
529 break_ksm(vma
, addr
);
530 up_read(&mm
->mmap_sem
);
533 static struct page
*get_mergeable_page(struct rmap_item
*rmap_item
)
535 struct mm_struct
*mm
= rmap_item
->mm
;
536 unsigned long addr
= rmap_item
->address
;
537 struct vm_area_struct
*vma
;
540 down_read(&mm
->mmap_sem
);
541 vma
= find_mergeable_vma(mm
, addr
);
545 page
= follow_page(vma
, addr
, FOLL_GET
);
546 if (IS_ERR_OR_NULL(page
))
548 if (PageAnon(page
)) {
549 flush_anon_page(vma
, page
, addr
);
550 flush_dcache_page(page
);
556 up_read(&mm
->mmap_sem
);
561 * This helper is used for getting right index into array of tree roots.
562 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
563 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
564 * every node has its own stable and unstable tree.
566 static inline int get_kpfn_nid(unsigned long kpfn
)
568 return ksm_merge_across_nodes
? 0 : NUMA(pfn_to_nid(kpfn
));
571 static struct stable_node
*alloc_stable_node_chain(struct stable_node
*dup
,
572 struct rb_root
*root
)
574 struct stable_node
*chain
= alloc_stable_node();
575 VM_BUG_ON(is_stable_node_chain(dup
));
577 INIT_HLIST_HEAD(&chain
->hlist
);
578 chain
->chain_prune_time
= jiffies
;
579 chain
->rmap_hlist_len
= STABLE_NODE_CHAIN
;
580 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
581 chain
->nid
= -1; /* debug */
583 ksm_stable_node_chains
++;
586 * Put the stable node chain in the first dimension of
587 * the stable tree and at the same time remove the old
590 rb_replace_node(&dup
->node
, &chain
->node
, root
);
593 * Move the old stable node to the second dimension
594 * queued in the hlist_dup. The invariant is that all
595 * dup stable_nodes in the chain->hlist point to pages
596 * that are wrprotected and have the exact same
599 stable_node_chain_add_dup(dup
, chain
);
604 static inline void free_stable_node_chain(struct stable_node
*chain
,
605 struct rb_root
*root
)
607 rb_erase(&chain
->node
, root
);
608 free_stable_node(chain
);
609 ksm_stable_node_chains
--;
612 static void remove_node_from_stable_tree(struct stable_node
*stable_node
)
614 struct rmap_item
*rmap_item
;
616 /* check it's not STABLE_NODE_CHAIN or negative */
617 BUG_ON(stable_node
->rmap_hlist_len
< 0);
619 hlist_for_each_entry(rmap_item
, &stable_node
->hlist
, hlist
) {
620 if (rmap_item
->hlist
.next
)
624 VM_BUG_ON(stable_node
->rmap_hlist_len
<= 0);
625 stable_node
->rmap_hlist_len
--;
626 put_anon_vma(rmap_item
->anon_vma
);
627 rmap_item
->address
&= PAGE_MASK
;
632 * We need the second aligned pointer of the migrate_nodes
633 * list_head to stay clear from the rb_parent_color union
634 * (aligned and different than any node) and also different
635 * from &migrate_nodes. This will verify that future list.h changes
636 * don't break STABLE_NODE_DUP_HEAD.
638 #if GCC_VERSION >= 40903 /* only recent gcc can handle it */
639 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD
<= &migrate_nodes
);
640 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD
>= &migrate_nodes
+ 1);
643 if (stable_node
->head
== &migrate_nodes
)
644 list_del(&stable_node
->list
);
646 stable_node_dup_del(stable_node
);
647 free_stable_node(stable_node
);
651 * get_ksm_page: checks if the page indicated by the stable node
652 * is still its ksm page, despite having held no reference to it.
653 * In which case we can trust the content of the page, and it
654 * returns the gotten page; but if the page has now been zapped,
655 * remove the stale node from the stable tree and return NULL.
656 * But beware, the stable node's page might be being migrated.
658 * You would expect the stable_node to hold a reference to the ksm page.
659 * But if it increments the page's count, swapping out has to wait for
660 * ksmd to come around again before it can free the page, which may take
661 * seconds or even minutes: much too unresponsive. So instead we use a
662 * "keyhole reference": access to the ksm page from the stable node peeps
663 * out through its keyhole to see if that page still holds the right key,
664 * pointing back to this stable node. This relies on freeing a PageAnon
665 * page to reset its page->mapping to NULL, and relies on no other use of
666 * a page to put something that might look like our key in page->mapping.
667 * is on its way to being freed; but it is an anomaly to bear in mind.
669 static struct page
*get_ksm_page(struct stable_node
*stable_node
, bool lock_it
)
672 void *expected_mapping
;
675 expected_mapping
= (void *)((unsigned long)stable_node
|
678 kpfn
= READ_ONCE(stable_node
->kpfn
);
679 page
= pfn_to_page(kpfn
);
682 * page is computed from kpfn, so on most architectures reading
683 * page->mapping is naturally ordered after reading node->kpfn,
684 * but on Alpha we need to be more careful.
686 smp_read_barrier_depends();
687 if (READ_ONCE(page
->mapping
) != expected_mapping
)
691 * We cannot do anything with the page while its refcount is 0.
692 * Usually 0 means free, or tail of a higher-order page: in which
693 * case this node is no longer referenced, and should be freed;
694 * however, it might mean that the page is under page_freeze_refs().
695 * The __remove_mapping() case is easy, again the node is now stale;
696 * but if page is swapcache in migrate_page_move_mapping(), it might
697 * still be our page, in which case it's essential to keep the node.
699 while (!get_page_unless_zero(page
)) {
701 * Another check for page->mapping != expected_mapping would
702 * work here too. We have chosen the !PageSwapCache test to
703 * optimize the common case, when the page is or is about to
704 * be freed: PageSwapCache is cleared (under spin_lock_irq)
705 * in the freeze_refs section of __remove_mapping(); but Anon
706 * page->mapping reset to NULL later, in free_pages_prepare().
708 if (!PageSwapCache(page
))
713 if (READ_ONCE(page
->mapping
) != expected_mapping
) {
720 if (READ_ONCE(page
->mapping
) != expected_mapping
) {
730 * We come here from above when page->mapping or !PageSwapCache
731 * suggests that the node is stale; but it might be under migration.
732 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
733 * before checking whether node->kpfn has been changed.
736 if (READ_ONCE(stable_node
->kpfn
) != kpfn
)
738 remove_node_from_stable_tree(stable_node
);
743 * Removing rmap_item from stable or unstable tree.
744 * This function will clean the information from the stable/unstable tree.
746 static void remove_rmap_item_from_tree(struct rmap_item
*rmap_item
)
748 if (rmap_item
->address
& STABLE_FLAG
) {
749 struct stable_node
*stable_node
;
752 stable_node
= rmap_item
->head
;
753 page
= get_ksm_page(stable_node
, true);
757 hlist_del(&rmap_item
->hlist
);
761 if (!hlist_empty(&stable_node
->hlist
))
765 VM_BUG_ON(stable_node
->rmap_hlist_len
<= 0);
766 stable_node
->rmap_hlist_len
--;
768 put_anon_vma(rmap_item
->anon_vma
);
769 rmap_item
->address
&= PAGE_MASK
;
771 } else if (rmap_item
->address
& UNSTABLE_FLAG
) {
774 * Usually ksmd can and must skip the rb_erase, because
775 * root_unstable_tree was already reset to RB_ROOT.
776 * But be careful when an mm is exiting: do the rb_erase
777 * if this rmap_item was inserted by this scan, rather
778 * than left over from before.
780 age
= (unsigned char)(ksm_scan
.seqnr
- rmap_item
->address
);
783 rb_erase(&rmap_item
->node
,
784 root_unstable_tree
+ NUMA(rmap_item
->nid
));
785 ksm_pages_unshared
--;
786 rmap_item
->address
&= PAGE_MASK
;
789 cond_resched(); /* we're called from many long loops */
792 static void remove_trailing_rmap_items(struct mm_slot
*mm_slot
,
793 struct rmap_item
**rmap_list
)
796 struct rmap_item
*rmap_item
= *rmap_list
;
797 *rmap_list
= rmap_item
->rmap_list
;
798 remove_rmap_item_from_tree(rmap_item
);
799 free_rmap_item(rmap_item
);
804 * Though it's very tempting to unmerge rmap_items from stable tree rather
805 * than check every pte of a given vma, the locking doesn't quite work for
806 * that - an rmap_item is assigned to the stable tree after inserting ksm
807 * page and upping mmap_sem. Nor does it fit with the way we skip dup'ing
808 * rmap_items from parent to child at fork time (so as not to waste time
809 * if exit comes before the next scan reaches it).
811 * Similarly, although we'd like to remove rmap_items (so updating counts
812 * and freeing memory) when unmerging an area, it's easier to leave that
813 * to the next pass of ksmd - consider, for example, how ksmd might be
814 * in cmp_and_merge_page on one of the rmap_items we would be removing.
816 static int unmerge_ksm_pages(struct vm_area_struct
*vma
,
817 unsigned long start
, unsigned long end
)
822 for (addr
= start
; addr
< end
&& !err
; addr
+= PAGE_SIZE
) {
823 if (ksm_test_exit(vma
->vm_mm
))
825 if (signal_pending(current
))
828 err
= break_ksm(vma
, addr
);
835 * Only called through the sysfs control interface:
837 static int remove_stable_node(struct stable_node
*stable_node
)
842 page
= get_ksm_page(stable_node
, true);
845 * get_ksm_page did remove_node_from_stable_tree itself.
850 if (WARN_ON_ONCE(page_mapped(page
))) {
852 * This should not happen: but if it does, just refuse to let
853 * merge_across_nodes be switched - there is no need to panic.
858 * The stable node did not yet appear stale to get_ksm_page(),
859 * since that allows for an unmapped ksm page to be recognized
860 * right up until it is freed; but the node is safe to remove.
861 * This page might be in a pagevec waiting to be freed,
862 * or it might be PageSwapCache (perhaps under writeback),
863 * or it might have been removed from swapcache a moment ago.
865 set_page_stable_node(page
, NULL
);
866 remove_node_from_stable_tree(stable_node
);
875 static int remove_stable_node_chain(struct stable_node
*stable_node
,
876 struct rb_root
*root
)
878 struct stable_node
*dup
;
879 struct hlist_node
*hlist_safe
;
881 if (!is_stable_node_chain(stable_node
)) {
882 VM_BUG_ON(is_stable_node_dup(stable_node
));
883 if (remove_stable_node(stable_node
))
889 hlist_for_each_entry_safe(dup
, hlist_safe
,
890 &stable_node
->hlist
, hlist_dup
) {
891 VM_BUG_ON(!is_stable_node_dup(dup
));
892 if (remove_stable_node(dup
))
895 BUG_ON(!hlist_empty(&stable_node
->hlist
));
896 free_stable_node_chain(stable_node
, root
);
900 static int remove_all_stable_nodes(void)
902 struct stable_node
*stable_node
, *next
;
906 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++) {
907 while (root_stable_tree
[nid
].rb_node
) {
908 stable_node
= rb_entry(root_stable_tree
[nid
].rb_node
,
909 struct stable_node
, node
);
910 if (remove_stable_node_chain(stable_node
,
911 root_stable_tree
+ nid
)) {
913 break; /* proceed to next nid */
918 list_for_each_entry_safe(stable_node
, next
, &migrate_nodes
, list
) {
919 if (remove_stable_node(stable_node
))
926 static int unmerge_and_remove_all_rmap_items(void)
928 struct mm_slot
*mm_slot
;
929 struct mm_struct
*mm
;
930 struct vm_area_struct
*vma
;
933 spin_lock(&ksm_mmlist_lock
);
934 ksm_scan
.mm_slot
= list_entry(ksm_mm_head
.mm_list
.next
,
935 struct mm_slot
, mm_list
);
936 spin_unlock(&ksm_mmlist_lock
);
938 for (mm_slot
= ksm_scan
.mm_slot
;
939 mm_slot
!= &ksm_mm_head
; mm_slot
= ksm_scan
.mm_slot
) {
941 down_read(&mm
->mmap_sem
);
942 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
943 if (ksm_test_exit(mm
))
945 if (!(vma
->vm_flags
& VM_MERGEABLE
) || !vma
->anon_vma
)
947 err
= unmerge_ksm_pages(vma
,
948 vma
->vm_start
, vma
->vm_end
);
953 remove_trailing_rmap_items(mm_slot
, &mm_slot
->rmap_list
);
954 up_read(&mm
->mmap_sem
);
956 spin_lock(&ksm_mmlist_lock
);
957 ksm_scan
.mm_slot
= list_entry(mm_slot
->mm_list
.next
,
958 struct mm_slot
, mm_list
);
959 if (ksm_test_exit(mm
)) {
960 hash_del(&mm_slot
->link
);
961 list_del(&mm_slot
->mm_list
);
962 spin_unlock(&ksm_mmlist_lock
);
964 free_mm_slot(mm_slot
);
965 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
968 spin_unlock(&ksm_mmlist_lock
);
971 /* Clean up stable nodes, but don't worry if some are still busy */
972 remove_all_stable_nodes();
977 up_read(&mm
->mmap_sem
);
978 spin_lock(&ksm_mmlist_lock
);
979 ksm_scan
.mm_slot
= &ksm_mm_head
;
980 spin_unlock(&ksm_mmlist_lock
);
983 #endif /* CONFIG_SYSFS */
985 static u32
calc_checksum(struct page
*page
)
988 void *addr
= kmap_atomic(page
);
989 checksum
= jhash2(addr
, PAGE_SIZE
/ 4, 17);
994 static int memcmp_pages(struct page
*page1
, struct page
*page2
)
999 addr1
= kmap_atomic(page1
);
1000 addr2
= kmap_atomic(page2
);
1001 ret
= memcmp(addr1
, addr2
, PAGE_SIZE
);
1002 kunmap_atomic(addr2
);
1003 kunmap_atomic(addr1
);
1007 static inline int pages_identical(struct page
*page1
, struct page
*page2
)
1009 return !memcmp_pages(page1
, page2
);
1012 static int write_protect_page(struct vm_area_struct
*vma
, struct page
*page
,
1015 struct mm_struct
*mm
= vma
->vm_mm
;
1016 struct page_vma_mapped_walk pvmw
= {
1022 unsigned long mmun_start
; /* For mmu_notifiers */
1023 unsigned long mmun_end
; /* For mmu_notifiers */
1025 pvmw
.address
= page_address_in_vma(page
, vma
);
1026 if (pvmw
.address
== -EFAULT
)
1029 BUG_ON(PageTransCompound(page
));
1031 mmun_start
= pvmw
.address
;
1032 mmun_end
= pvmw
.address
+ PAGE_SIZE
;
1033 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1035 if (!page_vma_mapped_walk(&pvmw
))
1037 if (WARN_ONCE(!pvmw
.pte
, "Unexpected PMD mapping?"))
1040 if (pte_write(*pvmw
.pte
) || pte_dirty(*pvmw
.pte
) ||
1041 (pte_protnone(*pvmw
.pte
) && pte_savedwrite(*pvmw
.pte
))) {
1044 swapped
= PageSwapCache(page
);
1045 flush_cache_page(vma
, pvmw
.address
, page_to_pfn(page
));
1047 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1048 * take any lock, therefore the check that we are going to make
1049 * with the pagecount against the mapcount is racey and
1050 * O_DIRECT can happen right after the check.
1051 * So we clear the pte and flush the tlb before the check
1052 * this assure us that no O_DIRECT can happen after the check
1053 * or in the middle of the check.
1055 entry
= ptep_clear_flush_notify(vma
, pvmw
.address
, pvmw
.pte
);
1057 * Check that no O_DIRECT or similar I/O is in progress on the
1060 if (page_mapcount(page
) + 1 + swapped
!= page_count(page
)) {
1061 set_pte_at(mm
, pvmw
.address
, pvmw
.pte
, entry
);
1064 if (pte_dirty(entry
))
1065 set_page_dirty(page
);
1067 if (pte_protnone(entry
))
1068 entry
= pte_mkclean(pte_clear_savedwrite(entry
));
1070 entry
= pte_mkclean(pte_wrprotect(entry
));
1071 set_pte_at_notify(mm
, pvmw
.address
, pvmw
.pte
, entry
);
1073 *orig_pte
= *pvmw
.pte
;
1077 page_vma_mapped_walk_done(&pvmw
);
1079 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1085 * replace_page - replace page in vma by new ksm page
1086 * @vma: vma that holds the pte pointing to page
1087 * @page: the page we are replacing by kpage
1088 * @kpage: the ksm page we replace page by
1089 * @orig_pte: the original value of the pte
1091 * Returns 0 on success, -EFAULT on failure.
1093 static int replace_page(struct vm_area_struct
*vma
, struct page
*page
,
1094 struct page
*kpage
, pte_t orig_pte
)
1096 struct mm_struct
*mm
= vma
->vm_mm
;
1103 unsigned long mmun_start
; /* For mmu_notifiers */
1104 unsigned long mmun_end
; /* For mmu_notifiers */
1106 addr
= page_address_in_vma(page
, vma
);
1107 if (addr
== -EFAULT
)
1110 pmd
= mm_find_pmd(mm
, addr
);
1115 mmun_end
= addr
+ PAGE_SIZE
;
1116 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1118 ptep
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1119 if (!pte_same(*ptep
, orig_pte
)) {
1120 pte_unmap_unlock(ptep
, ptl
);
1125 * No need to check ksm_use_zero_pages here: we can only have a
1126 * zero_page here if ksm_use_zero_pages was enabled alreaady.
1128 if (!is_zero_pfn(page_to_pfn(kpage
))) {
1130 page_add_anon_rmap(kpage
, vma
, addr
, false);
1131 newpte
= mk_pte(kpage
, vma
->vm_page_prot
);
1133 newpte
= pte_mkspecial(pfn_pte(page_to_pfn(kpage
),
1134 vma
->vm_page_prot
));
1137 flush_cache_page(vma
, addr
, pte_pfn(*ptep
));
1138 ptep_clear_flush_notify(vma
, addr
, ptep
);
1139 set_pte_at_notify(mm
, addr
, ptep
, newpte
);
1141 page_remove_rmap(page
, false);
1142 if (!page_mapped(page
))
1143 try_to_free_swap(page
);
1146 pte_unmap_unlock(ptep
, ptl
);
1149 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1155 * try_to_merge_one_page - take two pages and merge them into one
1156 * @vma: the vma that holds the pte pointing to page
1157 * @page: the PageAnon page that we want to replace with kpage
1158 * @kpage: the PageKsm page that we want to map instead of page,
1159 * or NULL the first time when we want to use page as kpage.
1161 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1163 static int try_to_merge_one_page(struct vm_area_struct
*vma
,
1164 struct page
*page
, struct page
*kpage
)
1166 pte_t orig_pte
= __pte(0);
1169 if (page
== kpage
) /* ksm page forked */
1172 if (!PageAnon(page
))
1176 * We need the page lock to read a stable PageSwapCache in
1177 * write_protect_page(). We use trylock_page() instead of
1178 * lock_page() because we don't want to wait here - we
1179 * prefer to continue scanning and merging different pages,
1180 * then come back to this page when it is unlocked.
1182 if (!trylock_page(page
))
1185 if (PageTransCompound(page
)) {
1186 if (split_huge_page(page
))
1191 * If this anonymous page is mapped only here, its pte may need
1192 * to be write-protected. If it's mapped elsewhere, all of its
1193 * ptes are necessarily already write-protected. But in either
1194 * case, we need to lock and check page_count is not raised.
1196 if (write_protect_page(vma
, page
, &orig_pte
) == 0) {
1199 * While we hold page lock, upgrade page from
1200 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1201 * stable_tree_insert() will update stable_node.
1203 set_page_stable_node(page
, NULL
);
1204 mark_page_accessed(page
);
1206 * Page reclaim just frees a clean page with no dirty
1207 * ptes: make sure that the ksm page would be swapped.
1209 if (!PageDirty(page
))
1212 } else if (pages_identical(page
, kpage
))
1213 err
= replace_page(vma
, page
, kpage
, orig_pte
);
1216 if ((vma
->vm_flags
& VM_LOCKED
) && kpage
&& !err
) {
1217 munlock_vma_page(page
);
1218 if (!PageMlocked(kpage
)) {
1221 mlock_vma_page(kpage
);
1222 page
= kpage
; /* for final unlock */
1233 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1234 * but no new kernel page is allocated: kpage must already be a ksm page.
1236 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1238 static int try_to_merge_with_ksm_page(struct rmap_item
*rmap_item
,
1239 struct page
*page
, struct page
*kpage
)
1241 struct mm_struct
*mm
= rmap_item
->mm
;
1242 struct vm_area_struct
*vma
;
1245 down_read(&mm
->mmap_sem
);
1246 vma
= find_mergeable_vma(mm
, rmap_item
->address
);
1250 err
= try_to_merge_one_page(vma
, page
, kpage
);
1254 /* Unstable nid is in union with stable anon_vma: remove first */
1255 remove_rmap_item_from_tree(rmap_item
);
1257 /* Must get reference to anon_vma while still holding mmap_sem */
1258 rmap_item
->anon_vma
= vma
->anon_vma
;
1259 get_anon_vma(vma
->anon_vma
);
1261 up_read(&mm
->mmap_sem
);
1266 * try_to_merge_two_pages - take two identical pages and prepare them
1267 * to be merged into one page.
1269 * This function returns the kpage if we successfully merged two identical
1270 * pages into one ksm page, NULL otherwise.
1272 * Note that this function upgrades page to ksm page: if one of the pages
1273 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1275 static struct page
*try_to_merge_two_pages(struct rmap_item
*rmap_item
,
1277 struct rmap_item
*tree_rmap_item
,
1278 struct page
*tree_page
)
1282 err
= try_to_merge_with_ksm_page(rmap_item
, page
, NULL
);
1284 err
= try_to_merge_with_ksm_page(tree_rmap_item
,
1287 * If that fails, we have a ksm page with only one pte
1288 * pointing to it: so break it.
1291 break_cow(rmap_item
);
1293 return err
? NULL
: page
;
1296 static __always_inline
1297 bool __is_page_sharing_candidate(struct stable_node
*stable_node
, int offset
)
1299 VM_BUG_ON(stable_node
->rmap_hlist_len
< 0);
1301 * Check that at least one mapping still exists, otherwise
1302 * there's no much point to merge and share with this
1303 * stable_node, as the underlying tree_page of the other
1304 * sharer is going to be freed soon.
1306 return stable_node
->rmap_hlist_len
&&
1307 stable_node
->rmap_hlist_len
+ offset
< ksm_max_page_sharing
;
1310 static __always_inline
1311 bool is_page_sharing_candidate(struct stable_node
*stable_node
)
1313 return __is_page_sharing_candidate(stable_node
, 0);
1316 struct page
*stable_node_dup(struct stable_node
**_stable_node_dup
,
1317 struct stable_node
**_stable_node
,
1318 struct rb_root
*root
,
1319 bool prune_stale_stable_nodes
)
1321 struct stable_node
*dup
, *found
= NULL
, *stable_node
= *_stable_node
;
1322 struct hlist_node
*hlist_safe
;
1323 struct page
*_tree_page
, *tree_page
= NULL
;
1325 int found_rmap_hlist_len
;
1327 if (!prune_stale_stable_nodes
||
1328 time_before(jiffies
, stable_node
->chain_prune_time
+
1330 ksm_stable_node_chains_prune_millisecs
)))
1331 prune_stale_stable_nodes
= false;
1333 stable_node
->chain_prune_time
= jiffies
;
1335 hlist_for_each_entry_safe(dup
, hlist_safe
,
1336 &stable_node
->hlist
, hlist_dup
) {
1339 * We must walk all stable_node_dup to prune the stale
1340 * stable nodes during lookup.
1342 * get_ksm_page can drop the nodes from the
1343 * stable_node->hlist if they point to freed pages
1344 * (that's why we do a _safe walk). The "dup"
1345 * stable_node parameter itself will be freed from
1346 * under us if it returns NULL.
1348 _tree_page
= get_ksm_page(dup
, false);
1352 if (is_page_sharing_candidate(dup
)) {
1354 dup
->rmap_hlist_len
> found_rmap_hlist_len
) {
1356 put_page(tree_page
);
1358 found_rmap_hlist_len
= found
->rmap_hlist_len
;
1359 tree_page
= _tree_page
;
1361 /* skip put_page for found dup */
1362 if (!prune_stale_stable_nodes
)
1367 put_page(_tree_page
);
1372 * nr is counting all dups in the chain only if
1373 * prune_stale_stable_nodes is true, otherwise we may
1374 * break the loop at nr == 1 even if there are
1377 if (prune_stale_stable_nodes
&& nr
== 1) {
1379 * If there's not just one entry it would
1380 * corrupt memory, better BUG_ON. In KSM
1381 * context with no lock held it's not even
1384 BUG_ON(stable_node
->hlist
.first
->next
);
1387 * There's just one entry and it is below the
1388 * deduplication limit so drop the chain.
1390 rb_replace_node(&stable_node
->node
, &found
->node
,
1392 free_stable_node(stable_node
);
1393 ksm_stable_node_chains
--;
1394 ksm_stable_node_dups
--;
1396 * NOTE: the caller depends on the stable_node
1397 * to be equal to stable_node_dup if the chain
1400 *_stable_node
= found
;
1402 * Just for robustneess as stable_node is
1403 * otherwise left as a stable pointer, the
1404 * compiler shall optimize it away at build
1408 } else if (stable_node
->hlist
.first
!= &found
->hlist_dup
&&
1409 __is_page_sharing_candidate(found
, 1)) {
1411 * If the found stable_node dup can accept one
1412 * more future merge (in addition to the one
1413 * that is underway) and is not at the head of
1414 * the chain, put it there so next search will
1415 * be quicker in the !prune_stale_stable_nodes
1418 * NOTE: it would be inaccurate to use nr > 1
1419 * instead of checking the hlist.first pointer
1420 * directly, because in the
1421 * prune_stale_stable_nodes case "nr" isn't
1422 * the position of the found dup in the chain,
1423 * but the total number of dups in the chain.
1425 hlist_del(&found
->hlist_dup
);
1426 hlist_add_head(&found
->hlist_dup
,
1427 &stable_node
->hlist
);
1431 *_stable_node_dup
= found
;
1435 static struct stable_node
*stable_node_dup_any(struct stable_node
*stable_node
,
1436 struct rb_root
*root
)
1438 if (!is_stable_node_chain(stable_node
))
1440 if (hlist_empty(&stable_node
->hlist
)) {
1441 free_stable_node_chain(stable_node
, root
);
1444 return hlist_entry(stable_node
->hlist
.first
,
1445 typeof(*stable_node
), hlist_dup
);
1449 * Like for get_ksm_page, this function can free the *_stable_node and
1450 * *_stable_node_dup if the returned tree_page is NULL.
1452 * It can also free and overwrite *_stable_node with the found
1453 * stable_node_dup if the chain is collapsed (in which case
1454 * *_stable_node will be equal to *_stable_node_dup like if the chain
1455 * never existed). It's up to the caller to verify tree_page is not
1456 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1458 * *_stable_node_dup is really a second output parameter of this
1459 * function and will be overwritten in all cases, the caller doesn't
1460 * need to initialize it.
1462 static struct page
*__stable_node_chain(struct stable_node
**_stable_node_dup
,
1463 struct stable_node
**_stable_node
,
1464 struct rb_root
*root
,
1465 bool prune_stale_stable_nodes
)
1467 struct stable_node
*stable_node
= *_stable_node
;
1468 if (!is_stable_node_chain(stable_node
)) {
1469 if (is_page_sharing_candidate(stable_node
)) {
1470 *_stable_node_dup
= stable_node
;
1471 return get_ksm_page(stable_node
, false);
1474 * _stable_node_dup set to NULL means the stable_node
1475 * reached the ksm_max_page_sharing limit.
1477 *_stable_node_dup
= NULL
;
1480 return stable_node_dup(_stable_node_dup
, _stable_node
, root
,
1481 prune_stale_stable_nodes
);
1484 static __always_inline
struct page
*chain_prune(struct stable_node
**s_n_d
,
1485 struct stable_node
**s_n
,
1486 struct rb_root
*root
)
1488 return __stable_node_chain(s_n_d
, s_n
, root
, true);
1491 static __always_inline
struct page
*chain(struct stable_node
**s_n_d
,
1492 struct stable_node
*s_n
,
1493 struct rb_root
*root
)
1495 struct stable_node
*old_stable_node
= s_n
;
1496 struct page
*tree_page
;
1498 tree_page
= __stable_node_chain(s_n_d
, &s_n
, root
, false);
1499 /* not pruning dups so s_n cannot have changed */
1500 VM_BUG_ON(s_n
!= old_stable_node
);
1505 * stable_tree_search - search for page inside the stable tree
1507 * This function checks if there is a page inside the stable tree
1508 * with identical content to the page that we are scanning right now.
1510 * This function returns the stable tree node of identical content if found,
1513 static struct page
*stable_tree_search(struct page
*page
)
1516 struct rb_root
*root
;
1517 struct rb_node
**new;
1518 struct rb_node
*parent
;
1519 struct stable_node
*stable_node
, *stable_node_dup
, *stable_node_any
;
1520 struct stable_node
*page_node
;
1522 page_node
= page_stable_node(page
);
1523 if (page_node
&& page_node
->head
!= &migrate_nodes
) {
1524 /* ksm page forked */
1529 nid
= get_kpfn_nid(page_to_pfn(page
));
1530 root
= root_stable_tree
+ nid
;
1532 new = &root
->rb_node
;
1536 struct page
*tree_page
;
1540 stable_node
= rb_entry(*new, struct stable_node
, node
);
1541 stable_node_any
= NULL
;
1542 tree_page
= chain_prune(&stable_node_dup
, &stable_node
, root
);
1544 * NOTE: stable_node may have been freed by
1545 * chain_prune() if the returned stable_node_dup is
1546 * not NULL. stable_node_dup may have been inserted in
1547 * the rbtree instead as a regular stable_node (in
1548 * order to collapse the stable_node chain if a single
1549 * stable_node dup was found in it). In such case the
1550 * stable_node is overwritten by the calleee to point
1551 * to the stable_node_dup that was collapsed in the
1552 * stable rbtree and stable_node will be equal to
1553 * stable_node_dup like if the chain never existed.
1555 if (!stable_node_dup
) {
1557 * Either all stable_node dups were full in
1558 * this stable_node chain, or this chain was
1559 * empty and should be rb_erased.
1561 stable_node_any
= stable_node_dup_any(stable_node
,
1563 if (!stable_node_any
) {
1564 /* rb_erase just run */
1568 * Take any of the stable_node dups page of
1569 * this stable_node chain to let the tree walk
1570 * continue. All KSM pages belonging to the
1571 * stable_node dups in a stable_node chain
1572 * have the same content and they're
1573 * wrprotected at all times. Any will work
1574 * fine to continue the walk.
1576 tree_page
= get_ksm_page(stable_node_any
, false);
1578 VM_BUG_ON(!stable_node_dup
^ !!stable_node_any
);
1581 * If we walked over a stale stable_node,
1582 * get_ksm_page() will call rb_erase() and it
1583 * may rebalance the tree from under us. So
1584 * restart the search from scratch. Returning
1585 * NULL would be safe too, but we'd generate
1586 * false negative insertions just because some
1587 * stable_node was stale.
1592 ret
= memcmp_pages(page
, tree_page
);
1593 put_page(tree_page
);
1597 new = &parent
->rb_left
;
1599 new = &parent
->rb_right
;
1602 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1604 * Test if the migrated page should be merged
1605 * into a stable node dup. If the mapcount is
1606 * 1 we can migrate it with another KSM page
1607 * without adding it to the chain.
1609 if (page_mapcount(page
) > 1)
1613 if (!stable_node_dup
) {
1615 * If the stable_node is a chain and
1616 * we got a payload match in memcmp
1617 * but we cannot merge the scanned
1618 * page in any of the existing
1619 * stable_node dups because they're
1620 * all full, we need to wait the
1621 * scanned page to find itself a match
1622 * in the unstable tree to create a
1623 * brand new KSM page to add later to
1624 * the dups of this stable_node.
1630 * Lock and unlock the stable_node's page (which
1631 * might already have been migrated) so that page
1632 * migration is sure to notice its raised count.
1633 * It would be more elegant to return stable_node
1634 * than kpage, but that involves more changes.
1636 tree_page
= get_ksm_page(stable_node_dup
, true);
1637 if (unlikely(!tree_page
))
1639 * The tree may have been rebalanced,
1640 * so re-evaluate parent and new.
1643 unlock_page(tree_page
);
1645 if (get_kpfn_nid(stable_node_dup
->kpfn
) !=
1646 NUMA(stable_node_dup
->nid
)) {
1647 put_page(tree_page
);
1657 list_del(&page_node
->list
);
1658 DO_NUMA(page_node
->nid
= nid
);
1659 rb_link_node(&page_node
->node
, parent
, new);
1660 rb_insert_color(&page_node
->node
, root
);
1662 if (is_page_sharing_candidate(page_node
)) {
1670 * If stable_node was a chain and chain_prune collapsed it,
1671 * stable_node has been updated to be the new regular
1672 * stable_node. A collapse of the chain is indistinguishable
1673 * from the case there was no chain in the stable
1674 * rbtree. Otherwise stable_node is the chain and
1675 * stable_node_dup is the dup to replace.
1677 if (stable_node_dup
== stable_node
) {
1678 VM_BUG_ON(is_stable_node_chain(stable_node_dup
));
1679 VM_BUG_ON(is_stable_node_dup(stable_node_dup
));
1680 /* there is no chain */
1682 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1683 list_del(&page_node
->list
);
1684 DO_NUMA(page_node
->nid
= nid
);
1685 rb_replace_node(&stable_node_dup
->node
,
1688 if (is_page_sharing_candidate(page_node
))
1693 rb_erase(&stable_node_dup
->node
, root
);
1697 VM_BUG_ON(!is_stable_node_chain(stable_node
));
1698 __stable_node_dup_del(stable_node_dup
);
1700 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1701 list_del(&page_node
->list
);
1702 DO_NUMA(page_node
->nid
= nid
);
1703 stable_node_chain_add_dup(page_node
, stable_node
);
1704 if (is_page_sharing_candidate(page_node
))
1712 stable_node_dup
->head
= &migrate_nodes
;
1713 list_add(&stable_node_dup
->list
, stable_node_dup
->head
);
1717 /* stable_node_dup could be null if it reached the limit */
1718 if (!stable_node_dup
)
1719 stable_node_dup
= stable_node_any
;
1721 * If stable_node was a chain and chain_prune collapsed it,
1722 * stable_node has been updated to be the new regular
1723 * stable_node. A collapse of the chain is indistinguishable
1724 * from the case there was no chain in the stable
1725 * rbtree. Otherwise stable_node is the chain and
1726 * stable_node_dup is the dup to replace.
1728 if (stable_node_dup
== stable_node
) {
1729 VM_BUG_ON(is_stable_node_chain(stable_node_dup
));
1730 VM_BUG_ON(is_stable_node_dup(stable_node_dup
));
1731 /* chain is missing so create it */
1732 stable_node
= alloc_stable_node_chain(stable_node_dup
,
1738 * Add this stable_node dup that was
1739 * migrated to the stable_node chain
1740 * of the current nid for this page
1743 VM_BUG_ON(!is_stable_node_chain(stable_node
));
1744 VM_BUG_ON(!is_stable_node_dup(stable_node_dup
));
1745 VM_BUG_ON(page_node
->head
!= &migrate_nodes
);
1746 list_del(&page_node
->list
);
1747 DO_NUMA(page_node
->nid
= nid
);
1748 stable_node_chain_add_dup(page_node
, stable_node
);
1753 * stable_tree_insert - insert stable tree node pointing to new ksm page
1754 * into the stable tree.
1756 * This function returns the stable tree node just allocated on success,
1759 static struct stable_node
*stable_tree_insert(struct page
*kpage
)
1763 struct rb_root
*root
;
1764 struct rb_node
**new;
1765 struct rb_node
*parent
;
1766 struct stable_node
*stable_node
, *stable_node_dup
, *stable_node_any
;
1767 bool need_chain
= false;
1769 kpfn
= page_to_pfn(kpage
);
1770 nid
= get_kpfn_nid(kpfn
);
1771 root
= root_stable_tree
+ nid
;
1774 new = &root
->rb_node
;
1777 struct page
*tree_page
;
1781 stable_node
= rb_entry(*new, struct stable_node
, node
);
1782 stable_node_any
= NULL
;
1783 tree_page
= chain(&stable_node_dup
, stable_node
, root
);
1784 if (!stable_node_dup
) {
1786 * Either all stable_node dups were full in
1787 * this stable_node chain, or this chain was
1788 * empty and should be rb_erased.
1790 stable_node_any
= stable_node_dup_any(stable_node
,
1792 if (!stable_node_any
) {
1793 /* rb_erase just run */
1797 * Take any of the stable_node dups page of
1798 * this stable_node chain to let the tree walk
1799 * continue. All KSM pages belonging to the
1800 * stable_node dups in a stable_node chain
1801 * have the same content and they're
1802 * wrprotected at all times. Any will work
1803 * fine to continue the walk.
1805 tree_page
= get_ksm_page(stable_node_any
, false);
1807 VM_BUG_ON(!stable_node_dup
^ !!stable_node_any
);
1810 * If we walked over a stale stable_node,
1811 * get_ksm_page() will call rb_erase() and it
1812 * may rebalance the tree from under us. So
1813 * restart the search from scratch. Returning
1814 * NULL would be safe too, but we'd generate
1815 * false negative insertions just because some
1816 * stable_node was stale.
1821 ret
= memcmp_pages(kpage
, tree_page
);
1822 put_page(tree_page
);
1826 new = &parent
->rb_left
;
1828 new = &parent
->rb_right
;
1835 stable_node_dup
= alloc_stable_node();
1836 if (!stable_node_dup
)
1839 INIT_HLIST_HEAD(&stable_node_dup
->hlist
);
1840 stable_node_dup
->kpfn
= kpfn
;
1841 set_page_stable_node(kpage
, stable_node_dup
);
1842 stable_node_dup
->rmap_hlist_len
= 0;
1843 DO_NUMA(stable_node_dup
->nid
= nid
);
1845 rb_link_node(&stable_node_dup
->node
, parent
, new);
1846 rb_insert_color(&stable_node_dup
->node
, root
);
1848 if (!is_stable_node_chain(stable_node
)) {
1849 struct stable_node
*orig
= stable_node
;
1850 /* chain is missing so create it */
1851 stable_node
= alloc_stable_node_chain(orig
, root
);
1853 free_stable_node(stable_node_dup
);
1857 stable_node_chain_add_dup(stable_node_dup
, stable_node
);
1860 return stable_node_dup
;
1864 * unstable_tree_search_insert - search for identical page,
1865 * else insert rmap_item into the unstable tree.
1867 * This function searches for a page in the unstable tree identical to the
1868 * page currently being scanned; and if no identical page is found in the
1869 * tree, we insert rmap_item as a new object into the unstable tree.
1871 * This function returns pointer to rmap_item found to be identical
1872 * to the currently scanned page, NULL otherwise.
1874 * This function does both searching and inserting, because they share
1875 * the same walking algorithm in an rbtree.
1878 struct rmap_item
*unstable_tree_search_insert(struct rmap_item
*rmap_item
,
1880 struct page
**tree_pagep
)
1882 struct rb_node
**new;
1883 struct rb_root
*root
;
1884 struct rb_node
*parent
= NULL
;
1887 nid
= get_kpfn_nid(page_to_pfn(page
));
1888 root
= root_unstable_tree
+ nid
;
1889 new = &root
->rb_node
;
1892 struct rmap_item
*tree_rmap_item
;
1893 struct page
*tree_page
;
1897 tree_rmap_item
= rb_entry(*new, struct rmap_item
, node
);
1898 tree_page
= get_mergeable_page(tree_rmap_item
);
1903 * Don't substitute a ksm page for a forked page.
1905 if (page
== tree_page
) {
1906 put_page(tree_page
);
1910 ret
= memcmp_pages(page
, tree_page
);
1914 put_page(tree_page
);
1915 new = &parent
->rb_left
;
1916 } else if (ret
> 0) {
1917 put_page(tree_page
);
1918 new = &parent
->rb_right
;
1919 } else if (!ksm_merge_across_nodes
&&
1920 page_to_nid(tree_page
) != nid
) {
1922 * If tree_page has been migrated to another NUMA node,
1923 * it will be flushed out and put in the right unstable
1924 * tree next time: only merge with it when across_nodes.
1926 put_page(tree_page
);
1929 *tree_pagep
= tree_page
;
1930 return tree_rmap_item
;
1934 rmap_item
->address
|= UNSTABLE_FLAG
;
1935 rmap_item
->address
|= (ksm_scan
.seqnr
& SEQNR_MASK
);
1936 DO_NUMA(rmap_item
->nid
= nid
);
1937 rb_link_node(&rmap_item
->node
, parent
, new);
1938 rb_insert_color(&rmap_item
->node
, root
);
1940 ksm_pages_unshared
++;
1945 * stable_tree_append - add another rmap_item to the linked list of
1946 * rmap_items hanging off a given node of the stable tree, all sharing
1947 * the same ksm page.
1949 static void stable_tree_append(struct rmap_item
*rmap_item
,
1950 struct stable_node
*stable_node
,
1951 bool max_page_sharing_bypass
)
1954 * rmap won't find this mapping if we don't insert the
1955 * rmap_item in the right stable_node
1956 * duplicate. page_migration could break later if rmap breaks,
1957 * so we can as well crash here. We really need to check for
1958 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1959 * for other negative values as an undeflow if detected here
1960 * for the first time (and not when decreasing rmap_hlist_len)
1961 * would be sign of memory corruption in the stable_node.
1963 BUG_ON(stable_node
->rmap_hlist_len
< 0);
1965 stable_node
->rmap_hlist_len
++;
1966 if (!max_page_sharing_bypass
)
1967 /* possibly non fatal but unexpected overflow, only warn */
1968 WARN_ON_ONCE(stable_node
->rmap_hlist_len
>
1969 ksm_max_page_sharing
);
1971 rmap_item
->head
= stable_node
;
1972 rmap_item
->address
|= STABLE_FLAG
;
1973 hlist_add_head(&rmap_item
->hlist
, &stable_node
->hlist
);
1975 if (rmap_item
->hlist
.next
)
1976 ksm_pages_sharing
++;
1982 * cmp_and_merge_page - first see if page can be merged into the stable tree;
1983 * if not, compare checksum to previous and if it's the same, see if page can
1984 * be inserted into the unstable tree, or merged with a page already there and
1985 * both transferred to the stable tree.
1987 * @page: the page that we are searching identical page to.
1988 * @rmap_item: the reverse mapping into the virtual address of this page
1990 static void cmp_and_merge_page(struct page
*page
, struct rmap_item
*rmap_item
)
1992 struct rmap_item
*tree_rmap_item
;
1993 struct page
*tree_page
= NULL
;
1994 struct stable_node
*stable_node
;
1996 unsigned int checksum
;
1998 bool max_page_sharing_bypass
= false;
2000 stable_node
= page_stable_node(page
);
2002 if (stable_node
->head
!= &migrate_nodes
&&
2003 get_kpfn_nid(READ_ONCE(stable_node
->kpfn
)) !=
2004 NUMA(stable_node
->nid
)) {
2005 stable_node_dup_del(stable_node
);
2006 stable_node
->head
= &migrate_nodes
;
2007 list_add(&stable_node
->list
, stable_node
->head
);
2009 if (stable_node
->head
!= &migrate_nodes
&&
2010 rmap_item
->head
== stable_node
)
2013 * If it's a KSM fork, allow it to go over the sharing limit
2016 if (!is_page_sharing_candidate(stable_node
))
2017 max_page_sharing_bypass
= true;
2020 /* We first start with searching the page inside the stable tree */
2021 kpage
= stable_tree_search(page
);
2022 if (kpage
== page
&& rmap_item
->head
== stable_node
) {
2027 remove_rmap_item_from_tree(rmap_item
);
2030 err
= try_to_merge_with_ksm_page(rmap_item
, page
, kpage
);
2033 * The page was successfully merged:
2034 * add its rmap_item to the stable tree.
2037 stable_tree_append(rmap_item
, page_stable_node(kpage
),
2038 max_page_sharing_bypass
);
2046 * If the hash value of the page has changed from the last time
2047 * we calculated it, this page is changing frequently: therefore we
2048 * don't want to insert it in the unstable tree, and we don't want
2049 * to waste our time searching for something identical to it there.
2051 checksum
= calc_checksum(page
);
2052 if (rmap_item
->oldchecksum
!= checksum
) {
2053 rmap_item
->oldchecksum
= checksum
;
2058 * Same checksum as an empty page. We attempt to merge it with the
2059 * appropriate zero page if the user enabled this via sysfs.
2061 if (ksm_use_zero_pages
&& (checksum
== zero_checksum
)) {
2062 struct vm_area_struct
*vma
;
2064 vma
= find_mergeable_vma(rmap_item
->mm
, rmap_item
->address
);
2065 err
= try_to_merge_one_page(vma
, page
,
2066 ZERO_PAGE(rmap_item
->address
));
2068 * In case of failure, the page was not really empty, so we
2069 * need to continue. Otherwise we're done.
2075 unstable_tree_search_insert(rmap_item
, page
, &tree_page
);
2076 if (tree_rmap_item
) {
2077 kpage
= try_to_merge_two_pages(rmap_item
, page
,
2078 tree_rmap_item
, tree_page
);
2079 put_page(tree_page
);
2082 * The pages were successfully merged: insert new
2083 * node in the stable tree and add both rmap_items.
2086 stable_node
= stable_tree_insert(kpage
);
2088 stable_tree_append(tree_rmap_item
, stable_node
,
2090 stable_tree_append(rmap_item
, stable_node
,
2096 * If we fail to insert the page into the stable tree,
2097 * we will have 2 virtual addresses that are pointing
2098 * to a ksm page left outside the stable tree,
2099 * in which case we need to break_cow on both.
2102 break_cow(tree_rmap_item
);
2103 break_cow(rmap_item
);
2109 static struct rmap_item
*get_next_rmap_item(struct mm_slot
*mm_slot
,
2110 struct rmap_item
**rmap_list
,
2113 struct rmap_item
*rmap_item
;
2115 while (*rmap_list
) {
2116 rmap_item
= *rmap_list
;
2117 if ((rmap_item
->address
& PAGE_MASK
) == addr
)
2119 if (rmap_item
->address
> addr
)
2121 *rmap_list
= rmap_item
->rmap_list
;
2122 remove_rmap_item_from_tree(rmap_item
);
2123 free_rmap_item(rmap_item
);
2126 rmap_item
= alloc_rmap_item();
2128 /* It has already been zeroed */
2129 rmap_item
->mm
= mm_slot
->mm
;
2130 rmap_item
->address
= addr
;
2131 rmap_item
->rmap_list
= *rmap_list
;
2132 *rmap_list
= rmap_item
;
2137 static struct rmap_item
*scan_get_next_rmap_item(struct page
**page
)
2139 struct mm_struct
*mm
;
2140 struct mm_slot
*slot
;
2141 struct vm_area_struct
*vma
;
2142 struct rmap_item
*rmap_item
;
2145 if (list_empty(&ksm_mm_head
.mm_list
))
2148 slot
= ksm_scan
.mm_slot
;
2149 if (slot
== &ksm_mm_head
) {
2151 * A number of pages can hang around indefinitely on per-cpu
2152 * pagevecs, raised page count preventing write_protect_page
2153 * from merging them. Though it doesn't really matter much,
2154 * it is puzzling to see some stuck in pages_volatile until
2155 * other activity jostles them out, and they also prevented
2156 * LTP's KSM test from succeeding deterministically; so drain
2157 * them here (here rather than on entry to ksm_do_scan(),
2158 * so we don't IPI too often when pages_to_scan is set low).
2160 lru_add_drain_all();
2163 * Whereas stale stable_nodes on the stable_tree itself
2164 * get pruned in the regular course of stable_tree_search(),
2165 * those moved out to the migrate_nodes list can accumulate:
2166 * so prune them once before each full scan.
2168 if (!ksm_merge_across_nodes
) {
2169 struct stable_node
*stable_node
, *next
;
2172 list_for_each_entry_safe(stable_node
, next
,
2173 &migrate_nodes
, list
) {
2174 page
= get_ksm_page(stable_node
, false);
2181 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++)
2182 root_unstable_tree
[nid
] = RB_ROOT
;
2184 spin_lock(&ksm_mmlist_lock
);
2185 slot
= list_entry(slot
->mm_list
.next
, struct mm_slot
, mm_list
);
2186 ksm_scan
.mm_slot
= slot
;
2187 spin_unlock(&ksm_mmlist_lock
);
2189 * Although we tested list_empty() above, a racing __ksm_exit
2190 * of the last mm on the list may have removed it since then.
2192 if (slot
== &ksm_mm_head
)
2195 ksm_scan
.address
= 0;
2196 ksm_scan
.rmap_list
= &slot
->rmap_list
;
2200 down_read(&mm
->mmap_sem
);
2201 if (ksm_test_exit(mm
))
2204 vma
= find_vma(mm
, ksm_scan
.address
);
2206 for (; vma
; vma
= vma
->vm_next
) {
2207 if (!(vma
->vm_flags
& VM_MERGEABLE
))
2209 if (ksm_scan
.address
< vma
->vm_start
)
2210 ksm_scan
.address
= vma
->vm_start
;
2212 ksm_scan
.address
= vma
->vm_end
;
2214 while (ksm_scan
.address
< vma
->vm_end
) {
2215 if (ksm_test_exit(mm
))
2217 *page
= follow_page(vma
, ksm_scan
.address
, FOLL_GET
);
2218 if (IS_ERR_OR_NULL(*page
)) {
2219 ksm_scan
.address
+= PAGE_SIZE
;
2223 if (PageAnon(*page
)) {
2224 flush_anon_page(vma
, *page
, ksm_scan
.address
);
2225 flush_dcache_page(*page
);
2226 rmap_item
= get_next_rmap_item(slot
,
2227 ksm_scan
.rmap_list
, ksm_scan
.address
);
2229 ksm_scan
.rmap_list
=
2230 &rmap_item
->rmap_list
;
2231 ksm_scan
.address
+= PAGE_SIZE
;
2234 up_read(&mm
->mmap_sem
);
2238 ksm_scan
.address
+= PAGE_SIZE
;
2243 if (ksm_test_exit(mm
)) {
2244 ksm_scan
.address
= 0;
2245 ksm_scan
.rmap_list
= &slot
->rmap_list
;
2248 * Nuke all the rmap_items that are above this current rmap:
2249 * because there were no VM_MERGEABLE vmas with such addresses.
2251 remove_trailing_rmap_items(slot
, ksm_scan
.rmap_list
);
2253 spin_lock(&ksm_mmlist_lock
);
2254 ksm_scan
.mm_slot
= list_entry(slot
->mm_list
.next
,
2255 struct mm_slot
, mm_list
);
2256 if (ksm_scan
.address
== 0) {
2258 * We've completed a full scan of all vmas, holding mmap_sem
2259 * throughout, and found no VM_MERGEABLE: so do the same as
2260 * __ksm_exit does to remove this mm from all our lists now.
2261 * This applies either when cleaning up after __ksm_exit
2262 * (but beware: we can reach here even before __ksm_exit),
2263 * or when all VM_MERGEABLE areas have been unmapped (and
2264 * mmap_sem then protects against race with MADV_MERGEABLE).
2266 hash_del(&slot
->link
);
2267 list_del(&slot
->mm_list
);
2268 spin_unlock(&ksm_mmlist_lock
);
2271 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
2272 up_read(&mm
->mmap_sem
);
2275 up_read(&mm
->mmap_sem
);
2277 * up_read(&mm->mmap_sem) first because after
2278 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2279 * already have been freed under us by __ksm_exit()
2280 * because the "mm_slot" is still hashed and
2281 * ksm_scan.mm_slot doesn't point to it anymore.
2283 spin_unlock(&ksm_mmlist_lock
);
2286 /* Repeat until we've completed scanning the whole list */
2287 slot
= ksm_scan
.mm_slot
;
2288 if (slot
!= &ksm_mm_head
)
2296 * ksm_do_scan - the ksm scanner main worker function.
2297 * @scan_npages - number of pages we want to scan before we return.
2299 static void ksm_do_scan(unsigned int scan_npages
)
2301 struct rmap_item
*rmap_item
;
2302 struct page
*uninitialized_var(page
);
2304 while (scan_npages
-- && likely(!freezing(current
))) {
2306 rmap_item
= scan_get_next_rmap_item(&page
);
2309 cmp_and_merge_page(page
, rmap_item
);
2314 static int ksmd_should_run(void)
2316 return (ksm_run
& KSM_RUN_MERGE
) && !list_empty(&ksm_mm_head
.mm_list
);
2319 static int ksm_scan_thread(void *nothing
)
2322 set_user_nice(current
, 5);
2324 while (!kthread_should_stop()) {
2325 mutex_lock(&ksm_thread_mutex
);
2326 wait_while_offlining();
2327 if (ksmd_should_run())
2328 ksm_do_scan(ksm_thread_pages_to_scan
);
2329 mutex_unlock(&ksm_thread_mutex
);
2333 if (ksmd_should_run()) {
2334 schedule_timeout_interruptible(
2335 msecs_to_jiffies(ksm_thread_sleep_millisecs
));
2337 wait_event_freezable(ksm_thread_wait
,
2338 ksmd_should_run() || kthread_should_stop());
2344 int ksm_madvise(struct vm_area_struct
*vma
, unsigned long start
,
2345 unsigned long end
, int advice
, unsigned long *vm_flags
)
2347 struct mm_struct
*mm
= vma
->vm_mm
;
2351 case MADV_MERGEABLE
:
2353 * Be somewhat over-protective for now!
2355 if (*vm_flags
& (VM_MERGEABLE
| VM_SHARED
| VM_MAYSHARE
|
2356 VM_PFNMAP
| VM_IO
| VM_DONTEXPAND
|
2357 VM_HUGETLB
| VM_MIXEDMAP
))
2358 return 0; /* just ignore the advice */
2361 if (*vm_flags
& VM_SAO
)
2365 if (!test_bit(MMF_VM_MERGEABLE
, &mm
->flags
)) {
2366 err
= __ksm_enter(mm
);
2371 *vm_flags
|= VM_MERGEABLE
;
2374 case MADV_UNMERGEABLE
:
2375 if (!(*vm_flags
& VM_MERGEABLE
))
2376 return 0; /* just ignore the advice */
2378 if (vma
->anon_vma
) {
2379 err
= unmerge_ksm_pages(vma
, start
, end
);
2384 *vm_flags
&= ~VM_MERGEABLE
;
2391 int __ksm_enter(struct mm_struct
*mm
)
2393 struct mm_slot
*mm_slot
;
2396 mm_slot
= alloc_mm_slot();
2400 /* Check ksm_run too? Would need tighter locking */
2401 needs_wakeup
= list_empty(&ksm_mm_head
.mm_list
);
2403 spin_lock(&ksm_mmlist_lock
);
2404 insert_to_mm_slots_hash(mm
, mm_slot
);
2406 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2407 * insert just behind the scanning cursor, to let the area settle
2408 * down a little; when fork is followed by immediate exec, we don't
2409 * want ksmd to waste time setting up and tearing down an rmap_list.
2411 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2412 * scanning cursor, otherwise KSM pages in newly forked mms will be
2413 * missed: then we might as well insert at the end of the list.
2415 if (ksm_run
& KSM_RUN_UNMERGE
)
2416 list_add_tail(&mm_slot
->mm_list
, &ksm_mm_head
.mm_list
);
2418 list_add_tail(&mm_slot
->mm_list
, &ksm_scan
.mm_slot
->mm_list
);
2419 spin_unlock(&ksm_mmlist_lock
);
2421 set_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
2425 wake_up_interruptible(&ksm_thread_wait
);
2430 void __ksm_exit(struct mm_struct
*mm
)
2432 struct mm_slot
*mm_slot
;
2433 int easy_to_free
= 0;
2436 * This process is exiting: if it's straightforward (as is the
2437 * case when ksmd was never running), free mm_slot immediately.
2438 * But if it's at the cursor or has rmap_items linked to it, use
2439 * mmap_sem to synchronize with any break_cows before pagetables
2440 * are freed, and leave the mm_slot on the list for ksmd to free.
2441 * Beware: ksm may already have noticed it exiting and freed the slot.
2444 spin_lock(&ksm_mmlist_lock
);
2445 mm_slot
= get_mm_slot(mm
);
2446 if (mm_slot
&& ksm_scan
.mm_slot
!= mm_slot
) {
2447 if (!mm_slot
->rmap_list
) {
2448 hash_del(&mm_slot
->link
);
2449 list_del(&mm_slot
->mm_list
);
2452 list_move(&mm_slot
->mm_list
,
2453 &ksm_scan
.mm_slot
->mm_list
);
2456 spin_unlock(&ksm_mmlist_lock
);
2459 free_mm_slot(mm_slot
);
2460 clear_bit(MMF_VM_MERGEABLE
, &mm
->flags
);
2462 } else if (mm_slot
) {
2463 down_write(&mm
->mmap_sem
);
2464 up_write(&mm
->mmap_sem
);
2468 struct page
*ksm_might_need_to_copy(struct page
*page
,
2469 struct vm_area_struct
*vma
, unsigned long address
)
2471 struct anon_vma
*anon_vma
= page_anon_vma(page
);
2472 struct page
*new_page
;
2474 if (PageKsm(page
)) {
2475 if (page_stable_node(page
) &&
2476 !(ksm_run
& KSM_RUN_UNMERGE
))
2477 return page
; /* no need to copy it */
2478 } else if (!anon_vma
) {
2479 return page
; /* no need to copy it */
2480 } else if (anon_vma
->root
== vma
->anon_vma
->root
&&
2481 page
->index
== linear_page_index(vma
, address
)) {
2482 return page
; /* still no need to copy it */
2484 if (!PageUptodate(page
))
2485 return page
; /* let do_swap_page report the error */
2487 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2489 copy_user_highpage(new_page
, page
, address
, vma
);
2491 SetPageDirty(new_page
);
2492 __SetPageUptodate(new_page
);
2493 __SetPageLocked(new_page
);
2499 void rmap_walk_ksm(struct page
*page
, struct rmap_walk_control
*rwc
)
2501 struct stable_node
*stable_node
;
2502 struct rmap_item
*rmap_item
;
2503 int search_new_forks
= 0;
2505 VM_BUG_ON_PAGE(!PageKsm(page
), page
);
2508 * Rely on the page lock to protect against concurrent modifications
2509 * to that page's node of the stable tree.
2511 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
2513 stable_node
= page_stable_node(page
);
2517 hlist_for_each_entry(rmap_item
, &stable_node
->hlist
, hlist
) {
2518 struct anon_vma
*anon_vma
= rmap_item
->anon_vma
;
2519 struct anon_vma_chain
*vmac
;
2520 struct vm_area_struct
*vma
;
2523 anon_vma_lock_read(anon_vma
);
2524 anon_vma_interval_tree_foreach(vmac
, &anon_vma
->rb_root
,
2528 if (rmap_item
->address
< vma
->vm_start
||
2529 rmap_item
->address
>= vma
->vm_end
)
2532 * Initially we examine only the vma which covers this
2533 * rmap_item; but later, if there is still work to do,
2534 * we examine covering vmas in other mms: in case they
2535 * were forked from the original since ksmd passed.
2537 if ((rmap_item
->mm
== vma
->vm_mm
) == search_new_forks
)
2540 if (rwc
->invalid_vma
&& rwc
->invalid_vma(vma
, rwc
->arg
))
2543 if (!rwc
->rmap_one(page
, vma
,
2544 rmap_item
->address
, rwc
->arg
)) {
2545 anon_vma_unlock_read(anon_vma
);
2548 if (rwc
->done
&& rwc
->done(page
)) {
2549 anon_vma_unlock_read(anon_vma
);
2553 anon_vma_unlock_read(anon_vma
);
2555 if (!search_new_forks
++)
2559 #ifdef CONFIG_MIGRATION
2560 void ksm_migrate_page(struct page
*newpage
, struct page
*oldpage
)
2562 struct stable_node
*stable_node
;
2564 VM_BUG_ON_PAGE(!PageLocked(oldpage
), oldpage
);
2565 VM_BUG_ON_PAGE(!PageLocked(newpage
), newpage
);
2566 VM_BUG_ON_PAGE(newpage
->mapping
!= oldpage
->mapping
, newpage
);
2568 stable_node
= page_stable_node(newpage
);
2570 VM_BUG_ON_PAGE(stable_node
->kpfn
!= page_to_pfn(oldpage
), oldpage
);
2571 stable_node
->kpfn
= page_to_pfn(newpage
);
2573 * newpage->mapping was set in advance; now we need smp_wmb()
2574 * to make sure that the new stable_node->kpfn is visible
2575 * to get_ksm_page() before it can see that oldpage->mapping
2576 * has gone stale (or that PageSwapCache has been cleared).
2579 set_page_stable_node(oldpage
, NULL
);
2582 #endif /* CONFIG_MIGRATION */
2584 #ifdef CONFIG_MEMORY_HOTREMOVE
2585 static void wait_while_offlining(void)
2587 while (ksm_run
& KSM_RUN_OFFLINE
) {
2588 mutex_unlock(&ksm_thread_mutex
);
2589 wait_on_bit(&ksm_run
, ilog2(KSM_RUN_OFFLINE
),
2590 TASK_UNINTERRUPTIBLE
);
2591 mutex_lock(&ksm_thread_mutex
);
2595 static bool stable_node_dup_remove_range(struct stable_node
*stable_node
,
2596 unsigned long start_pfn
,
2597 unsigned long end_pfn
)
2599 if (stable_node
->kpfn
>= start_pfn
&&
2600 stable_node
->kpfn
< end_pfn
) {
2602 * Don't get_ksm_page, page has already gone:
2603 * which is why we keep kpfn instead of page*
2605 remove_node_from_stable_tree(stable_node
);
2611 static bool stable_node_chain_remove_range(struct stable_node
*stable_node
,
2612 unsigned long start_pfn
,
2613 unsigned long end_pfn
,
2614 struct rb_root
*root
)
2616 struct stable_node
*dup
;
2617 struct hlist_node
*hlist_safe
;
2619 if (!is_stable_node_chain(stable_node
)) {
2620 VM_BUG_ON(is_stable_node_dup(stable_node
));
2621 return stable_node_dup_remove_range(stable_node
, start_pfn
,
2625 hlist_for_each_entry_safe(dup
, hlist_safe
,
2626 &stable_node
->hlist
, hlist_dup
) {
2627 VM_BUG_ON(!is_stable_node_dup(dup
));
2628 stable_node_dup_remove_range(dup
, start_pfn
, end_pfn
);
2630 if (hlist_empty(&stable_node
->hlist
)) {
2631 free_stable_node_chain(stable_node
, root
);
2632 return true; /* notify caller that tree was rebalanced */
2637 static void ksm_check_stable_tree(unsigned long start_pfn
,
2638 unsigned long end_pfn
)
2640 struct stable_node
*stable_node
, *next
;
2641 struct rb_node
*node
;
2644 for (nid
= 0; nid
< ksm_nr_node_ids
; nid
++) {
2645 node
= rb_first(root_stable_tree
+ nid
);
2647 stable_node
= rb_entry(node
, struct stable_node
, node
);
2648 if (stable_node_chain_remove_range(stable_node
,
2652 node
= rb_first(root_stable_tree
+ nid
);
2654 node
= rb_next(node
);
2658 list_for_each_entry_safe(stable_node
, next
, &migrate_nodes
, list
) {
2659 if (stable_node
->kpfn
>= start_pfn
&&
2660 stable_node
->kpfn
< end_pfn
)
2661 remove_node_from_stable_tree(stable_node
);
2666 static int ksm_memory_callback(struct notifier_block
*self
,
2667 unsigned long action
, void *arg
)
2669 struct memory_notify
*mn
= arg
;
2672 case MEM_GOING_OFFLINE
:
2674 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2675 * and remove_all_stable_nodes() while memory is going offline:
2676 * it is unsafe for them to touch the stable tree at this time.
2677 * But unmerge_ksm_pages(), rmap lookups and other entry points
2678 * which do not need the ksm_thread_mutex are all safe.
2680 mutex_lock(&ksm_thread_mutex
);
2681 ksm_run
|= KSM_RUN_OFFLINE
;
2682 mutex_unlock(&ksm_thread_mutex
);
2687 * Most of the work is done by page migration; but there might
2688 * be a few stable_nodes left over, still pointing to struct
2689 * pages which have been offlined: prune those from the tree,
2690 * otherwise get_ksm_page() might later try to access a
2691 * non-existent struct page.
2693 ksm_check_stable_tree(mn
->start_pfn
,
2694 mn
->start_pfn
+ mn
->nr_pages
);
2697 case MEM_CANCEL_OFFLINE
:
2698 mutex_lock(&ksm_thread_mutex
);
2699 ksm_run
&= ~KSM_RUN_OFFLINE
;
2700 mutex_unlock(&ksm_thread_mutex
);
2702 smp_mb(); /* wake_up_bit advises this */
2703 wake_up_bit(&ksm_run
, ilog2(KSM_RUN_OFFLINE
));
2709 static void wait_while_offlining(void)
2712 #endif /* CONFIG_MEMORY_HOTREMOVE */
2716 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2719 #define KSM_ATTR_RO(_name) \
2720 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2721 #define KSM_ATTR(_name) \
2722 static struct kobj_attribute _name##_attr = \
2723 __ATTR(_name, 0644, _name##_show, _name##_store)
2725 static ssize_t
sleep_millisecs_show(struct kobject
*kobj
,
2726 struct kobj_attribute
*attr
, char *buf
)
2728 return sprintf(buf
, "%u\n", ksm_thread_sleep_millisecs
);
2731 static ssize_t
sleep_millisecs_store(struct kobject
*kobj
,
2732 struct kobj_attribute
*attr
,
2733 const char *buf
, size_t count
)
2735 unsigned long msecs
;
2738 err
= kstrtoul(buf
, 10, &msecs
);
2739 if (err
|| msecs
> UINT_MAX
)
2742 ksm_thread_sleep_millisecs
= msecs
;
2746 KSM_ATTR(sleep_millisecs
);
2748 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
2749 struct kobj_attribute
*attr
, char *buf
)
2751 return sprintf(buf
, "%u\n", ksm_thread_pages_to_scan
);
2754 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
2755 struct kobj_attribute
*attr
,
2756 const char *buf
, size_t count
)
2759 unsigned long nr_pages
;
2761 err
= kstrtoul(buf
, 10, &nr_pages
);
2762 if (err
|| nr_pages
> UINT_MAX
)
2765 ksm_thread_pages_to_scan
= nr_pages
;
2769 KSM_ATTR(pages_to_scan
);
2771 static ssize_t
run_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
2774 return sprintf(buf
, "%lu\n", ksm_run
);
2777 static ssize_t
run_store(struct kobject
*kobj
, struct kobj_attribute
*attr
,
2778 const char *buf
, size_t count
)
2781 unsigned long flags
;
2783 err
= kstrtoul(buf
, 10, &flags
);
2784 if (err
|| flags
> UINT_MAX
)
2786 if (flags
> KSM_RUN_UNMERGE
)
2790 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2791 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2792 * breaking COW to free the pages_shared (but leaves mm_slots
2793 * on the list for when ksmd may be set running again).
2796 mutex_lock(&ksm_thread_mutex
);
2797 wait_while_offlining();
2798 if (ksm_run
!= flags
) {
2800 if (flags
& KSM_RUN_UNMERGE
) {
2801 set_current_oom_origin();
2802 err
= unmerge_and_remove_all_rmap_items();
2803 clear_current_oom_origin();
2805 ksm_run
= KSM_RUN_STOP
;
2810 mutex_unlock(&ksm_thread_mutex
);
2812 if (flags
& KSM_RUN_MERGE
)
2813 wake_up_interruptible(&ksm_thread_wait
);
2820 static ssize_t
merge_across_nodes_show(struct kobject
*kobj
,
2821 struct kobj_attribute
*attr
, char *buf
)
2823 return sprintf(buf
, "%u\n", ksm_merge_across_nodes
);
2826 static ssize_t
merge_across_nodes_store(struct kobject
*kobj
,
2827 struct kobj_attribute
*attr
,
2828 const char *buf
, size_t count
)
2833 err
= kstrtoul(buf
, 10, &knob
);
2839 mutex_lock(&ksm_thread_mutex
);
2840 wait_while_offlining();
2841 if (ksm_merge_across_nodes
!= knob
) {
2842 if (ksm_pages_shared
|| remove_all_stable_nodes())
2844 else if (root_stable_tree
== one_stable_tree
) {
2845 struct rb_root
*buf
;
2847 * This is the first time that we switch away from the
2848 * default of merging across nodes: must now allocate
2849 * a buffer to hold as many roots as may be needed.
2850 * Allocate stable and unstable together:
2851 * MAXSMP NODES_SHIFT 10 will use 16kB.
2853 buf
= kcalloc(nr_node_ids
+ nr_node_ids
, sizeof(*buf
),
2855 /* Let us assume that RB_ROOT is NULL is zero */
2859 root_stable_tree
= buf
;
2860 root_unstable_tree
= buf
+ nr_node_ids
;
2861 /* Stable tree is empty but not the unstable */
2862 root_unstable_tree
[0] = one_unstable_tree
[0];
2866 ksm_merge_across_nodes
= knob
;
2867 ksm_nr_node_ids
= knob
? 1 : nr_node_ids
;
2870 mutex_unlock(&ksm_thread_mutex
);
2872 return err
? err
: count
;
2874 KSM_ATTR(merge_across_nodes
);
2877 static ssize_t
use_zero_pages_show(struct kobject
*kobj
,
2878 struct kobj_attribute
*attr
, char *buf
)
2880 return sprintf(buf
, "%u\n", ksm_use_zero_pages
);
2882 static ssize_t
use_zero_pages_store(struct kobject
*kobj
,
2883 struct kobj_attribute
*attr
,
2884 const char *buf
, size_t count
)
2889 err
= kstrtobool(buf
, &value
);
2893 ksm_use_zero_pages
= value
;
2897 KSM_ATTR(use_zero_pages
);
2899 static ssize_t
max_page_sharing_show(struct kobject
*kobj
,
2900 struct kobj_attribute
*attr
, char *buf
)
2902 return sprintf(buf
, "%u\n", ksm_max_page_sharing
);
2905 static ssize_t
max_page_sharing_store(struct kobject
*kobj
,
2906 struct kobj_attribute
*attr
,
2907 const char *buf
, size_t count
)
2912 err
= kstrtoint(buf
, 10, &knob
);
2916 * When a KSM page is created it is shared by 2 mappings. This
2917 * being a signed comparison, it implicitly verifies it's not
2923 if (READ_ONCE(ksm_max_page_sharing
) == knob
)
2926 mutex_lock(&ksm_thread_mutex
);
2927 wait_while_offlining();
2928 if (ksm_max_page_sharing
!= knob
) {
2929 if (ksm_pages_shared
|| remove_all_stable_nodes())
2932 ksm_max_page_sharing
= knob
;
2934 mutex_unlock(&ksm_thread_mutex
);
2936 return err
? err
: count
;
2938 KSM_ATTR(max_page_sharing
);
2940 static ssize_t
pages_shared_show(struct kobject
*kobj
,
2941 struct kobj_attribute
*attr
, char *buf
)
2943 return sprintf(buf
, "%lu\n", ksm_pages_shared
);
2945 KSM_ATTR_RO(pages_shared
);
2947 static ssize_t
pages_sharing_show(struct kobject
*kobj
,
2948 struct kobj_attribute
*attr
, char *buf
)
2950 return sprintf(buf
, "%lu\n", ksm_pages_sharing
);
2952 KSM_ATTR_RO(pages_sharing
);
2954 static ssize_t
pages_unshared_show(struct kobject
*kobj
,
2955 struct kobj_attribute
*attr
, char *buf
)
2957 return sprintf(buf
, "%lu\n", ksm_pages_unshared
);
2959 KSM_ATTR_RO(pages_unshared
);
2961 static ssize_t
pages_volatile_show(struct kobject
*kobj
,
2962 struct kobj_attribute
*attr
, char *buf
)
2964 long ksm_pages_volatile
;
2966 ksm_pages_volatile
= ksm_rmap_items
- ksm_pages_shared
2967 - ksm_pages_sharing
- ksm_pages_unshared
;
2969 * It was not worth any locking to calculate that statistic,
2970 * but it might therefore sometimes be negative: conceal that.
2972 if (ksm_pages_volatile
< 0)
2973 ksm_pages_volatile
= 0;
2974 return sprintf(buf
, "%ld\n", ksm_pages_volatile
);
2976 KSM_ATTR_RO(pages_volatile
);
2978 static ssize_t
stable_node_dups_show(struct kobject
*kobj
,
2979 struct kobj_attribute
*attr
, char *buf
)
2981 return sprintf(buf
, "%lu\n", ksm_stable_node_dups
);
2983 KSM_ATTR_RO(stable_node_dups
);
2985 static ssize_t
stable_node_chains_show(struct kobject
*kobj
,
2986 struct kobj_attribute
*attr
, char *buf
)
2988 return sprintf(buf
, "%lu\n", ksm_stable_node_chains
);
2990 KSM_ATTR_RO(stable_node_chains
);
2993 stable_node_chains_prune_millisecs_show(struct kobject
*kobj
,
2994 struct kobj_attribute
*attr
,
2997 return sprintf(buf
, "%u\n", ksm_stable_node_chains_prune_millisecs
);
3001 stable_node_chains_prune_millisecs_store(struct kobject
*kobj
,
3002 struct kobj_attribute
*attr
,
3003 const char *buf
, size_t count
)
3005 unsigned long msecs
;
3008 err
= kstrtoul(buf
, 10, &msecs
);
3009 if (err
|| msecs
> UINT_MAX
)
3012 ksm_stable_node_chains_prune_millisecs
= msecs
;
3016 KSM_ATTR(stable_node_chains_prune_millisecs
);
3018 static ssize_t
full_scans_show(struct kobject
*kobj
,
3019 struct kobj_attribute
*attr
, char *buf
)
3021 return sprintf(buf
, "%lu\n", ksm_scan
.seqnr
);
3023 KSM_ATTR_RO(full_scans
);
3025 static struct attribute
*ksm_attrs
[] = {
3026 &sleep_millisecs_attr
.attr
,
3027 &pages_to_scan_attr
.attr
,
3029 &pages_shared_attr
.attr
,
3030 &pages_sharing_attr
.attr
,
3031 &pages_unshared_attr
.attr
,
3032 &pages_volatile_attr
.attr
,
3033 &full_scans_attr
.attr
,
3035 &merge_across_nodes_attr
.attr
,
3037 &max_page_sharing_attr
.attr
,
3038 &stable_node_chains_attr
.attr
,
3039 &stable_node_dups_attr
.attr
,
3040 &stable_node_chains_prune_millisecs_attr
.attr
,
3041 &use_zero_pages_attr
.attr
,
3045 static struct attribute_group ksm_attr_group
= {
3049 #endif /* CONFIG_SYSFS */
3051 static int __init
ksm_init(void)
3053 struct task_struct
*ksm_thread
;
3056 /* The correct value depends on page size and endianness */
3057 zero_checksum
= calc_checksum(ZERO_PAGE(0));
3058 /* Default to false for backwards compatibility */
3059 ksm_use_zero_pages
= false;
3061 err
= ksm_slab_init();
3065 ksm_thread
= kthread_run(ksm_scan_thread
, NULL
, "ksmd");
3066 if (IS_ERR(ksm_thread
)) {
3067 pr_err("ksm: creating kthread failed\n");
3068 err
= PTR_ERR(ksm_thread
);
3073 err
= sysfs_create_group(mm_kobj
, &ksm_attr_group
);
3075 pr_err("ksm: register sysfs failed\n");
3076 kthread_stop(ksm_thread
);
3080 ksm_run
= KSM_RUN_MERGE
; /* no way for user to start it */
3082 #endif /* CONFIG_SYSFS */
3084 #ifdef CONFIG_MEMORY_HOTREMOVE
3085 /* There is no significance to this priority 100 */
3086 hotplug_memory_notifier(ksm_memory_callback
, 100);
3095 subsys_initcall(ksm_init
);