MAINTAINERS: Remove old e-mail address
[linux/fpc-iii.git] / fs / inode.c
blob88110fd0b282e49246dc9cd93a1d6e173d951d7b
1 /*
2 * (C) 1997 Linus Torvalds
3 * (C) 1999 Andrea Arcangeli <andrea@suse.de> (dynamic inode allocation)
4 */
5 #include <linux/export.h>
6 #include <linux/fs.h>
7 #include <linux/mm.h>
8 #include <linux/backing-dev.h>
9 #include <linux/hash.h>
10 #include <linux/swap.h>
11 #include <linux/security.h>
12 #include <linux/cdev.h>
13 #include <linux/bootmem.h>
14 #include <linux/fsnotify.h>
15 #include <linux/mount.h>
16 #include <linux/posix_acl.h>
17 #include <linux/prefetch.h>
18 #include <linux/buffer_head.h> /* for inode_has_buffers */
19 #include <linux/ratelimit.h>
20 #include <linux/list_lru.h>
21 #include <trace/events/writeback.h>
22 #include "internal.h"
25 * Inode locking rules:
27 * inode->i_lock protects:
28 * inode->i_state, inode->i_hash, __iget()
29 * Inode LRU list locks protect:
30 * inode->i_sb->s_inode_lru, inode->i_lru
31 * inode->i_sb->s_inode_list_lock protects:
32 * inode->i_sb->s_inodes, inode->i_sb_list
33 * bdi->wb.list_lock protects:
34 * bdi->wb.b_{dirty,io,more_io,dirty_time}, inode->i_io_list
35 * inode_hash_lock protects:
36 * inode_hashtable, inode->i_hash
38 * Lock ordering:
40 * inode->i_sb->s_inode_list_lock
41 * inode->i_lock
42 * Inode LRU list locks
44 * bdi->wb.list_lock
45 * inode->i_lock
47 * inode_hash_lock
48 * inode->i_sb->s_inode_list_lock
49 * inode->i_lock
51 * iunique_lock
52 * inode_hash_lock
55 static unsigned int i_hash_mask __read_mostly;
56 static unsigned int i_hash_shift __read_mostly;
57 static struct hlist_head *inode_hashtable __read_mostly;
58 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(inode_hash_lock);
61 * Empty aops. Can be used for the cases where the user does not
62 * define any of the address_space operations.
64 const struct address_space_operations empty_aops = {
66 EXPORT_SYMBOL(empty_aops);
69 * Statistics gathering..
71 struct inodes_stat_t inodes_stat;
73 static DEFINE_PER_CPU(unsigned long, nr_inodes);
74 static DEFINE_PER_CPU(unsigned long, nr_unused);
76 static struct kmem_cache *inode_cachep __read_mostly;
78 static long get_nr_inodes(void)
80 int i;
81 long sum = 0;
82 for_each_possible_cpu(i)
83 sum += per_cpu(nr_inodes, i);
84 return sum < 0 ? 0 : sum;
87 static inline long get_nr_inodes_unused(void)
89 int i;
90 long sum = 0;
91 for_each_possible_cpu(i)
92 sum += per_cpu(nr_unused, i);
93 return sum < 0 ? 0 : sum;
96 long get_nr_dirty_inodes(void)
98 /* not actually dirty inodes, but a wild approximation */
99 long nr_dirty = get_nr_inodes() - get_nr_inodes_unused();
100 return nr_dirty > 0 ? nr_dirty : 0;
104 * Handle nr_inode sysctl
106 #ifdef CONFIG_SYSCTL
107 int proc_nr_inodes(struct ctl_table *table, int write,
108 void __user *buffer, size_t *lenp, loff_t *ppos)
110 inodes_stat.nr_inodes = get_nr_inodes();
111 inodes_stat.nr_unused = get_nr_inodes_unused();
112 return proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
114 #endif
116 static int no_open(struct inode *inode, struct file *file)
118 return -ENXIO;
122 * inode_init_always - perform inode structure intialisation
123 * @sb: superblock inode belongs to
124 * @inode: inode to initialise
126 * These are initializations that need to be done on every inode
127 * allocation as the fields are not initialised by slab allocation.
129 int inode_init_always(struct super_block *sb, struct inode *inode)
131 static const struct inode_operations empty_iops;
132 static const struct file_operations no_open_fops = {.open = no_open};
133 struct address_space *const mapping = &inode->i_data;
135 inode->i_sb = sb;
136 inode->i_blkbits = sb->s_blocksize_bits;
137 inode->i_flags = 0;
138 atomic_set(&inode->i_count, 1);
139 inode->i_op = &empty_iops;
140 inode->i_fop = &no_open_fops;
141 inode->__i_nlink = 1;
142 inode->i_opflags = 0;
143 if (sb->s_xattr)
144 inode->i_opflags |= IOP_XATTR;
145 i_uid_write(inode, 0);
146 i_gid_write(inode, 0);
147 atomic_set(&inode->i_writecount, 0);
148 inode->i_size = 0;
149 inode->i_blocks = 0;
150 inode->i_bytes = 0;
151 inode->i_generation = 0;
152 inode->i_pipe = NULL;
153 inode->i_bdev = NULL;
154 inode->i_cdev = NULL;
155 inode->i_link = NULL;
156 inode->i_dir_seq = 0;
157 inode->i_rdev = 0;
158 inode->dirtied_when = 0;
160 #ifdef CONFIG_CGROUP_WRITEBACK
161 inode->i_wb_frn_winner = 0;
162 inode->i_wb_frn_avg_time = 0;
163 inode->i_wb_frn_history = 0;
164 #endif
166 if (security_inode_alloc(inode))
167 goto out;
168 spin_lock_init(&inode->i_lock);
169 lockdep_set_class(&inode->i_lock, &sb->s_type->i_lock_key);
171 init_rwsem(&inode->i_rwsem);
172 lockdep_set_class(&inode->i_rwsem, &sb->s_type->i_mutex_key);
174 atomic_set(&inode->i_dio_count, 0);
176 mapping->a_ops = &empty_aops;
177 mapping->host = inode;
178 mapping->flags = 0;
179 atomic_set(&mapping->i_mmap_writable, 0);
180 mapping_set_gfp_mask(mapping, GFP_HIGHUSER_MOVABLE);
181 mapping->private_data = NULL;
182 mapping->writeback_index = 0;
183 inode->i_private = NULL;
184 inode->i_mapping = mapping;
185 INIT_HLIST_HEAD(&inode->i_dentry); /* buggered by rcu freeing */
186 #ifdef CONFIG_FS_POSIX_ACL
187 inode->i_acl = inode->i_default_acl = ACL_NOT_CACHED;
188 #endif
190 #ifdef CONFIG_FSNOTIFY
191 inode->i_fsnotify_mask = 0;
192 #endif
193 inode->i_flctx = NULL;
194 this_cpu_inc(nr_inodes);
196 return 0;
197 out:
198 return -ENOMEM;
200 EXPORT_SYMBOL(inode_init_always);
202 static struct inode *alloc_inode(struct super_block *sb)
204 struct inode *inode;
206 if (sb->s_op->alloc_inode)
207 inode = sb->s_op->alloc_inode(sb);
208 else
209 inode = kmem_cache_alloc(inode_cachep, GFP_KERNEL);
211 if (!inode)
212 return NULL;
214 if (unlikely(inode_init_always(sb, inode))) {
215 if (inode->i_sb->s_op->destroy_inode)
216 inode->i_sb->s_op->destroy_inode(inode);
217 else
218 kmem_cache_free(inode_cachep, inode);
219 return NULL;
222 return inode;
225 void free_inode_nonrcu(struct inode *inode)
227 kmem_cache_free(inode_cachep, inode);
229 EXPORT_SYMBOL(free_inode_nonrcu);
231 void __destroy_inode(struct inode *inode)
233 BUG_ON(inode_has_buffers(inode));
234 inode_detach_wb(inode);
235 security_inode_free(inode);
236 fsnotify_inode_delete(inode);
237 locks_free_lock_context(inode);
238 if (!inode->i_nlink) {
239 WARN_ON(atomic_long_read(&inode->i_sb->s_remove_count) == 0);
240 atomic_long_dec(&inode->i_sb->s_remove_count);
243 #ifdef CONFIG_FS_POSIX_ACL
244 if (inode->i_acl && !is_uncached_acl(inode->i_acl))
245 posix_acl_release(inode->i_acl);
246 if (inode->i_default_acl && !is_uncached_acl(inode->i_default_acl))
247 posix_acl_release(inode->i_default_acl);
248 #endif
249 this_cpu_dec(nr_inodes);
251 EXPORT_SYMBOL(__destroy_inode);
253 static void i_callback(struct rcu_head *head)
255 struct inode *inode = container_of(head, struct inode, i_rcu);
256 kmem_cache_free(inode_cachep, inode);
259 static void destroy_inode(struct inode *inode)
261 BUG_ON(!list_empty(&inode->i_lru));
262 __destroy_inode(inode);
263 if (inode->i_sb->s_op->destroy_inode)
264 inode->i_sb->s_op->destroy_inode(inode);
265 else
266 call_rcu(&inode->i_rcu, i_callback);
270 * drop_nlink - directly drop an inode's link count
271 * @inode: inode
273 * This is a low-level filesystem helper to replace any
274 * direct filesystem manipulation of i_nlink. In cases
275 * where we are attempting to track writes to the
276 * filesystem, a decrement to zero means an imminent
277 * write when the file is truncated and actually unlinked
278 * on the filesystem.
280 void drop_nlink(struct inode *inode)
282 WARN_ON(inode->i_nlink == 0);
283 inode->__i_nlink--;
284 if (!inode->i_nlink)
285 atomic_long_inc(&inode->i_sb->s_remove_count);
287 EXPORT_SYMBOL(drop_nlink);
290 * clear_nlink - directly zero an inode's link count
291 * @inode: inode
293 * This is a low-level filesystem helper to replace any
294 * direct filesystem manipulation of i_nlink. See
295 * drop_nlink() for why we care about i_nlink hitting zero.
297 void clear_nlink(struct inode *inode)
299 if (inode->i_nlink) {
300 inode->__i_nlink = 0;
301 atomic_long_inc(&inode->i_sb->s_remove_count);
304 EXPORT_SYMBOL(clear_nlink);
307 * set_nlink - directly set an inode's link count
308 * @inode: inode
309 * @nlink: new nlink (should be non-zero)
311 * This is a low-level filesystem helper to replace any
312 * direct filesystem manipulation of i_nlink.
314 void set_nlink(struct inode *inode, unsigned int nlink)
316 if (!nlink) {
317 clear_nlink(inode);
318 } else {
319 /* Yes, some filesystems do change nlink from zero to one */
320 if (inode->i_nlink == 0)
321 atomic_long_dec(&inode->i_sb->s_remove_count);
323 inode->__i_nlink = nlink;
326 EXPORT_SYMBOL(set_nlink);
329 * inc_nlink - directly increment an inode's link count
330 * @inode: inode
332 * This is a low-level filesystem helper to replace any
333 * direct filesystem manipulation of i_nlink. Currently,
334 * it is only here for parity with dec_nlink().
336 void inc_nlink(struct inode *inode)
338 if (unlikely(inode->i_nlink == 0)) {
339 WARN_ON(!(inode->i_state & I_LINKABLE));
340 atomic_long_dec(&inode->i_sb->s_remove_count);
343 inode->__i_nlink++;
345 EXPORT_SYMBOL(inc_nlink);
347 void address_space_init_once(struct address_space *mapping)
349 memset(mapping, 0, sizeof(*mapping));
350 INIT_RADIX_TREE(&mapping->page_tree, GFP_ATOMIC | __GFP_ACCOUNT);
351 spin_lock_init(&mapping->tree_lock);
352 init_rwsem(&mapping->i_mmap_rwsem);
353 INIT_LIST_HEAD(&mapping->private_list);
354 spin_lock_init(&mapping->private_lock);
355 mapping->i_mmap = RB_ROOT;
357 EXPORT_SYMBOL(address_space_init_once);
360 * These are initializations that only need to be done
361 * once, because the fields are idempotent across use
362 * of the inode, so let the slab aware of that.
364 void inode_init_once(struct inode *inode)
366 memset(inode, 0, sizeof(*inode));
367 INIT_HLIST_NODE(&inode->i_hash);
368 INIT_LIST_HEAD(&inode->i_devices);
369 INIT_LIST_HEAD(&inode->i_io_list);
370 INIT_LIST_HEAD(&inode->i_wb_list);
371 INIT_LIST_HEAD(&inode->i_lru);
372 address_space_init_once(&inode->i_data);
373 i_size_ordered_init(inode);
374 #ifdef CONFIG_FSNOTIFY
375 INIT_HLIST_HEAD(&inode->i_fsnotify_marks);
376 #endif
378 EXPORT_SYMBOL(inode_init_once);
380 static void init_once(void *foo)
382 struct inode *inode = (struct inode *) foo;
384 inode_init_once(inode);
388 * inode->i_lock must be held
390 void __iget(struct inode *inode)
392 atomic_inc(&inode->i_count);
396 * get additional reference to inode; caller must already hold one.
398 void ihold(struct inode *inode)
400 WARN_ON(atomic_inc_return(&inode->i_count) < 2);
402 EXPORT_SYMBOL(ihold);
404 static void inode_lru_list_add(struct inode *inode)
406 if (list_lru_add(&inode->i_sb->s_inode_lru, &inode->i_lru))
407 this_cpu_inc(nr_unused);
411 * Add inode to LRU if needed (inode is unused and clean).
413 * Needs inode->i_lock held.
415 void inode_add_lru(struct inode *inode)
417 if (!(inode->i_state & (I_DIRTY_ALL | I_SYNC |
418 I_FREEING | I_WILL_FREE)) &&
419 !atomic_read(&inode->i_count) && inode->i_sb->s_flags & MS_ACTIVE)
420 inode_lru_list_add(inode);
424 static void inode_lru_list_del(struct inode *inode)
427 if (list_lru_del(&inode->i_sb->s_inode_lru, &inode->i_lru))
428 this_cpu_dec(nr_unused);
432 * inode_sb_list_add - add inode to the superblock list of inodes
433 * @inode: inode to add
435 void inode_sb_list_add(struct inode *inode)
437 spin_lock(&inode->i_sb->s_inode_list_lock);
438 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
439 spin_unlock(&inode->i_sb->s_inode_list_lock);
441 EXPORT_SYMBOL_GPL(inode_sb_list_add);
443 static inline void inode_sb_list_del(struct inode *inode)
445 if (!list_empty(&inode->i_sb_list)) {
446 spin_lock(&inode->i_sb->s_inode_list_lock);
447 list_del_init(&inode->i_sb_list);
448 spin_unlock(&inode->i_sb->s_inode_list_lock);
452 static unsigned long hash(struct super_block *sb, unsigned long hashval)
454 unsigned long tmp;
456 tmp = (hashval * (unsigned long)sb) ^ (GOLDEN_RATIO_PRIME + hashval) /
457 L1_CACHE_BYTES;
458 tmp = tmp ^ ((tmp ^ GOLDEN_RATIO_PRIME) >> i_hash_shift);
459 return tmp & i_hash_mask;
463 * __insert_inode_hash - hash an inode
464 * @inode: unhashed inode
465 * @hashval: unsigned long value used to locate this object in the
466 * inode_hashtable.
468 * Add an inode to the inode hash for this superblock.
470 void __insert_inode_hash(struct inode *inode, unsigned long hashval)
472 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);
474 spin_lock(&inode_hash_lock);
475 spin_lock(&inode->i_lock);
476 hlist_add_head(&inode->i_hash, b);
477 spin_unlock(&inode->i_lock);
478 spin_unlock(&inode_hash_lock);
480 EXPORT_SYMBOL(__insert_inode_hash);
483 * __remove_inode_hash - remove an inode from the hash
484 * @inode: inode to unhash
486 * Remove an inode from the superblock.
488 void __remove_inode_hash(struct inode *inode)
490 spin_lock(&inode_hash_lock);
491 spin_lock(&inode->i_lock);
492 hlist_del_init(&inode->i_hash);
493 spin_unlock(&inode->i_lock);
494 spin_unlock(&inode_hash_lock);
496 EXPORT_SYMBOL(__remove_inode_hash);
498 void clear_inode(struct inode *inode)
500 might_sleep();
502 * We have to cycle tree_lock here because reclaim can be still in the
503 * process of removing the last page (in __delete_from_page_cache())
504 * and we must not free mapping under it.
506 spin_lock_irq(&inode->i_data.tree_lock);
507 BUG_ON(inode->i_data.nrpages);
508 BUG_ON(inode->i_data.nrexceptional);
509 spin_unlock_irq(&inode->i_data.tree_lock);
510 BUG_ON(!list_empty(&inode->i_data.private_list));
511 BUG_ON(!(inode->i_state & I_FREEING));
512 BUG_ON(inode->i_state & I_CLEAR);
513 BUG_ON(!list_empty(&inode->i_wb_list));
514 /* don't need i_lock here, no concurrent mods to i_state */
515 inode->i_state = I_FREEING | I_CLEAR;
517 EXPORT_SYMBOL(clear_inode);
520 * Free the inode passed in, removing it from the lists it is still connected
521 * to. We remove any pages still attached to the inode and wait for any IO that
522 * is still in progress before finally destroying the inode.
524 * An inode must already be marked I_FREEING so that we avoid the inode being
525 * moved back onto lists if we race with other code that manipulates the lists
526 * (e.g. writeback_single_inode). The caller is responsible for setting this.
528 * An inode must already be removed from the LRU list before being evicted from
529 * the cache. This should occur atomically with setting the I_FREEING state
530 * flag, so no inodes here should ever be on the LRU when being evicted.
532 static void evict(struct inode *inode)
534 const struct super_operations *op = inode->i_sb->s_op;
536 BUG_ON(!(inode->i_state & I_FREEING));
537 BUG_ON(!list_empty(&inode->i_lru));
539 if (!list_empty(&inode->i_io_list))
540 inode_io_list_del(inode);
542 inode_sb_list_del(inode);
545 * Wait for flusher thread to be done with the inode so that filesystem
546 * does not start destroying it while writeback is still running. Since
547 * the inode has I_FREEING set, flusher thread won't start new work on
548 * the inode. We just have to wait for running writeback to finish.
550 inode_wait_for_writeback(inode);
552 if (op->evict_inode) {
553 op->evict_inode(inode);
554 } else {
555 truncate_inode_pages_final(&inode->i_data);
556 clear_inode(inode);
558 if (S_ISBLK(inode->i_mode) && inode->i_bdev)
559 bd_forget(inode);
560 if (S_ISCHR(inode->i_mode) && inode->i_cdev)
561 cd_forget(inode);
563 remove_inode_hash(inode);
565 spin_lock(&inode->i_lock);
566 wake_up_bit(&inode->i_state, __I_NEW);
567 BUG_ON(inode->i_state != (I_FREEING | I_CLEAR));
568 spin_unlock(&inode->i_lock);
570 destroy_inode(inode);
574 * dispose_list - dispose of the contents of a local list
575 * @head: the head of the list to free
577 * Dispose-list gets a local list with local inodes in it, so it doesn't
578 * need to worry about list corruption and SMP locks.
580 static void dispose_list(struct list_head *head)
582 while (!list_empty(head)) {
583 struct inode *inode;
585 inode = list_first_entry(head, struct inode, i_lru);
586 list_del_init(&inode->i_lru);
588 evict(inode);
589 cond_resched();
594 * evict_inodes - evict all evictable inodes for a superblock
595 * @sb: superblock to operate on
597 * Make sure that no inodes with zero refcount are retained. This is
598 * called by superblock shutdown after having MS_ACTIVE flag removed,
599 * so any inode reaching zero refcount during or after that call will
600 * be immediately evicted.
602 void evict_inodes(struct super_block *sb)
604 struct inode *inode, *next;
605 LIST_HEAD(dispose);
607 again:
608 spin_lock(&sb->s_inode_list_lock);
609 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
610 if (atomic_read(&inode->i_count))
611 continue;
613 spin_lock(&inode->i_lock);
614 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
615 spin_unlock(&inode->i_lock);
616 continue;
619 inode->i_state |= I_FREEING;
620 inode_lru_list_del(inode);
621 spin_unlock(&inode->i_lock);
622 list_add(&inode->i_lru, &dispose);
625 * We can have a ton of inodes to evict at unmount time given
626 * enough memory, check to see if we need to go to sleep for a
627 * bit so we don't livelock.
629 if (need_resched()) {
630 spin_unlock(&sb->s_inode_list_lock);
631 cond_resched();
632 dispose_list(&dispose);
633 goto again;
636 spin_unlock(&sb->s_inode_list_lock);
638 dispose_list(&dispose);
642 * invalidate_inodes - attempt to free all inodes on a superblock
643 * @sb: superblock to operate on
644 * @kill_dirty: flag to guide handling of dirty inodes
646 * Attempts to free all inodes for a given superblock. If there were any
647 * busy inodes return a non-zero value, else zero.
648 * If @kill_dirty is set, discard dirty inodes too, otherwise treat
649 * them as busy.
651 int invalidate_inodes(struct super_block *sb, bool kill_dirty)
653 int busy = 0;
654 struct inode *inode, *next;
655 LIST_HEAD(dispose);
657 spin_lock(&sb->s_inode_list_lock);
658 list_for_each_entry_safe(inode, next, &sb->s_inodes, i_sb_list) {
659 spin_lock(&inode->i_lock);
660 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
661 spin_unlock(&inode->i_lock);
662 continue;
664 if (inode->i_state & I_DIRTY_ALL && !kill_dirty) {
665 spin_unlock(&inode->i_lock);
666 busy = 1;
667 continue;
669 if (atomic_read(&inode->i_count)) {
670 spin_unlock(&inode->i_lock);
671 busy = 1;
672 continue;
675 inode->i_state |= I_FREEING;
676 inode_lru_list_del(inode);
677 spin_unlock(&inode->i_lock);
678 list_add(&inode->i_lru, &dispose);
680 spin_unlock(&sb->s_inode_list_lock);
682 dispose_list(&dispose);
684 return busy;
688 * Isolate the inode from the LRU in preparation for freeing it.
690 * Any inodes which are pinned purely because of attached pagecache have their
691 * pagecache removed. If the inode has metadata buffers attached to
692 * mapping->private_list then try to remove them.
694 * If the inode has the I_REFERENCED flag set, then it means that it has been
695 * used recently - the flag is set in iput_final(). When we encounter such an
696 * inode, clear the flag and move it to the back of the LRU so it gets another
697 * pass through the LRU before it gets reclaimed. This is necessary because of
698 * the fact we are doing lazy LRU updates to minimise lock contention so the
699 * LRU does not have strict ordering. Hence we don't want to reclaim inodes
700 * with this flag set because they are the inodes that are out of order.
702 static enum lru_status inode_lru_isolate(struct list_head *item,
703 struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
705 struct list_head *freeable = arg;
706 struct inode *inode = container_of(item, struct inode, i_lru);
709 * we are inverting the lru lock/inode->i_lock here, so use a trylock.
710 * If we fail to get the lock, just skip it.
712 if (!spin_trylock(&inode->i_lock))
713 return LRU_SKIP;
716 * Referenced or dirty inodes are still in use. Give them another pass
717 * through the LRU as we canot reclaim them now.
719 if (atomic_read(&inode->i_count) ||
720 (inode->i_state & ~I_REFERENCED)) {
721 list_lru_isolate(lru, &inode->i_lru);
722 spin_unlock(&inode->i_lock);
723 this_cpu_dec(nr_unused);
724 return LRU_REMOVED;
727 /* recently referenced inodes get one more pass */
728 if (inode->i_state & I_REFERENCED) {
729 inode->i_state &= ~I_REFERENCED;
730 spin_unlock(&inode->i_lock);
731 return LRU_ROTATE;
734 if (inode_has_buffers(inode) || inode->i_data.nrpages) {
735 __iget(inode);
736 spin_unlock(&inode->i_lock);
737 spin_unlock(lru_lock);
738 if (remove_inode_buffers(inode)) {
739 unsigned long reap;
740 reap = invalidate_mapping_pages(&inode->i_data, 0, -1);
741 if (current_is_kswapd())
742 __count_vm_events(KSWAPD_INODESTEAL, reap);
743 else
744 __count_vm_events(PGINODESTEAL, reap);
745 if (current->reclaim_state)
746 current->reclaim_state->reclaimed_slab += reap;
748 iput(inode);
749 spin_lock(lru_lock);
750 return LRU_RETRY;
753 WARN_ON(inode->i_state & I_NEW);
754 inode->i_state |= I_FREEING;
755 list_lru_isolate_move(lru, &inode->i_lru, freeable);
756 spin_unlock(&inode->i_lock);
758 this_cpu_dec(nr_unused);
759 return LRU_REMOVED;
763 * Walk the superblock inode LRU for freeable inodes and attempt to free them.
764 * This is called from the superblock shrinker function with a number of inodes
765 * to trim from the LRU. Inodes to be freed are moved to a temporary list and
766 * then are freed outside inode_lock by dispose_list().
768 long prune_icache_sb(struct super_block *sb, struct shrink_control *sc)
770 LIST_HEAD(freeable);
771 long freed;
773 freed = list_lru_shrink_walk(&sb->s_inode_lru, sc,
774 inode_lru_isolate, &freeable);
775 dispose_list(&freeable);
776 return freed;
779 static void __wait_on_freeing_inode(struct inode *inode);
781 * Called with the inode lock held.
783 static struct inode *find_inode(struct super_block *sb,
784 struct hlist_head *head,
785 int (*test)(struct inode *, void *),
786 void *data)
788 struct inode *inode = NULL;
790 repeat:
791 hlist_for_each_entry(inode, head, i_hash) {
792 if (inode->i_sb != sb)
793 continue;
794 if (!test(inode, data))
795 continue;
796 spin_lock(&inode->i_lock);
797 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
798 __wait_on_freeing_inode(inode);
799 goto repeat;
801 __iget(inode);
802 spin_unlock(&inode->i_lock);
803 return inode;
805 return NULL;
809 * find_inode_fast is the fast path version of find_inode, see the comment at
810 * iget_locked for details.
812 static struct inode *find_inode_fast(struct super_block *sb,
813 struct hlist_head *head, unsigned long ino)
815 struct inode *inode = NULL;
817 repeat:
818 hlist_for_each_entry(inode, head, i_hash) {
819 if (inode->i_ino != ino)
820 continue;
821 if (inode->i_sb != sb)
822 continue;
823 spin_lock(&inode->i_lock);
824 if (inode->i_state & (I_FREEING|I_WILL_FREE)) {
825 __wait_on_freeing_inode(inode);
826 goto repeat;
828 __iget(inode);
829 spin_unlock(&inode->i_lock);
830 return inode;
832 return NULL;
836 * Each cpu owns a range of LAST_INO_BATCH numbers.
837 * 'shared_last_ino' is dirtied only once out of LAST_INO_BATCH allocations,
838 * to renew the exhausted range.
840 * This does not significantly increase overflow rate because every CPU can
841 * consume at most LAST_INO_BATCH-1 unused inode numbers. So there is
842 * NR_CPUS*(LAST_INO_BATCH-1) wastage. At 4096 and 1024, this is ~0.1% of the
843 * 2^32 range, and is a worst-case. Even a 50% wastage would only increase
844 * overflow rate by 2x, which does not seem too significant.
846 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
847 * error if st_ino won't fit in target struct field. Use 32bit counter
848 * here to attempt to avoid that.
850 #define LAST_INO_BATCH 1024
851 static DEFINE_PER_CPU(unsigned int, last_ino);
853 unsigned int get_next_ino(void)
855 unsigned int *p = &get_cpu_var(last_ino);
856 unsigned int res = *p;
858 #ifdef CONFIG_SMP
859 if (unlikely((res & (LAST_INO_BATCH-1)) == 0)) {
860 static atomic_t shared_last_ino;
861 int next = atomic_add_return(LAST_INO_BATCH, &shared_last_ino);
863 res = next - LAST_INO_BATCH;
865 #endif
867 res++;
868 /* get_next_ino should not provide a 0 inode number */
869 if (unlikely(!res))
870 res++;
871 *p = res;
872 put_cpu_var(last_ino);
873 return res;
875 EXPORT_SYMBOL(get_next_ino);
878 * new_inode_pseudo - obtain an inode
879 * @sb: superblock
881 * Allocates a new inode for given superblock.
882 * Inode wont be chained in superblock s_inodes list
883 * This means :
884 * - fs can't be unmount
885 * - quotas, fsnotify, writeback can't work
887 struct inode *new_inode_pseudo(struct super_block *sb)
889 struct inode *inode = alloc_inode(sb);
891 if (inode) {
892 spin_lock(&inode->i_lock);
893 inode->i_state = 0;
894 spin_unlock(&inode->i_lock);
895 INIT_LIST_HEAD(&inode->i_sb_list);
897 return inode;
901 * new_inode - obtain an inode
902 * @sb: superblock
904 * Allocates a new inode for given superblock. The default gfp_mask
905 * for allocations related to inode->i_mapping is GFP_HIGHUSER_MOVABLE.
906 * If HIGHMEM pages are unsuitable or it is known that pages allocated
907 * for the page cache are not reclaimable or migratable,
908 * mapping_set_gfp_mask() must be called with suitable flags on the
909 * newly created inode's mapping
912 struct inode *new_inode(struct super_block *sb)
914 struct inode *inode;
916 spin_lock_prefetch(&sb->s_inode_list_lock);
918 inode = new_inode_pseudo(sb);
919 if (inode)
920 inode_sb_list_add(inode);
921 return inode;
923 EXPORT_SYMBOL(new_inode);
925 #ifdef CONFIG_DEBUG_LOCK_ALLOC
926 void lockdep_annotate_inode_mutex_key(struct inode *inode)
928 if (S_ISDIR(inode->i_mode)) {
929 struct file_system_type *type = inode->i_sb->s_type;
931 /* Set new key only if filesystem hasn't already changed it */
932 if (lockdep_match_class(&inode->i_rwsem, &type->i_mutex_key)) {
934 * ensure nobody is actually holding i_mutex
936 // mutex_destroy(&inode->i_mutex);
937 init_rwsem(&inode->i_rwsem);
938 lockdep_set_class(&inode->i_rwsem,
939 &type->i_mutex_dir_key);
943 EXPORT_SYMBOL(lockdep_annotate_inode_mutex_key);
944 #endif
947 * unlock_new_inode - clear the I_NEW state and wake up any waiters
948 * @inode: new inode to unlock
950 * Called when the inode is fully initialised to clear the new state of the
951 * inode and wake up anyone waiting for the inode to finish initialisation.
953 void unlock_new_inode(struct inode *inode)
955 lockdep_annotate_inode_mutex_key(inode);
956 spin_lock(&inode->i_lock);
957 WARN_ON(!(inode->i_state & I_NEW));
958 inode->i_state &= ~I_NEW;
959 smp_mb();
960 wake_up_bit(&inode->i_state, __I_NEW);
961 spin_unlock(&inode->i_lock);
963 EXPORT_SYMBOL(unlock_new_inode);
966 * lock_two_nondirectories - take two i_mutexes on non-directory objects
968 * Lock any non-NULL argument that is not a directory.
969 * Zero, one or two objects may be locked by this function.
971 * @inode1: first inode to lock
972 * @inode2: second inode to lock
974 void lock_two_nondirectories(struct inode *inode1, struct inode *inode2)
976 if (inode1 > inode2)
977 swap(inode1, inode2);
979 if (inode1 && !S_ISDIR(inode1->i_mode))
980 inode_lock(inode1);
981 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
982 inode_lock_nested(inode2, I_MUTEX_NONDIR2);
984 EXPORT_SYMBOL(lock_two_nondirectories);
987 * unlock_two_nondirectories - release locks from lock_two_nondirectories()
988 * @inode1: first inode to unlock
989 * @inode2: second inode to unlock
991 void unlock_two_nondirectories(struct inode *inode1, struct inode *inode2)
993 if (inode1 && !S_ISDIR(inode1->i_mode))
994 inode_unlock(inode1);
995 if (inode2 && !S_ISDIR(inode2->i_mode) && inode2 != inode1)
996 inode_unlock(inode2);
998 EXPORT_SYMBOL(unlock_two_nondirectories);
1001 * iget5_locked - obtain an inode from a mounted file system
1002 * @sb: super block of file system
1003 * @hashval: hash value (usually inode number) to get
1004 * @test: callback used for comparisons between inodes
1005 * @set: callback used to initialize a new struct inode
1006 * @data: opaque data pointer to pass to @test and @set
1008 * Search for the inode specified by @hashval and @data in the inode cache,
1009 * and if present it is return it with an increased reference count. This is
1010 * a generalized version of iget_locked() for file systems where the inode
1011 * number is not sufficient for unique identification of an inode.
1013 * If the inode is not in cache, allocate a new inode and return it locked,
1014 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1015 * before unlocking it via unlock_new_inode().
1017 * Note both @test and @set are called with the inode_hash_lock held, so can't
1018 * sleep.
1020 struct inode *iget5_locked(struct super_block *sb, unsigned long hashval,
1021 int (*test)(struct inode *, void *),
1022 int (*set)(struct inode *, void *), void *data)
1024 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1025 struct inode *inode;
1026 again:
1027 spin_lock(&inode_hash_lock);
1028 inode = find_inode(sb, head, test, data);
1029 spin_unlock(&inode_hash_lock);
1031 if (inode) {
1032 wait_on_inode(inode);
1033 if (unlikely(inode_unhashed(inode))) {
1034 iput(inode);
1035 goto again;
1037 return inode;
1040 inode = alloc_inode(sb);
1041 if (inode) {
1042 struct inode *old;
1044 spin_lock(&inode_hash_lock);
1045 /* We released the lock, so.. */
1046 old = find_inode(sb, head, test, data);
1047 if (!old) {
1048 if (set(inode, data))
1049 goto set_failed;
1051 spin_lock(&inode->i_lock);
1052 inode->i_state = I_NEW;
1053 hlist_add_head(&inode->i_hash, head);
1054 spin_unlock(&inode->i_lock);
1055 inode_sb_list_add(inode);
1056 spin_unlock(&inode_hash_lock);
1058 /* Return the locked inode with I_NEW set, the
1059 * caller is responsible for filling in the contents
1061 return inode;
1065 * Uhhuh, somebody else created the same inode under
1066 * us. Use the old inode instead of the one we just
1067 * allocated.
1069 spin_unlock(&inode_hash_lock);
1070 destroy_inode(inode);
1071 inode = old;
1072 wait_on_inode(inode);
1073 if (unlikely(inode_unhashed(inode))) {
1074 iput(inode);
1075 goto again;
1078 return inode;
1080 set_failed:
1081 spin_unlock(&inode_hash_lock);
1082 destroy_inode(inode);
1083 return NULL;
1085 EXPORT_SYMBOL(iget5_locked);
1088 * iget_locked - obtain an inode from a mounted file system
1089 * @sb: super block of file system
1090 * @ino: inode number to get
1092 * Search for the inode specified by @ino in the inode cache and if present
1093 * return it with an increased reference count. This is for file systems
1094 * where the inode number is sufficient for unique identification of an inode.
1096 * If the inode is not in cache, allocate a new inode and return it locked,
1097 * hashed, and with the I_NEW flag set. The file system gets to fill it in
1098 * before unlocking it via unlock_new_inode().
1100 struct inode *iget_locked(struct super_block *sb, unsigned long ino)
1102 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1103 struct inode *inode;
1104 again:
1105 spin_lock(&inode_hash_lock);
1106 inode = find_inode_fast(sb, head, ino);
1107 spin_unlock(&inode_hash_lock);
1108 if (inode) {
1109 wait_on_inode(inode);
1110 if (unlikely(inode_unhashed(inode))) {
1111 iput(inode);
1112 goto again;
1114 return inode;
1117 inode = alloc_inode(sb);
1118 if (inode) {
1119 struct inode *old;
1121 spin_lock(&inode_hash_lock);
1122 /* We released the lock, so.. */
1123 old = find_inode_fast(sb, head, ino);
1124 if (!old) {
1125 inode->i_ino = ino;
1126 spin_lock(&inode->i_lock);
1127 inode->i_state = I_NEW;
1128 hlist_add_head(&inode->i_hash, head);
1129 spin_unlock(&inode->i_lock);
1130 inode_sb_list_add(inode);
1131 spin_unlock(&inode_hash_lock);
1133 /* Return the locked inode with I_NEW set, the
1134 * caller is responsible for filling in the contents
1136 return inode;
1140 * Uhhuh, somebody else created the same inode under
1141 * us. Use the old inode instead of the one we just
1142 * allocated.
1144 spin_unlock(&inode_hash_lock);
1145 destroy_inode(inode);
1146 inode = old;
1147 wait_on_inode(inode);
1148 if (unlikely(inode_unhashed(inode))) {
1149 iput(inode);
1150 goto again;
1153 return inode;
1155 EXPORT_SYMBOL(iget_locked);
1158 * search the inode cache for a matching inode number.
1159 * If we find one, then the inode number we are trying to
1160 * allocate is not unique and so we should not use it.
1162 * Returns 1 if the inode number is unique, 0 if it is not.
1164 static int test_inode_iunique(struct super_block *sb, unsigned long ino)
1166 struct hlist_head *b = inode_hashtable + hash(sb, ino);
1167 struct inode *inode;
1169 spin_lock(&inode_hash_lock);
1170 hlist_for_each_entry(inode, b, i_hash) {
1171 if (inode->i_ino == ino && inode->i_sb == sb) {
1172 spin_unlock(&inode_hash_lock);
1173 return 0;
1176 spin_unlock(&inode_hash_lock);
1178 return 1;
1182 * iunique - get a unique inode number
1183 * @sb: superblock
1184 * @max_reserved: highest reserved inode number
1186 * Obtain an inode number that is unique on the system for a given
1187 * superblock. This is used by file systems that have no natural
1188 * permanent inode numbering system. An inode number is returned that
1189 * is higher than the reserved limit but unique.
1191 * BUGS:
1192 * With a large number of inodes live on the file system this function
1193 * currently becomes quite slow.
1195 ino_t iunique(struct super_block *sb, ino_t max_reserved)
1198 * On a 32bit, non LFS stat() call, glibc will generate an EOVERFLOW
1199 * error if st_ino won't fit in target struct field. Use 32bit counter
1200 * here to attempt to avoid that.
1202 static DEFINE_SPINLOCK(iunique_lock);
1203 static unsigned int counter;
1204 ino_t res;
1206 spin_lock(&iunique_lock);
1207 do {
1208 if (counter <= max_reserved)
1209 counter = max_reserved + 1;
1210 res = counter++;
1211 } while (!test_inode_iunique(sb, res));
1212 spin_unlock(&iunique_lock);
1214 return res;
1216 EXPORT_SYMBOL(iunique);
1218 struct inode *igrab(struct inode *inode)
1220 spin_lock(&inode->i_lock);
1221 if (!(inode->i_state & (I_FREEING|I_WILL_FREE))) {
1222 __iget(inode);
1223 spin_unlock(&inode->i_lock);
1224 } else {
1225 spin_unlock(&inode->i_lock);
1227 * Handle the case where s_op->clear_inode is not been
1228 * called yet, and somebody is calling igrab
1229 * while the inode is getting freed.
1231 inode = NULL;
1233 return inode;
1235 EXPORT_SYMBOL(igrab);
1238 * ilookup5_nowait - search for an inode in the inode cache
1239 * @sb: super block of file system to search
1240 * @hashval: hash value (usually inode number) to search for
1241 * @test: callback used for comparisons between inodes
1242 * @data: opaque data pointer to pass to @test
1244 * Search for the inode specified by @hashval and @data in the inode cache.
1245 * If the inode is in the cache, the inode is returned with an incremented
1246 * reference count.
1248 * Note: I_NEW is not waited upon so you have to be very careful what you do
1249 * with the returned inode. You probably should be using ilookup5() instead.
1251 * Note2: @test is called with the inode_hash_lock held, so can't sleep.
1253 struct inode *ilookup5_nowait(struct super_block *sb, unsigned long hashval,
1254 int (*test)(struct inode *, void *), void *data)
1256 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1257 struct inode *inode;
1259 spin_lock(&inode_hash_lock);
1260 inode = find_inode(sb, head, test, data);
1261 spin_unlock(&inode_hash_lock);
1263 return inode;
1265 EXPORT_SYMBOL(ilookup5_nowait);
1268 * ilookup5 - search for an inode in the inode cache
1269 * @sb: super block of file system to search
1270 * @hashval: hash value (usually inode number) to search for
1271 * @test: callback used for comparisons between inodes
1272 * @data: opaque data pointer to pass to @test
1274 * Search for the inode specified by @hashval and @data in the inode cache,
1275 * and if the inode is in the cache, return the inode with an incremented
1276 * reference count. Waits on I_NEW before returning the inode.
1277 * returned with an incremented reference count.
1279 * This is a generalized version of ilookup() for file systems where the
1280 * inode number is not sufficient for unique identification of an inode.
1282 * Note: @test is called with the inode_hash_lock held, so can't sleep.
1284 struct inode *ilookup5(struct super_block *sb, unsigned long hashval,
1285 int (*test)(struct inode *, void *), void *data)
1287 struct inode *inode;
1288 again:
1289 inode = ilookup5_nowait(sb, hashval, test, data);
1290 if (inode) {
1291 wait_on_inode(inode);
1292 if (unlikely(inode_unhashed(inode))) {
1293 iput(inode);
1294 goto again;
1297 return inode;
1299 EXPORT_SYMBOL(ilookup5);
1302 * ilookup - search for an inode in the inode cache
1303 * @sb: super block of file system to search
1304 * @ino: inode number to search for
1306 * Search for the inode @ino in the inode cache, and if the inode is in the
1307 * cache, the inode is returned with an incremented reference count.
1309 struct inode *ilookup(struct super_block *sb, unsigned long ino)
1311 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1312 struct inode *inode;
1313 again:
1314 spin_lock(&inode_hash_lock);
1315 inode = find_inode_fast(sb, head, ino);
1316 spin_unlock(&inode_hash_lock);
1318 if (inode) {
1319 wait_on_inode(inode);
1320 if (unlikely(inode_unhashed(inode))) {
1321 iput(inode);
1322 goto again;
1325 return inode;
1327 EXPORT_SYMBOL(ilookup);
1330 * find_inode_nowait - find an inode in the inode cache
1331 * @sb: super block of file system to search
1332 * @hashval: hash value (usually inode number) to search for
1333 * @match: callback used for comparisons between inodes
1334 * @data: opaque data pointer to pass to @match
1336 * Search for the inode specified by @hashval and @data in the inode
1337 * cache, where the helper function @match will return 0 if the inode
1338 * does not match, 1 if the inode does match, and -1 if the search
1339 * should be stopped. The @match function must be responsible for
1340 * taking the i_lock spin_lock and checking i_state for an inode being
1341 * freed or being initialized, and incrementing the reference count
1342 * before returning 1. It also must not sleep, since it is called with
1343 * the inode_hash_lock spinlock held.
1345 * This is a even more generalized version of ilookup5() when the
1346 * function must never block --- find_inode() can block in
1347 * __wait_on_freeing_inode() --- or when the caller can not increment
1348 * the reference count because the resulting iput() might cause an
1349 * inode eviction. The tradeoff is that the @match funtion must be
1350 * very carefully implemented.
1352 struct inode *find_inode_nowait(struct super_block *sb,
1353 unsigned long hashval,
1354 int (*match)(struct inode *, unsigned long,
1355 void *),
1356 void *data)
1358 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1359 struct inode *inode, *ret_inode = NULL;
1360 int mval;
1362 spin_lock(&inode_hash_lock);
1363 hlist_for_each_entry(inode, head, i_hash) {
1364 if (inode->i_sb != sb)
1365 continue;
1366 mval = match(inode, hashval, data);
1367 if (mval == 0)
1368 continue;
1369 if (mval == 1)
1370 ret_inode = inode;
1371 goto out;
1373 out:
1374 spin_unlock(&inode_hash_lock);
1375 return ret_inode;
1377 EXPORT_SYMBOL(find_inode_nowait);
1379 int insert_inode_locked(struct inode *inode)
1381 struct super_block *sb = inode->i_sb;
1382 ino_t ino = inode->i_ino;
1383 struct hlist_head *head = inode_hashtable + hash(sb, ino);
1385 while (1) {
1386 struct inode *old = NULL;
1387 spin_lock(&inode_hash_lock);
1388 hlist_for_each_entry(old, head, i_hash) {
1389 if (old->i_ino != ino)
1390 continue;
1391 if (old->i_sb != sb)
1392 continue;
1393 spin_lock(&old->i_lock);
1394 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1395 spin_unlock(&old->i_lock);
1396 continue;
1398 break;
1400 if (likely(!old)) {
1401 spin_lock(&inode->i_lock);
1402 inode->i_state |= I_NEW;
1403 hlist_add_head(&inode->i_hash, head);
1404 spin_unlock(&inode->i_lock);
1405 spin_unlock(&inode_hash_lock);
1406 return 0;
1408 __iget(old);
1409 spin_unlock(&old->i_lock);
1410 spin_unlock(&inode_hash_lock);
1411 wait_on_inode(old);
1412 if (unlikely(!inode_unhashed(old))) {
1413 iput(old);
1414 return -EBUSY;
1416 iput(old);
1419 EXPORT_SYMBOL(insert_inode_locked);
1421 int insert_inode_locked4(struct inode *inode, unsigned long hashval,
1422 int (*test)(struct inode *, void *), void *data)
1424 struct super_block *sb = inode->i_sb;
1425 struct hlist_head *head = inode_hashtable + hash(sb, hashval);
1427 while (1) {
1428 struct inode *old = NULL;
1430 spin_lock(&inode_hash_lock);
1431 hlist_for_each_entry(old, head, i_hash) {
1432 if (old->i_sb != sb)
1433 continue;
1434 if (!test(old, data))
1435 continue;
1436 spin_lock(&old->i_lock);
1437 if (old->i_state & (I_FREEING|I_WILL_FREE)) {
1438 spin_unlock(&old->i_lock);
1439 continue;
1441 break;
1443 if (likely(!old)) {
1444 spin_lock(&inode->i_lock);
1445 inode->i_state |= I_NEW;
1446 hlist_add_head(&inode->i_hash, head);
1447 spin_unlock(&inode->i_lock);
1448 spin_unlock(&inode_hash_lock);
1449 return 0;
1451 __iget(old);
1452 spin_unlock(&old->i_lock);
1453 spin_unlock(&inode_hash_lock);
1454 wait_on_inode(old);
1455 if (unlikely(!inode_unhashed(old))) {
1456 iput(old);
1457 return -EBUSY;
1459 iput(old);
1462 EXPORT_SYMBOL(insert_inode_locked4);
1465 int generic_delete_inode(struct inode *inode)
1467 return 1;
1469 EXPORT_SYMBOL(generic_delete_inode);
1472 * Called when we're dropping the last reference
1473 * to an inode.
1475 * Call the FS "drop_inode()" function, defaulting to
1476 * the legacy UNIX filesystem behaviour. If it tells
1477 * us to evict inode, do so. Otherwise, retain inode
1478 * in cache if fs is alive, sync and evict if fs is
1479 * shutting down.
1481 static void iput_final(struct inode *inode)
1483 struct super_block *sb = inode->i_sb;
1484 const struct super_operations *op = inode->i_sb->s_op;
1485 int drop;
1487 WARN_ON(inode->i_state & I_NEW);
1489 if (op->drop_inode)
1490 drop = op->drop_inode(inode);
1491 else
1492 drop = generic_drop_inode(inode);
1494 if (!drop && (sb->s_flags & MS_ACTIVE)) {
1495 inode->i_state |= I_REFERENCED;
1496 inode_add_lru(inode);
1497 spin_unlock(&inode->i_lock);
1498 return;
1501 if (!drop) {
1502 inode->i_state |= I_WILL_FREE;
1503 spin_unlock(&inode->i_lock);
1504 write_inode_now(inode, 1);
1505 spin_lock(&inode->i_lock);
1506 WARN_ON(inode->i_state & I_NEW);
1507 inode->i_state &= ~I_WILL_FREE;
1510 inode->i_state |= I_FREEING;
1511 if (!list_empty(&inode->i_lru))
1512 inode_lru_list_del(inode);
1513 spin_unlock(&inode->i_lock);
1515 evict(inode);
1519 * iput - put an inode
1520 * @inode: inode to put
1522 * Puts an inode, dropping its usage count. If the inode use count hits
1523 * zero, the inode is then freed and may also be destroyed.
1525 * Consequently, iput() can sleep.
1527 void iput(struct inode *inode)
1529 if (!inode)
1530 return;
1531 BUG_ON(inode->i_state & I_CLEAR);
1532 retry:
1533 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
1534 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
1535 atomic_inc(&inode->i_count);
1536 inode->i_state &= ~I_DIRTY_TIME;
1537 spin_unlock(&inode->i_lock);
1538 trace_writeback_lazytime_iput(inode);
1539 mark_inode_dirty_sync(inode);
1540 goto retry;
1542 iput_final(inode);
1545 EXPORT_SYMBOL(iput);
1548 * bmap - find a block number in a file
1549 * @inode: inode of file
1550 * @block: block to find
1552 * Returns the block number on the device holding the inode that
1553 * is the disk block number for the block of the file requested.
1554 * That is, asked for block 4 of inode 1 the function will return the
1555 * disk block relative to the disk start that holds that block of the
1556 * file.
1558 sector_t bmap(struct inode *inode, sector_t block)
1560 sector_t res = 0;
1561 if (inode->i_mapping->a_ops->bmap)
1562 res = inode->i_mapping->a_ops->bmap(inode->i_mapping, block);
1563 return res;
1565 EXPORT_SYMBOL(bmap);
1568 * Update times in overlayed inode from underlying real inode
1570 static void update_ovl_inode_times(struct dentry *dentry, struct inode *inode,
1571 bool rcu)
1573 if (!rcu) {
1574 struct inode *realinode = d_real_inode(dentry);
1576 if (unlikely(inode != realinode) &&
1577 (!timespec_equal(&inode->i_mtime, &realinode->i_mtime) ||
1578 !timespec_equal(&inode->i_ctime, &realinode->i_ctime))) {
1579 inode->i_mtime = realinode->i_mtime;
1580 inode->i_ctime = realinode->i_ctime;
1586 * With relative atime, only update atime if the previous atime is
1587 * earlier than either the ctime or mtime or if at least a day has
1588 * passed since the last atime update.
1590 static int relatime_need_update(const struct path *path, struct inode *inode,
1591 struct timespec now, bool rcu)
1594 if (!(path->mnt->mnt_flags & MNT_RELATIME))
1595 return 1;
1597 update_ovl_inode_times(path->dentry, inode, rcu);
1599 * Is mtime younger than atime? If yes, update atime:
1601 if (timespec_compare(&inode->i_mtime, &inode->i_atime) >= 0)
1602 return 1;
1604 * Is ctime younger than atime? If yes, update atime:
1606 if (timespec_compare(&inode->i_ctime, &inode->i_atime) >= 0)
1607 return 1;
1610 * Is the previous atime value older than a day? If yes,
1611 * update atime:
1613 if ((long)(now.tv_sec - inode->i_atime.tv_sec) >= 24*60*60)
1614 return 1;
1616 * Good, we can skip the atime update:
1618 return 0;
1621 int generic_update_time(struct inode *inode, struct timespec *time, int flags)
1623 int iflags = I_DIRTY_TIME;
1625 if (flags & S_ATIME)
1626 inode->i_atime = *time;
1627 if (flags & S_VERSION)
1628 inode_inc_iversion(inode);
1629 if (flags & S_CTIME)
1630 inode->i_ctime = *time;
1631 if (flags & S_MTIME)
1632 inode->i_mtime = *time;
1634 if (!(inode->i_sb->s_flags & MS_LAZYTIME) || (flags & S_VERSION))
1635 iflags |= I_DIRTY_SYNC;
1636 __mark_inode_dirty(inode, iflags);
1637 return 0;
1639 EXPORT_SYMBOL(generic_update_time);
1642 * This does the actual work of updating an inodes time or version. Must have
1643 * had called mnt_want_write() before calling this.
1645 static int update_time(struct inode *inode, struct timespec *time, int flags)
1647 int (*update_time)(struct inode *, struct timespec *, int);
1649 update_time = inode->i_op->update_time ? inode->i_op->update_time :
1650 generic_update_time;
1652 return update_time(inode, time, flags);
1656 * touch_atime - update the access time
1657 * @path: the &struct path to update
1658 * @inode: inode to update
1660 * Update the accessed time on an inode and mark it for writeback.
1661 * This function automatically handles read only file systems and media,
1662 * as well as the "noatime" flag and inode specific "noatime" markers.
1664 bool __atime_needs_update(const struct path *path, struct inode *inode,
1665 bool rcu)
1667 struct vfsmount *mnt = path->mnt;
1668 struct timespec now;
1670 if (inode->i_flags & S_NOATIME)
1671 return false;
1673 /* Atime updates will likely cause i_uid and i_gid to be written
1674 * back improprely if their true value is unknown to the vfs.
1676 if (HAS_UNMAPPED_ID(inode))
1677 return false;
1679 if (IS_NOATIME(inode))
1680 return false;
1681 if ((inode->i_sb->s_flags & MS_NODIRATIME) && S_ISDIR(inode->i_mode))
1682 return false;
1684 if (mnt->mnt_flags & MNT_NOATIME)
1685 return false;
1686 if ((mnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))
1687 return false;
1689 now = current_time(inode);
1691 if (!relatime_need_update(path, inode, now, rcu))
1692 return false;
1694 if (timespec_equal(&inode->i_atime, &now))
1695 return false;
1697 return true;
1700 void touch_atime(const struct path *path)
1702 struct vfsmount *mnt = path->mnt;
1703 struct inode *inode = d_inode(path->dentry);
1704 struct timespec now;
1706 if (!__atime_needs_update(path, inode, false))
1707 return;
1709 if (!sb_start_write_trylock(inode->i_sb))
1710 return;
1712 if (__mnt_want_write(mnt) != 0)
1713 goto skip_update;
1715 * File systems can error out when updating inodes if they need to
1716 * allocate new space to modify an inode (such is the case for
1717 * Btrfs), but since we touch atime while walking down the path we
1718 * really don't care if we failed to update the atime of the file,
1719 * so just ignore the return value.
1720 * We may also fail on filesystems that have the ability to make parts
1721 * of the fs read only, e.g. subvolumes in Btrfs.
1723 now = current_time(inode);
1724 update_time(inode, &now, S_ATIME);
1725 __mnt_drop_write(mnt);
1726 skip_update:
1727 sb_end_write(inode->i_sb);
1729 EXPORT_SYMBOL(touch_atime);
1732 * The logic we want is
1734 * if suid or (sgid and xgrp)
1735 * remove privs
1737 int should_remove_suid(struct dentry *dentry)
1739 umode_t mode = d_inode(dentry)->i_mode;
1740 int kill = 0;
1742 /* suid always must be killed */
1743 if (unlikely(mode & S_ISUID))
1744 kill = ATTR_KILL_SUID;
1747 * sgid without any exec bits is just a mandatory locking mark; leave
1748 * it alone. If some exec bits are set, it's a real sgid; kill it.
1750 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1751 kill |= ATTR_KILL_SGID;
1753 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1754 return kill;
1756 return 0;
1758 EXPORT_SYMBOL(should_remove_suid);
1761 * Return mask of changes for notify_change() that need to be done as a
1762 * response to write or truncate. Return 0 if nothing has to be changed.
1763 * Negative value on error (change should be denied).
1765 int dentry_needs_remove_privs(struct dentry *dentry)
1767 struct inode *inode = d_inode(dentry);
1768 int mask = 0;
1769 int ret;
1771 if (IS_NOSEC(inode))
1772 return 0;
1774 mask = should_remove_suid(dentry);
1775 ret = security_inode_need_killpriv(dentry);
1776 if (ret < 0)
1777 return ret;
1778 if (ret)
1779 mask |= ATTR_KILL_PRIV;
1780 return mask;
1783 static int __remove_privs(struct dentry *dentry, int kill)
1785 struct iattr newattrs;
1787 newattrs.ia_valid = ATTR_FORCE | kill;
1789 * Note we call this on write, so notify_change will not
1790 * encounter any conflicting delegations:
1792 return notify_change(dentry, &newattrs, NULL);
1796 * Remove special file priviledges (suid, capabilities) when file is written
1797 * to or truncated.
1799 int file_remove_privs(struct file *file)
1801 struct dentry *dentry = file_dentry(file);
1802 struct inode *inode = file_inode(file);
1803 int kill;
1804 int error = 0;
1806 /* Fast path for nothing security related */
1807 if (IS_NOSEC(inode))
1808 return 0;
1810 kill = dentry_needs_remove_privs(dentry);
1811 if (kill < 0)
1812 return kill;
1813 if (kill)
1814 error = __remove_privs(dentry, kill);
1815 if (!error)
1816 inode_has_no_xattr(inode);
1818 return error;
1820 EXPORT_SYMBOL(file_remove_privs);
1823 * file_update_time - update mtime and ctime time
1824 * @file: file accessed
1826 * Update the mtime and ctime members of an inode and mark the inode
1827 * for writeback. Note that this function is meant exclusively for
1828 * usage in the file write path of filesystems, and filesystems may
1829 * choose to explicitly ignore update via this function with the
1830 * S_NOCMTIME inode flag, e.g. for network filesystem where these
1831 * timestamps are handled by the server. This can return an error for
1832 * file systems who need to allocate space in order to update an inode.
1835 int file_update_time(struct file *file)
1837 struct inode *inode = file_inode(file);
1838 struct timespec now;
1839 int sync_it = 0;
1840 int ret;
1842 /* First try to exhaust all avenues to not sync */
1843 if (IS_NOCMTIME(inode))
1844 return 0;
1846 now = current_time(inode);
1847 if (!timespec_equal(&inode->i_mtime, &now))
1848 sync_it = S_MTIME;
1850 if (!timespec_equal(&inode->i_ctime, &now))
1851 sync_it |= S_CTIME;
1853 if (IS_I_VERSION(inode))
1854 sync_it |= S_VERSION;
1856 if (!sync_it)
1857 return 0;
1859 /* Finally allowed to write? Takes lock. */
1860 if (__mnt_want_write_file(file))
1861 return 0;
1863 ret = update_time(inode, &now, sync_it);
1864 __mnt_drop_write_file(file);
1866 return ret;
1868 EXPORT_SYMBOL(file_update_time);
1870 int inode_needs_sync(struct inode *inode)
1872 if (IS_SYNC(inode))
1873 return 1;
1874 if (S_ISDIR(inode->i_mode) && IS_DIRSYNC(inode))
1875 return 1;
1876 return 0;
1878 EXPORT_SYMBOL(inode_needs_sync);
1881 * If we try to find an inode in the inode hash while it is being
1882 * deleted, we have to wait until the filesystem completes its
1883 * deletion before reporting that it isn't found. This function waits
1884 * until the deletion _might_ have completed. Callers are responsible
1885 * to recheck inode state.
1887 * It doesn't matter if I_NEW is not set initially, a call to
1888 * wake_up_bit(&inode->i_state, __I_NEW) after removing from the hash list
1889 * will DTRT.
1891 static void __wait_on_freeing_inode(struct inode *inode)
1893 wait_queue_head_t *wq;
1894 DEFINE_WAIT_BIT(wait, &inode->i_state, __I_NEW);
1895 wq = bit_waitqueue(&inode->i_state, __I_NEW);
1896 prepare_to_wait(wq, &wait.wait, TASK_UNINTERRUPTIBLE);
1897 spin_unlock(&inode->i_lock);
1898 spin_unlock(&inode_hash_lock);
1899 schedule();
1900 finish_wait(wq, &wait.wait);
1901 spin_lock(&inode_hash_lock);
1904 static __initdata unsigned long ihash_entries;
1905 static int __init set_ihash_entries(char *str)
1907 if (!str)
1908 return 0;
1909 ihash_entries = simple_strtoul(str, &str, 0);
1910 return 1;
1912 __setup("ihash_entries=", set_ihash_entries);
1915 * Initialize the waitqueues and inode hash table.
1917 void __init inode_init_early(void)
1919 unsigned int loop;
1921 /* If hashes are distributed across NUMA nodes, defer
1922 * hash allocation until vmalloc space is available.
1924 if (hashdist)
1925 return;
1927 inode_hashtable =
1928 alloc_large_system_hash("Inode-cache",
1929 sizeof(struct hlist_head),
1930 ihash_entries,
1932 HASH_EARLY,
1933 &i_hash_shift,
1934 &i_hash_mask,
1938 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1939 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1942 void __init inode_init(void)
1944 unsigned int loop;
1946 /* inode slab cache */
1947 inode_cachep = kmem_cache_create("inode_cache",
1948 sizeof(struct inode),
1950 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
1951 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1952 init_once);
1954 /* Hash may have been set up in inode_init_early */
1955 if (!hashdist)
1956 return;
1958 inode_hashtable =
1959 alloc_large_system_hash("Inode-cache",
1960 sizeof(struct hlist_head),
1961 ihash_entries,
1964 &i_hash_shift,
1965 &i_hash_mask,
1969 for (loop = 0; loop < (1U << i_hash_shift); loop++)
1970 INIT_HLIST_HEAD(&inode_hashtable[loop]);
1973 void init_special_inode(struct inode *inode, umode_t mode, dev_t rdev)
1975 inode->i_mode = mode;
1976 if (S_ISCHR(mode)) {
1977 inode->i_fop = &def_chr_fops;
1978 inode->i_rdev = rdev;
1979 } else if (S_ISBLK(mode)) {
1980 inode->i_fop = &def_blk_fops;
1981 inode->i_rdev = rdev;
1982 } else if (S_ISFIFO(mode))
1983 inode->i_fop = &pipefifo_fops;
1984 else if (S_ISSOCK(mode))
1985 ; /* leave it no_open_fops */
1986 else
1987 printk(KERN_DEBUG "init_special_inode: bogus i_mode (%o) for"
1988 " inode %s:%lu\n", mode, inode->i_sb->s_id,
1989 inode->i_ino);
1991 EXPORT_SYMBOL(init_special_inode);
1994 * inode_init_owner - Init uid,gid,mode for new inode according to posix standards
1995 * @inode: New inode
1996 * @dir: Directory inode
1997 * @mode: mode of the new inode
1999 void inode_init_owner(struct inode *inode, const struct inode *dir,
2000 umode_t mode)
2002 inode->i_uid = current_fsuid();
2003 if (dir && dir->i_mode & S_ISGID) {
2004 inode->i_gid = dir->i_gid;
2005 if (S_ISDIR(mode))
2006 mode |= S_ISGID;
2007 } else
2008 inode->i_gid = current_fsgid();
2009 inode->i_mode = mode;
2011 EXPORT_SYMBOL(inode_init_owner);
2014 * inode_owner_or_capable - check current task permissions to inode
2015 * @inode: inode being checked
2017 * Return true if current either has CAP_FOWNER in a namespace with the
2018 * inode owner uid mapped, or owns the file.
2020 bool inode_owner_or_capable(const struct inode *inode)
2022 struct user_namespace *ns;
2024 if (uid_eq(current_fsuid(), inode->i_uid))
2025 return true;
2027 ns = current_user_ns();
2028 if (ns_capable(ns, CAP_FOWNER) && kuid_has_mapping(ns, inode->i_uid))
2029 return true;
2030 return false;
2032 EXPORT_SYMBOL(inode_owner_or_capable);
2035 * Direct i/o helper functions
2037 static void __inode_dio_wait(struct inode *inode)
2039 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
2040 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
2042 do {
2043 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
2044 if (atomic_read(&inode->i_dio_count))
2045 schedule();
2046 } while (atomic_read(&inode->i_dio_count));
2047 finish_wait(wq, &q.wait);
2051 * inode_dio_wait - wait for outstanding DIO requests to finish
2052 * @inode: inode to wait for
2054 * Waits for all pending direct I/O requests to finish so that we can
2055 * proceed with a truncate or equivalent operation.
2057 * Must be called under a lock that serializes taking new references
2058 * to i_dio_count, usually by inode->i_mutex.
2060 void inode_dio_wait(struct inode *inode)
2062 if (atomic_read(&inode->i_dio_count))
2063 __inode_dio_wait(inode);
2065 EXPORT_SYMBOL(inode_dio_wait);
2068 * inode_set_flags - atomically set some inode flags
2070 * Note: the caller should be holding i_mutex, or else be sure that
2071 * they have exclusive access to the inode structure (i.e., while the
2072 * inode is being instantiated). The reason for the cmpxchg() loop
2073 * --- which wouldn't be necessary if all code paths which modify
2074 * i_flags actually followed this rule, is that there is at least one
2075 * code path which doesn't today so we use cmpxchg() out of an abundance
2076 * of caution.
2078 * In the long run, i_mutex is overkill, and we should probably look
2079 * at using the i_lock spinlock to protect i_flags, and then make sure
2080 * it is so documented in include/linux/fs.h and that all code follows
2081 * the locking convention!!
2083 void inode_set_flags(struct inode *inode, unsigned int flags,
2084 unsigned int mask)
2086 unsigned int old_flags, new_flags;
2088 WARN_ON_ONCE(flags & ~mask);
2089 do {
2090 old_flags = ACCESS_ONCE(inode->i_flags);
2091 new_flags = (old_flags & ~mask) | flags;
2092 } while (unlikely(cmpxchg(&inode->i_flags, old_flags,
2093 new_flags) != old_flags));
2095 EXPORT_SYMBOL(inode_set_flags);
2097 void inode_nohighmem(struct inode *inode)
2099 mapping_set_gfp_mask(inode->i_mapping, GFP_USER);
2101 EXPORT_SYMBOL(inode_nohighmem);
2104 * current_time - Return FS time
2105 * @inode: inode.
2107 * Return the current time truncated to the time granularity supported by
2108 * the fs.
2110 * Note that inode and inode->sb cannot be NULL.
2111 * Otherwise, the function warns and returns time without truncation.
2113 struct timespec current_time(struct inode *inode)
2115 struct timespec now = current_kernel_time();
2117 if (unlikely(!inode->i_sb)) {
2118 WARN(1, "current_time() called with uninitialized super_block in the inode");
2119 return now;
2122 return timespec_trunc(now, inode->i_sb->s_time_gran);
2124 EXPORT_SYMBOL(current_time);