1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/sched.h>
5 #include <linux/mmu_notifier.h>
6 #include <linux/rmap.h>
7 #include <linux/swap.h>
8 #include <linux/mm_inline.h>
9 #include <linux/kthread.h>
10 #include <linux/khugepaged.h>
11 #include <linux/freezer.h>
12 #include <linux/mman.h>
13 #include <linux/hashtable.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/page_idle.h>
16 #include <linux/swapops.h>
17 #include <linux/shmem_fs.h>
20 #include <asm/pgalloc.h>
30 SCAN_LACK_REFERENCED_PAGE
,
44 SCAN_ALLOC_HUGE_PAGE_FAIL
,
45 SCAN_CGROUP_CHARGE_FAIL
,
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/huge_memory.h>
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly
;
55 static unsigned int khugepaged_pages_collapsed
;
56 static unsigned int khugepaged_full_scans
;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly
= 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly
= 60000;
60 static unsigned long khugepaged_sleep_expire
;
61 static DEFINE_SPINLOCK(khugepaged_mm_lock
);
62 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait
);
64 * default collapse hugepages if there is at least one pte mapped like
65 * it would have happened if the vma was large enough during page
68 static unsigned int khugepaged_max_ptes_none __read_mostly
;
69 static unsigned int khugepaged_max_ptes_swap __read_mostly
;
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly
DEFINE_HASHTABLE(mm_slots_hash
, MM_SLOTS_HASH_BITS
);
74 static struct kmem_cache
*mm_slot_cache __read_mostly
;
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
83 struct hlist_node hash
;
84 struct list_head mm_node
;
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
94 * There is only the one khugepaged_scan instance of this cursor structure.
96 struct khugepaged_scan
{
97 struct list_head mm_head
;
98 struct mm_slot
*mm_slot
;
99 unsigned long address
;
102 static struct khugepaged_scan khugepaged_scan
= {
103 .mm_head
= LIST_HEAD_INIT(khugepaged_scan
.mm_head
),
107 static ssize_t
scan_sleep_millisecs_show(struct kobject
*kobj
,
108 struct kobj_attribute
*attr
,
111 return sprintf(buf
, "%u\n", khugepaged_scan_sleep_millisecs
);
114 static ssize_t
scan_sleep_millisecs_store(struct kobject
*kobj
,
115 struct kobj_attribute
*attr
,
116 const char *buf
, size_t count
)
121 err
= kstrtoul(buf
, 10, &msecs
);
122 if (err
|| msecs
> UINT_MAX
)
125 khugepaged_scan_sleep_millisecs
= msecs
;
126 khugepaged_sleep_expire
= 0;
127 wake_up_interruptible(&khugepaged_wait
);
131 static struct kobj_attribute scan_sleep_millisecs_attr
=
132 __ATTR(scan_sleep_millisecs
, 0644, scan_sleep_millisecs_show
,
133 scan_sleep_millisecs_store
);
135 static ssize_t
alloc_sleep_millisecs_show(struct kobject
*kobj
,
136 struct kobj_attribute
*attr
,
139 return sprintf(buf
, "%u\n", khugepaged_alloc_sleep_millisecs
);
142 static ssize_t
alloc_sleep_millisecs_store(struct kobject
*kobj
,
143 struct kobj_attribute
*attr
,
144 const char *buf
, size_t count
)
149 err
= kstrtoul(buf
, 10, &msecs
);
150 if (err
|| msecs
> UINT_MAX
)
153 khugepaged_alloc_sleep_millisecs
= msecs
;
154 khugepaged_sleep_expire
= 0;
155 wake_up_interruptible(&khugepaged_wait
);
159 static struct kobj_attribute alloc_sleep_millisecs_attr
=
160 __ATTR(alloc_sleep_millisecs
, 0644, alloc_sleep_millisecs_show
,
161 alloc_sleep_millisecs_store
);
163 static ssize_t
pages_to_scan_show(struct kobject
*kobj
,
164 struct kobj_attribute
*attr
,
167 return sprintf(buf
, "%u\n", khugepaged_pages_to_scan
);
169 static ssize_t
pages_to_scan_store(struct kobject
*kobj
,
170 struct kobj_attribute
*attr
,
171 const char *buf
, size_t count
)
176 err
= kstrtoul(buf
, 10, &pages
);
177 if (err
|| !pages
|| pages
> UINT_MAX
)
180 khugepaged_pages_to_scan
= pages
;
184 static struct kobj_attribute pages_to_scan_attr
=
185 __ATTR(pages_to_scan
, 0644, pages_to_scan_show
,
186 pages_to_scan_store
);
188 static ssize_t
pages_collapsed_show(struct kobject
*kobj
,
189 struct kobj_attribute
*attr
,
192 return sprintf(buf
, "%u\n", khugepaged_pages_collapsed
);
194 static struct kobj_attribute pages_collapsed_attr
=
195 __ATTR_RO(pages_collapsed
);
197 static ssize_t
full_scans_show(struct kobject
*kobj
,
198 struct kobj_attribute
*attr
,
201 return sprintf(buf
, "%u\n", khugepaged_full_scans
);
203 static struct kobj_attribute full_scans_attr
=
204 __ATTR_RO(full_scans
);
206 static ssize_t
khugepaged_defrag_show(struct kobject
*kobj
,
207 struct kobj_attribute
*attr
, char *buf
)
209 return single_hugepage_flag_show(kobj
, attr
, buf
,
210 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
212 static ssize_t
khugepaged_defrag_store(struct kobject
*kobj
,
213 struct kobj_attribute
*attr
,
214 const char *buf
, size_t count
)
216 return single_hugepage_flag_store(kobj
, attr
, buf
, count
,
217 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG
);
219 static struct kobj_attribute khugepaged_defrag_attr
=
220 __ATTR(defrag
, 0644, khugepaged_defrag_show
,
221 khugepaged_defrag_store
);
224 * max_ptes_none controls if khugepaged should collapse hugepages over
225 * any unmapped ptes in turn potentially increasing the memory
226 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
227 * reduce the available free memory in the system as it
228 * runs. Increasing max_ptes_none will instead potentially reduce the
229 * free memory in the system during the khugepaged scan.
231 static ssize_t
khugepaged_max_ptes_none_show(struct kobject
*kobj
,
232 struct kobj_attribute
*attr
,
235 return sprintf(buf
, "%u\n", khugepaged_max_ptes_none
);
237 static ssize_t
khugepaged_max_ptes_none_store(struct kobject
*kobj
,
238 struct kobj_attribute
*attr
,
239 const char *buf
, size_t count
)
242 unsigned long max_ptes_none
;
244 err
= kstrtoul(buf
, 10, &max_ptes_none
);
245 if (err
|| max_ptes_none
> HPAGE_PMD_NR
-1)
248 khugepaged_max_ptes_none
= max_ptes_none
;
252 static struct kobj_attribute khugepaged_max_ptes_none_attr
=
253 __ATTR(max_ptes_none
, 0644, khugepaged_max_ptes_none_show
,
254 khugepaged_max_ptes_none_store
);
256 static ssize_t
khugepaged_max_ptes_swap_show(struct kobject
*kobj
,
257 struct kobj_attribute
*attr
,
260 return sprintf(buf
, "%u\n", khugepaged_max_ptes_swap
);
263 static ssize_t
khugepaged_max_ptes_swap_store(struct kobject
*kobj
,
264 struct kobj_attribute
*attr
,
265 const char *buf
, size_t count
)
268 unsigned long max_ptes_swap
;
270 err
= kstrtoul(buf
, 10, &max_ptes_swap
);
271 if (err
|| max_ptes_swap
> HPAGE_PMD_NR
-1)
274 khugepaged_max_ptes_swap
= max_ptes_swap
;
279 static struct kobj_attribute khugepaged_max_ptes_swap_attr
=
280 __ATTR(max_ptes_swap
, 0644, khugepaged_max_ptes_swap_show
,
281 khugepaged_max_ptes_swap_store
);
283 static struct attribute
*khugepaged_attr
[] = {
284 &khugepaged_defrag_attr
.attr
,
285 &khugepaged_max_ptes_none_attr
.attr
,
286 &pages_to_scan_attr
.attr
,
287 &pages_collapsed_attr
.attr
,
288 &full_scans_attr
.attr
,
289 &scan_sleep_millisecs_attr
.attr
,
290 &alloc_sleep_millisecs_attr
.attr
,
291 &khugepaged_max_ptes_swap_attr
.attr
,
295 struct attribute_group khugepaged_attr_group
= {
296 .attrs
= khugepaged_attr
,
297 .name
= "khugepaged",
299 #endif /* CONFIG_SYSFS */
301 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
303 int hugepage_madvise(struct vm_area_struct
*vma
,
304 unsigned long *vm_flags
, int advice
)
310 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
311 * can't handle this properly after s390_enable_sie, so we simply
312 * ignore the madvise to prevent qemu from causing a SIGSEGV.
314 if (mm_has_pgste(vma
->vm_mm
))
317 *vm_flags
&= ~VM_NOHUGEPAGE
;
318 *vm_flags
|= VM_HUGEPAGE
;
320 * If the vma become good for khugepaged to scan,
321 * register it here without waiting a page fault that
322 * may not happen any time soon.
324 if (!(*vm_flags
& VM_NO_KHUGEPAGED
) &&
325 khugepaged_enter_vma_merge(vma
, *vm_flags
))
328 case MADV_NOHUGEPAGE
:
329 *vm_flags
&= ~VM_HUGEPAGE
;
330 *vm_flags
|= VM_NOHUGEPAGE
;
332 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
333 * this vma even if we leave the mm registered in khugepaged if
334 * it got registered before VM_NOHUGEPAGE was set.
342 int __init
khugepaged_init(void)
344 mm_slot_cache
= kmem_cache_create("khugepaged_mm_slot",
345 sizeof(struct mm_slot
),
346 __alignof__(struct mm_slot
), 0, NULL
);
350 khugepaged_pages_to_scan
= HPAGE_PMD_NR
* 8;
351 khugepaged_max_ptes_none
= HPAGE_PMD_NR
- 1;
352 khugepaged_max_ptes_swap
= HPAGE_PMD_NR
/ 8;
357 void __init
khugepaged_destroy(void)
359 kmem_cache_destroy(mm_slot_cache
);
362 static inline struct mm_slot
*alloc_mm_slot(void)
364 if (!mm_slot_cache
) /* initialization failed */
366 return kmem_cache_zalloc(mm_slot_cache
, GFP_KERNEL
);
369 static inline void free_mm_slot(struct mm_slot
*mm_slot
)
371 kmem_cache_free(mm_slot_cache
, mm_slot
);
374 static struct mm_slot
*get_mm_slot(struct mm_struct
*mm
)
376 struct mm_slot
*mm_slot
;
378 hash_for_each_possible(mm_slots_hash
, mm_slot
, hash
, (unsigned long)mm
)
379 if (mm
== mm_slot
->mm
)
385 static void insert_to_mm_slots_hash(struct mm_struct
*mm
,
386 struct mm_slot
*mm_slot
)
389 hash_add(mm_slots_hash
, &mm_slot
->hash
, (long)mm
);
392 static inline int khugepaged_test_exit(struct mm_struct
*mm
)
394 return atomic_read(&mm
->mm_users
) == 0;
397 int __khugepaged_enter(struct mm_struct
*mm
)
399 struct mm_slot
*mm_slot
;
402 mm_slot
= alloc_mm_slot();
406 /* __khugepaged_exit() must not run from under us */
407 VM_BUG_ON_MM(khugepaged_test_exit(mm
), mm
);
408 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE
, &mm
->flags
))) {
409 free_mm_slot(mm_slot
);
413 spin_lock(&khugepaged_mm_lock
);
414 insert_to_mm_slots_hash(mm
, mm_slot
);
416 * Insert just behind the scanning cursor, to let the area settle
419 wakeup
= list_empty(&khugepaged_scan
.mm_head
);
420 list_add_tail(&mm_slot
->mm_node
, &khugepaged_scan
.mm_head
);
421 spin_unlock(&khugepaged_mm_lock
);
423 atomic_inc(&mm
->mm_count
);
425 wake_up_interruptible(&khugepaged_wait
);
430 int khugepaged_enter_vma_merge(struct vm_area_struct
*vma
,
431 unsigned long vm_flags
)
433 unsigned long hstart
, hend
;
436 * Not yet faulted in so we will register later in the
437 * page fault if needed.
440 if (vma
->vm_ops
|| (vm_flags
& VM_NO_KHUGEPAGED
))
441 /* khugepaged not yet working on file or special mappings */
443 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
444 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
446 return khugepaged_enter(vma
, vm_flags
);
450 void __khugepaged_exit(struct mm_struct
*mm
)
452 struct mm_slot
*mm_slot
;
455 spin_lock(&khugepaged_mm_lock
);
456 mm_slot
= get_mm_slot(mm
);
457 if (mm_slot
&& khugepaged_scan
.mm_slot
!= mm_slot
) {
458 hash_del(&mm_slot
->hash
);
459 list_del(&mm_slot
->mm_node
);
462 spin_unlock(&khugepaged_mm_lock
);
465 clear_bit(MMF_VM_HUGEPAGE
, &mm
->flags
);
466 free_mm_slot(mm_slot
);
468 } else if (mm_slot
) {
470 * This is required to serialize against
471 * khugepaged_test_exit() (which is guaranteed to run
472 * under mmap sem read mode). Stop here (after we
473 * return all pagetables will be destroyed) until
474 * khugepaged has finished working on the pagetables
475 * under the mmap_sem.
477 down_write(&mm
->mmap_sem
);
478 up_write(&mm
->mmap_sem
);
482 static void release_pte_page(struct page
*page
)
484 /* 0 stands for page_is_file_cache(page) == false */
485 dec_node_page_state(page
, NR_ISOLATED_ANON
+ 0);
487 putback_lru_page(page
);
490 static void release_pte_pages(pte_t
*pte
, pte_t
*_pte
)
492 while (--_pte
>= pte
) {
493 pte_t pteval
= *_pte
;
494 if (!pte_none(pteval
) && !is_zero_pfn(pte_pfn(pteval
)))
495 release_pte_page(pte_page(pteval
));
499 static int __collapse_huge_page_isolate(struct vm_area_struct
*vma
,
500 unsigned long address
,
503 struct page
*page
= NULL
;
505 int none_or_zero
= 0, result
= 0, referenced
= 0;
506 bool writable
= false;
508 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
509 _pte
++, address
+= PAGE_SIZE
) {
510 pte_t pteval
= *_pte
;
511 if (pte_none(pteval
) || (pte_present(pteval
) &&
512 is_zero_pfn(pte_pfn(pteval
)))) {
513 if (!userfaultfd_armed(vma
) &&
514 ++none_or_zero
<= khugepaged_max_ptes_none
) {
517 result
= SCAN_EXCEED_NONE_PTE
;
521 if (!pte_present(pteval
)) {
522 result
= SCAN_PTE_NON_PRESENT
;
525 page
= vm_normal_page(vma
, address
, pteval
);
526 if (unlikely(!page
)) {
527 result
= SCAN_PAGE_NULL
;
531 VM_BUG_ON_PAGE(PageCompound(page
), page
);
532 VM_BUG_ON_PAGE(!PageAnon(page
), page
);
533 VM_BUG_ON_PAGE(!PageSwapBacked(page
), page
);
536 * We can do it before isolate_lru_page because the
537 * page can't be freed from under us. NOTE: PG_lock
538 * is needed to serialize against split_huge_page
539 * when invoked from the VM.
541 if (!trylock_page(page
)) {
542 result
= SCAN_PAGE_LOCK
;
547 * cannot use mapcount: can't collapse if there's a gup pin.
548 * The page must only be referenced by the scanned process
549 * and page swap cache.
551 if (page_count(page
) != 1 + !!PageSwapCache(page
)) {
553 result
= SCAN_PAGE_COUNT
;
556 if (pte_write(pteval
)) {
559 if (PageSwapCache(page
) &&
560 !reuse_swap_page(page
, NULL
)) {
562 result
= SCAN_SWAP_CACHE_PAGE
;
566 * Page is not in the swap cache. It can be collapsed
572 * Isolate the page to avoid collapsing an hugepage
573 * currently in use by the VM.
575 if (isolate_lru_page(page
)) {
577 result
= SCAN_DEL_PAGE_LRU
;
580 /* 0 stands for page_is_file_cache(page) == false */
581 inc_node_page_state(page
, NR_ISOLATED_ANON
+ 0);
582 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
583 VM_BUG_ON_PAGE(PageLRU(page
), page
);
585 /* There should be enough young pte to collapse the page */
586 if (pte_young(pteval
) ||
587 page_is_young(page
) || PageReferenced(page
) ||
588 mmu_notifier_test_young(vma
->vm_mm
, address
))
591 if (likely(writable
)) {
592 if (likely(referenced
)) {
593 result
= SCAN_SUCCEED
;
594 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
595 referenced
, writable
, result
);
599 result
= SCAN_PAGE_RO
;
603 release_pte_pages(pte
, _pte
);
604 trace_mm_collapse_huge_page_isolate(page
, none_or_zero
,
605 referenced
, writable
, result
);
609 static void __collapse_huge_page_copy(pte_t
*pte
, struct page
*page
,
610 struct vm_area_struct
*vma
,
611 unsigned long address
,
615 for (_pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
; _pte
++) {
616 pte_t pteval
= *_pte
;
617 struct page
*src_page
;
619 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
620 clear_user_highpage(page
, address
);
621 add_mm_counter(vma
->vm_mm
, MM_ANONPAGES
, 1);
622 if (is_zero_pfn(pte_pfn(pteval
))) {
624 * ptl mostly unnecessary.
628 * paravirt calls inside pte_clear here are
631 pte_clear(vma
->vm_mm
, address
, _pte
);
635 src_page
= pte_page(pteval
);
636 copy_user_highpage(page
, src_page
, address
, vma
);
637 VM_BUG_ON_PAGE(page_mapcount(src_page
) != 1, src_page
);
638 release_pte_page(src_page
);
640 * ptl mostly unnecessary, but preempt has to
641 * be disabled to update the per-cpu stats
642 * inside page_remove_rmap().
646 * paravirt calls inside pte_clear here are
649 pte_clear(vma
->vm_mm
, address
, _pte
);
650 page_remove_rmap(src_page
, false);
652 free_page_and_swap_cache(src_page
);
655 address
+= PAGE_SIZE
;
660 static void khugepaged_alloc_sleep(void)
664 add_wait_queue(&khugepaged_wait
, &wait
);
665 freezable_schedule_timeout_interruptible(
666 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs
));
667 remove_wait_queue(&khugepaged_wait
, &wait
);
670 static int khugepaged_node_load
[MAX_NUMNODES
];
672 static bool khugepaged_scan_abort(int nid
)
677 * If node_reclaim_mode is disabled, then no extra effort is made to
678 * allocate memory locally.
680 if (!node_reclaim_mode
)
683 /* If there is a count for this node already, it must be acceptable */
684 if (khugepaged_node_load
[nid
])
687 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
688 if (!khugepaged_node_load
[i
])
690 if (node_distance(nid
, i
) > RECLAIM_DISTANCE
)
696 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
697 static inline gfp_t
alloc_hugepage_khugepaged_gfpmask(void)
699 return khugepaged_defrag() ? GFP_TRANSHUGE
: GFP_TRANSHUGE_LIGHT
;
703 static int khugepaged_find_target_node(void)
705 static int last_khugepaged_target_node
= NUMA_NO_NODE
;
706 int nid
, target_node
= 0, max_value
= 0;
708 /* find first node with max normal pages hit */
709 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
710 if (khugepaged_node_load
[nid
] > max_value
) {
711 max_value
= khugepaged_node_load
[nid
];
715 /* do some balance if several nodes have the same hit record */
716 if (target_node
<= last_khugepaged_target_node
)
717 for (nid
= last_khugepaged_target_node
+ 1; nid
< MAX_NUMNODES
;
719 if (max_value
== khugepaged_node_load
[nid
]) {
724 last_khugepaged_target_node
= target_node
;
728 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
730 if (IS_ERR(*hpage
)) {
736 khugepaged_alloc_sleep();
746 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
748 VM_BUG_ON_PAGE(*hpage
, *hpage
);
750 *hpage
= __alloc_pages_node(node
, gfp
, HPAGE_PMD_ORDER
);
751 if (unlikely(!*hpage
)) {
752 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
753 *hpage
= ERR_PTR(-ENOMEM
);
757 prep_transhuge_page(*hpage
);
758 count_vm_event(THP_COLLAPSE_ALLOC
);
762 static int khugepaged_find_target_node(void)
767 static inline struct page
*alloc_khugepaged_hugepage(void)
771 page
= alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
774 prep_transhuge_page(page
);
778 static struct page
*khugepaged_alloc_hugepage(bool *wait
)
783 hpage
= alloc_khugepaged_hugepage();
785 count_vm_event(THP_COLLAPSE_ALLOC_FAILED
);
790 khugepaged_alloc_sleep();
792 count_vm_event(THP_COLLAPSE_ALLOC
);
793 } while (unlikely(!hpage
) && likely(khugepaged_enabled()));
798 static bool khugepaged_prealloc_page(struct page
**hpage
, bool *wait
)
801 *hpage
= khugepaged_alloc_hugepage(wait
);
803 if (unlikely(!*hpage
))
810 khugepaged_alloc_page(struct page
**hpage
, gfp_t gfp
, int node
)
818 static bool hugepage_vma_check(struct vm_area_struct
*vma
)
820 if ((!(vma
->vm_flags
& VM_HUGEPAGE
) && !khugepaged_always()) ||
821 (vma
->vm_flags
& VM_NOHUGEPAGE
))
823 if (shmem_file(vma
->vm_file
)) {
824 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE
))
826 return IS_ALIGNED((vma
->vm_start
>> PAGE_SHIFT
) - vma
->vm_pgoff
,
829 if (!vma
->anon_vma
|| vma
->vm_ops
)
831 if (is_vma_temporary_stack(vma
))
833 return !(vma
->vm_flags
& VM_NO_KHUGEPAGED
);
837 * If mmap_sem temporarily dropped, revalidate vma
838 * before taking mmap_sem.
839 * Return 0 if succeeds, otherwise return none-zero
843 static int hugepage_vma_revalidate(struct mm_struct
*mm
, unsigned long address
,
844 struct vm_area_struct
**vmap
)
846 struct vm_area_struct
*vma
;
847 unsigned long hstart
, hend
;
849 if (unlikely(khugepaged_test_exit(mm
)))
850 return SCAN_ANY_PROCESS
;
852 *vmap
= vma
= find_vma(mm
, address
);
854 return SCAN_VMA_NULL
;
856 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
857 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
858 if (address
< hstart
|| address
+ HPAGE_PMD_SIZE
> hend
)
859 return SCAN_ADDRESS_RANGE
;
860 if (!hugepage_vma_check(vma
))
861 return SCAN_VMA_CHECK
;
866 * Bring missing pages in from swap, to complete THP collapse.
867 * Only done if khugepaged_scan_pmd believes it is worthwhile.
869 * Called and returns without pte mapped or spinlocks held,
870 * but with mmap_sem held to protect against vma changes.
873 static bool __collapse_huge_page_swapin(struct mm_struct
*mm
,
874 struct vm_area_struct
*vma
,
875 unsigned long address
, pmd_t
*pmd
,
878 int swapped_in
= 0, ret
= 0;
879 struct vm_fault vmf
= {
882 .flags
= FAULT_FLAG_ALLOW_RETRY
,
884 .pgoff
= linear_page_index(vma
, address
),
887 /* we only decide to swapin, if there is enough young ptes */
888 if (referenced
< HPAGE_PMD_NR
/2) {
889 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
892 vmf
.pte
= pte_offset_map(pmd
, address
);
893 for (; vmf
.address
< address
+ HPAGE_PMD_NR
*PAGE_SIZE
;
894 vmf
.pte
++, vmf
.address
+= PAGE_SIZE
) {
895 vmf
.orig_pte
= *vmf
.pte
;
896 if (!is_swap_pte(vmf
.orig_pte
))
899 ret
= do_swap_page(&vmf
);
901 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
902 if (ret
& VM_FAULT_RETRY
) {
903 down_read(&mm
->mmap_sem
);
904 if (hugepage_vma_revalidate(mm
, address
, &vmf
.vma
)) {
905 /* vma is no longer available, don't continue to swapin */
906 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
909 /* check if the pmd is still valid */
910 if (mm_find_pmd(mm
, address
) != pmd
)
913 if (ret
& VM_FAULT_ERROR
) {
914 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 0);
917 /* pte is unmapped now, we need to map it */
918 vmf
.pte
= pte_offset_map(pmd
, vmf
.address
);
922 trace_mm_collapse_huge_page_swapin(mm
, swapped_in
, referenced
, 1);
926 static void collapse_huge_page(struct mm_struct
*mm
,
927 unsigned long address
,
929 int node
, int referenced
)
934 struct page
*new_page
;
935 spinlock_t
*pmd_ptl
, *pte_ptl
;
936 int isolated
= 0, result
= 0;
937 struct mem_cgroup
*memcg
;
938 struct vm_area_struct
*vma
;
939 unsigned long mmun_start
; /* For mmu_notifiers */
940 unsigned long mmun_end
; /* For mmu_notifiers */
943 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
945 /* Only allocate from the target node */
946 gfp
= alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE
;
949 * Before allocating the hugepage, release the mmap_sem read lock.
950 * The allocation can take potentially a long time if it involves
951 * sync compaction, and we do not need to hold the mmap_sem during
952 * that. We will recheck the vma after taking it again in write mode.
954 up_read(&mm
->mmap_sem
);
955 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
957 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
961 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, gfp
, &memcg
, true))) {
962 result
= SCAN_CGROUP_CHARGE_FAIL
;
966 down_read(&mm
->mmap_sem
);
967 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
969 mem_cgroup_cancel_charge(new_page
, memcg
, true);
970 up_read(&mm
->mmap_sem
);
974 pmd
= mm_find_pmd(mm
, address
);
976 result
= SCAN_PMD_NULL
;
977 mem_cgroup_cancel_charge(new_page
, memcg
, true);
978 up_read(&mm
->mmap_sem
);
983 * __collapse_huge_page_swapin always returns with mmap_sem locked.
984 * If it fails, we release mmap_sem and jump out_nolock.
985 * Continuing to collapse causes inconsistency.
987 if (!__collapse_huge_page_swapin(mm
, vma
, address
, pmd
, referenced
)) {
988 mem_cgroup_cancel_charge(new_page
, memcg
, true);
989 up_read(&mm
->mmap_sem
);
993 up_read(&mm
->mmap_sem
);
995 * Prevent all access to pagetables with the exception of
996 * gup_fast later handled by the ptep_clear_flush and the VM
997 * handled by the anon_vma lock + PG_lock.
999 down_write(&mm
->mmap_sem
);
1000 result
= hugepage_vma_revalidate(mm
, address
, &vma
);
1003 /* check if the pmd is still valid */
1004 if (mm_find_pmd(mm
, address
) != pmd
)
1007 anon_vma_lock_write(vma
->anon_vma
);
1009 pte
= pte_offset_map(pmd
, address
);
1010 pte_ptl
= pte_lockptr(mm
, pmd
);
1012 mmun_start
= address
;
1013 mmun_end
= address
+ HPAGE_PMD_SIZE
;
1014 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1015 pmd_ptl
= pmd_lock(mm
, pmd
); /* probably unnecessary */
1017 * After this gup_fast can't run anymore. This also removes
1018 * any huge TLB entry from the CPU so we won't allow
1019 * huge and small TLB entries for the same virtual address
1020 * to avoid the risk of CPU bugs in that area.
1022 _pmd
= pmdp_collapse_flush(vma
, address
, pmd
);
1023 spin_unlock(pmd_ptl
);
1024 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1027 isolated
= __collapse_huge_page_isolate(vma
, address
, pte
);
1028 spin_unlock(pte_ptl
);
1030 if (unlikely(!isolated
)) {
1033 BUG_ON(!pmd_none(*pmd
));
1035 * We can only use set_pmd_at when establishing
1036 * hugepmds and never for establishing regular pmds that
1037 * points to regular pagetables. Use pmd_populate for that
1039 pmd_populate(mm
, pmd
, pmd_pgtable(_pmd
));
1040 spin_unlock(pmd_ptl
);
1041 anon_vma_unlock_write(vma
->anon_vma
);
1047 * All pages are isolated and locked so anon_vma rmap
1048 * can't run anymore.
1050 anon_vma_unlock_write(vma
->anon_vma
);
1052 __collapse_huge_page_copy(pte
, new_page
, vma
, address
, pte_ptl
);
1054 __SetPageUptodate(new_page
);
1055 pgtable
= pmd_pgtable(_pmd
);
1057 _pmd
= mk_huge_pmd(new_page
, vma
->vm_page_prot
);
1058 _pmd
= maybe_pmd_mkwrite(pmd_mkdirty(_pmd
), vma
);
1061 * spin_lock() below is not the equivalent of smp_wmb(), so
1062 * this is needed to avoid the copy_huge_page writes to become
1063 * visible after the set_pmd_at() write.
1068 BUG_ON(!pmd_none(*pmd
));
1069 page_add_new_anon_rmap(new_page
, vma
, address
, true);
1070 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1071 lru_cache_add_active_or_unevictable(new_page
, vma
);
1072 pgtable_trans_huge_deposit(mm
, pmd
, pgtable
);
1073 set_pmd_at(mm
, address
, pmd
, _pmd
);
1074 update_mmu_cache_pmd(vma
, address
, pmd
);
1075 spin_unlock(pmd_ptl
);
1079 khugepaged_pages_collapsed
++;
1080 result
= SCAN_SUCCEED
;
1082 up_write(&mm
->mmap_sem
);
1084 trace_mm_collapse_huge_page(mm
, isolated
, result
);
1087 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1091 static int khugepaged_scan_pmd(struct mm_struct
*mm
,
1092 struct vm_area_struct
*vma
,
1093 unsigned long address
,
1094 struct page
**hpage
)
1098 int ret
= 0, none_or_zero
= 0, result
= 0, referenced
= 0;
1099 struct page
*page
= NULL
;
1100 unsigned long _address
;
1102 int node
= NUMA_NO_NODE
, unmapped
= 0;
1103 bool writable
= false;
1105 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
1107 pmd
= mm_find_pmd(mm
, address
);
1109 result
= SCAN_PMD_NULL
;
1113 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1114 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1115 for (_address
= address
, _pte
= pte
; _pte
< pte
+HPAGE_PMD_NR
;
1116 _pte
++, _address
+= PAGE_SIZE
) {
1117 pte_t pteval
= *_pte
;
1118 if (is_swap_pte(pteval
)) {
1119 if (++unmapped
<= khugepaged_max_ptes_swap
) {
1122 result
= SCAN_EXCEED_SWAP_PTE
;
1126 if (pte_none(pteval
) || is_zero_pfn(pte_pfn(pteval
))) {
1127 if (!userfaultfd_armed(vma
) &&
1128 ++none_or_zero
<= khugepaged_max_ptes_none
) {
1131 result
= SCAN_EXCEED_NONE_PTE
;
1135 if (!pte_present(pteval
)) {
1136 result
= SCAN_PTE_NON_PRESENT
;
1139 if (pte_write(pteval
))
1142 page
= vm_normal_page(vma
, _address
, pteval
);
1143 if (unlikely(!page
)) {
1144 result
= SCAN_PAGE_NULL
;
1148 /* TODO: teach khugepaged to collapse THP mapped with pte */
1149 if (PageCompound(page
)) {
1150 result
= SCAN_PAGE_COMPOUND
;
1155 * Record which node the original page is from and save this
1156 * information to khugepaged_node_load[].
1157 * Khupaged will allocate hugepage from the node has the max
1160 node
= page_to_nid(page
);
1161 if (khugepaged_scan_abort(node
)) {
1162 result
= SCAN_SCAN_ABORT
;
1165 khugepaged_node_load
[node
]++;
1166 if (!PageLRU(page
)) {
1167 result
= SCAN_PAGE_LRU
;
1170 if (PageLocked(page
)) {
1171 result
= SCAN_PAGE_LOCK
;
1174 if (!PageAnon(page
)) {
1175 result
= SCAN_PAGE_ANON
;
1180 * cannot use mapcount: can't collapse if there's a gup pin.
1181 * The page must only be referenced by the scanned process
1182 * and page swap cache.
1184 if (page_count(page
) != 1 + !!PageSwapCache(page
)) {
1185 result
= SCAN_PAGE_COUNT
;
1188 if (pte_young(pteval
) ||
1189 page_is_young(page
) || PageReferenced(page
) ||
1190 mmu_notifier_test_young(vma
->vm_mm
, address
))
1195 result
= SCAN_SUCCEED
;
1198 result
= SCAN_LACK_REFERENCED_PAGE
;
1201 result
= SCAN_PAGE_RO
;
1204 pte_unmap_unlock(pte
, ptl
);
1206 node
= khugepaged_find_target_node();
1207 /* collapse_huge_page will return with the mmap_sem released */
1208 collapse_huge_page(mm
, address
, hpage
, node
, referenced
);
1211 trace_mm_khugepaged_scan_pmd(mm
, page
, writable
, referenced
,
1212 none_or_zero
, result
, unmapped
);
1216 static void collect_mm_slot(struct mm_slot
*mm_slot
)
1218 struct mm_struct
*mm
= mm_slot
->mm
;
1220 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
1222 if (khugepaged_test_exit(mm
)) {
1224 hash_del(&mm_slot
->hash
);
1225 list_del(&mm_slot
->mm_node
);
1228 * Not strictly needed because the mm exited already.
1230 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1233 /* khugepaged_mm_lock actually not necessary for the below */
1234 free_mm_slot(mm_slot
);
1239 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1240 static void retract_page_tables(struct address_space
*mapping
, pgoff_t pgoff
)
1242 struct vm_area_struct
*vma
;
1246 i_mmap_lock_write(mapping
);
1247 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1248 /* probably overkill */
1251 addr
= vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
1252 if (addr
& ~HPAGE_PMD_MASK
)
1254 if (vma
->vm_end
< addr
+ HPAGE_PMD_SIZE
)
1256 pmd
= mm_find_pmd(vma
->vm_mm
, addr
);
1260 * We need exclusive mmap_sem to retract page table.
1261 * If trylock fails we would end up with pte-mapped THP after
1262 * re-fault. Not ideal, but it's more important to not disturb
1263 * the system too much.
1265 if (down_write_trylock(&vma
->vm_mm
->mmap_sem
)) {
1266 spinlock_t
*ptl
= pmd_lock(vma
->vm_mm
, pmd
);
1267 /* assume page table is clear */
1268 _pmd
= pmdp_collapse_flush(vma
, addr
, pmd
);
1270 up_write(&vma
->vm_mm
->mmap_sem
);
1271 atomic_long_dec(&vma
->vm_mm
->nr_ptes
);
1272 pte_free(vma
->vm_mm
, pmd_pgtable(_pmd
));
1275 i_mmap_unlock_write(mapping
);
1279 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1281 * Basic scheme is simple, details are more complex:
1282 * - allocate and freeze a new huge page;
1283 * - scan over radix tree replacing old pages the new one
1284 * + swap in pages if necessary;
1286 * + keep old pages around in case if rollback is required;
1287 * - if replacing succeed:
1290 * + unfreeze huge page;
1291 * - if replacing failed;
1292 * + put all pages back and unfreeze them;
1293 * + restore gaps in the radix-tree;
1296 static void collapse_shmem(struct mm_struct
*mm
,
1297 struct address_space
*mapping
, pgoff_t start
,
1298 struct page
**hpage
, int node
)
1301 struct page
*page
, *new_page
, *tmp
;
1302 struct mem_cgroup
*memcg
;
1303 pgoff_t index
, end
= start
+ HPAGE_PMD_NR
;
1304 LIST_HEAD(pagelist
);
1305 struct radix_tree_iter iter
;
1307 int nr_none
= 0, result
= SCAN_SUCCEED
;
1309 VM_BUG_ON(start
& (HPAGE_PMD_NR
- 1));
1311 /* Only allocate from the target node */
1312 gfp
= alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE
;
1314 new_page
= khugepaged_alloc_page(hpage
, gfp
, node
);
1316 result
= SCAN_ALLOC_HUGE_PAGE_FAIL
;
1320 if (unlikely(mem_cgroup_try_charge(new_page
, mm
, gfp
, &memcg
, true))) {
1321 result
= SCAN_CGROUP_CHARGE_FAIL
;
1325 new_page
->index
= start
;
1326 new_page
->mapping
= mapping
;
1327 __SetPageSwapBacked(new_page
);
1328 __SetPageLocked(new_page
);
1329 BUG_ON(!page_ref_freeze(new_page
, 1));
1333 * At this point the new_page is 'frozen' (page_count() is zero), locked
1334 * and not up-to-date. It's safe to insert it into radix tree, because
1335 * nobody would be able to map it or use it in other way until we
1340 spin_lock_irq(&mapping
->tree_lock
);
1341 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1342 int n
= min(iter
.index
, end
) - index
;
1345 * Handle holes in the radix tree: charge it from shmem and
1346 * insert relevant subpage of new_page into the radix-tree.
1348 if (n
&& !shmem_charge(mapping
->host
, n
)) {
1353 for (; index
< min(iter
.index
, end
); index
++) {
1354 radix_tree_insert(&mapping
->page_tree
, index
,
1355 new_page
+ (index
% HPAGE_PMD_NR
));
1362 page
= radix_tree_deref_slot_protected(slot
,
1363 &mapping
->tree_lock
);
1364 if (radix_tree_exceptional_entry(page
) || !PageUptodate(page
)) {
1365 spin_unlock_irq(&mapping
->tree_lock
);
1366 /* swap in or instantiate fallocated page */
1367 if (shmem_getpage(mapping
->host
, index
, &page
,
1372 spin_lock_irq(&mapping
->tree_lock
);
1373 } else if (trylock_page(page
)) {
1376 result
= SCAN_PAGE_LOCK
;
1381 * The page must be locked, so we can drop the tree_lock
1382 * without racing with truncate.
1384 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
1385 VM_BUG_ON_PAGE(!PageUptodate(page
), page
);
1386 VM_BUG_ON_PAGE(PageTransCompound(page
), page
);
1388 if (page_mapping(page
) != mapping
) {
1389 result
= SCAN_TRUNCATED
;
1392 spin_unlock_irq(&mapping
->tree_lock
);
1394 if (isolate_lru_page(page
)) {
1395 result
= SCAN_DEL_PAGE_LRU
;
1396 goto out_isolate_failed
;
1399 if (page_mapped(page
))
1400 unmap_mapping_range(mapping
, index
<< PAGE_SHIFT
,
1403 spin_lock_irq(&mapping
->tree_lock
);
1405 slot
= radix_tree_lookup_slot(&mapping
->page_tree
, index
);
1406 VM_BUG_ON_PAGE(page
!= radix_tree_deref_slot_protected(slot
,
1407 &mapping
->tree_lock
), page
);
1408 VM_BUG_ON_PAGE(page_mapped(page
), page
);
1411 * The page is expected to have page_count() == 3:
1412 * - we hold a pin on it;
1413 * - one reference from radix tree;
1414 * - one from isolate_lru_page;
1416 if (!page_ref_freeze(page
, 3)) {
1417 result
= SCAN_PAGE_COUNT
;
1422 * Add the page to the list to be able to undo the collapse if
1423 * something go wrong.
1425 list_add_tail(&page
->lru
, &pagelist
);
1427 /* Finally, replace with the new page. */
1428 radix_tree_replace_slot(&mapping
->page_tree
, slot
,
1429 new_page
+ (index
% HPAGE_PMD_NR
));
1431 slot
= radix_tree_iter_resume(slot
, &iter
);
1435 spin_unlock_irq(&mapping
->tree_lock
);
1436 putback_lru_page(page
);
1448 * Handle hole in radix tree at the end of the range.
1449 * This code only triggers if there's nothing in radix tree
1452 if (result
== SCAN_SUCCEED
&& index
< end
) {
1453 int n
= end
- index
;
1455 if (!shmem_charge(mapping
->host
, n
)) {
1460 for (; index
< end
; index
++) {
1461 radix_tree_insert(&mapping
->page_tree
, index
,
1462 new_page
+ (index
% HPAGE_PMD_NR
));
1468 spin_unlock_irq(&mapping
->tree_lock
);
1471 if (result
== SCAN_SUCCEED
) {
1472 unsigned long flags
;
1473 struct zone
*zone
= page_zone(new_page
);
1476 * Replacing old pages with new one has succeed, now we need to
1477 * copy the content and free old pages.
1479 list_for_each_entry_safe(page
, tmp
, &pagelist
, lru
) {
1480 copy_highpage(new_page
+ (page
->index
% HPAGE_PMD_NR
),
1482 list_del(&page
->lru
);
1484 page_ref_unfreeze(page
, 1);
1485 page
->mapping
= NULL
;
1486 ClearPageActive(page
);
1487 ClearPageUnevictable(page
);
1491 local_irq_save(flags
);
1492 __inc_node_page_state(new_page
, NR_SHMEM_THPS
);
1494 __mod_node_page_state(zone
->zone_pgdat
, NR_FILE_PAGES
, nr_none
);
1495 __mod_node_page_state(zone
->zone_pgdat
, NR_SHMEM
, nr_none
);
1497 local_irq_restore(flags
);
1500 * Remove pte page tables, so we can re-faulti
1503 retract_page_tables(mapping
, start
);
1505 /* Everything is ready, let's unfreeze the new_page */
1506 set_page_dirty(new_page
);
1507 SetPageUptodate(new_page
);
1508 page_ref_unfreeze(new_page
, HPAGE_PMD_NR
);
1509 mem_cgroup_commit_charge(new_page
, memcg
, false, true);
1510 lru_cache_add_anon(new_page
);
1511 unlock_page(new_page
);
1515 /* Something went wrong: rollback changes to the radix-tree */
1516 shmem_uncharge(mapping
->host
, nr_none
);
1517 spin_lock_irq(&mapping
->tree_lock
);
1518 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
,
1520 if (iter
.index
>= end
)
1522 page
= list_first_entry_or_null(&pagelist
,
1524 if (!page
|| iter
.index
< page
->index
) {
1528 /* Put holes back where they were */
1529 radix_tree_delete(&mapping
->page_tree
,
1534 VM_BUG_ON_PAGE(page
->index
!= iter
.index
, page
);
1536 /* Unfreeze the page. */
1537 list_del(&page
->lru
);
1538 page_ref_unfreeze(page
, 2);
1539 radix_tree_replace_slot(&mapping
->page_tree
,
1541 slot
= radix_tree_iter_resume(slot
, &iter
);
1542 spin_unlock_irq(&mapping
->tree_lock
);
1543 putback_lru_page(page
);
1545 spin_lock_irq(&mapping
->tree_lock
);
1548 spin_unlock_irq(&mapping
->tree_lock
);
1550 /* Unfreeze new_page, caller would take care about freeing it */
1551 page_ref_unfreeze(new_page
, 1);
1552 mem_cgroup_cancel_charge(new_page
, memcg
, true);
1553 unlock_page(new_page
);
1554 new_page
->mapping
= NULL
;
1557 VM_BUG_ON(!list_empty(&pagelist
));
1558 /* TODO: tracepoints */
1561 static void khugepaged_scan_shmem(struct mm_struct
*mm
,
1562 struct address_space
*mapping
,
1563 pgoff_t start
, struct page
**hpage
)
1565 struct page
*page
= NULL
;
1566 struct radix_tree_iter iter
;
1569 int node
= NUMA_NO_NODE
;
1570 int result
= SCAN_SUCCEED
;
1574 memset(khugepaged_node_load
, 0, sizeof(khugepaged_node_load
));
1576 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1577 if (iter
.index
>= start
+ HPAGE_PMD_NR
)
1580 page
= radix_tree_deref_slot(slot
);
1581 if (radix_tree_deref_retry(page
)) {
1582 slot
= radix_tree_iter_retry(&iter
);
1586 if (radix_tree_exception(page
)) {
1587 if (++swap
> khugepaged_max_ptes_swap
) {
1588 result
= SCAN_EXCEED_SWAP_PTE
;
1594 if (PageTransCompound(page
)) {
1595 result
= SCAN_PAGE_COMPOUND
;
1599 node
= page_to_nid(page
);
1600 if (khugepaged_scan_abort(node
)) {
1601 result
= SCAN_SCAN_ABORT
;
1604 khugepaged_node_load
[node
]++;
1606 if (!PageLRU(page
)) {
1607 result
= SCAN_PAGE_LRU
;
1611 if (page_count(page
) != 1 + page_mapcount(page
)) {
1612 result
= SCAN_PAGE_COUNT
;
1617 * We probably should check if the page is referenced here, but
1618 * nobody would transfer pte_young() to PageReferenced() for us.
1619 * And rmap walk here is just too costly...
1624 if (need_resched()) {
1625 slot
= radix_tree_iter_resume(slot
, &iter
);
1631 if (result
== SCAN_SUCCEED
) {
1632 if (present
< HPAGE_PMD_NR
- khugepaged_max_ptes_none
) {
1633 result
= SCAN_EXCEED_NONE_PTE
;
1635 node
= khugepaged_find_target_node();
1636 collapse_shmem(mm
, mapping
, start
, hpage
, node
);
1640 /* TODO: tracepoints */
1643 static void khugepaged_scan_shmem(struct mm_struct
*mm
,
1644 struct address_space
*mapping
,
1645 pgoff_t start
, struct page
**hpage
)
1651 static unsigned int khugepaged_scan_mm_slot(unsigned int pages
,
1652 struct page
**hpage
)
1653 __releases(&khugepaged_mm_lock
)
1654 __acquires(&khugepaged_mm_lock
)
1656 struct mm_slot
*mm_slot
;
1657 struct mm_struct
*mm
;
1658 struct vm_area_struct
*vma
;
1662 VM_BUG_ON(NR_CPUS
!= 1 && !spin_is_locked(&khugepaged_mm_lock
));
1664 if (khugepaged_scan
.mm_slot
)
1665 mm_slot
= khugepaged_scan
.mm_slot
;
1667 mm_slot
= list_entry(khugepaged_scan
.mm_head
.next
,
1668 struct mm_slot
, mm_node
);
1669 khugepaged_scan
.address
= 0;
1670 khugepaged_scan
.mm_slot
= mm_slot
;
1672 spin_unlock(&khugepaged_mm_lock
);
1675 down_read(&mm
->mmap_sem
);
1676 if (unlikely(khugepaged_test_exit(mm
)))
1679 vma
= find_vma(mm
, khugepaged_scan
.address
);
1682 for (; vma
; vma
= vma
->vm_next
) {
1683 unsigned long hstart
, hend
;
1686 if (unlikely(khugepaged_test_exit(mm
))) {
1690 if (!hugepage_vma_check(vma
)) {
1695 hstart
= (vma
->vm_start
+ ~HPAGE_PMD_MASK
) & HPAGE_PMD_MASK
;
1696 hend
= vma
->vm_end
& HPAGE_PMD_MASK
;
1699 if (khugepaged_scan
.address
> hend
)
1701 if (khugepaged_scan
.address
< hstart
)
1702 khugepaged_scan
.address
= hstart
;
1703 VM_BUG_ON(khugepaged_scan
.address
& ~HPAGE_PMD_MASK
);
1705 while (khugepaged_scan
.address
< hend
) {
1708 if (unlikely(khugepaged_test_exit(mm
)))
1709 goto breakouterloop
;
1711 VM_BUG_ON(khugepaged_scan
.address
< hstart
||
1712 khugepaged_scan
.address
+ HPAGE_PMD_SIZE
>
1714 if (shmem_file(vma
->vm_file
)) {
1716 pgoff_t pgoff
= linear_page_index(vma
,
1717 khugepaged_scan
.address
);
1718 if (!shmem_huge_enabled(vma
))
1720 file
= get_file(vma
->vm_file
);
1721 up_read(&mm
->mmap_sem
);
1723 khugepaged_scan_shmem(mm
, file
->f_mapping
,
1727 ret
= khugepaged_scan_pmd(mm
, vma
,
1728 khugepaged_scan
.address
,
1731 /* move to next address */
1732 khugepaged_scan
.address
+= HPAGE_PMD_SIZE
;
1733 progress
+= HPAGE_PMD_NR
;
1735 /* we released mmap_sem so break loop */
1736 goto breakouterloop_mmap_sem
;
1737 if (progress
>= pages
)
1738 goto breakouterloop
;
1742 up_read(&mm
->mmap_sem
); /* exit_mmap will destroy ptes after this */
1743 breakouterloop_mmap_sem
:
1745 spin_lock(&khugepaged_mm_lock
);
1746 VM_BUG_ON(khugepaged_scan
.mm_slot
!= mm_slot
);
1748 * Release the current mm_slot if this mm is about to die, or
1749 * if we scanned all vmas of this mm.
1751 if (khugepaged_test_exit(mm
) || !vma
) {
1753 * Make sure that if mm_users is reaching zero while
1754 * khugepaged runs here, khugepaged_exit will find
1755 * mm_slot not pointing to the exiting mm.
1757 if (mm_slot
->mm_node
.next
!= &khugepaged_scan
.mm_head
) {
1758 khugepaged_scan
.mm_slot
= list_entry(
1759 mm_slot
->mm_node
.next
,
1760 struct mm_slot
, mm_node
);
1761 khugepaged_scan
.address
= 0;
1763 khugepaged_scan
.mm_slot
= NULL
;
1764 khugepaged_full_scans
++;
1767 collect_mm_slot(mm_slot
);
1773 static int khugepaged_has_work(void)
1775 return !list_empty(&khugepaged_scan
.mm_head
) &&
1776 khugepaged_enabled();
1779 static int khugepaged_wait_event(void)
1781 return !list_empty(&khugepaged_scan
.mm_head
) ||
1782 kthread_should_stop();
1785 static void khugepaged_do_scan(void)
1787 struct page
*hpage
= NULL
;
1788 unsigned int progress
= 0, pass_through_head
= 0;
1789 unsigned int pages
= khugepaged_pages_to_scan
;
1792 barrier(); /* write khugepaged_pages_to_scan to local stack */
1794 while (progress
< pages
) {
1795 if (!khugepaged_prealloc_page(&hpage
, &wait
))
1800 if (unlikely(kthread_should_stop() || try_to_freeze()))
1803 spin_lock(&khugepaged_mm_lock
);
1804 if (!khugepaged_scan
.mm_slot
)
1805 pass_through_head
++;
1806 if (khugepaged_has_work() &&
1807 pass_through_head
< 2)
1808 progress
+= khugepaged_scan_mm_slot(pages
- progress
,
1812 spin_unlock(&khugepaged_mm_lock
);
1815 if (!IS_ERR_OR_NULL(hpage
))
1819 static bool khugepaged_should_wakeup(void)
1821 return kthread_should_stop() ||
1822 time_after_eq(jiffies
, khugepaged_sleep_expire
);
1825 static void khugepaged_wait_work(void)
1827 if (khugepaged_has_work()) {
1828 const unsigned long scan_sleep_jiffies
=
1829 msecs_to_jiffies(khugepaged_scan_sleep_millisecs
);
1831 if (!scan_sleep_jiffies
)
1834 khugepaged_sleep_expire
= jiffies
+ scan_sleep_jiffies
;
1835 wait_event_freezable_timeout(khugepaged_wait
,
1836 khugepaged_should_wakeup(),
1837 scan_sleep_jiffies
);
1841 if (khugepaged_enabled())
1842 wait_event_freezable(khugepaged_wait
, khugepaged_wait_event());
1845 static int khugepaged(void *none
)
1847 struct mm_slot
*mm_slot
;
1850 set_user_nice(current
, MAX_NICE
);
1852 while (!kthread_should_stop()) {
1853 khugepaged_do_scan();
1854 khugepaged_wait_work();
1857 spin_lock(&khugepaged_mm_lock
);
1858 mm_slot
= khugepaged_scan
.mm_slot
;
1859 khugepaged_scan
.mm_slot
= NULL
;
1861 collect_mm_slot(mm_slot
);
1862 spin_unlock(&khugepaged_mm_lock
);
1866 static void set_recommended_min_free_kbytes(void)
1870 unsigned long recommended_min
;
1872 for_each_populated_zone(zone
)
1875 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1876 recommended_min
= pageblock_nr_pages
* nr_zones
* 2;
1879 * Make sure that on average at least two pageblocks are almost free
1880 * of another type, one for a migratetype to fall back to and a
1881 * second to avoid subsequent fallbacks of other types There are 3
1882 * MIGRATE_TYPES we care about.
1884 recommended_min
+= pageblock_nr_pages
* nr_zones
*
1885 MIGRATE_PCPTYPES
* MIGRATE_PCPTYPES
;
1887 /* don't ever allow to reserve more than 5% of the lowmem */
1888 recommended_min
= min(recommended_min
,
1889 (unsigned long) nr_free_buffer_pages() / 20);
1890 recommended_min
<<= (PAGE_SHIFT
-10);
1892 if (recommended_min
> min_free_kbytes
) {
1893 if (user_min_free_kbytes
>= 0)
1894 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1895 min_free_kbytes
, recommended_min
);
1897 min_free_kbytes
= recommended_min
;
1899 setup_per_zone_wmarks();
1902 int start_stop_khugepaged(void)
1904 static struct task_struct
*khugepaged_thread __read_mostly
;
1905 static DEFINE_MUTEX(khugepaged_mutex
);
1908 mutex_lock(&khugepaged_mutex
);
1909 if (khugepaged_enabled()) {
1910 if (!khugepaged_thread
)
1911 khugepaged_thread
= kthread_run(khugepaged
, NULL
,
1913 if (IS_ERR(khugepaged_thread
)) {
1914 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1915 err
= PTR_ERR(khugepaged_thread
);
1916 khugepaged_thread
= NULL
;
1920 if (!list_empty(&khugepaged_scan
.mm_head
))
1921 wake_up_interruptible(&khugepaged_wait
);
1923 set_recommended_min_free_kbytes();
1924 } else if (khugepaged_thread
) {
1925 kthread_stop(khugepaged_thread
);
1926 khugepaged_thread
= NULL
;
1929 mutex_unlock(&khugepaged_mutex
);