2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal
[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug
[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long
[] = { 100, 2000, 5000 };
76 const struct ata_port_operations ata_base_port_ops
= {
77 .prereset
= ata_std_prereset
,
78 .postreset
= ata_std_postreset
,
79 .error_handler
= ata_std_error_handler
,
82 const struct ata_port_operations sata_port_ops
= {
83 .inherits
= &ata_base_port_ops
,
85 .qc_defer
= ata_std_qc_defer
,
86 .hardreset
= sata_std_hardreset
,
89 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
90 u16 heads
, u16 sectors
);
91 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
);
92 static unsigned int ata_dev_set_feature(struct ata_device
*dev
,
93 u8 enable
, u8 feature
);
94 static void ata_dev_xfermask(struct ata_device
*dev
);
95 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
);
97 unsigned int ata_print_id
= 1;
98 static struct workqueue_struct
*ata_wq
;
100 struct workqueue_struct
*ata_aux_wq
;
102 struct ata_force_param
{
106 unsigned long xfer_mask
;
107 unsigned int horkage_on
;
108 unsigned int horkage_off
;
112 struct ata_force_ent
{
115 struct ata_force_param param
;
118 static struct ata_force_ent
*ata_force_tbl
;
119 static int ata_force_tbl_size
;
121 static char ata_force_param_buf
[PAGE_SIZE
] __initdata
;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force
, ata_force_param_buf
, sizeof(ata_force_param_buf
), 0);
124 MODULE_PARM_DESC(force
, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 static int atapi_enabled
= 1;
127 module_param(atapi_enabled
, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled
, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130 static int atapi_dmadir
= 0;
131 module_param(atapi_dmadir
, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir
, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134 int atapi_passthru16
= 1;
135 module_param(atapi_passthru16
, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16
, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
139 module_param_named(fua
, libata_fua
, int, 0444);
140 MODULE_PARM_DESC(fua
, "FUA support (0=off [default], 1=on)");
142 static int ata_ignore_hpa
;
143 module_param_named(ignore_hpa
, ata_ignore_hpa
, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa
, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 static int libata_dma_mask
= ATA_DMA_MASK_ATA
|ATA_DMA_MASK_ATAPI
|ATA_DMA_MASK_CFA
;
147 module_param_named(dma
, libata_dma_mask
, int, 0444);
148 MODULE_PARM_DESC(dma
, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 static int ata_probe_timeout
;
151 module_param(ata_probe_timeout
, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout
, "Set ATA probing timeout (seconds)");
154 int libata_noacpi
= 0;
155 module_param_named(noacpi
, libata_noacpi
, int, 0444);
156 MODULE_PARM_DESC(noacpi
, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158 int libata_allow_tpm
= 0;
159 module_param_named(allow_tpm
, libata_allow_tpm
, int, 0444);
160 MODULE_PARM_DESC(allow_tpm
, "Permit the use of TPM commands (0=off [default], 1=on)");
162 MODULE_AUTHOR("Jeff Garzik");
163 MODULE_DESCRIPTION("Library module for ATA devices");
164 MODULE_LICENSE("GPL");
165 MODULE_VERSION(DRV_VERSION
);
168 static bool ata_sstatus_online(u32 sstatus
)
170 return (sstatus
& 0xf) == 0x3;
174 * ata_link_next - link iteration helper
175 * @link: the previous link, NULL to start
176 * @ap: ATA port containing links to iterate
177 * @mode: iteration mode, one of ATA_LITER_*
180 * Host lock or EH context.
183 * Pointer to the next link.
185 struct ata_link
*ata_link_next(struct ata_link
*link
, struct ata_port
*ap
,
186 enum ata_link_iter_mode mode
)
188 BUG_ON(mode
!= ATA_LITER_EDGE
&&
189 mode
!= ATA_LITER_PMP_FIRST
&& mode
!= ATA_LITER_HOST_FIRST
);
191 /* NULL link indicates start of iteration */
195 case ATA_LITER_PMP_FIRST
:
196 if (sata_pmp_attached(ap
))
199 case ATA_LITER_HOST_FIRST
:
203 /* we just iterated over the host link, what's next? */
204 if (link
== &ap
->link
)
206 case ATA_LITER_HOST_FIRST
:
207 if (sata_pmp_attached(ap
))
210 case ATA_LITER_PMP_FIRST
:
211 if (unlikely(ap
->slave_link
))
212 return ap
->slave_link
;
218 /* slave_link excludes PMP */
219 if (unlikely(link
== ap
->slave_link
))
222 /* we were over a PMP link */
223 if (++link
< ap
->pmp_link
+ ap
->nr_pmp_links
)
226 if (mode
== ATA_LITER_PMP_FIRST
)
233 * ata_dev_next - device iteration helper
234 * @dev: the previous device, NULL to start
235 * @link: ATA link containing devices to iterate
236 * @mode: iteration mode, one of ATA_DITER_*
239 * Host lock or EH context.
242 * Pointer to the next device.
244 struct ata_device
*ata_dev_next(struct ata_device
*dev
, struct ata_link
*link
,
245 enum ata_dev_iter_mode mode
)
247 BUG_ON(mode
!= ATA_DITER_ENABLED
&& mode
!= ATA_DITER_ENABLED_REVERSE
&&
248 mode
!= ATA_DITER_ALL
&& mode
!= ATA_DITER_ALL_REVERSE
);
250 /* NULL dev indicates start of iteration */
253 case ATA_DITER_ENABLED
:
257 case ATA_DITER_ENABLED_REVERSE
:
258 case ATA_DITER_ALL_REVERSE
:
259 dev
= link
->device
+ ata_link_max_devices(link
) - 1;
264 /* move to the next one */
266 case ATA_DITER_ENABLED
:
268 if (++dev
< link
->device
+ ata_link_max_devices(link
))
271 case ATA_DITER_ENABLED_REVERSE
:
272 case ATA_DITER_ALL_REVERSE
:
273 if (--dev
>= link
->device
)
279 if ((mode
== ATA_DITER_ENABLED
|| mode
== ATA_DITER_ENABLED_REVERSE
) &&
280 !ata_dev_enabled(dev
))
286 * ata_dev_phys_link - find physical link for a device
287 * @dev: ATA device to look up physical link for
289 * Look up physical link which @dev is attached to. Note that
290 * this is different from @dev->link only when @dev is on slave
291 * link. For all other cases, it's the same as @dev->link.
297 * Pointer to the found physical link.
299 struct ata_link
*ata_dev_phys_link(struct ata_device
*dev
)
301 struct ata_port
*ap
= dev
->link
->ap
;
307 return ap
->slave_link
;
311 * ata_force_cbl - force cable type according to libata.force
312 * @ap: ATA port of interest
314 * Force cable type according to libata.force and whine about it.
315 * The last entry which has matching port number is used, so it
316 * can be specified as part of device force parameters. For
317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
323 void ata_force_cbl(struct ata_port
*ap
)
327 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
328 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
330 if (fe
->port
!= -1 && fe
->port
!= ap
->print_id
)
333 if (fe
->param
.cbl
== ATA_CBL_NONE
)
336 ap
->cbl
= fe
->param
.cbl
;
337 ata_port_printk(ap
, KERN_NOTICE
,
338 "FORCE: cable set to %s\n", fe
->param
.name
);
344 * ata_force_link_limits - force link limits according to libata.force
345 * @link: ATA link of interest
347 * Force link flags and SATA spd limit according to libata.force
348 * and whine about it. When only the port part is specified
349 * (e.g. 1:), the limit applies to all links connected to both
350 * the host link and all fan-out ports connected via PMP. If the
351 * device part is specified as 0 (e.g. 1.00:), it specifies the
352 * first fan-out link not the host link. Device number 15 always
353 * points to the host link whether PMP is attached or not. If the
354 * controller has slave link, device number 16 points to it.
359 static void ata_force_link_limits(struct ata_link
*link
)
361 bool did_spd
= false;
362 int linkno
= link
->pmp
;
365 if (ata_is_host_link(link
))
368 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
369 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
371 if (fe
->port
!= -1 && fe
->port
!= link
->ap
->print_id
)
374 if (fe
->device
!= -1 && fe
->device
!= linkno
)
377 /* only honor the first spd limit */
378 if (!did_spd
&& fe
->param
.spd_limit
) {
379 link
->hw_sata_spd_limit
= (1 << fe
->param
.spd_limit
) - 1;
380 ata_link_printk(link
, KERN_NOTICE
,
381 "FORCE: PHY spd limit set to %s\n",
386 /* let lflags stack */
387 if (fe
->param
.lflags
) {
388 link
->flags
|= fe
->param
.lflags
;
389 ata_link_printk(link
, KERN_NOTICE
,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe
->param
.lflags
, link
->flags
);
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
407 static void ata_force_xfermask(struct ata_device
*dev
)
409 int devno
= dev
->link
->pmp
+ dev
->devno
;
410 int alt_devno
= devno
;
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev
->link
))
417 for (i
= ata_force_tbl_size
- 1; i
>= 0; i
--) {
418 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
419 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
421 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
424 if (fe
->device
!= -1 && fe
->device
!= devno
&&
425 fe
->device
!= alt_devno
)
428 if (!fe
->param
.xfer_mask
)
431 ata_unpack_xfermask(fe
->param
.xfer_mask
,
432 &pio_mask
, &mwdma_mask
, &udma_mask
);
434 dev
->udma_mask
= udma_mask
;
435 else if (mwdma_mask
) {
437 dev
->mwdma_mask
= mwdma_mask
;
441 dev
->pio_mask
= pio_mask
;
444 ata_dev_printk(dev
, KERN_NOTICE
,
445 "FORCE: xfer_mask set to %s\n", fe
->param
.name
);
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
461 static void ata_force_horkage(struct ata_device
*dev
)
463 int devno
= dev
->link
->pmp
+ dev
->devno
;
464 int alt_devno
= devno
;
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev
->link
))
471 for (i
= 0; i
< ata_force_tbl_size
; i
++) {
472 const struct ata_force_ent
*fe
= &ata_force_tbl
[i
];
474 if (fe
->port
!= -1 && fe
->port
!= dev
->link
->ap
->print_id
)
477 if (fe
->device
!= -1 && fe
->device
!= devno
&&
478 fe
->device
!= alt_devno
)
481 if (!(~dev
->horkage
& fe
->param
.horkage_on
) &&
482 !(dev
->horkage
& fe
->param
.horkage_off
))
485 dev
->horkage
|= fe
->param
.horkage_on
;
486 dev
->horkage
&= ~fe
->param
.horkage_off
;
488 ata_dev_printk(dev
, KERN_NOTICE
,
489 "FORCE: horkage modified (%s)\n", fe
->param
.name
);
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
497 * Determine ATAPI command type from @opcode.
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 int atapi_cmd_type(u8 opcode
)
514 case GPCMD_WRITE_AND_VERIFY_10
:
518 case GPCMD_READ_CD_MSF
:
519 return ATAPI_READ_CD
;
523 if (atapi_passthru16
)
524 return ATAPI_PASS_THRU
;
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
534 * @pmp: Port multiplier port
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
542 * Inherited from caller.
544 void ata_tf_to_fis(const struct ata_taskfile
*tf
, u8 pmp
, int is_cmd
, u8
*fis
)
546 fis
[0] = 0x27; /* Register - Host to Device FIS */
547 fis
[1] = pmp
& 0xf; /* Port multiplier number*/
549 fis
[1] |= (1 << 7); /* bit 7 indicates Command FIS */
551 fis
[2] = tf
->command
;
552 fis
[3] = tf
->feature
;
559 fis
[8] = tf
->hob_lbal
;
560 fis
[9] = tf
->hob_lbam
;
561 fis
[10] = tf
->hob_lbah
;
562 fis
[11] = tf
->hob_feature
;
565 fis
[13] = tf
->hob_nsect
;
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
583 * Inherited from caller.
586 void ata_tf_from_fis(const u8
*fis
, struct ata_taskfile
*tf
)
588 tf
->command
= fis
[2]; /* status */
589 tf
->feature
= fis
[3]; /* error */
596 tf
->hob_lbal
= fis
[8];
597 tf
->hob_lbam
= fis
[9];
598 tf
->hob_lbah
= fis
[10];
601 tf
->hob_nsect
= fis
[13];
604 static const u8 ata_rw_cmds
[] = {
608 ATA_CMD_READ_MULTI_EXT
,
609 ATA_CMD_WRITE_MULTI_EXT
,
613 ATA_CMD_WRITE_MULTI_FUA_EXT
,
617 ATA_CMD_PIO_READ_EXT
,
618 ATA_CMD_PIO_WRITE_EXT
,
631 ATA_CMD_WRITE_FUA_EXT
635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
639 * Examine the device configuration and tf->flags to calculate
640 * the proper read/write commands and protocol to use.
645 static int ata_rwcmd_protocol(struct ata_taskfile
*tf
, struct ata_device
*dev
)
649 int index
, fua
, lba48
, write
;
651 fua
= (tf
->flags
& ATA_TFLAG_FUA
) ? 4 : 0;
652 lba48
= (tf
->flags
& ATA_TFLAG_LBA48
) ? 2 : 0;
653 write
= (tf
->flags
& ATA_TFLAG_WRITE
) ? 1 : 0;
655 if (dev
->flags
& ATA_DFLAG_PIO
) {
656 tf
->protocol
= ATA_PROT_PIO
;
657 index
= dev
->multi_count
? 0 : 8;
658 } else if (lba48
&& (dev
->link
->ap
->flags
& ATA_FLAG_PIO_LBA48
)) {
659 /* Unable to use DMA due to host limitation */
660 tf
->protocol
= ATA_PROT_PIO
;
661 index
= dev
->multi_count
? 0 : 8;
663 tf
->protocol
= ATA_PROT_DMA
;
667 cmd
= ata_rw_cmds
[index
+ fua
+ lba48
+ write
];
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
688 * Block address read from @tf.
690 u64
ata_tf_read_block(struct ata_taskfile
*tf
, struct ata_device
*dev
)
694 if (tf
->flags
& ATA_TFLAG_LBA
) {
695 if (tf
->flags
& ATA_TFLAG_LBA48
) {
696 block
|= (u64
)tf
->hob_lbah
<< 40;
697 block
|= (u64
)tf
->hob_lbam
<< 32;
698 block
|= (u64
)tf
->hob_lbal
<< 24;
700 block
|= (tf
->device
& 0xf) << 24;
702 block
|= tf
->lbah
<< 16;
703 block
|= tf
->lbam
<< 8;
708 cyl
= tf
->lbam
| (tf
->lbah
<< 8);
709 head
= tf
->device
& 0xf;
713 ata_dev_printk(dev
, KERN_WARNING
, "device reported "
714 "invalid CHS sector 0\n");
715 sect
= 1; /* oh well */
718 block
= (cyl
* dev
->heads
+ head
) * dev
->sectors
+ sect
- 1;
725 * ata_build_rw_tf - Build ATA taskfile for given read/write request
726 * @tf: Target ATA taskfile
727 * @dev: ATA device @tf belongs to
728 * @block: Block address
729 * @n_block: Number of blocks
730 * @tf_flags: RW/FUA etc...
736 * Build ATA taskfile @tf for read/write request described by
737 * @block, @n_block, @tf_flags and @tag on @dev.
741 * 0 on success, -ERANGE if the request is too large for @dev,
742 * -EINVAL if the request is invalid.
744 int ata_build_rw_tf(struct ata_taskfile
*tf
, struct ata_device
*dev
,
745 u64 block
, u32 n_block
, unsigned int tf_flags
,
748 tf
->flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
749 tf
->flags
|= tf_flags
;
751 if (ata_ncq_enabled(dev
) && likely(tag
!= ATA_TAG_INTERNAL
)) {
753 if (!lba_48_ok(block
, n_block
))
756 tf
->protocol
= ATA_PROT_NCQ
;
757 tf
->flags
|= ATA_TFLAG_LBA
| ATA_TFLAG_LBA48
;
759 if (tf
->flags
& ATA_TFLAG_WRITE
)
760 tf
->command
= ATA_CMD_FPDMA_WRITE
;
762 tf
->command
= ATA_CMD_FPDMA_READ
;
764 tf
->nsect
= tag
<< 3;
765 tf
->hob_feature
= (n_block
>> 8) & 0xff;
766 tf
->feature
= n_block
& 0xff;
768 tf
->hob_lbah
= (block
>> 40) & 0xff;
769 tf
->hob_lbam
= (block
>> 32) & 0xff;
770 tf
->hob_lbal
= (block
>> 24) & 0xff;
771 tf
->lbah
= (block
>> 16) & 0xff;
772 tf
->lbam
= (block
>> 8) & 0xff;
773 tf
->lbal
= block
& 0xff;
776 if (tf
->flags
& ATA_TFLAG_FUA
)
777 tf
->device
|= 1 << 7;
778 } else if (dev
->flags
& ATA_DFLAG_LBA
) {
779 tf
->flags
|= ATA_TFLAG_LBA
;
781 if (lba_28_ok(block
, n_block
)) {
783 tf
->device
|= (block
>> 24) & 0xf;
784 } else if (lba_48_ok(block
, n_block
)) {
785 if (!(dev
->flags
& ATA_DFLAG_LBA48
))
789 tf
->flags
|= ATA_TFLAG_LBA48
;
791 tf
->hob_nsect
= (n_block
>> 8) & 0xff;
793 tf
->hob_lbah
= (block
>> 40) & 0xff;
794 tf
->hob_lbam
= (block
>> 32) & 0xff;
795 tf
->hob_lbal
= (block
>> 24) & 0xff;
797 /* request too large even for LBA48 */
800 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
803 tf
->nsect
= n_block
& 0xff;
805 tf
->lbah
= (block
>> 16) & 0xff;
806 tf
->lbam
= (block
>> 8) & 0xff;
807 tf
->lbal
= block
& 0xff;
809 tf
->device
|= ATA_LBA
;
812 u32 sect
, head
, cyl
, track
;
814 /* The request -may- be too large for CHS addressing. */
815 if (!lba_28_ok(block
, n_block
))
818 if (unlikely(ata_rwcmd_protocol(tf
, dev
) < 0))
821 /* Convert LBA to CHS */
822 track
= (u32
)block
/ dev
->sectors
;
823 cyl
= track
/ dev
->heads
;
824 head
= track
% dev
->heads
;
825 sect
= (u32
)block
% dev
->sectors
+ 1;
827 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
828 (u32
)block
, track
, cyl
, head
, sect
);
830 /* Check whether the converted CHS can fit.
834 if ((cyl
>> 16) || (head
>> 4) || (sect
>> 8) || (!sect
))
837 tf
->nsect
= n_block
& 0xff; /* Sector count 0 means 256 sectors */
848 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
849 * @pio_mask: pio_mask
850 * @mwdma_mask: mwdma_mask
851 * @udma_mask: udma_mask
853 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
854 * unsigned int xfer_mask.
862 unsigned long ata_pack_xfermask(unsigned long pio_mask
,
863 unsigned long mwdma_mask
,
864 unsigned long udma_mask
)
866 return ((pio_mask
<< ATA_SHIFT_PIO
) & ATA_MASK_PIO
) |
867 ((mwdma_mask
<< ATA_SHIFT_MWDMA
) & ATA_MASK_MWDMA
) |
868 ((udma_mask
<< ATA_SHIFT_UDMA
) & ATA_MASK_UDMA
);
872 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
873 * @xfer_mask: xfer_mask to unpack
874 * @pio_mask: resulting pio_mask
875 * @mwdma_mask: resulting mwdma_mask
876 * @udma_mask: resulting udma_mask
878 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
879 * Any NULL distination masks will be ignored.
881 void ata_unpack_xfermask(unsigned long xfer_mask
, unsigned long *pio_mask
,
882 unsigned long *mwdma_mask
, unsigned long *udma_mask
)
885 *pio_mask
= (xfer_mask
& ATA_MASK_PIO
) >> ATA_SHIFT_PIO
;
887 *mwdma_mask
= (xfer_mask
& ATA_MASK_MWDMA
) >> ATA_SHIFT_MWDMA
;
889 *udma_mask
= (xfer_mask
& ATA_MASK_UDMA
) >> ATA_SHIFT_UDMA
;
892 static const struct ata_xfer_ent
{
896 { ATA_SHIFT_PIO
, ATA_NR_PIO_MODES
, XFER_PIO_0
},
897 { ATA_SHIFT_MWDMA
, ATA_NR_MWDMA_MODES
, XFER_MW_DMA_0
},
898 { ATA_SHIFT_UDMA
, ATA_NR_UDMA_MODES
, XFER_UDMA_0
},
903 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
904 * @xfer_mask: xfer_mask of interest
906 * Return matching XFER_* value for @xfer_mask. Only the highest
907 * bit of @xfer_mask is considered.
913 * Matching XFER_* value, 0xff if no match found.
915 u8
ata_xfer_mask2mode(unsigned long xfer_mask
)
917 int highbit
= fls(xfer_mask
) - 1;
918 const struct ata_xfer_ent
*ent
;
920 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
921 if (highbit
>= ent
->shift
&& highbit
< ent
->shift
+ ent
->bits
)
922 return ent
->base
+ highbit
- ent
->shift
;
927 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
928 * @xfer_mode: XFER_* of interest
930 * Return matching xfer_mask for @xfer_mode.
936 * Matching xfer_mask, 0 if no match found.
938 unsigned long ata_xfer_mode2mask(u8 xfer_mode
)
940 const struct ata_xfer_ent
*ent
;
942 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
943 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
944 return ((2 << (ent
->shift
+ xfer_mode
- ent
->base
)) - 1)
945 & ~((1 << ent
->shift
) - 1);
950 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
951 * @xfer_mode: XFER_* of interest
953 * Return matching xfer_shift for @xfer_mode.
959 * Matching xfer_shift, -1 if no match found.
961 int ata_xfer_mode2shift(unsigned long xfer_mode
)
963 const struct ata_xfer_ent
*ent
;
965 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
966 if (xfer_mode
>= ent
->base
&& xfer_mode
< ent
->base
+ ent
->bits
)
972 * ata_mode_string - convert xfer_mask to string
973 * @xfer_mask: mask of bits supported; only highest bit counts.
975 * Determine string which represents the highest speed
976 * (highest bit in @modemask).
982 * Constant C string representing highest speed listed in
983 * @mode_mask, or the constant C string "<n/a>".
985 const char *ata_mode_string(unsigned long xfer_mask
)
987 static const char * const xfer_mode_str
[] = {
1011 highbit
= fls(xfer_mask
) - 1;
1012 if (highbit
>= 0 && highbit
< ARRAY_SIZE(xfer_mode_str
))
1013 return xfer_mode_str
[highbit
];
1017 static const char *sata_spd_string(unsigned int spd
)
1019 static const char * const spd_str
[] = {
1025 if (spd
== 0 || (spd
- 1) >= ARRAY_SIZE(spd_str
))
1027 return spd_str
[spd
- 1];
1030 static int ata_dev_set_dipm(struct ata_device
*dev
, enum link_pm policy
)
1032 struct ata_link
*link
= dev
->link
;
1033 struct ata_port
*ap
= link
->ap
;
1035 unsigned int err_mask
;
1039 * disallow DIPM for drivers which haven't set
1040 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1041 * phy ready will be set in the interrupt status on
1042 * state changes, which will cause some drivers to
1043 * think there are errors - additionally drivers will
1044 * need to disable hot plug.
1046 if (!(ap
->flags
& ATA_FLAG_IPM
) || !ata_dev_enabled(dev
)) {
1047 ap
->pm_policy
= NOT_AVAILABLE
;
1052 * For DIPM, we will only enable it for the
1053 * min_power setting.
1055 * Why? Because Disks are too stupid to know that
1056 * If the host rejects a request to go to SLUMBER
1057 * they should retry at PARTIAL, and instead it
1058 * just would give up. So, for medium_power to
1059 * work at all, we need to only allow HIPM.
1061 rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
1067 /* no restrictions on IPM transitions */
1068 scontrol
&= ~(0x3 << 8);
1069 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1074 if (dev
->flags
& ATA_DFLAG_DIPM
)
1075 err_mask
= ata_dev_set_feature(dev
,
1076 SETFEATURES_SATA_ENABLE
, SATA_DIPM
);
1079 /* allow IPM to PARTIAL */
1080 scontrol
&= ~(0x1 << 8);
1081 scontrol
|= (0x2 << 8);
1082 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1087 * we don't have to disable DIPM since IPM flags
1088 * disallow transitions to SLUMBER, which effectively
1089 * disable DIPM if it does not support PARTIAL
1093 case MAX_PERFORMANCE
:
1094 /* disable all IPM transitions */
1095 scontrol
|= (0x3 << 8);
1096 rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
);
1101 * we don't have to disable DIPM since IPM flags
1102 * disallow all transitions which effectively
1103 * disable DIPM anyway.
1108 /* FIXME: handle SET FEATURES failure */
1115 * ata_dev_enable_pm - enable SATA interface power management
1116 * @dev: device to enable power management
1117 * @policy: the link power management policy
1119 * Enable SATA Interface power management. This will enable
1120 * Device Interface Power Management (DIPM) for min_power
1121 * policy, and then call driver specific callbacks for
1122 * enabling Host Initiated Power management.
1125 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1127 void ata_dev_enable_pm(struct ata_device
*dev
, enum link_pm policy
)
1130 struct ata_port
*ap
= dev
->link
->ap
;
1132 /* set HIPM first, then DIPM */
1133 if (ap
->ops
->enable_pm
)
1134 rc
= ap
->ops
->enable_pm(ap
, policy
);
1137 rc
= ata_dev_set_dipm(dev
, policy
);
1141 ap
->pm_policy
= MAX_PERFORMANCE
;
1143 ap
->pm_policy
= policy
;
1144 return /* rc */; /* hopefully we can use 'rc' eventually */
1149 * ata_dev_disable_pm - disable SATA interface power management
1150 * @dev: device to disable power management
1152 * Disable SATA Interface power management. This will disable
1153 * Device Interface Power Management (DIPM) without changing
1154 * policy, call driver specific callbacks for disabling Host
1155 * Initiated Power management.
1160 static void ata_dev_disable_pm(struct ata_device
*dev
)
1162 struct ata_port
*ap
= dev
->link
->ap
;
1164 ata_dev_set_dipm(dev
, MAX_PERFORMANCE
);
1165 if (ap
->ops
->disable_pm
)
1166 ap
->ops
->disable_pm(ap
);
1168 #endif /* CONFIG_PM */
1170 void ata_lpm_schedule(struct ata_port
*ap
, enum link_pm policy
)
1172 ap
->pm_policy
= policy
;
1173 ap
->link
.eh_info
.action
|= ATA_EH_LPM
;
1174 ap
->link
.eh_info
.flags
|= ATA_EHI_NO_AUTOPSY
;
1175 ata_port_schedule_eh(ap
);
1179 static void ata_lpm_enable(struct ata_host
*host
)
1181 struct ata_link
*link
;
1182 struct ata_port
*ap
;
1183 struct ata_device
*dev
;
1186 for (i
= 0; i
< host
->n_ports
; i
++) {
1187 ap
= host
->ports
[i
];
1188 ata_for_each_link(link
, ap
, EDGE
) {
1189 ata_for_each_dev(dev
, link
, ALL
)
1190 ata_dev_disable_pm(dev
);
1195 static void ata_lpm_disable(struct ata_host
*host
)
1199 for (i
= 0; i
< host
->n_ports
; i
++) {
1200 struct ata_port
*ap
= host
->ports
[i
];
1201 ata_lpm_schedule(ap
, ap
->pm_policy
);
1204 #endif /* CONFIG_PM */
1207 * ata_dev_classify - determine device type based on ATA-spec signature
1208 * @tf: ATA taskfile register set for device to be identified
1210 * Determine from taskfile register contents whether a device is
1211 * ATA or ATAPI, as per "Signature and persistence" section
1212 * of ATA/PI spec (volume 1, sect 5.14).
1218 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1219 * %ATA_DEV_UNKNOWN the event of failure.
1221 unsigned int ata_dev_classify(const struct ata_taskfile
*tf
)
1223 /* Apple's open source Darwin code hints that some devices only
1224 * put a proper signature into the LBA mid/high registers,
1225 * So, we only check those. It's sufficient for uniqueness.
1227 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1228 * signatures for ATA and ATAPI devices attached on SerialATA,
1229 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1230 * spec has never mentioned about using different signatures
1231 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1232 * Multiplier specification began to use 0x69/0x96 to identify
1233 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1234 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1235 * 0x69/0x96 shortly and described them as reserved for
1238 * We follow the current spec and consider that 0x69/0x96
1239 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1240 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1241 * SEMB signature. This is worked around in
1242 * ata_dev_read_id().
1244 if ((tf
->lbam
== 0) && (tf
->lbah
== 0)) {
1245 DPRINTK("found ATA device by sig\n");
1249 if ((tf
->lbam
== 0x14) && (tf
->lbah
== 0xeb)) {
1250 DPRINTK("found ATAPI device by sig\n");
1251 return ATA_DEV_ATAPI
;
1254 if ((tf
->lbam
== 0x69) && (tf
->lbah
== 0x96)) {
1255 DPRINTK("found PMP device by sig\n");
1259 if ((tf
->lbam
== 0x3c) && (tf
->lbah
== 0xc3)) {
1260 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1261 return ATA_DEV_SEMB
;
1264 DPRINTK("unknown device\n");
1265 return ATA_DEV_UNKNOWN
;
1269 * ata_id_string - Convert IDENTIFY DEVICE page into string
1270 * @id: IDENTIFY DEVICE results we will examine
1271 * @s: string into which data is output
1272 * @ofs: offset into identify device page
1273 * @len: length of string to return. must be an even number.
1275 * The strings in the IDENTIFY DEVICE page are broken up into
1276 * 16-bit chunks. Run through the string, and output each
1277 * 8-bit chunk linearly, regardless of platform.
1283 void ata_id_string(const u16
*id
, unsigned char *s
,
1284 unsigned int ofs
, unsigned int len
)
1305 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1306 * @id: IDENTIFY DEVICE results we will examine
1307 * @s: string into which data is output
1308 * @ofs: offset into identify device page
1309 * @len: length of string to return. must be an odd number.
1311 * This function is identical to ata_id_string except that it
1312 * trims trailing spaces and terminates the resulting string with
1313 * null. @len must be actual maximum length (even number) + 1.
1318 void ata_id_c_string(const u16
*id
, unsigned char *s
,
1319 unsigned int ofs
, unsigned int len
)
1323 ata_id_string(id
, s
, ofs
, len
- 1);
1325 p
= s
+ strnlen(s
, len
- 1);
1326 while (p
> s
&& p
[-1] == ' ')
1331 static u64
ata_id_n_sectors(const u16
*id
)
1333 if (ata_id_has_lba(id
)) {
1334 if (ata_id_has_lba48(id
))
1335 return ata_id_u64(id
, ATA_ID_LBA_CAPACITY_2
);
1337 return ata_id_u32(id
, ATA_ID_LBA_CAPACITY
);
1339 if (ata_id_current_chs_valid(id
))
1340 return id
[ATA_ID_CUR_CYLS
] * id
[ATA_ID_CUR_HEADS
] *
1341 id
[ATA_ID_CUR_SECTORS
];
1343 return id
[ATA_ID_CYLS
] * id
[ATA_ID_HEADS
] *
1348 u64
ata_tf_to_lba48(const struct ata_taskfile
*tf
)
1352 sectors
|= ((u64
)(tf
->hob_lbah
& 0xff)) << 40;
1353 sectors
|= ((u64
)(tf
->hob_lbam
& 0xff)) << 32;
1354 sectors
|= ((u64
)(tf
->hob_lbal
& 0xff)) << 24;
1355 sectors
|= (tf
->lbah
& 0xff) << 16;
1356 sectors
|= (tf
->lbam
& 0xff) << 8;
1357 sectors
|= (tf
->lbal
& 0xff);
1362 u64
ata_tf_to_lba(const struct ata_taskfile
*tf
)
1366 sectors
|= (tf
->device
& 0x0f) << 24;
1367 sectors
|= (tf
->lbah
& 0xff) << 16;
1368 sectors
|= (tf
->lbam
& 0xff) << 8;
1369 sectors
|= (tf
->lbal
& 0xff);
1375 * ata_read_native_max_address - Read native max address
1376 * @dev: target device
1377 * @max_sectors: out parameter for the result native max address
1379 * Perform an LBA48 or LBA28 native size query upon the device in
1383 * 0 on success, -EACCES if command is aborted by the drive.
1384 * -EIO on other errors.
1386 static int ata_read_native_max_address(struct ata_device
*dev
, u64
*max_sectors
)
1388 unsigned int err_mask
;
1389 struct ata_taskfile tf
;
1390 int lba48
= ata_id_has_lba48(dev
->id
);
1392 ata_tf_init(dev
, &tf
);
1394 /* always clear all address registers */
1395 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1398 tf
.command
= ATA_CMD_READ_NATIVE_MAX_EXT
;
1399 tf
.flags
|= ATA_TFLAG_LBA48
;
1401 tf
.command
= ATA_CMD_READ_NATIVE_MAX
;
1403 tf
.protocol
|= ATA_PROT_NODATA
;
1404 tf
.device
|= ATA_LBA
;
1406 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1408 ata_dev_printk(dev
, KERN_WARNING
, "failed to read native "
1409 "max address (err_mask=0x%x)\n", err_mask
);
1410 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
1416 *max_sectors
= ata_tf_to_lba48(&tf
) + 1;
1418 *max_sectors
= ata_tf_to_lba(&tf
) + 1;
1419 if (dev
->horkage
& ATA_HORKAGE_HPA_SIZE
)
1425 * ata_set_max_sectors - Set max sectors
1426 * @dev: target device
1427 * @new_sectors: new max sectors value to set for the device
1429 * Set max sectors of @dev to @new_sectors.
1432 * 0 on success, -EACCES if command is aborted or denied (due to
1433 * previous non-volatile SET_MAX) by the drive. -EIO on other
1436 static int ata_set_max_sectors(struct ata_device
*dev
, u64 new_sectors
)
1438 unsigned int err_mask
;
1439 struct ata_taskfile tf
;
1440 int lba48
= ata_id_has_lba48(dev
->id
);
1444 ata_tf_init(dev
, &tf
);
1446 tf
.flags
|= ATA_TFLAG_DEVICE
| ATA_TFLAG_ISADDR
;
1449 tf
.command
= ATA_CMD_SET_MAX_EXT
;
1450 tf
.flags
|= ATA_TFLAG_LBA48
;
1452 tf
.hob_lbal
= (new_sectors
>> 24) & 0xff;
1453 tf
.hob_lbam
= (new_sectors
>> 32) & 0xff;
1454 tf
.hob_lbah
= (new_sectors
>> 40) & 0xff;
1456 tf
.command
= ATA_CMD_SET_MAX
;
1458 tf
.device
|= (new_sectors
>> 24) & 0xf;
1461 tf
.protocol
|= ATA_PROT_NODATA
;
1462 tf
.device
|= ATA_LBA
;
1464 tf
.lbal
= (new_sectors
>> 0) & 0xff;
1465 tf
.lbam
= (new_sectors
>> 8) & 0xff;
1466 tf
.lbah
= (new_sectors
>> 16) & 0xff;
1468 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1470 ata_dev_printk(dev
, KERN_WARNING
, "failed to set "
1471 "max address (err_mask=0x%x)\n", err_mask
);
1472 if (err_mask
== AC_ERR_DEV
&&
1473 (tf
.feature
& (ATA_ABORTED
| ATA_IDNF
)))
1482 * ata_hpa_resize - Resize a device with an HPA set
1483 * @dev: Device to resize
1485 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1486 * it if required to the full size of the media. The caller must check
1487 * the drive has the HPA feature set enabled.
1490 * 0 on success, -errno on failure.
1492 static int ata_hpa_resize(struct ata_device
*dev
)
1494 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
1495 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
1496 u64 sectors
= ata_id_n_sectors(dev
->id
);
1500 /* do we need to do it? */
1501 if (dev
->class != ATA_DEV_ATA
||
1502 !ata_id_has_lba(dev
->id
) || !ata_id_hpa_enabled(dev
->id
) ||
1503 (dev
->horkage
& ATA_HORKAGE_BROKEN_HPA
))
1506 /* read native max address */
1507 rc
= ata_read_native_max_address(dev
, &native_sectors
);
1509 /* If device aborted the command or HPA isn't going to
1510 * be unlocked, skip HPA resizing.
1512 if (rc
== -EACCES
|| !ata_ignore_hpa
) {
1513 ata_dev_printk(dev
, KERN_WARNING
, "HPA support seems "
1514 "broken, skipping HPA handling\n");
1515 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1517 /* we can continue if device aborted the command */
1524 dev
->n_native_sectors
= native_sectors
;
1526 /* nothing to do? */
1527 if (native_sectors
<= sectors
|| !ata_ignore_hpa
) {
1528 if (!print_info
|| native_sectors
== sectors
)
1531 if (native_sectors
> sectors
)
1532 ata_dev_printk(dev
, KERN_INFO
,
1533 "HPA detected: current %llu, native %llu\n",
1534 (unsigned long long)sectors
,
1535 (unsigned long long)native_sectors
);
1536 else if (native_sectors
< sectors
)
1537 ata_dev_printk(dev
, KERN_WARNING
,
1538 "native sectors (%llu) is smaller than "
1540 (unsigned long long)native_sectors
,
1541 (unsigned long long)sectors
);
1545 /* let's unlock HPA */
1546 rc
= ata_set_max_sectors(dev
, native_sectors
);
1547 if (rc
== -EACCES
) {
1548 /* if device aborted the command, skip HPA resizing */
1549 ata_dev_printk(dev
, KERN_WARNING
, "device aborted resize "
1550 "(%llu -> %llu), skipping HPA handling\n",
1551 (unsigned long long)sectors
,
1552 (unsigned long long)native_sectors
);
1553 dev
->horkage
|= ATA_HORKAGE_BROKEN_HPA
;
1558 /* re-read IDENTIFY data */
1559 rc
= ata_dev_reread_id(dev
, 0);
1561 ata_dev_printk(dev
, KERN_ERR
, "failed to re-read IDENTIFY "
1562 "data after HPA resizing\n");
1567 u64 new_sectors
= ata_id_n_sectors(dev
->id
);
1568 ata_dev_printk(dev
, KERN_INFO
,
1569 "HPA unlocked: %llu -> %llu, native %llu\n",
1570 (unsigned long long)sectors
,
1571 (unsigned long long)new_sectors
,
1572 (unsigned long long)native_sectors
);
1579 * ata_dump_id - IDENTIFY DEVICE info debugging output
1580 * @id: IDENTIFY DEVICE page to dump
1582 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1589 static inline void ata_dump_id(const u16
*id
)
1591 DPRINTK("49==0x%04x "
1601 DPRINTK("80==0x%04x "
1611 DPRINTK("88==0x%04x "
1618 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1619 * @id: IDENTIFY data to compute xfer mask from
1621 * Compute the xfermask for this device. This is not as trivial
1622 * as it seems if we must consider early devices correctly.
1624 * FIXME: pre IDE drive timing (do we care ?).
1632 unsigned long ata_id_xfermask(const u16
*id
)
1634 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
1636 /* Usual case. Word 53 indicates word 64 is valid */
1637 if (id
[ATA_ID_FIELD_VALID
] & (1 << 1)) {
1638 pio_mask
= id
[ATA_ID_PIO_MODES
] & 0x03;
1642 /* If word 64 isn't valid then Word 51 high byte holds
1643 * the PIO timing number for the maximum. Turn it into
1646 u8 mode
= (id
[ATA_ID_OLD_PIO_MODES
] >> 8) & 0xFF;
1647 if (mode
< 5) /* Valid PIO range */
1648 pio_mask
= (2 << mode
) - 1;
1652 /* But wait.. there's more. Design your standards by
1653 * committee and you too can get a free iordy field to
1654 * process. However its the speeds not the modes that
1655 * are supported... Note drivers using the timing API
1656 * will get this right anyway
1660 mwdma_mask
= id
[ATA_ID_MWDMA_MODES
] & 0x07;
1662 if (ata_id_is_cfa(id
)) {
1664 * Process compact flash extended modes
1666 int pio
= (id
[ATA_ID_CFA_MODES
] >> 0) & 0x7;
1667 int dma
= (id
[ATA_ID_CFA_MODES
] >> 3) & 0x7;
1670 pio_mask
|= (1 << 5);
1672 pio_mask
|= (1 << 6);
1674 mwdma_mask
|= (1 << 3);
1676 mwdma_mask
|= (1 << 4);
1680 if (id
[ATA_ID_FIELD_VALID
] & (1 << 2))
1681 udma_mask
= id
[ATA_ID_UDMA_MODES
] & 0xff;
1683 return ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
1687 * ata_pio_queue_task - Queue port_task
1688 * @ap: The ata_port to queue port_task for
1689 * @data: data for @fn to use
1690 * @delay: delay time in msecs for workqueue function
1692 * Schedule @fn(@data) for execution after @delay jiffies using
1693 * port_task. There is one port_task per port and it's the
1694 * user(low level driver)'s responsibility to make sure that only
1695 * one task is active at any given time.
1697 * libata core layer takes care of synchronization between
1698 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1702 * Inherited from caller.
1704 void ata_pio_queue_task(struct ata_port
*ap
, void *data
, unsigned long delay
)
1706 ap
->port_task_data
= data
;
1708 /* may fail if ata_port_flush_task() in progress */
1709 queue_delayed_work(ata_wq
, &ap
->port_task
, msecs_to_jiffies(delay
));
1713 * ata_port_flush_task - Flush port_task
1714 * @ap: The ata_port to flush port_task for
1716 * After this function completes, port_task is guranteed not to
1717 * be running or scheduled.
1720 * Kernel thread context (may sleep)
1722 void ata_port_flush_task(struct ata_port
*ap
)
1726 cancel_rearming_delayed_work(&ap
->port_task
);
1728 if (ata_msg_ctl(ap
))
1729 ata_port_printk(ap
, KERN_DEBUG
, "%s: EXIT\n", __func__
);
1732 static void ata_qc_complete_internal(struct ata_queued_cmd
*qc
)
1734 struct completion
*waiting
= qc
->private_data
;
1740 * ata_exec_internal_sg - execute libata internal command
1741 * @dev: Device to which the command is sent
1742 * @tf: Taskfile registers for the command and the result
1743 * @cdb: CDB for packet command
1744 * @dma_dir: Data tranfer direction of the command
1745 * @sgl: sg list for the data buffer of the command
1746 * @n_elem: Number of sg entries
1747 * @timeout: Timeout in msecs (0 for default)
1749 * Executes libata internal command with timeout. @tf contains
1750 * command on entry and result on return. Timeout and error
1751 * conditions are reported via return value. No recovery action
1752 * is taken after a command times out. It's caller's duty to
1753 * clean up after timeout.
1756 * None. Should be called with kernel context, might sleep.
1759 * Zero on success, AC_ERR_* mask on failure
1761 unsigned ata_exec_internal_sg(struct ata_device
*dev
,
1762 struct ata_taskfile
*tf
, const u8
*cdb
,
1763 int dma_dir
, struct scatterlist
*sgl
,
1764 unsigned int n_elem
, unsigned long timeout
)
1766 struct ata_link
*link
= dev
->link
;
1767 struct ata_port
*ap
= link
->ap
;
1768 u8 command
= tf
->command
;
1769 int auto_timeout
= 0;
1770 struct ata_queued_cmd
*qc
;
1771 unsigned int tag
, preempted_tag
;
1772 u32 preempted_sactive
, preempted_qc_active
;
1773 int preempted_nr_active_links
;
1774 DECLARE_COMPLETION_ONSTACK(wait
);
1775 unsigned long flags
;
1776 unsigned int err_mask
;
1779 spin_lock_irqsave(ap
->lock
, flags
);
1781 /* no internal command while frozen */
1782 if (ap
->pflags
& ATA_PFLAG_FROZEN
) {
1783 spin_unlock_irqrestore(ap
->lock
, flags
);
1784 return AC_ERR_SYSTEM
;
1787 /* initialize internal qc */
1789 /* XXX: Tag 0 is used for drivers with legacy EH as some
1790 * drivers choke if any other tag is given. This breaks
1791 * ata_tag_internal() test for those drivers. Don't use new
1792 * EH stuff without converting to it.
1794 if (ap
->ops
->error_handler
)
1795 tag
= ATA_TAG_INTERNAL
;
1799 if (test_and_set_bit(tag
, &ap
->qc_allocated
))
1801 qc
= __ata_qc_from_tag(ap
, tag
);
1809 preempted_tag
= link
->active_tag
;
1810 preempted_sactive
= link
->sactive
;
1811 preempted_qc_active
= ap
->qc_active
;
1812 preempted_nr_active_links
= ap
->nr_active_links
;
1813 link
->active_tag
= ATA_TAG_POISON
;
1816 ap
->nr_active_links
= 0;
1818 /* prepare & issue qc */
1821 memcpy(qc
->cdb
, cdb
, ATAPI_CDB_LEN
);
1822 qc
->flags
|= ATA_QCFLAG_RESULT_TF
;
1823 qc
->dma_dir
= dma_dir
;
1824 if (dma_dir
!= DMA_NONE
) {
1825 unsigned int i
, buflen
= 0;
1826 struct scatterlist
*sg
;
1828 for_each_sg(sgl
, sg
, n_elem
, i
)
1829 buflen
+= sg
->length
;
1831 ata_sg_init(qc
, sgl
, n_elem
);
1832 qc
->nbytes
= buflen
;
1835 qc
->private_data
= &wait
;
1836 qc
->complete_fn
= ata_qc_complete_internal
;
1840 spin_unlock_irqrestore(ap
->lock
, flags
);
1843 if (ata_probe_timeout
)
1844 timeout
= ata_probe_timeout
* 1000;
1846 timeout
= ata_internal_cmd_timeout(dev
, command
);
1851 rc
= wait_for_completion_timeout(&wait
, msecs_to_jiffies(timeout
));
1853 ata_port_flush_task(ap
);
1856 spin_lock_irqsave(ap
->lock
, flags
);
1858 /* We're racing with irq here. If we lose, the
1859 * following test prevents us from completing the qc
1860 * twice. If we win, the port is frozen and will be
1861 * cleaned up by ->post_internal_cmd().
1863 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
1864 qc
->err_mask
|= AC_ERR_TIMEOUT
;
1866 if (ap
->ops
->error_handler
)
1867 ata_port_freeze(ap
);
1869 ata_qc_complete(qc
);
1871 if (ata_msg_warn(ap
))
1872 ata_dev_printk(dev
, KERN_WARNING
,
1873 "qc timeout (cmd 0x%x)\n", command
);
1876 spin_unlock_irqrestore(ap
->lock
, flags
);
1879 /* do post_internal_cmd */
1880 if (ap
->ops
->post_internal_cmd
)
1881 ap
->ops
->post_internal_cmd(qc
);
1883 /* perform minimal error analysis */
1884 if (qc
->flags
& ATA_QCFLAG_FAILED
) {
1885 if (qc
->result_tf
.command
& (ATA_ERR
| ATA_DF
))
1886 qc
->err_mask
|= AC_ERR_DEV
;
1889 qc
->err_mask
|= AC_ERR_OTHER
;
1891 if (qc
->err_mask
& ~AC_ERR_OTHER
)
1892 qc
->err_mask
&= ~AC_ERR_OTHER
;
1896 spin_lock_irqsave(ap
->lock
, flags
);
1898 *tf
= qc
->result_tf
;
1899 err_mask
= qc
->err_mask
;
1902 link
->active_tag
= preempted_tag
;
1903 link
->sactive
= preempted_sactive
;
1904 ap
->qc_active
= preempted_qc_active
;
1905 ap
->nr_active_links
= preempted_nr_active_links
;
1907 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1908 * Until those drivers are fixed, we detect the condition
1909 * here, fail the command with AC_ERR_SYSTEM and reenable the
1912 * Note that this doesn't change any behavior as internal
1913 * command failure results in disabling the device in the
1914 * higher layer for LLDDs without new reset/EH callbacks.
1916 * Kill the following code as soon as those drivers are fixed.
1918 if (ap
->flags
& ATA_FLAG_DISABLED
) {
1919 err_mask
|= AC_ERR_SYSTEM
;
1923 spin_unlock_irqrestore(ap
->lock
, flags
);
1925 if ((err_mask
& AC_ERR_TIMEOUT
) && auto_timeout
)
1926 ata_internal_cmd_timed_out(dev
, command
);
1932 * ata_exec_internal - execute libata internal command
1933 * @dev: Device to which the command is sent
1934 * @tf: Taskfile registers for the command and the result
1935 * @cdb: CDB for packet command
1936 * @dma_dir: Data tranfer direction of the command
1937 * @buf: Data buffer of the command
1938 * @buflen: Length of data buffer
1939 * @timeout: Timeout in msecs (0 for default)
1941 * Wrapper around ata_exec_internal_sg() which takes simple
1942 * buffer instead of sg list.
1945 * None. Should be called with kernel context, might sleep.
1948 * Zero on success, AC_ERR_* mask on failure
1950 unsigned ata_exec_internal(struct ata_device
*dev
,
1951 struct ata_taskfile
*tf
, const u8
*cdb
,
1952 int dma_dir
, void *buf
, unsigned int buflen
,
1953 unsigned long timeout
)
1955 struct scatterlist
*psg
= NULL
, sg
;
1956 unsigned int n_elem
= 0;
1958 if (dma_dir
!= DMA_NONE
) {
1960 sg_init_one(&sg
, buf
, buflen
);
1965 return ata_exec_internal_sg(dev
, tf
, cdb
, dma_dir
, psg
, n_elem
,
1970 * ata_do_simple_cmd - execute simple internal command
1971 * @dev: Device to which the command is sent
1972 * @cmd: Opcode to execute
1974 * Execute a 'simple' command, that only consists of the opcode
1975 * 'cmd' itself, without filling any other registers
1978 * Kernel thread context (may sleep).
1981 * Zero on success, AC_ERR_* mask on failure
1983 unsigned int ata_do_simple_cmd(struct ata_device
*dev
, u8 cmd
)
1985 struct ata_taskfile tf
;
1987 ata_tf_init(dev
, &tf
);
1990 tf
.flags
|= ATA_TFLAG_DEVICE
;
1991 tf
.protocol
= ATA_PROT_NODATA
;
1993 return ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
1997 * ata_pio_need_iordy - check if iordy needed
2000 * Check if the current speed of the device requires IORDY. Used
2001 * by various controllers for chip configuration.
2003 unsigned int ata_pio_need_iordy(const struct ata_device
*adev
)
2005 /* Don't set IORDY if we're preparing for reset. IORDY may
2006 * lead to controller lock up on certain controllers if the
2007 * port is not occupied. See bko#11703 for details.
2009 if (adev
->link
->ap
->pflags
& ATA_PFLAG_RESETTING
)
2011 /* Controller doesn't support IORDY. Probably a pointless
2012 * check as the caller should know this.
2014 if (adev
->link
->ap
->flags
& ATA_FLAG_NO_IORDY
)
2016 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2017 if (ata_id_is_cfa(adev
->id
)
2018 && (adev
->pio_mode
== XFER_PIO_5
|| adev
->pio_mode
== XFER_PIO_6
))
2020 /* PIO3 and higher it is mandatory */
2021 if (adev
->pio_mode
> XFER_PIO_2
)
2023 /* We turn it on when possible */
2024 if (ata_id_has_iordy(adev
->id
))
2030 * ata_pio_mask_no_iordy - Return the non IORDY mask
2033 * Compute the highest mode possible if we are not using iordy. Return
2034 * -1 if no iordy mode is available.
2036 static u32
ata_pio_mask_no_iordy(const struct ata_device
*adev
)
2038 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2039 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE */
2040 u16 pio
= adev
->id
[ATA_ID_EIDE_PIO
];
2041 /* Is the speed faster than the drive allows non IORDY ? */
2043 /* This is cycle times not frequency - watch the logic! */
2044 if (pio
> 240) /* PIO2 is 240nS per cycle */
2045 return 3 << ATA_SHIFT_PIO
;
2046 return 7 << ATA_SHIFT_PIO
;
2049 return 3 << ATA_SHIFT_PIO
;
2053 * ata_do_dev_read_id - default ID read method
2055 * @tf: proposed taskfile
2058 * Issue the identify taskfile and hand back the buffer containing
2059 * identify data. For some RAID controllers and for pre ATA devices
2060 * this function is wrapped or replaced by the driver
2062 unsigned int ata_do_dev_read_id(struct ata_device
*dev
,
2063 struct ata_taskfile
*tf
, u16
*id
)
2065 return ata_exec_internal(dev
, tf
, NULL
, DMA_FROM_DEVICE
,
2066 id
, sizeof(id
[0]) * ATA_ID_WORDS
, 0);
2070 * ata_dev_read_id - Read ID data from the specified device
2071 * @dev: target device
2072 * @p_class: pointer to class of the target device (may be changed)
2073 * @flags: ATA_READID_* flags
2074 * @id: buffer to read IDENTIFY data into
2076 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2077 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2078 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2079 * for pre-ATA4 drives.
2081 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2082 * now we abort if we hit that case.
2085 * Kernel thread context (may sleep)
2088 * 0 on success, -errno otherwise.
2090 int ata_dev_read_id(struct ata_device
*dev
, unsigned int *p_class
,
2091 unsigned int flags
, u16
*id
)
2093 struct ata_port
*ap
= dev
->link
->ap
;
2094 unsigned int class = *p_class
;
2095 struct ata_taskfile tf
;
2096 unsigned int err_mask
= 0;
2098 bool is_semb
= class == ATA_DEV_SEMB
;
2099 int may_fallback
= 1, tried_spinup
= 0;
2102 if (ata_msg_ctl(ap
))
2103 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2106 ata_tf_init(dev
, &tf
);
2110 class = ATA_DEV_ATA
; /* some hard drives report SEMB sig */
2112 tf
.command
= ATA_CMD_ID_ATA
;
2115 tf
.command
= ATA_CMD_ID_ATAPI
;
2119 reason
= "unsupported class";
2123 tf
.protocol
= ATA_PROT_PIO
;
2125 /* Some devices choke if TF registers contain garbage. Make
2126 * sure those are properly initialized.
2128 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
2130 /* Device presence detection is unreliable on some
2131 * controllers. Always poll IDENTIFY if available.
2133 tf
.flags
|= ATA_TFLAG_POLLING
;
2135 if (ap
->ops
->read_id
)
2136 err_mask
= ap
->ops
->read_id(dev
, &tf
, id
);
2138 err_mask
= ata_do_dev_read_id(dev
, &tf
, id
);
2141 if (err_mask
& AC_ERR_NODEV_HINT
) {
2142 ata_dev_printk(dev
, KERN_DEBUG
,
2143 "NODEV after polling detection\n");
2148 ata_dev_printk(dev
, KERN_INFO
, "IDENTIFY failed on "
2149 "device w/ SEMB sig, disabled\n");
2150 /* SEMB is not supported yet */
2151 *p_class
= ATA_DEV_SEMB_UNSUP
;
2155 if ((err_mask
== AC_ERR_DEV
) && (tf
.feature
& ATA_ABORTED
)) {
2156 /* Device or controller might have reported
2157 * the wrong device class. Give a shot at the
2158 * other IDENTIFY if the current one is
2159 * aborted by the device.
2164 if (class == ATA_DEV_ATA
)
2165 class = ATA_DEV_ATAPI
;
2167 class = ATA_DEV_ATA
;
2171 /* Control reaches here iff the device aborted
2172 * both flavors of IDENTIFYs which happens
2173 * sometimes with phantom devices.
2175 ata_dev_printk(dev
, KERN_DEBUG
,
2176 "both IDENTIFYs aborted, assuming NODEV\n");
2181 reason
= "I/O error";
2185 /* Falling back doesn't make sense if ID data was read
2186 * successfully at least once.
2190 swap_buf_le16(id
, ATA_ID_WORDS
);
2194 reason
= "device reports invalid type";
2196 if (class == ATA_DEV_ATA
) {
2197 if (!ata_id_is_ata(id
) && !ata_id_is_cfa(id
))
2200 if (ata_id_is_ata(id
))
2204 if (!tried_spinup
&& (id
[2] == 0x37c8 || id
[2] == 0x738c)) {
2207 * Drive powered-up in standby mode, and requires a specific
2208 * SET_FEATURES spin-up subcommand before it will accept
2209 * anything other than the original IDENTIFY command.
2211 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SPINUP
, 0);
2212 if (err_mask
&& id
[2] != 0x738c) {
2214 reason
= "SPINUP failed";
2218 * If the drive initially returned incomplete IDENTIFY info,
2219 * we now must reissue the IDENTIFY command.
2221 if (id
[2] == 0x37c8)
2225 if ((flags
& ATA_READID_POSTRESET
) && class == ATA_DEV_ATA
) {
2227 * The exact sequence expected by certain pre-ATA4 drives is:
2229 * IDENTIFY (optional in early ATA)
2230 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2232 * Some drives were very specific about that exact sequence.
2234 * Note that ATA4 says lba is mandatory so the second check
2235 * shoud never trigger.
2237 if (ata_id_major_version(id
) < 4 || !ata_id_has_lba(id
)) {
2238 err_mask
= ata_dev_init_params(dev
, id
[3], id
[6]);
2241 reason
= "INIT_DEV_PARAMS failed";
2245 /* current CHS translation info (id[53-58]) might be
2246 * changed. reread the identify device info.
2248 flags
&= ~ATA_READID_POSTRESET
;
2258 if (ata_msg_warn(ap
))
2259 ata_dev_printk(dev
, KERN_WARNING
, "failed to IDENTIFY "
2260 "(%s, err_mask=0x%x)\n", reason
, err_mask
);
2264 static int ata_do_link_spd_horkage(struct ata_device
*dev
)
2266 struct ata_link
*plink
= ata_dev_phys_link(dev
);
2267 u32 target
, target_limit
;
2269 if (!sata_scr_valid(plink
))
2272 if (dev
->horkage
& ATA_HORKAGE_1_5_GBPS
)
2277 target_limit
= (1 << target
) - 1;
2279 /* if already on stricter limit, no need to push further */
2280 if (plink
->sata_spd_limit
<= target_limit
)
2283 plink
->sata_spd_limit
= target_limit
;
2285 /* Request another EH round by returning -EAGAIN if link is
2286 * going faster than the target speed. Forward progress is
2287 * guaranteed by setting sata_spd_limit to target_limit above.
2289 if (plink
->sata_spd
> target
) {
2290 ata_dev_printk(dev
, KERN_INFO
,
2291 "applying link speed limit horkage to %s\n",
2292 sata_spd_string(target
));
2298 static inline u8
ata_dev_knobble(struct ata_device
*dev
)
2300 struct ata_port
*ap
= dev
->link
->ap
;
2302 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_BRIDGE_OK
)
2305 return ((ap
->cbl
== ATA_CBL_SATA
) && (!ata_id_is_sata(dev
->id
)));
2308 static int ata_dev_config_ncq(struct ata_device
*dev
,
2309 char *desc
, size_t desc_sz
)
2311 struct ata_port
*ap
= dev
->link
->ap
;
2312 int hdepth
= 0, ddepth
= ata_id_queue_depth(dev
->id
);
2313 unsigned int err_mask
;
2316 if (!ata_id_has_ncq(dev
->id
)) {
2320 if (dev
->horkage
& ATA_HORKAGE_NONCQ
) {
2321 snprintf(desc
, desc_sz
, "NCQ (not used)");
2324 if (ap
->flags
& ATA_FLAG_NCQ
) {
2325 hdepth
= min(ap
->scsi_host
->can_queue
, ATA_MAX_QUEUE
- 1);
2326 dev
->flags
|= ATA_DFLAG_NCQ
;
2329 if (!(dev
->horkage
& ATA_HORKAGE_BROKEN_FPDMA_AA
) &&
2330 (ap
->flags
& ATA_FLAG_FPDMA_AA
) &&
2331 ata_id_has_fpdma_aa(dev
->id
)) {
2332 err_mask
= ata_dev_set_feature(dev
, SETFEATURES_SATA_ENABLE
,
2335 ata_dev_printk(dev
, KERN_ERR
, "failed to enable AA"
2336 "(error_mask=0x%x)\n", err_mask
);
2337 if (err_mask
!= AC_ERR_DEV
) {
2338 dev
->horkage
|= ATA_HORKAGE_BROKEN_FPDMA_AA
;
2345 if (hdepth
>= ddepth
)
2346 snprintf(desc
, desc_sz
, "NCQ (depth %d)%s", ddepth
, aa_desc
);
2348 snprintf(desc
, desc_sz
, "NCQ (depth %d/%d)%s", hdepth
,
2354 * ata_dev_configure - Configure the specified ATA/ATAPI device
2355 * @dev: Target device to configure
2357 * Configure @dev according to @dev->id. Generic and low-level
2358 * driver specific fixups are also applied.
2361 * Kernel thread context (may sleep)
2364 * 0 on success, -errno otherwise
2366 int ata_dev_configure(struct ata_device
*dev
)
2368 struct ata_port
*ap
= dev
->link
->ap
;
2369 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
2370 int print_info
= ehc
->i
.flags
& ATA_EHI_PRINTINFO
;
2371 const u16
*id
= dev
->id
;
2372 unsigned long xfer_mask
;
2373 char revbuf
[7]; /* XYZ-99\0 */
2374 char fwrevbuf
[ATA_ID_FW_REV_LEN
+1];
2375 char modelbuf
[ATA_ID_PROD_LEN
+1];
2378 if (!ata_dev_enabled(dev
) && ata_msg_info(ap
)) {
2379 ata_dev_printk(dev
, KERN_INFO
, "%s: ENTER/EXIT -- nodev\n",
2384 if (ata_msg_probe(ap
))
2385 ata_dev_printk(dev
, KERN_DEBUG
, "%s: ENTER\n", __func__
);
2388 dev
->horkage
|= ata_dev_blacklisted(dev
);
2389 ata_force_horkage(dev
);
2391 if (dev
->horkage
& ATA_HORKAGE_DISABLE
) {
2392 ata_dev_printk(dev
, KERN_INFO
,
2393 "unsupported device, disabling\n");
2394 ata_dev_disable(dev
);
2398 if ((!atapi_enabled
|| (ap
->flags
& ATA_FLAG_NO_ATAPI
)) &&
2399 dev
->class == ATA_DEV_ATAPI
) {
2400 ata_dev_printk(dev
, KERN_WARNING
,
2401 "WARNING: ATAPI is %s, device ignored.\n",
2402 atapi_enabled
? "not supported with this driver"
2404 ata_dev_disable(dev
);
2408 rc
= ata_do_link_spd_horkage(dev
);
2412 /* let ACPI work its magic */
2413 rc
= ata_acpi_on_devcfg(dev
);
2417 /* massage HPA, do it early as it might change IDENTIFY data */
2418 rc
= ata_hpa_resize(dev
);
2422 /* print device capabilities */
2423 if (ata_msg_probe(ap
))
2424 ata_dev_printk(dev
, KERN_DEBUG
,
2425 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2426 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2428 id
[49], id
[82], id
[83], id
[84],
2429 id
[85], id
[86], id
[87], id
[88]);
2431 /* initialize to-be-configured parameters */
2432 dev
->flags
&= ~ATA_DFLAG_CFG_MASK
;
2433 dev
->max_sectors
= 0;
2439 dev
->multi_count
= 0;
2442 * common ATA, ATAPI feature tests
2445 /* find max transfer mode; for printk only */
2446 xfer_mask
= ata_id_xfermask(id
);
2448 if (ata_msg_probe(ap
))
2451 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2452 ata_id_c_string(dev
->id
, fwrevbuf
, ATA_ID_FW_REV
,
2455 ata_id_c_string(dev
->id
, modelbuf
, ATA_ID_PROD
,
2458 /* ATA-specific feature tests */
2459 if (dev
->class == ATA_DEV_ATA
) {
2460 if (ata_id_is_cfa(id
)) {
2461 /* CPRM may make this media unusable */
2462 if (id
[ATA_ID_CFA_KEY_MGMT
] & 1)
2463 ata_dev_printk(dev
, KERN_WARNING
,
2464 "supports DRM functions and may "
2465 "not be fully accessable.\n");
2466 snprintf(revbuf
, 7, "CFA");
2468 snprintf(revbuf
, 7, "ATA-%d", ata_id_major_version(id
));
2469 /* Warn the user if the device has TPM extensions */
2470 if (ata_id_has_tpm(id
))
2471 ata_dev_printk(dev
, KERN_WARNING
,
2472 "supports DRM functions and may "
2473 "not be fully accessable.\n");
2476 dev
->n_sectors
= ata_id_n_sectors(id
);
2478 /* get current R/W Multiple count setting */
2479 if ((dev
->id
[47] >> 8) == 0x80 && (dev
->id
[59] & 0x100)) {
2480 unsigned int max
= dev
->id
[47] & 0xff;
2481 unsigned int cnt
= dev
->id
[59] & 0xff;
2482 /* only recognize/allow powers of two here */
2483 if (is_power_of_2(max
) && is_power_of_2(cnt
))
2485 dev
->multi_count
= cnt
;
2488 if (ata_id_has_lba(id
)) {
2489 const char *lba_desc
;
2493 dev
->flags
|= ATA_DFLAG_LBA
;
2494 if (ata_id_has_lba48(id
)) {
2495 dev
->flags
|= ATA_DFLAG_LBA48
;
2498 if (dev
->n_sectors
>= (1UL << 28) &&
2499 ata_id_has_flush_ext(id
))
2500 dev
->flags
|= ATA_DFLAG_FLUSH_EXT
;
2504 rc
= ata_dev_config_ncq(dev
, ncq_desc
, sizeof(ncq_desc
));
2508 /* print device info to dmesg */
2509 if (ata_msg_drv(ap
) && print_info
) {
2510 ata_dev_printk(dev
, KERN_INFO
,
2511 "%s: %s, %s, max %s\n",
2512 revbuf
, modelbuf
, fwrevbuf
,
2513 ata_mode_string(xfer_mask
));
2514 ata_dev_printk(dev
, KERN_INFO
,
2515 "%Lu sectors, multi %u: %s %s\n",
2516 (unsigned long long)dev
->n_sectors
,
2517 dev
->multi_count
, lba_desc
, ncq_desc
);
2522 /* Default translation */
2523 dev
->cylinders
= id
[1];
2525 dev
->sectors
= id
[6];
2527 if (ata_id_current_chs_valid(id
)) {
2528 /* Current CHS translation is valid. */
2529 dev
->cylinders
= id
[54];
2530 dev
->heads
= id
[55];
2531 dev
->sectors
= id
[56];
2534 /* print device info to dmesg */
2535 if (ata_msg_drv(ap
) && print_info
) {
2536 ata_dev_printk(dev
, KERN_INFO
,
2537 "%s: %s, %s, max %s\n",
2538 revbuf
, modelbuf
, fwrevbuf
,
2539 ata_mode_string(xfer_mask
));
2540 ata_dev_printk(dev
, KERN_INFO
,
2541 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2542 (unsigned long long)dev
->n_sectors
,
2543 dev
->multi_count
, dev
->cylinders
,
2544 dev
->heads
, dev
->sectors
);
2551 /* ATAPI-specific feature tests */
2552 else if (dev
->class == ATA_DEV_ATAPI
) {
2553 const char *cdb_intr_string
= "";
2554 const char *atapi_an_string
= "";
2555 const char *dma_dir_string
= "";
2558 rc
= atapi_cdb_len(id
);
2559 if ((rc
< 12) || (rc
> ATAPI_CDB_LEN
)) {
2560 if (ata_msg_warn(ap
))
2561 ata_dev_printk(dev
, KERN_WARNING
,
2562 "unsupported CDB len\n");
2566 dev
->cdb_len
= (unsigned int) rc
;
2568 /* Enable ATAPI AN if both the host and device have
2569 * the support. If PMP is attached, SNTF is required
2570 * to enable ATAPI AN to discern between PHY status
2571 * changed notifications and ATAPI ANs.
2573 if ((ap
->flags
& ATA_FLAG_AN
) && ata_id_has_atapi_AN(id
) &&
2574 (!sata_pmp_attached(ap
) ||
2575 sata_scr_read(&ap
->link
, SCR_NOTIFICATION
, &sntf
) == 0)) {
2576 unsigned int err_mask
;
2578 /* issue SET feature command to turn this on */
2579 err_mask
= ata_dev_set_feature(dev
,
2580 SETFEATURES_SATA_ENABLE
, SATA_AN
);
2582 ata_dev_printk(dev
, KERN_ERR
,
2583 "failed to enable ATAPI AN "
2584 "(err_mask=0x%x)\n", err_mask
);
2586 dev
->flags
|= ATA_DFLAG_AN
;
2587 atapi_an_string
= ", ATAPI AN";
2591 if (ata_id_cdb_intr(dev
->id
)) {
2592 dev
->flags
|= ATA_DFLAG_CDB_INTR
;
2593 cdb_intr_string
= ", CDB intr";
2596 if (atapi_dmadir
|| atapi_id_dmadir(dev
->id
)) {
2597 dev
->flags
|= ATA_DFLAG_DMADIR
;
2598 dma_dir_string
= ", DMADIR";
2601 /* print device info to dmesg */
2602 if (ata_msg_drv(ap
) && print_info
)
2603 ata_dev_printk(dev
, KERN_INFO
,
2604 "ATAPI: %s, %s, max %s%s%s%s\n",
2606 ata_mode_string(xfer_mask
),
2607 cdb_intr_string
, atapi_an_string
,
2611 /* determine max_sectors */
2612 dev
->max_sectors
= ATA_MAX_SECTORS
;
2613 if (dev
->flags
& ATA_DFLAG_LBA48
)
2614 dev
->max_sectors
= ATA_MAX_SECTORS_LBA48
;
2616 if (!(dev
->horkage
& ATA_HORKAGE_IPM
)) {
2617 if (ata_id_has_hipm(dev
->id
))
2618 dev
->flags
|= ATA_DFLAG_HIPM
;
2619 if (ata_id_has_dipm(dev
->id
))
2620 dev
->flags
|= ATA_DFLAG_DIPM
;
2623 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2625 if (ata_dev_knobble(dev
)) {
2626 if (ata_msg_drv(ap
) && print_info
)
2627 ata_dev_printk(dev
, KERN_INFO
,
2628 "applying bridge limits\n");
2629 dev
->udma_mask
&= ATA_UDMA5
;
2630 dev
->max_sectors
= ATA_MAX_SECTORS
;
2633 if ((dev
->class == ATA_DEV_ATAPI
) &&
2634 (atapi_command_packet_set(id
) == TYPE_TAPE
)) {
2635 dev
->max_sectors
= ATA_MAX_SECTORS_TAPE
;
2636 dev
->horkage
|= ATA_HORKAGE_STUCK_ERR
;
2639 if (dev
->horkage
& ATA_HORKAGE_MAX_SEC_128
)
2640 dev
->max_sectors
= min_t(unsigned int, ATA_MAX_SECTORS_128
,
2643 if (ata_dev_blacklisted(dev
) & ATA_HORKAGE_IPM
) {
2644 dev
->horkage
|= ATA_HORKAGE_IPM
;
2646 /* reset link pm_policy for this port to no pm */
2647 ap
->pm_policy
= MAX_PERFORMANCE
;
2650 if (ap
->ops
->dev_config
)
2651 ap
->ops
->dev_config(dev
);
2653 if (dev
->horkage
& ATA_HORKAGE_DIAGNOSTIC
) {
2654 /* Let the user know. We don't want to disallow opens for
2655 rescue purposes, or in case the vendor is just a blithering
2656 idiot. Do this after the dev_config call as some controllers
2657 with buggy firmware may want to avoid reporting false device
2661 ata_dev_printk(dev
, KERN_WARNING
,
2662 "Drive reports diagnostics failure. This may indicate a drive\n");
2663 ata_dev_printk(dev
, KERN_WARNING
,
2664 "fault or invalid emulation. Contact drive vendor for information.\n");
2668 if ((dev
->horkage
& ATA_HORKAGE_FIRMWARE_WARN
) && print_info
) {
2669 ata_dev_printk(dev
, KERN_WARNING
, "WARNING: device requires "
2670 "firmware update to be fully functional.\n");
2671 ata_dev_printk(dev
, KERN_WARNING
, " contact the vendor "
2672 "or visit http://ata.wiki.kernel.org.\n");
2678 if (ata_msg_probe(ap
))
2679 ata_dev_printk(dev
, KERN_DEBUG
,
2680 "%s: EXIT, err\n", __func__
);
2685 * ata_cable_40wire - return 40 wire cable type
2688 * Helper method for drivers which want to hardwire 40 wire cable
2692 int ata_cable_40wire(struct ata_port
*ap
)
2694 return ATA_CBL_PATA40
;
2698 * ata_cable_80wire - return 80 wire cable type
2701 * Helper method for drivers which want to hardwire 80 wire cable
2705 int ata_cable_80wire(struct ata_port
*ap
)
2707 return ATA_CBL_PATA80
;
2711 * ata_cable_unknown - return unknown PATA cable.
2714 * Helper method for drivers which have no PATA cable detection.
2717 int ata_cable_unknown(struct ata_port
*ap
)
2719 return ATA_CBL_PATA_UNK
;
2723 * ata_cable_ignore - return ignored PATA cable.
2726 * Helper method for drivers which don't use cable type to limit
2729 int ata_cable_ignore(struct ata_port
*ap
)
2731 return ATA_CBL_PATA_IGN
;
2735 * ata_cable_sata - return SATA cable type
2738 * Helper method for drivers which have SATA cables
2741 int ata_cable_sata(struct ata_port
*ap
)
2743 return ATA_CBL_SATA
;
2747 * ata_bus_probe - Reset and probe ATA bus
2750 * Master ATA bus probing function. Initiates a hardware-dependent
2751 * bus reset, then attempts to identify any devices found on
2755 * PCI/etc. bus probe sem.
2758 * Zero on success, negative errno otherwise.
2761 int ata_bus_probe(struct ata_port
*ap
)
2763 unsigned int classes
[ATA_MAX_DEVICES
];
2764 int tries
[ATA_MAX_DEVICES
];
2766 struct ata_device
*dev
;
2770 ata_for_each_dev(dev
, &ap
->link
, ALL
)
2771 tries
[dev
->devno
] = ATA_PROBE_MAX_TRIES
;
2774 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2775 /* If we issue an SRST then an ATA drive (not ATAPI)
2776 * may change configuration and be in PIO0 timing. If
2777 * we do a hard reset (or are coming from power on)
2778 * this is true for ATA or ATAPI. Until we've set a
2779 * suitable controller mode we should not touch the
2780 * bus as we may be talking too fast.
2782 dev
->pio_mode
= XFER_PIO_0
;
2784 /* If the controller has a pio mode setup function
2785 * then use it to set the chipset to rights. Don't
2786 * touch the DMA setup as that will be dealt with when
2787 * configuring devices.
2789 if (ap
->ops
->set_piomode
)
2790 ap
->ops
->set_piomode(ap
, dev
);
2793 /* reset and determine device classes */
2794 ap
->ops
->phy_reset(ap
);
2796 ata_for_each_dev(dev
, &ap
->link
, ALL
) {
2797 if (!(ap
->flags
& ATA_FLAG_DISABLED
) &&
2798 dev
->class != ATA_DEV_UNKNOWN
)
2799 classes
[dev
->devno
] = dev
->class;
2801 classes
[dev
->devno
] = ATA_DEV_NONE
;
2803 dev
->class = ATA_DEV_UNKNOWN
;
2808 /* read IDENTIFY page and configure devices. We have to do the identify
2809 specific sequence bass-ackwards so that PDIAG- is released by
2812 ata_for_each_dev(dev
, &ap
->link
, ALL_REVERSE
) {
2813 if (tries
[dev
->devno
])
2814 dev
->class = classes
[dev
->devno
];
2816 if (!ata_dev_enabled(dev
))
2819 rc
= ata_dev_read_id(dev
, &dev
->class, ATA_READID_POSTRESET
,
2825 /* Now ask for the cable type as PDIAG- should have been released */
2826 if (ap
->ops
->cable_detect
)
2827 ap
->cbl
= ap
->ops
->cable_detect(ap
);
2829 /* We may have SATA bridge glue hiding here irrespective of
2830 * the reported cable types and sensed types. When SATA
2831 * drives indicate we have a bridge, we don't know which end
2832 * of the link the bridge is which is a problem.
2834 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2835 if (ata_id_is_sata(dev
->id
))
2836 ap
->cbl
= ATA_CBL_SATA
;
2838 /* After the identify sequence we can now set up the devices. We do
2839 this in the normal order so that the user doesn't get confused */
2841 ata_for_each_dev(dev
, &ap
->link
, ENABLED
) {
2842 ap
->link
.eh_context
.i
.flags
|= ATA_EHI_PRINTINFO
;
2843 rc
= ata_dev_configure(dev
);
2844 ap
->link
.eh_context
.i
.flags
&= ~ATA_EHI_PRINTINFO
;
2849 /* configure transfer mode */
2850 rc
= ata_set_mode(&ap
->link
, &dev
);
2854 ata_for_each_dev(dev
, &ap
->link
, ENABLED
)
2857 /* no device present, disable port */
2858 ata_port_disable(ap
);
2862 tries
[dev
->devno
]--;
2866 /* eeek, something went very wrong, give up */
2867 tries
[dev
->devno
] = 0;
2871 /* give it just one more chance */
2872 tries
[dev
->devno
] = min(tries
[dev
->devno
], 1);
2874 if (tries
[dev
->devno
] == 1) {
2875 /* This is the last chance, better to slow
2876 * down than lose it.
2878 sata_down_spd_limit(&ap
->link
, 0);
2879 ata_down_xfermask_limit(dev
, ATA_DNXFER_PIO
);
2883 if (!tries
[dev
->devno
])
2884 ata_dev_disable(dev
);
2890 * ata_port_probe - Mark port as enabled
2891 * @ap: Port for which we indicate enablement
2893 * Modify @ap data structure such that the system
2894 * thinks that the entire port is enabled.
2896 * LOCKING: host lock, or some other form of
2900 void ata_port_probe(struct ata_port
*ap
)
2902 ap
->flags
&= ~ATA_FLAG_DISABLED
;
2906 * sata_print_link_status - Print SATA link status
2907 * @link: SATA link to printk link status about
2909 * This function prints link speed and status of a SATA link.
2914 static void sata_print_link_status(struct ata_link
*link
)
2916 u32 sstatus
, scontrol
, tmp
;
2918 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
))
2920 sata_scr_read(link
, SCR_CONTROL
, &scontrol
);
2922 if (ata_phys_link_online(link
)) {
2923 tmp
= (sstatus
>> 4) & 0xf;
2924 ata_link_printk(link
, KERN_INFO
,
2925 "SATA link up %s (SStatus %X SControl %X)\n",
2926 sata_spd_string(tmp
), sstatus
, scontrol
);
2928 ata_link_printk(link
, KERN_INFO
,
2929 "SATA link down (SStatus %X SControl %X)\n",
2935 * ata_dev_pair - return other device on cable
2938 * Obtain the other device on the same cable, or if none is
2939 * present NULL is returned
2942 struct ata_device
*ata_dev_pair(struct ata_device
*adev
)
2944 struct ata_link
*link
= adev
->link
;
2945 struct ata_device
*pair
= &link
->device
[1 - adev
->devno
];
2946 if (!ata_dev_enabled(pair
))
2952 * ata_port_disable - Disable port.
2953 * @ap: Port to be disabled.
2955 * Modify @ap data structure such that the system
2956 * thinks that the entire port is disabled, and should
2957 * never attempt to probe or communicate with devices
2960 * LOCKING: host lock, or some other form of
2964 void ata_port_disable(struct ata_port
*ap
)
2966 ap
->link
.device
[0].class = ATA_DEV_NONE
;
2967 ap
->link
.device
[1].class = ATA_DEV_NONE
;
2968 ap
->flags
|= ATA_FLAG_DISABLED
;
2972 * sata_down_spd_limit - adjust SATA spd limit downward
2973 * @link: Link to adjust SATA spd limit for
2974 * @spd_limit: Additional limit
2976 * Adjust SATA spd limit of @link downward. Note that this
2977 * function only adjusts the limit. The change must be applied
2978 * using sata_set_spd().
2980 * If @spd_limit is non-zero, the speed is limited to equal to or
2981 * lower than @spd_limit if such speed is supported. If
2982 * @spd_limit is slower than any supported speed, only the lowest
2983 * supported speed is allowed.
2986 * Inherited from caller.
2989 * 0 on success, negative errno on failure
2991 int sata_down_spd_limit(struct ata_link
*link
, u32 spd_limit
)
2993 u32 sstatus
, spd
, mask
;
2996 if (!sata_scr_valid(link
))
2999 /* If SCR can be read, use it to determine the current SPD.
3000 * If not, use cached value in link->sata_spd.
3002 rc
= sata_scr_read(link
, SCR_STATUS
, &sstatus
);
3003 if (rc
== 0 && ata_sstatus_online(sstatus
))
3004 spd
= (sstatus
>> 4) & 0xf;
3006 spd
= link
->sata_spd
;
3008 mask
= link
->sata_spd_limit
;
3012 /* unconditionally mask off the highest bit */
3013 bit
= fls(mask
) - 1;
3014 mask
&= ~(1 << bit
);
3016 /* Mask off all speeds higher than or equal to the current
3017 * one. Force 1.5Gbps if current SPD is not available.
3020 mask
&= (1 << (spd
- 1)) - 1;
3024 /* were we already at the bottom? */
3029 if (mask
& ((1 << spd_limit
) - 1))
3030 mask
&= (1 << spd_limit
) - 1;
3032 bit
= ffs(mask
) - 1;
3037 link
->sata_spd_limit
= mask
;
3039 ata_link_printk(link
, KERN_WARNING
, "limiting SATA link speed to %s\n",
3040 sata_spd_string(fls(mask
)));
3045 static int __sata_set_spd_needed(struct ata_link
*link
, u32
*scontrol
)
3047 struct ata_link
*host_link
= &link
->ap
->link
;
3048 u32 limit
, target
, spd
;
3050 limit
= link
->sata_spd_limit
;
3052 /* Don't configure downstream link faster than upstream link.
3053 * It doesn't speed up anything and some PMPs choke on such
3056 if (!ata_is_host_link(link
) && host_link
->sata_spd
)
3057 limit
&= (1 << host_link
->sata_spd
) - 1;
3059 if (limit
== UINT_MAX
)
3062 target
= fls(limit
);
3064 spd
= (*scontrol
>> 4) & 0xf;
3065 *scontrol
= (*scontrol
& ~0xf0) | ((target
& 0xf) << 4);
3067 return spd
!= target
;
3071 * sata_set_spd_needed - is SATA spd configuration needed
3072 * @link: Link in question
3074 * Test whether the spd limit in SControl matches
3075 * @link->sata_spd_limit. This function is used to determine
3076 * whether hardreset is necessary to apply SATA spd
3080 * Inherited from caller.
3083 * 1 if SATA spd configuration is needed, 0 otherwise.
3085 static int sata_set_spd_needed(struct ata_link
*link
)
3089 if (sata_scr_read(link
, SCR_CONTROL
, &scontrol
))
3092 return __sata_set_spd_needed(link
, &scontrol
);
3096 * sata_set_spd - set SATA spd according to spd limit
3097 * @link: Link to set SATA spd for
3099 * Set SATA spd of @link according to sata_spd_limit.
3102 * Inherited from caller.
3105 * 0 if spd doesn't need to be changed, 1 if spd has been
3106 * changed. Negative errno if SCR registers are inaccessible.
3108 int sata_set_spd(struct ata_link
*link
)
3113 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3116 if (!__sata_set_spd_needed(link
, &scontrol
))
3119 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3126 * This mode timing computation functionality is ported over from
3127 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3130 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3131 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3132 * for UDMA6, which is currently supported only by Maxtor drives.
3134 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3137 static const struct ata_timing ata_timing
[] = {
3138 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3139 { XFER_PIO_0
, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3140 { XFER_PIO_1
, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3141 { XFER_PIO_2
, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3142 { XFER_PIO_3
, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3143 { XFER_PIO_4
, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3144 { XFER_PIO_5
, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3145 { XFER_PIO_6
, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3147 { XFER_SW_DMA_0
, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3148 { XFER_SW_DMA_1
, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3149 { XFER_SW_DMA_2
, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3151 { XFER_MW_DMA_0
, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3152 { XFER_MW_DMA_1
, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3153 { XFER_MW_DMA_2
, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3154 { XFER_MW_DMA_3
, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3155 { XFER_MW_DMA_4
, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3157 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3158 { XFER_UDMA_0
, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3159 { XFER_UDMA_1
, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3160 { XFER_UDMA_2
, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3161 { XFER_UDMA_3
, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3162 { XFER_UDMA_4
, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3163 { XFER_UDMA_5
, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3164 { XFER_UDMA_6
, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3169 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3170 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3172 static void ata_timing_quantize(const struct ata_timing
*t
, struct ata_timing
*q
, int T
, int UT
)
3174 q
->setup
= EZ(t
->setup
* 1000, T
);
3175 q
->act8b
= EZ(t
->act8b
* 1000, T
);
3176 q
->rec8b
= EZ(t
->rec8b
* 1000, T
);
3177 q
->cyc8b
= EZ(t
->cyc8b
* 1000, T
);
3178 q
->active
= EZ(t
->active
* 1000, T
);
3179 q
->recover
= EZ(t
->recover
* 1000, T
);
3180 q
->dmack_hold
= EZ(t
->dmack_hold
* 1000, T
);
3181 q
->cycle
= EZ(t
->cycle
* 1000, T
);
3182 q
->udma
= EZ(t
->udma
* 1000, UT
);
3185 void ata_timing_merge(const struct ata_timing
*a
, const struct ata_timing
*b
,
3186 struct ata_timing
*m
, unsigned int what
)
3188 if (what
& ATA_TIMING_SETUP
) m
->setup
= max(a
->setup
, b
->setup
);
3189 if (what
& ATA_TIMING_ACT8B
) m
->act8b
= max(a
->act8b
, b
->act8b
);
3190 if (what
& ATA_TIMING_REC8B
) m
->rec8b
= max(a
->rec8b
, b
->rec8b
);
3191 if (what
& ATA_TIMING_CYC8B
) m
->cyc8b
= max(a
->cyc8b
, b
->cyc8b
);
3192 if (what
& ATA_TIMING_ACTIVE
) m
->active
= max(a
->active
, b
->active
);
3193 if (what
& ATA_TIMING_RECOVER
) m
->recover
= max(a
->recover
, b
->recover
);
3194 if (what
& ATA_TIMING_DMACK_HOLD
) m
->dmack_hold
= max(a
->dmack_hold
, b
->dmack_hold
);
3195 if (what
& ATA_TIMING_CYCLE
) m
->cycle
= max(a
->cycle
, b
->cycle
);
3196 if (what
& ATA_TIMING_UDMA
) m
->udma
= max(a
->udma
, b
->udma
);
3199 const struct ata_timing
*ata_timing_find_mode(u8 xfer_mode
)
3201 const struct ata_timing
*t
= ata_timing
;
3203 while (xfer_mode
> t
->mode
)
3206 if (xfer_mode
== t
->mode
)
3211 int ata_timing_compute(struct ata_device
*adev
, unsigned short speed
,
3212 struct ata_timing
*t
, int T
, int UT
)
3214 const struct ata_timing
*s
;
3215 struct ata_timing p
;
3221 if (!(s
= ata_timing_find_mode(speed
)))
3224 memcpy(t
, s
, sizeof(*s
));
3227 * If the drive is an EIDE drive, it can tell us it needs extended
3228 * PIO/MW_DMA cycle timing.
3231 if (adev
->id
[ATA_ID_FIELD_VALID
] & 2) { /* EIDE drive */
3232 memset(&p
, 0, sizeof(p
));
3233 if (speed
>= XFER_PIO_0
&& speed
<= XFER_SW_DMA_0
) {
3234 if (speed
<= XFER_PIO_2
) p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO
];
3235 else p
.cycle
= p
.cyc8b
= adev
->id
[ATA_ID_EIDE_PIO_IORDY
];
3236 } else if (speed
>= XFER_MW_DMA_0
&& speed
<= XFER_MW_DMA_2
) {
3237 p
.cycle
= adev
->id
[ATA_ID_EIDE_DMA_MIN
];
3239 ata_timing_merge(&p
, t
, t
, ATA_TIMING_CYCLE
| ATA_TIMING_CYC8B
);
3243 * Convert the timing to bus clock counts.
3246 ata_timing_quantize(t
, t
, T
, UT
);
3249 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3250 * S.M.A.R.T * and some other commands. We have to ensure that the
3251 * DMA cycle timing is slower/equal than the fastest PIO timing.
3254 if (speed
> XFER_PIO_6
) {
3255 ata_timing_compute(adev
, adev
->pio_mode
, &p
, T
, UT
);
3256 ata_timing_merge(&p
, t
, t
, ATA_TIMING_ALL
);
3260 * Lengthen active & recovery time so that cycle time is correct.
3263 if (t
->act8b
+ t
->rec8b
< t
->cyc8b
) {
3264 t
->act8b
+= (t
->cyc8b
- (t
->act8b
+ t
->rec8b
)) / 2;
3265 t
->rec8b
= t
->cyc8b
- t
->act8b
;
3268 if (t
->active
+ t
->recover
< t
->cycle
) {
3269 t
->active
+= (t
->cycle
- (t
->active
+ t
->recover
)) / 2;
3270 t
->recover
= t
->cycle
- t
->active
;
3273 /* In a few cases quantisation may produce enough errors to
3274 leave t->cycle too low for the sum of active and recovery
3275 if so we must correct this */
3276 if (t
->active
+ t
->recover
> t
->cycle
)
3277 t
->cycle
= t
->active
+ t
->recover
;
3283 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3284 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3285 * @cycle: cycle duration in ns
3287 * Return matching xfer mode for @cycle. The returned mode is of
3288 * the transfer type specified by @xfer_shift. If @cycle is too
3289 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3290 * than the fastest known mode, the fasted mode is returned.
3296 * Matching xfer_mode, 0xff if no match found.
3298 u8
ata_timing_cycle2mode(unsigned int xfer_shift
, int cycle
)
3300 u8 base_mode
= 0xff, last_mode
= 0xff;
3301 const struct ata_xfer_ent
*ent
;
3302 const struct ata_timing
*t
;
3304 for (ent
= ata_xfer_tbl
; ent
->shift
>= 0; ent
++)
3305 if (ent
->shift
== xfer_shift
)
3306 base_mode
= ent
->base
;
3308 for (t
= ata_timing_find_mode(base_mode
);
3309 t
&& ata_xfer_mode2shift(t
->mode
) == xfer_shift
; t
++) {
3310 unsigned short this_cycle
;
3312 switch (xfer_shift
) {
3314 case ATA_SHIFT_MWDMA
:
3315 this_cycle
= t
->cycle
;
3317 case ATA_SHIFT_UDMA
:
3318 this_cycle
= t
->udma
;
3324 if (cycle
> this_cycle
)
3327 last_mode
= t
->mode
;
3334 * ata_down_xfermask_limit - adjust dev xfer masks downward
3335 * @dev: Device to adjust xfer masks
3336 * @sel: ATA_DNXFER_* selector
3338 * Adjust xfer masks of @dev downward. Note that this function
3339 * does not apply the change. Invoking ata_set_mode() afterwards
3340 * will apply the limit.
3343 * Inherited from caller.
3346 * 0 on success, negative errno on failure
3348 int ata_down_xfermask_limit(struct ata_device
*dev
, unsigned int sel
)
3351 unsigned long orig_mask
, xfer_mask
;
3352 unsigned long pio_mask
, mwdma_mask
, udma_mask
;
3355 quiet
= !!(sel
& ATA_DNXFER_QUIET
);
3356 sel
&= ~ATA_DNXFER_QUIET
;
3358 xfer_mask
= orig_mask
= ata_pack_xfermask(dev
->pio_mask
,
3361 ata_unpack_xfermask(xfer_mask
, &pio_mask
, &mwdma_mask
, &udma_mask
);
3364 case ATA_DNXFER_PIO
:
3365 highbit
= fls(pio_mask
) - 1;
3366 pio_mask
&= ~(1 << highbit
);
3369 case ATA_DNXFER_DMA
:
3371 highbit
= fls(udma_mask
) - 1;
3372 udma_mask
&= ~(1 << highbit
);
3375 } else if (mwdma_mask
) {
3376 highbit
= fls(mwdma_mask
) - 1;
3377 mwdma_mask
&= ~(1 << highbit
);
3383 case ATA_DNXFER_40C
:
3384 udma_mask
&= ATA_UDMA_MASK_40C
;
3387 case ATA_DNXFER_FORCE_PIO0
:
3389 case ATA_DNXFER_FORCE_PIO
:
3398 xfer_mask
&= ata_pack_xfermask(pio_mask
, mwdma_mask
, udma_mask
);
3400 if (!(xfer_mask
& ATA_MASK_PIO
) || xfer_mask
== orig_mask
)
3404 if (xfer_mask
& (ATA_MASK_MWDMA
| ATA_MASK_UDMA
))
3405 snprintf(buf
, sizeof(buf
), "%s:%s",
3406 ata_mode_string(xfer_mask
),
3407 ata_mode_string(xfer_mask
& ATA_MASK_PIO
));
3409 snprintf(buf
, sizeof(buf
), "%s",
3410 ata_mode_string(xfer_mask
));
3412 ata_dev_printk(dev
, KERN_WARNING
,
3413 "limiting speed to %s\n", buf
);
3416 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
, &dev
->mwdma_mask
,
3422 static int ata_dev_set_mode(struct ata_device
*dev
)
3424 struct ata_port
*ap
= dev
->link
->ap
;
3425 struct ata_eh_context
*ehc
= &dev
->link
->eh_context
;
3426 const bool nosetxfer
= dev
->horkage
& ATA_HORKAGE_NOSETXFER
;
3427 const char *dev_err_whine
= "";
3428 int ign_dev_err
= 0;
3429 unsigned int err_mask
= 0;
3432 dev
->flags
&= ~ATA_DFLAG_PIO
;
3433 if (dev
->xfer_shift
== ATA_SHIFT_PIO
)
3434 dev
->flags
|= ATA_DFLAG_PIO
;
3436 if (nosetxfer
&& ap
->flags
& ATA_FLAG_SATA
&& ata_id_is_sata(dev
->id
))
3437 dev_err_whine
= " (SET_XFERMODE skipped)";
3440 ata_dev_printk(dev
, KERN_WARNING
,
3441 "NOSETXFER but PATA detected - can't "
3442 "skip SETXFER, might malfunction\n");
3443 err_mask
= ata_dev_set_xfermode(dev
);
3446 if (err_mask
& ~AC_ERR_DEV
)
3450 ehc
->i
.flags
|= ATA_EHI_POST_SETMODE
;
3451 rc
= ata_dev_revalidate(dev
, ATA_DEV_UNKNOWN
, 0);
3452 ehc
->i
.flags
&= ~ATA_EHI_POST_SETMODE
;
3456 if (dev
->xfer_shift
== ATA_SHIFT_PIO
) {
3457 /* Old CFA may refuse this command, which is just fine */
3458 if (ata_id_is_cfa(dev
->id
))
3460 /* Catch several broken garbage emulations plus some pre
3462 if (ata_id_major_version(dev
->id
) == 0 &&
3463 dev
->pio_mode
<= XFER_PIO_2
)
3465 /* Some very old devices and some bad newer ones fail
3466 any kind of SET_XFERMODE request but support PIO0-2
3467 timings and no IORDY */
3468 if (!ata_id_has_iordy(dev
->id
) && dev
->pio_mode
<= XFER_PIO_2
)
3471 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3472 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3473 if (dev
->xfer_shift
== ATA_SHIFT_MWDMA
&&
3474 dev
->dma_mode
== XFER_MW_DMA_0
&&
3475 (dev
->id
[63] >> 8) & 1)
3478 /* if the device is actually configured correctly, ignore dev err */
3479 if (dev
->xfer_mode
== ata_xfer_mask2mode(ata_id_xfermask(dev
->id
)))
3482 if (err_mask
& AC_ERR_DEV
) {
3486 dev_err_whine
= " (device error ignored)";
3489 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3490 dev
->xfer_shift
, (int)dev
->xfer_mode
);
3492 ata_dev_printk(dev
, KERN_INFO
, "configured for %s%s\n",
3493 ata_mode_string(ata_xfer_mode2mask(dev
->xfer_mode
)),
3499 ata_dev_printk(dev
, KERN_ERR
, "failed to set xfermode "
3500 "(err_mask=0x%x)\n", err_mask
);
3505 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3506 * @link: link on which timings will be programmed
3507 * @r_failed_dev: out parameter for failed device
3509 * Standard implementation of the function used to tune and set
3510 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3511 * ata_dev_set_mode() fails, pointer to the failing device is
3512 * returned in @r_failed_dev.
3515 * PCI/etc. bus probe sem.
3518 * 0 on success, negative errno otherwise
3521 int ata_do_set_mode(struct ata_link
*link
, struct ata_device
**r_failed_dev
)
3523 struct ata_port
*ap
= link
->ap
;
3524 struct ata_device
*dev
;
3525 int rc
= 0, used_dma
= 0, found
= 0;
3527 /* step 1: calculate xfer_mask */
3528 ata_for_each_dev(dev
, link
, ENABLED
) {
3529 unsigned long pio_mask
, dma_mask
;
3530 unsigned int mode_mask
;
3532 mode_mask
= ATA_DMA_MASK_ATA
;
3533 if (dev
->class == ATA_DEV_ATAPI
)
3534 mode_mask
= ATA_DMA_MASK_ATAPI
;
3535 else if (ata_id_is_cfa(dev
->id
))
3536 mode_mask
= ATA_DMA_MASK_CFA
;
3538 ata_dev_xfermask(dev
);
3539 ata_force_xfermask(dev
);
3541 pio_mask
= ata_pack_xfermask(dev
->pio_mask
, 0, 0);
3542 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3544 if (libata_dma_mask
& mode_mask
)
3545 dma_mask
= ata_pack_xfermask(0, dev
->mwdma_mask
, dev
->udma_mask
);
3549 dev
->pio_mode
= ata_xfer_mask2mode(pio_mask
);
3550 dev
->dma_mode
= ata_xfer_mask2mode(dma_mask
);
3553 if (ata_dma_enabled(dev
))
3559 /* step 2: always set host PIO timings */
3560 ata_for_each_dev(dev
, link
, ENABLED
) {
3561 if (dev
->pio_mode
== 0xff) {
3562 ata_dev_printk(dev
, KERN_WARNING
, "no PIO support\n");
3567 dev
->xfer_mode
= dev
->pio_mode
;
3568 dev
->xfer_shift
= ATA_SHIFT_PIO
;
3569 if (ap
->ops
->set_piomode
)
3570 ap
->ops
->set_piomode(ap
, dev
);
3573 /* step 3: set host DMA timings */
3574 ata_for_each_dev(dev
, link
, ENABLED
) {
3575 if (!ata_dma_enabled(dev
))
3578 dev
->xfer_mode
= dev
->dma_mode
;
3579 dev
->xfer_shift
= ata_xfer_mode2shift(dev
->dma_mode
);
3580 if (ap
->ops
->set_dmamode
)
3581 ap
->ops
->set_dmamode(ap
, dev
);
3584 /* step 4: update devices' xfer mode */
3585 ata_for_each_dev(dev
, link
, ENABLED
) {
3586 rc
= ata_dev_set_mode(dev
);
3591 /* Record simplex status. If we selected DMA then the other
3592 * host channels are not permitted to do so.
3594 if (used_dma
&& (ap
->host
->flags
& ATA_HOST_SIMPLEX
))
3595 ap
->host
->simplex_claimed
= ap
;
3599 *r_failed_dev
= dev
;
3604 * ata_wait_ready - wait for link to become ready
3605 * @link: link to be waited on
3606 * @deadline: deadline jiffies for the operation
3607 * @check_ready: callback to check link readiness
3609 * Wait for @link to become ready. @check_ready should return
3610 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3611 * link doesn't seem to be occupied, other errno for other error
3614 * Transient -ENODEV conditions are allowed for
3615 * ATA_TMOUT_FF_WAIT.
3621 * 0 if @linke is ready before @deadline; otherwise, -errno.
3623 int ata_wait_ready(struct ata_link
*link
, unsigned long deadline
,
3624 int (*check_ready
)(struct ata_link
*link
))
3626 unsigned long start
= jiffies
;
3627 unsigned long nodev_deadline
= ata_deadline(start
, ATA_TMOUT_FF_WAIT
);
3630 /* Slave readiness can't be tested separately from master. On
3631 * M/S emulation configuration, this function should be called
3632 * only on the master and it will handle both master and slave.
3634 WARN_ON(link
== link
->ap
->slave_link
);
3636 if (time_after(nodev_deadline
, deadline
))
3637 nodev_deadline
= deadline
;
3640 unsigned long now
= jiffies
;
3643 ready
= tmp
= check_ready(link
);
3647 /* -ENODEV could be transient. Ignore -ENODEV if link
3648 * is online. Also, some SATA devices take a long
3649 * time to clear 0xff after reset. For example,
3650 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3651 * GoVault needs even more than that. Wait for
3652 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3654 * Note that some PATA controllers (pata_ali) explode
3655 * if status register is read more than once when
3656 * there's no device attached.
3658 if (ready
== -ENODEV
) {
3659 if (ata_link_online(link
))
3661 else if ((link
->ap
->flags
& ATA_FLAG_SATA
) &&
3662 !ata_link_offline(link
) &&
3663 time_before(now
, nodev_deadline
))
3669 if (time_after(now
, deadline
))
3672 if (!warned
&& time_after(now
, start
+ 5 * HZ
) &&
3673 (deadline
- now
> 3 * HZ
)) {
3674 ata_link_printk(link
, KERN_WARNING
,
3675 "link is slow to respond, please be patient "
3676 "(ready=%d)\n", tmp
);
3685 * ata_wait_after_reset - wait for link to become ready after reset
3686 * @link: link to be waited on
3687 * @deadline: deadline jiffies for the operation
3688 * @check_ready: callback to check link readiness
3690 * Wait for @link to become ready after reset.
3696 * 0 if @linke is ready before @deadline; otherwise, -errno.
3698 int ata_wait_after_reset(struct ata_link
*link
, unsigned long deadline
,
3699 int (*check_ready
)(struct ata_link
*link
))
3701 msleep(ATA_WAIT_AFTER_RESET
);
3703 return ata_wait_ready(link
, deadline
, check_ready
);
3707 * sata_link_debounce - debounce SATA phy status
3708 * @link: ATA link to debounce SATA phy status for
3709 * @params: timing parameters { interval, duratinon, timeout } in msec
3710 * @deadline: deadline jiffies for the operation
3712 * Make sure SStatus of @link reaches stable state, determined by
3713 * holding the same value where DET is not 1 for @duration polled
3714 * every @interval, before @timeout. Timeout constraints the
3715 * beginning of the stable state. Because DET gets stuck at 1 on
3716 * some controllers after hot unplugging, this functions waits
3717 * until timeout then returns 0 if DET is stable at 1.
3719 * @timeout is further limited by @deadline. The sooner of the
3723 * Kernel thread context (may sleep)
3726 * 0 on success, -errno on failure.
3728 int sata_link_debounce(struct ata_link
*link
, const unsigned long *params
,
3729 unsigned long deadline
)
3731 unsigned long interval
= params
[0];
3732 unsigned long duration
= params
[1];
3733 unsigned long last_jiffies
, t
;
3737 t
= ata_deadline(jiffies
, params
[2]);
3738 if (time_before(t
, deadline
))
3741 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3746 last_jiffies
= jiffies
;
3750 if ((rc
= sata_scr_read(link
, SCR_STATUS
, &cur
)))
3756 if (cur
== 1 && time_before(jiffies
, deadline
))
3758 if (time_after(jiffies
,
3759 ata_deadline(last_jiffies
, duration
)))
3764 /* unstable, start over */
3766 last_jiffies
= jiffies
;
3768 /* Check deadline. If debouncing failed, return
3769 * -EPIPE to tell upper layer to lower link speed.
3771 if (time_after(jiffies
, deadline
))
3777 * sata_link_resume - resume SATA link
3778 * @link: ATA link to resume SATA
3779 * @params: timing parameters { interval, duratinon, timeout } in msec
3780 * @deadline: deadline jiffies for the operation
3782 * Resume SATA phy @link and debounce it.
3785 * Kernel thread context (may sleep)
3788 * 0 on success, -errno on failure.
3790 int sata_link_resume(struct ata_link
*link
, const unsigned long *params
,
3791 unsigned long deadline
)
3793 u32 scontrol
, serror
;
3796 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3799 scontrol
= (scontrol
& 0x0f0) | 0x300;
3801 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3804 /* Some PHYs react badly if SStatus is pounded immediately
3805 * after resuming. Delay 200ms before debouncing.
3809 if ((rc
= sata_link_debounce(link
, params
, deadline
)))
3812 /* clear SError, some PHYs require this even for SRST to work */
3813 if (!(rc
= sata_scr_read(link
, SCR_ERROR
, &serror
)))
3814 rc
= sata_scr_write(link
, SCR_ERROR
, serror
);
3816 return rc
!= -EINVAL
? rc
: 0;
3820 * ata_std_prereset - prepare for reset
3821 * @link: ATA link to be reset
3822 * @deadline: deadline jiffies for the operation
3824 * @link is about to be reset. Initialize it. Failure from
3825 * prereset makes libata abort whole reset sequence and give up
3826 * that port, so prereset should be best-effort. It does its
3827 * best to prepare for reset sequence but if things go wrong, it
3828 * should just whine, not fail.
3831 * Kernel thread context (may sleep)
3834 * 0 on success, -errno otherwise.
3836 int ata_std_prereset(struct ata_link
*link
, unsigned long deadline
)
3838 struct ata_port
*ap
= link
->ap
;
3839 struct ata_eh_context
*ehc
= &link
->eh_context
;
3840 const unsigned long *timing
= sata_ehc_deb_timing(ehc
);
3843 /* if we're about to do hardreset, nothing more to do */
3844 if (ehc
->i
.action
& ATA_EH_HARDRESET
)
3847 /* if SATA, resume link */
3848 if (ap
->flags
& ATA_FLAG_SATA
) {
3849 rc
= sata_link_resume(link
, timing
, deadline
);
3850 /* whine about phy resume failure but proceed */
3851 if (rc
&& rc
!= -EOPNOTSUPP
)
3852 ata_link_printk(link
, KERN_WARNING
, "failed to resume "
3853 "link for reset (errno=%d)\n", rc
);
3856 /* no point in trying softreset on offline link */
3857 if (ata_phys_link_offline(link
))
3858 ehc
->i
.action
&= ~ATA_EH_SOFTRESET
;
3864 * sata_link_hardreset - reset link via SATA phy reset
3865 * @link: link to reset
3866 * @timing: timing parameters { interval, duratinon, timeout } in msec
3867 * @deadline: deadline jiffies for the operation
3868 * @online: optional out parameter indicating link onlineness
3869 * @check_ready: optional callback to check link readiness
3871 * SATA phy-reset @link using DET bits of SControl register.
3872 * After hardreset, link readiness is waited upon using
3873 * ata_wait_ready() if @check_ready is specified. LLDs are
3874 * allowed to not specify @check_ready and wait itself after this
3875 * function returns. Device classification is LLD's
3878 * *@online is set to one iff reset succeeded and @link is online
3882 * Kernel thread context (may sleep)
3885 * 0 on success, -errno otherwise.
3887 int sata_link_hardreset(struct ata_link
*link
, const unsigned long *timing
,
3888 unsigned long deadline
,
3889 bool *online
, int (*check_ready
)(struct ata_link
*))
3899 if (sata_set_spd_needed(link
)) {
3900 /* SATA spec says nothing about how to reconfigure
3901 * spd. To be on the safe side, turn off phy during
3902 * reconfiguration. This works for at least ICH7 AHCI
3905 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3908 scontrol
= (scontrol
& 0x0f0) | 0x304;
3910 if ((rc
= sata_scr_write(link
, SCR_CONTROL
, scontrol
)))
3916 /* issue phy wake/reset */
3917 if ((rc
= sata_scr_read(link
, SCR_CONTROL
, &scontrol
)))
3920 scontrol
= (scontrol
& 0x0f0) | 0x301;
3922 if ((rc
= sata_scr_write_flush(link
, SCR_CONTROL
, scontrol
)))
3925 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3926 * 10.4.2 says at least 1 ms.
3930 /* bring link back */
3931 rc
= sata_link_resume(link
, timing
, deadline
);
3934 /* if link is offline nothing more to do */
3935 if (ata_phys_link_offline(link
))
3938 /* Link is online. From this point, -ENODEV too is an error. */
3942 if (sata_pmp_supported(link
->ap
) && ata_is_host_link(link
)) {
3943 /* If PMP is supported, we have to do follow-up SRST.
3944 * Some PMPs don't send D2H Reg FIS after hardreset if
3945 * the first port is empty. Wait only for
3946 * ATA_TMOUT_PMP_SRST_WAIT.
3949 unsigned long pmp_deadline
;
3951 pmp_deadline
= ata_deadline(jiffies
,
3952 ATA_TMOUT_PMP_SRST_WAIT
);
3953 if (time_after(pmp_deadline
, deadline
))
3954 pmp_deadline
= deadline
;
3955 ata_wait_ready(link
, pmp_deadline
, check_ready
);
3963 rc
= ata_wait_ready(link
, deadline
, check_ready
);
3965 if (rc
&& rc
!= -EAGAIN
) {
3966 /* online is set iff link is online && reset succeeded */
3969 ata_link_printk(link
, KERN_ERR
,
3970 "COMRESET failed (errno=%d)\n", rc
);
3972 DPRINTK("EXIT, rc=%d\n", rc
);
3977 * sata_std_hardreset - COMRESET w/o waiting or classification
3978 * @link: link to reset
3979 * @class: resulting class of attached device
3980 * @deadline: deadline jiffies for the operation
3982 * Standard SATA COMRESET w/o waiting or classification.
3985 * Kernel thread context (may sleep)
3988 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3990 int sata_std_hardreset(struct ata_link
*link
, unsigned int *class,
3991 unsigned long deadline
)
3993 const unsigned long *timing
= sata_ehc_deb_timing(&link
->eh_context
);
3998 rc
= sata_link_hardreset(link
, timing
, deadline
, &online
, NULL
);
3999 return online
? -EAGAIN
: rc
;
4003 * ata_std_postreset - standard postreset callback
4004 * @link: the target ata_link
4005 * @classes: classes of attached devices
4007 * This function is invoked after a successful reset. Note that
4008 * the device might have been reset more than once using
4009 * different reset methods before postreset is invoked.
4012 * Kernel thread context (may sleep)
4014 void ata_std_postreset(struct ata_link
*link
, unsigned int *classes
)
4020 /* reset complete, clear SError */
4021 if (!sata_scr_read(link
, SCR_ERROR
, &serror
))
4022 sata_scr_write(link
, SCR_ERROR
, serror
);
4024 /* print link status */
4025 sata_print_link_status(link
);
4031 * ata_dev_same_device - Determine whether new ID matches configured device
4032 * @dev: device to compare against
4033 * @new_class: class of the new device
4034 * @new_id: IDENTIFY page of the new device
4036 * Compare @new_class and @new_id against @dev and determine
4037 * whether @dev is the device indicated by @new_class and
4044 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4046 static int ata_dev_same_device(struct ata_device
*dev
, unsigned int new_class
,
4049 const u16
*old_id
= dev
->id
;
4050 unsigned char model
[2][ATA_ID_PROD_LEN
+ 1];
4051 unsigned char serial
[2][ATA_ID_SERNO_LEN
+ 1];
4053 if (dev
->class != new_class
) {
4054 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %d != %d\n",
4055 dev
->class, new_class
);
4059 ata_id_c_string(old_id
, model
[0], ATA_ID_PROD
, sizeof(model
[0]));
4060 ata_id_c_string(new_id
, model
[1], ATA_ID_PROD
, sizeof(model
[1]));
4061 ata_id_c_string(old_id
, serial
[0], ATA_ID_SERNO
, sizeof(serial
[0]));
4062 ata_id_c_string(new_id
, serial
[1], ATA_ID_SERNO
, sizeof(serial
[1]));
4064 if (strcmp(model
[0], model
[1])) {
4065 ata_dev_printk(dev
, KERN_INFO
, "model number mismatch "
4066 "'%s' != '%s'\n", model
[0], model
[1]);
4070 if (strcmp(serial
[0], serial
[1])) {
4071 ata_dev_printk(dev
, KERN_INFO
, "serial number mismatch "
4072 "'%s' != '%s'\n", serial
[0], serial
[1]);
4080 * ata_dev_reread_id - Re-read IDENTIFY data
4081 * @dev: target ATA device
4082 * @readid_flags: read ID flags
4084 * Re-read IDENTIFY page and make sure @dev is still attached to
4088 * Kernel thread context (may sleep)
4091 * 0 on success, negative errno otherwise
4093 int ata_dev_reread_id(struct ata_device
*dev
, unsigned int readid_flags
)
4095 unsigned int class = dev
->class;
4096 u16
*id
= (void *)dev
->link
->ap
->sector_buf
;
4100 rc
= ata_dev_read_id(dev
, &class, readid_flags
, id
);
4104 /* is the device still there? */
4105 if (!ata_dev_same_device(dev
, class, id
))
4108 memcpy(dev
->id
, id
, sizeof(id
[0]) * ATA_ID_WORDS
);
4113 * ata_dev_revalidate - Revalidate ATA device
4114 * @dev: device to revalidate
4115 * @new_class: new class code
4116 * @readid_flags: read ID flags
4118 * Re-read IDENTIFY page, make sure @dev is still attached to the
4119 * port and reconfigure it according to the new IDENTIFY page.
4122 * Kernel thread context (may sleep)
4125 * 0 on success, negative errno otherwise
4127 int ata_dev_revalidate(struct ata_device
*dev
, unsigned int new_class
,
4128 unsigned int readid_flags
)
4130 u64 n_sectors
= dev
->n_sectors
;
4131 u64 n_native_sectors
= dev
->n_native_sectors
;
4134 if (!ata_dev_enabled(dev
))
4137 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4138 if (ata_class_enabled(new_class
) &&
4139 new_class
!= ATA_DEV_ATA
&&
4140 new_class
!= ATA_DEV_ATAPI
&&
4141 new_class
!= ATA_DEV_SEMB
) {
4142 ata_dev_printk(dev
, KERN_INFO
, "class mismatch %u != %u\n",
4143 dev
->class, new_class
);
4149 rc
= ata_dev_reread_id(dev
, readid_flags
);
4153 /* configure device according to the new ID */
4154 rc
= ata_dev_configure(dev
);
4158 /* verify n_sectors hasn't changed */
4159 if (dev
->class == ATA_DEV_ATA
&& n_sectors
&&
4160 dev
->n_sectors
!= n_sectors
) {
4161 ata_dev_printk(dev
, KERN_WARNING
, "n_sectors mismatch "
4163 (unsigned long long)n_sectors
,
4164 (unsigned long long)dev
->n_sectors
);
4166 * Something could have caused HPA to be unlocked
4167 * involuntarily. If n_native_sectors hasn't changed
4168 * and the new size matches it, keep the device.
4170 if (dev
->n_native_sectors
== n_native_sectors
&&
4171 dev
->n_sectors
> n_sectors
&&
4172 dev
->n_sectors
== n_native_sectors
) {
4173 ata_dev_printk(dev
, KERN_WARNING
,
4174 "new n_sectors matches native, probably "
4175 "late HPA unlock, continuing\n");
4176 /* keep using the old n_sectors */
4177 dev
->n_sectors
= n_sectors
;
4179 /* restore original n_[native]_sectors and fail */
4180 dev
->n_native_sectors
= n_native_sectors
;
4181 dev
->n_sectors
= n_sectors
;
4190 ata_dev_printk(dev
, KERN_ERR
, "revalidation failed (errno=%d)\n", rc
);
4194 struct ata_blacklist_entry
{
4195 const char *model_num
;
4196 const char *model_rev
;
4197 unsigned long horkage
;
4200 static const struct ata_blacklist_entry ata_device_blacklist
[] = {
4201 /* Devices with DMA related problems under Linux */
4202 { "WDC AC11000H", NULL
, ATA_HORKAGE_NODMA
},
4203 { "WDC AC22100H", NULL
, ATA_HORKAGE_NODMA
},
4204 { "WDC AC32500H", NULL
, ATA_HORKAGE_NODMA
},
4205 { "WDC AC33100H", NULL
, ATA_HORKAGE_NODMA
},
4206 { "WDC AC31600H", NULL
, ATA_HORKAGE_NODMA
},
4207 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA
},
4208 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA
},
4209 { "Compaq CRD-8241B", NULL
, ATA_HORKAGE_NODMA
},
4210 { "CRD-8400B", NULL
, ATA_HORKAGE_NODMA
},
4211 { "CRD-8480B", NULL
, ATA_HORKAGE_NODMA
},
4212 { "CRD-8482B", NULL
, ATA_HORKAGE_NODMA
},
4213 { "CRD-84", NULL
, ATA_HORKAGE_NODMA
},
4214 { "SanDisk SDP3B", NULL
, ATA_HORKAGE_NODMA
},
4215 { "SanDisk SDP3B-64", NULL
, ATA_HORKAGE_NODMA
},
4216 { "SANYO CD-ROM CRD", NULL
, ATA_HORKAGE_NODMA
},
4217 { "HITACHI CDR-8", NULL
, ATA_HORKAGE_NODMA
},
4218 { "HITACHI CDR-8335", NULL
, ATA_HORKAGE_NODMA
},
4219 { "HITACHI CDR-8435", NULL
, ATA_HORKAGE_NODMA
},
4220 { "Toshiba CD-ROM XM-6202B", NULL
, ATA_HORKAGE_NODMA
},
4221 { "TOSHIBA CD-ROM XM-1702BC", NULL
, ATA_HORKAGE_NODMA
},
4222 { "CD-532E-A", NULL
, ATA_HORKAGE_NODMA
},
4223 { "E-IDE CD-ROM CR-840",NULL
, ATA_HORKAGE_NODMA
},
4224 { "CD-ROM Drive/F5A", NULL
, ATA_HORKAGE_NODMA
},
4225 { "WPI CDD-820", NULL
, ATA_HORKAGE_NODMA
},
4226 { "SAMSUNG CD-ROM SC-148C", NULL
, ATA_HORKAGE_NODMA
},
4227 { "SAMSUNG CD-ROM SC", NULL
, ATA_HORKAGE_NODMA
},
4228 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL
,ATA_HORKAGE_NODMA
},
4229 { "_NEC DV5800A", NULL
, ATA_HORKAGE_NODMA
},
4230 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA
},
4231 { "Seagate STT20000A", NULL
, ATA_HORKAGE_NODMA
},
4232 /* Odd clown on sil3726/4726 PMPs */
4233 { "Config Disk", NULL
, ATA_HORKAGE_DISABLE
},
4235 /* Weird ATAPI devices */
4236 { "TORiSAN DVD-ROM DRD-N216", NULL
, ATA_HORKAGE_MAX_SEC_128
},
4237 { "QUANTUM DAT DAT72-000", NULL
, ATA_HORKAGE_ATAPI_MOD16_DMA
},
4239 /* Devices we expect to fail diagnostics */
4241 /* Devices where NCQ should be avoided */
4243 { "WDC WD740ADFD-00", NULL
, ATA_HORKAGE_NONCQ
},
4244 { "WDC WD740ADFD-00NLR1", NULL
, ATA_HORKAGE_NONCQ
, },
4245 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4246 { "FUJITSU MHT2060BH", NULL
, ATA_HORKAGE_NONCQ
},
4248 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ
},
4249 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ
},
4250 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ
},
4251 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ
},
4252 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ
},
4254 /* Seagate NCQ + FLUSH CACHE firmware bug */
4255 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ
|
4256 ATA_HORKAGE_FIRMWARE_WARN
},
4257 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ
|
4258 ATA_HORKAGE_FIRMWARE_WARN
},
4259 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ
|
4260 ATA_HORKAGE_FIRMWARE_WARN
},
4261 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ
|
4262 ATA_HORKAGE_FIRMWARE_WARN
},
4263 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ
|
4264 ATA_HORKAGE_FIRMWARE_WARN
},
4266 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ
|
4267 ATA_HORKAGE_FIRMWARE_WARN
},
4268 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ
|
4269 ATA_HORKAGE_FIRMWARE_WARN
},
4270 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ
|
4271 ATA_HORKAGE_FIRMWARE_WARN
},
4272 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ
|
4273 ATA_HORKAGE_FIRMWARE_WARN
},
4274 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ
|
4275 ATA_HORKAGE_FIRMWARE_WARN
},
4277 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ
|
4278 ATA_HORKAGE_FIRMWARE_WARN
},
4279 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ
|
4280 ATA_HORKAGE_FIRMWARE_WARN
},
4281 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ
|
4282 ATA_HORKAGE_FIRMWARE_WARN
},
4283 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ
|
4284 ATA_HORKAGE_FIRMWARE_WARN
},
4285 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ
|
4286 ATA_HORKAGE_FIRMWARE_WARN
},
4288 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ
|
4289 ATA_HORKAGE_FIRMWARE_WARN
},
4290 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ
|
4291 ATA_HORKAGE_FIRMWARE_WARN
},
4292 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ
|
4293 ATA_HORKAGE_FIRMWARE_WARN
},
4294 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ
|
4295 ATA_HORKAGE_FIRMWARE_WARN
},
4296 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ
|
4297 ATA_HORKAGE_FIRMWARE_WARN
},
4299 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ
|
4300 ATA_HORKAGE_FIRMWARE_WARN
},
4301 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ
|
4302 ATA_HORKAGE_FIRMWARE_WARN
},
4303 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ
|
4304 ATA_HORKAGE_FIRMWARE_WARN
},
4305 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ
|
4306 ATA_HORKAGE_FIRMWARE_WARN
},
4307 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ
|
4308 ATA_HORKAGE_FIRMWARE_WARN
},
4310 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ
|
4311 ATA_HORKAGE_FIRMWARE_WARN
},
4312 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ
|
4313 ATA_HORKAGE_FIRMWARE_WARN
},
4314 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ
|
4315 ATA_HORKAGE_FIRMWARE_WARN
},
4316 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ
|
4317 ATA_HORKAGE_FIRMWARE_WARN
},
4318 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ
|
4319 ATA_HORKAGE_FIRMWARE_WARN
},
4321 /* Blacklist entries taken from Silicon Image 3124/3132
4322 Windows driver .inf file - also several Linux problem reports */
4323 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ
, },
4324 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ
, },
4325 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ
, },
4327 /* devices which puke on READ_NATIVE_MAX */
4328 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA
, },
4329 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA
},
4330 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA
},
4331 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA
},
4333 /* this one allows HPA unlocking but fails IOs on the area */
4334 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA
},
4336 /* Devices which report 1 sector over size HPA */
4337 { "ST340823A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4338 { "ST320413A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4339 { "ST310211A", NULL
, ATA_HORKAGE_HPA_SIZE
, },
4341 /* Devices which get the IVB wrong */
4342 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB
, },
4343 /* Maybe we should just blacklist TSSTcorp... */
4344 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB
, },
4345 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB
, },
4346 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB
, },
4347 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB
, },
4348 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB
, },
4349 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB
, },
4351 /* Devices that do not need bridging limits applied */
4352 { "MTRON MSP-SATA*", NULL
, ATA_HORKAGE_BRIDGE_OK
, },
4354 /* Devices which aren't very happy with higher link speeds */
4355 { "WD My Book", NULL
, ATA_HORKAGE_1_5_GBPS
, },
4358 * Devices which choke on SETXFER. Applies only if both the
4359 * device and controller are SATA.
4361 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER
},
4367 static int strn_pattern_cmp(const char *patt
, const char *name
, int wildchar
)
4373 * check for trailing wildcard: *\0
4375 p
= strchr(patt
, wildchar
);
4376 if (p
&& ((*(p
+ 1)) == 0))
4387 return strncmp(patt
, name
, len
);
4390 static unsigned long ata_dev_blacklisted(const struct ata_device
*dev
)
4392 unsigned char model_num
[ATA_ID_PROD_LEN
+ 1];
4393 unsigned char model_rev
[ATA_ID_FW_REV_LEN
+ 1];
4394 const struct ata_blacklist_entry
*ad
= ata_device_blacklist
;
4396 ata_id_c_string(dev
->id
, model_num
, ATA_ID_PROD
, sizeof(model_num
));
4397 ata_id_c_string(dev
->id
, model_rev
, ATA_ID_FW_REV
, sizeof(model_rev
));
4399 while (ad
->model_num
) {
4400 if (!strn_pattern_cmp(ad
->model_num
, model_num
, '*')) {
4401 if (ad
->model_rev
== NULL
)
4403 if (!strn_pattern_cmp(ad
->model_rev
, model_rev
, '*'))
4411 static int ata_dma_blacklisted(const struct ata_device
*dev
)
4413 /* We don't support polling DMA.
4414 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4415 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4417 if ((dev
->link
->ap
->flags
& ATA_FLAG_PIO_POLLING
) &&
4418 (dev
->flags
& ATA_DFLAG_CDB_INTR
))
4420 return (dev
->horkage
& ATA_HORKAGE_NODMA
) ? 1 : 0;
4424 * ata_is_40wire - check drive side detection
4427 * Perform drive side detection decoding, allowing for device vendors
4428 * who can't follow the documentation.
4431 static int ata_is_40wire(struct ata_device
*dev
)
4433 if (dev
->horkage
& ATA_HORKAGE_IVB
)
4434 return ata_drive_40wire_relaxed(dev
->id
);
4435 return ata_drive_40wire(dev
->id
);
4439 * cable_is_40wire - 40/80/SATA decider
4440 * @ap: port to consider
4442 * This function encapsulates the policy for speed management
4443 * in one place. At the moment we don't cache the result but
4444 * there is a good case for setting ap->cbl to the result when
4445 * we are called with unknown cables (and figuring out if it
4446 * impacts hotplug at all).
4448 * Return 1 if the cable appears to be 40 wire.
4451 static int cable_is_40wire(struct ata_port
*ap
)
4453 struct ata_link
*link
;
4454 struct ata_device
*dev
;
4456 /* If the controller thinks we are 40 wire, we are. */
4457 if (ap
->cbl
== ATA_CBL_PATA40
)
4460 /* If the controller thinks we are 80 wire, we are. */
4461 if (ap
->cbl
== ATA_CBL_PATA80
|| ap
->cbl
== ATA_CBL_SATA
)
4464 /* If the system is known to be 40 wire short cable (eg
4465 * laptop), then we allow 80 wire modes even if the drive
4468 if (ap
->cbl
== ATA_CBL_PATA40_SHORT
)
4471 /* If the controller doesn't know, we scan.
4473 * Note: We look for all 40 wire detects at this point. Any
4474 * 80 wire detect is taken to be 80 wire cable because
4475 * - in many setups only the one drive (slave if present) will
4476 * give a valid detect
4477 * - if you have a non detect capable drive you don't want it
4478 * to colour the choice
4480 ata_for_each_link(link
, ap
, EDGE
) {
4481 ata_for_each_dev(dev
, link
, ENABLED
) {
4482 if (!ata_is_40wire(dev
))
4490 * ata_dev_xfermask - Compute supported xfermask of the given device
4491 * @dev: Device to compute xfermask for
4493 * Compute supported xfermask of @dev and store it in
4494 * dev->*_mask. This function is responsible for applying all
4495 * known limits including host controller limits, device
4501 static void ata_dev_xfermask(struct ata_device
*dev
)
4503 struct ata_link
*link
= dev
->link
;
4504 struct ata_port
*ap
= link
->ap
;
4505 struct ata_host
*host
= ap
->host
;
4506 unsigned long xfer_mask
;
4508 /* controller modes available */
4509 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
,
4510 ap
->mwdma_mask
, ap
->udma_mask
);
4512 /* drive modes available */
4513 xfer_mask
&= ata_pack_xfermask(dev
->pio_mask
,
4514 dev
->mwdma_mask
, dev
->udma_mask
);
4515 xfer_mask
&= ata_id_xfermask(dev
->id
);
4518 * CFA Advanced TrueIDE timings are not allowed on a shared
4521 if (ata_dev_pair(dev
)) {
4522 /* No PIO5 or PIO6 */
4523 xfer_mask
&= ~(0x03 << (ATA_SHIFT_PIO
+ 5));
4524 /* No MWDMA3 or MWDMA 4 */
4525 xfer_mask
&= ~(0x03 << (ATA_SHIFT_MWDMA
+ 3));
4528 if (ata_dma_blacklisted(dev
)) {
4529 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4530 ata_dev_printk(dev
, KERN_WARNING
,
4531 "device is on DMA blacklist, disabling DMA\n");
4534 if ((host
->flags
& ATA_HOST_SIMPLEX
) &&
4535 host
->simplex_claimed
&& host
->simplex_claimed
!= ap
) {
4536 xfer_mask
&= ~(ATA_MASK_MWDMA
| ATA_MASK_UDMA
);
4537 ata_dev_printk(dev
, KERN_WARNING
, "simplex DMA is claimed by "
4538 "other device, disabling DMA\n");
4541 if (ap
->flags
& ATA_FLAG_NO_IORDY
)
4542 xfer_mask
&= ata_pio_mask_no_iordy(dev
);
4544 if (ap
->ops
->mode_filter
)
4545 xfer_mask
= ap
->ops
->mode_filter(dev
, xfer_mask
);
4547 /* Apply cable rule here. Don't apply it early because when
4548 * we handle hot plug the cable type can itself change.
4549 * Check this last so that we know if the transfer rate was
4550 * solely limited by the cable.
4551 * Unknown or 80 wire cables reported host side are checked
4552 * drive side as well. Cases where we know a 40wire cable
4553 * is used safely for 80 are not checked here.
4555 if (xfer_mask
& (0xF8 << ATA_SHIFT_UDMA
))
4556 /* UDMA/44 or higher would be available */
4557 if (cable_is_40wire(ap
)) {
4558 ata_dev_printk(dev
, KERN_WARNING
,
4559 "limited to UDMA/33 due to 40-wire cable\n");
4560 xfer_mask
&= ~(0xF8 << ATA_SHIFT_UDMA
);
4563 ata_unpack_xfermask(xfer_mask
, &dev
->pio_mask
,
4564 &dev
->mwdma_mask
, &dev
->udma_mask
);
4568 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4569 * @dev: Device to which command will be sent
4571 * Issue SET FEATURES - XFER MODE command to device @dev
4575 * PCI/etc. bus probe sem.
4578 * 0 on success, AC_ERR_* mask otherwise.
4581 static unsigned int ata_dev_set_xfermode(struct ata_device
*dev
)
4583 struct ata_taskfile tf
;
4584 unsigned int err_mask
;
4586 /* set up set-features taskfile */
4587 DPRINTK("set features - xfer mode\n");
4589 /* Some controllers and ATAPI devices show flaky interrupt
4590 * behavior after setting xfer mode. Use polling instead.
4592 ata_tf_init(dev
, &tf
);
4593 tf
.command
= ATA_CMD_SET_FEATURES
;
4594 tf
.feature
= SETFEATURES_XFER
;
4595 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
| ATA_TFLAG_POLLING
;
4596 tf
.protocol
= ATA_PROT_NODATA
;
4597 /* If we are using IORDY we must send the mode setting command */
4598 if (ata_pio_need_iordy(dev
))
4599 tf
.nsect
= dev
->xfer_mode
;
4600 /* If the device has IORDY and the controller does not - turn it off */
4601 else if (ata_id_has_iordy(dev
->id
))
4603 else /* In the ancient relic department - skip all of this */
4606 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4608 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4612 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4613 * @dev: Device to which command will be sent
4614 * @enable: Whether to enable or disable the feature
4615 * @feature: The sector count represents the feature to set
4617 * Issue SET FEATURES - SATA FEATURES command to device @dev
4618 * on port @ap with sector count
4621 * PCI/etc. bus probe sem.
4624 * 0 on success, AC_ERR_* mask otherwise.
4626 static unsigned int ata_dev_set_feature(struct ata_device
*dev
, u8 enable
,
4629 struct ata_taskfile tf
;
4630 unsigned int err_mask
;
4632 /* set up set-features taskfile */
4633 DPRINTK("set features - SATA features\n");
4635 ata_tf_init(dev
, &tf
);
4636 tf
.command
= ATA_CMD_SET_FEATURES
;
4637 tf
.feature
= enable
;
4638 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4639 tf
.protocol
= ATA_PROT_NODATA
;
4642 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4644 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4649 * ata_dev_init_params - Issue INIT DEV PARAMS command
4650 * @dev: Device to which command will be sent
4651 * @heads: Number of heads (taskfile parameter)
4652 * @sectors: Number of sectors (taskfile parameter)
4655 * Kernel thread context (may sleep)
4658 * 0 on success, AC_ERR_* mask otherwise.
4660 static unsigned int ata_dev_init_params(struct ata_device
*dev
,
4661 u16 heads
, u16 sectors
)
4663 struct ata_taskfile tf
;
4664 unsigned int err_mask
;
4666 /* Number of sectors per track 1-255. Number of heads 1-16 */
4667 if (sectors
< 1 || sectors
> 255 || heads
< 1 || heads
> 16)
4668 return AC_ERR_INVALID
;
4670 /* set up init dev params taskfile */
4671 DPRINTK("init dev params \n");
4673 ata_tf_init(dev
, &tf
);
4674 tf
.command
= ATA_CMD_INIT_DEV_PARAMS
;
4675 tf
.flags
|= ATA_TFLAG_ISADDR
| ATA_TFLAG_DEVICE
;
4676 tf
.protocol
= ATA_PROT_NODATA
;
4678 tf
.device
|= (heads
- 1) & 0x0f; /* max head = num. of heads - 1 */
4680 err_mask
= ata_exec_internal(dev
, &tf
, NULL
, DMA_NONE
, NULL
, 0, 0);
4681 /* A clean abort indicates an original or just out of spec drive
4682 and we should continue as we issue the setup based on the
4683 drive reported working geometry */
4684 if (err_mask
== AC_ERR_DEV
&& (tf
.feature
& ATA_ABORTED
))
4687 DPRINTK("EXIT, err_mask=%x\n", err_mask
);
4692 * ata_sg_clean - Unmap DMA memory associated with command
4693 * @qc: Command containing DMA memory to be released
4695 * Unmap all mapped DMA memory associated with this command.
4698 * spin_lock_irqsave(host lock)
4700 void ata_sg_clean(struct ata_queued_cmd
*qc
)
4702 struct ata_port
*ap
= qc
->ap
;
4703 struct scatterlist
*sg
= qc
->sg
;
4704 int dir
= qc
->dma_dir
;
4706 WARN_ON_ONCE(sg
== NULL
);
4708 VPRINTK("unmapping %u sg elements\n", qc
->n_elem
);
4711 dma_unmap_sg(ap
->dev
, sg
, qc
->orig_n_elem
, dir
);
4713 qc
->flags
&= ~ATA_QCFLAG_DMAMAP
;
4718 * atapi_check_dma - Check whether ATAPI DMA can be supported
4719 * @qc: Metadata associated with taskfile to check
4721 * Allow low-level driver to filter ATA PACKET commands, returning
4722 * a status indicating whether or not it is OK to use DMA for the
4723 * supplied PACKET command.
4726 * spin_lock_irqsave(host lock)
4728 * RETURNS: 0 when ATAPI DMA can be used
4731 int atapi_check_dma(struct ata_queued_cmd
*qc
)
4733 struct ata_port
*ap
= qc
->ap
;
4735 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4736 * few ATAPI devices choke on such DMA requests.
4738 if (!(qc
->dev
->horkage
& ATA_HORKAGE_ATAPI_MOD16_DMA
) &&
4739 unlikely(qc
->nbytes
& 15))
4742 if (ap
->ops
->check_atapi_dma
)
4743 return ap
->ops
->check_atapi_dma(qc
);
4749 * ata_std_qc_defer - Check whether a qc needs to be deferred
4750 * @qc: ATA command in question
4752 * Non-NCQ commands cannot run with any other command, NCQ or
4753 * not. As upper layer only knows the queue depth, we are
4754 * responsible for maintaining exclusion. This function checks
4755 * whether a new command @qc can be issued.
4758 * spin_lock_irqsave(host lock)
4761 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4763 int ata_std_qc_defer(struct ata_queued_cmd
*qc
)
4765 struct ata_link
*link
= qc
->dev
->link
;
4767 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4768 if (!ata_tag_valid(link
->active_tag
))
4771 if (!ata_tag_valid(link
->active_tag
) && !link
->sactive
)
4775 return ATA_DEFER_LINK
;
4778 void ata_noop_qc_prep(struct ata_queued_cmd
*qc
) { }
4781 * ata_sg_init - Associate command with scatter-gather table.
4782 * @qc: Command to be associated
4783 * @sg: Scatter-gather table.
4784 * @n_elem: Number of elements in s/g table.
4786 * Initialize the data-related elements of queued_cmd @qc
4787 * to point to a scatter-gather table @sg, containing @n_elem
4791 * spin_lock_irqsave(host lock)
4793 void ata_sg_init(struct ata_queued_cmd
*qc
, struct scatterlist
*sg
,
4794 unsigned int n_elem
)
4797 qc
->n_elem
= n_elem
;
4802 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4803 * @qc: Command with scatter-gather table to be mapped.
4805 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4808 * spin_lock_irqsave(host lock)
4811 * Zero on success, negative on error.
4814 static int ata_sg_setup(struct ata_queued_cmd
*qc
)
4816 struct ata_port
*ap
= qc
->ap
;
4817 unsigned int n_elem
;
4819 VPRINTK("ENTER, ata%u\n", ap
->print_id
);
4821 n_elem
= dma_map_sg(ap
->dev
, qc
->sg
, qc
->n_elem
, qc
->dma_dir
);
4825 DPRINTK("%d sg elements mapped\n", n_elem
);
4826 qc
->orig_n_elem
= qc
->n_elem
;
4827 qc
->n_elem
= n_elem
;
4828 qc
->flags
|= ATA_QCFLAG_DMAMAP
;
4834 * swap_buf_le16 - swap halves of 16-bit words in place
4835 * @buf: Buffer to swap
4836 * @buf_words: Number of 16-bit words in buffer.
4838 * Swap halves of 16-bit words if needed to convert from
4839 * little-endian byte order to native cpu byte order, or
4843 * Inherited from caller.
4845 void swap_buf_le16(u16
*buf
, unsigned int buf_words
)
4850 for (i
= 0; i
< buf_words
; i
++)
4851 buf
[i
] = le16_to_cpu(buf
[i
]);
4852 #endif /* __BIG_ENDIAN */
4856 * ata_qc_new - Request an available ATA command, for queueing
4863 static struct ata_queued_cmd
*ata_qc_new(struct ata_port
*ap
)
4865 struct ata_queued_cmd
*qc
= NULL
;
4868 /* no command while frozen */
4869 if (unlikely(ap
->pflags
& ATA_PFLAG_FROZEN
))
4872 /* the last tag is reserved for internal command. */
4873 for (i
= 0; i
< ATA_MAX_QUEUE
- 1; i
++)
4874 if (!test_and_set_bit(i
, &ap
->qc_allocated
)) {
4875 qc
= __ata_qc_from_tag(ap
, i
);
4886 * ata_qc_new_init - Request an available ATA command, and initialize it
4887 * @dev: Device from whom we request an available command structure
4893 struct ata_queued_cmd
*ata_qc_new_init(struct ata_device
*dev
)
4895 struct ata_port
*ap
= dev
->link
->ap
;
4896 struct ata_queued_cmd
*qc
;
4898 qc
= ata_qc_new(ap
);
4911 * ata_qc_free - free unused ata_queued_cmd
4912 * @qc: Command to complete
4914 * Designed to free unused ata_queued_cmd object
4915 * in case something prevents using it.
4918 * spin_lock_irqsave(host lock)
4920 void ata_qc_free(struct ata_queued_cmd
*qc
)
4922 struct ata_port
*ap
= qc
->ap
;
4925 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4929 if (likely(ata_tag_valid(tag
))) {
4930 qc
->tag
= ATA_TAG_POISON
;
4931 clear_bit(tag
, &ap
->qc_allocated
);
4935 void __ata_qc_complete(struct ata_queued_cmd
*qc
)
4937 struct ata_port
*ap
= qc
->ap
;
4938 struct ata_link
*link
= qc
->dev
->link
;
4940 WARN_ON_ONCE(qc
== NULL
); /* ata_qc_from_tag _might_ return NULL */
4941 WARN_ON_ONCE(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
4943 if (likely(qc
->flags
& ATA_QCFLAG_DMAMAP
))
4946 /* command should be marked inactive atomically with qc completion */
4947 if (qc
->tf
.protocol
== ATA_PROT_NCQ
) {
4948 link
->sactive
&= ~(1 << qc
->tag
);
4950 ap
->nr_active_links
--;
4952 link
->active_tag
= ATA_TAG_POISON
;
4953 ap
->nr_active_links
--;
4956 /* clear exclusive status */
4957 if (unlikely(qc
->flags
& ATA_QCFLAG_CLEAR_EXCL
&&
4958 ap
->excl_link
== link
))
4959 ap
->excl_link
= NULL
;
4961 /* atapi: mark qc as inactive to prevent the interrupt handler
4962 * from completing the command twice later, before the error handler
4963 * is called. (when rc != 0 and atapi request sense is needed)
4965 qc
->flags
&= ~ATA_QCFLAG_ACTIVE
;
4966 ap
->qc_active
&= ~(1 << qc
->tag
);
4968 /* call completion callback */
4969 qc
->complete_fn(qc
);
4972 static void fill_result_tf(struct ata_queued_cmd
*qc
)
4974 struct ata_port
*ap
= qc
->ap
;
4976 qc
->result_tf
.flags
= qc
->tf
.flags
;
4977 ap
->ops
->qc_fill_rtf(qc
);
4980 static void ata_verify_xfer(struct ata_queued_cmd
*qc
)
4982 struct ata_device
*dev
= qc
->dev
;
4984 if (ata_tag_internal(qc
->tag
))
4987 if (ata_is_nodata(qc
->tf
.protocol
))
4990 if ((dev
->mwdma_mask
|| dev
->udma_mask
) && ata_is_pio(qc
->tf
.protocol
))
4993 dev
->flags
&= ~ATA_DFLAG_DUBIOUS_XFER
;
4997 * ata_qc_complete - Complete an active ATA command
4998 * @qc: Command to complete
5000 * Indicate to the mid and upper layers that an ATA
5001 * command has completed, with either an ok or not-ok status.
5004 * spin_lock_irqsave(host lock)
5006 void ata_qc_complete(struct ata_queued_cmd
*qc
)
5008 struct ata_port
*ap
= qc
->ap
;
5010 /* XXX: New EH and old EH use different mechanisms to
5011 * synchronize EH with regular execution path.
5013 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
5014 * Normal execution path is responsible for not accessing a
5015 * failed qc. libata core enforces the rule by returning NULL
5016 * from ata_qc_from_tag() for failed qcs.
5018 * Old EH depends on ata_qc_complete() nullifying completion
5019 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
5020 * not synchronize with interrupt handler. Only PIO task is
5023 if (ap
->ops
->error_handler
) {
5024 struct ata_device
*dev
= qc
->dev
;
5025 struct ata_eh_info
*ehi
= &dev
->link
->eh_info
;
5027 if (unlikely(qc
->err_mask
))
5028 qc
->flags
|= ATA_QCFLAG_FAILED
;
5030 if (unlikely(qc
->flags
& ATA_QCFLAG_FAILED
)) {
5031 if (!ata_tag_internal(qc
->tag
)) {
5032 /* always fill result TF for failed qc */
5034 ata_qc_schedule_eh(qc
);
5039 WARN_ON_ONCE(ap
->pflags
& ATA_PFLAG_FROZEN
);
5041 /* read result TF if requested */
5042 if (qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5045 /* Some commands need post-processing after successful
5048 switch (qc
->tf
.command
) {
5049 case ATA_CMD_SET_FEATURES
:
5050 if (qc
->tf
.feature
!= SETFEATURES_WC_ON
&&
5051 qc
->tf
.feature
!= SETFEATURES_WC_OFF
)
5054 case ATA_CMD_INIT_DEV_PARAMS
: /* CHS translation changed */
5055 case ATA_CMD_SET_MULTI
: /* multi_count changed */
5056 /* revalidate device */
5057 ehi
->dev_action
[dev
->devno
] |= ATA_EH_REVALIDATE
;
5058 ata_port_schedule_eh(ap
);
5062 dev
->flags
|= ATA_DFLAG_SLEEPING
;
5066 if (unlikely(dev
->flags
& ATA_DFLAG_DUBIOUS_XFER
))
5067 ata_verify_xfer(qc
);
5069 __ata_qc_complete(qc
);
5071 if (qc
->flags
& ATA_QCFLAG_EH_SCHEDULED
)
5074 /* read result TF if failed or requested */
5075 if (qc
->err_mask
|| qc
->flags
& ATA_QCFLAG_RESULT_TF
)
5078 __ata_qc_complete(qc
);
5083 * ata_qc_complete_multiple - Complete multiple qcs successfully
5084 * @ap: port in question
5085 * @qc_active: new qc_active mask
5087 * Complete in-flight commands. This functions is meant to be
5088 * called from low-level driver's interrupt routine to complete
5089 * requests normally. ap->qc_active and @qc_active is compared
5090 * and commands are completed accordingly.
5093 * spin_lock_irqsave(host lock)
5096 * Number of completed commands on success, -errno otherwise.
5098 int ata_qc_complete_multiple(struct ata_port
*ap
, u32 qc_active
)
5103 done_mask
= ap
->qc_active
^ qc_active
;
5105 if (unlikely(done_mask
& qc_active
)) {
5106 ata_port_printk(ap
, KERN_ERR
, "illegal qc_active transition "
5107 "(%08x->%08x)\n", ap
->qc_active
, qc_active
);
5112 struct ata_queued_cmd
*qc
;
5113 unsigned int tag
= __ffs(done_mask
);
5115 qc
= ata_qc_from_tag(ap
, tag
);
5117 ata_qc_complete(qc
);
5120 done_mask
&= ~(1 << tag
);
5127 * ata_qc_issue - issue taskfile to device
5128 * @qc: command to issue to device
5130 * Prepare an ATA command to submission to device.
5131 * This includes mapping the data into a DMA-able
5132 * area, filling in the S/G table, and finally
5133 * writing the taskfile to hardware, starting the command.
5136 * spin_lock_irqsave(host lock)
5138 void ata_qc_issue(struct ata_queued_cmd
*qc
)
5140 struct ata_port
*ap
= qc
->ap
;
5141 struct ata_link
*link
= qc
->dev
->link
;
5142 u8 prot
= qc
->tf
.protocol
;
5144 /* Make sure only one non-NCQ command is outstanding. The
5145 * check is skipped for old EH because it reuses active qc to
5146 * request ATAPI sense.
5148 WARN_ON_ONCE(ap
->ops
->error_handler
&& ata_tag_valid(link
->active_tag
));
5150 if (ata_is_ncq(prot
)) {
5151 WARN_ON_ONCE(link
->sactive
& (1 << qc
->tag
));
5154 ap
->nr_active_links
++;
5155 link
->sactive
|= 1 << qc
->tag
;
5157 WARN_ON_ONCE(link
->sactive
);
5159 ap
->nr_active_links
++;
5160 link
->active_tag
= qc
->tag
;
5163 qc
->flags
|= ATA_QCFLAG_ACTIVE
;
5164 ap
->qc_active
|= 1 << qc
->tag
;
5166 /* We guarantee to LLDs that they will have at least one
5167 * non-zero sg if the command is a data command.
5169 BUG_ON(ata_is_data(prot
) && (!qc
->sg
|| !qc
->n_elem
|| !qc
->nbytes
));
5171 if (ata_is_dma(prot
) || (ata_is_pio(prot
) &&
5172 (ap
->flags
& ATA_FLAG_PIO_DMA
)))
5173 if (ata_sg_setup(qc
))
5176 /* if device is sleeping, schedule reset and abort the link */
5177 if (unlikely(qc
->dev
->flags
& ATA_DFLAG_SLEEPING
)) {
5178 link
->eh_info
.action
|= ATA_EH_RESET
;
5179 ata_ehi_push_desc(&link
->eh_info
, "waking up from sleep");
5180 ata_link_abort(link
);
5184 ap
->ops
->qc_prep(qc
);
5186 qc
->err_mask
|= ap
->ops
->qc_issue(qc
);
5187 if (unlikely(qc
->err_mask
))
5192 qc
->err_mask
|= AC_ERR_SYSTEM
;
5194 ata_qc_complete(qc
);
5198 * sata_scr_valid - test whether SCRs are accessible
5199 * @link: ATA link to test SCR accessibility for
5201 * Test whether SCRs are accessible for @link.
5207 * 1 if SCRs are accessible, 0 otherwise.
5209 int sata_scr_valid(struct ata_link
*link
)
5211 struct ata_port
*ap
= link
->ap
;
5213 return (ap
->flags
& ATA_FLAG_SATA
) && ap
->ops
->scr_read
;
5217 * sata_scr_read - read SCR register of the specified port
5218 * @link: ATA link to read SCR for
5220 * @val: Place to store read value
5222 * Read SCR register @reg of @link into *@val. This function is
5223 * guaranteed to succeed if @link is ap->link, the cable type of
5224 * the port is SATA and the port implements ->scr_read.
5227 * None if @link is ap->link. Kernel thread context otherwise.
5230 * 0 on success, negative errno on failure.
5232 int sata_scr_read(struct ata_link
*link
, int reg
, u32
*val
)
5234 if (ata_is_host_link(link
)) {
5235 if (sata_scr_valid(link
))
5236 return link
->ap
->ops
->scr_read(link
, reg
, val
);
5240 return sata_pmp_scr_read(link
, reg
, val
);
5244 * sata_scr_write - write SCR register of the specified port
5245 * @link: ATA link to write SCR for
5246 * @reg: SCR to write
5247 * @val: value to write
5249 * Write @val to SCR register @reg of @link. This function is
5250 * guaranteed to succeed if @link is ap->link, the cable type of
5251 * the port is SATA and the port implements ->scr_read.
5254 * None if @link is ap->link. Kernel thread context otherwise.
5257 * 0 on success, negative errno on failure.
5259 int sata_scr_write(struct ata_link
*link
, int reg
, u32 val
)
5261 if (ata_is_host_link(link
)) {
5262 if (sata_scr_valid(link
))
5263 return link
->ap
->ops
->scr_write(link
, reg
, val
);
5267 return sata_pmp_scr_write(link
, reg
, val
);
5271 * sata_scr_write_flush - write SCR register of the specified port and flush
5272 * @link: ATA link to write SCR for
5273 * @reg: SCR to write
5274 * @val: value to write
5276 * This function is identical to sata_scr_write() except that this
5277 * function performs flush after writing to the register.
5280 * None if @link is ap->link. Kernel thread context otherwise.
5283 * 0 on success, negative errno on failure.
5285 int sata_scr_write_flush(struct ata_link
*link
, int reg
, u32 val
)
5287 if (ata_is_host_link(link
)) {
5290 if (sata_scr_valid(link
)) {
5291 rc
= link
->ap
->ops
->scr_write(link
, reg
, val
);
5293 rc
= link
->ap
->ops
->scr_read(link
, reg
, &val
);
5299 return sata_pmp_scr_write(link
, reg
, val
);
5303 * ata_phys_link_online - test whether the given link is online
5304 * @link: ATA link to test
5306 * Test whether @link is online. Note that this function returns
5307 * 0 if online status of @link cannot be obtained, so
5308 * ata_link_online(link) != !ata_link_offline(link).
5314 * True if the port online status is available and online.
5316 bool ata_phys_link_online(struct ata_link
*link
)
5320 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5321 ata_sstatus_online(sstatus
))
5327 * ata_phys_link_offline - test whether the given link is offline
5328 * @link: ATA link to test
5330 * Test whether @link is offline. Note that this function
5331 * returns 0 if offline status of @link cannot be obtained, so
5332 * ata_link_online(link) != !ata_link_offline(link).
5338 * True if the port offline status is available and offline.
5340 bool ata_phys_link_offline(struct ata_link
*link
)
5344 if (sata_scr_read(link
, SCR_STATUS
, &sstatus
) == 0 &&
5345 !ata_sstatus_online(sstatus
))
5351 * ata_link_online - test whether the given link is online
5352 * @link: ATA link to test
5354 * Test whether @link is online. This is identical to
5355 * ata_phys_link_online() when there's no slave link. When
5356 * there's a slave link, this function should only be called on
5357 * the master link and will return true if any of M/S links is
5364 * True if the port online status is available and online.
5366 bool ata_link_online(struct ata_link
*link
)
5368 struct ata_link
*slave
= link
->ap
->slave_link
;
5370 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5372 return ata_phys_link_online(link
) ||
5373 (slave
&& ata_phys_link_online(slave
));
5377 * ata_link_offline - test whether the given link is offline
5378 * @link: ATA link to test
5380 * Test whether @link is offline. This is identical to
5381 * ata_phys_link_offline() when there's no slave link. When
5382 * there's a slave link, this function should only be called on
5383 * the master link and will return true if both M/S links are
5390 * True if the port offline status is available and offline.
5392 bool ata_link_offline(struct ata_link
*link
)
5394 struct ata_link
*slave
= link
->ap
->slave_link
;
5396 WARN_ON(link
== slave
); /* shouldn't be called on slave link */
5398 return ata_phys_link_offline(link
) &&
5399 (!slave
|| ata_phys_link_offline(slave
));
5403 static int ata_host_request_pm(struct ata_host
*host
, pm_message_t mesg
,
5404 unsigned int action
, unsigned int ehi_flags
,
5407 unsigned long flags
;
5410 for (i
= 0; i
< host
->n_ports
; i
++) {
5411 struct ata_port
*ap
= host
->ports
[i
];
5412 struct ata_link
*link
;
5414 /* Previous resume operation might still be in
5415 * progress. Wait for PM_PENDING to clear.
5417 if (ap
->pflags
& ATA_PFLAG_PM_PENDING
) {
5418 ata_port_wait_eh(ap
);
5419 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5422 /* request PM ops to EH */
5423 spin_lock_irqsave(ap
->lock
, flags
);
5428 ap
->pm_result
= &rc
;
5431 ap
->pflags
|= ATA_PFLAG_PM_PENDING
;
5432 ata_for_each_link(link
, ap
, HOST_FIRST
) {
5433 link
->eh_info
.action
|= action
;
5434 link
->eh_info
.flags
|= ehi_flags
;
5437 ata_port_schedule_eh(ap
);
5439 spin_unlock_irqrestore(ap
->lock
, flags
);
5441 /* wait and check result */
5443 ata_port_wait_eh(ap
);
5444 WARN_ON(ap
->pflags
& ATA_PFLAG_PM_PENDING
);
5454 * ata_host_suspend - suspend host
5455 * @host: host to suspend
5458 * Suspend @host. Actual operation is performed by EH. This
5459 * function requests EH to perform PM operations and waits for EH
5463 * Kernel thread context (may sleep).
5466 * 0 on success, -errno on failure.
5468 int ata_host_suspend(struct ata_host
*host
, pm_message_t mesg
)
5473 * disable link pm on all ports before requesting
5476 ata_lpm_enable(host
);
5478 rc
= ata_host_request_pm(host
, mesg
, 0, ATA_EHI_QUIET
, 1);
5480 host
->dev
->power
.power_state
= mesg
;
5485 * ata_host_resume - resume host
5486 * @host: host to resume
5488 * Resume @host. Actual operation is performed by EH. This
5489 * function requests EH to perform PM operations and returns.
5490 * Note that all resume operations are performed parallely.
5493 * Kernel thread context (may sleep).
5495 void ata_host_resume(struct ata_host
*host
)
5497 ata_host_request_pm(host
, PMSG_ON
, ATA_EH_RESET
,
5498 ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
, 0);
5499 host
->dev
->power
.power_state
= PMSG_ON
;
5501 /* reenable link pm */
5502 ata_lpm_disable(host
);
5507 * ata_port_start - Set port up for dma.
5508 * @ap: Port to initialize
5510 * Called just after data structures for each port are
5511 * initialized. Allocates space for PRD table.
5513 * May be used as the port_start() entry in ata_port_operations.
5516 * Inherited from caller.
5518 int ata_port_start(struct ata_port
*ap
)
5520 struct device
*dev
= ap
->dev
;
5522 ap
->prd
= dmam_alloc_coherent(dev
, ATA_PRD_TBL_SZ
, &ap
->prd_dma
,
5531 * ata_dev_init - Initialize an ata_device structure
5532 * @dev: Device structure to initialize
5534 * Initialize @dev in preparation for probing.
5537 * Inherited from caller.
5539 void ata_dev_init(struct ata_device
*dev
)
5541 struct ata_link
*link
= ata_dev_phys_link(dev
);
5542 struct ata_port
*ap
= link
->ap
;
5543 unsigned long flags
;
5545 /* SATA spd limit is bound to the attached device, reset together */
5546 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5549 /* High bits of dev->flags are used to record warm plug
5550 * requests which occur asynchronously. Synchronize using
5553 spin_lock_irqsave(ap
->lock
, flags
);
5554 dev
->flags
&= ~ATA_DFLAG_INIT_MASK
;
5556 spin_unlock_irqrestore(ap
->lock
, flags
);
5558 memset((void *)dev
+ ATA_DEVICE_CLEAR_BEGIN
, 0,
5559 ATA_DEVICE_CLEAR_END
- ATA_DEVICE_CLEAR_BEGIN
);
5560 dev
->pio_mask
= UINT_MAX
;
5561 dev
->mwdma_mask
= UINT_MAX
;
5562 dev
->udma_mask
= UINT_MAX
;
5566 * ata_link_init - Initialize an ata_link structure
5567 * @ap: ATA port link is attached to
5568 * @link: Link structure to initialize
5569 * @pmp: Port multiplier port number
5574 * Kernel thread context (may sleep)
5576 void ata_link_init(struct ata_port
*ap
, struct ata_link
*link
, int pmp
)
5580 /* clear everything except for devices */
5581 memset(link
, 0, offsetof(struct ata_link
, device
[0]));
5585 link
->active_tag
= ATA_TAG_POISON
;
5586 link
->hw_sata_spd_limit
= UINT_MAX
;
5588 /* can't use iterator, ap isn't initialized yet */
5589 for (i
= 0; i
< ATA_MAX_DEVICES
; i
++) {
5590 struct ata_device
*dev
= &link
->device
[i
];
5593 dev
->devno
= dev
- link
->device
;
5599 * sata_link_init_spd - Initialize link->sata_spd_limit
5600 * @link: Link to configure sata_spd_limit for
5602 * Initialize @link->[hw_]sata_spd_limit to the currently
5606 * Kernel thread context (may sleep).
5609 * 0 on success, -errno on failure.
5611 int sata_link_init_spd(struct ata_link
*link
)
5616 rc
= sata_scr_read(link
, SCR_CONTROL
, &link
->saved_scontrol
);
5620 spd
= (link
->saved_scontrol
>> 4) & 0xf;
5622 link
->hw_sata_spd_limit
&= (1 << spd
) - 1;
5624 ata_force_link_limits(link
);
5626 link
->sata_spd_limit
= link
->hw_sata_spd_limit
;
5632 * ata_port_alloc - allocate and initialize basic ATA port resources
5633 * @host: ATA host this allocated port belongs to
5635 * Allocate and initialize basic ATA port resources.
5638 * Allocate ATA port on success, NULL on failure.
5641 * Inherited from calling layer (may sleep).
5643 struct ata_port
*ata_port_alloc(struct ata_host
*host
)
5645 struct ata_port
*ap
;
5649 ap
= kzalloc(sizeof(*ap
), GFP_KERNEL
);
5653 ap
->pflags
|= ATA_PFLAG_INITIALIZING
;
5654 ap
->lock
= &host
->lock
;
5655 ap
->flags
= ATA_FLAG_DISABLED
;
5657 ap
->ctl
= ATA_DEVCTL_OBS
;
5659 ap
->dev
= host
->dev
;
5660 ap
->last_ctl
= 0xFF;
5662 #if defined(ATA_VERBOSE_DEBUG)
5663 /* turn on all debugging levels */
5664 ap
->msg_enable
= 0x00FF;
5665 #elif defined(ATA_DEBUG)
5666 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_INFO
| ATA_MSG_CTL
| ATA_MSG_WARN
| ATA_MSG_ERR
;
5668 ap
->msg_enable
= ATA_MSG_DRV
| ATA_MSG_ERR
| ATA_MSG_WARN
;
5671 #ifdef CONFIG_ATA_SFF
5672 INIT_DELAYED_WORK(&ap
->port_task
, ata_pio_task
);
5674 INIT_DELAYED_WORK(&ap
->port_task
, NULL
);
5676 INIT_DELAYED_WORK(&ap
->hotplug_task
, ata_scsi_hotplug
);
5677 INIT_WORK(&ap
->scsi_rescan_task
, ata_scsi_dev_rescan
);
5678 INIT_LIST_HEAD(&ap
->eh_done_q
);
5679 init_waitqueue_head(&ap
->eh_wait_q
);
5680 init_completion(&ap
->park_req_pending
);
5681 init_timer_deferrable(&ap
->fastdrain_timer
);
5682 ap
->fastdrain_timer
.function
= ata_eh_fastdrain_timerfn
;
5683 ap
->fastdrain_timer
.data
= (unsigned long)ap
;
5685 ap
->cbl
= ATA_CBL_NONE
;
5687 ata_link_init(ap
, &ap
->link
, 0);
5690 ap
->stats
.unhandled_irq
= 1;
5691 ap
->stats
.idle_irq
= 1;
5696 static void ata_host_release(struct device
*gendev
, void *res
)
5698 struct ata_host
*host
= dev_get_drvdata(gendev
);
5701 for (i
= 0; i
< host
->n_ports
; i
++) {
5702 struct ata_port
*ap
= host
->ports
[i
];
5708 scsi_host_put(ap
->scsi_host
);
5710 kfree(ap
->pmp_link
);
5711 kfree(ap
->slave_link
);
5713 host
->ports
[i
] = NULL
;
5716 dev_set_drvdata(gendev
, NULL
);
5720 * ata_host_alloc - allocate and init basic ATA host resources
5721 * @dev: generic device this host is associated with
5722 * @max_ports: maximum number of ATA ports associated with this host
5724 * Allocate and initialize basic ATA host resources. LLD calls
5725 * this function to allocate a host, initializes it fully and
5726 * attaches it using ata_host_register().
5728 * @max_ports ports are allocated and host->n_ports is
5729 * initialized to @max_ports. The caller is allowed to decrease
5730 * host->n_ports before calling ata_host_register(). The unused
5731 * ports will be automatically freed on registration.
5734 * Allocate ATA host on success, NULL on failure.
5737 * Inherited from calling layer (may sleep).
5739 struct ata_host
*ata_host_alloc(struct device
*dev
, int max_ports
)
5741 struct ata_host
*host
;
5747 if (!devres_open_group(dev
, NULL
, GFP_KERNEL
))
5750 /* alloc a container for our list of ATA ports (buses) */
5751 sz
= sizeof(struct ata_host
) + (max_ports
+ 1) * sizeof(void *);
5752 /* alloc a container for our list of ATA ports (buses) */
5753 host
= devres_alloc(ata_host_release
, sz
, GFP_KERNEL
);
5757 devres_add(dev
, host
);
5758 dev_set_drvdata(dev
, host
);
5760 spin_lock_init(&host
->lock
);
5762 host
->n_ports
= max_ports
;
5764 /* allocate ports bound to this host */
5765 for (i
= 0; i
< max_ports
; i
++) {
5766 struct ata_port
*ap
;
5768 ap
= ata_port_alloc(host
);
5773 host
->ports
[i
] = ap
;
5776 devres_remove_group(dev
, NULL
);
5780 devres_release_group(dev
, NULL
);
5785 * ata_host_alloc_pinfo - alloc host and init with port_info array
5786 * @dev: generic device this host is associated with
5787 * @ppi: array of ATA port_info to initialize host with
5788 * @n_ports: number of ATA ports attached to this host
5790 * Allocate ATA host and initialize with info from @ppi. If NULL
5791 * terminated, @ppi may contain fewer entries than @n_ports. The
5792 * last entry will be used for the remaining ports.
5795 * Allocate ATA host on success, NULL on failure.
5798 * Inherited from calling layer (may sleep).
5800 struct ata_host
*ata_host_alloc_pinfo(struct device
*dev
,
5801 const struct ata_port_info
* const * ppi
,
5804 const struct ata_port_info
*pi
;
5805 struct ata_host
*host
;
5808 host
= ata_host_alloc(dev
, n_ports
);
5812 for (i
= 0, j
= 0, pi
= NULL
; i
< host
->n_ports
; i
++) {
5813 struct ata_port
*ap
= host
->ports
[i
];
5818 ap
->pio_mask
= pi
->pio_mask
;
5819 ap
->mwdma_mask
= pi
->mwdma_mask
;
5820 ap
->udma_mask
= pi
->udma_mask
;
5821 ap
->flags
|= pi
->flags
;
5822 ap
->link
.flags
|= pi
->link_flags
;
5823 ap
->ops
= pi
->port_ops
;
5825 if (!host
->ops
&& (pi
->port_ops
!= &ata_dummy_port_ops
))
5826 host
->ops
= pi
->port_ops
;
5833 * ata_slave_link_init - initialize slave link
5834 * @ap: port to initialize slave link for
5836 * Create and initialize slave link for @ap. This enables slave
5837 * link handling on the port.
5839 * In libata, a port contains links and a link contains devices.
5840 * There is single host link but if a PMP is attached to it,
5841 * there can be multiple fan-out links. On SATA, there's usually
5842 * a single device connected to a link but PATA and SATA
5843 * controllers emulating TF based interface can have two - master
5846 * However, there are a few controllers which don't fit into this
5847 * abstraction too well - SATA controllers which emulate TF
5848 * interface with both master and slave devices but also have
5849 * separate SCR register sets for each device. These controllers
5850 * need separate links for physical link handling
5851 * (e.g. onlineness, link speed) but should be treated like a
5852 * traditional M/S controller for everything else (e.g. command
5853 * issue, softreset).
5855 * slave_link is libata's way of handling this class of
5856 * controllers without impacting core layer too much. For
5857 * anything other than physical link handling, the default host
5858 * link is used for both master and slave. For physical link
5859 * handling, separate @ap->slave_link is used. All dirty details
5860 * are implemented inside libata core layer. From LLD's POV, the
5861 * only difference is that prereset, hardreset and postreset are
5862 * called once more for the slave link, so the reset sequence
5863 * looks like the following.
5865 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5866 * softreset(M) -> postreset(M) -> postreset(S)
5868 * Note that softreset is called only for the master. Softreset
5869 * resets both M/S by definition, so SRST on master should handle
5870 * both (the standard method will work just fine).
5873 * Should be called before host is registered.
5876 * 0 on success, -errno on failure.
5878 int ata_slave_link_init(struct ata_port
*ap
)
5880 struct ata_link
*link
;
5882 WARN_ON(ap
->slave_link
);
5883 WARN_ON(ap
->flags
& ATA_FLAG_PMP
);
5885 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
5889 ata_link_init(ap
, link
, 1);
5890 ap
->slave_link
= link
;
5894 static void ata_host_stop(struct device
*gendev
, void *res
)
5896 struct ata_host
*host
= dev_get_drvdata(gendev
);
5899 WARN_ON(!(host
->flags
& ATA_HOST_STARTED
));
5901 for (i
= 0; i
< host
->n_ports
; i
++) {
5902 struct ata_port
*ap
= host
->ports
[i
];
5904 if (ap
->ops
->port_stop
)
5905 ap
->ops
->port_stop(ap
);
5908 if (host
->ops
->host_stop
)
5909 host
->ops
->host_stop(host
);
5913 * ata_finalize_port_ops - finalize ata_port_operations
5914 * @ops: ata_port_operations to finalize
5916 * An ata_port_operations can inherit from another ops and that
5917 * ops can again inherit from another. This can go on as many
5918 * times as necessary as long as there is no loop in the
5919 * inheritance chain.
5921 * Ops tables are finalized when the host is started. NULL or
5922 * unspecified entries are inherited from the closet ancestor
5923 * which has the method and the entry is populated with it.
5924 * After finalization, the ops table directly points to all the
5925 * methods and ->inherits is no longer necessary and cleared.
5927 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5932 static void ata_finalize_port_ops(struct ata_port_operations
*ops
)
5934 static DEFINE_SPINLOCK(lock
);
5935 const struct ata_port_operations
*cur
;
5936 void **begin
= (void **)ops
;
5937 void **end
= (void **)&ops
->inherits
;
5940 if (!ops
|| !ops
->inherits
)
5945 for (cur
= ops
->inherits
; cur
; cur
= cur
->inherits
) {
5946 void **inherit
= (void **)cur
;
5948 for (pp
= begin
; pp
< end
; pp
++, inherit
++)
5953 for (pp
= begin
; pp
< end
; pp
++)
5957 ops
->inherits
= NULL
;
5963 * ata_host_start - start and freeze ports of an ATA host
5964 * @host: ATA host to start ports for
5966 * Start and then freeze ports of @host. Started status is
5967 * recorded in host->flags, so this function can be called
5968 * multiple times. Ports are guaranteed to get started only
5969 * once. If host->ops isn't initialized yet, its set to the
5970 * first non-dummy port ops.
5973 * Inherited from calling layer (may sleep).
5976 * 0 if all ports are started successfully, -errno otherwise.
5978 int ata_host_start(struct ata_host
*host
)
5981 void *start_dr
= NULL
;
5984 if (host
->flags
& ATA_HOST_STARTED
)
5987 ata_finalize_port_ops(host
->ops
);
5989 for (i
= 0; i
< host
->n_ports
; i
++) {
5990 struct ata_port
*ap
= host
->ports
[i
];
5992 ata_finalize_port_ops(ap
->ops
);
5994 if (!host
->ops
&& !ata_port_is_dummy(ap
))
5995 host
->ops
= ap
->ops
;
5997 if (ap
->ops
->port_stop
)
6001 if (host
->ops
->host_stop
)
6005 start_dr
= devres_alloc(ata_host_stop
, 0, GFP_KERNEL
);
6010 for (i
= 0; i
< host
->n_ports
; i
++) {
6011 struct ata_port
*ap
= host
->ports
[i
];
6013 if (ap
->ops
->port_start
) {
6014 rc
= ap
->ops
->port_start(ap
);
6017 dev_printk(KERN_ERR
, host
->dev
,
6018 "failed to start port %d "
6019 "(errno=%d)\n", i
, rc
);
6023 ata_eh_freeze_port(ap
);
6027 devres_add(host
->dev
, start_dr
);
6028 host
->flags
|= ATA_HOST_STARTED
;
6033 struct ata_port
*ap
= host
->ports
[i
];
6035 if (ap
->ops
->port_stop
)
6036 ap
->ops
->port_stop(ap
);
6038 devres_free(start_dr
);
6043 * ata_sas_host_init - Initialize a host struct
6044 * @host: host to initialize
6045 * @dev: device host is attached to
6046 * @flags: host flags
6050 * PCI/etc. bus probe sem.
6053 /* KILLME - the only user left is ipr */
6054 void ata_host_init(struct ata_host
*host
, struct device
*dev
,
6055 unsigned long flags
, struct ata_port_operations
*ops
)
6057 spin_lock_init(&host
->lock
);
6059 host
->flags
= flags
;
6064 static void async_port_probe(void *data
, async_cookie_t cookie
)
6067 struct ata_port
*ap
= data
;
6070 * If we're not allowed to scan this host in parallel,
6071 * we need to wait until all previous scans have completed
6072 * before going further.
6073 * Jeff Garzik says this is only within a controller, so we
6074 * don't need to wait for port 0, only for later ports.
6076 if (!(ap
->host
->flags
& ATA_HOST_PARALLEL_SCAN
) && ap
->port_no
!= 0)
6077 async_synchronize_cookie(cookie
);
6080 if (ap
->ops
->error_handler
) {
6081 struct ata_eh_info
*ehi
= &ap
->link
.eh_info
;
6082 unsigned long flags
;
6086 /* kick EH for boot probing */
6087 spin_lock_irqsave(ap
->lock
, flags
);
6089 ehi
->probe_mask
|= ATA_ALL_DEVICES
;
6090 ehi
->action
|= ATA_EH_RESET
| ATA_EH_LPM
;
6091 ehi
->flags
|= ATA_EHI_NO_AUTOPSY
| ATA_EHI_QUIET
;
6093 ap
->pflags
&= ~ATA_PFLAG_INITIALIZING
;
6094 ap
->pflags
|= ATA_PFLAG_LOADING
;
6095 ata_port_schedule_eh(ap
);
6097 spin_unlock_irqrestore(ap
->lock
, flags
);
6099 /* wait for EH to finish */
6100 ata_port_wait_eh(ap
);
6102 DPRINTK("ata%u: bus probe begin\n", ap
->print_id
);
6103 rc
= ata_bus_probe(ap
);
6104 DPRINTK("ata%u: bus probe end\n", ap
->print_id
);
6107 /* FIXME: do something useful here?
6108 * Current libata behavior will
6109 * tear down everything when
6110 * the module is removed
6111 * or the h/w is unplugged.
6116 /* in order to keep device order, we need to synchronize at this point */
6117 async_synchronize_cookie(cookie
);
6119 ata_scsi_scan_host(ap
, 1);
6123 * ata_host_register - register initialized ATA host
6124 * @host: ATA host to register
6125 * @sht: template for SCSI host
6127 * Register initialized ATA host. @host is allocated using
6128 * ata_host_alloc() and fully initialized by LLD. This function
6129 * starts ports, registers @host with ATA and SCSI layers and
6130 * probe registered devices.
6133 * Inherited from calling layer (may sleep).
6136 * 0 on success, -errno otherwise.
6138 int ata_host_register(struct ata_host
*host
, struct scsi_host_template
*sht
)
6142 /* host must have been started */
6143 if (!(host
->flags
& ATA_HOST_STARTED
)) {
6144 dev_printk(KERN_ERR
, host
->dev
,
6145 "BUG: trying to register unstarted host\n");
6150 /* Blow away unused ports. This happens when LLD can't
6151 * determine the exact number of ports to allocate at
6154 for (i
= host
->n_ports
; host
->ports
[i
]; i
++)
6155 kfree(host
->ports
[i
]);
6157 /* give ports names and add SCSI hosts */
6158 for (i
= 0; i
< host
->n_ports
; i
++)
6159 host
->ports
[i
]->print_id
= ata_print_id
++;
6161 rc
= ata_scsi_add_hosts(host
, sht
);
6165 /* associate with ACPI nodes */
6166 ata_acpi_associate(host
);
6168 /* set cable, sata_spd_limit and report */
6169 for (i
= 0; i
< host
->n_ports
; i
++) {
6170 struct ata_port
*ap
= host
->ports
[i
];
6171 unsigned long xfer_mask
;
6173 /* set SATA cable type if still unset */
6174 if (ap
->cbl
== ATA_CBL_NONE
&& (ap
->flags
& ATA_FLAG_SATA
))
6175 ap
->cbl
= ATA_CBL_SATA
;
6177 /* init sata_spd_limit to the current value */
6178 sata_link_init_spd(&ap
->link
);
6180 sata_link_init_spd(ap
->slave_link
);
6182 /* print per-port info to dmesg */
6183 xfer_mask
= ata_pack_xfermask(ap
->pio_mask
, ap
->mwdma_mask
,
6186 if (!ata_port_is_dummy(ap
)) {
6187 ata_port_printk(ap
, KERN_INFO
,
6188 "%cATA max %s %s\n",
6189 (ap
->flags
& ATA_FLAG_SATA
) ? 'S' : 'P',
6190 ata_mode_string(xfer_mask
),
6191 ap
->link
.eh_info
.desc
);
6192 ata_ehi_clear_desc(&ap
->link
.eh_info
);
6194 ata_port_printk(ap
, KERN_INFO
, "DUMMY\n");
6197 /* perform each probe asynchronously */
6198 for (i
= 0; i
< host
->n_ports
; i
++) {
6199 struct ata_port
*ap
= host
->ports
[i
];
6200 async_schedule(async_port_probe
, ap
);
6207 * ata_host_activate - start host, request IRQ and register it
6208 * @host: target ATA host
6209 * @irq: IRQ to request
6210 * @irq_handler: irq_handler used when requesting IRQ
6211 * @irq_flags: irq_flags used when requesting IRQ
6212 * @sht: scsi_host_template to use when registering the host
6214 * After allocating an ATA host and initializing it, most libata
6215 * LLDs perform three steps to activate the host - start host,
6216 * request IRQ and register it. This helper takes necessasry
6217 * arguments and performs the three steps in one go.
6219 * An invalid IRQ skips the IRQ registration and expects the host to
6220 * have set polling mode on the port. In this case, @irq_handler
6224 * Inherited from calling layer (may sleep).
6227 * 0 on success, -errno otherwise.
6229 int ata_host_activate(struct ata_host
*host
, int irq
,
6230 irq_handler_t irq_handler
, unsigned long irq_flags
,
6231 struct scsi_host_template
*sht
)
6235 rc
= ata_host_start(host
);
6239 /* Special case for polling mode */
6241 WARN_ON(irq_handler
);
6242 return ata_host_register(host
, sht
);
6245 rc
= devm_request_irq(host
->dev
, irq
, irq_handler
, irq_flags
,
6246 dev_driver_string(host
->dev
), host
);
6250 for (i
= 0; i
< host
->n_ports
; i
++)
6251 ata_port_desc(host
->ports
[i
], "irq %d", irq
);
6253 rc
= ata_host_register(host
, sht
);
6254 /* if failed, just free the IRQ and leave ports alone */
6256 devm_free_irq(host
->dev
, irq
, host
);
6262 * ata_port_detach - Detach ATA port in prepration of device removal
6263 * @ap: ATA port to be detached
6265 * Detach all ATA devices and the associated SCSI devices of @ap;
6266 * then, remove the associated SCSI host. @ap is guaranteed to
6267 * be quiescent on return from this function.
6270 * Kernel thread context (may sleep).
6272 static void ata_port_detach(struct ata_port
*ap
)
6274 unsigned long flags
;
6276 if (!ap
->ops
->error_handler
)
6279 /* tell EH we're leaving & flush EH */
6280 spin_lock_irqsave(ap
->lock
, flags
);
6281 ap
->pflags
|= ATA_PFLAG_UNLOADING
;
6282 ata_port_schedule_eh(ap
);
6283 spin_unlock_irqrestore(ap
->lock
, flags
);
6285 /* wait till EH commits suicide */
6286 ata_port_wait_eh(ap
);
6288 /* it better be dead now */
6289 WARN_ON(!(ap
->pflags
& ATA_PFLAG_UNLOADED
));
6291 cancel_rearming_delayed_work(&ap
->hotplug_task
);
6294 /* remove the associated SCSI host */
6295 scsi_remove_host(ap
->scsi_host
);
6299 * ata_host_detach - Detach all ports of an ATA host
6300 * @host: Host to detach
6302 * Detach all ports of @host.
6305 * Kernel thread context (may sleep).
6307 void ata_host_detach(struct ata_host
*host
)
6311 for (i
= 0; i
< host
->n_ports
; i
++)
6312 ata_port_detach(host
->ports
[i
]);
6314 /* the host is dead now, dissociate ACPI */
6315 ata_acpi_dissociate(host
);
6321 * ata_pci_remove_one - PCI layer callback for device removal
6322 * @pdev: PCI device that was removed
6324 * PCI layer indicates to libata via this hook that hot-unplug or
6325 * module unload event has occurred. Detach all ports. Resource
6326 * release is handled via devres.
6329 * Inherited from PCI layer (may sleep).
6331 void ata_pci_remove_one(struct pci_dev
*pdev
)
6333 struct device
*dev
= &pdev
->dev
;
6334 struct ata_host
*host
= dev_get_drvdata(dev
);
6336 ata_host_detach(host
);
6339 /* move to PCI subsystem */
6340 int pci_test_config_bits(struct pci_dev
*pdev
, const struct pci_bits
*bits
)
6342 unsigned long tmp
= 0;
6344 switch (bits
->width
) {
6347 pci_read_config_byte(pdev
, bits
->reg
, &tmp8
);
6353 pci_read_config_word(pdev
, bits
->reg
, &tmp16
);
6359 pci_read_config_dword(pdev
, bits
->reg
, &tmp32
);
6370 return (tmp
== bits
->val
) ? 1 : 0;
6374 void ata_pci_device_do_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6376 pci_save_state(pdev
);
6377 pci_disable_device(pdev
);
6379 if (mesg
.event
& PM_EVENT_SLEEP
)
6380 pci_set_power_state(pdev
, PCI_D3hot
);
6383 int ata_pci_device_do_resume(struct pci_dev
*pdev
)
6387 pci_set_power_state(pdev
, PCI_D0
);
6388 pci_restore_state(pdev
);
6390 rc
= pcim_enable_device(pdev
);
6392 dev_printk(KERN_ERR
, &pdev
->dev
,
6393 "failed to enable device after resume (%d)\n", rc
);
6397 pci_set_master(pdev
);
6401 int ata_pci_device_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
6403 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6406 rc
= ata_host_suspend(host
, mesg
);
6410 ata_pci_device_do_suspend(pdev
, mesg
);
6415 int ata_pci_device_resume(struct pci_dev
*pdev
)
6417 struct ata_host
*host
= dev_get_drvdata(&pdev
->dev
);
6420 rc
= ata_pci_device_do_resume(pdev
);
6422 ata_host_resume(host
);
6425 #endif /* CONFIG_PM */
6427 #endif /* CONFIG_PCI */
6429 static int __init
ata_parse_force_one(char **cur
,
6430 struct ata_force_ent
*force_ent
,
6431 const char **reason
)
6433 /* FIXME: Currently, there's no way to tag init const data and
6434 * using __initdata causes build failure on some versions of
6435 * gcc. Once __initdataconst is implemented, add const to the
6436 * following structure.
6438 static struct ata_force_param force_tbl
[] __initdata
= {
6439 { "40c", .cbl
= ATA_CBL_PATA40
},
6440 { "80c", .cbl
= ATA_CBL_PATA80
},
6441 { "short40c", .cbl
= ATA_CBL_PATA40_SHORT
},
6442 { "unk", .cbl
= ATA_CBL_PATA_UNK
},
6443 { "ign", .cbl
= ATA_CBL_PATA_IGN
},
6444 { "sata", .cbl
= ATA_CBL_SATA
},
6445 { "1.5Gbps", .spd_limit
= 1 },
6446 { "3.0Gbps", .spd_limit
= 2 },
6447 { "noncq", .horkage_on
= ATA_HORKAGE_NONCQ
},
6448 { "ncq", .horkage_off
= ATA_HORKAGE_NONCQ
},
6449 { "pio0", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 0) },
6450 { "pio1", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 1) },
6451 { "pio2", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 2) },
6452 { "pio3", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 3) },
6453 { "pio4", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 4) },
6454 { "pio5", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 5) },
6455 { "pio6", .xfer_mask
= 1 << (ATA_SHIFT_PIO
+ 6) },
6456 { "mwdma0", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 0) },
6457 { "mwdma1", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 1) },
6458 { "mwdma2", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 2) },
6459 { "mwdma3", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 3) },
6460 { "mwdma4", .xfer_mask
= 1 << (ATA_SHIFT_MWDMA
+ 4) },
6461 { "udma0", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6462 { "udma16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6463 { "udma/16", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 0) },
6464 { "udma1", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6465 { "udma25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6466 { "udma/25", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 1) },
6467 { "udma2", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6468 { "udma33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6469 { "udma/33", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 2) },
6470 { "udma3", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6471 { "udma44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6472 { "udma/44", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 3) },
6473 { "udma4", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6474 { "udma66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6475 { "udma/66", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 4) },
6476 { "udma5", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6477 { "udma100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6478 { "udma/100", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 5) },
6479 { "udma6", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6480 { "udma133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6481 { "udma/133", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 6) },
6482 { "udma7", .xfer_mask
= 1 << (ATA_SHIFT_UDMA
+ 7) },
6483 { "nohrst", .lflags
= ATA_LFLAG_NO_HRST
},
6484 { "nosrst", .lflags
= ATA_LFLAG_NO_SRST
},
6485 { "norst", .lflags
= ATA_LFLAG_NO_HRST
| ATA_LFLAG_NO_SRST
},
6487 char *start
= *cur
, *p
= *cur
;
6488 char *id
, *val
, *endp
;
6489 const struct ata_force_param
*match_fp
= NULL
;
6490 int nr_matches
= 0, i
;
6492 /* find where this param ends and update *cur */
6493 while (*p
!= '\0' && *p
!= ',')
6504 p
= strchr(start
, ':');
6506 val
= strstrip(start
);
6511 id
= strstrip(start
);
6512 val
= strstrip(p
+ 1);
6515 p
= strchr(id
, '.');
6518 force_ent
->device
= simple_strtoul(p
, &endp
, 10);
6519 if (p
== endp
|| *endp
!= '\0') {
6520 *reason
= "invalid device";
6525 force_ent
->port
= simple_strtoul(id
, &endp
, 10);
6526 if (p
== endp
|| *endp
!= '\0') {
6527 *reason
= "invalid port/link";
6532 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6533 for (i
= 0; i
< ARRAY_SIZE(force_tbl
); i
++) {
6534 const struct ata_force_param
*fp
= &force_tbl
[i
];
6536 if (strncasecmp(val
, fp
->name
, strlen(val
)))
6542 if (strcasecmp(val
, fp
->name
) == 0) {
6549 *reason
= "unknown value";
6552 if (nr_matches
> 1) {
6553 *reason
= "ambigious value";
6557 force_ent
->param
= *match_fp
;
6562 static void __init
ata_parse_force_param(void)
6564 int idx
= 0, size
= 1;
6565 int last_port
= -1, last_device
= -1;
6566 char *p
, *cur
, *next
;
6568 /* calculate maximum number of params and allocate force_tbl */
6569 for (p
= ata_force_param_buf
; *p
; p
++)
6573 ata_force_tbl
= kzalloc(sizeof(ata_force_tbl
[0]) * size
, GFP_KERNEL
);
6574 if (!ata_force_tbl
) {
6575 printk(KERN_WARNING
"ata: failed to extend force table, "
6576 "libata.force ignored\n");
6580 /* parse and populate the table */
6581 for (cur
= ata_force_param_buf
; *cur
!= '\0'; cur
= next
) {
6582 const char *reason
= "";
6583 struct ata_force_ent te
= { .port
= -1, .device
= -1 };
6586 if (ata_parse_force_one(&next
, &te
, &reason
)) {
6587 printk(KERN_WARNING
"ata: failed to parse force "
6588 "parameter \"%s\" (%s)\n",
6593 if (te
.port
== -1) {
6594 te
.port
= last_port
;
6595 te
.device
= last_device
;
6598 ata_force_tbl
[idx
++] = te
;
6600 last_port
= te
.port
;
6601 last_device
= te
.device
;
6604 ata_force_tbl_size
= idx
;
6607 static int __init
ata_init(void)
6609 ata_parse_force_param();
6611 ata_wq
= create_workqueue("ata");
6613 goto free_force_tbl
;
6615 ata_aux_wq
= create_singlethread_workqueue("ata_aux");
6619 printk(KERN_DEBUG
"libata version " DRV_VERSION
" loaded.\n");
6623 destroy_workqueue(ata_wq
);
6625 kfree(ata_force_tbl
);
6629 static void __exit
ata_exit(void)
6631 kfree(ata_force_tbl
);
6632 destroy_workqueue(ata_wq
);
6633 destroy_workqueue(ata_aux_wq
);
6636 subsys_initcall(ata_init
);
6637 module_exit(ata_exit
);
6639 static unsigned long ratelimit_time
;
6640 static DEFINE_SPINLOCK(ata_ratelimit_lock
);
6642 int ata_ratelimit(void)
6645 unsigned long flags
;
6647 spin_lock_irqsave(&ata_ratelimit_lock
, flags
);
6649 if (time_after(jiffies
, ratelimit_time
)) {
6651 ratelimit_time
= jiffies
+ (HZ
/5);
6655 spin_unlock_irqrestore(&ata_ratelimit_lock
, flags
);
6661 * ata_wait_register - wait until register value changes
6662 * @reg: IO-mapped register
6663 * @mask: Mask to apply to read register value
6664 * @val: Wait condition
6665 * @interval: polling interval in milliseconds
6666 * @timeout: timeout in milliseconds
6668 * Waiting for some bits of register to change is a common
6669 * operation for ATA controllers. This function reads 32bit LE
6670 * IO-mapped register @reg and tests for the following condition.
6672 * (*@reg & mask) != val
6674 * If the condition is met, it returns; otherwise, the process is
6675 * repeated after @interval_msec until timeout.
6678 * Kernel thread context (may sleep)
6681 * The final register value.
6683 u32
ata_wait_register(void __iomem
*reg
, u32 mask
, u32 val
,
6684 unsigned long interval
, unsigned long timeout
)
6686 unsigned long deadline
;
6689 tmp
= ioread32(reg
);
6691 /* Calculate timeout _after_ the first read to make sure
6692 * preceding writes reach the controller before starting to
6693 * eat away the timeout.
6695 deadline
= ata_deadline(jiffies
, timeout
);
6697 while ((tmp
& mask
) == val
&& time_before(jiffies
, deadline
)) {
6699 tmp
= ioread32(reg
);
6708 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd
*qc
)
6710 return AC_ERR_SYSTEM
;
6713 static void ata_dummy_error_handler(struct ata_port
*ap
)
6718 struct ata_port_operations ata_dummy_port_ops
= {
6719 .qc_prep
= ata_noop_qc_prep
,
6720 .qc_issue
= ata_dummy_qc_issue
,
6721 .error_handler
= ata_dummy_error_handler
,
6724 const struct ata_port_info ata_dummy_port_info
= {
6725 .port_ops
= &ata_dummy_port_ops
,
6729 * libata is essentially a library of internal helper functions for
6730 * low-level ATA host controller drivers. As such, the API/ABI is
6731 * likely to change as new drivers are added and updated.
6732 * Do not depend on ABI/API stability.
6734 EXPORT_SYMBOL_GPL(sata_deb_timing_normal
);
6735 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug
);
6736 EXPORT_SYMBOL_GPL(sata_deb_timing_long
);
6737 EXPORT_SYMBOL_GPL(ata_base_port_ops
);
6738 EXPORT_SYMBOL_GPL(sata_port_ops
);
6739 EXPORT_SYMBOL_GPL(ata_dummy_port_ops
);
6740 EXPORT_SYMBOL_GPL(ata_dummy_port_info
);
6741 EXPORT_SYMBOL_GPL(ata_link_next
);
6742 EXPORT_SYMBOL_GPL(ata_dev_next
);
6743 EXPORT_SYMBOL_GPL(ata_std_bios_param
);
6744 EXPORT_SYMBOL_GPL(ata_host_init
);
6745 EXPORT_SYMBOL_GPL(ata_host_alloc
);
6746 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo
);
6747 EXPORT_SYMBOL_GPL(ata_slave_link_init
);
6748 EXPORT_SYMBOL_GPL(ata_host_start
);
6749 EXPORT_SYMBOL_GPL(ata_host_register
);
6750 EXPORT_SYMBOL_GPL(ata_host_activate
);
6751 EXPORT_SYMBOL_GPL(ata_host_detach
);
6752 EXPORT_SYMBOL_GPL(ata_sg_init
);
6753 EXPORT_SYMBOL_GPL(ata_qc_complete
);
6754 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple
);
6755 EXPORT_SYMBOL_GPL(atapi_cmd_type
);
6756 EXPORT_SYMBOL_GPL(ata_tf_to_fis
);
6757 EXPORT_SYMBOL_GPL(ata_tf_from_fis
);
6758 EXPORT_SYMBOL_GPL(ata_pack_xfermask
);
6759 EXPORT_SYMBOL_GPL(ata_unpack_xfermask
);
6760 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode
);
6761 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask
);
6762 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift
);
6763 EXPORT_SYMBOL_GPL(ata_mode_string
);
6764 EXPORT_SYMBOL_GPL(ata_id_xfermask
);
6765 EXPORT_SYMBOL_GPL(ata_port_start
);
6766 EXPORT_SYMBOL_GPL(ata_do_set_mode
);
6767 EXPORT_SYMBOL_GPL(ata_std_qc_defer
);
6768 EXPORT_SYMBOL_GPL(ata_noop_qc_prep
);
6769 EXPORT_SYMBOL_GPL(ata_port_probe
);
6770 EXPORT_SYMBOL_GPL(ata_dev_disable
);
6771 EXPORT_SYMBOL_GPL(sata_set_spd
);
6772 EXPORT_SYMBOL_GPL(ata_wait_after_reset
);
6773 EXPORT_SYMBOL_GPL(sata_link_debounce
);
6774 EXPORT_SYMBOL_GPL(sata_link_resume
);
6775 EXPORT_SYMBOL_GPL(ata_std_prereset
);
6776 EXPORT_SYMBOL_GPL(sata_link_hardreset
);
6777 EXPORT_SYMBOL_GPL(sata_std_hardreset
);
6778 EXPORT_SYMBOL_GPL(ata_std_postreset
);
6779 EXPORT_SYMBOL_GPL(ata_dev_classify
);
6780 EXPORT_SYMBOL_GPL(ata_dev_pair
);
6781 EXPORT_SYMBOL_GPL(ata_port_disable
);
6782 EXPORT_SYMBOL_GPL(ata_ratelimit
);
6783 EXPORT_SYMBOL_GPL(ata_wait_register
);
6784 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd
);
6785 EXPORT_SYMBOL_GPL(ata_scsi_slave_config
);
6786 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy
);
6787 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth
);
6788 EXPORT_SYMBOL_GPL(sata_scr_valid
);
6789 EXPORT_SYMBOL_GPL(sata_scr_read
);
6790 EXPORT_SYMBOL_GPL(sata_scr_write
);
6791 EXPORT_SYMBOL_GPL(sata_scr_write_flush
);
6792 EXPORT_SYMBOL_GPL(ata_link_online
);
6793 EXPORT_SYMBOL_GPL(ata_link_offline
);
6795 EXPORT_SYMBOL_GPL(ata_host_suspend
);
6796 EXPORT_SYMBOL_GPL(ata_host_resume
);
6797 #endif /* CONFIG_PM */
6798 EXPORT_SYMBOL_GPL(ata_id_string
);
6799 EXPORT_SYMBOL_GPL(ata_id_c_string
);
6800 EXPORT_SYMBOL_GPL(ata_do_dev_read_id
);
6801 EXPORT_SYMBOL_GPL(ata_scsi_simulate
);
6803 EXPORT_SYMBOL_GPL(ata_pio_queue_task
);
6804 EXPORT_SYMBOL_GPL(ata_pio_need_iordy
);
6805 EXPORT_SYMBOL_GPL(ata_timing_find_mode
);
6806 EXPORT_SYMBOL_GPL(ata_timing_compute
);
6807 EXPORT_SYMBOL_GPL(ata_timing_merge
);
6808 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode
);
6811 EXPORT_SYMBOL_GPL(pci_test_config_bits
);
6812 EXPORT_SYMBOL_GPL(ata_pci_remove_one
);
6814 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend
);
6815 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume
);
6816 EXPORT_SYMBOL_GPL(ata_pci_device_suspend
);
6817 EXPORT_SYMBOL_GPL(ata_pci_device_resume
);
6818 #endif /* CONFIG_PM */
6819 #endif /* CONFIG_PCI */
6821 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc
);
6822 EXPORT_SYMBOL_GPL(ata_ehi_push_desc
);
6823 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc
);
6824 EXPORT_SYMBOL_GPL(ata_port_desc
);
6826 EXPORT_SYMBOL_GPL(ata_port_pbar_desc
);
6827 #endif /* CONFIG_PCI */
6828 EXPORT_SYMBOL_GPL(ata_port_schedule_eh
);
6829 EXPORT_SYMBOL_GPL(ata_link_abort
);
6830 EXPORT_SYMBOL_GPL(ata_port_abort
);
6831 EXPORT_SYMBOL_GPL(ata_port_freeze
);
6832 EXPORT_SYMBOL_GPL(sata_async_notification
);
6833 EXPORT_SYMBOL_GPL(ata_eh_freeze_port
);
6834 EXPORT_SYMBOL_GPL(ata_eh_thaw_port
);
6835 EXPORT_SYMBOL_GPL(ata_eh_qc_complete
);
6836 EXPORT_SYMBOL_GPL(ata_eh_qc_retry
);
6837 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error
);
6838 EXPORT_SYMBOL_GPL(ata_do_eh
);
6839 EXPORT_SYMBOL_GPL(ata_std_error_handler
);
6841 EXPORT_SYMBOL_GPL(ata_cable_40wire
);
6842 EXPORT_SYMBOL_GPL(ata_cable_80wire
);
6843 EXPORT_SYMBOL_GPL(ata_cable_unknown
);
6844 EXPORT_SYMBOL_GPL(ata_cable_ignore
);
6845 EXPORT_SYMBOL_GPL(ata_cable_sata
);