1 // SPDX-License-Identifier: GPL-2.0-only
3 * This file implements the perfmon-2 subsystem which is used
4 * to program the IA-64 Performance Monitoring Unit (PMU).
6 * The initial version of perfmon.c was written by
7 * Ganesh Venkitachalam, IBM Corp.
9 * Then it was modified for perfmon-1.x by Stephane Eranian and
10 * David Mosberger, Hewlett Packard Co.
12 * Version Perfmon-2.x is a rewrite of perfmon-1.x
13 * by Stephane Eranian, Hewlett Packard Co.
15 * Copyright (C) 1999-2005 Hewlett Packard Co
16 * Stephane Eranian <eranian@hpl.hp.com>
17 * David Mosberger-Tang <davidm@hpl.hp.com>
19 * More information about perfmon available at:
20 * http://www.hpl.hp.com/research/linux/perfmon
23 #include <linux/module.h>
24 #include <linux/kernel.h>
25 #include <linux/sched.h>
26 #include <linux/sched/task.h>
27 #include <linux/sched/task_stack.h>
28 #include <linux/interrupt.h>
29 #include <linux/proc_fs.h>
30 #include <linux/seq_file.h>
31 #include <linux/init.h>
32 #include <linux/vmalloc.h>
34 #include <linux/sysctl.h>
35 #include <linux/list.h>
36 #include <linux/file.h>
37 #include <linux/poll.h>
38 #include <linux/vfs.h>
39 #include <linux/smp.h>
40 #include <linux/pagemap.h>
41 #include <linux/mount.h>
42 #include <linux/pseudo_fs.h>
43 #include <linux/bitops.h>
44 #include <linux/capability.h>
45 #include <linux/rcupdate.h>
46 #include <linux/completion.h>
47 #include <linux/tracehook.h>
48 #include <linux/slab.h>
49 #include <linux/cpu.h>
51 #include <asm/errno.h>
52 #include <asm/intrinsics.h>
54 #include <asm/perfmon.h>
55 #include <asm/processor.h>
56 #include <asm/signal.h>
57 #include <linux/uaccess.h>
58 #include <asm/delay.h>
62 * perfmon context state
64 #define PFM_CTX_UNLOADED 1 /* context is not loaded onto any task */
65 #define PFM_CTX_LOADED 2 /* context is loaded onto a task */
66 #define PFM_CTX_MASKED 3 /* context is loaded but monitoring is masked due to overflow */
67 #define PFM_CTX_ZOMBIE 4 /* owner of the context is closing it */
69 #define PFM_INVALID_ACTIVATION (~0UL)
71 #define PFM_NUM_PMC_REGS 64 /* PMC save area for ctxsw */
72 #define PFM_NUM_PMD_REGS 64 /* PMD save area for ctxsw */
75 * depth of message queue
77 #define PFM_MAX_MSGS 32
78 #define PFM_CTXQ_EMPTY(g) ((g)->ctx_msgq_head == (g)->ctx_msgq_tail)
81 * type of a PMU register (bitmask).
83 * bit0 : register implemented
86 * bit4 : pmc has pmc.pm
87 * bit5 : pmc controls a counter (has pmc.oi), pmd is used as counter
88 * bit6-7 : register type
91 #define PFM_REG_NOTIMPL 0x0 /* not implemented at all */
92 #define PFM_REG_IMPL 0x1 /* register implemented */
93 #define PFM_REG_END 0x2 /* end marker */
94 #define PFM_REG_MONITOR (0x1<<4|PFM_REG_IMPL) /* a PMC with a pmc.pm field only */
95 #define PFM_REG_COUNTING (0x2<<4|PFM_REG_MONITOR) /* a monitor + pmc.oi+ PMD used as a counter */
96 #define PFM_REG_CONTROL (0x4<<4|PFM_REG_IMPL) /* PMU control register */
97 #define PFM_REG_CONFIG (0x8<<4|PFM_REG_IMPL) /* configuration register */
98 #define PFM_REG_BUFFER (0xc<<4|PFM_REG_IMPL) /* PMD used as buffer */
100 #define PMC_IS_LAST(i) (pmu_conf->pmc_desc[i].type & PFM_REG_END)
101 #define PMD_IS_LAST(i) (pmu_conf->pmd_desc[i].type & PFM_REG_END)
103 #define PMC_OVFL_NOTIFY(ctx, i) ((ctx)->ctx_pmds[i].flags & PFM_REGFL_OVFL_NOTIFY)
105 /* i assumed unsigned */
106 #define PMC_IS_IMPL(i) (i< PMU_MAX_PMCS && (pmu_conf->pmc_desc[i].type & PFM_REG_IMPL))
107 #define PMD_IS_IMPL(i) (i< PMU_MAX_PMDS && (pmu_conf->pmd_desc[i].type & PFM_REG_IMPL))
109 /* XXX: these assume that register i is implemented */
110 #define PMD_IS_COUNTING(i) ((pmu_conf->pmd_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
111 #define PMC_IS_COUNTING(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_COUNTING) == PFM_REG_COUNTING)
112 #define PMC_IS_MONITOR(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_MONITOR) == PFM_REG_MONITOR)
113 #define PMC_IS_CONTROL(i) ((pmu_conf->pmc_desc[i].type & PFM_REG_CONTROL) == PFM_REG_CONTROL)
115 #define PMC_DFL_VAL(i) pmu_conf->pmc_desc[i].default_value
116 #define PMC_RSVD_MASK(i) pmu_conf->pmc_desc[i].reserved_mask
117 #define PMD_PMD_DEP(i) pmu_conf->pmd_desc[i].dep_pmd[0]
118 #define PMC_PMD_DEP(i) pmu_conf->pmc_desc[i].dep_pmd[0]
120 #define PFM_NUM_IBRS IA64_NUM_DBG_REGS
121 #define PFM_NUM_DBRS IA64_NUM_DBG_REGS
123 #define CTX_OVFL_NOBLOCK(c) ((c)->ctx_fl_block == 0)
124 #define CTX_HAS_SMPL(c) ((c)->ctx_fl_is_sampling)
125 #define PFM_CTX_TASK(h) (h)->ctx_task
127 #define PMU_PMC_OI 5 /* position of pmc.oi bit */
129 /* XXX: does not support more than 64 PMDs */
130 #define CTX_USED_PMD(ctx, mask) (ctx)->ctx_used_pmds[0] |= (mask)
131 #define CTX_IS_USED_PMD(ctx, c) (((ctx)->ctx_used_pmds[0] & (1UL << (c))) != 0UL)
133 #define CTX_USED_MONITOR(ctx, mask) (ctx)->ctx_used_monitors[0] |= (mask)
135 #define CTX_USED_IBR(ctx,n) (ctx)->ctx_used_ibrs[(n)>>6] |= 1UL<< ((n) % 64)
136 #define CTX_USED_DBR(ctx,n) (ctx)->ctx_used_dbrs[(n)>>6] |= 1UL<< ((n) % 64)
137 #define CTX_USES_DBREGS(ctx) (((pfm_context_t *)(ctx))->ctx_fl_using_dbreg==1)
138 #define PFM_CODE_RR 0 /* requesting code range restriction */
139 #define PFM_DATA_RR 1 /* requestion data range restriction */
141 #define PFM_CPUINFO_CLEAR(v) pfm_get_cpu_var(pfm_syst_info) &= ~(v)
142 #define PFM_CPUINFO_SET(v) pfm_get_cpu_var(pfm_syst_info) |= (v)
143 #define PFM_CPUINFO_GET() pfm_get_cpu_var(pfm_syst_info)
145 #define RDEP(x) (1UL<<(x))
148 * context protection macros
150 * - we need to protect against CPU concurrency (spin_lock)
151 * - we need to protect against PMU overflow interrupts (local_irq_disable)
153 * - we need to protect against PMU overflow interrupts (local_irq_disable)
155 * spin_lock_irqsave()/spin_unlock_irqrestore():
156 * in SMP: local_irq_disable + spin_lock
157 * in UP : local_irq_disable
159 * spin_lock()/spin_lock():
160 * in UP : removed automatically
161 * in SMP: protect against context accesses from other CPU. interrupts
162 * are not masked. This is useful for the PMU interrupt handler
163 * because we know we will not get PMU concurrency in that code.
165 #define PROTECT_CTX(c, f) \
167 DPRINT(("spinlock_irq_save ctx %p by [%d]\n", c, task_pid_nr(current))); \
168 spin_lock_irqsave(&(c)->ctx_lock, f); \
169 DPRINT(("spinlocked ctx %p by [%d]\n", c, task_pid_nr(current))); \
172 #define UNPROTECT_CTX(c, f) \
174 DPRINT(("spinlock_irq_restore ctx %p by [%d]\n", c, task_pid_nr(current))); \
175 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
178 #define PROTECT_CTX_NOPRINT(c, f) \
180 spin_lock_irqsave(&(c)->ctx_lock, f); \
184 #define UNPROTECT_CTX_NOPRINT(c, f) \
186 spin_unlock_irqrestore(&(c)->ctx_lock, f); \
190 #define PROTECT_CTX_NOIRQ(c) \
192 spin_lock(&(c)->ctx_lock); \
195 #define UNPROTECT_CTX_NOIRQ(c) \
197 spin_unlock(&(c)->ctx_lock); \
203 #define GET_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)
204 #define INC_ACTIVATION() pfm_get_cpu_var(pmu_activation_number)++
205 #define SET_ACTIVATION(c) (c)->ctx_last_activation = GET_ACTIVATION()
207 #else /* !CONFIG_SMP */
208 #define SET_ACTIVATION(t) do {} while(0)
209 #define GET_ACTIVATION(t) do {} while(0)
210 #define INC_ACTIVATION(t) do {} while(0)
211 #endif /* CONFIG_SMP */
213 #define SET_PMU_OWNER(t, c) do { pfm_get_cpu_var(pmu_owner) = (t); pfm_get_cpu_var(pmu_ctx) = (c); } while(0)
214 #define GET_PMU_OWNER() pfm_get_cpu_var(pmu_owner)
215 #define GET_PMU_CTX() pfm_get_cpu_var(pmu_ctx)
217 #define LOCK_PFS(g) spin_lock_irqsave(&pfm_sessions.pfs_lock, g)
218 #define UNLOCK_PFS(g) spin_unlock_irqrestore(&pfm_sessions.pfs_lock, g)
220 #define PFM_REG_RETFLAG_SET(flags, val) do { flags &= ~PFM_REG_RETFL_MASK; flags |= (val); } while(0)
223 * cmp0 must be the value of pmc0
225 #define PMC0_HAS_OVFL(cmp0) (cmp0 & ~0x1UL)
227 #define PFMFS_MAGIC 0xa0b4d889
232 #define PFM_DEBUGGING 1
236 if (unlikely(pfm_sysctl.debug >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
239 #define DPRINT_ovfl(a) \
241 if (unlikely(pfm_sysctl.debug > 0 && pfm_sysctl.debug_ovfl >0)) { printk("%s.%d: CPU%d [%d] ", __func__, __LINE__, smp_processor_id(), task_pid_nr(current)); printk a; } \
246 * 64-bit software counter structure
248 * the next_reset_type is applied to the next call to pfm_reset_regs()
251 unsigned long val
; /* virtual 64bit counter value */
252 unsigned long lval
; /* last reset value */
253 unsigned long long_reset
; /* reset value on sampling overflow */
254 unsigned long short_reset
; /* reset value on overflow */
255 unsigned long reset_pmds
[4]; /* which other pmds to reset when this counter overflows */
256 unsigned long smpl_pmds
[4]; /* which pmds are accessed when counter overflow */
257 unsigned long seed
; /* seed for random-number generator */
258 unsigned long mask
; /* mask for random-number generator */
259 unsigned int flags
; /* notify/do not notify */
260 unsigned long eventid
; /* overflow event identifier */
267 unsigned int block
:1; /* when 1, task will blocked on user notifications */
268 unsigned int system
:1; /* do system wide monitoring */
269 unsigned int using_dbreg
:1; /* using range restrictions (debug registers) */
270 unsigned int is_sampling
:1; /* true if using a custom format */
271 unsigned int excl_idle
:1; /* exclude idle task in system wide session */
272 unsigned int going_zombie
:1; /* context is zombie (MASKED+blocking) */
273 unsigned int trap_reason
:2; /* reason for going into pfm_handle_work() */
274 unsigned int no_msg
:1; /* no message sent on overflow */
275 unsigned int can_restart
:1; /* allowed to issue a PFM_RESTART */
276 unsigned int reserved
:22;
277 } pfm_context_flags_t
;
279 #define PFM_TRAP_REASON_NONE 0x0 /* default value */
280 #define PFM_TRAP_REASON_BLOCK 0x1 /* we need to block on overflow */
281 #define PFM_TRAP_REASON_RESET 0x2 /* we need to reset PMDs */
285 * perfmon context: encapsulates all the state of a monitoring session
288 typedef struct pfm_context
{
289 spinlock_t ctx_lock
; /* context protection */
291 pfm_context_flags_t ctx_flags
; /* bitmask of flags (block reason incl.) */
292 unsigned int ctx_state
; /* state: active/inactive (no bitfield) */
294 struct task_struct
*ctx_task
; /* task to which context is attached */
296 unsigned long ctx_ovfl_regs
[4]; /* which registers overflowed (notification) */
298 struct completion ctx_restart_done
; /* use for blocking notification mode */
300 unsigned long ctx_used_pmds
[4]; /* bitmask of PMD used */
301 unsigned long ctx_all_pmds
[4]; /* bitmask of all accessible PMDs */
302 unsigned long ctx_reload_pmds
[4]; /* bitmask of force reload PMD on ctxsw in */
304 unsigned long ctx_all_pmcs
[4]; /* bitmask of all accessible PMCs */
305 unsigned long ctx_reload_pmcs
[4]; /* bitmask of force reload PMC on ctxsw in */
306 unsigned long ctx_used_monitors
[4]; /* bitmask of monitor PMC being used */
308 unsigned long ctx_pmcs
[PFM_NUM_PMC_REGS
]; /* saved copies of PMC values */
310 unsigned int ctx_used_ibrs
[1]; /* bitmask of used IBR (speedup ctxsw in) */
311 unsigned int ctx_used_dbrs
[1]; /* bitmask of used DBR (speedup ctxsw in) */
312 unsigned long ctx_dbrs
[IA64_NUM_DBG_REGS
]; /* DBR values (cache) when not loaded */
313 unsigned long ctx_ibrs
[IA64_NUM_DBG_REGS
]; /* IBR values (cache) when not loaded */
315 pfm_counter_t ctx_pmds
[PFM_NUM_PMD_REGS
]; /* software state for PMDS */
317 unsigned long th_pmcs
[PFM_NUM_PMC_REGS
]; /* PMC thread save state */
318 unsigned long th_pmds
[PFM_NUM_PMD_REGS
]; /* PMD thread save state */
320 unsigned long ctx_saved_psr_up
; /* only contains psr.up value */
322 unsigned long ctx_last_activation
; /* context last activation number for last_cpu */
323 unsigned int ctx_last_cpu
; /* CPU id of current or last CPU used (SMP only) */
324 unsigned int ctx_cpu
; /* cpu to which perfmon is applied (system wide) */
326 int ctx_fd
; /* file descriptor used my this context */
327 pfm_ovfl_arg_t ctx_ovfl_arg
; /* argument to custom buffer format handler */
329 pfm_buffer_fmt_t
*ctx_buf_fmt
; /* buffer format callbacks */
330 void *ctx_smpl_hdr
; /* points to sampling buffer header kernel vaddr */
331 unsigned long ctx_smpl_size
; /* size of sampling buffer */
332 void *ctx_smpl_vaddr
; /* user level virtual address of smpl buffer */
334 wait_queue_head_t ctx_msgq_wait
;
335 pfm_msg_t ctx_msgq
[PFM_MAX_MSGS
];
338 struct fasync_struct
*ctx_async_queue
;
340 wait_queue_head_t ctx_zombieq
; /* termination cleanup wait queue */
344 * magic number used to verify that structure is really
347 #define PFM_IS_FILE(f) ((f)->f_op == &pfm_file_ops)
349 #define PFM_GET_CTX(t) ((pfm_context_t *)(t)->thread.pfm_context)
352 #define SET_LAST_CPU(ctx, v) (ctx)->ctx_last_cpu = (v)
353 #define GET_LAST_CPU(ctx) (ctx)->ctx_last_cpu
355 #define SET_LAST_CPU(ctx, v) do {} while(0)
356 #define GET_LAST_CPU(ctx) do {} while(0)
360 #define ctx_fl_block ctx_flags.block
361 #define ctx_fl_system ctx_flags.system
362 #define ctx_fl_using_dbreg ctx_flags.using_dbreg
363 #define ctx_fl_is_sampling ctx_flags.is_sampling
364 #define ctx_fl_excl_idle ctx_flags.excl_idle
365 #define ctx_fl_going_zombie ctx_flags.going_zombie
366 #define ctx_fl_trap_reason ctx_flags.trap_reason
367 #define ctx_fl_no_msg ctx_flags.no_msg
368 #define ctx_fl_can_restart ctx_flags.can_restart
370 #define PFM_SET_WORK_PENDING(t, v) do { (t)->thread.pfm_needs_checking = v; } while(0);
371 #define PFM_GET_WORK_PENDING(t) (t)->thread.pfm_needs_checking
374 * global information about all sessions
375 * mostly used to synchronize between system wide and per-process
378 spinlock_t pfs_lock
; /* lock the structure */
380 unsigned int pfs_task_sessions
; /* number of per task sessions */
381 unsigned int pfs_sys_sessions
; /* number of per system wide sessions */
382 unsigned int pfs_sys_use_dbregs
; /* incremented when a system wide session uses debug regs */
383 unsigned int pfs_ptrace_use_dbregs
; /* incremented when a process uses debug regs */
384 struct task_struct
*pfs_sys_session
[NR_CPUS
]; /* point to task owning a system-wide session */
388 * information about a PMC or PMD.
389 * dep_pmd[]: a bitmask of dependent PMD registers
390 * dep_pmc[]: a bitmask of dependent PMC registers
392 typedef int (*pfm_reg_check_t
)(struct task_struct
*task
, pfm_context_t
*ctx
, unsigned int cnum
, unsigned long *val
, struct pt_regs
*regs
);
396 unsigned long default_value
; /* power-on default value */
397 unsigned long reserved_mask
; /* bitmask of reserved bits */
398 pfm_reg_check_t read_check
;
399 pfm_reg_check_t write_check
;
400 unsigned long dep_pmd
[4];
401 unsigned long dep_pmc
[4];
404 /* assume cnum is a valid monitor */
405 #define PMC_PM(cnum, val) (((val) >> (pmu_conf->pmc_desc[cnum].pm_pos)) & 0x1)
408 * This structure is initialized at boot time and contains
409 * a description of the PMU main characteristics.
411 * If the probe function is defined, detection is based
412 * on its return value:
413 * - 0 means recognized PMU
414 * - anything else means not supported
415 * When the probe function is not defined, then the pmu_family field
416 * is used and it must match the host CPU family such that:
417 * - cpu->family & config->pmu_family != 0
420 unsigned long ovfl_val
; /* overflow value for counters */
422 pfm_reg_desc_t
*pmc_desc
; /* detailed PMC register dependencies descriptions */
423 pfm_reg_desc_t
*pmd_desc
; /* detailed PMD register dependencies descriptions */
425 unsigned int num_pmcs
; /* number of PMCS: computed at init time */
426 unsigned int num_pmds
; /* number of PMDS: computed at init time */
427 unsigned long impl_pmcs
[4]; /* bitmask of implemented PMCS */
428 unsigned long impl_pmds
[4]; /* bitmask of implemented PMDS */
430 char *pmu_name
; /* PMU family name */
431 unsigned int pmu_family
; /* cpuid family pattern used to identify pmu */
432 unsigned int flags
; /* pmu specific flags */
433 unsigned int num_ibrs
; /* number of IBRS: computed at init time */
434 unsigned int num_dbrs
; /* number of DBRS: computed at init time */
435 unsigned int num_counters
; /* PMC/PMD counting pairs : computed at init time */
436 int (*probe
)(void); /* customized probe routine */
437 unsigned int use_rr_dbregs
:1; /* set if debug registers used for range restriction */
442 #define PFM_PMU_IRQ_RESEND 1 /* PMU needs explicit IRQ resend */
445 * debug register related type definitions
448 unsigned long ibr_mask
:56;
449 unsigned long ibr_plm
:4;
450 unsigned long ibr_ig
:3;
451 unsigned long ibr_x
:1;
455 unsigned long dbr_mask
:56;
456 unsigned long dbr_plm
:4;
457 unsigned long dbr_ig
:2;
458 unsigned long dbr_w
:1;
459 unsigned long dbr_r
:1;
470 * perfmon command descriptions
473 int (*cmd_func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
476 unsigned int cmd_narg
;
478 int (*cmd_getsize
)(void *arg
, size_t *sz
);
481 #define PFM_CMD_FD 0x01 /* command requires a file descriptor */
482 #define PFM_CMD_ARG_READ 0x02 /* command must read argument(s) */
483 #define PFM_CMD_ARG_RW 0x04 /* command must read/write argument(s) */
484 #define PFM_CMD_STOP 0x08 /* command does not work on zombie context */
487 #define PFM_CMD_NAME(cmd) pfm_cmd_tab[(cmd)].cmd_name
488 #define PFM_CMD_READ_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_READ)
489 #define PFM_CMD_RW_ARG(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_ARG_RW)
490 #define PFM_CMD_USE_FD(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_FD)
491 #define PFM_CMD_STOPPED(cmd) (pfm_cmd_tab[(cmd)].cmd_flags & PFM_CMD_STOP)
493 #define PFM_CMD_ARG_MANY -1 /* cannot be zero */
496 unsigned long pfm_spurious_ovfl_intr_count
; /* keep track of spurious ovfl interrupts */
497 unsigned long pfm_replay_ovfl_intr_count
; /* keep track of replayed ovfl interrupts */
498 unsigned long pfm_ovfl_intr_count
; /* keep track of ovfl interrupts */
499 unsigned long pfm_ovfl_intr_cycles
; /* cycles spent processing ovfl interrupts */
500 unsigned long pfm_ovfl_intr_cycles_min
; /* min cycles spent processing ovfl interrupts */
501 unsigned long pfm_ovfl_intr_cycles_max
; /* max cycles spent processing ovfl interrupts */
502 unsigned long pfm_smpl_handler_calls
;
503 unsigned long pfm_smpl_handler_cycles
;
504 char pad
[SMP_CACHE_BYTES
] ____cacheline_aligned
;
508 * perfmon internal variables
510 static pfm_stats_t pfm_stats
[NR_CPUS
];
511 static pfm_session_t pfm_sessions
; /* global sessions information */
513 static DEFINE_SPINLOCK(pfm_alt_install_check
);
514 static pfm_intr_handler_desc_t
*pfm_alt_intr_handler
;
516 static struct proc_dir_entry
*perfmon_dir
;
517 static pfm_uuid_t pfm_null_uuid
= {0,};
519 static spinlock_t pfm_buffer_fmt_lock
;
520 static LIST_HEAD(pfm_buffer_fmt_list
);
522 static pmu_config_t
*pmu_conf
;
524 /* sysctl() controls */
525 pfm_sysctl_t pfm_sysctl
;
526 EXPORT_SYMBOL(pfm_sysctl
);
528 static struct ctl_table pfm_ctl_table
[] = {
531 .data
= &pfm_sysctl
.debug
,
532 .maxlen
= sizeof(int),
534 .proc_handler
= proc_dointvec
,
537 .procname
= "debug_ovfl",
538 .data
= &pfm_sysctl
.debug_ovfl
,
539 .maxlen
= sizeof(int),
541 .proc_handler
= proc_dointvec
,
544 .procname
= "fastctxsw",
545 .data
= &pfm_sysctl
.fastctxsw
,
546 .maxlen
= sizeof(int),
548 .proc_handler
= proc_dointvec
,
551 .procname
= "expert_mode",
552 .data
= &pfm_sysctl
.expert_mode
,
553 .maxlen
= sizeof(int),
555 .proc_handler
= proc_dointvec
,
559 static struct ctl_table pfm_sysctl_dir
[] = {
561 .procname
= "perfmon",
563 .child
= pfm_ctl_table
,
567 static struct ctl_table pfm_sysctl_root
[] = {
569 .procname
= "kernel",
571 .child
= pfm_sysctl_dir
,
575 static struct ctl_table_header
*pfm_sysctl_header
;
577 static int pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
579 #define pfm_get_cpu_var(v) __ia64_per_cpu_var(v)
580 #define pfm_get_cpu_data(a,b) per_cpu(a, b)
583 pfm_put_task(struct task_struct
*task
)
585 if (task
!= current
) put_task_struct(task
);
588 static inline unsigned long
589 pfm_protect_ctx_ctxsw(pfm_context_t
*x
)
591 spin_lock(&(x
)->ctx_lock
);
596 pfm_unprotect_ctx_ctxsw(pfm_context_t
*x
, unsigned long f
)
598 spin_unlock(&(x
)->ctx_lock
);
601 /* forward declaration */
602 static const struct dentry_operations pfmfs_dentry_operations
;
604 static int pfmfs_init_fs_context(struct fs_context
*fc
)
606 struct pseudo_fs_context
*ctx
= init_pseudo(fc
, PFMFS_MAGIC
);
609 ctx
->dops
= &pfmfs_dentry_operations
;
613 static struct file_system_type pfm_fs_type
= {
615 .init_fs_context
= pfmfs_init_fs_context
,
616 .kill_sb
= kill_anon_super
,
618 MODULE_ALIAS_FS("pfmfs");
620 DEFINE_PER_CPU(unsigned long, pfm_syst_info
);
621 DEFINE_PER_CPU(struct task_struct
*, pmu_owner
);
622 DEFINE_PER_CPU(pfm_context_t
*, pmu_ctx
);
623 DEFINE_PER_CPU(unsigned long, pmu_activation_number
);
624 EXPORT_PER_CPU_SYMBOL_GPL(pfm_syst_info
);
627 /* forward declaration */
628 static const struct file_operations pfm_file_ops
;
631 * forward declarations
634 static void pfm_lazy_save_regs (struct task_struct
*ta
);
637 void dump_pmu_state(const char *);
638 static int pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
640 #include "perfmon_itanium.h"
641 #include "perfmon_mckinley.h"
642 #include "perfmon_montecito.h"
643 #include "perfmon_generic.h"
645 static pmu_config_t
*pmu_confs
[]={
649 &pmu_conf_gen
, /* must be last */
654 static int pfm_end_notify_user(pfm_context_t
*ctx
);
657 pfm_clear_psr_pp(void)
659 ia64_rsm(IA64_PSR_PP
);
666 ia64_ssm(IA64_PSR_PP
);
671 pfm_clear_psr_up(void)
673 ia64_rsm(IA64_PSR_UP
);
680 ia64_ssm(IA64_PSR_UP
);
684 static inline unsigned long
688 tmp
= ia64_getreg(_IA64_REG_PSR
);
694 pfm_set_psr_l(unsigned long val
)
696 ia64_setreg(_IA64_REG_PSR_L
, val
);
708 pfm_unfreeze_pmu(void)
715 pfm_restore_ibrs(unsigned long *ibrs
, unsigned int nibrs
)
719 for (i
=0; i
< nibrs
; i
++) {
720 ia64_set_ibr(i
, ibrs
[i
]);
721 ia64_dv_serialize_instruction();
727 pfm_restore_dbrs(unsigned long *dbrs
, unsigned int ndbrs
)
731 for (i
=0; i
< ndbrs
; i
++) {
732 ia64_set_dbr(i
, dbrs
[i
]);
733 ia64_dv_serialize_data();
739 * PMD[i] must be a counter. no check is made
741 static inline unsigned long
742 pfm_read_soft_counter(pfm_context_t
*ctx
, int i
)
744 return ctx
->ctx_pmds
[i
].val
+ (ia64_get_pmd(i
) & pmu_conf
->ovfl_val
);
748 * PMD[i] must be a counter. no check is made
751 pfm_write_soft_counter(pfm_context_t
*ctx
, int i
, unsigned long val
)
753 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
755 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
757 * writing to unimplemented part is ignore, so we do not need to
760 ia64_set_pmd(i
, val
& ovfl_val
);
764 pfm_get_new_msg(pfm_context_t
*ctx
)
768 next
= (ctx
->ctx_msgq_tail
+1) % PFM_MAX_MSGS
;
770 DPRINT(("ctx_fd=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
771 if (next
== ctx
->ctx_msgq_head
) return NULL
;
773 idx
= ctx
->ctx_msgq_tail
;
774 ctx
->ctx_msgq_tail
= next
;
776 DPRINT(("ctx=%p head=%d tail=%d msg=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, idx
));
778 return ctx
->ctx_msgq
+idx
;
782 pfm_get_next_msg(pfm_context_t
*ctx
)
786 DPRINT(("ctx=%p head=%d tail=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
788 if (PFM_CTXQ_EMPTY(ctx
)) return NULL
;
793 msg
= ctx
->ctx_msgq
+ctx
->ctx_msgq_head
;
798 ctx
->ctx_msgq_head
= (ctx
->ctx_msgq_head
+1) % PFM_MAX_MSGS
;
800 DPRINT(("ctx=%p head=%d tail=%d type=%d\n", ctx
, ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
, msg
->pfm_gen_msg
.msg_type
));
806 pfm_reset_msgq(pfm_context_t
*ctx
)
808 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
809 DPRINT(("ctx=%p msgq reset\n", ctx
));
812 static pfm_context_t
*
813 pfm_context_alloc(int ctx_flags
)
818 * allocate context descriptor
819 * must be able to free with interrupts disabled
821 ctx
= kzalloc(sizeof(pfm_context_t
), GFP_KERNEL
);
823 DPRINT(("alloc ctx @%p\n", ctx
));
826 * init context protection lock
828 spin_lock_init(&ctx
->ctx_lock
);
831 * context is unloaded
833 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
836 * initialization of context's flags
838 ctx
->ctx_fl_block
= (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) ? 1 : 0;
839 ctx
->ctx_fl_system
= (ctx_flags
& PFM_FL_SYSTEM_WIDE
) ? 1: 0;
840 ctx
->ctx_fl_no_msg
= (ctx_flags
& PFM_FL_OVFL_NO_MSG
) ? 1: 0;
842 * will move to set properties
843 * ctx->ctx_fl_excl_idle = (ctx_flags & PFM_FL_EXCL_IDLE) ? 1: 0;
847 * init restart semaphore to locked
849 init_completion(&ctx
->ctx_restart_done
);
852 * activation is used in SMP only
854 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
855 SET_LAST_CPU(ctx
, -1);
858 * initialize notification message queue
860 ctx
->ctx_msgq_head
= ctx
->ctx_msgq_tail
= 0;
861 init_waitqueue_head(&ctx
->ctx_msgq_wait
);
862 init_waitqueue_head(&ctx
->ctx_zombieq
);
869 pfm_context_free(pfm_context_t
*ctx
)
872 DPRINT(("free ctx @%p\n", ctx
));
878 pfm_mask_monitoring(struct task_struct
*task
)
880 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
881 unsigned long mask
, val
, ovfl_mask
;
884 DPRINT_ovfl(("masking monitoring for [%d]\n", task_pid_nr(task
)));
886 ovfl_mask
= pmu_conf
->ovfl_val
;
888 * monitoring can only be masked as a result of a valid
889 * counter overflow. In UP, it means that the PMU still
890 * has an owner. Note that the owner can be different
891 * from the current task. However the PMU state belongs
893 * In SMP, a valid overflow only happens when task is
894 * current. Therefore if we come here, we know that
895 * the PMU state belongs to the current task, therefore
896 * we can access the live registers.
898 * So in both cases, the live register contains the owner's
899 * state. We can ONLY touch the PMU registers and NOT the PSR.
901 * As a consequence to this call, the ctx->th_pmds[] array
902 * contains stale information which must be ignored
903 * when context is reloaded AND monitoring is active (see
906 mask
= ctx
->ctx_used_pmds
[0];
907 for (i
= 0; mask
; i
++, mask
>>=1) {
908 /* skip non used pmds */
909 if ((mask
& 0x1) == 0) continue;
910 val
= ia64_get_pmd(i
);
912 if (PMD_IS_COUNTING(i
)) {
914 * we rebuild the full 64 bit value of the counter
916 ctx
->ctx_pmds
[i
].val
+= (val
& ovfl_mask
);
918 ctx
->ctx_pmds
[i
].val
= val
;
920 DPRINT_ovfl(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
922 ctx
->ctx_pmds
[i
].val
,
926 * mask monitoring by setting the privilege level to 0
927 * we cannot use psr.pp/psr.up for this, it is controlled by
930 * if task is current, modify actual registers, otherwise modify
931 * thread save state, i.e., what will be restored in pfm_load_regs()
933 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
934 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
935 if ((mask
& 0x1) == 0UL) continue;
936 ia64_set_pmc(i
, ctx
->th_pmcs
[i
] & ~0xfUL
);
937 ctx
->th_pmcs
[i
] &= ~0xfUL
;
938 DPRINT_ovfl(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
941 * make all of this visible
947 * must always be done with task == current
949 * context must be in MASKED state when calling
952 pfm_restore_monitoring(struct task_struct
*task
)
954 pfm_context_t
*ctx
= PFM_GET_CTX(task
);
955 unsigned long mask
, ovfl_mask
;
956 unsigned long psr
, val
;
959 is_system
= ctx
->ctx_fl_system
;
960 ovfl_mask
= pmu_conf
->ovfl_val
;
962 if (task
!= current
) {
963 printk(KERN_ERR
"perfmon.%d: invalid task[%d] current[%d]\n", __LINE__
, task_pid_nr(task
), task_pid_nr(current
));
966 if (ctx
->ctx_state
!= PFM_CTX_MASKED
) {
967 printk(KERN_ERR
"perfmon.%d: task[%d] current[%d] invalid state=%d\n", __LINE__
,
968 task_pid_nr(task
), task_pid_nr(current
), ctx
->ctx_state
);
973 * monitoring is masked via the PMC.
974 * As we restore their value, we do not want each counter to
975 * restart right away. We stop monitoring using the PSR,
976 * restore the PMC (and PMD) and then re-establish the psr
977 * as it was. Note that there can be no pending overflow at
978 * this point, because monitoring was MASKED.
980 * system-wide session are pinned and self-monitoring
982 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
984 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
990 * first, we restore the PMD
992 mask
= ctx
->ctx_used_pmds
[0];
993 for (i
= 0; mask
; i
++, mask
>>=1) {
994 /* skip non used pmds */
995 if ((mask
& 0x1) == 0) continue;
997 if (PMD_IS_COUNTING(i
)) {
999 * we split the 64bit value according to
1002 val
= ctx
->ctx_pmds
[i
].val
& ovfl_mask
;
1003 ctx
->ctx_pmds
[i
].val
&= ~ovfl_mask
;
1005 val
= ctx
->ctx_pmds
[i
].val
;
1007 ia64_set_pmd(i
, val
);
1009 DPRINT(("pmd[%d]=0x%lx hw_pmd=0x%lx\n",
1011 ctx
->ctx_pmds
[i
].val
,
1017 mask
= ctx
->ctx_used_monitors
[0] >> PMU_FIRST_COUNTER
;
1018 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>=1) {
1019 if ((mask
& 0x1) == 0UL) continue;
1020 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1021 ia64_set_pmc(i
, ctx
->th_pmcs
[i
]);
1022 DPRINT(("[%d] pmc[%d]=0x%lx\n",
1023 task_pid_nr(task
), i
, ctx
->th_pmcs
[i
]));
1028 * must restore DBR/IBR because could be modified while masked
1029 * XXX: need to optimize
1031 if (ctx
->ctx_fl_using_dbreg
) {
1032 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
1033 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
1039 if (is_system
&& (PFM_CPUINFO_GET() & PFM_CPUINFO_DCR_PP
)) {
1041 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
1048 pfm_save_pmds(unsigned long *pmds
, unsigned long mask
)
1054 for (i
=0; mask
; i
++, mask
>>=1) {
1055 if (mask
& 0x1) pmds
[i
] = ia64_get_pmd(i
);
1060 * reload from thread state (used for ctxw only)
1063 pfm_restore_pmds(unsigned long *pmds
, unsigned long mask
)
1066 unsigned long val
, ovfl_val
= pmu_conf
->ovfl_val
;
1068 for (i
=0; mask
; i
++, mask
>>=1) {
1069 if ((mask
& 0x1) == 0) continue;
1070 val
= PMD_IS_COUNTING(i
) ? pmds
[i
] & ovfl_val
: pmds
[i
];
1071 ia64_set_pmd(i
, val
);
1077 * propagate PMD from context to thread-state
1080 pfm_copy_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
1082 unsigned long ovfl_val
= pmu_conf
->ovfl_val
;
1083 unsigned long mask
= ctx
->ctx_all_pmds
[0];
1087 DPRINT(("mask=0x%lx\n", mask
));
1089 for (i
=0; mask
; i
++, mask
>>=1) {
1091 val
= ctx
->ctx_pmds
[i
].val
;
1094 * We break up the 64 bit value into 2 pieces
1095 * the lower bits go to the machine state in the
1096 * thread (will be reloaded on ctxsw in).
1097 * The upper part stays in the soft-counter.
1099 if (PMD_IS_COUNTING(i
)) {
1100 ctx
->ctx_pmds
[i
].val
= val
& ~ovfl_val
;
1103 ctx
->th_pmds
[i
] = val
;
1105 DPRINT(("pmd[%d]=0x%lx soft_val=0x%lx\n",
1108 ctx
->ctx_pmds
[i
].val
));
1113 * propagate PMC from context to thread-state
1116 pfm_copy_pmcs(struct task_struct
*task
, pfm_context_t
*ctx
)
1118 unsigned long mask
= ctx
->ctx_all_pmcs
[0];
1121 DPRINT(("mask=0x%lx\n", mask
));
1123 for (i
=0; mask
; i
++, mask
>>=1) {
1124 /* masking 0 with ovfl_val yields 0 */
1125 ctx
->th_pmcs
[i
] = ctx
->ctx_pmcs
[i
];
1126 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->th_pmcs
[i
]));
1133 pfm_restore_pmcs(unsigned long *pmcs
, unsigned long mask
)
1137 for (i
=0; mask
; i
++, mask
>>=1) {
1138 if ((mask
& 0x1) == 0) continue;
1139 ia64_set_pmc(i
, pmcs
[i
]);
1145 pfm_uuid_cmp(pfm_uuid_t a
, pfm_uuid_t b
)
1147 return memcmp(a
, b
, sizeof(pfm_uuid_t
));
1151 pfm_buf_fmt_exit(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, struct pt_regs
*regs
)
1154 if (fmt
->fmt_exit
) ret
= (*fmt
->fmt_exit
)(task
, buf
, regs
);
1159 pfm_buf_fmt_getsize(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
, int cpu
, void *arg
, unsigned long *size
)
1162 if (fmt
->fmt_getsize
) ret
= (*fmt
->fmt_getsize
)(task
, flags
, cpu
, arg
, size
);
1168 pfm_buf_fmt_validate(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, unsigned int flags
,
1172 if (fmt
->fmt_validate
) ret
= (*fmt
->fmt_validate
)(task
, flags
, cpu
, arg
);
1177 pfm_buf_fmt_init(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, void *buf
, unsigned int flags
,
1181 if (fmt
->fmt_init
) ret
= (*fmt
->fmt_init
)(task
, buf
, flags
, cpu
, arg
);
1186 pfm_buf_fmt_restart(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1189 if (fmt
->fmt_restart
) ret
= (*fmt
->fmt_restart
)(task
, ctrl
, buf
, regs
);
1194 pfm_buf_fmt_restart_active(pfm_buffer_fmt_t
*fmt
, struct task_struct
*task
, pfm_ovfl_ctrl_t
*ctrl
, void *buf
, struct pt_regs
*regs
)
1197 if (fmt
->fmt_restart_active
) ret
= (*fmt
->fmt_restart_active
)(task
, ctrl
, buf
, regs
);
1201 static pfm_buffer_fmt_t
*
1202 __pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1204 struct list_head
* pos
;
1205 pfm_buffer_fmt_t
* entry
;
1207 list_for_each(pos
, &pfm_buffer_fmt_list
) {
1208 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
1209 if (pfm_uuid_cmp(uuid
, entry
->fmt_uuid
) == 0)
1216 * find a buffer format based on its uuid
1218 static pfm_buffer_fmt_t
*
1219 pfm_find_buffer_fmt(pfm_uuid_t uuid
)
1221 pfm_buffer_fmt_t
* fmt
;
1222 spin_lock(&pfm_buffer_fmt_lock
);
1223 fmt
= __pfm_find_buffer_fmt(uuid
);
1224 spin_unlock(&pfm_buffer_fmt_lock
);
1229 pfm_register_buffer_fmt(pfm_buffer_fmt_t
*fmt
)
1233 /* some sanity checks */
1234 if (fmt
== NULL
|| fmt
->fmt_name
== NULL
) return -EINVAL
;
1236 /* we need at least a handler */
1237 if (fmt
->fmt_handler
== NULL
) return -EINVAL
;
1240 * XXX: need check validity of fmt_arg_size
1243 spin_lock(&pfm_buffer_fmt_lock
);
1245 if (__pfm_find_buffer_fmt(fmt
->fmt_uuid
)) {
1246 printk(KERN_ERR
"perfmon: duplicate sampling format: %s\n", fmt
->fmt_name
);
1250 list_add(&fmt
->fmt_list
, &pfm_buffer_fmt_list
);
1251 printk(KERN_INFO
"perfmon: added sampling format %s\n", fmt
->fmt_name
);
1254 spin_unlock(&pfm_buffer_fmt_lock
);
1257 EXPORT_SYMBOL(pfm_register_buffer_fmt
);
1260 pfm_unregister_buffer_fmt(pfm_uuid_t uuid
)
1262 pfm_buffer_fmt_t
*fmt
;
1265 spin_lock(&pfm_buffer_fmt_lock
);
1267 fmt
= __pfm_find_buffer_fmt(uuid
);
1269 printk(KERN_ERR
"perfmon: cannot unregister format, not found\n");
1273 list_del_init(&fmt
->fmt_list
);
1274 printk(KERN_INFO
"perfmon: removed sampling format: %s\n", fmt
->fmt_name
);
1277 spin_unlock(&pfm_buffer_fmt_lock
);
1281 EXPORT_SYMBOL(pfm_unregister_buffer_fmt
);
1284 pfm_reserve_session(struct task_struct
*task
, int is_syswide
, unsigned int cpu
)
1286 unsigned long flags
;
1288 * validity checks on cpu_mask have been done upstream
1292 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1293 pfm_sessions
.pfs_sys_sessions
,
1294 pfm_sessions
.pfs_task_sessions
,
1295 pfm_sessions
.pfs_sys_use_dbregs
,
1301 * cannot mix system wide and per-task sessions
1303 if (pfm_sessions
.pfs_task_sessions
> 0UL) {
1304 DPRINT(("system wide not possible, %u conflicting task_sessions\n",
1305 pfm_sessions
.pfs_task_sessions
));
1309 if (pfm_sessions
.pfs_sys_session
[cpu
]) goto error_conflict
;
1311 DPRINT(("reserving system wide session on CPU%u currently on CPU%u\n", cpu
, smp_processor_id()));
1313 pfm_sessions
.pfs_sys_session
[cpu
] = task
;
1315 pfm_sessions
.pfs_sys_sessions
++ ;
1318 if (pfm_sessions
.pfs_sys_sessions
) goto abort
;
1319 pfm_sessions
.pfs_task_sessions
++;
1322 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1323 pfm_sessions
.pfs_sys_sessions
,
1324 pfm_sessions
.pfs_task_sessions
,
1325 pfm_sessions
.pfs_sys_use_dbregs
,
1330 * Force idle() into poll mode
1332 cpu_idle_poll_ctrl(true);
1339 DPRINT(("system wide not possible, conflicting session [%d] on CPU%d\n",
1340 task_pid_nr(pfm_sessions
.pfs_sys_session
[cpu
]),
1350 pfm_unreserve_session(pfm_context_t
*ctx
, int is_syswide
, unsigned int cpu
)
1352 unsigned long flags
;
1354 * validity checks on cpu_mask have been done upstream
1358 DPRINT(("in sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1359 pfm_sessions
.pfs_sys_sessions
,
1360 pfm_sessions
.pfs_task_sessions
,
1361 pfm_sessions
.pfs_sys_use_dbregs
,
1367 pfm_sessions
.pfs_sys_session
[cpu
] = NULL
;
1369 * would not work with perfmon+more than one bit in cpu_mask
1371 if (ctx
&& ctx
->ctx_fl_using_dbreg
) {
1372 if (pfm_sessions
.pfs_sys_use_dbregs
== 0) {
1373 printk(KERN_ERR
"perfmon: invalid release for ctx %p sys_use_dbregs=0\n", ctx
);
1375 pfm_sessions
.pfs_sys_use_dbregs
--;
1378 pfm_sessions
.pfs_sys_sessions
--;
1380 pfm_sessions
.pfs_task_sessions
--;
1382 DPRINT(("out sys_sessions=%u task_sessions=%u dbregs=%u syswide=%d cpu=%u\n",
1383 pfm_sessions
.pfs_sys_sessions
,
1384 pfm_sessions
.pfs_task_sessions
,
1385 pfm_sessions
.pfs_sys_use_dbregs
,
1389 /* Undo forced polling. Last session reenables pal_halt */
1390 cpu_idle_poll_ctrl(false);
1398 * removes virtual mapping of the sampling buffer.
1399 * IMPORTANT: cannot be called with interrupts disable, e.g. inside
1400 * a PROTECT_CTX() section.
1403 pfm_remove_smpl_mapping(void *vaddr
, unsigned long size
)
1405 struct task_struct
*task
= current
;
1409 if (task
->mm
== NULL
|| size
== 0UL || vaddr
== NULL
) {
1410 printk(KERN_ERR
"perfmon: pfm_remove_smpl_mapping [%d] invalid context mm=%p\n", task_pid_nr(task
), task
->mm
);
1414 DPRINT(("smpl_vaddr=%p size=%lu\n", vaddr
, size
));
1417 * does the actual unmapping
1419 r
= vm_munmap((unsigned long)vaddr
, size
);
1422 printk(KERN_ERR
"perfmon: [%d] unable to unmap sampling buffer @%p size=%lu\n", task_pid_nr(task
), vaddr
, size
);
1425 DPRINT(("do_unmap(%p, %lu)=%d\n", vaddr
, size
, r
));
1431 * free actual physical storage used by sampling buffer
1435 pfm_free_smpl_buffer(pfm_context_t
*ctx
)
1437 pfm_buffer_fmt_t
*fmt
;
1439 if (ctx
->ctx_smpl_hdr
== NULL
) goto invalid_free
;
1442 * we won't use the buffer format anymore
1444 fmt
= ctx
->ctx_buf_fmt
;
1446 DPRINT(("sampling buffer @%p size %lu vaddr=%p\n",
1449 ctx
->ctx_smpl_vaddr
));
1451 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1456 vfree(ctx
->ctx_smpl_hdr
);
1458 ctx
->ctx_smpl_hdr
= NULL
;
1459 ctx
->ctx_smpl_size
= 0UL;
1464 printk(KERN_ERR
"perfmon: pfm_free_smpl_buffer [%d] no buffer\n", task_pid_nr(current
));
1470 pfm_exit_smpl_buffer(pfm_buffer_fmt_t
*fmt
)
1472 if (fmt
== NULL
) return;
1474 pfm_buf_fmt_exit(fmt
, current
, NULL
, NULL
);
1479 * pfmfs should _never_ be mounted by userland - too much of security hassle,
1480 * no real gain from having the whole whorehouse mounted. So we don't need
1481 * any operations on the root directory. However, we need a non-trivial
1482 * d_name - pfm: will go nicely and kill the special-casing in procfs.
1484 static struct vfsmount
*pfmfs_mnt __read_mostly
;
1489 int err
= register_filesystem(&pfm_fs_type
);
1491 pfmfs_mnt
= kern_mount(&pfm_fs_type
);
1492 err
= PTR_ERR(pfmfs_mnt
);
1493 if (IS_ERR(pfmfs_mnt
))
1494 unregister_filesystem(&pfm_fs_type
);
1502 pfm_read(struct file
*filp
, char __user
*buf
, size_t size
, loff_t
*ppos
)
1507 unsigned long flags
;
1508 DECLARE_WAITQUEUE(wait
, current
);
1509 if (PFM_IS_FILE(filp
) == 0) {
1510 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1514 ctx
= filp
->private_data
;
1516 printk(KERN_ERR
"perfmon: pfm_read: NULL ctx [%d]\n", task_pid_nr(current
));
1521 * check even when there is no message
1523 if (size
< sizeof(pfm_msg_t
)) {
1524 DPRINT(("message is too small ctx=%p (>=%ld)\n", ctx
, sizeof(pfm_msg_t
)));
1528 PROTECT_CTX(ctx
, flags
);
1531 * put ourselves on the wait queue
1533 add_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1541 set_current_state(TASK_INTERRUPTIBLE
);
1543 DPRINT(("head=%d tail=%d\n", ctx
->ctx_msgq_head
, ctx
->ctx_msgq_tail
));
1546 if(PFM_CTXQ_EMPTY(ctx
) == 0) break;
1548 UNPROTECT_CTX(ctx
, flags
);
1551 * check non-blocking read
1554 if(filp
->f_flags
& O_NONBLOCK
) break;
1557 * check pending signals
1559 if(signal_pending(current
)) {
1564 * no message, so wait
1568 PROTECT_CTX(ctx
, flags
);
1570 DPRINT(("[%d] back to running ret=%ld\n", task_pid_nr(current
), ret
));
1571 set_current_state(TASK_RUNNING
);
1572 remove_wait_queue(&ctx
->ctx_msgq_wait
, &wait
);
1574 if (ret
< 0) goto abort
;
1577 msg
= pfm_get_next_msg(ctx
);
1579 printk(KERN_ERR
"perfmon: pfm_read no msg for ctx=%p [%d]\n", ctx
, task_pid_nr(current
));
1583 DPRINT(("fd=%d type=%d\n", msg
->pfm_gen_msg
.msg_ctx_fd
, msg
->pfm_gen_msg
.msg_type
));
1586 if(copy_to_user(buf
, msg
, sizeof(pfm_msg_t
)) == 0) ret
= sizeof(pfm_msg_t
);
1589 UNPROTECT_CTX(ctx
, flags
);
1595 pfm_write(struct file
*file
, const char __user
*ubuf
,
1596 size_t size
, loff_t
*ppos
)
1598 DPRINT(("pfm_write called\n"));
1603 pfm_poll(struct file
*filp
, poll_table
* wait
)
1606 unsigned long flags
;
1609 if (PFM_IS_FILE(filp
) == 0) {
1610 printk(KERN_ERR
"perfmon: pfm_poll: bad magic [%d]\n", task_pid_nr(current
));
1614 ctx
= filp
->private_data
;
1616 printk(KERN_ERR
"perfmon: pfm_poll: NULL ctx [%d]\n", task_pid_nr(current
));
1621 DPRINT(("pfm_poll ctx_fd=%d before poll_wait\n", ctx
->ctx_fd
));
1623 poll_wait(filp
, &ctx
->ctx_msgq_wait
, wait
);
1625 PROTECT_CTX(ctx
, flags
);
1627 if (PFM_CTXQ_EMPTY(ctx
) == 0)
1628 mask
= EPOLLIN
| EPOLLRDNORM
;
1630 UNPROTECT_CTX(ctx
, flags
);
1632 DPRINT(("pfm_poll ctx_fd=%d mask=0x%x\n", ctx
->ctx_fd
, mask
));
1638 pfm_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
1640 DPRINT(("pfm_ioctl called\n"));
1645 * interrupt cannot be masked when coming here
1648 pfm_do_fasync(int fd
, struct file
*filp
, pfm_context_t
*ctx
, int on
)
1652 ret
= fasync_helper (fd
, filp
, on
, &ctx
->ctx_async_queue
);
1654 DPRINT(("pfm_fasync called by [%d] on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1655 task_pid_nr(current
),
1658 ctx
->ctx_async_queue
, ret
));
1664 pfm_fasync(int fd
, struct file
*filp
, int on
)
1669 if (PFM_IS_FILE(filp
) == 0) {
1670 printk(KERN_ERR
"perfmon: pfm_fasync bad magic [%d]\n", task_pid_nr(current
));
1674 ctx
= filp
->private_data
;
1676 printk(KERN_ERR
"perfmon: pfm_fasync NULL ctx [%d]\n", task_pid_nr(current
));
1680 * we cannot mask interrupts during this call because this may
1681 * may go to sleep if memory is not readily avalaible.
1683 * We are protected from the conetxt disappearing by the get_fd()/put_fd()
1684 * done in caller. Serialization of this function is ensured by caller.
1686 ret
= pfm_do_fasync(fd
, filp
, ctx
, on
);
1689 DPRINT(("pfm_fasync called on ctx_fd=%d on=%d async_queue=%p ret=%d\n",
1692 ctx
->ctx_async_queue
, ret
));
1699 * this function is exclusively called from pfm_close().
1700 * The context is not protected at that time, nor are interrupts
1701 * on the remote CPU. That's necessary to avoid deadlocks.
1704 pfm_syswide_force_stop(void *info
)
1706 pfm_context_t
*ctx
= (pfm_context_t
*)info
;
1707 struct pt_regs
*regs
= task_pt_regs(current
);
1708 struct task_struct
*owner
;
1709 unsigned long flags
;
1712 if (ctx
->ctx_cpu
!= smp_processor_id()) {
1713 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop for CPU%d but on CPU%d\n",
1715 smp_processor_id());
1718 owner
= GET_PMU_OWNER();
1719 if (owner
!= ctx
->ctx_task
) {
1720 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected owner [%d] instead of [%d]\n",
1722 task_pid_nr(owner
), task_pid_nr(ctx
->ctx_task
));
1725 if (GET_PMU_CTX() != ctx
) {
1726 printk(KERN_ERR
"perfmon: pfm_syswide_force_stop CPU%d unexpected ctx %p instead of %p\n",
1728 GET_PMU_CTX(), ctx
);
1732 DPRINT(("on CPU%d forcing system wide stop for [%d]\n", smp_processor_id(), task_pid_nr(ctx
->ctx_task
)));
1734 * the context is already protected in pfm_close(), we simply
1735 * need to mask interrupts to avoid a PMU interrupt race on
1738 local_irq_save(flags
);
1740 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
1742 DPRINT(("context_unload returned %d\n", ret
));
1746 * unmask interrupts, PMU interrupts are now spurious here
1748 local_irq_restore(flags
);
1752 pfm_syswide_cleanup_other_cpu(pfm_context_t
*ctx
)
1756 DPRINT(("calling CPU%d for cleanup\n", ctx
->ctx_cpu
));
1757 ret
= smp_call_function_single(ctx
->ctx_cpu
, pfm_syswide_force_stop
, ctx
, 1);
1758 DPRINT(("called CPU%d for cleanup ret=%d\n", ctx
->ctx_cpu
, ret
));
1760 #endif /* CONFIG_SMP */
1763 * called for each close(). Partially free resources.
1764 * When caller is self-monitoring, the context is unloaded.
1767 pfm_flush(struct file
*filp
, fl_owner_t id
)
1770 struct task_struct
*task
;
1771 struct pt_regs
*regs
;
1772 unsigned long flags
;
1773 unsigned long smpl_buf_size
= 0UL;
1774 void *smpl_buf_vaddr
= NULL
;
1775 int state
, is_system
;
1777 if (PFM_IS_FILE(filp
) == 0) {
1778 DPRINT(("bad magic for\n"));
1782 ctx
= filp
->private_data
;
1784 printk(KERN_ERR
"perfmon: pfm_flush: NULL ctx [%d]\n", task_pid_nr(current
));
1789 * remove our file from the async queue, if we use this mode.
1790 * This can be done without the context being protected. We come
1791 * here when the context has become unreachable by other tasks.
1793 * We may still have active monitoring at this point and we may
1794 * end up in pfm_overflow_handler(). However, fasync_helper()
1795 * operates with interrupts disabled and it cleans up the
1796 * queue. If the PMU handler is called prior to entering
1797 * fasync_helper() then it will send a signal. If it is
1798 * invoked after, it will find an empty queue and no
1799 * signal will be sent. In both case, we are safe
1801 PROTECT_CTX(ctx
, flags
);
1803 state
= ctx
->ctx_state
;
1804 is_system
= ctx
->ctx_fl_system
;
1806 task
= PFM_CTX_TASK(ctx
);
1807 regs
= task_pt_regs(task
);
1809 DPRINT(("ctx_state=%d is_current=%d\n",
1811 task
== current
? 1 : 0));
1814 * if state == UNLOADED, then task is NULL
1818 * we must stop and unload because we are losing access to the context.
1820 if (task
== current
) {
1823 * the task IS the owner but it migrated to another CPU: that's bad
1824 * but we must handle this cleanly. Unfortunately, the kernel does
1825 * not provide a mechanism to block migration (while the context is loaded).
1827 * We need to release the resource on the ORIGINAL cpu.
1829 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
1831 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
1833 * keep context protected but unmask interrupt for IPI
1835 local_irq_restore(flags
);
1837 pfm_syswide_cleanup_other_cpu(ctx
);
1840 * restore interrupt masking
1842 local_irq_save(flags
);
1845 * context is unloaded at this point
1848 #endif /* CONFIG_SMP */
1851 DPRINT(("forcing unload\n"));
1853 * stop and unload, returning with state UNLOADED
1854 * and session unreserved.
1856 pfm_context_unload(ctx
, NULL
, 0, regs
);
1858 DPRINT(("ctx_state=%d\n", ctx
->ctx_state
));
1863 * remove virtual mapping, if any, for the calling task.
1864 * cannot reset ctx field until last user is calling close().
1866 * ctx_smpl_vaddr must never be cleared because it is needed
1867 * by every task with access to the context
1869 * When called from do_exit(), the mm context is gone already, therefore
1870 * mm is NULL, i.e., the VMA is already gone and we do not have to
1873 if (ctx
->ctx_smpl_vaddr
&& current
->mm
) {
1874 smpl_buf_vaddr
= ctx
->ctx_smpl_vaddr
;
1875 smpl_buf_size
= ctx
->ctx_smpl_size
;
1878 UNPROTECT_CTX(ctx
, flags
);
1881 * if there was a mapping, then we systematically remove it
1882 * at this point. Cannot be done inside critical section
1883 * because some VM function reenables interrupts.
1886 if (smpl_buf_vaddr
) pfm_remove_smpl_mapping(smpl_buf_vaddr
, smpl_buf_size
);
1891 * called either on explicit close() or from exit_files().
1892 * Only the LAST user of the file gets to this point, i.e., it is
1895 * IMPORTANT: we get called ONLY when the refcnt on the file gets to zero
1896 * (fput()),i.e, last task to access the file. Nobody else can access the
1897 * file at this point.
1899 * When called from exit_files(), the VMA has been freed because exit_mm()
1900 * is executed before exit_files().
1902 * When called from exit_files(), the current task is not yet ZOMBIE but we
1903 * flush the PMU state to the context.
1906 pfm_close(struct inode
*inode
, struct file
*filp
)
1909 struct task_struct
*task
;
1910 struct pt_regs
*regs
;
1911 DECLARE_WAITQUEUE(wait
, current
);
1912 unsigned long flags
;
1913 unsigned long smpl_buf_size
= 0UL;
1914 void *smpl_buf_addr
= NULL
;
1915 int free_possible
= 1;
1916 int state
, is_system
;
1918 DPRINT(("pfm_close called private=%p\n", filp
->private_data
));
1920 if (PFM_IS_FILE(filp
) == 0) {
1921 DPRINT(("bad magic\n"));
1925 ctx
= filp
->private_data
;
1927 printk(KERN_ERR
"perfmon: pfm_close: NULL ctx [%d]\n", task_pid_nr(current
));
1931 PROTECT_CTX(ctx
, flags
);
1933 state
= ctx
->ctx_state
;
1934 is_system
= ctx
->ctx_fl_system
;
1936 task
= PFM_CTX_TASK(ctx
);
1937 regs
= task_pt_regs(task
);
1939 DPRINT(("ctx_state=%d is_current=%d\n",
1941 task
== current
? 1 : 0));
1944 * if task == current, then pfm_flush() unloaded the context
1946 if (state
== PFM_CTX_UNLOADED
) goto doit
;
1949 * context is loaded/masked and task != current, we need to
1950 * either force an unload or go zombie
1954 * The task is currently blocked or will block after an overflow.
1955 * we must force it to wakeup to get out of the
1956 * MASKED state and transition to the unloaded state by itself.
1958 * This situation is only possible for per-task mode
1960 if (state
== PFM_CTX_MASKED
&& CTX_OVFL_NOBLOCK(ctx
) == 0) {
1963 * set a "partial" zombie state to be checked
1964 * upon return from down() in pfm_handle_work().
1966 * We cannot use the ZOMBIE state, because it is checked
1967 * by pfm_load_regs() which is called upon wakeup from down().
1968 * In such case, it would free the context and then we would
1969 * return to pfm_handle_work() which would access the
1970 * stale context. Instead, we set a flag invisible to pfm_load_regs()
1971 * but visible to pfm_handle_work().
1973 * For some window of time, we have a zombie context with
1974 * ctx_state = MASKED and not ZOMBIE
1976 ctx
->ctx_fl_going_zombie
= 1;
1979 * force task to wake up from MASKED state
1981 complete(&ctx
->ctx_restart_done
);
1983 DPRINT(("waking up ctx_state=%d\n", state
));
1986 * put ourself to sleep waiting for the other
1987 * task to report completion
1989 * the context is protected by mutex, therefore there
1990 * is no risk of being notified of completion before
1991 * begin actually on the waitq.
1993 set_current_state(TASK_INTERRUPTIBLE
);
1994 add_wait_queue(&ctx
->ctx_zombieq
, &wait
);
1996 UNPROTECT_CTX(ctx
, flags
);
1999 * XXX: check for signals :
2000 * - ok for explicit close
2001 * - not ok when coming from exit_files()
2006 PROTECT_CTX(ctx
, flags
);
2009 remove_wait_queue(&ctx
->ctx_zombieq
, &wait
);
2010 set_current_state(TASK_RUNNING
);
2013 * context is unloaded at this point
2015 DPRINT(("after zombie wakeup ctx_state=%d for\n", state
));
2017 else if (task
!= current
) {
2020 * switch context to zombie state
2022 ctx
->ctx_state
= PFM_CTX_ZOMBIE
;
2024 DPRINT(("zombie ctx for [%d]\n", task_pid_nr(task
)));
2026 * cannot free the context on the spot. deferred until
2027 * the task notices the ZOMBIE state
2031 pfm_context_unload(ctx
, NULL
, 0, regs
);
2036 /* reload state, may have changed during opening of critical section */
2037 state
= ctx
->ctx_state
;
2040 * the context is still attached to a task (possibly current)
2041 * we cannot destroy it right now
2045 * we must free the sampling buffer right here because
2046 * we cannot rely on it being cleaned up later by the
2047 * monitored task. It is not possible to free vmalloc'ed
2048 * memory in pfm_load_regs(). Instead, we remove the buffer
2049 * now. should there be subsequent PMU overflow originally
2050 * meant for sampling, the will be converted to spurious
2051 * and that's fine because the monitoring tools is gone anyway.
2053 if (ctx
->ctx_smpl_hdr
) {
2054 smpl_buf_addr
= ctx
->ctx_smpl_hdr
;
2055 smpl_buf_size
= ctx
->ctx_smpl_size
;
2056 /* no more sampling */
2057 ctx
->ctx_smpl_hdr
= NULL
;
2058 ctx
->ctx_fl_is_sampling
= 0;
2061 DPRINT(("ctx_state=%d free_possible=%d addr=%p size=%lu\n",
2067 if (smpl_buf_addr
) pfm_exit_smpl_buffer(ctx
->ctx_buf_fmt
);
2070 * UNLOADED that the session has already been unreserved.
2072 if (state
== PFM_CTX_ZOMBIE
) {
2073 pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, ctx
->ctx_cpu
);
2077 * disconnect file descriptor from context must be done
2080 filp
->private_data
= NULL
;
2083 * if we free on the spot, the context is now completely unreachable
2084 * from the callers side. The monitored task side is also cut, so we
2087 * If we have a deferred free, only the caller side is disconnected.
2089 UNPROTECT_CTX(ctx
, flags
);
2092 * All memory free operations (especially for vmalloc'ed memory)
2093 * MUST be done with interrupts ENABLED.
2095 vfree(smpl_buf_addr
);
2098 * return the memory used by the context
2100 if (free_possible
) pfm_context_free(ctx
);
2105 static const struct file_operations pfm_file_ops
= {
2106 .llseek
= no_llseek
,
2110 .unlocked_ioctl
= pfm_ioctl
,
2111 .fasync
= pfm_fasync
,
2112 .release
= pfm_close
,
2116 static char *pfmfs_dname(struct dentry
*dentry
, char *buffer
, int buflen
)
2118 return dynamic_dname(dentry
, buffer
, buflen
, "pfm:[%lu]",
2119 d_inode(dentry
)->i_ino
);
2122 static const struct dentry_operations pfmfs_dentry_operations
= {
2123 .d_delete
= always_delete_dentry
,
2124 .d_dname
= pfmfs_dname
,
2128 static struct file
*
2129 pfm_alloc_file(pfm_context_t
*ctx
)
2132 struct inode
*inode
;
2134 struct qstr
this = { .name
= "" };
2137 * allocate a new inode
2139 inode
= new_inode(pfmfs_mnt
->mnt_sb
);
2141 return ERR_PTR(-ENOMEM
);
2143 DPRINT(("new inode ino=%ld @%p\n", inode
->i_ino
, inode
));
2145 inode
->i_mode
= S_IFCHR
|S_IRUGO
;
2146 inode
->i_uid
= current_fsuid();
2147 inode
->i_gid
= current_fsgid();
2150 * allocate a new dcache entry
2152 path
.dentry
= d_alloc(pfmfs_mnt
->mnt_root
, &this);
2155 return ERR_PTR(-ENOMEM
);
2157 path
.mnt
= mntget(pfmfs_mnt
);
2159 d_add(path
.dentry
, inode
);
2161 file
= alloc_file(&path
, FMODE_READ
, &pfm_file_ops
);
2167 file
->f_flags
= O_RDONLY
;
2168 file
->private_data
= ctx
;
2174 pfm_remap_buffer(struct vm_area_struct
*vma
, unsigned long buf
, unsigned long addr
, unsigned long size
)
2176 DPRINT(("CPU%d buf=0x%lx addr=0x%lx size=%ld\n", smp_processor_id(), buf
, addr
, size
));
2179 unsigned long pfn
= ia64_tpa(buf
) >> PAGE_SHIFT
;
2182 if (remap_pfn_range(vma
, addr
, pfn
, PAGE_SIZE
, PAGE_READONLY
))
2193 * allocate a sampling buffer and remaps it into the user address space of the task
2196 pfm_smpl_buffer_alloc(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned long rsize
, void **user_vaddr
)
2198 struct mm_struct
*mm
= task
->mm
;
2199 struct vm_area_struct
*vma
= NULL
;
2205 * the fixed header + requested size and align to page boundary
2207 size
= PAGE_ALIGN(rsize
);
2209 DPRINT(("sampling buffer rsize=%lu size=%lu bytes\n", rsize
, size
));
2212 * check requested size to avoid Denial-of-service attacks
2213 * XXX: may have to refine this test
2214 * Check against address space limit.
2216 * if ((mm->total_vm << PAGE_SHIFT) + len> task->rlim[RLIMIT_AS].rlim_cur)
2219 if (size
> task_rlimit(task
, RLIMIT_MEMLOCK
))
2223 * We do the easy to undo allocations first.
2225 smpl_buf
= vzalloc(size
);
2226 if (smpl_buf
== NULL
) {
2227 DPRINT(("Can't allocate sampling buffer\n"));
2231 DPRINT(("smpl_buf @%p\n", smpl_buf
));
2234 vma
= vm_area_alloc(mm
);
2236 DPRINT(("Cannot allocate vma\n"));
2241 * partially initialize the vma for the sampling buffer
2243 vma
->vm_file
= get_file(filp
);
2244 vma
->vm_flags
= VM_READ
|VM_MAYREAD
|VM_DONTEXPAND
|VM_DONTDUMP
;
2245 vma
->vm_page_prot
= PAGE_READONLY
; /* XXX may need to change */
2248 * Now we have everything we need and we can initialize
2249 * and connect all the data structures
2252 ctx
->ctx_smpl_hdr
= smpl_buf
;
2253 ctx
->ctx_smpl_size
= size
; /* aligned size */
2256 * Let's do the difficult operations next.
2258 * now we atomically find some area in the address space and
2259 * remap the buffer in it.
2261 down_write(&task
->mm
->mmap_sem
);
2263 /* find some free area in address space, must have mmap sem held */
2264 vma
->vm_start
= get_unmapped_area(NULL
, 0, size
, 0, MAP_PRIVATE
|MAP_ANONYMOUS
);
2265 if (IS_ERR_VALUE(vma
->vm_start
)) {
2266 DPRINT(("Cannot find unmapped area for size %ld\n", size
));
2267 up_write(&task
->mm
->mmap_sem
);
2270 vma
->vm_end
= vma
->vm_start
+ size
;
2271 vma
->vm_pgoff
= vma
->vm_start
>> PAGE_SHIFT
;
2273 DPRINT(("aligned size=%ld, hdr=%p mapped @0x%lx\n", size
, ctx
->ctx_smpl_hdr
, vma
->vm_start
));
2275 /* can only be applied to current task, need to have the mm semaphore held when called */
2276 if (pfm_remap_buffer(vma
, (unsigned long)smpl_buf
, vma
->vm_start
, size
)) {
2277 DPRINT(("Can't remap buffer\n"));
2278 up_write(&task
->mm
->mmap_sem
);
2283 * now insert the vma in the vm list for the process, must be
2284 * done with mmap lock held
2286 insert_vm_struct(mm
, vma
);
2288 vm_stat_account(vma
->vm_mm
, vma
->vm_flags
, vma_pages(vma
));
2289 up_write(&task
->mm
->mmap_sem
);
2292 * keep track of user level virtual address
2294 ctx
->ctx_smpl_vaddr
= (void *)vma
->vm_start
;
2295 *(unsigned long *)user_vaddr
= vma
->vm_start
;
2308 * XXX: do something better here
2311 pfm_bad_permissions(struct task_struct
*task
)
2313 const struct cred
*tcred
;
2314 kuid_t uid
= current_uid();
2315 kgid_t gid
= current_gid();
2319 tcred
= __task_cred(task
);
2321 /* inspired by ptrace_attach() */
2322 DPRINT(("cur: uid=%d gid=%d task: euid=%d suid=%d uid=%d egid=%d sgid=%d\n",
2323 from_kuid(&init_user_ns
, uid
),
2324 from_kgid(&init_user_ns
, gid
),
2325 from_kuid(&init_user_ns
, tcred
->euid
),
2326 from_kuid(&init_user_ns
, tcred
->suid
),
2327 from_kuid(&init_user_ns
, tcred
->uid
),
2328 from_kgid(&init_user_ns
, tcred
->egid
),
2329 from_kgid(&init_user_ns
, tcred
->sgid
)));
2331 ret
= ((!uid_eq(uid
, tcred
->euid
))
2332 || (!uid_eq(uid
, tcred
->suid
))
2333 || (!uid_eq(uid
, tcred
->uid
))
2334 || (!gid_eq(gid
, tcred
->egid
))
2335 || (!gid_eq(gid
, tcred
->sgid
))
2336 || (!gid_eq(gid
, tcred
->gid
))) && !capable(CAP_SYS_PTRACE
);
2343 pfarg_is_sane(struct task_struct
*task
, pfarg_context_t
*pfx
)
2349 ctx_flags
= pfx
->ctx_flags
;
2351 if (ctx_flags
& PFM_FL_SYSTEM_WIDE
) {
2354 * cannot block in this mode
2356 if (ctx_flags
& PFM_FL_NOTIFY_BLOCK
) {
2357 DPRINT(("cannot use blocking mode when in system wide monitoring\n"));
2362 /* probably more to add here */
2368 pfm_setup_buffer_fmt(struct task_struct
*task
, struct file
*filp
, pfm_context_t
*ctx
, unsigned int ctx_flags
,
2369 unsigned int cpu
, pfarg_context_t
*arg
)
2371 pfm_buffer_fmt_t
*fmt
= NULL
;
2372 unsigned long size
= 0UL;
2374 void *fmt_arg
= NULL
;
2376 #define PFM_CTXARG_BUF_ARG(a) (pfm_buffer_fmt_t *)(a+1)
2378 /* invoke and lock buffer format, if found */
2379 fmt
= pfm_find_buffer_fmt(arg
->ctx_smpl_buf_id
);
2381 DPRINT(("[%d] cannot find buffer format\n", task_pid_nr(task
)));
2386 * buffer argument MUST be contiguous to pfarg_context_t
2388 if (fmt
->fmt_arg_size
) fmt_arg
= PFM_CTXARG_BUF_ARG(arg
);
2390 ret
= pfm_buf_fmt_validate(fmt
, task
, ctx_flags
, cpu
, fmt_arg
);
2392 DPRINT(("[%d] after validate(0x%x,%d,%p)=%d\n", task_pid_nr(task
), ctx_flags
, cpu
, fmt_arg
, ret
));
2394 if (ret
) goto error
;
2396 /* link buffer format and context */
2397 ctx
->ctx_buf_fmt
= fmt
;
2398 ctx
->ctx_fl_is_sampling
= 1; /* assume record() is defined */
2401 * check if buffer format wants to use perfmon buffer allocation/mapping service
2403 ret
= pfm_buf_fmt_getsize(fmt
, task
, ctx_flags
, cpu
, fmt_arg
, &size
);
2404 if (ret
) goto error
;
2408 * buffer is always remapped into the caller's address space
2410 ret
= pfm_smpl_buffer_alloc(current
, filp
, ctx
, size
, &uaddr
);
2411 if (ret
) goto error
;
2413 /* keep track of user address of buffer */
2414 arg
->ctx_smpl_vaddr
= uaddr
;
2416 ret
= pfm_buf_fmt_init(fmt
, task
, ctx
->ctx_smpl_hdr
, ctx_flags
, cpu
, fmt_arg
);
2423 pfm_reset_pmu_state(pfm_context_t
*ctx
)
2428 * install reset values for PMC.
2430 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
2431 if (PMC_IS_IMPL(i
) == 0) continue;
2432 ctx
->ctx_pmcs
[i
] = PMC_DFL_VAL(i
);
2433 DPRINT(("pmc[%d]=0x%lx\n", i
, ctx
->ctx_pmcs
[i
]));
2436 * PMD registers are set to 0UL when the context in memset()
2440 * On context switched restore, we must restore ALL pmc and ALL pmd even
2441 * when they are not actively used by the task. In UP, the incoming process
2442 * may otherwise pick up left over PMC, PMD state from the previous process.
2443 * As opposed to PMD, stale PMC can cause harm to the incoming
2444 * process because they may change what is being measured.
2445 * Therefore, we must systematically reinstall the entire
2446 * PMC state. In SMP, the same thing is possible on the
2447 * same CPU but also on between 2 CPUs.
2449 * The problem with PMD is information leaking especially
2450 * to user level when psr.sp=0
2452 * There is unfortunately no easy way to avoid this problem
2453 * on either UP or SMP. This definitively slows down the
2454 * pfm_load_regs() function.
2458 * bitmask of all PMCs accessible to this context
2460 * PMC0 is treated differently.
2462 ctx
->ctx_all_pmcs
[0] = pmu_conf
->impl_pmcs
[0] & ~0x1;
2465 * bitmask of all PMDs that are accessible to this context
2467 ctx
->ctx_all_pmds
[0] = pmu_conf
->impl_pmds
[0];
2469 DPRINT(("<%d> all_pmcs=0x%lx all_pmds=0x%lx\n", ctx
->ctx_fd
, ctx
->ctx_all_pmcs
[0],ctx
->ctx_all_pmds
[0]));
2472 * useful in case of re-enable after disable
2474 ctx
->ctx_used_ibrs
[0] = 0UL;
2475 ctx
->ctx_used_dbrs
[0] = 0UL;
2479 pfm_ctx_getsize(void *arg
, size_t *sz
)
2481 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2482 pfm_buffer_fmt_t
*fmt
;
2486 if (!pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) return 0;
2488 fmt
= pfm_find_buffer_fmt(req
->ctx_smpl_buf_id
);
2490 DPRINT(("cannot find buffer format\n"));
2493 /* get just enough to copy in user parameters */
2494 *sz
= fmt
->fmt_arg_size
;
2495 DPRINT(("arg_size=%lu\n", *sz
));
2503 * cannot attach if :
2505 * - task not owned by caller
2506 * - task incompatible with context mode
2509 pfm_task_incompatible(pfm_context_t
*ctx
, struct task_struct
*task
)
2512 * no kernel task or task not owner by caller
2514 if (task
->mm
== NULL
) {
2515 DPRINT(("task [%d] has not memory context (kernel thread)\n", task_pid_nr(task
)));
2518 if (pfm_bad_permissions(task
)) {
2519 DPRINT(("no permission to attach to [%d]\n", task_pid_nr(task
)));
2523 * cannot block in self-monitoring mode
2525 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && task
== current
) {
2526 DPRINT(("cannot load a blocking context on self for [%d]\n", task_pid_nr(task
)));
2530 if (task
->exit_state
== EXIT_ZOMBIE
) {
2531 DPRINT(("cannot attach to zombie task [%d]\n", task_pid_nr(task
)));
2536 * always ok for self
2538 if (task
== current
) return 0;
2540 if (!task_is_stopped_or_traced(task
)) {
2541 DPRINT(("cannot attach to non-stopped task [%d] state=%ld\n", task_pid_nr(task
), task
->state
));
2545 * make sure the task is off any CPU
2547 wait_task_inactive(task
, 0);
2549 /* more to come... */
2555 pfm_get_task(pfm_context_t
*ctx
, pid_t pid
, struct task_struct
**task
)
2557 struct task_struct
*p
= current
;
2560 /* XXX: need to add more checks here */
2561 if (pid
< 2) return -EPERM
;
2563 if (pid
!= task_pid_vnr(current
)) {
2564 /* make sure task cannot go away while we operate on it */
2565 p
= find_get_task_by_vpid(pid
);
2570 ret
= pfm_task_incompatible(ctx
, p
);
2573 } else if (p
!= current
) {
2582 pfm_context_create(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2584 pfarg_context_t
*req
= (pfarg_context_t
*)arg
;
2591 /* let's check the arguments first */
2592 ret
= pfarg_is_sane(current
, req
);
2596 ctx_flags
= req
->ctx_flags
;
2600 fd
= get_unused_fd_flags(0);
2604 ctx
= pfm_context_alloc(ctx_flags
);
2608 filp
= pfm_alloc_file(ctx
);
2610 ret
= PTR_ERR(filp
);
2614 req
->ctx_fd
= ctx
->ctx_fd
= fd
;
2617 * does the user want to sample?
2619 if (pfm_uuid_cmp(req
->ctx_smpl_buf_id
, pfm_null_uuid
)) {
2620 ret
= pfm_setup_buffer_fmt(current
, filp
, ctx
, ctx_flags
, 0, req
);
2625 DPRINT(("ctx=%p flags=0x%x system=%d notify_block=%d excl_idle=%d no_msg=%d ctx_fd=%d\n",
2630 ctx
->ctx_fl_excl_idle
,
2635 * initialize soft PMU state
2637 pfm_reset_pmu_state(ctx
);
2639 fd_install(fd
, filp
);
2644 path
= filp
->f_path
;
2648 if (ctx
->ctx_buf_fmt
) {
2649 pfm_buf_fmt_exit(ctx
->ctx_buf_fmt
, current
, NULL
, regs
);
2652 pfm_context_free(ctx
);
2659 static inline unsigned long
2660 pfm_new_counter_value (pfm_counter_t
*reg
, int is_long_reset
)
2662 unsigned long val
= is_long_reset
? reg
->long_reset
: reg
->short_reset
;
2663 unsigned long new_seed
, old_seed
= reg
->seed
, mask
= reg
->mask
;
2664 extern unsigned long carta_random32 (unsigned long seed
);
2666 if (reg
->flags
& PFM_REGFL_RANDOM
) {
2667 new_seed
= carta_random32(old_seed
);
2668 val
-= (old_seed
& mask
); /* counter values are negative numbers! */
2669 if ((mask
>> 32) != 0)
2670 /* construct a full 64-bit random value: */
2671 new_seed
|= carta_random32(old_seed
>> 32) << 32;
2672 reg
->seed
= new_seed
;
2679 pfm_reset_regs_masked(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2681 unsigned long mask
= ovfl_regs
[0];
2682 unsigned long reset_others
= 0UL;
2687 * now restore reset value on sampling overflowed counters
2689 mask
>>= PMU_FIRST_COUNTER
;
2690 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2692 if ((mask
& 0x1UL
) == 0UL) continue;
2694 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2695 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2697 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2701 * Now take care of resetting the other registers
2703 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2705 if ((reset_others
& 0x1) == 0) continue;
2707 ctx
->ctx_pmds
[i
].val
= val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2709 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2710 is_long_reset
? "long" : "short", i
, val
));
2715 pfm_reset_regs(pfm_context_t
*ctx
, unsigned long *ovfl_regs
, int is_long_reset
)
2717 unsigned long mask
= ovfl_regs
[0];
2718 unsigned long reset_others
= 0UL;
2722 DPRINT_ovfl(("ovfl_regs=0x%lx is_long_reset=%d\n", ovfl_regs
[0], is_long_reset
));
2724 if (ctx
->ctx_state
== PFM_CTX_MASKED
) {
2725 pfm_reset_regs_masked(ctx
, ovfl_regs
, is_long_reset
);
2730 * now restore reset value on sampling overflowed counters
2732 mask
>>= PMU_FIRST_COUNTER
;
2733 for(i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
2735 if ((mask
& 0x1UL
) == 0UL) continue;
2737 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2738 reset_others
|= ctx
->ctx_pmds
[i
].reset_pmds
[0];
2740 DPRINT_ovfl((" %s reset ctx_pmds[%d]=%lx\n", is_long_reset
? "long" : "short", i
, val
));
2742 pfm_write_soft_counter(ctx
, i
, val
);
2746 * Now take care of resetting the other registers
2748 for(i
= 0; reset_others
; i
++, reset_others
>>= 1) {
2750 if ((reset_others
& 0x1) == 0) continue;
2752 val
= pfm_new_counter_value(ctx
->ctx_pmds
+ i
, is_long_reset
);
2754 if (PMD_IS_COUNTING(i
)) {
2755 pfm_write_soft_counter(ctx
, i
, val
);
2757 ia64_set_pmd(i
, val
);
2759 DPRINT_ovfl(("%s reset_others pmd[%d]=%lx\n",
2760 is_long_reset
? "long" : "short", i
, val
));
2766 pfm_write_pmcs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
2768 struct task_struct
*task
;
2769 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
2770 unsigned long value
, pmc_pm
;
2771 unsigned long smpl_pmds
, reset_pmds
, impl_pmds
;
2772 unsigned int cnum
, reg_flags
, flags
, pmc_type
;
2773 int i
, can_access_pmu
= 0, is_loaded
, is_system
, expert_mode
;
2774 int is_monitor
, is_counting
, state
;
2776 pfm_reg_check_t wr_func
;
2777 #define PFM_CHECK_PMC_PM(x, y, z) ((x)->ctx_fl_system ^ PMC_PM(y, z))
2779 state
= ctx
->ctx_state
;
2780 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
2781 is_system
= ctx
->ctx_fl_system
;
2782 task
= ctx
->ctx_task
;
2783 impl_pmds
= pmu_conf
->impl_pmds
[0];
2785 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
2789 * In system wide and when the context is loaded, access can only happen
2790 * when the caller is running on the CPU being monitored by the session.
2791 * It does not have to be the owner (ctx_task) of the context per se.
2793 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
2794 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
2797 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
2799 expert_mode
= pfm_sysctl
.expert_mode
;
2801 for (i
= 0; i
< count
; i
++, req
++) {
2803 cnum
= req
->reg_num
;
2804 reg_flags
= req
->reg_flags
;
2805 value
= req
->reg_value
;
2806 smpl_pmds
= req
->reg_smpl_pmds
[0];
2807 reset_pmds
= req
->reg_reset_pmds
[0];
2811 if (cnum
>= PMU_MAX_PMCS
) {
2812 DPRINT(("pmc%u is invalid\n", cnum
));
2816 pmc_type
= pmu_conf
->pmc_desc
[cnum
].type
;
2817 pmc_pm
= (value
>> pmu_conf
->pmc_desc
[cnum
].pm_pos
) & 0x1;
2818 is_counting
= (pmc_type
& PFM_REG_COUNTING
) == PFM_REG_COUNTING
? 1 : 0;
2819 is_monitor
= (pmc_type
& PFM_REG_MONITOR
) == PFM_REG_MONITOR
? 1 : 0;
2822 * we reject all non implemented PMC as well
2823 * as attempts to modify PMC[0-3] which are used
2824 * as status registers by the PMU
2826 if ((pmc_type
& PFM_REG_IMPL
) == 0 || (pmc_type
& PFM_REG_CONTROL
) == PFM_REG_CONTROL
) {
2827 DPRINT(("pmc%u is unimplemented or no-access pmc_type=%x\n", cnum
, pmc_type
));
2830 wr_func
= pmu_conf
->pmc_desc
[cnum
].write_check
;
2832 * If the PMC is a monitor, then if the value is not the default:
2833 * - system-wide session: PMCx.pm=1 (privileged monitor)
2834 * - per-task : PMCx.pm=0 (user monitor)
2836 if (is_monitor
&& value
!= PMC_DFL_VAL(cnum
) && is_system
^ pmc_pm
) {
2837 DPRINT(("pmc%u pmc_pm=%lu is_system=%d\n",
2846 * enforce generation of overflow interrupt. Necessary on all
2849 value
|= 1 << PMU_PMC_OI
;
2851 if (reg_flags
& PFM_REGFL_OVFL_NOTIFY
) {
2852 flags
|= PFM_REGFL_OVFL_NOTIFY
;
2855 if (reg_flags
& PFM_REGFL_RANDOM
) flags
|= PFM_REGFL_RANDOM
;
2857 /* verify validity of smpl_pmds */
2858 if ((smpl_pmds
& impl_pmds
) != smpl_pmds
) {
2859 DPRINT(("invalid smpl_pmds 0x%lx for pmc%u\n", smpl_pmds
, cnum
));
2863 /* verify validity of reset_pmds */
2864 if ((reset_pmds
& impl_pmds
) != reset_pmds
) {
2865 DPRINT(("invalid reset_pmds 0x%lx for pmc%u\n", reset_pmds
, cnum
));
2869 if (reg_flags
& (PFM_REGFL_OVFL_NOTIFY
|PFM_REGFL_RANDOM
)) {
2870 DPRINT(("cannot set ovfl_notify or random on pmc%u\n", cnum
));
2873 /* eventid on non-counting monitors are ignored */
2877 * execute write checker, if any
2879 if (likely(expert_mode
== 0 && wr_func
)) {
2880 ret
= (*wr_func
)(task
, ctx
, cnum
, &value
, regs
);
2881 if (ret
) goto error
;
2886 * no error on this register
2888 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
2891 * Now we commit the changes to the software state
2895 * update overflow information
2899 * full flag update each time a register is programmed
2901 ctx
->ctx_pmds
[cnum
].flags
= flags
;
2903 ctx
->ctx_pmds
[cnum
].reset_pmds
[0] = reset_pmds
;
2904 ctx
->ctx_pmds
[cnum
].smpl_pmds
[0] = smpl_pmds
;
2905 ctx
->ctx_pmds
[cnum
].eventid
= req
->reg_smpl_eventid
;
2908 * Mark all PMDS to be accessed as used.
2910 * We do not keep track of PMC because we have to
2911 * systematically restore ALL of them.
2913 * We do not update the used_monitors mask, because
2914 * if we have not programmed them, then will be in
2915 * a quiescent state, therefore we will not need to
2916 * mask/restore then when context is MASKED.
2918 CTX_USED_PMD(ctx
, reset_pmds
);
2919 CTX_USED_PMD(ctx
, smpl_pmds
);
2921 * make sure we do not try to reset on
2922 * restart because we have established new values
2924 if (state
== PFM_CTX_MASKED
) ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
2927 * Needed in case the user does not initialize the equivalent
2928 * PMD. Clearing is done indirectly via pfm_reset_pmu_state() so there is no
2929 * possible leak here.
2931 CTX_USED_PMD(ctx
, pmu_conf
->pmc_desc
[cnum
].dep_pmd
[0]);
2934 * keep track of the monitor PMC that we are using.
2935 * we save the value of the pmc in ctx_pmcs[] and if
2936 * the monitoring is not stopped for the context we also
2937 * place it in the saved state area so that it will be
2938 * picked up later by the context switch code.
2940 * The value in ctx_pmcs[] can only be changed in pfm_write_pmcs().
2942 * The value in th_pmcs[] may be modified on overflow, i.e., when
2943 * monitoring needs to be stopped.
2945 if (is_monitor
) CTX_USED_MONITOR(ctx
, 1UL << cnum
);
2948 * update context state
2950 ctx
->ctx_pmcs
[cnum
] = value
;
2954 * write thread state
2956 if (is_system
== 0) ctx
->th_pmcs
[cnum
] = value
;
2959 * write hardware register if we can
2961 if (can_access_pmu
) {
2962 ia64_set_pmc(cnum
, value
);
2967 * per-task SMP only here
2969 * we are guaranteed that the task is not running on the other CPU,
2970 * we indicate that this PMD will need to be reloaded if the task
2971 * is rescheduled on the CPU it ran last on.
2973 ctx
->ctx_reload_pmcs
[0] |= 1UL << cnum
;
2978 DPRINT(("pmc[%u]=0x%lx ld=%d apmu=%d flags=0x%x all_pmcs=0x%lx used_pmds=0x%lx eventid=%ld smpl_pmds=0x%lx reset_pmds=0x%lx reloads_pmcs=0x%lx used_monitors=0x%lx ovfl_regs=0x%lx\n",
2984 ctx
->ctx_all_pmcs
[0],
2985 ctx
->ctx_used_pmds
[0],
2986 ctx
->ctx_pmds
[cnum
].eventid
,
2989 ctx
->ctx_reload_pmcs
[0],
2990 ctx
->ctx_used_monitors
[0],
2991 ctx
->ctx_ovfl_regs
[0]));
2995 * make sure the changes are visible
2997 if (can_access_pmu
) ia64_srlz_d();
3001 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3006 pfm_write_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3008 struct task_struct
*task
;
3009 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3010 unsigned long value
, hw_value
, ovfl_mask
;
3012 int i
, can_access_pmu
= 0, state
;
3013 int is_counting
, is_loaded
, is_system
, expert_mode
;
3015 pfm_reg_check_t wr_func
;
3018 state
= ctx
->ctx_state
;
3019 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3020 is_system
= ctx
->ctx_fl_system
;
3021 ovfl_mask
= pmu_conf
->ovfl_val
;
3022 task
= ctx
->ctx_task
;
3024 if (unlikely(state
== PFM_CTX_ZOMBIE
)) return -EINVAL
;
3027 * on both UP and SMP, we can only write to the PMC when the task is
3028 * the owner of the local PMU.
3030 if (likely(is_loaded
)) {
3032 * In system wide and when the context is loaded, access can only happen
3033 * when the caller is running on the CPU being monitored by the session.
3034 * It does not have to be the owner (ctx_task) of the context per se.
3036 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3037 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3040 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3042 expert_mode
= pfm_sysctl
.expert_mode
;
3044 for (i
= 0; i
< count
; i
++, req
++) {
3046 cnum
= req
->reg_num
;
3047 value
= req
->reg_value
;
3049 if (!PMD_IS_IMPL(cnum
)) {
3050 DPRINT(("pmd[%u] is unimplemented or invalid\n", cnum
));
3053 is_counting
= PMD_IS_COUNTING(cnum
);
3054 wr_func
= pmu_conf
->pmd_desc
[cnum
].write_check
;
3057 * execute write checker, if any
3059 if (unlikely(expert_mode
== 0 && wr_func
)) {
3060 unsigned long v
= value
;
3062 ret
= (*wr_func
)(task
, ctx
, cnum
, &v
, regs
);
3063 if (ret
) goto abort_mission
;
3070 * no error on this register
3072 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
3075 * now commit changes to software state
3080 * update virtualized (64bits) counter
3084 * write context state
3086 ctx
->ctx_pmds
[cnum
].lval
= value
;
3089 * when context is load we use the split value
3092 hw_value
= value
& ovfl_mask
;
3093 value
= value
& ~ovfl_mask
;
3097 * update reset values (not just for counters)
3099 ctx
->ctx_pmds
[cnum
].long_reset
= req
->reg_long_reset
;
3100 ctx
->ctx_pmds
[cnum
].short_reset
= req
->reg_short_reset
;
3103 * update randomization parameters (not just for counters)
3105 ctx
->ctx_pmds
[cnum
].seed
= req
->reg_random_seed
;
3106 ctx
->ctx_pmds
[cnum
].mask
= req
->reg_random_mask
;
3109 * update context value
3111 ctx
->ctx_pmds
[cnum
].val
= value
;
3114 * Keep track of what we use
3116 * We do not keep track of PMC because we have to
3117 * systematically restore ALL of them.
3119 CTX_USED_PMD(ctx
, PMD_PMD_DEP(cnum
));
3122 * mark this PMD register used as well
3124 CTX_USED_PMD(ctx
, RDEP(cnum
));
3127 * make sure we do not try to reset on
3128 * restart because we have established new values
3130 if (is_counting
&& state
== PFM_CTX_MASKED
) {
3131 ctx
->ctx_ovfl_regs
[0] &= ~1UL << cnum
;
3136 * write thread state
3138 if (is_system
== 0) ctx
->th_pmds
[cnum
] = hw_value
;
3141 * write hardware register if we can
3143 if (can_access_pmu
) {
3144 ia64_set_pmd(cnum
, hw_value
);
3148 * we are guaranteed that the task is not running on the other CPU,
3149 * we indicate that this PMD will need to be reloaded if the task
3150 * is rescheduled on the CPU it ran last on.
3152 ctx
->ctx_reload_pmds
[0] |= 1UL << cnum
;
3157 DPRINT(("pmd[%u]=0x%lx ld=%d apmu=%d, hw_value=0x%lx ctx_pmd=0x%lx short_reset=0x%lx "
3158 "long_reset=0x%lx notify=%c seed=0x%lx mask=0x%lx used_pmds=0x%lx reset_pmds=0x%lx reload_pmds=0x%lx all_pmds=0x%lx ovfl_regs=0x%lx\n",
3164 ctx
->ctx_pmds
[cnum
].val
,
3165 ctx
->ctx_pmds
[cnum
].short_reset
,
3166 ctx
->ctx_pmds
[cnum
].long_reset
,
3167 PMC_OVFL_NOTIFY(ctx
, cnum
) ? 'Y':'N',
3168 ctx
->ctx_pmds
[cnum
].seed
,
3169 ctx
->ctx_pmds
[cnum
].mask
,
3170 ctx
->ctx_used_pmds
[0],
3171 ctx
->ctx_pmds
[cnum
].reset_pmds
[0],
3172 ctx
->ctx_reload_pmds
[0],
3173 ctx
->ctx_all_pmds
[0],
3174 ctx
->ctx_ovfl_regs
[0]));
3178 * make changes visible
3180 if (can_access_pmu
) ia64_srlz_d();
3186 * for now, we have only one possibility for error
3188 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3193 * By the way of PROTECT_CONTEXT(), interrupts are masked while we are in this function.
3194 * Therefore we know, we do not have to worry about the PMU overflow interrupt. If an
3195 * interrupt is delivered during the call, it will be kept pending until we leave, making
3196 * it appears as if it had been generated at the UNPROTECT_CONTEXT(). At least we are
3197 * guaranteed to return consistent data to the user, it may simply be old. It is not
3198 * trivial to treat the overflow while inside the call because you may end up in
3199 * some module sampling buffer code causing deadlocks.
3202 pfm_read_pmds(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3204 struct task_struct
*task
;
3205 unsigned long val
= 0UL, lval
, ovfl_mask
, sval
;
3206 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
3207 unsigned int cnum
, reg_flags
= 0;
3208 int i
, can_access_pmu
= 0, state
;
3209 int is_loaded
, is_system
, is_counting
, expert_mode
;
3211 pfm_reg_check_t rd_func
;
3214 * access is possible when loaded only for
3215 * self-monitoring tasks or in UP mode
3218 state
= ctx
->ctx_state
;
3219 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3220 is_system
= ctx
->ctx_fl_system
;
3221 ovfl_mask
= pmu_conf
->ovfl_val
;
3222 task
= ctx
->ctx_task
;
3224 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3226 if (likely(is_loaded
)) {
3228 * In system wide and when the context is loaded, access can only happen
3229 * when the caller is running on the CPU being monitored by the session.
3230 * It does not have to be the owner (ctx_task) of the context per se.
3232 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3233 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3237 * this can be true when not self-monitoring only in UP
3239 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3241 if (can_access_pmu
) ia64_srlz_d();
3243 expert_mode
= pfm_sysctl
.expert_mode
;
3245 DPRINT(("ld=%d apmu=%d ctx_state=%d\n",
3251 * on both UP and SMP, we can only read the PMD from the hardware register when
3252 * the task is the owner of the local PMU.
3255 for (i
= 0; i
< count
; i
++, req
++) {
3257 cnum
= req
->reg_num
;
3258 reg_flags
= req
->reg_flags
;
3260 if (unlikely(!PMD_IS_IMPL(cnum
))) goto error
;
3262 * we can only read the register that we use. That includes
3263 * the one we explicitly initialize AND the one we want included
3264 * in the sampling buffer (smpl_regs).
3266 * Having this restriction allows optimization in the ctxsw routine
3267 * without compromising security (leaks)
3269 if (unlikely(!CTX_IS_USED_PMD(ctx
, cnum
))) goto error
;
3271 sval
= ctx
->ctx_pmds
[cnum
].val
;
3272 lval
= ctx
->ctx_pmds
[cnum
].lval
;
3273 is_counting
= PMD_IS_COUNTING(cnum
);
3276 * If the task is not the current one, then we check if the
3277 * PMU state is still in the local live register due to lazy ctxsw.
3278 * If true, then we read directly from the registers.
3280 if (can_access_pmu
){
3281 val
= ia64_get_pmd(cnum
);
3284 * context has been saved
3285 * if context is zombie, then task does not exist anymore.
3286 * In this case, we use the full value saved in the context (pfm_flush_regs()).
3288 val
= is_loaded
? ctx
->th_pmds
[cnum
] : 0UL;
3290 rd_func
= pmu_conf
->pmd_desc
[cnum
].read_check
;
3294 * XXX: need to check for overflow when loaded
3301 * execute read checker, if any
3303 if (unlikely(expert_mode
== 0 && rd_func
)) {
3304 unsigned long v
= val
;
3305 ret
= (*rd_func
)(ctx
->ctx_task
, ctx
, cnum
, &v
, regs
);
3306 if (ret
) goto error
;
3311 PFM_REG_RETFLAG_SET(reg_flags
, 0);
3313 DPRINT(("pmd[%u]=0x%lx\n", cnum
, val
));
3316 * update register return value, abort all if problem during copy.
3317 * we only modify the reg_flags field. no check mode is fine because
3318 * access has been verified upfront in sys_perfmonctl().
3320 req
->reg_value
= val
;
3321 req
->reg_flags
= reg_flags
;
3322 req
->reg_last_reset_val
= lval
;
3328 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
3333 pfm_mod_write_pmcs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3337 if (req
== NULL
) return -EINVAL
;
3339 ctx
= GET_PMU_CTX();
3341 if (ctx
== NULL
) return -EINVAL
;
3344 * for now limit to current task, which is enough when calling
3345 * from overflow handler
3347 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3349 return pfm_write_pmcs(ctx
, req
, nreq
, regs
);
3351 EXPORT_SYMBOL(pfm_mod_write_pmcs
);
3354 pfm_mod_read_pmds(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3358 if (req
== NULL
) return -EINVAL
;
3360 ctx
= GET_PMU_CTX();
3362 if (ctx
== NULL
) return -EINVAL
;
3365 * for now limit to current task, which is enough when calling
3366 * from overflow handler
3368 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3370 return pfm_read_pmds(ctx
, req
, nreq
, regs
);
3372 EXPORT_SYMBOL(pfm_mod_read_pmds
);
3375 * Only call this function when a process it trying to
3376 * write the debug registers (reading is always allowed)
3379 pfm_use_debug_registers(struct task_struct
*task
)
3381 pfm_context_t
*ctx
= task
->thread
.pfm_context
;
3382 unsigned long flags
;
3385 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3387 DPRINT(("called for [%d]\n", task_pid_nr(task
)));
3392 if (task
->thread
.flags
& IA64_THREAD_DBG_VALID
) return 0;
3395 * Even on SMP, we do not need to use an atomic here because
3396 * the only way in is via ptrace() and this is possible only when the
3397 * process is stopped. Even in the case where the ctxsw out is not totally
3398 * completed by the time we come here, there is no way the 'stopped' process
3399 * could be in the middle of fiddling with the pfm_write_ibr_dbr() routine.
3400 * So this is always safe.
3402 if (ctx
&& ctx
->ctx_fl_using_dbreg
== 1) return -1;
3407 * We cannot allow setting breakpoints when system wide monitoring
3408 * sessions are using the debug registers.
3410 if (pfm_sessions
.pfs_sys_use_dbregs
> 0)
3413 pfm_sessions
.pfs_ptrace_use_dbregs
++;
3415 DPRINT(("ptrace_use_dbregs=%u sys_use_dbregs=%u by [%d] ret = %d\n",
3416 pfm_sessions
.pfs_ptrace_use_dbregs
,
3417 pfm_sessions
.pfs_sys_use_dbregs
,
3418 task_pid_nr(task
), ret
));
3426 * This function is called for every task that exits with the
3427 * IA64_THREAD_DBG_VALID set. This indicates a task which was
3428 * able to use the debug registers for debugging purposes via
3429 * ptrace(). Therefore we know it was not using them for
3430 * performance monitoring, so we only decrement the number
3431 * of "ptraced" debug register users to keep the count up to date
3434 pfm_release_debug_registers(struct task_struct
*task
)
3436 unsigned long flags
;
3439 if (pmu_conf
->use_rr_dbregs
== 0) return 0;
3442 if (pfm_sessions
.pfs_ptrace_use_dbregs
== 0) {
3443 printk(KERN_ERR
"perfmon: invalid release for [%d] ptrace_use_dbregs=0\n", task_pid_nr(task
));
3446 pfm_sessions
.pfs_ptrace_use_dbregs
--;
3455 pfm_restart(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3457 struct task_struct
*task
;
3458 pfm_buffer_fmt_t
*fmt
;
3459 pfm_ovfl_ctrl_t rst_ctrl
;
3460 int state
, is_system
;
3463 state
= ctx
->ctx_state
;
3464 fmt
= ctx
->ctx_buf_fmt
;
3465 is_system
= ctx
->ctx_fl_system
;
3466 task
= PFM_CTX_TASK(ctx
);
3469 case PFM_CTX_MASKED
:
3471 case PFM_CTX_LOADED
:
3472 if (CTX_HAS_SMPL(ctx
) && fmt
->fmt_restart_active
) break;
3474 case PFM_CTX_UNLOADED
:
3475 case PFM_CTX_ZOMBIE
:
3476 DPRINT(("invalid state=%d\n", state
));
3479 DPRINT(("state=%d, cannot operate (no active_restart handler)\n", state
));
3484 * In system wide and when the context is loaded, access can only happen
3485 * when the caller is running on the CPU being monitored by the session.
3486 * It does not have to be the owner (ctx_task) of the context per se.
3488 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3489 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3494 if (unlikely(task
== NULL
)) {
3495 printk(KERN_ERR
"perfmon: [%d] pfm_restart no task\n", task_pid_nr(current
));
3499 if (task
== current
|| is_system
) {
3501 fmt
= ctx
->ctx_buf_fmt
;
3503 DPRINT(("restarting self %d ovfl=0x%lx\n",
3505 ctx
->ctx_ovfl_regs
[0]));
3507 if (CTX_HAS_SMPL(ctx
)) {
3509 prefetch(ctx
->ctx_smpl_hdr
);
3511 rst_ctrl
.bits
.mask_monitoring
= 0;
3512 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
3514 if (state
== PFM_CTX_LOADED
)
3515 ret
= pfm_buf_fmt_restart_active(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3517 ret
= pfm_buf_fmt_restart(fmt
, task
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
3519 rst_ctrl
.bits
.mask_monitoring
= 0;
3520 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
3524 if (rst_ctrl
.bits
.reset_ovfl_pmds
)
3525 pfm_reset_regs(ctx
, ctx
->ctx_ovfl_regs
, PFM_PMD_LONG_RESET
);
3527 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
3528 DPRINT(("resuming monitoring for [%d]\n", task_pid_nr(task
)));
3530 if (state
== PFM_CTX_MASKED
) pfm_restore_monitoring(task
);
3532 DPRINT(("keeping monitoring stopped for [%d]\n", task_pid_nr(task
)));
3534 // cannot use pfm_stop_monitoring(task, regs);
3538 * clear overflowed PMD mask to remove any stale information
3540 ctx
->ctx_ovfl_regs
[0] = 0UL;
3543 * back to LOADED state
3545 ctx
->ctx_state
= PFM_CTX_LOADED
;
3548 * XXX: not really useful for self monitoring
3550 ctx
->ctx_fl_can_restart
= 0;
3556 * restart another task
3560 * When PFM_CTX_MASKED, we cannot issue a restart before the previous
3561 * one is seen by the task.
3563 if (state
== PFM_CTX_MASKED
) {
3564 if (ctx
->ctx_fl_can_restart
== 0) return -EINVAL
;
3566 * will prevent subsequent restart before this one is
3567 * seen by other task
3569 ctx
->ctx_fl_can_restart
= 0;
3573 * if blocking, then post the semaphore is PFM_CTX_MASKED, i.e.
3574 * the task is blocked or on its way to block. That's the normal
3575 * restart path. If the monitoring is not masked, then the task
3576 * can be actively monitoring and we cannot directly intervene.
3577 * Therefore we use the trap mechanism to catch the task and
3578 * force it to reset the buffer/reset PMDs.
3580 * if non-blocking, then we ensure that the task will go into
3581 * pfm_handle_work() before returning to user mode.
3583 * We cannot explicitly reset another task, it MUST always
3584 * be done by the task itself. This works for system wide because
3585 * the tool that is controlling the session is logically doing
3586 * "self-monitoring".
3588 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && state
== PFM_CTX_MASKED
) {
3589 DPRINT(("unblocking [%d]\n", task_pid_nr(task
)));
3590 complete(&ctx
->ctx_restart_done
);
3592 DPRINT(("[%d] armed exit trap\n", task_pid_nr(task
)));
3594 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_RESET
;
3596 PFM_SET_WORK_PENDING(task
, 1);
3598 set_notify_resume(task
);
3601 * XXX: send reschedule if task runs on another CPU
3608 pfm_debug(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3610 unsigned int m
= *(unsigned int *)arg
;
3612 pfm_sysctl
.debug
= m
== 0 ? 0 : 1;
3614 printk(KERN_INFO
"perfmon debugging %s (timing reset)\n", pfm_sysctl
.debug
? "on" : "off");
3617 memset(pfm_stats
, 0, sizeof(pfm_stats
));
3618 for(m
=0; m
< NR_CPUS
; m
++) pfm_stats
[m
].pfm_ovfl_intr_cycles_min
= ~0UL;
3624 * arg can be NULL and count can be zero for this function
3627 pfm_write_ibr_dbr(int mode
, pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3629 struct thread_struct
*thread
= NULL
;
3630 struct task_struct
*task
;
3631 pfarg_dbreg_t
*req
= (pfarg_dbreg_t
*)arg
;
3632 unsigned long flags
;
3637 int i
, can_access_pmu
= 0;
3638 int is_system
, is_loaded
;
3640 if (pmu_conf
->use_rr_dbregs
== 0) return -EINVAL
;
3642 state
= ctx
->ctx_state
;
3643 is_loaded
= state
== PFM_CTX_LOADED
? 1 : 0;
3644 is_system
= ctx
->ctx_fl_system
;
3645 task
= ctx
->ctx_task
;
3647 if (state
== PFM_CTX_ZOMBIE
) return -EINVAL
;
3650 * on both UP and SMP, we can only write to the PMC when the task is
3651 * the owner of the local PMU.
3654 thread
= &task
->thread
;
3656 * In system wide and when the context is loaded, access can only happen
3657 * when the caller is running on the CPU being monitored by the session.
3658 * It does not have to be the owner (ctx_task) of the context per se.
3660 if (unlikely(is_system
&& ctx
->ctx_cpu
!= smp_processor_id())) {
3661 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3664 can_access_pmu
= GET_PMU_OWNER() == task
|| is_system
? 1 : 0;
3668 * we do not need to check for ipsr.db because we do clear ibr.x, dbr.r, and dbr.w
3669 * ensuring that no real breakpoint can be installed via this call.
3671 * IMPORTANT: regs can be NULL in this function
3674 first_time
= ctx
->ctx_fl_using_dbreg
== 0;
3677 * don't bother if we are loaded and task is being debugged
3679 if (is_loaded
&& (thread
->flags
& IA64_THREAD_DBG_VALID
) != 0) {
3680 DPRINT(("debug registers already in use for [%d]\n", task_pid_nr(task
)));
3685 * check for debug registers in system wide mode
3687 * If though a check is done in pfm_context_load(),
3688 * we must repeat it here, in case the registers are
3689 * written after the context is loaded
3694 if (first_time
&& is_system
) {
3695 if (pfm_sessions
.pfs_ptrace_use_dbregs
)
3698 pfm_sessions
.pfs_sys_use_dbregs
++;
3703 if (ret
!= 0) return ret
;
3706 * mark ourself as user of the debug registers for
3709 ctx
->ctx_fl_using_dbreg
= 1;
3712 * clear hardware registers to make sure we don't
3713 * pick up stale state.
3715 * for a system wide session, we do not use
3716 * thread.dbr, thread.ibr because this process
3717 * never leaves the current CPU and the state
3718 * is shared by all processes running on it
3720 if (first_time
&& can_access_pmu
) {
3721 DPRINT(("[%d] clearing ibrs, dbrs\n", task_pid_nr(task
)));
3722 for (i
=0; i
< pmu_conf
->num_ibrs
; i
++) {
3723 ia64_set_ibr(i
, 0UL);
3724 ia64_dv_serialize_instruction();
3727 for (i
=0; i
< pmu_conf
->num_dbrs
; i
++) {
3728 ia64_set_dbr(i
, 0UL);
3729 ia64_dv_serialize_data();
3735 * Now install the values into the registers
3737 for (i
= 0; i
< count
; i
++, req
++) {
3739 rnum
= req
->dbreg_num
;
3740 dbreg
.val
= req
->dbreg_value
;
3744 if ((mode
== PFM_CODE_RR
&& rnum
>= PFM_NUM_IBRS
) || ((mode
== PFM_DATA_RR
) && rnum
>= PFM_NUM_DBRS
)) {
3745 DPRINT(("invalid register %u val=0x%lx mode=%d i=%d count=%d\n",
3746 rnum
, dbreg
.val
, mode
, i
, count
));
3752 * make sure we do not install enabled breakpoint
3755 if (mode
== PFM_CODE_RR
)
3756 dbreg
.ibr
.ibr_x
= 0;
3758 dbreg
.dbr
.dbr_r
= dbreg
.dbr
.dbr_w
= 0;
3761 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, 0);
3764 * Debug registers, just like PMC, can only be modified
3765 * by a kernel call. Moreover, perfmon() access to those
3766 * registers are centralized in this routine. The hardware
3767 * does not modify the value of these registers, therefore,
3768 * if we save them as they are written, we can avoid having
3769 * to save them on context switch out. This is made possible
3770 * by the fact that when perfmon uses debug registers, ptrace()
3771 * won't be able to modify them concurrently.
3773 if (mode
== PFM_CODE_RR
) {
3774 CTX_USED_IBR(ctx
, rnum
);
3776 if (can_access_pmu
) {
3777 ia64_set_ibr(rnum
, dbreg
.val
);
3778 ia64_dv_serialize_instruction();
3781 ctx
->ctx_ibrs
[rnum
] = dbreg
.val
;
3783 DPRINT(("write ibr%u=0x%lx used_ibrs=0x%x ld=%d apmu=%d\n",
3784 rnum
, dbreg
.val
, ctx
->ctx_used_ibrs
[0], is_loaded
, can_access_pmu
));
3786 CTX_USED_DBR(ctx
, rnum
);
3788 if (can_access_pmu
) {
3789 ia64_set_dbr(rnum
, dbreg
.val
);
3790 ia64_dv_serialize_data();
3792 ctx
->ctx_dbrs
[rnum
] = dbreg
.val
;
3794 DPRINT(("write dbr%u=0x%lx used_dbrs=0x%x ld=%d apmu=%d\n",
3795 rnum
, dbreg
.val
, ctx
->ctx_used_dbrs
[0], is_loaded
, can_access_pmu
));
3803 * in case it was our first attempt, we undo the global modifications
3807 if (ctx
->ctx_fl_system
) {
3808 pfm_sessions
.pfs_sys_use_dbregs
--;
3811 ctx
->ctx_fl_using_dbreg
= 0;
3814 * install error return flag
3816 PFM_REG_RETFLAG_SET(req
->dbreg_flags
, PFM_REG_RETFL_EINVAL
);
3822 pfm_write_ibrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3824 return pfm_write_ibr_dbr(PFM_CODE_RR
, ctx
, arg
, count
, regs
);
3828 pfm_write_dbrs(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3830 return pfm_write_ibr_dbr(PFM_DATA_RR
, ctx
, arg
, count
, regs
);
3834 pfm_mod_write_ibrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3838 if (req
== NULL
) return -EINVAL
;
3840 ctx
= GET_PMU_CTX();
3842 if (ctx
== NULL
) return -EINVAL
;
3845 * for now limit to current task, which is enough when calling
3846 * from overflow handler
3848 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3850 return pfm_write_ibrs(ctx
, req
, nreq
, regs
);
3852 EXPORT_SYMBOL(pfm_mod_write_ibrs
);
3855 pfm_mod_write_dbrs(struct task_struct
*task
, void *req
, unsigned int nreq
, struct pt_regs
*regs
)
3859 if (req
== NULL
) return -EINVAL
;
3861 ctx
= GET_PMU_CTX();
3863 if (ctx
== NULL
) return -EINVAL
;
3866 * for now limit to current task, which is enough when calling
3867 * from overflow handler
3869 if (task
!= current
&& ctx
->ctx_fl_system
== 0) return -EBUSY
;
3871 return pfm_write_dbrs(ctx
, req
, nreq
, regs
);
3873 EXPORT_SYMBOL(pfm_mod_write_dbrs
);
3877 pfm_get_features(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3879 pfarg_features_t
*req
= (pfarg_features_t
*)arg
;
3881 req
->ft_version
= PFM_VERSION
;
3886 pfm_stop(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3888 struct pt_regs
*tregs
;
3889 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
3890 int state
, is_system
;
3892 state
= ctx
->ctx_state
;
3893 is_system
= ctx
->ctx_fl_system
;
3896 * context must be attached to issue the stop command (includes LOADED,MASKED,ZOMBIE)
3898 if (state
== PFM_CTX_UNLOADED
) return -EINVAL
;
3901 * In system wide and when the context is loaded, access can only happen
3902 * when the caller is running on the CPU being monitored by the session.
3903 * It does not have to be the owner (ctx_task) of the context per se.
3905 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3906 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3909 DPRINT(("task [%d] ctx_state=%d is_system=%d\n",
3910 task_pid_nr(PFM_CTX_TASK(ctx
)),
3914 * in system mode, we need to update the PMU directly
3915 * and the user level state of the caller, which may not
3916 * necessarily be the creator of the context.
3920 * Update local PMU first
3924 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) & ~IA64_DCR_PP
);
3928 * update local cpuinfo
3930 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
3933 * stop monitoring, does srlz.i
3938 * stop monitoring in the caller
3940 ia64_psr(regs
)->pp
= 0;
3948 if (task
== current
) {
3949 /* stop monitoring at kernel level */
3953 * stop monitoring at the user level
3955 ia64_psr(regs
)->up
= 0;
3957 tregs
= task_pt_regs(task
);
3960 * stop monitoring at the user level
3962 ia64_psr(tregs
)->up
= 0;
3965 * monitoring disabled in kernel at next reschedule
3967 ctx
->ctx_saved_psr_up
= 0;
3968 DPRINT(("task=[%d]\n", task_pid_nr(task
)));
3975 pfm_start(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
3977 struct pt_regs
*tregs
;
3978 int state
, is_system
;
3980 state
= ctx
->ctx_state
;
3981 is_system
= ctx
->ctx_fl_system
;
3983 if (state
!= PFM_CTX_LOADED
) return -EINVAL
;
3986 * In system wide and when the context is loaded, access can only happen
3987 * when the caller is running on the CPU being monitored by the session.
3988 * It does not have to be the owner (ctx_task) of the context per se.
3990 if (is_system
&& ctx
->ctx_cpu
!= smp_processor_id()) {
3991 DPRINT(("should be running on CPU%d\n", ctx
->ctx_cpu
));
3996 * in system mode, we need to update the PMU directly
3997 * and the user level state of the caller, which may not
3998 * necessarily be the creator of the context.
4003 * set user level psr.pp for the caller
4005 ia64_psr(regs
)->pp
= 1;
4008 * now update the local PMU and cpuinfo
4010 PFM_CPUINFO_SET(PFM_CPUINFO_DCR_PP
);
4013 * start monitoring at kernel level
4018 ia64_setreg(_IA64_REG_CR_DCR
, ia64_getreg(_IA64_REG_CR_DCR
) | IA64_DCR_PP
);
4028 if (ctx
->ctx_task
== current
) {
4030 /* start monitoring at kernel level */
4034 * activate monitoring at user level
4036 ia64_psr(regs
)->up
= 1;
4039 tregs
= task_pt_regs(ctx
->ctx_task
);
4042 * start monitoring at the kernel level the next
4043 * time the task is scheduled
4045 ctx
->ctx_saved_psr_up
= IA64_PSR_UP
;
4048 * activate monitoring at user level
4050 ia64_psr(tregs
)->up
= 1;
4056 pfm_get_pmc_reset(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4058 pfarg_reg_t
*req
= (pfarg_reg_t
*)arg
;
4063 for (i
= 0; i
< count
; i
++, req
++) {
4065 cnum
= req
->reg_num
;
4067 if (!PMC_IS_IMPL(cnum
)) goto abort_mission
;
4069 req
->reg_value
= PMC_DFL_VAL(cnum
);
4071 PFM_REG_RETFLAG_SET(req
->reg_flags
, 0);
4073 DPRINT(("pmc_reset_val pmc[%u]=0x%lx\n", cnum
, req
->reg_value
));
4078 PFM_REG_RETFLAG_SET(req
->reg_flags
, PFM_REG_RETFL_EINVAL
);
4083 pfm_check_task_exist(pfm_context_t
*ctx
)
4085 struct task_struct
*g
, *t
;
4088 read_lock(&tasklist_lock
);
4090 do_each_thread (g
, t
) {
4091 if (t
->thread
.pfm_context
== ctx
) {
4095 } while_each_thread (g
, t
);
4097 read_unlock(&tasklist_lock
);
4099 DPRINT(("pfm_check_task_exist: ret=%d ctx=%p\n", ret
, ctx
));
4105 pfm_context_load(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4107 struct task_struct
*task
;
4108 struct thread_struct
*thread
;
4109 struct pfm_context_t
*old
;
4110 unsigned long flags
;
4112 struct task_struct
*owner_task
= NULL
;
4114 pfarg_load_t
*req
= (pfarg_load_t
*)arg
;
4115 unsigned long *pmcs_source
, *pmds_source
;
4118 int state
, is_system
, set_dbregs
= 0;
4120 state
= ctx
->ctx_state
;
4121 is_system
= ctx
->ctx_fl_system
;
4123 * can only load from unloaded or terminated state
4125 if (state
!= PFM_CTX_UNLOADED
) {
4126 DPRINT(("cannot load to [%d], invalid ctx_state=%d\n",
4132 DPRINT(("load_pid [%d] using_dbreg=%d\n", req
->load_pid
, ctx
->ctx_fl_using_dbreg
));
4134 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && req
->load_pid
== current
->pid
) {
4135 DPRINT(("cannot use blocking mode on self\n"));
4139 ret
= pfm_get_task(ctx
, req
->load_pid
, &task
);
4141 DPRINT(("load_pid [%d] get_task=%d\n", req
->load_pid
, ret
));
4148 * system wide is self monitoring only
4150 if (is_system
&& task
!= current
) {
4151 DPRINT(("system wide is self monitoring only load_pid=%d\n",
4156 thread
= &task
->thread
;
4160 * cannot load a context which is using range restrictions,
4161 * into a task that is being debugged.
4163 if (ctx
->ctx_fl_using_dbreg
) {
4164 if (thread
->flags
& IA64_THREAD_DBG_VALID
) {
4166 DPRINT(("load_pid [%d] task is debugged, cannot load range restrictions\n", req
->load_pid
));
4172 if (pfm_sessions
.pfs_ptrace_use_dbregs
) {
4173 DPRINT(("cannot load [%d] dbregs in use\n",
4174 task_pid_nr(task
)));
4177 pfm_sessions
.pfs_sys_use_dbregs
++;
4178 DPRINT(("load [%d] increased sys_use_dbreg=%u\n", task_pid_nr(task
), pfm_sessions
.pfs_sys_use_dbregs
));
4185 if (ret
) goto error
;
4189 * SMP system-wide monitoring implies self-monitoring.
4191 * The programming model expects the task to
4192 * be pinned on a CPU throughout the session.
4193 * Here we take note of the current CPU at the
4194 * time the context is loaded. No call from
4195 * another CPU will be allowed.
4197 * The pinning via shed_setaffinity()
4198 * must be done by the calling task prior
4201 * systemwide: keep track of CPU this session is supposed to run on
4203 the_cpu
= ctx
->ctx_cpu
= smp_processor_id();
4207 * now reserve the session
4209 ret
= pfm_reserve_session(current
, is_system
, the_cpu
);
4210 if (ret
) goto error
;
4213 * task is necessarily stopped at this point.
4215 * If the previous context was zombie, then it got removed in
4216 * pfm_save_regs(). Therefore we should not see it here.
4217 * If we see a context, then this is an active context
4219 * XXX: needs to be atomic
4221 DPRINT(("before cmpxchg() old_ctx=%p new_ctx=%p\n",
4222 thread
->pfm_context
, ctx
));
4225 old
= ia64_cmpxchg(acq
, &thread
->pfm_context
, NULL
, ctx
, sizeof(pfm_context_t
*));
4227 DPRINT(("load_pid [%d] already has a context\n", req
->load_pid
));
4231 pfm_reset_msgq(ctx
);
4233 ctx
->ctx_state
= PFM_CTX_LOADED
;
4236 * link context to task
4238 ctx
->ctx_task
= task
;
4242 * we load as stopped
4244 PFM_CPUINFO_SET(PFM_CPUINFO_SYST_WIDE
);
4245 PFM_CPUINFO_CLEAR(PFM_CPUINFO_DCR_PP
);
4247 if (ctx
->ctx_fl_excl_idle
) PFM_CPUINFO_SET(PFM_CPUINFO_EXCL_IDLE
);
4249 thread
->flags
|= IA64_THREAD_PM_VALID
;
4253 * propagate into thread-state
4255 pfm_copy_pmds(task
, ctx
);
4256 pfm_copy_pmcs(task
, ctx
);
4258 pmcs_source
= ctx
->th_pmcs
;
4259 pmds_source
= ctx
->th_pmds
;
4262 * always the case for system-wide
4264 if (task
== current
) {
4266 if (is_system
== 0) {
4268 /* allow user level control */
4269 ia64_psr(regs
)->sp
= 0;
4270 DPRINT(("clearing psr.sp for [%d]\n", task_pid_nr(task
)));
4272 SET_LAST_CPU(ctx
, smp_processor_id());
4274 SET_ACTIVATION(ctx
);
4277 * push the other task out, if any
4279 owner_task
= GET_PMU_OWNER();
4280 if (owner_task
) pfm_lazy_save_regs(owner_task
);
4284 * load all PMD from ctx to PMU (as opposed to thread state)
4285 * restore all PMC from ctx to PMU
4287 pfm_restore_pmds(pmds_source
, ctx
->ctx_all_pmds
[0]);
4288 pfm_restore_pmcs(pmcs_source
, ctx
->ctx_all_pmcs
[0]);
4290 ctx
->ctx_reload_pmcs
[0] = 0UL;
4291 ctx
->ctx_reload_pmds
[0] = 0UL;
4294 * guaranteed safe by earlier check against DBG_VALID
4296 if (ctx
->ctx_fl_using_dbreg
) {
4297 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
4298 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
4303 SET_PMU_OWNER(task
, ctx
);
4305 DPRINT(("context loaded on PMU for [%d]\n", task_pid_nr(task
)));
4308 * when not current, task MUST be stopped, so this is safe
4310 regs
= task_pt_regs(task
);
4312 /* force a full reload */
4313 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4314 SET_LAST_CPU(ctx
, -1);
4316 /* initial saved psr (stopped) */
4317 ctx
->ctx_saved_psr_up
= 0UL;
4318 ia64_psr(regs
)->up
= ia64_psr(regs
)->pp
= 0;
4324 if (ret
) pfm_unreserve_session(ctx
, ctx
->ctx_fl_system
, the_cpu
);
4327 * we must undo the dbregs setting (for system-wide)
4329 if (ret
&& set_dbregs
) {
4331 pfm_sessions
.pfs_sys_use_dbregs
--;
4335 * release task, there is now a link with the context
4337 if (is_system
== 0 && task
!= current
) {
4341 ret
= pfm_check_task_exist(ctx
);
4343 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4344 ctx
->ctx_task
= NULL
;
4352 * in this function, we do not need to increase the use count
4353 * for the task via get_task_struct(), because we hold the
4354 * context lock. If the task were to disappear while having
4355 * a context attached, it would go through pfm_exit_thread()
4356 * which also grabs the context lock and would therefore be blocked
4357 * until we are here.
4359 static void pfm_flush_pmds(struct task_struct
*, pfm_context_t
*ctx
);
4362 pfm_context_unload(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
)
4364 struct task_struct
*task
= PFM_CTX_TASK(ctx
);
4365 struct pt_regs
*tregs
;
4366 int prev_state
, is_system
;
4369 DPRINT(("ctx_state=%d task [%d]\n", ctx
->ctx_state
, task
? task_pid_nr(task
) : -1));
4371 prev_state
= ctx
->ctx_state
;
4372 is_system
= ctx
->ctx_fl_system
;
4375 * unload only when necessary
4377 if (prev_state
== PFM_CTX_UNLOADED
) {
4378 DPRINT(("ctx_state=%d, nothing to do\n", prev_state
));
4383 * clear psr and dcr bits
4385 ret
= pfm_stop(ctx
, NULL
, 0, regs
);
4386 if (ret
) return ret
;
4388 ctx
->ctx_state
= PFM_CTX_UNLOADED
;
4391 * in system mode, we need to update the PMU directly
4392 * and the user level state of the caller, which may not
4393 * necessarily be the creator of the context.
4400 * local PMU is taken care of in pfm_stop()
4402 PFM_CPUINFO_CLEAR(PFM_CPUINFO_SYST_WIDE
);
4403 PFM_CPUINFO_CLEAR(PFM_CPUINFO_EXCL_IDLE
);
4406 * save PMDs in context
4409 pfm_flush_pmds(current
, ctx
);
4412 * at this point we are done with the PMU
4413 * so we can unreserve the resource.
4415 if (prev_state
!= PFM_CTX_ZOMBIE
)
4416 pfm_unreserve_session(ctx
, 1 , ctx
->ctx_cpu
);
4419 * disconnect context from task
4421 task
->thread
.pfm_context
= NULL
;
4423 * disconnect task from context
4425 ctx
->ctx_task
= NULL
;
4428 * There is nothing more to cleanup here.
4436 tregs
= task
== current
? regs
: task_pt_regs(task
);
4438 if (task
== current
) {
4440 * cancel user level control
4442 ia64_psr(regs
)->sp
= 1;
4444 DPRINT(("setting psr.sp for [%d]\n", task_pid_nr(task
)));
4447 * save PMDs to context
4450 pfm_flush_pmds(task
, ctx
);
4453 * at this point we are done with the PMU
4454 * so we can unreserve the resource.
4456 * when state was ZOMBIE, we have already unreserved.
4458 if (prev_state
!= PFM_CTX_ZOMBIE
)
4459 pfm_unreserve_session(ctx
, 0 , ctx
->ctx_cpu
);
4462 * reset activation counter and psr
4464 ctx
->ctx_last_activation
= PFM_INVALID_ACTIVATION
;
4465 SET_LAST_CPU(ctx
, -1);
4468 * PMU state will not be restored
4470 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
4473 * break links between context and task
4475 task
->thread
.pfm_context
= NULL
;
4476 ctx
->ctx_task
= NULL
;
4478 PFM_SET_WORK_PENDING(task
, 0);
4480 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4481 ctx
->ctx_fl_can_restart
= 0;
4482 ctx
->ctx_fl_going_zombie
= 0;
4484 DPRINT(("disconnected [%d] from context\n", task_pid_nr(task
)));
4491 * called only from exit_thread()
4492 * we come here only if the task has a context attached (loaded or masked)
4495 pfm_exit_thread(struct task_struct
*task
)
4498 unsigned long flags
;
4499 struct pt_regs
*regs
= task_pt_regs(task
);
4503 ctx
= PFM_GET_CTX(task
);
4505 PROTECT_CTX(ctx
, flags
);
4507 DPRINT(("state=%d task [%d]\n", ctx
->ctx_state
, task_pid_nr(task
)));
4509 state
= ctx
->ctx_state
;
4511 case PFM_CTX_UNLOADED
:
4513 * only comes to this function if pfm_context is not NULL, i.e., cannot
4514 * be in unloaded state
4516 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] ctx unloaded\n", task_pid_nr(task
));
4518 case PFM_CTX_LOADED
:
4519 case PFM_CTX_MASKED
:
4520 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4522 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4524 DPRINT(("ctx unloaded for current state was %d\n", state
));
4526 pfm_end_notify_user(ctx
);
4528 case PFM_CTX_ZOMBIE
:
4529 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4531 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] state=%d unload failed %d\n", task_pid_nr(task
), state
, ret
);
4536 printk(KERN_ERR
"perfmon: pfm_exit_thread [%d] unexpected state=%d\n", task_pid_nr(task
), state
);
4539 UNPROTECT_CTX(ctx
, flags
);
4541 { u64 psr
= pfm_get_psr();
4542 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
4543 BUG_ON(GET_PMU_OWNER());
4544 BUG_ON(ia64_psr(regs
)->up
);
4545 BUG_ON(ia64_psr(regs
)->pp
);
4549 * All memory free operations (especially for vmalloc'ed memory)
4550 * MUST be done with interrupts ENABLED.
4552 if (free_ok
) pfm_context_free(ctx
);
4556 * functions MUST be listed in the increasing order of their index (see permfon.h)
4558 #define PFM_CMD(name, flags, arg_count, arg_type, getsz) { name, #name, flags, arg_count, sizeof(arg_type), getsz }
4559 #define PFM_CMD_S(name, flags) { name, #name, flags, 0, 0, NULL }
4560 #define PFM_CMD_PCLRWS (PFM_CMD_FD|PFM_CMD_ARG_RW|PFM_CMD_STOP)
4561 #define PFM_CMD_PCLRW (PFM_CMD_FD|PFM_CMD_ARG_RW)
4562 #define PFM_CMD_NONE { NULL, "no-cmd", 0, 0, 0, NULL}
4564 static pfm_cmd_desc_t pfm_cmd_tab
[]={
4565 /* 0 */PFM_CMD_NONE
,
4566 /* 1 */PFM_CMD(pfm_write_pmcs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4567 /* 2 */PFM_CMD(pfm_write_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4568 /* 3 */PFM_CMD(pfm_read_pmds
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4569 /* 4 */PFM_CMD_S(pfm_stop
, PFM_CMD_PCLRWS
),
4570 /* 5 */PFM_CMD_S(pfm_start
, PFM_CMD_PCLRWS
),
4571 /* 6 */PFM_CMD_NONE
,
4572 /* 7 */PFM_CMD_NONE
,
4573 /* 8 */PFM_CMD(pfm_context_create
, PFM_CMD_ARG_RW
, 1, pfarg_context_t
, pfm_ctx_getsize
),
4574 /* 9 */PFM_CMD_NONE
,
4575 /* 10 */PFM_CMD_S(pfm_restart
, PFM_CMD_PCLRW
),
4576 /* 11 */PFM_CMD_NONE
,
4577 /* 12 */PFM_CMD(pfm_get_features
, PFM_CMD_ARG_RW
, 1, pfarg_features_t
, NULL
),
4578 /* 13 */PFM_CMD(pfm_debug
, 0, 1, unsigned int, NULL
),
4579 /* 14 */PFM_CMD_NONE
,
4580 /* 15 */PFM_CMD(pfm_get_pmc_reset
, PFM_CMD_ARG_RW
, PFM_CMD_ARG_MANY
, pfarg_reg_t
, NULL
),
4581 /* 16 */PFM_CMD(pfm_context_load
, PFM_CMD_PCLRWS
, 1, pfarg_load_t
, NULL
),
4582 /* 17 */PFM_CMD_S(pfm_context_unload
, PFM_CMD_PCLRWS
),
4583 /* 18 */PFM_CMD_NONE
,
4584 /* 19 */PFM_CMD_NONE
,
4585 /* 20 */PFM_CMD_NONE
,
4586 /* 21 */PFM_CMD_NONE
,
4587 /* 22 */PFM_CMD_NONE
,
4588 /* 23 */PFM_CMD_NONE
,
4589 /* 24 */PFM_CMD_NONE
,
4590 /* 25 */PFM_CMD_NONE
,
4591 /* 26 */PFM_CMD_NONE
,
4592 /* 27 */PFM_CMD_NONE
,
4593 /* 28 */PFM_CMD_NONE
,
4594 /* 29 */PFM_CMD_NONE
,
4595 /* 30 */PFM_CMD_NONE
,
4596 /* 31 */PFM_CMD_NONE
,
4597 /* 32 */PFM_CMD(pfm_write_ibrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
),
4598 /* 33 */PFM_CMD(pfm_write_dbrs
, PFM_CMD_PCLRWS
, PFM_CMD_ARG_MANY
, pfarg_dbreg_t
, NULL
)
4600 #define PFM_CMD_COUNT (sizeof(pfm_cmd_tab)/sizeof(pfm_cmd_desc_t))
4603 pfm_check_task_state(pfm_context_t
*ctx
, int cmd
, unsigned long flags
)
4605 struct task_struct
*task
;
4606 int state
, old_state
;
4609 state
= ctx
->ctx_state
;
4610 task
= ctx
->ctx_task
;
4613 DPRINT(("context %d no task, state=%d\n", ctx
->ctx_fd
, state
));
4617 DPRINT(("context %d state=%d [%d] task_state=%ld must_stop=%d\n",
4621 task
->state
, PFM_CMD_STOPPED(cmd
)));
4624 * self-monitoring always ok.
4626 * for system-wide the caller can either be the creator of the
4627 * context (to one to which the context is attached to) OR
4628 * a task running on the same CPU as the session.
4630 if (task
== current
|| ctx
->ctx_fl_system
) return 0;
4633 * we are monitoring another thread
4636 case PFM_CTX_UNLOADED
:
4638 * if context is UNLOADED we are safe to go
4641 case PFM_CTX_ZOMBIE
:
4643 * no command can operate on a zombie context
4645 DPRINT(("cmd %d state zombie cannot operate on context\n", cmd
));
4647 case PFM_CTX_MASKED
:
4649 * PMU state has been saved to software even though
4650 * the thread may still be running.
4652 if (cmd
!= PFM_UNLOAD_CONTEXT
) return 0;
4656 * context is LOADED or MASKED. Some commands may need to have
4659 * We could lift this restriction for UP but it would mean that
4660 * the user has no guarantee the task would not run between
4661 * two successive calls to perfmonctl(). That's probably OK.
4662 * If this user wants to ensure the task does not run, then
4663 * the task must be stopped.
4665 if (PFM_CMD_STOPPED(cmd
)) {
4666 if (!task_is_stopped_or_traced(task
)) {
4667 DPRINT(("[%d] task not in stopped state\n", task_pid_nr(task
)));
4671 * task is now stopped, wait for ctxsw out
4673 * This is an interesting point in the code.
4674 * We need to unprotect the context because
4675 * the pfm_save_regs() routines needs to grab
4676 * the same lock. There are danger in doing
4677 * this because it leaves a window open for
4678 * another task to get access to the context
4679 * and possibly change its state. The one thing
4680 * that is not possible is for the context to disappear
4681 * because we are protected by the VFS layer, i.e.,
4682 * get_fd()/put_fd().
4686 UNPROTECT_CTX(ctx
, flags
);
4688 wait_task_inactive(task
, 0);
4690 PROTECT_CTX(ctx
, flags
);
4693 * we must recheck to verify if state has changed
4695 if (ctx
->ctx_state
!= old_state
) {
4696 DPRINT(("old_state=%d new_state=%d\n", old_state
, ctx
->ctx_state
));
4704 * system-call entry point (must return long)
4707 sys_perfmonctl (int fd
, int cmd
, void __user
*arg
, int count
)
4709 struct fd f
= {NULL
, 0};
4710 pfm_context_t
*ctx
= NULL
;
4711 unsigned long flags
= 0UL;
4712 void *args_k
= NULL
;
4713 long ret
; /* will expand int return types */
4714 size_t base_sz
, sz
, xtra_sz
= 0;
4715 int narg
, completed_args
= 0, call_made
= 0, cmd_flags
;
4716 int (*func
)(pfm_context_t
*ctx
, void *arg
, int count
, struct pt_regs
*regs
);
4717 int (*getsize
)(void *arg
, size_t *sz
);
4718 #define PFM_MAX_ARGSIZE 4096
4721 * reject any call if perfmon was disabled at initialization
4723 if (unlikely(pmu_conf
== NULL
)) return -ENOSYS
;
4725 if (unlikely(cmd
< 0 || cmd
>= PFM_CMD_COUNT
)) {
4726 DPRINT(("invalid cmd=%d\n", cmd
));
4730 func
= pfm_cmd_tab
[cmd
].cmd_func
;
4731 narg
= pfm_cmd_tab
[cmd
].cmd_narg
;
4732 base_sz
= pfm_cmd_tab
[cmd
].cmd_argsize
;
4733 getsize
= pfm_cmd_tab
[cmd
].cmd_getsize
;
4734 cmd_flags
= pfm_cmd_tab
[cmd
].cmd_flags
;
4736 if (unlikely(func
== NULL
)) {
4737 DPRINT(("invalid cmd=%d\n", cmd
));
4741 DPRINT(("cmd=%s idx=%d narg=0x%x argsz=%lu count=%d\n",
4749 * check if number of arguments matches what the command expects
4751 if (unlikely((narg
== PFM_CMD_ARG_MANY
&& count
<= 0) || (narg
> 0 && narg
!= count
)))
4755 sz
= xtra_sz
+ base_sz
*count
;
4757 * limit abuse to min page size
4759 if (unlikely(sz
> PFM_MAX_ARGSIZE
)) {
4760 printk(KERN_ERR
"perfmon: [%d] argument too big %lu\n", task_pid_nr(current
), sz
);
4765 * allocate default-sized argument buffer
4767 if (likely(count
&& args_k
== NULL
)) {
4768 args_k
= kmalloc(PFM_MAX_ARGSIZE
, GFP_KERNEL
);
4769 if (args_k
== NULL
) return -ENOMEM
;
4777 * assume sz = 0 for command without parameters
4779 if (sz
&& copy_from_user(args_k
, arg
, sz
)) {
4780 DPRINT(("cannot copy_from_user %lu bytes @%p\n", sz
, arg
));
4785 * check if command supports extra parameters
4787 if (completed_args
== 0 && getsize
) {
4789 * get extra parameters size (based on main argument)
4791 ret
= (*getsize
)(args_k
, &xtra_sz
);
4792 if (ret
) goto error_args
;
4796 DPRINT(("restart_args sz=%lu xtra_sz=%lu\n", sz
, xtra_sz
));
4798 /* retry if necessary */
4799 if (likely(xtra_sz
)) goto restart_args
;
4802 if (unlikely((cmd_flags
& PFM_CMD_FD
) == 0)) goto skip_fd
;
4807 if (unlikely(f
.file
== NULL
)) {
4808 DPRINT(("invalid fd %d\n", fd
));
4811 if (unlikely(PFM_IS_FILE(f
.file
) == 0)) {
4812 DPRINT(("fd %d not related to perfmon\n", fd
));
4816 ctx
= f
.file
->private_data
;
4817 if (unlikely(ctx
== NULL
)) {
4818 DPRINT(("no context for fd %d\n", fd
));
4821 prefetch(&ctx
->ctx_state
);
4823 PROTECT_CTX(ctx
, flags
);
4826 * check task is stopped
4828 ret
= pfm_check_task_state(ctx
, cmd
, flags
);
4829 if (unlikely(ret
)) goto abort_locked
;
4832 ret
= (*func
)(ctx
, args_k
, count
, task_pt_regs(current
));
4838 DPRINT(("context unlocked\n"));
4839 UNPROTECT_CTX(ctx
, flags
);
4842 /* copy argument back to user, if needed */
4843 if (call_made
&& PFM_CMD_RW_ARG(cmd
) && copy_to_user(arg
, args_k
, base_sz
*count
)) ret
= -EFAULT
;
4851 DPRINT(("cmd=%s ret=%ld\n", PFM_CMD_NAME(cmd
), ret
));
4857 pfm_resume_after_ovfl(pfm_context_t
*ctx
, unsigned long ovfl_regs
, struct pt_regs
*regs
)
4859 pfm_buffer_fmt_t
*fmt
= ctx
->ctx_buf_fmt
;
4860 pfm_ovfl_ctrl_t rst_ctrl
;
4864 state
= ctx
->ctx_state
;
4866 * Unlock sampling buffer and reset index atomically
4867 * XXX: not really needed when blocking
4869 if (CTX_HAS_SMPL(ctx
)) {
4871 rst_ctrl
.bits
.mask_monitoring
= 0;
4872 rst_ctrl
.bits
.reset_ovfl_pmds
= 0;
4874 if (state
== PFM_CTX_LOADED
)
4875 ret
= pfm_buf_fmt_restart_active(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4877 ret
= pfm_buf_fmt_restart(fmt
, current
, &rst_ctrl
, ctx
->ctx_smpl_hdr
, regs
);
4879 rst_ctrl
.bits
.mask_monitoring
= 0;
4880 rst_ctrl
.bits
.reset_ovfl_pmds
= 1;
4884 if (rst_ctrl
.bits
.reset_ovfl_pmds
) {
4885 pfm_reset_regs(ctx
, &ovfl_regs
, PFM_PMD_LONG_RESET
);
4887 if (rst_ctrl
.bits
.mask_monitoring
== 0) {
4888 DPRINT(("resuming monitoring\n"));
4889 if (ctx
->ctx_state
== PFM_CTX_MASKED
) pfm_restore_monitoring(current
);
4891 DPRINT(("stopping monitoring\n"));
4892 //pfm_stop_monitoring(current, regs);
4894 ctx
->ctx_state
= PFM_CTX_LOADED
;
4899 * context MUST BE LOCKED when calling
4900 * can only be called for current
4903 pfm_context_force_terminate(pfm_context_t
*ctx
, struct pt_regs
*regs
)
4907 DPRINT(("entering for [%d]\n", task_pid_nr(current
)));
4909 ret
= pfm_context_unload(ctx
, NULL
, 0, regs
);
4911 printk(KERN_ERR
"pfm_context_force_terminate: [%d] unloaded failed with %d\n", task_pid_nr(current
), ret
);
4915 * and wakeup controlling task, indicating we are now disconnected
4917 wake_up_interruptible(&ctx
->ctx_zombieq
);
4920 * given that context is still locked, the controlling
4921 * task will only get access when we return from
4922 * pfm_handle_work().
4926 static int pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
);
4929 * pfm_handle_work() can be called with interrupts enabled
4930 * (TIF_NEED_RESCHED) or disabled. The down_interruptible
4931 * call may sleep, therefore we must re-enable interrupts
4932 * to avoid deadlocks. It is safe to do so because this function
4933 * is called ONLY when returning to user level (pUStk=1), in which case
4934 * there is no risk of kernel stack overflow due to deep
4935 * interrupt nesting.
4938 pfm_handle_work(void)
4941 struct pt_regs
*regs
;
4942 unsigned long flags
, dummy_flags
;
4943 unsigned long ovfl_regs
;
4944 unsigned int reason
;
4947 ctx
= PFM_GET_CTX(current
);
4949 printk(KERN_ERR
"perfmon: [%d] has no PFM context\n",
4950 task_pid_nr(current
));
4954 PROTECT_CTX(ctx
, flags
);
4956 PFM_SET_WORK_PENDING(current
, 0);
4958 regs
= task_pt_regs(current
);
4961 * extract reason for being here and clear
4963 reason
= ctx
->ctx_fl_trap_reason
;
4964 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_NONE
;
4965 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
4967 DPRINT(("reason=%d state=%d\n", reason
, ctx
->ctx_state
));
4970 * must be done before we check for simple-reset mode
4972 if (ctx
->ctx_fl_going_zombie
|| ctx
->ctx_state
== PFM_CTX_ZOMBIE
)
4975 //if (CTX_OVFL_NOBLOCK(ctx)) goto skip_blocking;
4976 if (reason
== PFM_TRAP_REASON_RESET
)
4980 * restore interrupt mask to what it was on entry.
4981 * Could be enabled/diasbled.
4983 UNPROTECT_CTX(ctx
, flags
);
4986 * force interrupt enable because of down_interruptible()
4990 DPRINT(("before block sleeping\n"));
4993 * may go through without blocking on SMP systems
4994 * if restart has been received already by the time we call down()
4996 ret
= wait_for_completion_interruptible(&ctx
->ctx_restart_done
);
4998 DPRINT(("after block sleeping ret=%d\n", ret
));
5001 * lock context and mask interrupts again
5002 * We save flags into a dummy because we may have
5003 * altered interrupts mask compared to entry in this
5006 PROTECT_CTX(ctx
, dummy_flags
);
5009 * we need to read the ovfl_regs only after wake-up
5010 * because we may have had pfm_write_pmds() in between
5011 * and that can changed PMD values and therefore
5012 * ovfl_regs is reset for these new PMD values.
5014 ovfl_regs
= ctx
->ctx_ovfl_regs
[0];
5016 if (ctx
->ctx_fl_going_zombie
) {
5018 DPRINT(("context is zombie, bailing out\n"));
5019 pfm_context_force_terminate(ctx
, regs
);
5023 * in case of interruption of down() we don't restart anything
5029 pfm_resume_after_ovfl(ctx
, ovfl_regs
, regs
);
5030 ctx
->ctx_ovfl_regs
[0] = 0UL;
5034 * restore flags as they were upon entry
5036 UNPROTECT_CTX(ctx
, flags
);
5040 pfm_notify_user(pfm_context_t
*ctx
, pfm_msg_t
*msg
)
5042 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5043 DPRINT(("ignoring overflow notification, owner is zombie\n"));
5047 DPRINT(("waking up somebody\n"));
5049 if (msg
) wake_up_interruptible(&ctx
->ctx_msgq_wait
);
5052 * safe, we are not in intr handler, nor in ctxsw when
5055 kill_fasync (&ctx
->ctx_async_queue
, SIGIO
, POLL_IN
);
5061 pfm_ovfl_notify_user(pfm_context_t
*ctx
, unsigned long ovfl_pmds
)
5063 pfm_msg_t
*msg
= NULL
;
5065 if (ctx
->ctx_fl_no_msg
== 0) {
5066 msg
= pfm_get_new_msg(ctx
);
5068 printk(KERN_ERR
"perfmon: pfm_ovfl_notify_user no more notification msgs\n");
5072 msg
->pfm_ovfl_msg
.msg_type
= PFM_MSG_OVFL
;
5073 msg
->pfm_ovfl_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5074 msg
->pfm_ovfl_msg
.msg_active_set
= 0;
5075 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[0] = ovfl_pmds
;
5076 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[1] = 0UL;
5077 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[2] = 0UL;
5078 msg
->pfm_ovfl_msg
.msg_ovfl_pmds
[3] = 0UL;
5079 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5082 DPRINT(("ovfl msg: msg=%p no_msg=%d fd=%d ovfl_pmds=0x%lx\n",
5088 return pfm_notify_user(ctx
, msg
);
5092 pfm_end_notify_user(pfm_context_t
*ctx
)
5096 msg
= pfm_get_new_msg(ctx
);
5098 printk(KERN_ERR
"perfmon: pfm_end_notify_user no more notification msgs\n");
5102 memset(msg
, 0, sizeof(*msg
));
5104 msg
->pfm_end_msg
.msg_type
= PFM_MSG_END
;
5105 msg
->pfm_end_msg
.msg_ctx_fd
= ctx
->ctx_fd
;
5106 msg
->pfm_ovfl_msg
.msg_tstamp
= 0UL;
5108 DPRINT(("end msg: msg=%p no_msg=%d ctx_fd=%d\n",
5113 return pfm_notify_user(ctx
, msg
);
5117 * main overflow processing routine.
5118 * it can be called from the interrupt path or explicitly during the context switch code
5120 static void pfm_overflow_handler(struct task_struct
*task
, pfm_context_t
*ctx
,
5121 unsigned long pmc0
, struct pt_regs
*regs
)
5123 pfm_ovfl_arg_t
*ovfl_arg
;
5125 unsigned long old_val
, ovfl_val
, new_val
;
5126 unsigned long ovfl_notify
= 0UL, ovfl_pmds
= 0UL, smpl_pmds
= 0UL, reset_pmds
;
5127 unsigned long tstamp
;
5128 pfm_ovfl_ctrl_t ovfl_ctrl
;
5129 unsigned int i
, has_smpl
;
5130 int must_notify
= 0;
5132 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) goto stop_monitoring
;
5135 * sanity test. Should never happen
5137 if (unlikely((pmc0
& 0x1) == 0)) goto sanity_check
;
5139 tstamp
= ia64_get_itc();
5140 mask
= pmc0
>> PMU_FIRST_COUNTER
;
5141 ovfl_val
= pmu_conf
->ovfl_val
;
5142 has_smpl
= CTX_HAS_SMPL(ctx
);
5144 DPRINT_ovfl(("pmc0=0x%lx pid=%d iip=0x%lx, %s "
5145 "used_pmds=0x%lx\n",
5147 task
? task_pid_nr(task
): -1,
5148 (regs
? regs
->cr_iip
: 0),
5149 CTX_OVFL_NOBLOCK(ctx
) ? "nonblocking" : "blocking",
5150 ctx
->ctx_used_pmds
[0]));
5154 * first we update the virtual counters
5155 * assume there was a prior ia64_srlz_d() issued
5157 for (i
= PMU_FIRST_COUNTER
; mask
; i
++, mask
>>= 1) {
5159 /* skip pmd which did not overflow */
5160 if ((mask
& 0x1) == 0) continue;
5163 * Note that the pmd is not necessarily 0 at this point as qualified events
5164 * may have happened before the PMU was frozen. The residual count is not
5165 * taken into consideration here but will be with any read of the pmd via
5168 old_val
= new_val
= ctx
->ctx_pmds
[i
].val
;
5169 new_val
+= 1 + ovfl_val
;
5170 ctx
->ctx_pmds
[i
].val
= new_val
;
5173 * check for overflow condition
5175 if (likely(old_val
> new_val
)) {
5176 ovfl_pmds
|= 1UL << i
;
5177 if (PMC_OVFL_NOTIFY(ctx
, i
)) ovfl_notify
|= 1UL << i
;
5180 DPRINT_ovfl(("ctx_pmd[%d].val=0x%lx old_val=0x%lx pmd=0x%lx ovfl_pmds=0x%lx ovfl_notify=0x%lx\n",
5184 ia64_get_pmd(i
) & ovfl_val
,
5190 * there was no 64-bit overflow, nothing else to do
5192 if (ovfl_pmds
== 0UL) return;
5195 * reset all control bits
5201 * if a sampling format module exists, then we "cache" the overflow by
5202 * calling the module's handler() routine.
5205 unsigned long start_cycles
, end_cycles
;
5206 unsigned long pmd_mask
;
5208 int this_cpu
= smp_processor_id();
5210 pmd_mask
= ovfl_pmds
>> PMU_FIRST_COUNTER
;
5211 ovfl_arg
= &ctx
->ctx_ovfl_arg
;
5213 prefetch(ctx
->ctx_smpl_hdr
);
5215 for(i
=PMU_FIRST_COUNTER
; pmd_mask
&& ret
== 0; i
++, pmd_mask
>>=1) {
5219 if ((pmd_mask
& 0x1) == 0) continue;
5221 ovfl_arg
->ovfl_pmd
= (unsigned char )i
;
5222 ovfl_arg
->ovfl_notify
= ovfl_notify
& mask
? 1 : 0;
5223 ovfl_arg
->active_set
= 0;
5224 ovfl_arg
->ovfl_ctrl
.val
= 0; /* module must fill in all fields */
5225 ovfl_arg
->smpl_pmds
[0] = smpl_pmds
= ctx
->ctx_pmds
[i
].smpl_pmds
[0];
5227 ovfl_arg
->pmd_value
= ctx
->ctx_pmds
[i
].val
;
5228 ovfl_arg
->pmd_last_reset
= ctx
->ctx_pmds
[i
].lval
;
5229 ovfl_arg
->pmd_eventid
= ctx
->ctx_pmds
[i
].eventid
;
5232 * copy values of pmds of interest. Sampling format may copy them
5233 * into sampling buffer.
5236 for(j
=0, k
=0; smpl_pmds
; j
++, smpl_pmds
>>=1) {
5237 if ((smpl_pmds
& 0x1) == 0) continue;
5238 ovfl_arg
->smpl_pmds_values
[k
++] = PMD_IS_COUNTING(j
) ? pfm_read_soft_counter(ctx
, j
) : ia64_get_pmd(j
);
5239 DPRINT_ovfl(("smpl_pmd[%d]=pmd%u=0x%lx\n", k
-1, j
, ovfl_arg
->smpl_pmds_values
[k
-1]));
5243 pfm_stats
[this_cpu
].pfm_smpl_handler_calls
++;
5245 start_cycles
= ia64_get_itc();
5248 * call custom buffer format record (handler) routine
5250 ret
= (*ctx
->ctx_buf_fmt
->fmt_handler
)(task
, ctx
->ctx_smpl_hdr
, ovfl_arg
, regs
, tstamp
);
5252 end_cycles
= ia64_get_itc();
5255 * For those controls, we take the union because they have
5256 * an all or nothing behavior.
5258 ovfl_ctrl
.bits
.notify_user
|= ovfl_arg
->ovfl_ctrl
.bits
.notify_user
;
5259 ovfl_ctrl
.bits
.block_task
|= ovfl_arg
->ovfl_ctrl
.bits
.block_task
;
5260 ovfl_ctrl
.bits
.mask_monitoring
|= ovfl_arg
->ovfl_ctrl
.bits
.mask_monitoring
;
5262 * build the bitmask of pmds to reset now
5264 if (ovfl_arg
->ovfl_ctrl
.bits
.reset_ovfl_pmds
) reset_pmds
|= mask
;
5266 pfm_stats
[this_cpu
].pfm_smpl_handler_cycles
+= end_cycles
- start_cycles
;
5269 * when the module cannot handle the rest of the overflows, we abort right here
5271 if (ret
&& pmd_mask
) {
5272 DPRINT(("handler aborts leftover ovfl_pmds=0x%lx\n",
5273 pmd_mask
<<PMU_FIRST_COUNTER
));
5276 * remove the pmds we reset now from the set of pmds to reset in pfm_restart()
5278 ovfl_pmds
&= ~reset_pmds
;
5281 * when no sampling module is used, then the default
5282 * is to notify on overflow if requested by user
5284 ovfl_ctrl
.bits
.notify_user
= ovfl_notify
? 1 : 0;
5285 ovfl_ctrl
.bits
.block_task
= ovfl_notify
? 1 : 0;
5286 ovfl_ctrl
.bits
.mask_monitoring
= ovfl_notify
? 1 : 0; /* XXX: change for saturation */
5287 ovfl_ctrl
.bits
.reset_ovfl_pmds
= ovfl_notify
? 0 : 1;
5289 * if needed, we reset all overflowed pmds
5291 if (ovfl_notify
== 0) reset_pmds
= ovfl_pmds
;
5294 DPRINT_ovfl(("ovfl_pmds=0x%lx reset_pmds=0x%lx\n", ovfl_pmds
, reset_pmds
));
5297 * reset the requested PMD registers using the short reset values
5300 unsigned long bm
= reset_pmds
;
5301 pfm_reset_regs(ctx
, &bm
, PFM_PMD_SHORT_RESET
);
5304 if (ovfl_notify
&& ovfl_ctrl
.bits
.notify_user
) {
5306 * keep track of what to reset when unblocking
5308 ctx
->ctx_ovfl_regs
[0] = ovfl_pmds
;
5311 * check for blocking context
5313 if (CTX_OVFL_NOBLOCK(ctx
) == 0 && ovfl_ctrl
.bits
.block_task
) {
5315 ctx
->ctx_fl_trap_reason
= PFM_TRAP_REASON_BLOCK
;
5318 * set the perfmon specific checking pending work for the task
5320 PFM_SET_WORK_PENDING(task
, 1);
5323 * when coming from ctxsw, current still points to the
5324 * previous task, therefore we must work with task and not current.
5326 set_notify_resume(task
);
5329 * defer until state is changed (shorten spin window). the context is locked
5330 * anyway, so the signal receiver would come spin for nothing.
5335 DPRINT_ovfl(("owner [%d] pending=%ld reason=%u ovfl_pmds=0x%lx ovfl_notify=0x%lx masked=%d\n",
5336 GET_PMU_OWNER() ? task_pid_nr(GET_PMU_OWNER()) : -1,
5337 PFM_GET_WORK_PENDING(task
),
5338 ctx
->ctx_fl_trap_reason
,
5341 ovfl_ctrl
.bits
.mask_monitoring
? 1 : 0));
5343 * in case monitoring must be stopped, we toggle the psr bits
5345 if (ovfl_ctrl
.bits
.mask_monitoring
) {
5346 pfm_mask_monitoring(task
);
5347 ctx
->ctx_state
= PFM_CTX_MASKED
;
5348 ctx
->ctx_fl_can_restart
= 1;
5352 * send notification now
5354 if (must_notify
) pfm_ovfl_notify_user(ctx
, ovfl_notify
);
5359 printk(KERN_ERR
"perfmon: CPU%d overflow handler [%d] pmc0=0x%lx\n",
5361 task
? task_pid_nr(task
) : -1,
5367 * in SMP, zombie context is never restored but reclaimed in pfm_load_regs().
5368 * Moreover, zombies are also reclaimed in pfm_save_regs(). Therefore we can
5369 * come here as zombie only if the task is the current task. In which case, we
5370 * can access the PMU hardware directly.
5372 * Note that zombies do have PM_VALID set. So here we do the minimal.
5374 * In case the context was zombified it could not be reclaimed at the time
5375 * the monitoring program exited. At this point, the PMU reservation has been
5376 * returned, the sampiing buffer has been freed. We must convert this call
5377 * into a spurious interrupt. However, we must also avoid infinite overflows
5378 * by stopping monitoring for this task. We can only come here for a per-task
5379 * context. All we need to do is to stop monitoring using the psr bits which
5380 * are always task private. By re-enabling secure montioring, we ensure that
5381 * the monitored task will not be able to re-activate monitoring.
5382 * The task will eventually be context switched out, at which point the context
5383 * will be reclaimed (that includes releasing ownership of the PMU).
5385 * So there might be a window of time where the number of per-task session is zero
5386 * yet one PMU might have a owner and get at most one overflow interrupt for a zombie
5387 * context. This is safe because if a per-task session comes in, it will push this one
5388 * out and by the virtue on pfm_save_regs(), this one will disappear. If a system wide
5389 * session is force on that CPU, given that we use task pinning, pfm_save_regs() will
5390 * also push our zombie context out.
5392 * Overall pretty hairy stuff....
5394 DPRINT(("ctx is zombie for [%d], converted to spurious\n", task
? task_pid_nr(task
): -1));
5396 ia64_psr(regs
)->up
= 0;
5397 ia64_psr(regs
)->sp
= 1;
5402 pfm_do_interrupt_handler(void *arg
, struct pt_regs
*regs
)
5404 struct task_struct
*task
;
5406 unsigned long flags
;
5408 int this_cpu
= smp_processor_id();
5411 pfm_stats
[this_cpu
].pfm_ovfl_intr_count
++;
5414 * srlz.d done before arriving here
5416 pmc0
= ia64_get_pmc(0);
5418 task
= GET_PMU_OWNER();
5419 ctx
= GET_PMU_CTX();
5422 * if we have some pending bits set
5423 * assumes : if any PMC0.bit[63-1] is set, then PMC0.fr = 1
5425 if (PMC0_HAS_OVFL(pmc0
) && task
) {
5427 * we assume that pmc0.fr is always set here
5431 if (!ctx
) goto report_spurious1
;
5433 if (ctx
->ctx_fl_system
== 0 && (task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)
5434 goto report_spurious2
;
5436 PROTECT_CTX_NOPRINT(ctx
, flags
);
5438 pfm_overflow_handler(task
, ctx
, pmc0
, regs
);
5440 UNPROTECT_CTX_NOPRINT(ctx
, flags
);
5443 pfm_stats
[this_cpu
].pfm_spurious_ovfl_intr_count
++;
5447 * keep it unfrozen at all times
5454 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d has no PFM context\n",
5455 this_cpu
, task_pid_nr(task
));
5459 printk(KERN_INFO
"perfmon: spurious overflow interrupt on CPU%d: process %d, invalid flag\n",
5467 pfm_interrupt_handler(int irq
, void *arg
)
5469 unsigned long start_cycles
, total_cycles
;
5470 unsigned long min
, max
;
5473 struct pt_regs
*regs
= get_irq_regs();
5475 this_cpu
= get_cpu();
5476 if (likely(!pfm_alt_intr_handler
)) {
5477 min
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
;
5478 max
= pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
;
5480 start_cycles
= ia64_get_itc();
5482 ret
= pfm_do_interrupt_handler(arg
, regs
);
5484 total_cycles
= ia64_get_itc();
5487 * don't measure spurious interrupts
5489 if (likely(ret
== 0)) {
5490 total_cycles
-= start_cycles
;
5492 if (total_cycles
< min
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_min
= total_cycles
;
5493 if (total_cycles
> max
) pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles_max
= total_cycles
;
5495 pfm_stats
[this_cpu
].pfm_ovfl_intr_cycles
+= total_cycles
;
5499 (*pfm_alt_intr_handler
->handler
)(irq
, arg
, regs
);
5507 * /proc/perfmon interface, for debug only
5510 #define PFM_PROC_SHOW_HEADER ((void *)(long)nr_cpu_ids+1)
5513 pfm_proc_start(struct seq_file
*m
, loff_t
*pos
)
5516 return PFM_PROC_SHOW_HEADER
;
5519 while (*pos
<= nr_cpu_ids
) {
5520 if (cpu_online(*pos
- 1)) {
5521 return (void *)*pos
;
5529 pfm_proc_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
5532 return pfm_proc_start(m
, pos
);
5536 pfm_proc_stop(struct seq_file
*m
, void *v
)
5541 pfm_proc_show_header(struct seq_file
*m
)
5543 struct list_head
* pos
;
5544 pfm_buffer_fmt_t
* entry
;
5545 unsigned long flags
;
5548 "perfmon version : %u.%u\n"
5551 "expert mode : %s\n"
5552 "ovfl_mask : 0x%lx\n"
5553 "PMU flags : 0x%x\n",
5554 PFM_VERSION_MAJ
, PFM_VERSION_MIN
,
5556 pfm_sysctl
.fastctxsw
> 0 ? "Yes": "No",
5557 pfm_sysctl
.expert_mode
> 0 ? "Yes": "No",
5564 "proc_sessions : %u\n"
5565 "sys_sessions : %u\n"
5566 "sys_use_dbregs : %u\n"
5567 "ptrace_use_dbregs : %u\n",
5568 pfm_sessions
.pfs_task_sessions
,
5569 pfm_sessions
.pfs_sys_sessions
,
5570 pfm_sessions
.pfs_sys_use_dbregs
,
5571 pfm_sessions
.pfs_ptrace_use_dbregs
);
5575 spin_lock(&pfm_buffer_fmt_lock
);
5577 list_for_each(pos
, &pfm_buffer_fmt_list
) {
5578 entry
= list_entry(pos
, pfm_buffer_fmt_t
, fmt_list
);
5579 seq_printf(m
, "format : %16phD %s\n",
5580 entry
->fmt_uuid
, entry
->fmt_name
);
5582 spin_unlock(&pfm_buffer_fmt_lock
);
5587 pfm_proc_show(struct seq_file
*m
, void *v
)
5593 if (v
== PFM_PROC_SHOW_HEADER
) {
5594 pfm_proc_show_header(m
);
5598 /* show info for CPU (v - 1) */
5602 "CPU%-2d overflow intrs : %lu\n"
5603 "CPU%-2d overflow cycles : %lu\n"
5604 "CPU%-2d overflow min : %lu\n"
5605 "CPU%-2d overflow max : %lu\n"
5606 "CPU%-2d smpl handler calls : %lu\n"
5607 "CPU%-2d smpl handler cycles : %lu\n"
5608 "CPU%-2d spurious intrs : %lu\n"
5609 "CPU%-2d replay intrs : %lu\n"
5610 "CPU%-2d syst_wide : %d\n"
5611 "CPU%-2d dcr_pp : %d\n"
5612 "CPU%-2d exclude idle : %d\n"
5613 "CPU%-2d owner : %d\n"
5614 "CPU%-2d context : %p\n"
5615 "CPU%-2d activations : %lu\n",
5616 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_count
,
5617 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles
,
5618 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_min
,
5619 cpu
, pfm_stats
[cpu
].pfm_ovfl_intr_cycles_max
,
5620 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_calls
,
5621 cpu
, pfm_stats
[cpu
].pfm_smpl_handler_cycles
,
5622 cpu
, pfm_stats
[cpu
].pfm_spurious_ovfl_intr_count
,
5623 cpu
, pfm_stats
[cpu
].pfm_replay_ovfl_intr_count
,
5624 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_SYST_WIDE
? 1 : 0,
5625 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_DCR_PP
? 1 : 0,
5626 cpu
, pfm_get_cpu_data(pfm_syst_info
, cpu
) & PFM_CPUINFO_EXCL_IDLE
? 1 : 0,
5627 cpu
, pfm_get_cpu_data(pmu_owner
, cpu
) ? pfm_get_cpu_data(pmu_owner
, cpu
)->pid
: -1,
5628 cpu
, pfm_get_cpu_data(pmu_ctx
, cpu
),
5629 cpu
, pfm_get_cpu_data(pmu_activation_number
, cpu
));
5631 if (num_online_cpus() == 1 && pfm_sysctl
.debug
> 0) {
5633 psr
= pfm_get_psr();
5638 "CPU%-2d psr : 0x%lx\n"
5639 "CPU%-2d pmc0 : 0x%lx\n",
5641 cpu
, ia64_get_pmc(0));
5643 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
5644 if (PMC_IS_COUNTING(i
) == 0) continue;
5646 "CPU%-2d pmc%u : 0x%lx\n"
5647 "CPU%-2d pmd%u : 0x%lx\n",
5648 cpu
, i
, ia64_get_pmc(i
),
5649 cpu
, i
, ia64_get_pmd(i
));
5655 const struct seq_operations pfm_seq_ops
= {
5656 .start
= pfm_proc_start
,
5657 .next
= pfm_proc_next
,
5658 .stop
= pfm_proc_stop
,
5659 .show
= pfm_proc_show
5663 * we come here as soon as local_cpu_data->pfm_syst_wide is set. this happens
5664 * during pfm_enable() hence before pfm_start(). We cannot assume monitoring
5665 * is active or inactive based on mode. We must rely on the value in
5666 * local_cpu_data->pfm_syst_info
5669 pfm_syst_wide_update_task(struct task_struct
*task
, unsigned long info
, int is_ctxswin
)
5671 struct pt_regs
*regs
;
5673 unsigned long dcr_pp
;
5675 dcr_pp
= info
& PFM_CPUINFO_DCR_PP
? 1 : 0;
5678 * pid 0 is guaranteed to be the idle task. There is one such task with pid 0
5679 * on every CPU, so we can rely on the pid to identify the idle task.
5681 if ((info
& PFM_CPUINFO_EXCL_IDLE
) == 0 || task
->pid
) {
5682 regs
= task_pt_regs(task
);
5683 ia64_psr(regs
)->pp
= is_ctxswin
? dcr_pp
: 0;
5687 * if monitoring has started
5690 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
5692 * context switching in?
5695 /* mask monitoring for the idle task */
5696 ia64_setreg(_IA64_REG_CR_DCR
, dcr
& ~IA64_DCR_PP
);
5702 * context switching out
5703 * restore monitoring for next task
5705 * Due to inlining this odd if-then-else construction generates
5708 ia64_setreg(_IA64_REG_CR_DCR
, dcr
|IA64_DCR_PP
);
5717 pfm_force_cleanup(pfm_context_t
*ctx
, struct pt_regs
*regs
)
5719 struct task_struct
*task
= ctx
->ctx_task
;
5721 ia64_psr(regs
)->up
= 0;
5722 ia64_psr(regs
)->sp
= 1;
5724 if (GET_PMU_OWNER() == task
) {
5725 DPRINT(("cleared ownership for [%d]\n",
5726 task_pid_nr(ctx
->ctx_task
)));
5727 SET_PMU_OWNER(NULL
, NULL
);
5731 * disconnect the task from the context and vice-versa
5733 PFM_SET_WORK_PENDING(task
, 0);
5735 task
->thread
.pfm_context
= NULL
;
5736 task
->thread
.flags
&= ~IA64_THREAD_PM_VALID
;
5738 DPRINT(("force cleanup for [%d]\n", task_pid_nr(task
)));
5743 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5746 pfm_save_regs(struct task_struct
*task
)
5749 unsigned long flags
;
5753 ctx
= PFM_GET_CTX(task
);
5754 if (ctx
== NULL
) return;
5757 * we always come here with interrupts ALREADY disabled by
5758 * the scheduler. So we simply need to protect against concurrent
5759 * access, not CPU concurrency.
5761 flags
= pfm_protect_ctx_ctxsw(ctx
);
5763 if (ctx
->ctx_state
== PFM_CTX_ZOMBIE
) {
5764 struct pt_regs
*regs
= task_pt_regs(task
);
5768 pfm_force_cleanup(ctx
, regs
);
5770 BUG_ON(ctx
->ctx_smpl_hdr
);
5772 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5774 pfm_context_free(ctx
);
5779 * save current PSR: needed because we modify it
5782 psr
= pfm_get_psr();
5784 BUG_ON(psr
& (IA64_PSR_I
));
5788 * This is the last instruction which may generate an overflow
5790 * We do not need to set psr.sp because, it is irrelevant in kernel.
5791 * It will be restored from ipsr when going back to user level
5796 * keep a copy of psr.up (for reload)
5798 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5801 * release ownership of this PMU.
5802 * PM interrupts are masked, so nothing
5805 SET_PMU_OWNER(NULL
, NULL
);
5808 * we systematically save the PMD as we have no
5809 * guarantee we will be schedule at that same
5812 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5815 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5816 * we will need it on the restore path to check
5817 * for pending overflow.
5819 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5822 * unfreeze PMU if had pending overflows
5824 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5827 * finally, allow context access.
5828 * interrupts will still be masked after this call.
5830 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5833 #else /* !CONFIG_SMP */
5835 pfm_save_regs(struct task_struct
*task
)
5840 ctx
= PFM_GET_CTX(task
);
5841 if (ctx
== NULL
) return;
5844 * save current PSR: needed because we modify it
5846 psr
= pfm_get_psr();
5848 BUG_ON(psr
& (IA64_PSR_I
));
5852 * This is the last instruction which may generate an overflow
5854 * We do not need to set psr.sp because, it is irrelevant in kernel.
5855 * It will be restored from ipsr when going back to user level
5860 * keep a copy of psr.up (for reload)
5862 ctx
->ctx_saved_psr_up
= psr
& IA64_PSR_UP
;
5866 pfm_lazy_save_regs (struct task_struct
*task
)
5869 unsigned long flags
;
5871 { u64 psr
= pfm_get_psr();
5872 BUG_ON(psr
& IA64_PSR_UP
);
5875 ctx
= PFM_GET_CTX(task
);
5878 * we need to mask PMU overflow here to
5879 * make sure that we maintain pmc0 until
5880 * we save it. overflow interrupts are
5881 * treated as spurious if there is no
5884 * XXX: I don't think this is necessary
5886 PROTECT_CTX(ctx
,flags
);
5889 * release ownership of this PMU.
5890 * must be done before we save the registers.
5892 * after this call any PMU interrupt is treated
5895 SET_PMU_OWNER(NULL
, NULL
);
5898 * save all the pmds we use
5900 pfm_save_pmds(ctx
->th_pmds
, ctx
->ctx_used_pmds
[0]);
5903 * save pmc0 ia64_srlz_d() done in pfm_save_pmds()
5904 * it is needed to check for pended overflow
5905 * on the restore path
5907 ctx
->th_pmcs
[0] = ia64_get_pmc(0);
5910 * unfreeze PMU if had pending overflows
5912 if (ctx
->th_pmcs
[0] & ~0x1UL
) pfm_unfreeze_pmu();
5915 * now get can unmask PMU interrupts, they will
5916 * be treated as purely spurious and we will not
5917 * lose any information
5919 UNPROTECT_CTX(ctx
,flags
);
5921 #endif /* CONFIG_SMP */
5925 * in 2.6, interrupts are masked when we come here and the runqueue lock is held
5928 pfm_load_regs (struct task_struct
*task
)
5931 unsigned long pmc_mask
= 0UL, pmd_mask
= 0UL;
5932 unsigned long flags
;
5934 int need_irq_resend
;
5936 ctx
= PFM_GET_CTX(task
);
5937 if (unlikely(ctx
== NULL
)) return;
5939 BUG_ON(GET_PMU_OWNER());
5942 * possible on unload
5944 if (unlikely((task
->thread
.flags
& IA64_THREAD_PM_VALID
) == 0)) return;
5947 * we always come here with interrupts ALREADY disabled by
5948 * the scheduler. So we simply need to protect against concurrent
5949 * access, not CPU concurrency.
5951 flags
= pfm_protect_ctx_ctxsw(ctx
);
5952 psr
= pfm_get_psr();
5954 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
5956 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
5957 BUG_ON(psr
& IA64_PSR_I
);
5959 if (unlikely(ctx
->ctx_state
== PFM_CTX_ZOMBIE
)) {
5960 struct pt_regs
*regs
= task_pt_regs(task
);
5962 BUG_ON(ctx
->ctx_smpl_hdr
);
5964 pfm_force_cleanup(ctx
, regs
);
5966 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
5969 * this one (kmalloc'ed) is fine with interrupts disabled
5971 pfm_context_free(ctx
);
5977 * we restore ALL the debug registers to avoid picking up
5980 if (ctx
->ctx_fl_using_dbreg
) {
5981 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
5982 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
5985 * retrieve saved psr.up
5987 psr_up
= ctx
->ctx_saved_psr_up
;
5990 * if we were the last user of the PMU on that CPU,
5991 * then nothing to do except restore psr
5993 if (GET_LAST_CPU(ctx
) == smp_processor_id() && ctx
->ctx_last_activation
== GET_ACTIVATION()) {
5996 * retrieve partial reload masks (due to user modifications)
5998 pmc_mask
= ctx
->ctx_reload_pmcs
[0];
5999 pmd_mask
= ctx
->ctx_reload_pmds
[0];
6003 * To avoid leaking information to the user level when psr.sp=0,
6004 * we must reload ALL implemented pmds (even the ones we don't use).
6005 * In the kernel we only allow PFM_READ_PMDS on registers which
6006 * we initialized or requested (sampling) so there is no risk there.
6008 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6011 * ALL accessible PMCs are systematically reloaded, unused registers
6012 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6013 * up stale configuration.
6015 * PMC0 is never in the mask. It is always restored separately.
6017 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6020 * when context is MASKED, we will restore PMC with plm=0
6021 * and PMD with stale information, but that's ok, nothing
6024 * XXX: optimize here
6026 if (pmd_mask
) pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6027 if (pmc_mask
) pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6030 * check for pending overflow at the time the state
6033 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6035 * reload pmc0 with the overflow information
6036 * On McKinley PMU, this will trigger a PMU interrupt
6038 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6040 ctx
->th_pmcs
[0] = 0UL;
6043 * will replay the PMU interrupt
6045 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6047 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6051 * we just did a reload, so we reset the partial reload fields
6053 ctx
->ctx_reload_pmcs
[0] = 0UL;
6054 ctx
->ctx_reload_pmds
[0] = 0UL;
6056 SET_LAST_CPU(ctx
, smp_processor_id());
6059 * dump activation value for this PMU
6063 * record current activation for this context
6065 SET_ACTIVATION(ctx
);
6068 * establish new ownership.
6070 SET_PMU_OWNER(task
, ctx
);
6073 * restore the psr.up bit. measurement
6075 * no PMU interrupt can happen at this point
6076 * because we still have interrupts disabled.
6078 if (likely(psr_up
)) pfm_set_psr_up();
6081 * allow concurrent access to context
6083 pfm_unprotect_ctx_ctxsw(ctx
, flags
);
6085 #else /* !CONFIG_SMP */
6087 * reload PMU state for UP kernels
6088 * in 2.5 we come here with interrupts disabled
6091 pfm_load_regs (struct task_struct
*task
)
6094 struct task_struct
*owner
;
6095 unsigned long pmd_mask
, pmc_mask
;
6097 int need_irq_resend
;
6099 owner
= GET_PMU_OWNER();
6100 ctx
= PFM_GET_CTX(task
);
6101 psr
= pfm_get_psr();
6103 BUG_ON(psr
& (IA64_PSR_UP
|IA64_PSR_PP
));
6104 BUG_ON(psr
& IA64_PSR_I
);
6107 * we restore ALL the debug registers to avoid picking up
6110 * This must be done even when the task is still the owner
6111 * as the registers may have been modified via ptrace()
6112 * (not perfmon) by the previous task.
6114 if (ctx
->ctx_fl_using_dbreg
) {
6115 pfm_restore_ibrs(ctx
->ctx_ibrs
, pmu_conf
->num_ibrs
);
6116 pfm_restore_dbrs(ctx
->ctx_dbrs
, pmu_conf
->num_dbrs
);
6120 * retrieved saved psr.up
6122 psr_up
= ctx
->ctx_saved_psr_up
;
6123 need_irq_resend
= pmu_conf
->flags
& PFM_PMU_IRQ_RESEND
;
6126 * short path, our state is still there, just
6127 * need to restore psr and we go
6129 * we do not touch either PMC nor PMD. the psr is not touched
6130 * by the overflow_handler. So we are safe w.r.t. to interrupt
6131 * concurrency even without interrupt masking.
6133 if (likely(owner
== task
)) {
6134 if (likely(psr_up
)) pfm_set_psr_up();
6139 * someone else is still using the PMU, first push it out and
6140 * then we'll be able to install our stuff !
6142 * Upon return, there will be no owner for the current PMU
6144 if (owner
) pfm_lazy_save_regs(owner
);
6147 * To avoid leaking information to the user level when psr.sp=0,
6148 * we must reload ALL implemented pmds (even the ones we don't use).
6149 * In the kernel we only allow PFM_READ_PMDS on registers which
6150 * we initialized or requested (sampling) so there is no risk there.
6152 pmd_mask
= pfm_sysctl
.fastctxsw
? ctx
->ctx_used_pmds
[0] : ctx
->ctx_all_pmds
[0];
6155 * ALL accessible PMCs are systematically reloaded, unused registers
6156 * get their default (from pfm_reset_pmu_state()) values to avoid picking
6157 * up stale configuration.
6159 * PMC0 is never in the mask. It is always restored separately
6161 pmc_mask
= ctx
->ctx_all_pmcs
[0];
6163 pfm_restore_pmds(ctx
->th_pmds
, pmd_mask
);
6164 pfm_restore_pmcs(ctx
->th_pmcs
, pmc_mask
);
6167 * check for pending overflow at the time the state
6170 if (unlikely(PMC0_HAS_OVFL(ctx
->th_pmcs
[0]))) {
6172 * reload pmc0 with the overflow information
6173 * On McKinley PMU, this will trigger a PMU interrupt
6175 ia64_set_pmc(0, ctx
->th_pmcs
[0]);
6178 ctx
->th_pmcs
[0] = 0UL;
6181 * will replay the PMU interrupt
6183 if (need_irq_resend
) ia64_resend_irq(IA64_PERFMON_VECTOR
);
6185 pfm_stats
[smp_processor_id()].pfm_replay_ovfl_intr_count
++;
6189 * establish new ownership.
6191 SET_PMU_OWNER(task
, ctx
);
6194 * restore the psr.up bit. measurement
6196 * no PMU interrupt can happen at this point
6197 * because we still have interrupts disabled.
6199 if (likely(psr_up
)) pfm_set_psr_up();
6201 #endif /* CONFIG_SMP */
6204 * this function assumes monitoring is stopped
6207 pfm_flush_pmds(struct task_struct
*task
, pfm_context_t
*ctx
)
6210 unsigned long mask2
, val
, pmd_val
, ovfl_val
;
6211 int i
, can_access_pmu
= 0;
6215 * is the caller the task being monitored (or which initiated the
6216 * session for system wide measurements)
6218 is_self
= ctx
->ctx_task
== task
? 1 : 0;
6221 * can access PMU is task is the owner of the PMU state on the current CPU
6222 * or if we are running on the CPU bound to the context in system-wide mode
6223 * (that is not necessarily the task the context is attached to in this mode).
6224 * In system-wide we always have can_access_pmu true because a task running on an
6225 * invalid processor is flagged earlier in the call stack (see pfm_stop).
6227 can_access_pmu
= (GET_PMU_OWNER() == task
) || (ctx
->ctx_fl_system
&& ctx
->ctx_cpu
== smp_processor_id());
6228 if (can_access_pmu
) {
6230 * Mark the PMU as not owned
6231 * This will cause the interrupt handler to do nothing in case an overflow
6232 * interrupt was in-flight
6233 * This also guarantees that pmc0 will contain the final state
6234 * It virtually gives us full control on overflow processing from that point
6237 SET_PMU_OWNER(NULL
, NULL
);
6238 DPRINT(("releasing ownership\n"));
6241 * read current overflow status:
6243 * we are guaranteed to read the final stable state
6246 pmc0
= ia64_get_pmc(0); /* slow */
6249 * reset freeze bit, overflow status information destroyed
6253 pmc0
= ctx
->th_pmcs
[0];
6255 * clear whatever overflow status bits there were
6257 ctx
->th_pmcs
[0] = 0;
6259 ovfl_val
= pmu_conf
->ovfl_val
;
6261 * we save all the used pmds
6262 * we take care of overflows for counting PMDs
6264 * XXX: sampling situation is not taken into account here
6266 mask2
= ctx
->ctx_used_pmds
[0];
6268 DPRINT(("is_self=%d ovfl_val=0x%lx mask2=0x%lx\n", is_self
, ovfl_val
, mask2
));
6270 for (i
= 0; mask2
; i
++, mask2
>>=1) {
6272 /* skip non used pmds */
6273 if ((mask2
& 0x1) == 0) continue;
6276 * can access PMU always true in system wide mode
6278 val
= pmd_val
= can_access_pmu
? ia64_get_pmd(i
) : ctx
->th_pmds
[i
];
6280 if (PMD_IS_COUNTING(i
)) {
6281 DPRINT(("[%d] pmd[%d] ctx_pmd=0x%lx hw_pmd=0x%lx\n",
6284 ctx
->ctx_pmds
[i
].val
,
6288 * we rebuild the full 64 bit value of the counter
6290 val
= ctx
->ctx_pmds
[i
].val
+ (val
& ovfl_val
);
6293 * now everything is in ctx_pmds[] and we need
6294 * to clear the saved context from save_regs() such that
6295 * pfm_read_pmds() gets the correct value
6300 * take care of overflow inline
6302 if (pmc0
& (1UL << i
)) {
6303 val
+= 1 + ovfl_val
;
6304 DPRINT(("[%d] pmd[%d] overflowed\n", task_pid_nr(task
), i
));
6308 DPRINT(("[%d] ctx_pmd[%d]=0x%lx pmd_val=0x%lx\n", task_pid_nr(task
), i
, val
, pmd_val
));
6310 if (is_self
) ctx
->th_pmds
[i
] = pmd_val
;
6312 ctx
->ctx_pmds
[i
].val
= val
;
6316 static struct irqaction perfmon_irqaction
= {
6317 .handler
= pfm_interrupt_handler
,
6322 pfm_alt_save_pmu_state(void *data
)
6324 struct pt_regs
*regs
;
6326 regs
= task_pt_regs(current
);
6328 DPRINT(("called\n"));
6331 * should not be necessary but
6332 * let's take not risk
6336 ia64_psr(regs
)->pp
= 0;
6339 * This call is required
6340 * May cause a spurious interrupt on some processors
6348 pfm_alt_restore_pmu_state(void *data
)
6350 struct pt_regs
*regs
;
6352 regs
= task_pt_regs(current
);
6354 DPRINT(("called\n"));
6357 * put PMU back in state expected
6362 ia64_psr(regs
)->pp
= 0;
6365 * perfmon runs with PMU unfrozen at all times
6373 pfm_install_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6378 /* some sanity checks */
6379 if (hdl
== NULL
|| hdl
->handler
== NULL
) return -EINVAL
;
6381 /* do the easy test first */
6382 if (pfm_alt_intr_handler
) return -EBUSY
;
6384 /* one at a time in the install or remove, just fail the others */
6385 if (!spin_trylock(&pfm_alt_install_check
)) {
6389 /* reserve our session */
6390 for_each_online_cpu(reserve_cpu
) {
6391 ret
= pfm_reserve_session(NULL
, 1, reserve_cpu
);
6392 if (ret
) goto cleanup_reserve
;
6395 /* save the current system wide pmu states */
6396 on_each_cpu(pfm_alt_save_pmu_state
, NULL
, 1);
6398 /* officially change to the alternate interrupt handler */
6399 pfm_alt_intr_handler
= hdl
;
6401 spin_unlock(&pfm_alt_install_check
);
6406 for_each_online_cpu(i
) {
6407 /* don't unreserve more than we reserved */
6408 if (i
>= reserve_cpu
) break;
6410 pfm_unreserve_session(NULL
, 1, i
);
6413 spin_unlock(&pfm_alt_install_check
);
6417 EXPORT_SYMBOL_GPL(pfm_install_alt_pmu_interrupt
);
6420 pfm_remove_alt_pmu_interrupt(pfm_intr_handler_desc_t
*hdl
)
6424 if (hdl
== NULL
) return -EINVAL
;
6426 /* cannot remove someone else's handler! */
6427 if (pfm_alt_intr_handler
!= hdl
) return -EINVAL
;
6429 /* one at a time in the install or remove, just fail the others */
6430 if (!spin_trylock(&pfm_alt_install_check
)) {
6434 pfm_alt_intr_handler
= NULL
;
6436 on_each_cpu(pfm_alt_restore_pmu_state
, NULL
, 1);
6438 for_each_online_cpu(i
) {
6439 pfm_unreserve_session(NULL
, 1, i
);
6442 spin_unlock(&pfm_alt_install_check
);
6446 EXPORT_SYMBOL_GPL(pfm_remove_alt_pmu_interrupt
);
6449 * perfmon initialization routine, called from the initcall() table
6451 static int init_pfm_fs(void);
6459 family
= local_cpu_data
->family
;
6464 if ((*p
)->probe() == 0) goto found
;
6465 } else if ((*p
)->pmu_family
== family
|| (*p
)->pmu_family
== 0xff) {
6479 unsigned int n
, n_counters
, i
;
6481 printk("perfmon: version %u.%u IRQ %u\n",
6484 IA64_PERFMON_VECTOR
);
6486 if (pfm_probe_pmu()) {
6487 printk(KERN_INFO
"perfmon: disabled, there is no support for processor family %d\n",
6488 local_cpu_data
->family
);
6493 * compute the number of implemented PMD/PMC from the
6494 * description tables
6497 for (i
=0; PMC_IS_LAST(i
) == 0; i
++) {
6498 if (PMC_IS_IMPL(i
) == 0) continue;
6499 pmu_conf
->impl_pmcs
[i
>>6] |= 1UL << (i
&63);
6502 pmu_conf
->num_pmcs
= n
;
6504 n
= 0; n_counters
= 0;
6505 for (i
=0; PMD_IS_LAST(i
) == 0; i
++) {
6506 if (PMD_IS_IMPL(i
) == 0) continue;
6507 pmu_conf
->impl_pmds
[i
>>6] |= 1UL << (i
&63);
6509 if (PMD_IS_COUNTING(i
)) n_counters
++;
6511 pmu_conf
->num_pmds
= n
;
6512 pmu_conf
->num_counters
= n_counters
;
6515 * sanity checks on the number of debug registers
6517 if (pmu_conf
->use_rr_dbregs
) {
6518 if (pmu_conf
->num_ibrs
> IA64_NUM_DBG_REGS
) {
6519 printk(KERN_INFO
"perfmon: unsupported number of code debug registers (%u)\n", pmu_conf
->num_ibrs
);
6523 if (pmu_conf
->num_dbrs
> IA64_NUM_DBG_REGS
) {
6524 printk(KERN_INFO
"perfmon: unsupported number of data debug registers (%u)\n", pmu_conf
->num_ibrs
);
6530 printk("perfmon: %s PMU detected, %u PMCs, %u PMDs, %u counters (%lu bits)\n",
6534 pmu_conf
->num_counters
,
6535 ffz(pmu_conf
->ovfl_val
));
6538 if (pmu_conf
->num_pmds
>= PFM_NUM_PMD_REGS
|| pmu_conf
->num_pmcs
>= PFM_NUM_PMC_REGS
) {
6539 printk(KERN_ERR
"perfmon: not enough pmc/pmd, perfmon disabled\n");
6545 * create /proc/perfmon (mostly for debugging purposes)
6547 perfmon_dir
= proc_create_seq("perfmon", S_IRUGO
, NULL
, &pfm_seq_ops
);
6548 if (perfmon_dir
== NULL
) {
6549 printk(KERN_ERR
"perfmon: cannot create /proc entry, perfmon disabled\n");
6555 * create /proc/sys/kernel/perfmon (for debugging purposes)
6557 pfm_sysctl_header
= register_sysctl_table(pfm_sysctl_root
);
6560 * initialize all our spinlocks
6562 spin_lock_init(&pfm_sessions
.pfs_lock
);
6563 spin_lock_init(&pfm_buffer_fmt_lock
);
6567 for(i
=0; i
< NR_CPUS
; i
++) pfm_stats
[i
].pfm_ovfl_intr_cycles_min
= ~0UL;
6572 __initcall(pfm_init
);
6575 * this function is called before pfm_init()
6578 pfm_init_percpu (void)
6580 static int first_time
=1;
6582 * make sure no measurement is active
6583 * (may inherit programmed PMCs from EFI).
6589 * we run with the PMU not frozen at all times
6594 register_percpu_irq(IA64_PERFMON_VECTOR
, &perfmon_irqaction
);
6598 ia64_setreg(_IA64_REG_CR_PMV
, IA64_PERFMON_VECTOR
);
6603 * used for debug purposes only
6606 dump_pmu_state(const char *from
)
6608 struct task_struct
*task
;
6609 struct pt_regs
*regs
;
6611 unsigned long psr
, dcr
, info
, flags
;
6614 local_irq_save(flags
);
6616 this_cpu
= smp_processor_id();
6617 regs
= task_pt_regs(current
);
6618 info
= PFM_CPUINFO_GET();
6619 dcr
= ia64_getreg(_IA64_REG_CR_DCR
);
6621 if (info
== 0 && ia64_psr(regs
)->pp
== 0 && (dcr
& IA64_DCR_PP
) == 0) {
6622 local_irq_restore(flags
);
6626 printk("CPU%d from %s() current [%d] iip=0x%lx %s\n",
6629 task_pid_nr(current
),
6633 task
= GET_PMU_OWNER();
6634 ctx
= GET_PMU_CTX();
6636 printk("->CPU%d owner [%d] ctx=%p\n", this_cpu
, task
? task_pid_nr(task
) : -1, ctx
);
6638 psr
= pfm_get_psr();
6640 printk("->CPU%d pmc0=0x%lx psr.pp=%d psr.up=%d dcr.pp=%d syst_info=0x%lx user_psr.up=%d user_psr.pp=%d\n",
6643 psr
& IA64_PSR_PP
? 1 : 0,
6644 psr
& IA64_PSR_UP
? 1 : 0,
6645 dcr
& IA64_DCR_PP
? 1 : 0,
6648 ia64_psr(regs
)->pp
);
6650 ia64_psr(regs
)->up
= 0;
6651 ia64_psr(regs
)->pp
= 0;
6653 for (i
=1; PMC_IS_LAST(i
) == 0; i
++) {
6654 if (PMC_IS_IMPL(i
) == 0) continue;
6655 printk("->CPU%d pmc[%d]=0x%lx thread_pmc[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmc(i
), i
, ctx
->th_pmcs
[i
]);
6658 for (i
=1; PMD_IS_LAST(i
) == 0; i
++) {
6659 if (PMD_IS_IMPL(i
) == 0) continue;
6660 printk("->CPU%d pmd[%d]=0x%lx thread_pmd[%d]=0x%lx\n", this_cpu
, i
, ia64_get_pmd(i
), i
, ctx
->th_pmds
[i
]);
6664 printk("->CPU%d ctx_state=%d vaddr=%p addr=%p fd=%d ctx_task=[%d] saved_psr_up=0x%lx\n",
6667 ctx
->ctx_smpl_vaddr
,
6671 ctx
->ctx_saved_psr_up
);
6673 local_irq_restore(flags
);
6677 * called from process.c:copy_thread(). task is new child.
6680 pfm_inherit(struct task_struct
*task
, struct pt_regs
*regs
)
6682 struct thread_struct
*thread
;
6684 DPRINT(("perfmon: pfm_inherit clearing state for [%d]\n", task_pid_nr(task
)));
6686 thread
= &task
->thread
;
6689 * cut links inherited from parent (current)
6691 thread
->pfm_context
= NULL
;
6693 PFM_SET_WORK_PENDING(task
, 0);
6696 * the psr bits are already set properly in copy_threads()
6699 #else /* !CONFIG_PERFMON */
6701 sys_perfmonctl (int fd
, int cmd
, void *arg
, int count
)
6705 #endif /* CONFIG_PERFMON */