1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/arch/ia64/kernel/time.c
5 * Copyright (C) 1998-2003 Hewlett-Packard Co
6 * Stephane Eranian <eranian@hpl.hp.com>
7 * David Mosberger <davidm@hpl.hp.com>
8 * Copyright (C) 1999 Don Dugger <don.dugger@intel.com>
9 * Copyright (C) 1999-2000 VA Linux Systems
10 * Copyright (C) 1999-2000 Walt Drummond <drummond@valinux.com>
13 #include <linux/cpu.h>
14 #include <linux/init.h>
15 #include <linux/kernel.h>
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/sched.h>
19 #include <linux/time.h>
20 #include <linux/nmi.h>
21 #include <linux/interrupt.h>
22 #include <linux/efi.h>
23 #include <linux/timex.h>
24 #include <linux/timekeeper_internal.h>
25 #include <linux/platform_device.h>
26 #include <linux/sched/cputime.h>
28 #include <asm/delay.h>
29 #include <asm/hw_irq.h>
30 #include <asm/ptrace.h>
32 #include <asm/sections.h>
34 #include "fsyscall_gtod_data.h"
36 static u64
itc_get_cycles(struct clocksource
*cs
);
38 struct fsyscall_gtod_data_t fsyscall_gtod_data
;
40 struct itc_jitter_data_t itc_jitter_data
;
42 volatile int time_keeper_id
= 0; /* smp_processor_id() of time-keeper */
44 #ifdef CONFIG_IA64_DEBUG_IRQ
46 unsigned long last_cli_ip
;
47 EXPORT_SYMBOL(last_cli_ip
);
51 static struct clocksource clocksource_itc
= {
54 .read
= itc_get_cycles
,
55 .mask
= CLOCKSOURCE_MASK(64),
56 .flags
= CLOCK_SOURCE_IS_CONTINUOUS
,
58 static struct clocksource
*itc_clocksource
;
60 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
62 #include <linux/kernel_stat.h>
64 extern u64
cycle_to_nsec(u64 cyc
);
66 void vtime_flush(struct task_struct
*tsk
)
68 struct thread_info
*ti
= task_thread_info(tsk
);
72 account_user_time(tsk
, cycle_to_nsec(ti
->utime
));
75 account_guest_time(tsk
, cycle_to_nsec(ti
->gtime
));
78 account_idle_time(cycle_to_nsec(ti
->idle_time
));
81 delta
= cycle_to_nsec(ti
->stime
);
82 account_system_index_time(tsk
, delta
, CPUTIME_SYSTEM
);
85 if (ti
->hardirq_time
) {
86 delta
= cycle_to_nsec(ti
->hardirq_time
);
87 account_system_index_time(tsk
, delta
, CPUTIME_IRQ
);
90 if (ti
->softirq_time
) {
91 delta
= cycle_to_nsec(ti
->softirq_time
);
92 account_system_index_time(tsk
, delta
, CPUTIME_SOFTIRQ
);
100 ti
->softirq_time
= 0;
104 * Called from the context switch with interrupts disabled, to charge all
105 * accumulated times to the current process, and to prepare accounting on
108 void arch_vtime_task_switch(struct task_struct
*prev
)
110 struct thread_info
*pi
= task_thread_info(prev
);
111 struct thread_info
*ni
= task_thread_info(current
);
113 ni
->ac_stamp
= pi
->ac_stamp
;
114 ni
->ac_stime
= ni
->ac_utime
= 0;
118 * Account time for a transition between system, hard irq or soft irq state.
119 * Note that this function is called with interrupts enabled.
121 static __u64
vtime_delta(struct task_struct
*tsk
)
123 struct thread_info
*ti
= task_thread_info(tsk
);
124 __u64 now
, delta_stime
;
126 WARN_ON_ONCE(!irqs_disabled());
128 now
= ia64_get_itc();
129 delta_stime
= now
- ti
->ac_stamp
;
135 void vtime_account_kernel(struct task_struct
*tsk
)
137 struct thread_info
*ti
= task_thread_info(tsk
);
138 __u64 stime
= vtime_delta(tsk
);
140 if ((tsk
->flags
& PF_VCPU
) && !irq_count())
142 else if (hardirq_count())
143 ti
->hardirq_time
+= stime
;
144 else if (in_serving_softirq())
145 ti
->softirq_time
+= stime
;
149 EXPORT_SYMBOL_GPL(vtime_account_kernel
);
151 void vtime_account_idle(struct task_struct
*tsk
)
153 struct thread_info
*ti
= task_thread_info(tsk
);
155 ti
->idle_time
+= vtime_delta(tsk
);
158 #endif /* CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
161 timer_interrupt (int irq
, void *dev_id
)
163 unsigned long new_itm
;
165 if (cpu_is_offline(smp_processor_id())) {
169 new_itm
= local_cpu_data
->itm_next
;
171 if (!time_after(ia64_get_itc(), new_itm
))
172 printk(KERN_ERR
"Oops: timer tick before it's due (itc=%lx,itm=%lx)\n",
173 ia64_get_itc(), new_itm
);
175 profile_tick(CPU_PROFILING
);
178 update_process_times(user_mode(get_irq_regs()));
180 new_itm
+= local_cpu_data
->itm_delta
;
182 if (smp_processor_id() == time_keeper_id
)
185 local_cpu_data
->itm_next
= new_itm
;
187 if (time_after(new_itm
, ia64_get_itc()))
191 * Allow IPIs to interrupt the timer loop.
199 * If we're too close to the next clock tick for
200 * comfort, we increase the safety margin by
201 * intentionally dropping the next tick(s). We do NOT
202 * update itm.next because that would force us to call
203 * xtime_update() which in turn would let our clock run
204 * too fast (with the potentially devastating effect
205 * of losing monotony of time).
207 while (!time_after(new_itm
, ia64_get_itc() + local_cpu_data
->itm_delta
/2))
208 new_itm
+= local_cpu_data
->itm_delta
;
209 ia64_set_itm(new_itm
);
210 /* double check, in case we got hit by a (slow) PMI: */
211 } while (time_after_eq(ia64_get_itc(), new_itm
));
216 * Encapsulate access to the itm structure for SMP.
219 ia64_cpu_local_tick (void)
221 int cpu
= smp_processor_id();
222 unsigned long shift
= 0, delta
;
224 /* arrange for the cycle counter to generate a timer interrupt: */
225 ia64_set_itv(IA64_TIMER_VECTOR
);
227 delta
= local_cpu_data
->itm_delta
;
229 * Stagger the timer tick for each CPU so they don't occur all at (almost) the
233 unsigned long hi
= 1UL << ia64_fls(cpu
);
234 shift
= (2*(cpu
- hi
) + 1) * delta
/hi
/2;
236 local_cpu_data
->itm_next
= ia64_get_itc() + delta
+ shift
;
237 ia64_set_itm(local_cpu_data
->itm_next
);
242 static int __init
nojitter_setup(char *str
)
245 printk("Jitter checking for ITC timers disabled\n");
249 __setup("nojitter", nojitter_setup
);
252 void ia64_init_itm(void)
254 unsigned long platform_base_freq
, itc_freq
;
255 struct pal_freq_ratio itc_ratio
, proc_ratio
;
256 long status
, platform_base_drift
, itc_drift
;
259 * According to SAL v2.6, we need to use a SAL call to determine the platform base
260 * frequency and then a PAL call to determine the frequency ratio between the ITC
261 * and the base frequency.
263 status
= ia64_sal_freq_base(SAL_FREQ_BASE_PLATFORM
,
264 &platform_base_freq
, &platform_base_drift
);
266 printk(KERN_ERR
"SAL_FREQ_BASE_PLATFORM failed: %s\n", ia64_sal_strerror(status
));
268 status
= ia64_pal_freq_ratios(&proc_ratio
, NULL
, &itc_ratio
);
270 printk(KERN_ERR
"PAL_FREQ_RATIOS failed with status=%ld\n", status
);
273 /* invent "random" values */
275 "SAL/PAL failed to obtain frequency info---inventing reasonable values\n");
276 platform_base_freq
= 100000000;
277 platform_base_drift
= -1; /* no drift info */
281 if (platform_base_freq
< 40000000) {
282 printk(KERN_ERR
"Platform base frequency %lu bogus---resetting to 75MHz!\n",
284 platform_base_freq
= 75000000;
285 platform_base_drift
= -1;
288 proc_ratio
.den
= 1; /* avoid division by zero */
290 itc_ratio
.den
= 1; /* avoid division by zero */
292 itc_freq
= (platform_base_freq
*itc_ratio
.num
)/itc_ratio
.den
;
294 local_cpu_data
->itm_delta
= (itc_freq
+ HZ
/2) / HZ
;
295 printk(KERN_DEBUG
"CPU %d: base freq=%lu.%03luMHz, ITC ratio=%u/%u, "
296 "ITC freq=%lu.%03luMHz", smp_processor_id(),
297 platform_base_freq
/ 1000000, (platform_base_freq
/ 1000) % 1000,
298 itc_ratio
.num
, itc_ratio
.den
, itc_freq
/ 1000000, (itc_freq
/ 1000) % 1000);
300 if (platform_base_drift
!= -1) {
301 itc_drift
= platform_base_drift
*itc_ratio
.num
/itc_ratio
.den
;
302 printk("+/-%ldppm\n", itc_drift
);
308 local_cpu_data
->proc_freq
= (platform_base_freq
*proc_ratio
.num
)/proc_ratio
.den
;
309 local_cpu_data
->itc_freq
= itc_freq
;
310 local_cpu_data
->cyc_per_usec
= (itc_freq
+ USEC_PER_SEC
/2) / USEC_PER_SEC
;
311 local_cpu_data
->nsec_per_cyc
= ((NSEC_PER_SEC
<<IA64_NSEC_PER_CYC_SHIFT
)
312 + itc_freq
/2)/itc_freq
;
314 if (!(sal_platform_features
& IA64_SAL_PLATFORM_FEATURE_ITC_DRIFT
)) {
316 /* On IA64 in an SMP configuration ITCs are never accurately synchronized.
317 * Jitter compensation requires a cmpxchg which may limit
318 * the scalability of the syscalls for retrieving time.
319 * The ITC synchronization is usually successful to within a few
320 * ITC ticks but this is not a sure thing. If you need to improve
321 * timer performance in SMP situations then boot the kernel with the
322 * "nojitter" option. However, doing so may result in time fluctuating (maybe
323 * even going backward) if the ITC offsets between the individual CPUs
327 itc_jitter_data
.itc_jitter
= 1;
331 * ITC is drifty and we have not synchronized the ITCs in smpboot.c.
332 * ITC values may fluctuate significantly between processors.
333 * Clock should not be used for hrtimers. Mark itc as only
334 * useful for boot and testing.
336 * Note that jitter compensation is off! There is no point of
337 * synchronizing ITCs since they may be large differentials
338 * that change over time.
340 * The only way to fix this would be to repeatedly sync the
341 * ITCs. Until that time we have to avoid ITC.
343 clocksource_itc
.rating
= 50;
345 /* avoid softlock up message when cpu is unplug and plugged again. */
346 touch_softlockup_watchdog();
348 /* Setup the CPU local timer tick */
349 ia64_cpu_local_tick();
351 if (!itc_clocksource
) {
352 clocksource_register_hz(&clocksource_itc
,
353 local_cpu_data
->itc_freq
);
354 itc_clocksource
= &clocksource_itc
;
358 static u64
itc_get_cycles(struct clocksource
*cs
)
360 unsigned long lcycle
, now
, ret
;
362 if (!itc_jitter_data
.itc_jitter
)
365 lcycle
= itc_jitter_data
.itc_lastcycle
;
367 if (lcycle
&& time_after(lcycle
, now
))
371 * Keep track of the last timer value returned.
372 * In an SMP environment, you could lose out in contention of
373 * cmpxchg. If so, your cmpxchg returns new value which the
374 * winner of contention updated to. Use the new value instead.
376 ret
= cmpxchg(&itc_jitter_data
.itc_lastcycle
, lcycle
, now
);
377 if (unlikely(ret
!= lcycle
))
384 static struct irqaction timer_irqaction
= {
385 .handler
= timer_interrupt
,
386 .flags
= IRQF_IRQPOLL
,
390 void read_persistent_clock64(struct timespec64
*ts
)
392 efi_gettimeofday(ts
);
398 register_percpu_irq(IA64_TIMER_VECTOR
, &timer_irqaction
);
403 * Generic udelay assumes that if preemption is allowed and the thread
404 * migrates to another CPU, that the ITC values are synchronized across
408 ia64_itc_udelay (unsigned long usecs
)
410 unsigned long start
= ia64_get_itc();
411 unsigned long end
= start
+ usecs
*local_cpu_data
->cyc_per_usec
;
413 while (time_before(ia64_get_itc(), end
))
417 void (*ia64_udelay
)(unsigned long usecs
) = &ia64_itc_udelay
;
420 udelay (unsigned long usecs
)
422 (*ia64_udelay
)(usecs
);
424 EXPORT_SYMBOL(udelay
);
426 /* IA64 doesn't cache the timezone */
427 void update_vsyscall_tz(void)
431 void update_vsyscall(struct timekeeper
*tk
)
433 write_seqcount_begin(&fsyscall_gtod_data
.seq
);
435 /* copy vsyscall data */
436 fsyscall_gtod_data
.clk_mask
= tk
->tkr_mono
.mask
;
437 fsyscall_gtod_data
.clk_mult
= tk
->tkr_mono
.mult
;
438 fsyscall_gtod_data
.clk_shift
= tk
->tkr_mono
.shift
;
439 fsyscall_gtod_data
.clk_fsys_mmio
= tk
->tkr_mono
.clock
->archdata
.fsys_mmio
;
440 fsyscall_gtod_data
.clk_cycle_last
= tk
->tkr_mono
.cycle_last
;
442 fsyscall_gtod_data
.wall_time
.sec
= tk
->xtime_sec
;
443 fsyscall_gtod_data
.wall_time
.snsec
= tk
->tkr_mono
.xtime_nsec
;
445 fsyscall_gtod_data
.monotonic_time
.sec
= tk
->xtime_sec
446 + tk
->wall_to_monotonic
.tv_sec
;
447 fsyscall_gtod_data
.monotonic_time
.snsec
= tk
->tkr_mono
.xtime_nsec
448 + ((u64
)tk
->wall_to_monotonic
.tv_nsec
449 << tk
->tkr_mono
.shift
);
452 while (fsyscall_gtod_data
.monotonic_time
.snsec
>=
453 (((u64
)NSEC_PER_SEC
) << tk
->tkr_mono
.shift
)) {
454 fsyscall_gtod_data
.monotonic_time
.snsec
-=
455 ((u64
)NSEC_PER_SEC
) << tk
->tkr_mono
.shift
;
456 fsyscall_gtod_data
.monotonic_time
.sec
++;
459 write_seqcount_end(&fsyscall_gtod_data
.seq
);