arm64: dts: Revert "specify console via command line"
[linux/fpc-iii.git] / arch / riscv / net / bpf_jit_comp.c
blob483f4ad7f4dccf607445fe184e719df8d5510e7a
1 // SPDX-License-Identifier: GPL-2.0
2 /* BPF JIT compiler for RV64G
4 * Copyright(c) 2019 Björn Töpel <bjorn.topel@gmail.com>
6 */
8 #include <linux/bpf.h>
9 #include <linux/filter.h>
10 #include <asm/cacheflush.h>
12 enum {
13 RV_REG_ZERO = 0, /* The constant value 0 */
14 RV_REG_RA = 1, /* Return address */
15 RV_REG_SP = 2, /* Stack pointer */
16 RV_REG_GP = 3, /* Global pointer */
17 RV_REG_TP = 4, /* Thread pointer */
18 RV_REG_T0 = 5, /* Temporaries */
19 RV_REG_T1 = 6,
20 RV_REG_T2 = 7,
21 RV_REG_FP = 8,
22 RV_REG_S1 = 9, /* Saved registers */
23 RV_REG_A0 = 10, /* Function argument/return values */
24 RV_REG_A1 = 11, /* Function arguments */
25 RV_REG_A2 = 12,
26 RV_REG_A3 = 13,
27 RV_REG_A4 = 14,
28 RV_REG_A5 = 15,
29 RV_REG_A6 = 16,
30 RV_REG_A7 = 17,
31 RV_REG_S2 = 18, /* Saved registers */
32 RV_REG_S3 = 19,
33 RV_REG_S4 = 20,
34 RV_REG_S5 = 21,
35 RV_REG_S6 = 22,
36 RV_REG_S7 = 23,
37 RV_REG_S8 = 24,
38 RV_REG_S9 = 25,
39 RV_REG_S10 = 26,
40 RV_REG_S11 = 27,
41 RV_REG_T3 = 28, /* Temporaries */
42 RV_REG_T4 = 29,
43 RV_REG_T5 = 30,
44 RV_REG_T6 = 31,
47 #define RV_REG_TCC RV_REG_A6
48 #define RV_REG_TCC_SAVED RV_REG_S6 /* Store A6 in S6 if program do calls */
50 static const int regmap[] = {
51 [BPF_REG_0] = RV_REG_A5,
52 [BPF_REG_1] = RV_REG_A0,
53 [BPF_REG_2] = RV_REG_A1,
54 [BPF_REG_3] = RV_REG_A2,
55 [BPF_REG_4] = RV_REG_A3,
56 [BPF_REG_5] = RV_REG_A4,
57 [BPF_REG_6] = RV_REG_S1,
58 [BPF_REG_7] = RV_REG_S2,
59 [BPF_REG_8] = RV_REG_S3,
60 [BPF_REG_9] = RV_REG_S4,
61 [BPF_REG_FP] = RV_REG_S5,
62 [BPF_REG_AX] = RV_REG_T0,
65 enum {
66 RV_CTX_F_SEEN_TAIL_CALL = 0,
67 RV_CTX_F_SEEN_CALL = RV_REG_RA,
68 RV_CTX_F_SEEN_S1 = RV_REG_S1,
69 RV_CTX_F_SEEN_S2 = RV_REG_S2,
70 RV_CTX_F_SEEN_S3 = RV_REG_S3,
71 RV_CTX_F_SEEN_S4 = RV_REG_S4,
72 RV_CTX_F_SEEN_S5 = RV_REG_S5,
73 RV_CTX_F_SEEN_S6 = RV_REG_S6,
76 struct rv_jit_context {
77 struct bpf_prog *prog;
78 u32 *insns; /* RV insns */
79 int ninsns;
80 int epilogue_offset;
81 int *offset; /* BPF to RV */
82 unsigned long flags;
83 int stack_size;
86 struct rv_jit_data {
87 struct bpf_binary_header *header;
88 u8 *image;
89 struct rv_jit_context ctx;
92 static u8 bpf_to_rv_reg(int bpf_reg, struct rv_jit_context *ctx)
94 u8 reg = regmap[bpf_reg];
96 switch (reg) {
97 case RV_CTX_F_SEEN_S1:
98 case RV_CTX_F_SEEN_S2:
99 case RV_CTX_F_SEEN_S3:
100 case RV_CTX_F_SEEN_S4:
101 case RV_CTX_F_SEEN_S5:
102 case RV_CTX_F_SEEN_S6:
103 __set_bit(reg, &ctx->flags);
105 return reg;
108 static bool seen_reg(int reg, struct rv_jit_context *ctx)
110 switch (reg) {
111 case RV_CTX_F_SEEN_CALL:
112 case RV_CTX_F_SEEN_S1:
113 case RV_CTX_F_SEEN_S2:
114 case RV_CTX_F_SEEN_S3:
115 case RV_CTX_F_SEEN_S4:
116 case RV_CTX_F_SEEN_S5:
117 case RV_CTX_F_SEEN_S6:
118 return test_bit(reg, &ctx->flags);
120 return false;
123 static void mark_fp(struct rv_jit_context *ctx)
125 __set_bit(RV_CTX_F_SEEN_S5, &ctx->flags);
128 static void mark_call(struct rv_jit_context *ctx)
130 __set_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
133 static bool seen_call(struct rv_jit_context *ctx)
135 return test_bit(RV_CTX_F_SEEN_CALL, &ctx->flags);
138 static void mark_tail_call(struct rv_jit_context *ctx)
140 __set_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
143 static bool seen_tail_call(struct rv_jit_context *ctx)
145 return test_bit(RV_CTX_F_SEEN_TAIL_CALL, &ctx->flags);
148 static u8 rv_tail_call_reg(struct rv_jit_context *ctx)
150 mark_tail_call(ctx);
152 if (seen_call(ctx)) {
153 __set_bit(RV_CTX_F_SEEN_S6, &ctx->flags);
154 return RV_REG_S6;
156 return RV_REG_A6;
159 static void emit(const u32 insn, struct rv_jit_context *ctx)
161 if (ctx->insns)
162 ctx->insns[ctx->ninsns] = insn;
164 ctx->ninsns++;
167 static u32 rv_r_insn(u8 funct7, u8 rs2, u8 rs1, u8 funct3, u8 rd, u8 opcode)
169 return (funct7 << 25) | (rs2 << 20) | (rs1 << 15) | (funct3 << 12) |
170 (rd << 7) | opcode;
173 static u32 rv_i_insn(u16 imm11_0, u8 rs1, u8 funct3, u8 rd, u8 opcode)
175 return (imm11_0 << 20) | (rs1 << 15) | (funct3 << 12) | (rd << 7) |
176 opcode;
179 static u32 rv_s_insn(u16 imm11_0, u8 rs2, u8 rs1, u8 funct3, u8 opcode)
181 u8 imm11_5 = imm11_0 >> 5, imm4_0 = imm11_0 & 0x1f;
183 return (imm11_5 << 25) | (rs2 << 20) | (rs1 << 15) | (funct3 << 12) |
184 (imm4_0 << 7) | opcode;
187 static u32 rv_sb_insn(u16 imm12_1, u8 rs2, u8 rs1, u8 funct3, u8 opcode)
189 u8 imm12 = ((imm12_1 & 0x800) >> 5) | ((imm12_1 & 0x3f0) >> 4);
190 u8 imm4_1 = ((imm12_1 & 0xf) << 1) | ((imm12_1 & 0x400) >> 10);
192 return (imm12 << 25) | (rs2 << 20) | (rs1 << 15) | (funct3 << 12) |
193 (imm4_1 << 7) | opcode;
196 static u32 rv_u_insn(u32 imm31_12, u8 rd, u8 opcode)
198 return (imm31_12 << 12) | (rd << 7) | opcode;
201 static u32 rv_uj_insn(u32 imm20_1, u8 rd, u8 opcode)
203 u32 imm;
205 imm = (imm20_1 & 0x80000) | ((imm20_1 & 0x3ff) << 9) |
206 ((imm20_1 & 0x400) >> 2) | ((imm20_1 & 0x7f800) >> 11);
208 return (imm << 12) | (rd << 7) | opcode;
211 static u32 rv_amo_insn(u8 funct5, u8 aq, u8 rl, u8 rs2, u8 rs1,
212 u8 funct3, u8 rd, u8 opcode)
214 u8 funct7 = (funct5 << 2) | (aq << 1) | rl;
216 return rv_r_insn(funct7, rs2, rs1, funct3, rd, opcode);
219 static u32 rv_addiw(u8 rd, u8 rs1, u16 imm11_0)
221 return rv_i_insn(imm11_0, rs1, 0, rd, 0x1b);
224 static u32 rv_addi(u8 rd, u8 rs1, u16 imm11_0)
226 return rv_i_insn(imm11_0, rs1, 0, rd, 0x13);
229 static u32 rv_addw(u8 rd, u8 rs1, u8 rs2)
231 return rv_r_insn(0, rs2, rs1, 0, rd, 0x3b);
234 static u32 rv_add(u8 rd, u8 rs1, u8 rs2)
236 return rv_r_insn(0, rs2, rs1, 0, rd, 0x33);
239 static u32 rv_subw(u8 rd, u8 rs1, u8 rs2)
241 return rv_r_insn(0x20, rs2, rs1, 0, rd, 0x3b);
244 static u32 rv_sub(u8 rd, u8 rs1, u8 rs2)
246 return rv_r_insn(0x20, rs2, rs1, 0, rd, 0x33);
249 static u32 rv_and(u8 rd, u8 rs1, u8 rs2)
251 return rv_r_insn(0, rs2, rs1, 7, rd, 0x33);
254 static u32 rv_or(u8 rd, u8 rs1, u8 rs2)
256 return rv_r_insn(0, rs2, rs1, 6, rd, 0x33);
259 static u32 rv_xor(u8 rd, u8 rs1, u8 rs2)
261 return rv_r_insn(0, rs2, rs1, 4, rd, 0x33);
264 static u32 rv_mulw(u8 rd, u8 rs1, u8 rs2)
266 return rv_r_insn(1, rs2, rs1, 0, rd, 0x3b);
269 static u32 rv_mul(u8 rd, u8 rs1, u8 rs2)
271 return rv_r_insn(1, rs2, rs1, 0, rd, 0x33);
274 static u32 rv_divuw(u8 rd, u8 rs1, u8 rs2)
276 return rv_r_insn(1, rs2, rs1, 5, rd, 0x3b);
279 static u32 rv_divu(u8 rd, u8 rs1, u8 rs2)
281 return rv_r_insn(1, rs2, rs1, 5, rd, 0x33);
284 static u32 rv_remuw(u8 rd, u8 rs1, u8 rs2)
286 return rv_r_insn(1, rs2, rs1, 7, rd, 0x3b);
289 static u32 rv_remu(u8 rd, u8 rs1, u8 rs2)
291 return rv_r_insn(1, rs2, rs1, 7, rd, 0x33);
294 static u32 rv_sllw(u8 rd, u8 rs1, u8 rs2)
296 return rv_r_insn(0, rs2, rs1, 1, rd, 0x3b);
299 static u32 rv_sll(u8 rd, u8 rs1, u8 rs2)
301 return rv_r_insn(0, rs2, rs1, 1, rd, 0x33);
304 static u32 rv_srlw(u8 rd, u8 rs1, u8 rs2)
306 return rv_r_insn(0, rs2, rs1, 5, rd, 0x3b);
309 static u32 rv_srl(u8 rd, u8 rs1, u8 rs2)
311 return rv_r_insn(0, rs2, rs1, 5, rd, 0x33);
314 static u32 rv_sraw(u8 rd, u8 rs1, u8 rs2)
316 return rv_r_insn(0x20, rs2, rs1, 5, rd, 0x3b);
319 static u32 rv_sra(u8 rd, u8 rs1, u8 rs2)
321 return rv_r_insn(0x20, rs2, rs1, 5, rd, 0x33);
324 static u32 rv_lui(u8 rd, u32 imm31_12)
326 return rv_u_insn(imm31_12, rd, 0x37);
329 static u32 rv_slli(u8 rd, u8 rs1, u16 imm11_0)
331 return rv_i_insn(imm11_0, rs1, 1, rd, 0x13);
334 static u32 rv_andi(u8 rd, u8 rs1, u16 imm11_0)
336 return rv_i_insn(imm11_0, rs1, 7, rd, 0x13);
339 static u32 rv_ori(u8 rd, u8 rs1, u16 imm11_0)
341 return rv_i_insn(imm11_0, rs1, 6, rd, 0x13);
344 static u32 rv_xori(u8 rd, u8 rs1, u16 imm11_0)
346 return rv_i_insn(imm11_0, rs1, 4, rd, 0x13);
349 static u32 rv_slliw(u8 rd, u8 rs1, u16 imm11_0)
351 return rv_i_insn(imm11_0, rs1, 1, rd, 0x1b);
354 static u32 rv_srliw(u8 rd, u8 rs1, u16 imm11_0)
356 return rv_i_insn(imm11_0, rs1, 5, rd, 0x1b);
359 static u32 rv_srli(u8 rd, u8 rs1, u16 imm11_0)
361 return rv_i_insn(imm11_0, rs1, 5, rd, 0x13);
364 static u32 rv_sraiw(u8 rd, u8 rs1, u16 imm11_0)
366 return rv_i_insn(0x400 | imm11_0, rs1, 5, rd, 0x1b);
369 static u32 rv_srai(u8 rd, u8 rs1, u16 imm11_0)
371 return rv_i_insn(0x400 | imm11_0, rs1, 5, rd, 0x13);
374 static u32 rv_jal(u8 rd, u32 imm20_1)
376 return rv_uj_insn(imm20_1, rd, 0x6f);
379 static u32 rv_jalr(u8 rd, u8 rs1, u16 imm11_0)
381 return rv_i_insn(imm11_0, rs1, 0, rd, 0x67);
384 static u32 rv_beq(u8 rs1, u8 rs2, u16 imm12_1)
386 return rv_sb_insn(imm12_1, rs2, rs1, 0, 0x63);
389 static u32 rv_bltu(u8 rs1, u8 rs2, u16 imm12_1)
391 return rv_sb_insn(imm12_1, rs2, rs1, 6, 0x63);
394 static u32 rv_bgeu(u8 rs1, u8 rs2, u16 imm12_1)
396 return rv_sb_insn(imm12_1, rs2, rs1, 7, 0x63);
399 static u32 rv_bne(u8 rs1, u8 rs2, u16 imm12_1)
401 return rv_sb_insn(imm12_1, rs2, rs1, 1, 0x63);
404 static u32 rv_blt(u8 rs1, u8 rs2, u16 imm12_1)
406 return rv_sb_insn(imm12_1, rs2, rs1, 4, 0x63);
409 static u32 rv_bge(u8 rs1, u8 rs2, u16 imm12_1)
411 return rv_sb_insn(imm12_1, rs2, rs1, 5, 0x63);
414 static u32 rv_sb(u8 rs1, u16 imm11_0, u8 rs2)
416 return rv_s_insn(imm11_0, rs2, rs1, 0, 0x23);
419 static u32 rv_sh(u8 rs1, u16 imm11_0, u8 rs2)
421 return rv_s_insn(imm11_0, rs2, rs1, 1, 0x23);
424 static u32 rv_sw(u8 rs1, u16 imm11_0, u8 rs2)
426 return rv_s_insn(imm11_0, rs2, rs1, 2, 0x23);
429 static u32 rv_sd(u8 rs1, u16 imm11_0, u8 rs2)
431 return rv_s_insn(imm11_0, rs2, rs1, 3, 0x23);
434 static u32 rv_lbu(u8 rd, u16 imm11_0, u8 rs1)
436 return rv_i_insn(imm11_0, rs1, 4, rd, 0x03);
439 static u32 rv_lhu(u8 rd, u16 imm11_0, u8 rs1)
441 return rv_i_insn(imm11_0, rs1, 5, rd, 0x03);
444 static u32 rv_lwu(u8 rd, u16 imm11_0, u8 rs1)
446 return rv_i_insn(imm11_0, rs1, 6, rd, 0x03);
449 static u32 rv_ld(u8 rd, u16 imm11_0, u8 rs1)
451 return rv_i_insn(imm11_0, rs1, 3, rd, 0x03);
454 static u32 rv_amoadd_w(u8 rd, u8 rs2, u8 rs1, u8 aq, u8 rl)
456 return rv_amo_insn(0, aq, rl, rs2, rs1, 2, rd, 0x2f);
459 static u32 rv_amoadd_d(u8 rd, u8 rs2, u8 rs1, u8 aq, u8 rl)
461 return rv_amo_insn(0, aq, rl, rs2, rs1, 3, rd, 0x2f);
464 static u32 rv_auipc(u8 rd, u32 imm31_12)
466 return rv_u_insn(imm31_12, rd, 0x17);
469 static bool is_12b_int(s64 val)
471 return -(1 << 11) <= val && val < (1 << 11);
474 static bool is_13b_int(s64 val)
476 return -(1 << 12) <= val && val < (1 << 12);
479 static bool is_21b_int(s64 val)
481 return -(1L << 20) <= val && val < (1L << 20);
484 static bool is_32b_int(s64 val)
486 return -(1L << 31) <= val && val < (1L << 31);
489 static int is_12b_check(int off, int insn)
491 if (!is_12b_int(off)) {
492 pr_err("bpf-jit: insn=%d 12b < offset=%d not supported yet!\n",
493 insn, (int)off);
494 return -1;
496 return 0;
499 static void emit_imm(u8 rd, s64 val, struct rv_jit_context *ctx)
501 /* Note that the immediate from the add is sign-extended,
502 * which means that we need to compensate this by adding 2^12,
503 * when the 12th bit is set. A simpler way of doing this, and
504 * getting rid of the check, is to just add 2**11 before the
505 * shift. The "Loading a 32-Bit constant" example from the
506 * "Computer Organization and Design, RISC-V edition" book by
507 * Patterson/Hennessy highlights this fact.
509 * This also means that we need to process LSB to MSB.
511 s64 upper = (val + (1 << 11)) >> 12, lower = val & 0xfff;
512 int shift;
514 if (is_32b_int(val)) {
515 if (upper)
516 emit(rv_lui(rd, upper), ctx);
518 if (!upper) {
519 emit(rv_addi(rd, RV_REG_ZERO, lower), ctx);
520 return;
523 emit(rv_addiw(rd, rd, lower), ctx);
524 return;
527 shift = __ffs(upper);
528 upper >>= shift;
529 shift += 12;
531 emit_imm(rd, upper, ctx);
533 emit(rv_slli(rd, rd, shift), ctx);
534 if (lower)
535 emit(rv_addi(rd, rd, lower), ctx);
538 static int rv_offset(int insn, int off, struct rv_jit_context *ctx)
540 int from, to;
542 off++; /* BPF branch is from PC+1, RV is from PC */
543 from = (insn > 0) ? ctx->offset[insn - 1] : 0;
544 to = (insn + off > 0) ? ctx->offset[insn + off - 1] : 0;
545 return (to - from) << 2;
548 static int epilogue_offset(struct rv_jit_context *ctx)
550 int to = ctx->epilogue_offset, from = ctx->ninsns;
552 return (to - from) << 2;
555 static void __build_epilogue(bool is_tail_call, struct rv_jit_context *ctx)
557 int stack_adjust = ctx->stack_size, store_offset = stack_adjust - 8;
559 if (seen_reg(RV_REG_RA, ctx)) {
560 emit(rv_ld(RV_REG_RA, store_offset, RV_REG_SP), ctx);
561 store_offset -= 8;
563 emit(rv_ld(RV_REG_FP, store_offset, RV_REG_SP), ctx);
564 store_offset -= 8;
565 if (seen_reg(RV_REG_S1, ctx)) {
566 emit(rv_ld(RV_REG_S1, store_offset, RV_REG_SP), ctx);
567 store_offset -= 8;
569 if (seen_reg(RV_REG_S2, ctx)) {
570 emit(rv_ld(RV_REG_S2, store_offset, RV_REG_SP), ctx);
571 store_offset -= 8;
573 if (seen_reg(RV_REG_S3, ctx)) {
574 emit(rv_ld(RV_REG_S3, store_offset, RV_REG_SP), ctx);
575 store_offset -= 8;
577 if (seen_reg(RV_REG_S4, ctx)) {
578 emit(rv_ld(RV_REG_S4, store_offset, RV_REG_SP), ctx);
579 store_offset -= 8;
581 if (seen_reg(RV_REG_S5, ctx)) {
582 emit(rv_ld(RV_REG_S5, store_offset, RV_REG_SP), ctx);
583 store_offset -= 8;
585 if (seen_reg(RV_REG_S6, ctx)) {
586 emit(rv_ld(RV_REG_S6, store_offset, RV_REG_SP), ctx);
587 store_offset -= 8;
590 emit(rv_addi(RV_REG_SP, RV_REG_SP, stack_adjust), ctx);
591 /* Set return value. */
592 if (!is_tail_call)
593 emit(rv_addi(RV_REG_A0, RV_REG_A5, 0), ctx);
594 emit(rv_jalr(RV_REG_ZERO, is_tail_call ? RV_REG_T3 : RV_REG_RA,
595 is_tail_call ? 4 : 0), /* skip TCC init */
596 ctx);
599 /* return -1 or inverted cond */
600 static int invert_bpf_cond(u8 cond)
602 switch (cond) {
603 case BPF_JEQ:
604 return BPF_JNE;
605 case BPF_JGT:
606 return BPF_JLE;
607 case BPF_JLT:
608 return BPF_JGE;
609 case BPF_JGE:
610 return BPF_JLT;
611 case BPF_JLE:
612 return BPF_JGT;
613 case BPF_JNE:
614 return BPF_JEQ;
615 case BPF_JSGT:
616 return BPF_JSLE;
617 case BPF_JSLT:
618 return BPF_JSGE;
619 case BPF_JSGE:
620 return BPF_JSLT;
621 case BPF_JSLE:
622 return BPF_JSGT;
624 return -1;
627 static void emit_bcc(u8 cond, u8 rd, u8 rs, int rvoff,
628 struct rv_jit_context *ctx)
630 switch (cond) {
631 case BPF_JEQ:
632 emit(rv_beq(rd, rs, rvoff >> 1), ctx);
633 return;
634 case BPF_JGT:
635 emit(rv_bltu(rs, rd, rvoff >> 1), ctx);
636 return;
637 case BPF_JLT:
638 emit(rv_bltu(rd, rs, rvoff >> 1), ctx);
639 return;
640 case BPF_JGE:
641 emit(rv_bgeu(rd, rs, rvoff >> 1), ctx);
642 return;
643 case BPF_JLE:
644 emit(rv_bgeu(rs, rd, rvoff >> 1), ctx);
645 return;
646 case BPF_JNE:
647 emit(rv_bne(rd, rs, rvoff >> 1), ctx);
648 return;
649 case BPF_JSGT:
650 emit(rv_blt(rs, rd, rvoff >> 1), ctx);
651 return;
652 case BPF_JSLT:
653 emit(rv_blt(rd, rs, rvoff >> 1), ctx);
654 return;
655 case BPF_JSGE:
656 emit(rv_bge(rd, rs, rvoff >> 1), ctx);
657 return;
658 case BPF_JSLE:
659 emit(rv_bge(rs, rd, rvoff >> 1), ctx);
663 static void emit_branch(u8 cond, u8 rd, u8 rs, int rvoff,
664 struct rv_jit_context *ctx)
666 s64 upper, lower;
668 if (is_13b_int(rvoff)) {
669 emit_bcc(cond, rd, rs, rvoff, ctx);
670 return;
673 /* Adjust for jal */
674 rvoff -= 4;
676 /* Transform, e.g.:
677 * bne rd,rs,foo
678 * to
679 * beq rd,rs,<.L1>
680 * (auipc foo)
681 * jal(r) foo
682 * .L1
684 cond = invert_bpf_cond(cond);
685 if (is_21b_int(rvoff)) {
686 emit_bcc(cond, rd, rs, 8, ctx);
687 emit(rv_jal(RV_REG_ZERO, rvoff >> 1), ctx);
688 return;
691 /* 32b No need for an additional rvoff adjustment, since we
692 * get that from the auipc at PC', where PC = PC' + 4.
694 upper = (rvoff + (1 << 11)) >> 12;
695 lower = rvoff & 0xfff;
697 emit_bcc(cond, rd, rs, 12, ctx);
698 emit(rv_auipc(RV_REG_T1, upper), ctx);
699 emit(rv_jalr(RV_REG_ZERO, RV_REG_T1, lower), ctx);
702 static void emit_zext_32(u8 reg, struct rv_jit_context *ctx)
704 emit(rv_slli(reg, reg, 32), ctx);
705 emit(rv_srli(reg, reg, 32), ctx);
708 static int emit_bpf_tail_call(int insn, struct rv_jit_context *ctx)
710 int tc_ninsn, off, start_insn = ctx->ninsns;
711 u8 tcc = rv_tail_call_reg(ctx);
713 /* a0: &ctx
714 * a1: &array
715 * a2: index
717 * if (index >= array->map.max_entries)
718 * goto out;
720 tc_ninsn = insn ? ctx->offset[insn] - ctx->offset[insn - 1] :
721 ctx->offset[0];
722 emit_zext_32(RV_REG_A2, ctx);
724 off = offsetof(struct bpf_array, map.max_entries);
725 if (is_12b_check(off, insn))
726 return -1;
727 emit(rv_lwu(RV_REG_T1, off, RV_REG_A1), ctx);
728 off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2;
729 emit_branch(BPF_JGE, RV_REG_A2, RV_REG_T1, off, ctx);
731 /* if (TCC-- < 0)
732 * goto out;
734 emit(rv_addi(RV_REG_T1, tcc, -1), ctx);
735 off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2;
736 emit_branch(BPF_JSLT, tcc, RV_REG_ZERO, off, ctx);
738 /* prog = array->ptrs[index];
739 * if (!prog)
740 * goto out;
742 emit(rv_slli(RV_REG_T2, RV_REG_A2, 3), ctx);
743 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_A1), ctx);
744 off = offsetof(struct bpf_array, ptrs);
745 if (is_12b_check(off, insn))
746 return -1;
747 emit(rv_ld(RV_REG_T2, off, RV_REG_T2), ctx);
748 off = (tc_ninsn - (ctx->ninsns - start_insn)) << 2;
749 emit_branch(BPF_JEQ, RV_REG_T2, RV_REG_ZERO, off, ctx);
751 /* goto *(prog->bpf_func + 4); */
752 off = offsetof(struct bpf_prog, bpf_func);
753 if (is_12b_check(off, insn))
754 return -1;
755 emit(rv_ld(RV_REG_T3, off, RV_REG_T2), ctx);
756 emit(rv_addi(RV_REG_TCC, RV_REG_T1, 0), ctx);
757 __build_epilogue(true, ctx);
758 return 0;
761 static void init_regs(u8 *rd, u8 *rs, const struct bpf_insn *insn,
762 struct rv_jit_context *ctx)
764 u8 code = insn->code;
766 switch (code) {
767 case BPF_JMP | BPF_JA:
768 case BPF_JMP | BPF_CALL:
769 case BPF_JMP | BPF_EXIT:
770 case BPF_JMP | BPF_TAIL_CALL:
771 break;
772 default:
773 *rd = bpf_to_rv_reg(insn->dst_reg, ctx);
776 if (code & (BPF_ALU | BPF_X) || code & (BPF_ALU64 | BPF_X) ||
777 code & (BPF_JMP | BPF_X) || code & (BPF_JMP32 | BPF_X) ||
778 code & BPF_LDX || code & BPF_STX)
779 *rs = bpf_to_rv_reg(insn->src_reg, ctx);
782 static void emit_zext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
784 emit(rv_addi(RV_REG_T2, *rd, 0), ctx);
785 emit_zext_32(RV_REG_T2, ctx);
786 emit(rv_addi(RV_REG_T1, *rs, 0), ctx);
787 emit_zext_32(RV_REG_T1, ctx);
788 *rd = RV_REG_T2;
789 *rs = RV_REG_T1;
792 static void emit_sext_32_rd_rs(u8 *rd, u8 *rs, struct rv_jit_context *ctx)
794 emit(rv_addiw(RV_REG_T2, *rd, 0), ctx);
795 emit(rv_addiw(RV_REG_T1, *rs, 0), ctx);
796 *rd = RV_REG_T2;
797 *rs = RV_REG_T1;
800 static void emit_zext_32_rd_t1(u8 *rd, struct rv_jit_context *ctx)
802 emit(rv_addi(RV_REG_T2, *rd, 0), ctx);
803 emit_zext_32(RV_REG_T2, ctx);
804 emit_zext_32(RV_REG_T1, ctx);
805 *rd = RV_REG_T2;
808 static void emit_sext_32_rd(u8 *rd, struct rv_jit_context *ctx)
810 emit(rv_addiw(RV_REG_T2, *rd, 0), ctx);
811 *rd = RV_REG_T2;
814 static void emit_jump_and_link(u8 rd, s64 rvoff, bool force_jalr,
815 struct rv_jit_context *ctx)
817 s64 upper, lower;
819 if (rvoff && is_21b_int(rvoff) && !force_jalr) {
820 emit(rv_jal(rd, rvoff >> 1), ctx);
821 return;
824 upper = (rvoff + (1 << 11)) >> 12;
825 lower = rvoff & 0xfff;
826 emit(rv_auipc(RV_REG_T1, upper), ctx);
827 emit(rv_jalr(rd, RV_REG_T1, lower), ctx);
830 static bool is_signed_bpf_cond(u8 cond)
832 return cond == BPF_JSGT || cond == BPF_JSLT ||
833 cond == BPF_JSGE || cond == BPF_JSLE;
836 static int emit_call(bool fixed, u64 addr, struct rv_jit_context *ctx)
838 s64 off = 0;
839 u64 ip;
840 u8 rd;
842 if (addr && ctx->insns) {
843 ip = (u64)(long)(ctx->insns + ctx->ninsns);
844 off = addr - ip;
845 if (!is_32b_int(off)) {
846 pr_err("bpf-jit: target call addr %pK is out of range\n",
847 (void *)addr);
848 return -ERANGE;
852 emit_jump_and_link(RV_REG_RA, off, !fixed, ctx);
853 rd = bpf_to_rv_reg(BPF_REG_0, ctx);
854 emit(rv_addi(rd, RV_REG_A0, 0), ctx);
855 return 0;
858 static int emit_insn(const struct bpf_insn *insn, struct rv_jit_context *ctx,
859 bool extra_pass)
861 bool is64 = BPF_CLASS(insn->code) == BPF_ALU64 ||
862 BPF_CLASS(insn->code) == BPF_JMP;
863 int s, e, rvoff, i = insn - ctx->prog->insnsi;
864 struct bpf_prog_aux *aux = ctx->prog->aux;
865 u8 rd = -1, rs = -1, code = insn->code;
866 s16 off = insn->off;
867 s32 imm = insn->imm;
869 init_regs(&rd, &rs, insn, ctx);
871 switch (code) {
872 /* dst = src */
873 case BPF_ALU | BPF_MOV | BPF_X:
874 case BPF_ALU64 | BPF_MOV | BPF_X:
875 if (imm == 1) {
876 /* Special mov32 for zext */
877 emit_zext_32(rd, ctx);
878 break;
880 emit(is64 ? rv_addi(rd, rs, 0) : rv_addiw(rd, rs, 0), ctx);
881 if (!is64 && !aux->verifier_zext)
882 emit_zext_32(rd, ctx);
883 break;
885 /* dst = dst OP src */
886 case BPF_ALU | BPF_ADD | BPF_X:
887 case BPF_ALU64 | BPF_ADD | BPF_X:
888 emit(is64 ? rv_add(rd, rd, rs) : rv_addw(rd, rd, rs), ctx);
889 if (!is64 && !aux->verifier_zext)
890 emit_zext_32(rd, ctx);
891 break;
892 case BPF_ALU | BPF_SUB | BPF_X:
893 case BPF_ALU64 | BPF_SUB | BPF_X:
894 emit(is64 ? rv_sub(rd, rd, rs) : rv_subw(rd, rd, rs), ctx);
895 if (!is64 && !aux->verifier_zext)
896 emit_zext_32(rd, ctx);
897 break;
898 case BPF_ALU | BPF_AND | BPF_X:
899 case BPF_ALU64 | BPF_AND | BPF_X:
900 emit(rv_and(rd, rd, rs), ctx);
901 if (!is64 && !aux->verifier_zext)
902 emit_zext_32(rd, ctx);
903 break;
904 case BPF_ALU | BPF_OR | BPF_X:
905 case BPF_ALU64 | BPF_OR | BPF_X:
906 emit(rv_or(rd, rd, rs), ctx);
907 if (!is64 && !aux->verifier_zext)
908 emit_zext_32(rd, ctx);
909 break;
910 case BPF_ALU | BPF_XOR | BPF_X:
911 case BPF_ALU64 | BPF_XOR | BPF_X:
912 emit(rv_xor(rd, rd, rs), ctx);
913 if (!is64 && !aux->verifier_zext)
914 emit_zext_32(rd, ctx);
915 break;
916 case BPF_ALU | BPF_MUL | BPF_X:
917 case BPF_ALU64 | BPF_MUL | BPF_X:
918 emit(is64 ? rv_mul(rd, rd, rs) : rv_mulw(rd, rd, rs), ctx);
919 if (!is64 && !aux->verifier_zext)
920 emit_zext_32(rd, ctx);
921 break;
922 case BPF_ALU | BPF_DIV | BPF_X:
923 case BPF_ALU64 | BPF_DIV | BPF_X:
924 emit(is64 ? rv_divu(rd, rd, rs) : rv_divuw(rd, rd, rs), ctx);
925 if (!is64 && !aux->verifier_zext)
926 emit_zext_32(rd, ctx);
927 break;
928 case BPF_ALU | BPF_MOD | BPF_X:
929 case BPF_ALU64 | BPF_MOD | BPF_X:
930 emit(is64 ? rv_remu(rd, rd, rs) : rv_remuw(rd, rd, rs), ctx);
931 if (!is64 && !aux->verifier_zext)
932 emit_zext_32(rd, ctx);
933 break;
934 case BPF_ALU | BPF_LSH | BPF_X:
935 case BPF_ALU64 | BPF_LSH | BPF_X:
936 emit(is64 ? rv_sll(rd, rd, rs) : rv_sllw(rd, rd, rs), ctx);
937 if (!is64)
938 emit_zext_32(rd, ctx);
939 break;
940 case BPF_ALU | BPF_RSH | BPF_X:
941 case BPF_ALU64 | BPF_RSH | BPF_X:
942 emit(is64 ? rv_srl(rd, rd, rs) : rv_srlw(rd, rd, rs), ctx);
943 if (!is64 && !aux->verifier_zext)
944 emit_zext_32(rd, ctx);
945 break;
946 case BPF_ALU | BPF_ARSH | BPF_X:
947 case BPF_ALU64 | BPF_ARSH | BPF_X:
948 emit(is64 ? rv_sra(rd, rd, rs) : rv_sraw(rd, rd, rs), ctx);
949 if (!is64 && !aux->verifier_zext)
950 emit_zext_32(rd, ctx);
951 break;
953 /* dst = -dst */
954 case BPF_ALU | BPF_NEG:
955 case BPF_ALU64 | BPF_NEG:
956 emit(is64 ? rv_sub(rd, RV_REG_ZERO, rd) :
957 rv_subw(rd, RV_REG_ZERO, rd), ctx);
958 if (!is64 && !aux->verifier_zext)
959 emit_zext_32(rd, ctx);
960 break;
962 /* dst = BSWAP##imm(dst) */
963 case BPF_ALU | BPF_END | BPF_FROM_LE:
965 int shift = 64 - imm;
967 emit(rv_slli(rd, rd, shift), ctx);
968 emit(rv_srli(rd, rd, shift), ctx);
969 break;
971 case BPF_ALU | BPF_END | BPF_FROM_BE:
972 emit(rv_addi(RV_REG_T2, RV_REG_ZERO, 0), ctx);
974 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
975 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
976 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
977 emit(rv_srli(rd, rd, 8), ctx);
978 if (imm == 16)
979 goto out_be;
981 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
982 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
983 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
984 emit(rv_srli(rd, rd, 8), ctx);
986 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
987 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
988 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
989 emit(rv_srli(rd, rd, 8), ctx);
990 if (imm == 32)
991 goto out_be;
993 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
994 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
995 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
996 emit(rv_srli(rd, rd, 8), ctx);
998 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
999 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
1000 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
1001 emit(rv_srli(rd, rd, 8), ctx);
1003 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
1004 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
1005 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
1006 emit(rv_srli(rd, rd, 8), ctx);
1008 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
1009 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
1010 emit(rv_slli(RV_REG_T2, RV_REG_T2, 8), ctx);
1011 emit(rv_srli(rd, rd, 8), ctx);
1012 out_be:
1013 emit(rv_andi(RV_REG_T1, rd, 0xff), ctx);
1014 emit(rv_add(RV_REG_T2, RV_REG_T2, RV_REG_T1), ctx);
1016 emit(rv_addi(rd, RV_REG_T2, 0), ctx);
1017 break;
1019 /* dst = imm */
1020 case BPF_ALU | BPF_MOV | BPF_K:
1021 case BPF_ALU64 | BPF_MOV | BPF_K:
1022 emit_imm(rd, imm, ctx);
1023 if (!is64 && !aux->verifier_zext)
1024 emit_zext_32(rd, ctx);
1025 break;
1027 /* dst = dst OP imm */
1028 case BPF_ALU | BPF_ADD | BPF_K:
1029 case BPF_ALU64 | BPF_ADD | BPF_K:
1030 if (is_12b_int(imm)) {
1031 emit(is64 ? rv_addi(rd, rd, imm) :
1032 rv_addiw(rd, rd, imm), ctx);
1033 } else {
1034 emit_imm(RV_REG_T1, imm, ctx);
1035 emit(is64 ? rv_add(rd, rd, RV_REG_T1) :
1036 rv_addw(rd, rd, RV_REG_T1), ctx);
1038 if (!is64 && !aux->verifier_zext)
1039 emit_zext_32(rd, ctx);
1040 break;
1041 case BPF_ALU | BPF_SUB | BPF_K:
1042 case BPF_ALU64 | BPF_SUB | BPF_K:
1043 if (is_12b_int(-imm)) {
1044 emit(is64 ? rv_addi(rd, rd, -imm) :
1045 rv_addiw(rd, rd, -imm), ctx);
1046 } else {
1047 emit_imm(RV_REG_T1, imm, ctx);
1048 emit(is64 ? rv_sub(rd, rd, RV_REG_T1) :
1049 rv_subw(rd, rd, RV_REG_T1), ctx);
1051 if (!is64 && !aux->verifier_zext)
1052 emit_zext_32(rd, ctx);
1053 break;
1054 case BPF_ALU | BPF_AND | BPF_K:
1055 case BPF_ALU64 | BPF_AND | BPF_K:
1056 if (is_12b_int(imm)) {
1057 emit(rv_andi(rd, rd, imm), ctx);
1058 } else {
1059 emit_imm(RV_REG_T1, imm, ctx);
1060 emit(rv_and(rd, rd, RV_REG_T1), ctx);
1062 if (!is64 && !aux->verifier_zext)
1063 emit_zext_32(rd, ctx);
1064 break;
1065 case BPF_ALU | BPF_OR | BPF_K:
1066 case BPF_ALU64 | BPF_OR | BPF_K:
1067 if (is_12b_int(imm)) {
1068 emit(rv_ori(rd, rd, imm), ctx);
1069 } else {
1070 emit_imm(RV_REG_T1, imm, ctx);
1071 emit(rv_or(rd, rd, RV_REG_T1), ctx);
1073 if (!is64 && !aux->verifier_zext)
1074 emit_zext_32(rd, ctx);
1075 break;
1076 case BPF_ALU | BPF_XOR | BPF_K:
1077 case BPF_ALU64 | BPF_XOR | BPF_K:
1078 if (is_12b_int(imm)) {
1079 emit(rv_xori(rd, rd, imm), ctx);
1080 } else {
1081 emit_imm(RV_REG_T1, imm, ctx);
1082 emit(rv_xor(rd, rd, RV_REG_T1), ctx);
1084 if (!is64 && !aux->verifier_zext)
1085 emit_zext_32(rd, ctx);
1086 break;
1087 case BPF_ALU | BPF_MUL | BPF_K:
1088 case BPF_ALU64 | BPF_MUL | BPF_K:
1089 emit_imm(RV_REG_T1, imm, ctx);
1090 emit(is64 ? rv_mul(rd, rd, RV_REG_T1) :
1091 rv_mulw(rd, rd, RV_REG_T1), ctx);
1092 if (!is64 && !aux->verifier_zext)
1093 emit_zext_32(rd, ctx);
1094 break;
1095 case BPF_ALU | BPF_DIV | BPF_K:
1096 case BPF_ALU64 | BPF_DIV | BPF_K:
1097 emit_imm(RV_REG_T1, imm, ctx);
1098 emit(is64 ? rv_divu(rd, rd, RV_REG_T1) :
1099 rv_divuw(rd, rd, RV_REG_T1), ctx);
1100 if (!is64 && !aux->verifier_zext)
1101 emit_zext_32(rd, ctx);
1102 break;
1103 case BPF_ALU | BPF_MOD | BPF_K:
1104 case BPF_ALU64 | BPF_MOD | BPF_K:
1105 emit_imm(RV_REG_T1, imm, ctx);
1106 emit(is64 ? rv_remu(rd, rd, RV_REG_T1) :
1107 rv_remuw(rd, rd, RV_REG_T1), ctx);
1108 if (!is64 && !aux->verifier_zext)
1109 emit_zext_32(rd, ctx);
1110 break;
1111 case BPF_ALU | BPF_LSH | BPF_K:
1112 case BPF_ALU64 | BPF_LSH | BPF_K:
1113 emit(is64 ? rv_slli(rd, rd, imm) : rv_slliw(rd, rd, imm), ctx);
1114 if (!is64)
1115 emit_zext_32(rd, ctx);
1116 break;
1117 case BPF_ALU | BPF_RSH | BPF_K:
1118 case BPF_ALU64 | BPF_RSH | BPF_K:
1119 emit(is64 ? rv_srli(rd, rd, imm) : rv_srliw(rd, rd, imm), ctx);
1120 if (!is64)
1121 emit_zext_32(rd, ctx);
1122 break;
1123 case BPF_ALU | BPF_ARSH | BPF_K:
1124 case BPF_ALU64 | BPF_ARSH | BPF_K:
1125 emit(is64 ? rv_srai(rd, rd, imm) : rv_sraiw(rd, rd, imm), ctx);
1126 if (!is64)
1127 emit_zext_32(rd, ctx);
1128 break;
1130 /* JUMP off */
1131 case BPF_JMP | BPF_JA:
1132 rvoff = rv_offset(i, off, ctx);
1133 emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx);
1134 break;
1136 /* IF (dst COND src) JUMP off */
1137 case BPF_JMP | BPF_JEQ | BPF_X:
1138 case BPF_JMP32 | BPF_JEQ | BPF_X:
1139 case BPF_JMP | BPF_JGT | BPF_X:
1140 case BPF_JMP32 | BPF_JGT | BPF_X:
1141 case BPF_JMP | BPF_JLT | BPF_X:
1142 case BPF_JMP32 | BPF_JLT | BPF_X:
1143 case BPF_JMP | BPF_JGE | BPF_X:
1144 case BPF_JMP32 | BPF_JGE | BPF_X:
1145 case BPF_JMP | BPF_JLE | BPF_X:
1146 case BPF_JMP32 | BPF_JLE | BPF_X:
1147 case BPF_JMP | BPF_JNE | BPF_X:
1148 case BPF_JMP32 | BPF_JNE | BPF_X:
1149 case BPF_JMP | BPF_JSGT | BPF_X:
1150 case BPF_JMP32 | BPF_JSGT | BPF_X:
1151 case BPF_JMP | BPF_JSLT | BPF_X:
1152 case BPF_JMP32 | BPF_JSLT | BPF_X:
1153 case BPF_JMP | BPF_JSGE | BPF_X:
1154 case BPF_JMP32 | BPF_JSGE | BPF_X:
1155 case BPF_JMP | BPF_JSLE | BPF_X:
1156 case BPF_JMP32 | BPF_JSLE | BPF_X:
1157 case BPF_JMP | BPF_JSET | BPF_X:
1158 case BPF_JMP32 | BPF_JSET | BPF_X:
1159 rvoff = rv_offset(i, off, ctx);
1160 if (!is64) {
1161 s = ctx->ninsns;
1162 if (is_signed_bpf_cond(BPF_OP(code)))
1163 emit_sext_32_rd_rs(&rd, &rs, ctx);
1164 else
1165 emit_zext_32_rd_rs(&rd, &rs, ctx);
1166 e = ctx->ninsns;
1168 /* Adjust for extra insns */
1169 rvoff -= (e - s) << 2;
1172 if (BPF_OP(code) == BPF_JSET) {
1173 /* Adjust for and */
1174 rvoff -= 4;
1175 emit(rv_and(RV_REG_T1, rd, rs), ctx);
1176 emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff,
1177 ctx);
1178 } else {
1179 emit_branch(BPF_OP(code), rd, rs, rvoff, ctx);
1181 break;
1183 /* IF (dst COND imm) JUMP off */
1184 case BPF_JMP | BPF_JEQ | BPF_K:
1185 case BPF_JMP32 | BPF_JEQ | BPF_K:
1186 case BPF_JMP | BPF_JGT | BPF_K:
1187 case BPF_JMP32 | BPF_JGT | BPF_K:
1188 case BPF_JMP | BPF_JLT | BPF_K:
1189 case BPF_JMP32 | BPF_JLT | BPF_K:
1190 case BPF_JMP | BPF_JGE | BPF_K:
1191 case BPF_JMP32 | BPF_JGE | BPF_K:
1192 case BPF_JMP | BPF_JLE | BPF_K:
1193 case BPF_JMP32 | BPF_JLE | BPF_K:
1194 case BPF_JMP | BPF_JNE | BPF_K:
1195 case BPF_JMP32 | BPF_JNE | BPF_K:
1196 case BPF_JMP | BPF_JSGT | BPF_K:
1197 case BPF_JMP32 | BPF_JSGT | BPF_K:
1198 case BPF_JMP | BPF_JSLT | BPF_K:
1199 case BPF_JMP32 | BPF_JSLT | BPF_K:
1200 case BPF_JMP | BPF_JSGE | BPF_K:
1201 case BPF_JMP32 | BPF_JSGE | BPF_K:
1202 case BPF_JMP | BPF_JSLE | BPF_K:
1203 case BPF_JMP32 | BPF_JSLE | BPF_K:
1204 case BPF_JMP | BPF_JSET | BPF_K:
1205 case BPF_JMP32 | BPF_JSET | BPF_K:
1206 rvoff = rv_offset(i, off, ctx);
1207 s = ctx->ninsns;
1208 emit_imm(RV_REG_T1, imm, ctx);
1209 if (!is64) {
1210 if (is_signed_bpf_cond(BPF_OP(code)))
1211 emit_sext_32_rd(&rd, ctx);
1212 else
1213 emit_zext_32_rd_t1(&rd, ctx);
1215 e = ctx->ninsns;
1217 /* Adjust for extra insns */
1218 rvoff -= (e - s) << 2;
1220 if (BPF_OP(code) == BPF_JSET) {
1221 /* Adjust for and */
1222 rvoff -= 4;
1223 emit(rv_and(RV_REG_T1, rd, RV_REG_T1), ctx);
1224 emit_branch(BPF_JNE, RV_REG_T1, RV_REG_ZERO, rvoff,
1225 ctx);
1226 } else {
1227 emit_branch(BPF_OP(code), rd, RV_REG_T1, rvoff, ctx);
1229 break;
1231 /* function call */
1232 case BPF_JMP | BPF_CALL:
1234 bool fixed;
1235 int ret;
1236 u64 addr;
1238 mark_call(ctx);
1239 ret = bpf_jit_get_func_addr(ctx->prog, insn, extra_pass, &addr,
1240 &fixed);
1241 if (ret < 0)
1242 return ret;
1243 ret = emit_call(fixed, addr, ctx);
1244 if (ret)
1245 return ret;
1246 break;
1248 /* tail call */
1249 case BPF_JMP | BPF_TAIL_CALL:
1250 if (emit_bpf_tail_call(i, ctx))
1251 return -1;
1252 break;
1254 /* function return */
1255 case BPF_JMP | BPF_EXIT:
1256 if (i == ctx->prog->len - 1)
1257 break;
1259 rvoff = epilogue_offset(ctx);
1260 emit_jump_and_link(RV_REG_ZERO, rvoff, false, ctx);
1261 break;
1263 /* dst = imm64 */
1264 case BPF_LD | BPF_IMM | BPF_DW:
1266 struct bpf_insn insn1 = insn[1];
1267 u64 imm64;
1269 imm64 = (u64)insn1.imm << 32 | (u32)imm;
1270 emit_imm(rd, imm64, ctx);
1271 return 1;
1274 /* LDX: dst = *(size *)(src + off) */
1275 case BPF_LDX | BPF_MEM | BPF_B:
1276 if (is_12b_int(off)) {
1277 emit(rv_lbu(rd, off, rs), ctx);
1278 break;
1281 emit_imm(RV_REG_T1, off, ctx);
1282 emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx);
1283 emit(rv_lbu(rd, 0, RV_REG_T1), ctx);
1284 if (insn_is_zext(&insn[1]))
1285 return 1;
1286 break;
1287 case BPF_LDX | BPF_MEM | BPF_H:
1288 if (is_12b_int(off)) {
1289 emit(rv_lhu(rd, off, rs), ctx);
1290 break;
1293 emit_imm(RV_REG_T1, off, ctx);
1294 emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx);
1295 emit(rv_lhu(rd, 0, RV_REG_T1), ctx);
1296 if (insn_is_zext(&insn[1]))
1297 return 1;
1298 break;
1299 case BPF_LDX | BPF_MEM | BPF_W:
1300 if (is_12b_int(off)) {
1301 emit(rv_lwu(rd, off, rs), ctx);
1302 break;
1305 emit_imm(RV_REG_T1, off, ctx);
1306 emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx);
1307 emit(rv_lwu(rd, 0, RV_REG_T1), ctx);
1308 if (insn_is_zext(&insn[1]))
1309 return 1;
1310 break;
1311 case BPF_LDX | BPF_MEM | BPF_DW:
1312 if (is_12b_int(off)) {
1313 emit(rv_ld(rd, off, rs), ctx);
1314 break;
1317 emit_imm(RV_REG_T1, off, ctx);
1318 emit(rv_add(RV_REG_T1, RV_REG_T1, rs), ctx);
1319 emit(rv_ld(rd, 0, RV_REG_T1), ctx);
1320 break;
1322 /* ST: *(size *)(dst + off) = imm */
1323 case BPF_ST | BPF_MEM | BPF_B:
1324 emit_imm(RV_REG_T1, imm, ctx);
1325 if (is_12b_int(off)) {
1326 emit(rv_sb(rd, off, RV_REG_T1), ctx);
1327 break;
1330 emit_imm(RV_REG_T2, off, ctx);
1331 emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx);
1332 emit(rv_sb(RV_REG_T2, 0, RV_REG_T1), ctx);
1333 break;
1335 case BPF_ST | BPF_MEM | BPF_H:
1336 emit_imm(RV_REG_T1, imm, ctx);
1337 if (is_12b_int(off)) {
1338 emit(rv_sh(rd, off, RV_REG_T1), ctx);
1339 break;
1342 emit_imm(RV_REG_T2, off, ctx);
1343 emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx);
1344 emit(rv_sh(RV_REG_T2, 0, RV_REG_T1), ctx);
1345 break;
1346 case BPF_ST | BPF_MEM | BPF_W:
1347 emit_imm(RV_REG_T1, imm, ctx);
1348 if (is_12b_int(off)) {
1349 emit(rv_sw(rd, off, RV_REG_T1), ctx);
1350 break;
1353 emit_imm(RV_REG_T2, off, ctx);
1354 emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx);
1355 emit(rv_sw(RV_REG_T2, 0, RV_REG_T1), ctx);
1356 break;
1357 case BPF_ST | BPF_MEM | BPF_DW:
1358 emit_imm(RV_REG_T1, imm, ctx);
1359 if (is_12b_int(off)) {
1360 emit(rv_sd(rd, off, RV_REG_T1), ctx);
1361 break;
1364 emit_imm(RV_REG_T2, off, ctx);
1365 emit(rv_add(RV_REG_T2, RV_REG_T2, rd), ctx);
1366 emit(rv_sd(RV_REG_T2, 0, RV_REG_T1), ctx);
1367 break;
1369 /* STX: *(size *)(dst + off) = src */
1370 case BPF_STX | BPF_MEM | BPF_B:
1371 if (is_12b_int(off)) {
1372 emit(rv_sb(rd, off, rs), ctx);
1373 break;
1376 emit_imm(RV_REG_T1, off, ctx);
1377 emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
1378 emit(rv_sb(RV_REG_T1, 0, rs), ctx);
1379 break;
1380 case BPF_STX | BPF_MEM | BPF_H:
1381 if (is_12b_int(off)) {
1382 emit(rv_sh(rd, off, rs), ctx);
1383 break;
1386 emit_imm(RV_REG_T1, off, ctx);
1387 emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
1388 emit(rv_sh(RV_REG_T1, 0, rs), ctx);
1389 break;
1390 case BPF_STX | BPF_MEM | BPF_W:
1391 if (is_12b_int(off)) {
1392 emit(rv_sw(rd, off, rs), ctx);
1393 break;
1396 emit_imm(RV_REG_T1, off, ctx);
1397 emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
1398 emit(rv_sw(RV_REG_T1, 0, rs), ctx);
1399 break;
1400 case BPF_STX | BPF_MEM | BPF_DW:
1401 if (is_12b_int(off)) {
1402 emit(rv_sd(rd, off, rs), ctx);
1403 break;
1406 emit_imm(RV_REG_T1, off, ctx);
1407 emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
1408 emit(rv_sd(RV_REG_T1, 0, rs), ctx);
1409 break;
1410 /* STX XADD: lock *(u32 *)(dst + off) += src */
1411 case BPF_STX | BPF_XADD | BPF_W:
1412 /* STX XADD: lock *(u64 *)(dst + off) += src */
1413 case BPF_STX | BPF_XADD | BPF_DW:
1414 if (off) {
1415 if (is_12b_int(off)) {
1416 emit(rv_addi(RV_REG_T1, rd, off), ctx);
1417 } else {
1418 emit_imm(RV_REG_T1, off, ctx);
1419 emit(rv_add(RV_REG_T1, RV_REG_T1, rd), ctx);
1422 rd = RV_REG_T1;
1425 emit(BPF_SIZE(code) == BPF_W ?
1426 rv_amoadd_w(RV_REG_ZERO, rs, rd, 0, 0) :
1427 rv_amoadd_d(RV_REG_ZERO, rs, rd, 0, 0), ctx);
1428 break;
1429 default:
1430 pr_err("bpf-jit: unknown opcode %02x\n", code);
1431 return -EINVAL;
1434 return 0;
1437 static void build_prologue(struct rv_jit_context *ctx)
1439 int stack_adjust = 0, store_offset, bpf_stack_adjust;
1441 bpf_stack_adjust = round_up(ctx->prog->aux->stack_depth, 16);
1442 if (bpf_stack_adjust)
1443 mark_fp(ctx);
1445 if (seen_reg(RV_REG_RA, ctx))
1446 stack_adjust += 8;
1447 stack_adjust += 8; /* RV_REG_FP */
1448 if (seen_reg(RV_REG_S1, ctx))
1449 stack_adjust += 8;
1450 if (seen_reg(RV_REG_S2, ctx))
1451 stack_adjust += 8;
1452 if (seen_reg(RV_REG_S3, ctx))
1453 stack_adjust += 8;
1454 if (seen_reg(RV_REG_S4, ctx))
1455 stack_adjust += 8;
1456 if (seen_reg(RV_REG_S5, ctx))
1457 stack_adjust += 8;
1458 if (seen_reg(RV_REG_S6, ctx))
1459 stack_adjust += 8;
1461 stack_adjust = round_up(stack_adjust, 16);
1462 stack_adjust += bpf_stack_adjust;
1464 store_offset = stack_adjust - 8;
1466 /* First instruction is always setting the tail-call-counter
1467 * (TCC) register. This instruction is skipped for tail calls.
1469 emit(rv_addi(RV_REG_TCC, RV_REG_ZERO, MAX_TAIL_CALL_CNT), ctx);
1471 emit(rv_addi(RV_REG_SP, RV_REG_SP, -stack_adjust), ctx);
1473 if (seen_reg(RV_REG_RA, ctx)) {
1474 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_RA), ctx);
1475 store_offset -= 8;
1477 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_FP), ctx);
1478 store_offset -= 8;
1479 if (seen_reg(RV_REG_S1, ctx)) {
1480 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S1), ctx);
1481 store_offset -= 8;
1483 if (seen_reg(RV_REG_S2, ctx)) {
1484 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S2), ctx);
1485 store_offset -= 8;
1487 if (seen_reg(RV_REG_S3, ctx)) {
1488 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S3), ctx);
1489 store_offset -= 8;
1491 if (seen_reg(RV_REG_S4, ctx)) {
1492 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S4), ctx);
1493 store_offset -= 8;
1495 if (seen_reg(RV_REG_S5, ctx)) {
1496 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S5), ctx);
1497 store_offset -= 8;
1499 if (seen_reg(RV_REG_S6, ctx)) {
1500 emit(rv_sd(RV_REG_SP, store_offset, RV_REG_S6), ctx);
1501 store_offset -= 8;
1504 emit(rv_addi(RV_REG_FP, RV_REG_SP, stack_adjust), ctx);
1506 if (bpf_stack_adjust)
1507 emit(rv_addi(RV_REG_S5, RV_REG_SP, bpf_stack_adjust), ctx);
1509 /* Program contains calls and tail calls, so RV_REG_TCC need
1510 * to be saved across calls.
1512 if (seen_tail_call(ctx) && seen_call(ctx))
1513 emit(rv_addi(RV_REG_TCC_SAVED, RV_REG_TCC, 0), ctx);
1515 ctx->stack_size = stack_adjust;
1518 static void build_epilogue(struct rv_jit_context *ctx)
1520 __build_epilogue(false, ctx);
1523 static int build_body(struct rv_jit_context *ctx, bool extra_pass, int *offset)
1525 const struct bpf_prog *prog = ctx->prog;
1526 int i;
1528 for (i = 0; i < prog->len; i++) {
1529 const struct bpf_insn *insn = &prog->insnsi[i];
1530 int ret;
1532 ret = emit_insn(insn, ctx, extra_pass);
1533 if (ret > 0) {
1534 i++;
1535 if (offset)
1536 offset[i] = ctx->ninsns;
1537 continue;
1539 if (offset)
1540 offset[i] = ctx->ninsns;
1541 if (ret)
1542 return ret;
1544 return 0;
1547 static void bpf_fill_ill_insns(void *area, unsigned int size)
1549 memset(area, 0, size);
1552 static void bpf_flush_icache(void *start, void *end)
1554 flush_icache_range((unsigned long)start, (unsigned long)end);
1557 bool bpf_jit_needs_zext(void)
1559 return true;
1562 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog)
1564 bool tmp_blinded = false, extra_pass = false;
1565 struct bpf_prog *tmp, *orig_prog = prog;
1566 int pass = 0, prev_ninsns = 0, i;
1567 struct rv_jit_data *jit_data;
1568 unsigned int image_size = 0;
1569 struct rv_jit_context *ctx;
1571 if (!prog->jit_requested)
1572 return orig_prog;
1574 tmp = bpf_jit_blind_constants(prog);
1575 if (IS_ERR(tmp))
1576 return orig_prog;
1577 if (tmp != prog) {
1578 tmp_blinded = true;
1579 prog = tmp;
1582 jit_data = prog->aux->jit_data;
1583 if (!jit_data) {
1584 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1585 if (!jit_data) {
1586 prog = orig_prog;
1587 goto out;
1589 prog->aux->jit_data = jit_data;
1592 ctx = &jit_data->ctx;
1594 if (ctx->offset) {
1595 extra_pass = true;
1596 image_size = sizeof(u32) * ctx->ninsns;
1597 goto skip_init_ctx;
1600 ctx->prog = prog;
1601 ctx->offset = kcalloc(prog->len, sizeof(int), GFP_KERNEL);
1602 if (!ctx->offset) {
1603 prog = orig_prog;
1604 goto out_offset;
1606 for (i = 0; i < prog->len; i++) {
1607 prev_ninsns += 32;
1608 ctx->offset[i] = prev_ninsns;
1611 for (i = 0; i < 16; i++) {
1612 pass++;
1613 ctx->ninsns = 0;
1614 if (build_body(ctx, extra_pass, ctx->offset)) {
1615 prog = orig_prog;
1616 goto out_offset;
1618 build_prologue(ctx);
1619 ctx->epilogue_offset = ctx->ninsns;
1620 build_epilogue(ctx);
1622 if (ctx->ninsns == prev_ninsns) {
1623 if (jit_data->header)
1624 break;
1626 image_size = sizeof(u32) * ctx->ninsns;
1627 jit_data->header =
1628 bpf_jit_binary_alloc(image_size,
1629 &jit_data->image,
1630 sizeof(u32),
1631 bpf_fill_ill_insns);
1632 if (!jit_data->header) {
1633 prog = orig_prog;
1634 goto out_offset;
1637 ctx->insns = (u32 *)jit_data->image;
1638 /* Now, when the image is allocated, the image
1639 * can potentially shrink more (auipc/jalr ->
1640 * jal).
1643 prev_ninsns = ctx->ninsns;
1646 if (i == 16) {
1647 pr_err("bpf-jit: image did not converge in <%d passes!\n", i);
1648 bpf_jit_binary_free(jit_data->header);
1649 prog = orig_prog;
1650 goto out_offset;
1653 skip_init_ctx:
1654 pass++;
1655 ctx->ninsns = 0;
1657 build_prologue(ctx);
1658 if (build_body(ctx, extra_pass, NULL)) {
1659 bpf_jit_binary_free(jit_data->header);
1660 prog = orig_prog;
1661 goto out_offset;
1663 build_epilogue(ctx);
1665 if (bpf_jit_enable > 1)
1666 bpf_jit_dump(prog->len, image_size, pass, ctx->insns);
1668 prog->bpf_func = (void *)ctx->insns;
1669 prog->jited = 1;
1670 prog->jited_len = image_size;
1672 bpf_flush_icache(jit_data->header, ctx->insns + ctx->ninsns);
1674 if (!prog->is_func || extra_pass) {
1675 out_offset:
1676 kfree(ctx->offset);
1677 kfree(jit_data);
1678 prog->aux->jit_data = NULL;
1680 out:
1681 if (tmp_blinded)
1682 bpf_jit_prog_release_other(prog, prog == orig_prog ?
1683 tmp : orig_prog);
1684 return prog;
1687 void *bpf_jit_alloc_exec(unsigned long size)
1689 return __vmalloc_node_range(size, PAGE_SIZE, BPF_JIT_REGION_START,
1690 BPF_JIT_REGION_END, GFP_KERNEL,
1691 PAGE_KERNEL_EXEC, 0, NUMA_NO_NODE,
1692 __builtin_return_address(0));
1695 void bpf_jit_free_exec(void *addr)
1697 return vfree(addr);