kvm: x86: optimize dr6 restore
[linux/fpc-iii.git] / kernel / cgroup / cgroup.c
blobaae10baf1902af2099292856bf2e299f14edfd1f
1 /*
2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
58 #include <net/sock.h>
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/cgroup.h>
63 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
64 MAX_CFTYPE_NAME + 2)
65 /* let's not notify more than 100 times per second */
66 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69 * cgroup_mutex is the master lock. Any modification to cgroup or its
70 * hierarchy must be performed while holding it.
72 * css_set_lock protects task->cgroups pointer, the list of css_set
73 * objects, and the chain of tasks off each css_set.
75 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
76 * cgroup.h can use them for lockdep annotations.
78 DEFINE_MUTEX(cgroup_mutex);
79 DEFINE_SPINLOCK(css_set_lock);
81 #ifdef CONFIG_PROVE_RCU
82 EXPORT_SYMBOL_GPL(cgroup_mutex);
83 EXPORT_SYMBOL_GPL(css_set_lock);
84 #endif
86 DEFINE_SPINLOCK(trace_cgroup_path_lock);
87 char trace_cgroup_path[TRACE_CGROUP_PATH_LEN];
90 * Protects cgroup_idr and css_idr so that IDs can be released without
91 * grabbing cgroup_mutex.
93 static DEFINE_SPINLOCK(cgroup_idr_lock);
96 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
97 * against file removal/re-creation across css hiding.
99 static DEFINE_SPINLOCK(cgroup_file_kn_lock);
101 struct percpu_rw_semaphore cgroup_threadgroup_rwsem;
103 #define cgroup_assert_mutex_or_rcu_locked() \
104 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
105 !lockdep_is_held(&cgroup_mutex), \
106 "cgroup_mutex or RCU read lock required");
109 * cgroup destruction makes heavy use of work items and there can be a lot
110 * of concurrent destructions. Use a separate workqueue so that cgroup
111 * destruction work items don't end up filling up max_active of system_wq
112 * which may lead to deadlock.
114 static struct workqueue_struct *cgroup_destroy_wq;
116 /* generate an array of cgroup subsystem pointers */
117 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
118 struct cgroup_subsys *cgroup_subsys[] = {
119 #include <linux/cgroup_subsys.h>
121 #undef SUBSYS
123 /* array of cgroup subsystem names */
124 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
125 static const char *cgroup_subsys_name[] = {
126 #include <linux/cgroup_subsys.h>
128 #undef SUBSYS
130 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
131 #define SUBSYS(_x) \
132 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
133 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
134 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
135 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
136 #include <linux/cgroup_subsys.h>
137 #undef SUBSYS
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
140 static struct static_key_true *cgroup_subsys_enabled_key[] = {
141 #include <linux/cgroup_subsys.h>
143 #undef SUBSYS
145 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
146 static struct static_key_true *cgroup_subsys_on_dfl_key[] = {
147 #include <linux/cgroup_subsys.h>
149 #undef SUBSYS
151 static DEFINE_PER_CPU(struct cgroup_rstat_cpu, cgrp_dfl_root_rstat_cpu);
154 * The default hierarchy, reserved for the subsystems that are otherwise
155 * unattached - it never has more than a single cgroup, and all tasks are
156 * part of that cgroup.
158 struct cgroup_root cgrp_dfl_root = { .cgrp.rstat_cpu = &cgrp_dfl_root_rstat_cpu };
159 EXPORT_SYMBOL_GPL(cgrp_dfl_root);
162 * The default hierarchy always exists but is hidden until mounted for the
163 * first time. This is for backward compatibility.
165 static bool cgrp_dfl_visible;
167 /* some controllers are not supported in the default hierarchy */
168 static u16 cgrp_dfl_inhibit_ss_mask;
170 /* some controllers are implicitly enabled on the default hierarchy */
171 static u16 cgrp_dfl_implicit_ss_mask;
173 /* some controllers can be threaded on the default hierarchy */
174 static u16 cgrp_dfl_threaded_ss_mask;
176 /* The list of hierarchy roots */
177 LIST_HEAD(cgroup_roots);
178 static int cgroup_root_count;
180 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
181 static DEFINE_IDR(cgroup_hierarchy_idr);
184 * Assign a monotonically increasing serial number to csses. It guarantees
185 * cgroups with bigger numbers are newer than those with smaller numbers.
186 * Also, as csses are always appended to the parent's ->children list, it
187 * guarantees that sibling csses are always sorted in the ascending serial
188 * number order on the list. Protected by cgroup_mutex.
190 static u64 css_serial_nr_next = 1;
193 * These bitmasks identify subsystems with specific features to avoid
194 * having to do iterative checks repeatedly.
196 static u16 have_fork_callback __read_mostly;
197 static u16 have_exit_callback __read_mostly;
198 static u16 have_free_callback __read_mostly;
199 static u16 have_canfork_callback __read_mostly;
201 /* cgroup namespace for init task */
202 struct cgroup_namespace init_cgroup_ns = {
203 .count = REFCOUNT_INIT(2),
204 .user_ns = &init_user_ns,
205 .ns.ops = &cgroupns_operations,
206 .ns.inum = PROC_CGROUP_INIT_INO,
207 .root_cset = &init_css_set,
210 static struct file_system_type cgroup2_fs_type;
211 static struct cftype cgroup_base_files[];
213 static int cgroup_apply_control(struct cgroup *cgrp);
214 static void cgroup_finalize_control(struct cgroup *cgrp, int ret);
215 static void css_task_iter_advance(struct css_task_iter *it);
216 static int cgroup_destroy_locked(struct cgroup *cgrp);
217 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
218 struct cgroup_subsys *ss);
219 static void css_release(struct percpu_ref *ref);
220 static void kill_css(struct cgroup_subsys_state *css);
221 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
222 struct cgroup *cgrp, struct cftype cfts[],
223 bool is_add);
226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227 * @ssid: subsys ID of interest
229 * cgroup_subsys_enabled() can only be used with literal subsys names which
230 * is fine for individual subsystems but unsuitable for cgroup core. This
231 * is slower static_key_enabled() based test indexed by @ssid.
233 bool cgroup_ssid_enabled(int ssid)
235 if (CGROUP_SUBSYS_COUNT == 0)
236 return false;
238 return static_key_enabled(cgroup_subsys_enabled_key[ssid]);
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
248 * interface version.
250 * The set of behaviors which change on the default hierarchy are still
251 * being determined and the mount option is prefixed with __DEVEL__.
253 * List of changed behaviors:
255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256 * and "name" are disallowed.
258 * - When mounting an existing superblock, mount options should match.
260 * - Remount is disallowed.
262 * - rename(2) is disallowed.
264 * - "tasks" is removed. Everything should be at process granularity. Use
265 * "cgroup.procs" instead.
267 * - "cgroup.procs" is not sorted. pids will be unique unless they got
268 * recycled inbetween reads.
270 * - "release_agent" and "notify_on_release" are removed. Replacement
271 * notification mechanism will be implemented.
273 * - "cgroup.clone_children" is removed.
275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
276 * and its descendants contain no task; otherwise, 1. The file also
277 * generates kernfs notification which can be monitored through poll and
278 * [di]notify when the value of the file changes.
280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281 * take masks of ancestors with non-empty cpus/mems, instead of being
282 * moved to an ancestor.
284 * - cpuset: a task can be moved into an empty cpuset, and again it takes
285 * masks of ancestors.
287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
288 * is not created.
290 * - blkcg: blk-throttle becomes properly hierarchical.
292 * - debug: disallowed on the default hierarchy.
294 bool cgroup_on_dfl(const struct cgroup *cgrp)
296 return cgrp->root == &cgrp_dfl_root;
299 /* IDR wrappers which synchronize using cgroup_idr_lock */
300 static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end,
301 gfp_t gfp_mask)
303 int ret;
305 idr_preload(gfp_mask);
306 spin_lock_bh(&cgroup_idr_lock);
307 ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM);
308 spin_unlock_bh(&cgroup_idr_lock);
309 idr_preload_end();
310 return ret;
313 static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id)
315 void *ret;
317 spin_lock_bh(&cgroup_idr_lock);
318 ret = idr_replace(idr, ptr, id);
319 spin_unlock_bh(&cgroup_idr_lock);
320 return ret;
323 static void cgroup_idr_remove(struct idr *idr, int id)
325 spin_lock_bh(&cgroup_idr_lock);
326 idr_remove(idr, id);
327 spin_unlock_bh(&cgroup_idr_lock);
330 static bool cgroup_has_tasks(struct cgroup *cgrp)
332 return cgrp->nr_populated_csets;
335 bool cgroup_is_threaded(struct cgroup *cgrp)
337 return cgrp->dom_cgrp != cgrp;
340 /* can @cgrp host both domain and threaded children? */
341 static bool cgroup_is_mixable(struct cgroup *cgrp)
344 * Root isn't under domain level resource control exempting it from
345 * the no-internal-process constraint, so it can serve as a thread
346 * root and a parent of resource domains at the same time.
348 return !cgroup_parent(cgrp);
351 /* can @cgrp become a thread root? should always be true for a thread root */
352 static bool cgroup_can_be_thread_root(struct cgroup *cgrp)
354 /* mixables don't care */
355 if (cgroup_is_mixable(cgrp))
356 return true;
358 /* domain roots can't be nested under threaded */
359 if (cgroup_is_threaded(cgrp))
360 return false;
362 /* can only have either domain or threaded children */
363 if (cgrp->nr_populated_domain_children)
364 return false;
366 /* and no domain controllers can be enabled */
367 if (cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
368 return false;
370 return true;
373 /* is @cgrp root of a threaded subtree? */
374 bool cgroup_is_thread_root(struct cgroup *cgrp)
376 /* thread root should be a domain */
377 if (cgroup_is_threaded(cgrp))
378 return false;
380 /* a domain w/ threaded children is a thread root */
381 if (cgrp->nr_threaded_children)
382 return true;
385 * A domain which has tasks and explicit threaded controllers
386 * enabled is a thread root.
388 if (cgroup_has_tasks(cgrp) &&
389 (cgrp->subtree_control & cgrp_dfl_threaded_ss_mask))
390 return true;
392 return false;
395 /* a domain which isn't connected to the root w/o brekage can't be used */
396 static bool cgroup_is_valid_domain(struct cgroup *cgrp)
398 /* the cgroup itself can be a thread root */
399 if (cgroup_is_threaded(cgrp))
400 return false;
402 /* but the ancestors can't be unless mixable */
403 while ((cgrp = cgroup_parent(cgrp))) {
404 if (!cgroup_is_mixable(cgrp) && cgroup_is_thread_root(cgrp))
405 return false;
406 if (cgroup_is_threaded(cgrp))
407 return false;
410 return true;
413 /* subsystems visibly enabled on a cgroup */
414 static u16 cgroup_control(struct cgroup *cgrp)
416 struct cgroup *parent = cgroup_parent(cgrp);
417 u16 root_ss_mask = cgrp->root->subsys_mask;
419 if (parent) {
420 u16 ss_mask = parent->subtree_control;
422 /* threaded cgroups can only have threaded controllers */
423 if (cgroup_is_threaded(cgrp))
424 ss_mask &= cgrp_dfl_threaded_ss_mask;
425 return ss_mask;
428 if (cgroup_on_dfl(cgrp))
429 root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask |
430 cgrp_dfl_implicit_ss_mask);
431 return root_ss_mask;
434 /* subsystems enabled on a cgroup */
435 static u16 cgroup_ss_mask(struct cgroup *cgrp)
437 struct cgroup *parent = cgroup_parent(cgrp);
439 if (parent) {
440 u16 ss_mask = parent->subtree_ss_mask;
442 /* threaded cgroups can only have threaded controllers */
443 if (cgroup_is_threaded(cgrp))
444 ss_mask &= cgrp_dfl_threaded_ss_mask;
445 return ss_mask;
448 return cgrp->root->subsys_mask;
452 * cgroup_css - obtain a cgroup's css for the specified subsystem
453 * @cgrp: the cgroup of interest
454 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
456 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
457 * function must be called either under cgroup_mutex or rcu_read_lock() and
458 * the caller is responsible for pinning the returned css if it wants to
459 * keep accessing it outside the said locks. This function may return
460 * %NULL if @cgrp doesn't have @subsys_id enabled.
462 static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp,
463 struct cgroup_subsys *ss)
465 if (ss)
466 return rcu_dereference_check(cgrp->subsys[ss->id],
467 lockdep_is_held(&cgroup_mutex));
468 else
469 return &cgrp->self;
473 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
474 * @cgrp: the cgroup of interest
475 * @ss: the subsystem of interest
477 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
478 * or is offline, %NULL is returned.
480 static struct cgroup_subsys_state *cgroup_tryget_css(struct cgroup *cgrp,
481 struct cgroup_subsys *ss)
483 struct cgroup_subsys_state *css;
485 rcu_read_lock();
486 css = cgroup_css(cgrp, ss);
487 if (!css || !css_tryget_online(css))
488 css = NULL;
489 rcu_read_unlock();
491 return css;
495 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
496 * @cgrp: the cgroup of interest
497 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
499 * Similar to cgroup_css() but returns the effective css, which is defined
500 * as the matching css of the nearest ancestor including self which has @ss
501 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
502 * function is guaranteed to return non-NULL css.
504 static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp,
505 struct cgroup_subsys *ss)
507 lockdep_assert_held(&cgroup_mutex);
509 if (!ss)
510 return &cgrp->self;
513 * This function is used while updating css associations and thus
514 * can't test the csses directly. Test ss_mask.
516 while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) {
517 cgrp = cgroup_parent(cgrp);
518 if (!cgrp)
519 return NULL;
522 return cgroup_css(cgrp, ss);
526 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
527 * @cgrp: the cgroup of interest
528 * @ss: the subsystem of interest
530 * Find and get the effective css of @cgrp for @ss. The effective css is
531 * defined as the matching css of the nearest ancestor including self which
532 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
533 * the root css is returned, so this function always returns a valid css.
534 * The returned css must be put using css_put().
536 struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp,
537 struct cgroup_subsys *ss)
539 struct cgroup_subsys_state *css;
541 rcu_read_lock();
543 do {
544 css = cgroup_css(cgrp, ss);
546 if (css && css_tryget_online(css))
547 goto out_unlock;
548 cgrp = cgroup_parent(cgrp);
549 } while (cgrp);
551 css = init_css_set.subsys[ss->id];
552 css_get(css);
553 out_unlock:
554 rcu_read_unlock();
555 return css;
558 static void cgroup_get_live(struct cgroup *cgrp)
560 WARN_ON_ONCE(cgroup_is_dead(cgrp));
561 css_get(&cgrp->self);
564 struct cgroup_subsys_state *of_css(struct kernfs_open_file *of)
566 struct cgroup *cgrp = of->kn->parent->priv;
567 struct cftype *cft = of_cft(of);
570 * This is open and unprotected implementation of cgroup_css().
571 * seq_css() is only called from a kernfs file operation which has
572 * an active reference on the file. Because all the subsystem
573 * files are drained before a css is disassociated with a cgroup,
574 * the matching css from the cgroup's subsys table is guaranteed to
575 * be and stay valid until the enclosing operation is complete.
577 if (cft->ss)
578 return rcu_dereference_raw(cgrp->subsys[cft->ss->id]);
579 else
580 return &cgrp->self;
582 EXPORT_SYMBOL_GPL(of_css);
585 * for_each_css - iterate all css's of a cgroup
586 * @css: the iteration cursor
587 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
588 * @cgrp: the target cgroup to iterate css's of
590 * Should be called under cgroup_[tree_]mutex.
592 #define for_each_css(css, ssid, cgrp) \
593 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
594 if (!((css) = rcu_dereference_check( \
595 (cgrp)->subsys[(ssid)], \
596 lockdep_is_held(&cgroup_mutex)))) { } \
597 else
600 * for_each_e_css - iterate all effective css's of a cgroup
601 * @css: the iteration cursor
602 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
603 * @cgrp: the target cgroup to iterate css's of
605 * Should be called under cgroup_[tree_]mutex.
607 #define for_each_e_css(css, ssid, cgrp) \
608 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
609 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
611 else
614 * do_each_subsys_mask - filter for_each_subsys with a bitmask
615 * @ss: the iteration cursor
616 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
617 * @ss_mask: the bitmask
619 * The block will only run for cases where the ssid-th bit (1 << ssid) of
620 * @ss_mask is set.
622 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
623 unsigned long __ss_mask = (ss_mask); \
624 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
625 (ssid) = 0; \
626 break; \
628 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
629 (ss) = cgroup_subsys[ssid]; \
632 #define while_each_subsys_mask() \
635 } while (false)
637 /* iterate over child cgrps, lock should be held throughout iteration */
638 #define cgroup_for_each_live_child(child, cgrp) \
639 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
640 if (({ lockdep_assert_held(&cgroup_mutex); \
641 cgroup_is_dead(child); })) \
643 else
645 /* walk live descendants in preorder */
646 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
647 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
648 if (({ lockdep_assert_held(&cgroup_mutex); \
649 (dsct) = (d_css)->cgroup; \
650 cgroup_is_dead(dsct); })) \
652 else
654 /* walk live descendants in postorder */
655 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
656 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
657 if (({ lockdep_assert_held(&cgroup_mutex); \
658 (dsct) = (d_css)->cgroup; \
659 cgroup_is_dead(dsct); })) \
661 else
664 * The default css_set - used by init and its children prior to any
665 * hierarchies being mounted. It contains a pointer to the root state
666 * for each subsystem. Also used to anchor the list of css_sets. Not
667 * reference-counted, to improve performance when child cgroups
668 * haven't been created.
670 struct css_set init_css_set = {
671 .refcount = REFCOUNT_INIT(1),
672 .dom_cset = &init_css_set,
673 .tasks = LIST_HEAD_INIT(init_css_set.tasks),
674 .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks),
675 .task_iters = LIST_HEAD_INIT(init_css_set.task_iters),
676 .threaded_csets = LIST_HEAD_INIT(init_css_set.threaded_csets),
677 .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links),
678 .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node),
679 .mg_node = LIST_HEAD_INIT(init_css_set.mg_node),
682 * The following field is re-initialized when this cset gets linked
683 * in cgroup_init(). However, let's initialize the field
684 * statically too so that the default cgroup can be accessed safely
685 * early during boot.
687 .dfl_cgrp = &cgrp_dfl_root.cgrp,
690 static int css_set_count = 1; /* 1 for init_css_set */
692 static bool css_set_threaded(struct css_set *cset)
694 return cset->dom_cset != cset;
698 * css_set_populated - does a css_set contain any tasks?
699 * @cset: target css_set
701 * css_set_populated() should be the same as !!cset->nr_tasks at steady
702 * state. However, css_set_populated() can be called while a task is being
703 * added to or removed from the linked list before the nr_tasks is
704 * properly updated. Hence, we can't just look at ->nr_tasks here.
706 static bool css_set_populated(struct css_set *cset)
708 lockdep_assert_held(&css_set_lock);
710 return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks);
714 * cgroup_update_populated - update the populated count of a cgroup
715 * @cgrp: the target cgroup
716 * @populated: inc or dec populated count
718 * One of the css_sets associated with @cgrp is either getting its first
719 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
720 * count is propagated towards root so that a given cgroup's
721 * nr_populated_children is zero iff none of its descendants contain any
722 * tasks.
724 * @cgrp's interface file "cgroup.populated" is zero if both
725 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
726 * 1 otherwise. When the sum changes from or to zero, userland is notified
727 * that the content of the interface file has changed. This can be used to
728 * detect when @cgrp and its descendants become populated or empty.
730 static void cgroup_update_populated(struct cgroup *cgrp, bool populated)
732 struct cgroup *child = NULL;
733 int adj = populated ? 1 : -1;
735 lockdep_assert_held(&css_set_lock);
737 do {
738 bool was_populated = cgroup_is_populated(cgrp);
740 if (!child) {
741 cgrp->nr_populated_csets += adj;
742 } else {
743 if (cgroup_is_threaded(child))
744 cgrp->nr_populated_threaded_children += adj;
745 else
746 cgrp->nr_populated_domain_children += adj;
749 if (was_populated == cgroup_is_populated(cgrp))
750 break;
752 cgroup1_check_for_release(cgrp);
753 cgroup_file_notify(&cgrp->events_file);
755 child = cgrp;
756 cgrp = cgroup_parent(cgrp);
757 } while (cgrp);
761 * css_set_update_populated - update populated state of a css_set
762 * @cset: target css_set
763 * @populated: whether @cset is populated or depopulated
765 * @cset is either getting the first task or losing the last. Update the
766 * populated counters of all associated cgroups accordingly.
768 static void css_set_update_populated(struct css_set *cset, bool populated)
770 struct cgrp_cset_link *link;
772 lockdep_assert_held(&css_set_lock);
774 list_for_each_entry(link, &cset->cgrp_links, cgrp_link)
775 cgroup_update_populated(link->cgrp, populated);
779 * css_set_move_task - move a task from one css_set to another
780 * @task: task being moved
781 * @from_cset: css_set @task currently belongs to (may be NULL)
782 * @to_cset: new css_set @task is being moved to (may be NULL)
783 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
785 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
786 * css_set, @from_cset can be NULL. If @task is being disassociated
787 * instead of moved, @to_cset can be NULL.
789 * This function automatically handles populated counter updates and
790 * css_task_iter adjustments but the caller is responsible for managing
791 * @from_cset and @to_cset's reference counts.
793 static void css_set_move_task(struct task_struct *task,
794 struct css_set *from_cset, struct css_set *to_cset,
795 bool use_mg_tasks)
797 lockdep_assert_held(&css_set_lock);
799 if (to_cset && !css_set_populated(to_cset))
800 css_set_update_populated(to_cset, true);
802 if (from_cset) {
803 struct css_task_iter *it, *pos;
805 WARN_ON_ONCE(list_empty(&task->cg_list));
808 * @task is leaving, advance task iterators which are
809 * pointing to it so that they can resume at the next
810 * position. Advancing an iterator might remove it from
811 * the list, use safe walk. See css_task_iter_advance*()
812 * for details.
814 list_for_each_entry_safe(it, pos, &from_cset->task_iters,
815 iters_node)
816 if (it->task_pos == &task->cg_list)
817 css_task_iter_advance(it);
819 list_del_init(&task->cg_list);
820 if (!css_set_populated(from_cset))
821 css_set_update_populated(from_cset, false);
822 } else {
823 WARN_ON_ONCE(!list_empty(&task->cg_list));
826 if (to_cset) {
828 * We are synchronized through cgroup_threadgroup_rwsem
829 * against PF_EXITING setting such that we can't race
830 * against cgroup_exit() changing the css_set to
831 * init_css_set and dropping the old one.
833 WARN_ON_ONCE(task->flags & PF_EXITING);
835 rcu_assign_pointer(task->cgroups, to_cset);
836 list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks :
837 &to_cset->tasks);
842 * hash table for cgroup groups. This improves the performance to find
843 * an existing css_set. This hash doesn't (currently) take into
844 * account cgroups in empty hierarchies.
846 #define CSS_SET_HASH_BITS 7
847 static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS);
849 static unsigned long css_set_hash(struct cgroup_subsys_state *css[])
851 unsigned long key = 0UL;
852 struct cgroup_subsys *ss;
853 int i;
855 for_each_subsys(ss, i)
856 key += (unsigned long)css[i];
857 key = (key >> 16) ^ key;
859 return key;
862 void put_css_set_locked(struct css_set *cset)
864 struct cgrp_cset_link *link, *tmp_link;
865 struct cgroup_subsys *ss;
866 int ssid;
868 lockdep_assert_held(&css_set_lock);
870 if (!refcount_dec_and_test(&cset->refcount))
871 return;
873 WARN_ON_ONCE(!list_empty(&cset->threaded_csets));
875 /* This css_set is dead. unlink it and release cgroup and css refs */
876 for_each_subsys(ss, ssid) {
877 list_del(&cset->e_cset_node[ssid]);
878 css_put(cset->subsys[ssid]);
880 hash_del(&cset->hlist);
881 css_set_count--;
883 list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) {
884 list_del(&link->cset_link);
885 list_del(&link->cgrp_link);
886 if (cgroup_parent(link->cgrp))
887 cgroup_put(link->cgrp);
888 kfree(link);
891 if (css_set_threaded(cset)) {
892 list_del(&cset->threaded_csets_node);
893 put_css_set_locked(cset->dom_cset);
896 kfree_rcu(cset, rcu_head);
900 * compare_css_sets - helper function for find_existing_css_set().
901 * @cset: candidate css_set being tested
902 * @old_cset: existing css_set for a task
903 * @new_cgrp: cgroup that's being entered by the task
904 * @template: desired set of css pointers in css_set (pre-calculated)
906 * Returns true if "cset" matches "old_cset" except for the hierarchy
907 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
909 static bool compare_css_sets(struct css_set *cset,
910 struct css_set *old_cset,
911 struct cgroup *new_cgrp,
912 struct cgroup_subsys_state *template[])
914 struct cgroup *new_dfl_cgrp;
915 struct list_head *l1, *l2;
918 * On the default hierarchy, there can be csets which are
919 * associated with the same set of cgroups but different csses.
920 * Let's first ensure that csses match.
922 if (memcmp(template, cset->subsys, sizeof(cset->subsys)))
923 return false;
926 /* @cset's domain should match the default cgroup's */
927 if (cgroup_on_dfl(new_cgrp))
928 new_dfl_cgrp = new_cgrp;
929 else
930 new_dfl_cgrp = old_cset->dfl_cgrp;
932 if (new_dfl_cgrp->dom_cgrp != cset->dom_cset->dfl_cgrp)
933 return false;
936 * Compare cgroup pointers in order to distinguish between
937 * different cgroups in hierarchies. As different cgroups may
938 * share the same effective css, this comparison is always
939 * necessary.
941 l1 = &cset->cgrp_links;
942 l2 = &old_cset->cgrp_links;
943 while (1) {
944 struct cgrp_cset_link *link1, *link2;
945 struct cgroup *cgrp1, *cgrp2;
947 l1 = l1->next;
948 l2 = l2->next;
949 /* See if we reached the end - both lists are equal length. */
950 if (l1 == &cset->cgrp_links) {
951 BUG_ON(l2 != &old_cset->cgrp_links);
952 break;
953 } else {
954 BUG_ON(l2 == &old_cset->cgrp_links);
956 /* Locate the cgroups associated with these links. */
957 link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link);
958 link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link);
959 cgrp1 = link1->cgrp;
960 cgrp2 = link2->cgrp;
961 /* Hierarchies should be linked in the same order. */
962 BUG_ON(cgrp1->root != cgrp2->root);
965 * If this hierarchy is the hierarchy of the cgroup
966 * that's changing, then we need to check that this
967 * css_set points to the new cgroup; if it's any other
968 * hierarchy, then this css_set should point to the
969 * same cgroup as the old css_set.
971 if (cgrp1->root == new_cgrp->root) {
972 if (cgrp1 != new_cgrp)
973 return false;
974 } else {
975 if (cgrp1 != cgrp2)
976 return false;
979 return true;
983 * find_existing_css_set - init css array and find the matching css_set
984 * @old_cset: the css_set that we're using before the cgroup transition
985 * @cgrp: the cgroup that we're moving into
986 * @template: out param for the new set of csses, should be clear on entry
988 static struct css_set *find_existing_css_set(struct css_set *old_cset,
989 struct cgroup *cgrp,
990 struct cgroup_subsys_state *template[])
992 struct cgroup_root *root = cgrp->root;
993 struct cgroup_subsys *ss;
994 struct css_set *cset;
995 unsigned long key;
996 int i;
999 * Build the set of subsystem state objects that we want to see in the
1000 * new css_set. while subsystems can change globally, the entries here
1001 * won't change, so no need for locking.
1003 for_each_subsys(ss, i) {
1004 if (root->subsys_mask & (1UL << i)) {
1006 * @ss is in this hierarchy, so we want the
1007 * effective css from @cgrp.
1009 template[i] = cgroup_e_css(cgrp, ss);
1010 } else {
1012 * @ss is not in this hierarchy, so we don't want
1013 * to change the css.
1015 template[i] = old_cset->subsys[i];
1019 key = css_set_hash(template);
1020 hash_for_each_possible(css_set_table, cset, hlist, key) {
1021 if (!compare_css_sets(cset, old_cset, cgrp, template))
1022 continue;
1024 /* This css_set matches what we need */
1025 return cset;
1028 /* No existing cgroup group matched */
1029 return NULL;
1032 static void free_cgrp_cset_links(struct list_head *links_to_free)
1034 struct cgrp_cset_link *link, *tmp_link;
1036 list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) {
1037 list_del(&link->cset_link);
1038 kfree(link);
1043 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1044 * @count: the number of links to allocate
1045 * @tmp_links: list_head the allocated links are put on
1047 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1048 * through ->cset_link. Returns 0 on success or -errno.
1050 static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links)
1052 struct cgrp_cset_link *link;
1053 int i;
1055 INIT_LIST_HEAD(tmp_links);
1057 for (i = 0; i < count; i++) {
1058 link = kzalloc(sizeof(*link), GFP_KERNEL);
1059 if (!link) {
1060 free_cgrp_cset_links(tmp_links);
1061 return -ENOMEM;
1063 list_add(&link->cset_link, tmp_links);
1065 return 0;
1069 * link_css_set - a helper function to link a css_set to a cgroup
1070 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1071 * @cset: the css_set to be linked
1072 * @cgrp: the destination cgroup
1074 static void link_css_set(struct list_head *tmp_links, struct css_set *cset,
1075 struct cgroup *cgrp)
1077 struct cgrp_cset_link *link;
1079 BUG_ON(list_empty(tmp_links));
1081 if (cgroup_on_dfl(cgrp))
1082 cset->dfl_cgrp = cgrp;
1084 link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link);
1085 link->cset = cset;
1086 link->cgrp = cgrp;
1089 * Always add links to the tail of the lists so that the lists are
1090 * in choronological order.
1092 list_move_tail(&link->cset_link, &cgrp->cset_links);
1093 list_add_tail(&link->cgrp_link, &cset->cgrp_links);
1095 if (cgroup_parent(cgrp))
1096 cgroup_get_live(cgrp);
1100 * find_css_set - return a new css_set with one cgroup updated
1101 * @old_cset: the baseline css_set
1102 * @cgrp: the cgroup to be updated
1104 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1105 * substituted into the appropriate hierarchy.
1107 static struct css_set *find_css_set(struct css_set *old_cset,
1108 struct cgroup *cgrp)
1110 struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { };
1111 struct css_set *cset;
1112 struct list_head tmp_links;
1113 struct cgrp_cset_link *link;
1114 struct cgroup_subsys *ss;
1115 unsigned long key;
1116 int ssid;
1118 lockdep_assert_held(&cgroup_mutex);
1120 /* First see if we already have a cgroup group that matches
1121 * the desired set */
1122 spin_lock_irq(&css_set_lock);
1123 cset = find_existing_css_set(old_cset, cgrp, template);
1124 if (cset)
1125 get_css_set(cset);
1126 spin_unlock_irq(&css_set_lock);
1128 if (cset)
1129 return cset;
1131 cset = kzalloc(sizeof(*cset), GFP_KERNEL);
1132 if (!cset)
1133 return NULL;
1135 /* Allocate all the cgrp_cset_link objects that we'll need */
1136 if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) {
1137 kfree(cset);
1138 return NULL;
1141 refcount_set(&cset->refcount, 1);
1142 cset->dom_cset = cset;
1143 INIT_LIST_HEAD(&cset->tasks);
1144 INIT_LIST_HEAD(&cset->mg_tasks);
1145 INIT_LIST_HEAD(&cset->task_iters);
1146 INIT_LIST_HEAD(&cset->threaded_csets);
1147 INIT_HLIST_NODE(&cset->hlist);
1148 INIT_LIST_HEAD(&cset->cgrp_links);
1149 INIT_LIST_HEAD(&cset->mg_preload_node);
1150 INIT_LIST_HEAD(&cset->mg_node);
1152 /* Copy the set of subsystem state objects generated in
1153 * find_existing_css_set() */
1154 memcpy(cset->subsys, template, sizeof(cset->subsys));
1156 spin_lock_irq(&css_set_lock);
1157 /* Add reference counts and links from the new css_set. */
1158 list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) {
1159 struct cgroup *c = link->cgrp;
1161 if (c->root == cgrp->root)
1162 c = cgrp;
1163 link_css_set(&tmp_links, cset, c);
1166 BUG_ON(!list_empty(&tmp_links));
1168 css_set_count++;
1170 /* Add @cset to the hash table */
1171 key = css_set_hash(cset->subsys);
1172 hash_add(css_set_table, &cset->hlist, key);
1174 for_each_subsys(ss, ssid) {
1175 struct cgroup_subsys_state *css = cset->subsys[ssid];
1177 list_add_tail(&cset->e_cset_node[ssid],
1178 &css->cgroup->e_csets[ssid]);
1179 css_get(css);
1182 spin_unlock_irq(&css_set_lock);
1185 * If @cset should be threaded, look up the matching dom_cset and
1186 * link them up. We first fully initialize @cset then look for the
1187 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1188 * to stay empty until we return.
1190 if (cgroup_is_threaded(cset->dfl_cgrp)) {
1191 struct css_set *dcset;
1193 dcset = find_css_set(cset, cset->dfl_cgrp->dom_cgrp);
1194 if (!dcset) {
1195 put_css_set(cset);
1196 return NULL;
1199 spin_lock_irq(&css_set_lock);
1200 cset->dom_cset = dcset;
1201 list_add_tail(&cset->threaded_csets_node,
1202 &dcset->threaded_csets);
1203 spin_unlock_irq(&css_set_lock);
1206 return cset;
1209 struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root)
1211 struct cgroup *root_cgrp = kf_root->kn->priv;
1213 return root_cgrp->root;
1216 static int cgroup_init_root_id(struct cgroup_root *root)
1218 int id;
1220 lockdep_assert_held(&cgroup_mutex);
1222 id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL);
1223 if (id < 0)
1224 return id;
1226 root->hierarchy_id = id;
1227 return 0;
1230 static void cgroup_exit_root_id(struct cgroup_root *root)
1232 lockdep_assert_held(&cgroup_mutex);
1234 idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id);
1237 void cgroup_free_root(struct cgroup_root *root)
1239 if (root) {
1240 idr_destroy(&root->cgroup_idr);
1241 kfree(root);
1245 static void cgroup_destroy_root(struct cgroup_root *root)
1247 struct cgroup *cgrp = &root->cgrp;
1248 struct cgrp_cset_link *link, *tmp_link;
1250 trace_cgroup_destroy_root(root);
1252 cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp);
1254 BUG_ON(atomic_read(&root->nr_cgrps));
1255 BUG_ON(!list_empty(&cgrp->self.children));
1257 /* Rebind all subsystems back to the default hierarchy */
1258 WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask));
1261 * Release all the links from cset_links to this hierarchy's
1262 * root cgroup
1264 spin_lock_irq(&css_set_lock);
1266 list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) {
1267 list_del(&link->cset_link);
1268 list_del(&link->cgrp_link);
1269 kfree(link);
1272 spin_unlock_irq(&css_set_lock);
1274 if (!list_empty(&root->root_list)) {
1275 list_del(&root->root_list);
1276 cgroup_root_count--;
1279 cgroup_exit_root_id(root);
1281 mutex_unlock(&cgroup_mutex);
1283 kernfs_destroy_root(root->kf_root);
1284 cgroup_free_root(root);
1288 * look up cgroup associated with current task's cgroup namespace on the
1289 * specified hierarchy
1291 static struct cgroup *
1292 current_cgns_cgroup_from_root(struct cgroup_root *root)
1294 struct cgroup *res = NULL;
1295 struct css_set *cset;
1297 lockdep_assert_held(&css_set_lock);
1299 rcu_read_lock();
1301 cset = current->nsproxy->cgroup_ns->root_cset;
1302 if (cset == &init_css_set) {
1303 res = &root->cgrp;
1304 } else {
1305 struct cgrp_cset_link *link;
1307 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1308 struct cgroup *c = link->cgrp;
1310 if (c->root == root) {
1311 res = c;
1312 break;
1316 rcu_read_unlock();
1318 BUG_ON(!res);
1319 return res;
1322 /* look up cgroup associated with given css_set on the specified hierarchy */
1323 static struct cgroup *cset_cgroup_from_root(struct css_set *cset,
1324 struct cgroup_root *root)
1326 struct cgroup *res = NULL;
1328 lockdep_assert_held(&cgroup_mutex);
1329 lockdep_assert_held(&css_set_lock);
1331 if (cset == &init_css_set) {
1332 res = &root->cgrp;
1333 } else if (root == &cgrp_dfl_root) {
1334 res = cset->dfl_cgrp;
1335 } else {
1336 struct cgrp_cset_link *link;
1338 list_for_each_entry(link, &cset->cgrp_links, cgrp_link) {
1339 struct cgroup *c = link->cgrp;
1341 if (c->root == root) {
1342 res = c;
1343 break;
1348 BUG_ON(!res);
1349 return res;
1353 * Return the cgroup for "task" from the given hierarchy. Must be
1354 * called with cgroup_mutex and css_set_lock held.
1356 struct cgroup *task_cgroup_from_root(struct task_struct *task,
1357 struct cgroup_root *root)
1360 * No need to lock the task - since we hold cgroup_mutex the
1361 * task can't change groups, so the only thing that can happen
1362 * is that it exits and its css is set back to init_css_set.
1364 return cset_cgroup_from_root(task_css_set(task), root);
1368 * A task must hold cgroup_mutex to modify cgroups.
1370 * Any task can increment and decrement the count field without lock.
1371 * So in general, code holding cgroup_mutex can't rely on the count
1372 * field not changing. However, if the count goes to zero, then only
1373 * cgroup_attach_task() can increment it again. Because a count of zero
1374 * means that no tasks are currently attached, therefore there is no
1375 * way a task attached to that cgroup can fork (the other way to
1376 * increment the count). So code holding cgroup_mutex can safely
1377 * assume that if the count is zero, it will stay zero. Similarly, if
1378 * a task holds cgroup_mutex on a cgroup with zero count, it
1379 * knows that the cgroup won't be removed, as cgroup_rmdir()
1380 * needs that mutex.
1382 * A cgroup can only be deleted if both its 'count' of using tasks
1383 * is zero, and its list of 'children' cgroups is empty. Since all
1384 * tasks in the system use _some_ cgroup, and since there is always at
1385 * least one task in the system (init, pid == 1), therefore, root cgroup
1386 * always has either children cgroups and/or using tasks. So we don't
1387 * need a special hack to ensure that root cgroup cannot be deleted.
1389 * P.S. One more locking exception. RCU is used to guard the
1390 * update of a tasks cgroup pointer by cgroup_attach_task()
1393 static struct kernfs_syscall_ops cgroup_kf_syscall_ops;
1395 static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft,
1396 char *buf)
1398 struct cgroup_subsys *ss = cft->ss;
1400 if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) &&
1401 !(cgrp->root->flags & CGRP_ROOT_NOPREFIX))
1402 snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s",
1403 cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name,
1404 cft->name);
1405 else
1406 strscpy(buf, cft->name, CGROUP_FILE_NAME_MAX);
1407 return buf;
1411 * cgroup_file_mode - deduce file mode of a control file
1412 * @cft: the control file in question
1414 * S_IRUGO for read, S_IWUSR for write.
1416 static umode_t cgroup_file_mode(const struct cftype *cft)
1418 umode_t mode = 0;
1420 if (cft->read_u64 || cft->read_s64 || cft->seq_show)
1421 mode |= S_IRUGO;
1423 if (cft->write_u64 || cft->write_s64 || cft->write) {
1424 if (cft->flags & CFTYPE_WORLD_WRITABLE)
1425 mode |= S_IWUGO;
1426 else
1427 mode |= S_IWUSR;
1430 return mode;
1434 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1435 * @subtree_control: the new subtree_control mask to consider
1436 * @this_ss_mask: available subsystems
1438 * On the default hierarchy, a subsystem may request other subsystems to be
1439 * enabled together through its ->depends_on mask. In such cases, more
1440 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1442 * This function calculates which subsystems need to be enabled if
1443 * @subtree_control is to be applied while restricted to @this_ss_mask.
1445 static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask)
1447 u16 cur_ss_mask = subtree_control;
1448 struct cgroup_subsys *ss;
1449 int ssid;
1451 lockdep_assert_held(&cgroup_mutex);
1453 cur_ss_mask |= cgrp_dfl_implicit_ss_mask;
1455 while (true) {
1456 u16 new_ss_mask = cur_ss_mask;
1458 do_each_subsys_mask(ss, ssid, cur_ss_mask) {
1459 new_ss_mask |= ss->depends_on;
1460 } while_each_subsys_mask();
1463 * Mask out subsystems which aren't available. This can
1464 * happen only if some depended-upon subsystems were bound
1465 * to non-default hierarchies.
1467 new_ss_mask &= this_ss_mask;
1469 if (new_ss_mask == cur_ss_mask)
1470 break;
1471 cur_ss_mask = new_ss_mask;
1474 return cur_ss_mask;
1478 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1479 * @kn: the kernfs_node being serviced
1481 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1482 * the method finishes if locking succeeded. Note that once this function
1483 * returns the cgroup returned by cgroup_kn_lock_live() may become
1484 * inaccessible any time. If the caller intends to continue to access the
1485 * cgroup, it should pin it before invoking this function.
1487 void cgroup_kn_unlock(struct kernfs_node *kn)
1489 struct cgroup *cgrp;
1491 if (kernfs_type(kn) == KERNFS_DIR)
1492 cgrp = kn->priv;
1493 else
1494 cgrp = kn->parent->priv;
1496 mutex_unlock(&cgroup_mutex);
1498 kernfs_unbreak_active_protection(kn);
1499 cgroup_put(cgrp);
1503 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1504 * @kn: the kernfs_node being serviced
1505 * @drain_offline: perform offline draining on the cgroup
1507 * This helper is to be used by a cgroup kernfs method currently servicing
1508 * @kn. It breaks the active protection, performs cgroup locking and
1509 * verifies that the associated cgroup is alive. Returns the cgroup if
1510 * alive; otherwise, %NULL. A successful return should be undone by a
1511 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1512 * cgroup is drained of offlining csses before return.
1514 * Any cgroup kernfs method implementation which requires locking the
1515 * associated cgroup should use this helper. It avoids nesting cgroup
1516 * locking under kernfs active protection and allows all kernfs operations
1517 * including self-removal.
1519 struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline)
1521 struct cgroup *cgrp;
1523 if (kernfs_type(kn) == KERNFS_DIR)
1524 cgrp = kn->priv;
1525 else
1526 cgrp = kn->parent->priv;
1529 * We're gonna grab cgroup_mutex which nests outside kernfs
1530 * active_ref. cgroup liveliness check alone provides enough
1531 * protection against removal. Ensure @cgrp stays accessible and
1532 * break the active_ref protection.
1534 if (!cgroup_tryget(cgrp))
1535 return NULL;
1536 kernfs_break_active_protection(kn);
1538 if (drain_offline)
1539 cgroup_lock_and_drain_offline(cgrp);
1540 else
1541 mutex_lock(&cgroup_mutex);
1543 if (!cgroup_is_dead(cgrp))
1544 return cgrp;
1546 cgroup_kn_unlock(kn);
1547 return NULL;
1550 static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft)
1552 char name[CGROUP_FILE_NAME_MAX];
1554 lockdep_assert_held(&cgroup_mutex);
1556 if (cft->file_offset) {
1557 struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss);
1558 struct cgroup_file *cfile = (void *)css + cft->file_offset;
1560 spin_lock_irq(&cgroup_file_kn_lock);
1561 cfile->kn = NULL;
1562 spin_unlock_irq(&cgroup_file_kn_lock);
1564 del_timer_sync(&cfile->notify_timer);
1567 kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name));
1571 * css_clear_dir - remove subsys files in a cgroup directory
1572 * @css: taget css
1574 static void css_clear_dir(struct cgroup_subsys_state *css)
1576 struct cgroup *cgrp = css->cgroup;
1577 struct cftype *cfts;
1579 if (!(css->flags & CSS_VISIBLE))
1580 return;
1582 css->flags &= ~CSS_VISIBLE;
1584 if (!css->ss) {
1585 if (cgroup_on_dfl(cgrp))
1586 cfts = cgroup_base_files;
1587 else
1588 cfts = cgroup1_base_files;
1590 cgroup_addrm_files(css, cgrp, cfts, false);
1591 } else {
1592 list_for_each_entry(cfts, &css->ss->cfts, node)
1593 cgroup_addrm_files(css, cgrp, cfts, false);
1598 * css_populate_dir - create subsys files in a cgroup directory
1599 * @css: target css
1601 * On failure, no file is added.
1603 static int css_populate_dir(struct cgroup_subsys_state *css)
1605 struct cgroup *cgrp = css->cgroup;
1606 struct cftype *cfts, *failed_cfts;
1607 int ret;
1609 if ((css->flags & CSS_VISIBLE) || !cgrp->kn)
1610 return 0;
1612 if (!css->ss) {
1613 if (cgroup_on_dfl(cgrp))
1614 cfts = cgroup_base_files;
1615 else
1616 cfts = cgroup1_base_files;
1618 ret = cgroup_addrm_files(&cgrp->self, cgrp, cfts, true);
1619 if (ret < 0)
1620 return ret;
1621 } else {
1622 list_for_each_entry(cfts, &css->ss->cfts, node) {
1623 ret = cgroup_addrm_files(css, cgrp, cfts, true);
1624 if (ret < 0) {
1625 failed_cfts = cfts;
1626 goto err;
1631 css->flags |= CSS_VISIBLE;
1633 return 0;
1634 err:
1635 list_for_each_entry(cfts, &css->ss->cfts, node) {
1636 if (cfts == failed_cfts)
1637 break;
1638 cgroup_addrm_files(css, cgrp, cfts, false);
1640 return ret;
1643 int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask)
1645 struct cgroup *dcgrp = &dst_root->cgrp;
1646 struct cgroup_subsys *ss;
1647 int ssid, i, ret;
1649 lockdep_assert_held(&cgroup_mutex);
1651 do_each_subsys_mask(ss, ssid, ss_mask) {
1653 * If @ss has non-root csses attached to it, can't move.
1654 * If @ss is an implicit controller, it is exempt from this
1655 * rule and can be stolen.
1657 if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) &&
1658 !ss->implicit_on_dfl)
1659 return -EBUSY;
1661 /* can't move between two non-dummy roots either */
1662 if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root)
1663 return -EBUSY;
1664 } while_each_subsys_mask();
1666 do_each_subsys_mask(ss, ssid, ss_mask) {
1667 struct cgroup_root *src_root = ss->root;
1668 struct cgroup *scgrp = &src_root->cgrp;
1669 struct cgroup_subsys_state *css = cgroup_css(scgrp, ss);
1670 struct css_set *cset;
1672 WARN_ON(!css || cgroup_css(dcgrp, ss));
1674 /* disable from the source */
1675 src_root->subsys_mask &= ~(1 << ssid);
1676 WARN_ON(cgroup_apply_control(scgrp));
1677 cgroup_finalize_control(scgrp, 0);
1679 /* rebind */
1680 RCU_INIT_POINTER(scgrp->subsys[ssid], NULL);
1681 rcu_assign_pointer(dcgrp->subsys[ssid], css);
1682 ss->root = dst_root;
1683 css->cgroup = dcgrp;
1685 spin_lock_irq(&css_set_lock);
1686 hash_for_each(css_set_table, i, cset, hlist)
1687 list_move_tail(&cset->e_cset_node[ss->id],
1688 &dcgrp->e_csets[ss->id]);
1689 spin_unlock_irq(&css_set_lock);
1691 /* default hierarchy doesn't enable controllers by default */
1692 dst_root->subsys_mask |= 1 << ssid;
1693 if (dst_root == &cgrp_dfl_root) {
1694 static_branch_enable(cgroup_subsys_on_dfl_key[ssid]);
1695 } else {
1696 dcgrp->subtree_control |= 1 << ssid;
1697 static_branch_disable(cgroup_subsys_on_dfl_key[ssid]);
1700 ret = cgroup_apply_control(dcgrp);
1701 if (ret)
1702 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1703 ss->name, ret);
1705 if (ss->bind)
1706 ss->bind(css);
1707 } while_each_subsys_mask();
1709 kernfs_activate(dcgrp->kn);
1710 return 0;
1713 int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node,
1714 struct kernfs_root *kf_root)
1716 int len = 0;
1717 char *buf = NULL;
1718 struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root);
1719 struct cgroup *ns_cgroup;
1721 buf = kmalloc(PATH_MAX, GFP_KERNEL);
1722 if (!buf)
1723 return -ENOMEM;
1725 spin_lock_irq(&css_set_lock);
1726 ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot);
1727 len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX);
1728 spin_unlock_irq(&css_set_lock);
1730 if (len >= PATH_MAX)
1731 len = -ERANGE;
1732 else if (len > 0) {
1733 seq_escape(sf, buf, " \t\n\\");
1734 len = 0;
1736 kfree(buf);
1737 return len;
1740 static int parse_cgroup_root_flags(char *data, unsigned int *root_flags)
1742 char *token;
1744 *root_flags = 0;
1746 if (!data)
1747 return 0;
1749 while ((token = strsep(&data, ",")) != NULL) {
1750 if (!strcmp(token, "nsdelegate")) {
1751 *root_flags |= CGRP_ROOT_NS_DELEGATE;
1752 continue;
1755 pr_err("cgroup2: unknown option \"%s\"\n", token);
1756 return -EINVAL;
1759 return 0;
1762 static void apply_cgroup_root_flags(unsigned int root_flags)
1764 if (current->nsproxy->cgroup_ns == &init_cgroup_ns) {
1765 if (root_flags & CGRP_ROOT_NS_DELEGATE)
1766 cgrp_dfl_root.flags |= CGRP_ROOT_NS_DELEGATE;
1767 else
1768 cgrp_dfl_root.flags &= ~CGRP_ROOT_NS_DELEGATE;
1772 static int cgroup_show_options(struct seq_file *seq, struct kernfs_root *kf_root)
1774 if (cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE)
1775 seq_puts(seq, ",nsdelegate");
1776 return 0;
1779 static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data)
1781 unsigned int root_flags;
1782 int ret;
1784 ret = parse_cgroup_root_flags(data, &root_flags);
1785 if (ret)
1786 return ret;
1788 apply_cgroup_root_flags(root_flags);
1789 return 0;
1793 * To reduce the fork() overhead for systems that are not actually using
1794 * their cgroups capability, we don't maintain the lists running through
1795 * each css_set to its tasks until we see the list actually used - in other
1796 * words after the first mount.
1798 static bool use_task_css_set_links __read_mostly;
1800 static void cgroup_enable_task_cg_lists(void)
1802 struct task_struct *p, *g;
1805 * We need tasklist_lock because RCU is not safe against
1806 * while_each_thread(). Besides, a forking task that has passed
1807 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1808 * is not guaranteed to have its child immediately visible in the
1809 * tasklist if we walk through it with RCU.
1811 read_lock(&tasklist_lock);
1812 spin_lock_irq(&css_set_lock);
1814 if (use_task_css_set_links)
1815 goto out_unlock;
1817 use_task_css_set_links = true;
1819 do_each_thread(g, p) {
1820 WARN_ON_ONCE(!list_empty(&p->cg_list) ||
1821 task_css_set(p) != &init_css_set);
1824 * We should check if the process is exiting, otherwise
1825 * it will race with cgroup_exit() in that the list
1826 * entry won't be deleted though the process has exited.
1827 * Do it while holding siglock so that we don't end up
1828 * racing against cgroup_exit().
1830 * Interrupts were already disabled while acquiring
1831 * the css_set_lock, so we do not need to disable it
1832 * again when acquiring the sighand->siglock here.
1834 spin_lock(&p->sighand->siglock);
1835 if (!(p->flags & PF_EXITING)) {
1836 struct css_set *cset = task_css_set(p);
1838 if (!css_set_populated(cset))
1839 css_set_update_populated(cset, true);
1840 list_add_tail(&p->cg_list, &cset->tasks);
1841 get_css_set(cset);
1842 cset->nr_tasks++;
1844 spin_unlock(&p->sighand->siglock);
1845 } while_each_thread(g, p);
1846 out_unlock:
1847 spin_unlock_irq(&css_set_lock);
1848 read_unlock(&tasklist_lock);
1851 static void init_cgroup_housekeeping(struct cgroup *cgrp)
1853 struct cgroup_subsys *ss;
1854 int ssid;
1856 INIT_LIST_HEAD(&cgrp->self.sibling);
1857 INIT_LIST_HEAD(&cgrp->self.children);
1858 INIT_LIST_HEAD(&cgrp->cset_links);
1859 INIT_LIST_HEAD(&cgrp->pidlists);
1860 mutex_init(&cgrp->pidlist_mutex);
1861 cgrp->self.cgroup = cgrp;
1862 cgrp->self.flags |= CSS_ONLINE;
1863 cgrp->dom_cgrp = cgrp;
1864 cgrp->max_descendants = INT_MAX;
1865 cgrp->max_depth = INT_MAX;
1866 INIT_LIST_HEAD(&cgrp->rstat_css_list);
1867 prev_cputime_init(&cgrp->prev_cputime);
1869 for_each_subsys(ss, ssid)
1870 INIT_LIST_HEAD(&cgrp->e_csets[ssid]);
1872 init_waitqueue_head(&cgrp->offline_waitq);
1873 INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent);
1876 void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts)
1878 struct cgroup *cgrp = &root->cgrp;
1880 INIT_LIST_HEAD(&root->root_list);
1881 atomic_set(&root->nr_cgrps, 1);
1882 cgrp->root = root;
1883 init_cgroup_housekeeping(cgrp);
1884 idr_init(&root->cgroup_idr);
1886 root->flags = opts->flags;
1887 if (opts->release_agent)
1888 strscpy(root->release_agent_path, opts->release_agent, PATH_MAX);
1889 if (opts->name)
1890 strscpy(root->name, opts->name, MAX_CGROUP_ROOT_NAMELEN);
1891 if (opts->cpuset_clone_children)
1892 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags);
1895 int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask, int ref_flags)
1897 LIST_HEAD(tmp_links);
1898 struct cgroup *root_cgrp = &root->cgrp;
1899 struct kernfs_syscall_ops *kf_sops;
1900 struct css_set *cset;
1901 int i, ret;
1903 lockdep_assert_held(&cgroup_mutex);
1905 ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL);
1906 if (ret < 0)
1907 goto out;
1908 root_cgrp->id = ret;
1909 root_cgrp->ancestor_ids[0] = ret;
1911 ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release,
1912 ref_flags, GFP_KERNEL);
1913 if (ret)
1914 goto out;
1917 * We're accessing css_set_count without locking css_set_lock here,
1918 * but that's OK - it can only be increased by someone holding
1919 * cgroup_lock, and that's us. Later rebinding may disable
1920 * controllers on the default hierarchy and thus create new csets,
1921 * which can't be more than the existing ones. Allocate 2x.
1923 ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links);
1924 if (ret)
1925 goto cancel_ref;
1927 ret = cgroup_init_root_id(root);
1928 if (ret)
1929 goto cancel_ref;
1931 kf_sops = root == &cgrp_dfl_root ?
1932 &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops;
1934 root->kf_root = kernfs_create_root(kf_sops,
1935 KERNFS_ROOT_CREATE_DEACTIVATED |
1936 KERNFS_ROOT_SUPPORT_EXPORTOP,
1937 root_cgrp);
1938 if (IS_ERR(root->kf_root)) {
1939 ret = PTR_ERR(root->kf_root);
1940 goto exit_root_id;
1942 root_cgrp->kn = root->kf_root->kn;
1944 ret = css_populate_dir(&root_cgrp->self);
1945 if (ret)
1946 goto destroy_root;
1948 ret = rebind_subsystems(root, ss_mask);
1949 if (ret)
1950 goto destroy_root;
1952 ret = cgroup_bpf_inherit(root_cgrp);
1953 WARN_ON_ONCE(ret);
1955 trace_cgroup_setup_root(root);
1958 * There must be no failure case after here, since rebinding takes
1959 * care of subsystems' refcounts, which are explicitly dropped in
1960 * the failure exit path.
1962 list_add(&root->root_list, &cgroup_roots);
1963 cgroup_root_count++;
1966 * Link the root cgroup in this hierarchy into all the css_set
1967 * objects.
1969 spin_lock_irq(&css_set_lock);
1970 hash_for_each(css_set_table, i, cset, hlist) {
1971 link_css_set(&tmp_links, cset, root_cgrp);
1972 if (css_set_populated(cset))
1973 cgroup_update_populated(root_cgrp, true);
1975 spin_unlock_irq(&css_set_lock);
1977 BUG_ON(!list_empty(&root_cgrp->self.children));
1978 BUG_ON(atomic_read(&root->nr_cgrps) != 1);
1980 kernfs_activate(root_cgrp->kn);
1981 ret = 0;
1982 goto out;
1984 destroy_root:
1985 kernfs_destroy_root(root->kf_root);
1986 root->kf_root = NULL;
1987 exit_root_id:
1988 cgroup_exit_root_id(root);
1989 cancel_ref:
1990 percpu_ref_exit(&root_cgrp->self.refcnt);
1991 out:
1992 free_cgrp_cset_links(&tmp_links);
1993 return ret;
1996 struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags,
1997 struct cgroup_root *root, unsigned long magic,
1998 struct cgroup_namespace *ns)
2000 struct dentry *dentry;
2001 bool new_sb;
2003 dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb);
2006 * In non-init cgroup namespace, instead of root cgroup's dentry,
2007 * we return the dentry corresponding to the cgroupns->root_cgrp.
2009 if (!IS_ERR(dentry) && ns != &init_cgroup_ns) {
2010 struct dentry *nsdentry;
2011 struct cgroup *cgrp;
2013 mutex_lock(&cgroup_mutex);
2014 spin_lock_irq(&css_set_lock);
2016 cgrp = cset_cgroup_from_root(ns->root_cset, root);
2018 spin_unlock_irq(&css_set_lock);
2019 mutex_unlock(&cgroup_mutex);
2021 nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb);
2022 dput(dentry);
2023 dentry = nsdentry;
2026 if (IS_ERR(dentry) || !new_sb)
2027 cgroup_put(&root->cgrp);
2029 return dentry;
2032 static struct dentry *cgroup_mount(struct file_system_type *fs_type,
2033 int flags, const char *unused_dev_name,
2034 void *data)
2036 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
2037 struct dentry *dentry;
2038 int ret;
2040 get_cgroup_ns(ns);
2042 /* Check if the caller has permission to mount. */
2043 if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) {
2044 put_cgroup_ns(ns);
2045 return ERR_PTR(-EPERM);
2049 * The first time anyone tries to mount a cgroup, enable the list
2050 * linking each css_set to its tasks and fix up all existing tasks.
2052 if (!use_task_css_set_links)
2053 cgroup_enable_task_cg_lists();
2055 if (fs_type == &cgroup2_fs_type) {
2056 unsigned int root_flags;
2058 ret = parse_cgroup_root_flags(data, &root_flags);
2059 if (ret) {
2060 put_cgroup_ns(ns);
2061 return ERR_PTR(ret);
2064 cgrp_dfl_visible = true;
2065 cgroup_get_live(&cgrp_dfl_root.cgrp);
2067 dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root,
2068 CGROUP2_SUPER_MAGIC, ns);
2069 if (!IS_ERR(dentry))
2070 apply_cgroup_root_flags(root_flags);
2071 } else {
2072 dentry = cgroup1_mount(&cgroup_fs_type, flags, data,
2073 CGROUP_SUPER_MAGIC, ns);
2076 put_cgroup_ns(ns);
2077 return dentry;
2080 static void cgroup_kill_sb(struct super_block *sb)
2082 struct kernfs_root *kf_root = kernfs_root_from_sb(sb);
2083 struct cgroup_root *root = cgroup_root_from_kf(kf_root);
2086 * If @root doesn't have any mounts or children, start killing it.
2087 * This prevents new mounts by disabling percpu_ref_tryget_live().
2088 * cgroup_mount() may wait for @root's release.
2090 * And don't kill the default root.
2092 if (!list_empty(&root->cgrp.self.children) ||
2093 root == &cgrp_dfl_root)
2094 cgroup_put(&root->cgrp);
2095 else
2096 percpu_ref_kill(&root->cgrp.self.refcnt);
2098 kernfs_kill_sb(sb);
2101 struct file_system_type cgroup_fs_type = {
2102 .name = "cgroup",
2103 .mount = cgroup_mount,
2104 .kill_sb = cgroup_kill_sb,
2105 .fs_flags = FS_USERNS_MOUNT,
2108 static struct file_system_type cgroup2_fs_type = {
2109 .name = "cgroup2",
2110 .mount = cgroup_mount,
2111 .kill_sb = cgroup_kill_sb,
2112 .fs_flags = FS_USERNS_MOUNT,
2115 int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen,
2116 struct cgroup_namespace *ns)
2118 struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root);
2120 return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen);
2123 int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen,
2124 struct cgroup_namespace *ns)
2126 int ret;
2128 mutex_lock(&cgroup_mutex);
2129 spin_lock_irq(&css_set_lock);
2131 ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns);
2133 spin_unlock_irq(&css_set_lock);
2134 mutex_unlock(&cgroup_mutex);
2136 return ret;
2138 EXPORT_SYMBOL_GPL(cgroup_path_ns);
2141 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2142 * @task: target task
2143 * @buf: the buffer to write the path into
2144 * @buflen: the length of the buffer
2146 * Determine @task's cgroup on the first (the one with the lowest non-zero
2147 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2148 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2149 * cgroup controller callbacks.
2151 * Return value is the same as kernfs_path().
2153 int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen)
2155 struct cgroup_root *root;
2156 struct cgroup *cgrp;
2157 int hierarchy_id = 1;
2158 int ret;
2160 mutex_lock(&cgroup_mutex);
2161 spin_lock_irq(&css_set_lock);
2163 root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id);
2165 if (root) {
2166 cgrp = task_cgroup_from_root(task, root);
2167 ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns);
2168 } else {
2169 /* if no hierarchy exists, everyone is in "/" */
2170 ret = strlcpy(buf, "/", buflen);
2173 spin_unlock_irq(&css_set_lock);
2174 mutex_unlock(&cgroup_mutex);
2175 return ret;
2177 EXPORT_SYMBOL_GPL(task_cgroup_path);
2180 * cgroup_migrate_add_task - add a migration target task to a migration context
2181 * @task: target task
2182 * @mgctx: target migration context
2184 * Add @task, which is a migration target, to @mgctx->tset. This function
2185 * becomes noop if @task doesn't need to be migrated. @task's css_set
2186 * should have been added as a migration source and @task->cg_list will be
2187 * moved from the css_set's tasks list to mg_tasks one.
2189 static void cgroup_migrate_add_task(struct task_struct *task,
2190 struct cgroup_mgctx *mgctx)
2192 struct css_set *cset;
2194 lockdep_assert_held(&css_set_lock);
2196 /* @task either already exited or can't exit until the end */
2197 if (task->flags & PF_EXITING)
2198 return;
2200 /* leave @task alone if post_fork() hasn't linked it yet */
2201 if (list_empty(&task->cg_list))
2202 return;
2204 cset = task_css_set(task);
2205 if (!cset->mg_src_cgrp)
2206 return;
2208 mgctx->tset.nr_tasks++;
2210 list_move_tail(&task->cg_list, &cset->mg_tasks);
2211 if (list_empty(&cset->mg_node))
2212 list_add_tail(&cset->mg_node,
2213 &mgctx->tset.src_csets);
2214 if (list_empty(&cset->mg_dst_cset->mg_node))
2215 list_add_tail(&cset->mg_dst_cset->mg_node,
2216 &mgctx->tset.dst_csets);
2220 * cgroup_taskset_first - reset taskset and return the first task
2221 * @tset: taskset of interest
2222 * @dst_cssp: output variable for the destination css
2224 * @tset iteration is initialized and the first task is returned.
2226 struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset,
2227 struct cgroup_subsys_state **dst_cssp)
2229 tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node);
2230 tset->cur_task = NULL;
2232 return cgroup_taskset_next(tset, dst_cssp);
2236 * cgroup_taskset_next - iterate to the next task in taskset
2237 * @tset: taskset of interest
2238 * @dst_cssp: output variable for the destination css
2240 * Return the next task in @tset. Iteration must have been initialized
2241 * with cgroup_taskset_first().
2243 struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset,
2244 struct cgroup_subsys_state **dst_cssp)
2246 struct css_set *cset = tset->cur_cset;
2247 struct task_struct *task = tset->cur_task;
2249 while (&cset->mg_node != tset->csets) {
2250 if (!task)
2251 task = list_first_entry(&cset->mg_tasks,
2252 struct task_struct, cg_list);
2253 else
2254 task = list_next_entry(task, cg_list);
2256 if (&task->cg_list != &cset->mg_tasks) {
2257 tset->cur_cset = cset;
2258 tset->cur_task = task;
2261 * This function may be called both before and
2262 * after cgroup_taskset_migrate(). The two cases
2263 * can be distinguished by looking at whether @cset
2264 * has its ->mg_dst_cset set.
2266 if (cset->mg_dst_cset)
2267 *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid];
2268 else
2269 *dst_cssp = cset->subsys[tset->ssid];
2271 return task;
2274 cset = list_next_entry(cset, mg_node);
2275 task = NULL;
2278 return NULL;
2282 * cgroup_taskset_migrate - migrate a taskset
2283 * @mgctx: migration context
2285 * Migrate tasks in @mgctx as setup by migration preparation functions.
2286 * This function fails iff one of the ->can_attach callbacks fails and
2287 * guarantees that either all or none of the tasks in @mgctx are migrated.
2288 * @mgctx is consumed regardless of success.
2290 static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx)
2292 struct cgroup_taskset *tset = &mgctx->tset;
2293 struct cgroup_subsys *ss;
2294 struct task_struct *task, *tmp_task;
2295 struct css_set *cset, *tmp_cset;
2296 int ssid, failed_ssid, ret;
2298 /* check that we can legitimately attach to the cgroup */
2299 if (tset->nr_tasks) {
2300 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2301 if (ss->can_attach) {
2302 tset->ssid = ssid;
2303 ret = ss->can_attach(tset);
2304 if (ret) {
2305 failed_ssid = ssid;
2306 goto out_cancel_attach;
2309 } while_each_subsys_mask();
2313 * Now that we're guaranteed success, proceed to move all tasks to
2314 * the new cgroup. There are no failure cases after here, so this
2315 * is the commit point.
2317 spin_lock_irq(&css_set_lock);
2318 list_for_each_entry(cset, &tset->src_csets, mg_node) {
2319 list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) {
2320 struct css_set *from_cset = task_css_set(task);
2321 struct css_set *to_cset = cset->mg_dst_cset;
2323 get_css_set(to_cset);
2324 to_cset->nr_tasks++;
2325 css_set_move_task(task, from_cset, to_cset, true);
2326 put_css_set_locked(from_cset);
2327 from_cset->nr_tasks--;
2330 spin_unlock_irq(&css_set_lock);
2333 * Migration is committed, all target tasks are now on dst_csets.
2334 * Nothing is sensitive to fork() after this point. Notify
2335 * controllers that migration is complete.
2337 tset->csets = &tset->dst_csets;
2339 if (tset->nr_tasks) {
2340 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2341 if (ss->attach) {
2342 tset->ssid = ssid;
2343 ss->attach(tset);
2345 } while_each_subsys_mask();
2348 ret = 0;
2349 goto out_release_tset;
2351 out_cancel_attach:
2352 if (tset->nr_tasks) {
2353 do_each_subsys_mask(ss, ssid, mgctx->ss_mask) {
2354 if (ssid == failed_ssid)
2355 break;
2356 if (ss->cancel_attach) {
2357 tset->ssid = ssid;
2358 ss->cancel_attach(tset);
2360 } while_each_subsys_mask();
2362 out_release_tset:
2363 spin_lock_irq(&css_set_lock);
2364 list_splice_init(&tset->dst_csets, &tset->src_csets);
2365 list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) {
2366 list_splice_tail_init(&cset->mg_tasks, &cset->tasks);
2367 list_del_init(&cset->mg_node);
2369 spin_unlock_irq(&css_set_lock);
2372 * Re-initialize the cgroup_taskset structure in case it is reused
2373 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2374 * iteration.
2376 tset->nr_tasks = 0;
2377 tset->csets = &tset->src_csets;
2378 return ret;
2382 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2383 * @dst_cgrp: destination cgroup to test
2385 * On the default hierarchy, except for the mixable, (possible) thread root
2386 * and threaded cgroups, subtree_control must be zero for migration
2387 * destination cgroups with tasks so that child cgroups don't compete
2388 * against tasks.
2390 int cgroup_migrate_vet_dst(struct cgroup *dst_cgrp)
2392 /* v1 doesn't have any restriction */
2393 if (!cgroup_on_dfl(dst_cgrp))
2394 return 0;
2396 /* verify @dst_cgrp can host resources */
2397 if (!cgroup_is_valid_domain(dst_cgrp->dom_cgrp))
2398 return -EOPNOTSUPP;
2400 /* mixables don't care */
2401 if (cgroup_is_mixable(dst_cgrp))
2402 return 0;
2405 * If @dst_cgrp is already or can become a thread root or is
2406 * threaded, it doesn't matter.
2408 if (cgroup_can_be_thread_root(dst_cgrp) || cgroup_is_threaded(dst_cgrp))
2409 return 0;
2411 /* apply no-internal-process constraint */
2412 if (dst_cgrp->subtree_control)
2413 return -EBUSY;
2415 return 0;
2419 * cgroup_migrate_finish - cleanup after attach
2420 * @mgctx: migration context
2422 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2423 * those functions for details.
2425 void cgroup_migrate_finish(struct cgroup_mgctx *mgctx)
2427 LIST_HEAD(preloaded);
2428 struct css_set *cset, *tmp_cset;
2430 lockdep_assert_held(&cgroup_mutex);
2432 spin_lock_irq(&css_set_lock);
2434 list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded);
2435 list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded);
2437 list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) {
2438 cset->mg_src_cgrp = NULL;
2439 cset->mg_dst_cgrp = NULL;
2440 cset->mg_dst_cset = NULL;
2441 list_del_init(&cset->mg_preload_node);
2442 put_css_set_locked(cset);
2445 spin_unlock_irq(&css_set_lock);
2449 * cgroup_migrate_add_src - add a migration source css_set
2450 * @src_cset: the source css_set to add
2451 * @dst_cgrp: the destination cgroup
2452 * @mgctx: migration context
2454 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2455 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2456 * up by cgroup_migrate_finish().
2458 * This function may be called without holding cgroup_threadgroup_rwsem
2459 * even if the target is a process. Threads may be created and destroyed
2460 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2461 * into play and the preloaded css_sets are guaranteed to cover all
2462 * migrations.
2464 void cgroup_migrate_add_src(struct css_set *src_cset,
2465 struct cgroup *dst_cgrp,
2466 struct cgroup_mgctx *mgctx)
2468 struct cgroup *src_cgrp;
2470 lockdep_assert_held(&cgroup_mutex);
2471 lockdep_assert_held(&css_set_lock);
2474 * If ->dead, @src_set is associated with one or more dead cgroups
2475 * and doesn't contain any migratable tasks. Ignore it early so
2476 * that the rest of migration path doesn't get confused by it.
2478 if (src_cset->dead)
2479 return;
2481 src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root);
2483 if (!list_empty(&src_cset->mg_preload_node))
2484 return;
2486 WARN_ON(src_cset->mg_src_cgrp);
2487 WARN_ON(src_cset->mg_dst_cgrp);
2488 WARN_ON(!list_empty(&src_cset->mg_tasks));
2489 WARN_ON(!list_empty(&src_cset->mg_node));
2491 src_cset->mg_src_cgrp = src_cgrp;
2492 src_cset->mg_dst_cgrp = dst_cgrp;
2493 get_css_set(src_cset);
2494 list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets);
2498 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2499 * @mgctx: migration context
2501 * Tasks are about to be moved and all the source css_sets have been
2502 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2503 * pins all destination css_sets, links each to its source, and append them
2504 * to @mgctx->preloaded_dst_csets.
2506 * This function must be called after cgroup_migrate_add_src() has been
2507 * called on each migration source css_set. After migration is performed
2508 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2509 * @mgctx.
2511 int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx)
2513 struct css_set *src_cset, *tmp_cset;
2515 lockdep_assert_held(&cgroup_mutex);
2517 /* look up the dst cset for each src cset and link it to src */
2518 list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets,
2519 mg_preload_node) {
2520 struct css_set *dst_cset;
2521 struct cgroup_subsys *ss;
2522 int ssid;
2524 dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp);
2525 if (!dst_cset)
2526 goto err;
2528 WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset);
2531 * If src cset equals dst, it's noop. Drop the src.
2532 * cgroup_migrate() will skip the cset too. Note that we
2533 * can't handle src == dst as some nodes are used by both.
2535 if (src_cset == dst_cset) {
2536 src_cset->mg_src_cgrp = NULL;
2537 src_cset->mg_dst_cgrp = NULL;
2538 list_del_init(&src_cset->mg_preload_node);
2539 put_css_set(src_cset);
2540 put_css_set(dst_cset);
2541 continue;
2544 src_cset->mg_dst_cset = dst_cset;
2546 if (list_empty(&dst_cset->mg_preload_node))
2547 list_add_tail(&dst_cset->mg_preload_node,
2548 &mgctx->preloaded_dst_csets);
2549 else
2550 put_css_set(dst_cset);
2552 for_each_subsys(ss, ssid)
2553 if (src_cset->subsys[ssid] != dst_cset->subsys[ssid])
2554 mgctx->ss_mask |= 1 << ssid;
2557 return 0;
2558 err:
2559 cgroup_migrate_finish(mgctx);
2560 return -ENOMEM;
2564 * cgroup_migrate - migrate a process or task to a cgroup
2565 * @leader: the leader of the process or the task to migrate
2566 * @threadgroup: whether @leader points to the whole process or a single task
2567 * @mgctx: migration context
2569 * Migrate a process or task denoted by @leader. If migrating a process,
2570 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2571 * responsible for invoking cgroup_migrate_add_src() and
2572 * cgroup_migrate_prepare_dst() on the targets before invoking this
2573 * function and following up with cgroup_migrate_finish().
2575 * As long as a controller's ->can_attach() doesn't fail, this function is
2576 * guaranteed to succeed. This means that, excluding ->can_attach()
2577 * failure, when migrating multiple targets, the success or failure can be
2578 * decided for all targets by invoking group_migrate_prepare_dst() before
2579 * actually starting migrating.
2581 int cgroup_migrate(struct task_struct *leader, bool threadgroup,
2582 struct cgroup_mgctx *mgctx)
2584 struct task_struct *task;
2587 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2588 * already PF_EXITING could be freed from underneath us unless we
2589 * take an rcu_read_lock.
2591 spin_lock_irq(&css_set_lock);
2592 rcu_read_lock();
2593 task = leader;
2594 do {
2595 cgroup_migrate_add_task(task, mgctx);
2596 if (!threadgroup)
2597 break;
2598 } while_each_thread(leader, task);
2599 rcu_read_unlock();
2600 spin_unlock_irq(&css_set_lock);
2602 return cgroup_migrate_execute(mgctx);
2606 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2607 * @dst_cgrp: the cgroup to attach to
2608 * @leader: the task or the leader of the threadgroup to be attached
2609 * @threadgroup: attach the whole threadgroup?
2611 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2613 int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader,
2614 bool threadgroup)
2616 DEFINE_CGROUP_MGCTX(mgctx);
2617 struct task_struct *task;
2618 int ret;
2620 ret = cgroup_migrate_vet_dst(dst_cgrp);
2621 if (ret)
2622 return ret;
2624 /* look up all src csets */
2625 spin_lock_irq(&css_set_lock);
2626 rcu_read_lock();
2627 task = leader;
2628 do {
2629 cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx);
2630 if (!threadgroup)
2631 break;
2632 } while_each_thread(leader, task);
2633 rcu_read_unlock();
2634 spin_unlock_irq(&css_set_lock);
2636 /* prepare dst csets and commit */
2637 ret = cgroup_migrate_prepare_dst(&mgctx);
2638 if (!ret)
2639 ret = cgroup_migrate(leader, threadgroup, &mgctx);
2641 cgroup_migrate_finish(&mgctx);
2643 if (!ret)
2644 TRACE_CGROUP_PATH(attach_task, dst_cgrp, leader, threadgroup);
2646 return ret;
2649 struct task_struct *cgroup_procs_write_start(char *buf, bool threadgroup)
2650 __acquires(&cgroup_threadgroup_rwsem)
2652 struct task_struct *tsk;
2653 pid_t pid;
2655 if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0)
2656 return ERR_PTR(-EINVAL);
2658 percpu_down_write(&cgroup_threadgroup_rwsem);
2660 rcu_read_lock();
2661 if (pid) {
2662 tsk = find_task_by_vpid(pid);
2663 if (!tsk) {
2664 tsk = ERR_PTR(-ESRCH);
2665 goto out_unlock_threadgroup;
2667 } else {
2668 tsk = current;
2671 if (threadgroup)
2672 tsk = tsk->group_leader;
2675 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2676 * If userland migrates such a kthread to a non-root cgroup, it can
2677 * become trapped in a cpuset, or RT kthread may be born in a
2678 * cgroup with no rt_runtime allocated. Just say no.
2680 if (tsk->no_cgroup_migration || (tsk->flags & PF_NO_SETAFFINITY)) {
2681 tsk = ERR_PTR(-EINVAL);
2682 goto out_unlock_threadgroup;
2685 get_task_struct(tsk);
2686 goto out_unlock_rcu;
2688 out_unlock_threadgroup:
2689 percpu_up_write(&cgroup_threadgroup_rwsem);
2690 out_unlock_rcu:
2691 rcu_read_unlock();
2692 return tsk;
2695 void cgroup_procs_write_finish(struct task_struct *task)
2696 __releases(&cgroup_threadgroup_rwsem)
2698 struct cgroup_subsys *ss;
2699 int ssid;
2701 /* release reference from cgroup_procs_write_start() */
2702 put_task_struct(task);
2704 percpu_up_write(&cgroup_threadgroup_rwsem);
2705 for_each_subsys(ss, ssid)
2706 if (ss->post_attach)
2707 ss->post_attach();
2710 static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask)
2712 struct cgroup_subsys *ss;
2713 bool printed = false;
2714 int ssid;
2716 do_each_subsys_mask(ss, ssid, ss_mask) {
2717 if (printed)
2718 seq_putc(seq, ' ');
2719 seq_printf(seq, "%s", ss->name);
2720 printed = true;
2721 } while_each_subsys_mask();
2722 if (printed)
2723 seq_putc(seq, '\n');
2726 /* show controllers which are enabled from the parent */
2727 static int cgroup_controllers_show(struct seq_file *seq, void *v)
2729 struct cgroup *cgrp = seq_css(seq)->cgroup;
2731 cgroup_print_ss_mask(seq, cgroup_control(cgrp));
2732 return 0;
2735 /* show controllers which are enabled for a given cgroup's children */
2736 static int cgroup_subtree_control_show(struct seq_file *seq, void *v)
2738 struct cgroup *cgrp = seq_css(seq)->cgroup;
2740 cgroup_print_ss_mask(seq, cgrp->subtree_control);
2741 return 0;
2745 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2746 * @cgrp: root of the subtree to update csses for
2748 * @cgrp's control masks have changed and its subtree's css associations
2749 * need to be updated accordingly. This function looks up all css_sets
2750 * which are attached to the subtree, creates the matching updated css_sets
2751 * and migrates the tasks to the new ones.
2753 static int cgroup_update_dfl_csses(struct cgroup *cgrp)
2755 DEFINE_CGROUP_MGCTX(mgctx);
2756 struct cgroup_subsys_state *d_css;
2757 struct cgroup *dsct;
2758 struct css_set *src_cset;
2759 int ret;
2761 lockdep_assert_held(&cgroup_mutex);
2763 percpu_down_write(&cgroup_threadgroup_rwsem);
2765 /* look up all csses currently attached to @cgrp's subtree */
2766 spin_lock_irq(&css_set_lock);
2767 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2768 struct cgrp_cset_link *link;
2770 list_for_each_entry(link, &dsct->cset_links, cset_link)
2771 cgroup_migrate_add_src(link->cset, dsct, &mgctx);
2773 spin_unlock_irq(&css_set_lock);
2775 /* NULL dst indicates self on default hierarchy */
2776 ret = cgroup_migrate_prepare_dst(&mgctx);
2777 if (ret)
2778 goto out_finish;
2780 spin_lock_irq(&css_set_lock);
2781 list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) {
2782 struct task_struct *task, *ntask;
2784 /* all tasks in src_csets need to be migrated */
2785 list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list)
2786 cgroup_migrate_add_task(task, &mgctx);
2788 spin_unlock_irq(&css_set_lock);
2790 ret = cgroup_migrate_execute(&mgctx);
2791 out_finish:
2792 cgroup_migrate_finish(&mgctx);
2793 percpu_up_write(&cgroup_threadgroup_rwsem);
2794 return ret;
2798 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2799 * @cgrp: root of the target subtree
2801 * Because css offlining is asynchronous, userland may try to re-enable a
2802 * controller while the previous css is still around. This function grabs
2803 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2805 void cgroup_lock_and_drain_offline(struct cgroup *cgrp)
2806 __acquires(&cgroup_mutex)
2808 struct cgroup *dsct;
2809 struct cgroup_subsys_state *d_css;
2810 struct cgroup_subsys *ss;
2811 int ssid;
2813 restart:
2814 mutex_lock(&cgroup_mutex);
2816 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2817 for_each_subsys(ss, ssid) {
2818 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2819 DEFINE_WAIT(wait);
2821 if (!css || !percpu_ref_is_dying(&css->refcnt))
2822 continue;
2824 cgroup_get_live(dsct);
2825 prepare_to_wait(&dsct->offline_waitq, &wait,
2826 TASK_UNINTERRUPTIBLE);
2828 mutex_unlock(&cgroup_mutex);
2829 schedule();
2830 finish_wait(&dsct->offline_waitq, &wait);
2832 cgroup_put(dsct);
2833 goto restart;
2839 * cgroup_save_control - save control masks of a subtree
2840 * @cgrp: root of the target subtree
2842 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2843 * prefixed fields for @cgrp's subtree including @cgrp itself.
2845 static void cgroup_save_control(struct cgroup *cgrp)
2847 struct cgroup *dsct;
2848 struct cgroup_subsys_state *d_css;
2850 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2851 dsct->old_subtree_control = dsct->subtree_control;
2852 dsct->old_subtree_ss_mask = dsct->subtree_ss_mask;
2857 * cgroup_propagate_control - refresh control masks of a subtree
2858 * @cgrp: root of the target subtree
2860 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2861 * ->subtree_control and propagate controller availability through the
2862 * subtree so that descendants don't have unavailable controllers enabled.
2864 static void cgroup_propagate_control(struct cgroup *cgrp)
2866 struct cgroup *dsct;
2867 struct cgroup_subsys_state *d_css;
2869 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2870 dsct->subtree_control &= cgroup_control(dsct);
2871 dsct->subtree_ss_mask =
2872 cgroup_calc_subtree_ss_mask(dsct->subtree_control,
2873 cgroup_ss_mask(dsct));
2878 * cgroup_restore_control - restore control masks of a subtree
2879 * @cgrp: root of the target subtree
2881 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2882 * prefixed fields for @cgrp's subtree including @cgrp itself.
2884 static void cgroup_restore_control(struct cgroup *cgrp)
2886 struct cgroup *dsct;
2887 struct cgroup_subsys_state *d_css;
2889 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2890 dsct->subtree_control = dsct->old_subtree_control;
2891 dsct->subtree_ss_mask = dsct->old_subtree_ss_mask;
2895 static bool css_visible(struct cgroup_subsys_state *css)
2897 struct cgroup_subsys *ss = css->ss;
2898 struct cgroup *cgrp = css->cgroup;
2900 if (cgroup_control(cgrp) & (1 << ss->id))
2901 return true;
2902 if (!(cgroup_ss_mask(cgrp) & (1 << ss->id)))
2903 return false;
2904 return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl;
2908 * cgroup_apply_control_enable - enable or show csses according to control
2909 * @cgrp: root of the target subtree
2911 * Walk @cgrp's subtree and create new csses or make the existing ones
2912 * visible. A css is created invisible if it's being implicitly enabled
2913 * through dependency. An invisible css is made visible when the userland
2914 * explicitly enables it.
2916 * Returns 0 on success, -errno on failure. On failure, csses which have
2917 * been processed already aren't cleaned up. The caller is responsible for
2918 * cleaning up with cgroup_apply_control_disable().
2920 static int cgroup_apply_control_enable(struct cgroup *cgrp)
2922 struct cgroup *dsct;
2923 struct cgroup_subsys_state *d_css;
2924 struct cgroup_subsys *ss;
2925 int ssid, ret;
2927 cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) {
2928 for_each_subsys(ss, ssid) {
2929 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2931 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2933 if (!(cgroup_ss_mask(dsct) & (1 << ss->id)))
2934 continue;
2936 if (!css) {
2937 css = css_create(dsct, ss);
2938 if (IS_ERR(css))
2939 return PTR_ERR(css);
2942 if (css_visible(css)) {
2943 ret = css_populate_dir(css);
2944 if (ret)
2945 return ret;
2950 return 0;
2954 * cgroup_apply_control_disable - kill or hide csses according to control
2955 * @cgrp: root of the target subtree
2957 * Walk @cgrp's subtree and kill and hide csses so that they match
2958 * cgroup_ss_mask() and cgroup_visible_mask().
2960 * A css is hidden when the userland requests it to be disabled while other
2961 * subsystems are still depending on it. The css must not actively control
2962 * resources and be in the vanilla state if it's made visible again later.
2963 * Controllers which may be depended upon should provide ->css_reset() for
2964 * this purpose.
2966 static void cgroup_apply_control_disable(struct cgroup *cgrp)
2968 struct cgroup *dsct;
2969 struct cgroup_subsys_state *d_css;
2970 struct cgroup_subsys *ss;
2971 int ssid;
2973 cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) {
2974 for_each_subsys(ss, ssid) {
2975 struct cgroup_subsys_state *css = cgroup_css(dsct, ss);
2977 WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt));
2979 if (!css)
2980 continue;
2982 if (css->parent &&
2983 !(cgroup_ss_mask(dsct) & (1 << ss->id))) {
2984 kill_css(css);
2985 } else if (!css_visible(css)) {
2986 css_clear_dir(css);
2987 if (ss->css_reset)
2988 ss->css_reset(css);
2995 * cgroup_apply_control - apply control mask updates to the subtree
2996 * @cgrp: root of the target subtree
2998 * subsystems can be enabled and disabled in a subtree using the following
2999 * steps.
3001 * 1. Call cgroup_save_control() to stash the current state.
3002 * 2. Update ->subtree_control masks in the subtree as desired.
3003 * 3. Call cgroup_apply_control() to apply the changes.
3004 * 4. Optionally perform other related operations.
3005 * 5. Call cgroup_finalize_control() to finish up.
3007 * This function implements step 3 and propagates the mask changes
3008 * throughout @cgrp's subtree, updates csses accordingly and perform
3009 * process migrations.
3011 static int cgroup_apply_control(struct cgroup *cgrp)
3013 int ret;
3015 cgroup_propagate_control(cgrp);
3017 ret = cgroup_apply_control_enable(cgrp);
3018 if (ret)
3019 return ret;
3022 * At this point, cgroup_e_css() results reflect the new csses
3023 * making the following cgroup_update_dfl_csses() properly update
3024 * css associations of all tasks in the subtree.
3026 ret = cgroup_update_dfl_csses(cgrp);
3027 if (ret)
3028 return ret;
3030 return 0;
3034 * cgroup_finalize_control - finalize control mask update
3035 * @cgrp: root of the target subtree
3036 * @ret: the result of the update
3038 * Finalize control mask update. See cgroup_apply_control() for more info.
3040 static void cgroup_finalize_control(struct cgroup *cgrp, int ret)
3042 if (ret) {
3043 cgroup_restore_control(cgrp);
3044 cgroup_propagate_control(cgrp);
3047 cgroup_apply_control_disable(cgrp);
3050 static int cgroup_vet_subtree_control_enable(struct cgroup *cgrp, u16 enable)
3052 u16 domain_enable = enable & ~cgrp_dfl_threaded_ss_mask;
3054 /* if nothing is getting enabled, nothing to worry about */
3055 if (!enable)
3056 return 0;
3058 /* can @cgrp host any resources? */
3059 if (!cgroup_is_valid_domain(cgrp->dom_cgrp))
3060 return -EOPNOTSUPP;
3062 /* mixables don't care */
3063 if (cgroup_is_mixable(cgrp))
3064 return 0;
3066 if (domain_enable) {
3067 /* can't enable domain controllers inside a thread subtree */
3068 if (cgroup_is_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3069 return -EOPNOTSUPP;
3070 } else {
3072 * Threaded controllers can handle internal competitions
3073 * and are always allowed inside a (prospective) thread
3074 * subtree.
3076 if (cgroup_can_be_thread_root(cgrp) || cgroup_is_threaded(cgrp))
3077 return 0;
3081 * Controllers can't be enabled for a cgroup with tasks to avoid
3082 * child cgroups competing against tasks.
3084 if (cgroup_has_tasks(cgrp))
3085 return -EBUSY;
3087 return 0;
3090 /* change the enabled child controllers for a cgroup in the default hierarchy */
3091 static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of,
3092 char *buf, size_t nbytes,
3093 loff_t off)
3095 u16 enable = 0, disable = 0;
3096 struct cgroup *cgrp, *child;
3097 struct cgroup_subsys *ss;
3098 char *tok;
3099 int ssid, ret;
3102 * Parse input - space separated list of subsystem names prefixed
3103 * with either + or -.
3105 buf = strstrip(buf);
3106 while ((tok = strsep(&buf, " "))) {
3107 if (tok[0] == '\0')
3108 continue;
3109 do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) {
3110 if (!cgroup_ssid_enabled(ssid) ||
3111 strcmp(tok + 1, ss->name))
3112 continue;
3114 if (*tok == '+') {
3115 enable |= 1 << ssid;
3116 disable &= ~(1 << ssid);
3117 } else if (*tok == '-') {
3118 disable |= 1 << ssid;
3119 enable &= ~(1 << ssid);
3120 } else {
3121 return -EINVAL;
3123 break;
3124 } while_each_subsys_mask();
3125 if (ssid == CGROUP_SUBSYS_COUNT)
3126 return -EINVAL;
3129 cgrp = cgroup_kn_lock_live(of->kn, true);
3130 if (!cgrp)
3131 return -ENODEV;
3133 for_each_subsys(ss, ssid) {
3134 if (enable & (1 << ssid)) {
3135 if (cgrp->subtree_control & (1 << ssid)) {
3136 enable &= ~(1 << ssid);
3137 continue;
3140 if (!(cgroup_control(cgrp) & (1 << ssid))) {
3141 ret = -ENOENT;
3142 goto out_unlock;
3144 } else if (disable & (1 << ssid)) {
3145 if (!(cgrp->subtree_control & (1 << ssid))) {
3146 disable &= ~(1 << ssid);
3147 continue;
3150 /* a child has it enabled? */
3151 cgroup_for_each_live_child(child, cgrp) {
3152 if (child->subtree_control & (1 << ssid)) {
3153 ret = -EBUSY;
3154 goto out_unlock;
3160 if (!enable && !disable) {
3161 ret = 0;
3162 goto out_unlock;
3165 ret = cgroup_vet_subtree_control_enable(cgrp, enable);
3166 if (ret)
3167 goto out_unlock;
3169 /* save and update control masks and prepare csses */
3170 cgroup_save_control(cgrp);
3172 cgrp->subtree_control |= enable;
3173 cgrp->subtree_control &= ~disable;
3175 ret = cgroup_apply_control(cgrp);
3176 cgroup_finalize_control(cgrp, ret);
3177 if (ret)
3178 goto out_unlock;
3180 kernfs_activate(cgrp->kn);
3181 out_unlock:
3182 cgroup_kn_unlock(of->kn);
3183 return ret ?: nbytes;
3187 * cgroup_enable_threaded - make @cgrp threaded
3188 * @cgrp: the target cgroup
3190 * Called when "threaded" is written to the cgroup.type interface file and
3191 * tries to make @cgrp threaded and join the parent's resource domain.
3192 * This function is never called on the root cgroup as cgroup.type doesn't
3193 * exist on it.
3195 static int cgroup_enable_threaded(struct cgroup *cgrp)
3197 struct cgroup *parent = cgroup_parent(cgrp);
3198 struct cgroup *dom_cgrp = parent->dom_cgrp;
3199 int ret;
3201 lockdep_assert_held(&cgroup_mutex);
3203 /* noop if already threaded */
3204 if (cgroup_is_threaded(cgrp))
3205 return 0;
3208 * If @cgroup is populated or has domain controllers enabled, it
3209 * can't be switched. While the below cgroup_can_be_thread_root()
3210 * test can catch the same conditions, that's only when @parent is
3211 * not mixable, so let's check it explicitly.
3213 if (cgroup_is_populated(cgrp) ||
3214 cgrp->subtree_control & ~cgrp_dfl_threaded_ss_mask)
3215 return -EOPNOTSUPP;
3217 /* we're joining the parent's domain, ensure its validity */
3218 if (!cgroup_is_valid_domain(dom_cgrp) ||
3219 !cgroup_can_be_thread_root(dom_cgrp))
3220 return -EOPNOTSUPP;
3223 * The following shouldn't cause actual migrations and should
3224 * always succeed.
3226 cgroup_save_control(cgrp);
3228 cgrp->dom_cgrp = dom_cgrp;
3229 ret = cgroup_apply_control(cgrp);
3230 if (!ret)
3231 parent->nr_threaded_children++;
3232 else
3233 cgrp->dom_cgrp = cgrp;
3235 cgroup_finalize_control(cgrp, ret);
3236 return ret;
3239 static int cgroup_type_show(struct seq_file *seq, void *v)
3241 struct cgroup *cgrp = seq_css(seq)->cgroup;
3243 if (cgroup_is_threaded(cgrp))
3244 seq_puts(seq, "threaded\n");
3245 else if (!cgroup_is_valid_domain(cgrp))
3246 seq_puts(seq, "domain invalid\n");
3247 else if (cgroup_is_thread_root(cgrp))
3248 seq_puts(seq, "domain threaded\n");
3249 else
3250 seq_puts(seq, "domain\n");
3252 return 0;
3255 static ssize_t cgroup_type_write(struct kernfs_open_file *of, char *buf,
3256 size_t nbytes, loff_t off)
3258 struct cgroup *cgrp;
3259 int ret;
3261 /* only switching to threaded mode is supported */
3262 if (strcmp(strstrip(buf), "threaded"))
3263 return -EINVAL;
3265 cgrp = cgroup_kn_lock_live(of->kn, false);
3266 if (!cgrp)
3267 return -ENOENT;
3269 /* threaded can only be enabled */
3270 ret = cgroup_enable_threaded(cgrp);
3272 cgroup_kn_unlock(of->kn);
3273 return ret ?: nbytes;
3276 static int cgroup_max_descendants_show(struct seq_file *seq, void *v)
3278 struct cgroup *cgrp = seq_css(seq)->cgroup;
3279 int descendants = READ_ONCE(cgrp->max_descendants);
3281 if (descendants == INT_MAX)
3282 seq_puts(seq, "max\n");
3283 else
3284 seq_printf(seq, "%d\n", descendants);
3286 return 0;
3289 static ssize_t cgroup_max_descendants_write(struct kernfs_open_file *of,
3290 char *buf, size_t nbytes, loff_t off)
3292 struct cgroup *cgrp;
3293 int descendants;
3294 ssize_t ret;
3296 buf = strstrip(buf);
3297 if (!strcmp(buf, "max")) {
3298 descendants = INT_MAX;
3299 } else {
3300 ret = kstrtoint(buf, 0, &descendants);
3301 if (ret)
3302 return ret;
3305 if (descendants < 0)
3306 return -ERANGE;
3308 cgrp = cgroup_kn_lock_live(of->kn, false);
3309 if (!cgrp)
3310 return -ENOENT;
3312 cgrp->max_descendants = descendants;
3314 cgroup_kn_unlock(of->kn);
3316 return nbytes;
3319 static int cgroup_max_depth_show(struct seq_file *seq, void *v)
3321 struct cgroup *cgrp = seq_css(seq)->cgroup;
3322 int depth = READ_ONCE(cgrp->max_depth);
3324 if (depth == INT_MAX)
3325 seq_puts(seq, "max\n");
3326 else
3327 seq_printf(seq, "%d\n", depth);
3329 return 0;
3332 static ssize_t cgroup_max_depth_write(struct kernfs_open_file *of,
3333 char *buf, size_t nbytes, loff_t off)
3335 struct cgroup *cgrp;
3336 ssize_t ret;
3337 int depth;
3339 buf = strstrip(buf);
3340 if (!strcmp(buf, "max")) {
3341 depth = INT_MAX;
3342 } else {
3343 ret = kstrtoint(buf, 0, &depth);
3344 if (ret)
3345 return ret;
3348 if (depth < 0)
3349 return -ERANGE;
3351 cgrp = cgroup_kn_lock_live(of->kn, false);
3352 if (!cgrp)
3353 return -ENOENT;
3355 cgrp->max_depth = depth;
3357 cgroup_kn_unlock(of->kn);
3359 return nbytes;
3362 static int cgroup_events_show(struct seq_file *seq, void *v)
3364 seq_printf(seq, "populated %d\n",
3365 cgroup_is_populated(seq_css(seq)->cgroup));
3366 return 0;
3369 static int cgroup_stat_show(struct seq_file *seq, void *v)
3371 struct cgroup *cgroup = seq_css(seq)->cgroup;
3373 seq_printf(seq, "nr_descendants %d\n",
3374 cgroup->nr_descendants);
3375 seq_printf(seq, "nr_dying_descendants %d\n",
3376 cgroup->nr_dying_descendants);
3378 return 0;
3381 static int __maybe_unused cgroup_extra_stat_show(struct seq_file *seq,
3382 struct cgroup *cgrp, int ssid)
3384 struct cgroup_subsys *ss = cgroup_subsys[ssid];
3385 struct cgroup_subsys_state *css;
3386 int ret;
3388 if (!ss->css_extra_stat_show)
3389 return 0;
3391 css = cgroup_tryget_css(cgrp, ss);
3392 if (!css)
3393 return 0;
3395 ret = ss->css_extra_stat_show(seq, css);
3396 css_put(css);
3397 return ret;
3400 static int cpu_stat_show(struct seq_file *seq, void *v)
3402 struct cgroup __maybe_unused *cgrp = seq_css(seq)->cgroup;
3403 int ret = 0;
3405 cgroup_base_stat_cputime_show(seq);
3406 #ifdef CONFIG_CGROUP_SCHED
3407 ret = cgroup_extra_stat_show(seq, cgrp, cpu_cgrp_id);
3408 #endif
3409 return ret;
3412 static int cgroup_file_open(struct kernfs_open_file *of)
3414 struct cftype *cft = of->kn->priv;
3416 if (cft->open)
3417 return cft->open(of);
3418 return 0;
3421 static void cgroup_file_release(struct kernfs_open_file *of)
3423 struct cftype *cft = of->kn->priv;
3425 if (cft->release)
3426 cft->release(of);
3429 static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf,
3430 size_t nbytes, loff_t off)
3432 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
3433 struct cgroup *cgrp = of->kn->parent->priv;
3434 struct cftype *cft = of->kn->priv;
3435 struct cgroup_subsys_state *css;
3436 int ret;
3439 * If namespaces are delegation boundaries, disallow writes to
3440 * files in an non-init namespace root from inside the namespace
3441 * except for the files explicitly marked delegatable -
3442 * cgroup.procs and cgroup.subtree_control.
3444 if ((cgrp->root->flags & CGRP_ROOT_NS_DELEGATE) &&
3445 !(cft->flags & CFTYPE_NS_DELEGATABLE) &&
3446 ns != &init_cgroup_ns && ns->root_cset->dfl_cgrp == cgrp)
3447 return -EPERM;
3449 if (cft->write)
3450 return cft->write(of, buf, nbytes, off);
3453 * kernfs guarantees that a file isn't deleted with operations in
3454 * flight, which means that the matching css is and stays alive and
3455 * doesn't need to be pinned. The RCU locking is not necessary
3456 * either. It's just for the convenience of using cgroup_css().
3458 rcu_read_lock();
3459 css = cgroup_css(cgrp, cft->ss);
3460 rcu_read_unlock();
3462 if (cft->write_u64) {
3463 unsigned long long v;
3464 ret = kstrtoull(buf, 0, &v);
3465 if (!ret)
3466 ret = cft->write_u64(css, cft, v);
3467 } else if (cft->write_s64) {
3468 long long v;
3469 ret = kstrtoll(buf, 0, &v);
3470 if (!ret)
3471 ret = cft->write_s64(css, cft, v);
3472 } else {
3473 ret = -EINVAL;
3476 return ret ?: nbytes;
3479 static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos)
3481 return seq_cft(seq)->seq_start(seq, ppos);
3484 static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos)
3486 return seq_cft(seq)->seq_next(seq, v, ppos);
3489 static void cgroup_seqfile_stop(struct seq_file *seq, void *v)
3491 if (seq_cft(seq)->seq_stop)
3492 seq_cft(seq)->seq_stop(seq, v);
3495 static int cgroup_seqfile_show(struct seq_file *m, void *arg)
3497 struct cftype *cft = seq_cft(m);
3498 struct cgroup_subsys_state *css = seq_css(m);
3500 if (cft->seq_show)
3501 return cft->seq_show(m, arg);
3503 if (cft->read_u64)
3504 seq_printf(m, "%llu\n", cft->read_u64(css, cft));
3505 else if (cft->read_s64)
3506 seq_printf(m, "%lld\n", cft->read_s64(css, cft));
3507 else
3508 return -EINVAL;
3509 return 0;
3512 static struct kernfs_ops cgroup_kf_single_ops = {
3513 .atomic_write_len = PAGE_SIZE,
3514 .open = cgroup_file_open,
3515 .release = cgroup_file_release,
3516 .write = cgroup_file_write,
3517 .seq_show = cgroup_seqfile_show,
3520 static struct kernfs_ops cgroup_kf_ops = {
3521 .atomic_write_len = PAGE_SIZE,
3522 .open = cgroup_file_open,
3523 .release = cgroup_file_release,
3524 .write = cgroup_file_write,
3525 .seq_start = cgroup_seqfile_start,
3526 .seq_next = cgroup_seqfile_next,
3527 .seq_stop = cgroup_seqfile_stop,
3528 .seq_show = cgroup_seqfile_show,
3531 /* set uid and gid of cgroup dirs and files to that of the creator */
3532 static int cgroup_kn_set_ugid(struct kernfs_node *kn)
3534 struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID,
3535 .ia_uid = current_fsuid(),
3536 .ia_gid = current_fsgid(), };
3538 if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) &&
3539 gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID))
3540 return 0;
3542 return kernfs_setattr(kn, &iattr);
3545 static void cgroup_file_notify_timer(struct timer_list *timer)
3547 cgroup_file_notify(container_of(timer, struct cgroup_file,
3548 notify_timer));
3551 static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp,
3552 struct cftype *cft)
3554 char name[CGROUP_FILE_NAME_MAX];
3555 struct kernfs_node *kn;
3556 struct lock_class_key *key = NULL;
3557 int ret;
3559 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3560 key = &cft->lockdep_key;
3561 #endif
3562 kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name),
3563 cgroup_file_mode(cft),
3564 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
3565 0, cft->kf_ops, cft,
3566 NULL, key);
3567 if (IS_ERR(kn))
3568 return PTR_ERR(kn);
3570 ret = cgroup_kn_set_ugid(kn);
3571 if (ret) {
3572 kernfs_remove(kn);
3573 return ret;
3576 if (cft->file_offset) {
3577 struct cgroup_file *cfile = (void *)css + cft->file_offset;
3579 timer_setup(&cfile->notify_timer, cgroup_file_notify_timer, 0);
3581 spin_lock_irq(&cgroup_file_kn_lock);
3582 cfile->kn = kn;
3583 spin_unlock_irq(&cgroup_file_kn_lock);
3586 return 0;
3590 * cgroup_addrm_files - add or remove files to a cgroup directory
3591 * @css: the target css
3592 * @cgrp: the target cgroup (usually css->cgroup)
3593 * @cfts: array of cftypes to be added
3594 * @is_add: whether to add or remove
3596 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3597 * For removals, this function never fails.
3599 static int cgroup_addrm_files(struct cgroup_subsys_state *css,
3600 struct cgroup *cgrp, struct cftype cfts[],
3601 bool is_add)
3603 struct cftype *cft, *cft_end = NULL;
3604 int ret = 0;
3606 lockdep_assert_held(&cgroup_mutex);
3608 restart:
3609 for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) {
3610 /* does cft->flags tell us to skip this file on @cgrp? */
3611 if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp))
3612 continue;
3613 if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp))
3614 continue;
3615 if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp))
3616 continue;
3617 if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp))
3618 continue;
3620 if (is_add) {
3621 ret = cgroup_add_file(css, cgrp, cft);
3622 if (ret) {
3623 pr_warn("%s: failed to add %s, err=%d\n",
3624 __func__, cft->name, ret);
3625 cft_end = cft;
3626 is_add = false;
3627 goto restart;
3629 } else {
3630 cgroup_rm_file(cgrp, cft);
3633 return ret;
3636 static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add)
3638 struct cgroup_subsys *ss = cfts[0].ss;
3639 struct cgroup *root = &ss->root->cgrp;
3640 struct cgroup_subsys_state *css;
3641 int ret = 0;
3643 lockdep_assert_held(&cgroup_mutex);
3645 /* add/rm files for all cgroups created before */
3646 css_for_each_descendant_pre(css, cgroup_css(root, ss)) {
3647 struct cgroup *cgrp = css->cgroup;
3649 if (!(css->flags & CSS_VISIBLE))
3650 continue;
3652 ret = cgroup_addrm_files(css, cgrp, cfts, is_add);
3653 if (ret)
3654 break;
3657 if (is_add && !ret)
3658 kernfs_activate(root->kn);
3659 return ret;
3662 static void cgroup_exit_cftypes(struct cftype *cfts)
3664 struct cftype *cft;
3666 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3667 /* free copy for custom atomic_write_len, see init_cftypes() */
3668 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE)
3669 kfree(cft->kf_ops);
3670 cft->kf_ops = NULL;
3671 cft->ss = NULL;
3673 /* revert flags set by cgroup core while adding @cfts */
3674 cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL);
3678 static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3680 struct cftype *cft;
3682 for (cft = cfts; cft->name[0] != '\0'; cft++) {
3683 struct kernfs_ops *kf_ops;
3685 WARN_ON(cft->ss || cft->kf_ops);
3687 if (cft->seq_start)
3688 kf_ops = &cgroup_kf_ops;
3689 else
3690 kf_ops = &cgroup_kf_single_ops;
3693 * Ugh... if @cft wants a custom max_write_len, we need to
3694 * make a copy of kf_ops to set its atomic_write_len.
3696 if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) {
3697 kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL);
3698 if (!kf_ops) {
3699 cgroup_exit_cftypes(cfts);
3700 return -ENOMEM;
3702 kf_ops->atomic_write_len = cft->max_write_len;
3705 cft->kf_ops = kf_ops;
3706 cft->ss = ss;
3709 return 0;
3712 static int cgroup_rm_cftypes_locked(struct cftype *cfts)
3714 lockdep_assert_held(&cgroup_mutex);
3716 if (!cfts || !cfts[0].ss)
3717 return -ENOENT;
3719 list_del(&cfts->node);
3720 cgroup_apply_cftypes(cfts, false);
3721 cgroup_exit_cftypes(cfts);
3722 return 0;
3726 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3727 * @cfts: zero-length name terminated array of cftypes
3729 * Unregister @cfts. Files described by @cfts are removed from all
3730 * existing cgroups and all future cgroups won't have them either. This
3731 * function can be called anytime whether @cfts' subsys is attached or not.
3733 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3734 * registered.
3736 int cgroup_rm_cftypes(struct cftype *cfts)
3738 int ret;
3740 mutex_lock(&cgroup_mutex);
3741 ret = cgroup_rm_cftypes_locked(cfts);
3742 mutex_unlock(&cgroup_mutex);
3743 return ret;
3747 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3748 * @ss: target cgroup subsystem
3749 * @cfts: zero-length name terminated array of cftypes
3751 * Register @cfts to @ss. Files described by @cfts are created for all
3752 * existing cgroups to which @ss is attached and all future cgroups will
3753 * have them too. This function can be called anytime whether @ss is
3754 * attached or not.
3756 * Returns 0 on successful registration, -errno on failure. Note that this
3757 * function currently returns 0 as long as @cfts registration is successful
3758 * even if some file creation attempts on existing cgroups fail.
3760 static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3762 int ret;
3764 if (!cgroup_ssid_enabled(ss->id))
3765 return 0;
3767 if (!cfts || cfts[0].name[0] == '\0')
3768 return 0;
3770 ret = cgroup_init_cftypes(ss, cfts);
3771 if (ret)
3772 return ret;
3774 mutex_lock(&cgroup_mutex);
3776 list_add_tail(&cfts->node, &ss->cfts);
3777 ret = cgroup_apply_cftypes(cfts, true);
3778 if (ret)
3779 cgroup_rm_cftypes_locked(cfts);
3781 mutex_unlock(&cgroup_mutex);
3782 return ret;
3786 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3787 * @ss: target cgroup subsystem
3788 * @cfts: zero-length name terminated array of cftypes
3790 * Similar to cgroup_add_cftypes() but the added files are only used for
3791 * the default hierarchy.
3793 int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3795 struct cftype *cft;
3797 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3798 cft->flags |= __CFTYPE_ONLY_ON_DFL;
3799 return cgroup_add_cftypes(ss, cfts);
3803 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3804 * @ss: target cgroup subsystem
3805 * @cfts: zero-length name terminated array of cftypes
3807 * Similar to cgroup_add_cftypes() but the added files are only used for
3808 * the legacy hierarchies.
3810 int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts)
3812 struct cftype *cft;
3814 for (cft = cfts; cft && cft->name[0] != '\0'; cft++)
3815 cft->flags |= __CFTYPE_NOT_ON_DFL;
3816 return cgroup_add_cftypes(ss, cfts);
3820 * cgroup_file_notify - generate a file modified event for a cgroup_file
3821 * @cfile: target cgroup_file
3823 * @cfile must have been obtained by setting cftype->file_offset.
3825 void cgroup_file_notify(struct cgroup_file *cfile)
3827 unsigned long flags;
3829 spin_lock_irqsave(&cgroup_file_kn_lock, flags);
3830 if (cfile->kn) {
3831 unsigned long last = cfile->notified_at;
3832 unsigned long next = last + CGROUP_FILE_NOTIFY_MIN_INTV;
3834 if (time_in_range(jiffies, last, next)) {
3835 timer_reduce(&cfile->notify_timer, next);
3836 } else {
3837 kernfs_notify(cfile->kn);
3838 cfile->notified_at = jiffies;
3841 spin_unlock_irqrestore(&cgroup_file_kn_lock, flags);
3845 * css_next_child - find the next child of a given css
3846 * @pos: the current position (%NULL to initiate traversal)
3847 * @parent: css whose children to walk
3849 * This function returns the next child of @parent and should be called
3850 * under either cgroup_mutex or RCU read lock. The only requirement is
3851 * that @parent and @pos are accessible. The next sibling is guaranteed to
3852 * be returned regardless of their states.
3854 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3855 * css which finished ->css_online() is guaranteed to be visible in the
3856 * future iterations and will stay visible until the last reference is put.
3857 * A css which hasn't finished ->css_online() or already finished
3858 * ->css_offline() may show up during traversal. It's each subsystem's
3859 * responsibility to synchronize against on/offlining.
3861 struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos,
3862 struct cgroup_subsys_state *parent)
3864 struct cgroup_subsys_state *next;
3866 cgroup_assert_mutex_or_rcu_locked();
3869 * @pos could already have been unlinked from the sibling list.
3870 * Once a cgroup is removed, its ->sibling.next is no longer
3871 * updated when its next sibling changes. CSS_RELEASED is set when
3872 * @pos is taken off list, at which time its next pointer is valid,
3873 * and, as releases are serialized, the one pointed to by the next
3874 * pointer is guaranteed to not have started release yet. This
3875 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3876 * critical section, the one pointed to by its next pointer is
3877 * guaranteed to not have finished its RCU grace period even if we
3878 * have dropped rcu_read_lock() inbetween iterations.
3880 * If @pos has CSS_RELEASED set, its next pointer can't be
3881 * dereferenced; however, as each css is given a monotonically
3882 * increasing unique serial number and always appended to the
3883 * sibling list, the next one can be found by walking the parent's
3884 * children until the first css with higher serial number than
3885 * @pos's. While this path can be slower, it happens iff iteration
3886 * races against release and the race window is very small.
3888 if (!pos) {
3889 next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling);
3890 } else if (likely(!(pos->flags & CSS_RELEASED))) {
3891 next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling);
3892 } else {
3893 list_for_each_entry_rcu(next, &parent->children, sibling)
3894 if (next->serial_nr > pos->serial_nr)
3895 break;
3899 * @next, if not pointing to the head, can be dereferenced and is
3900 * the next sibling.
3902 if (&next->sibling != &parent->children)
3903 return next;
3904 return NULL;
3908 * css_next_descendant_pre - find the next descendant for pre-order walk
3909 * @pos: the current position (%NULL to initiate traversal)
3910 * @root: css whose descendants to walk
3912 * To be used by css_for_each_descendant_pre(). Find the next descendant
3913 * to visit for pre-order traversal of @root's descendants. @root is
3914 * included in the iteration and the first node to be visited.
3916 * While this function requires cgroup_mutex or RCU read locking, it
3917 * doesn't require the whole traversal to be contained in a single critical
3918 * section. This function will return the correct next descendant as long
3919 * as both @pos and @root are accessible and @pos is a descendant of @root.
3921 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3922 * css which finished ->css_online() is guaranteed to be visible in the
3923 * future iterations and will stay visible until the last reference is put.
3924 * A css which hasn't finished ->css_online() or already finished
3925 * ->css_offline() may show up during traversal. It's each subsystem's
3926 * responsibility to synchronize against on/offlining.
3928 struct cgroup_subsys_state *
3929 css_next_descendant_pre(struct cgroup_subsys_state *pos,
3930 struct cgroup_subsys_state *root)
3932 struct cgroup_subsys_state *next;
3934 cgroup_assert_mutex_or_rcu_locked();
3936 /* if first iteration, visit @root */
3937 if (!pos)
3938 return root;
3940 /* visit the first child if exists */
3941 next = css_next_child(NULL, pos);
3942 if (next)
3943 return next;
3945 /* no child, visit my or the closest ancestor's next sibling */
3946 while (pos != root) {
3947 next = css_next_child(pos, pos->parent);
3948 if (next)
3949 return next;
3950 pos = pos->parent;
3953 return NULL;
3957 * css_rightmost_descendant - return the rightmost descendant of a css
3958 * @pos: css of interest
3960 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3961 * is returned. This can be used during pre-order traversal to skip
3962 * subtree of @pos.
3964 * While this function requires cgroup_mutex or RCU read locking, it
3965 * doesn't require the whole traversal to be contained in a single critical
3966 * section. This function will return the correct rightmost descendant as
3967 * long as @pos is accessible.
3969 struct cgroup_subsys_state *
3970 css_rightmost_descendant(struct cgroup_subsys_state *pos)
3972 struct cgroup_subsys_state *last, *tmp;
3974 cgroup_assert_mutex_or_rcu_locked();
3976 do {
3977 last = pos;
3978 /* ->prev isn't RCU safe, walk ->next till the end */
3979 pos = NULL;
3980 css_for_each_child(tmp, last)
3981 pos = tmp;
3982 } while (pos);
3984 return last;
3987 static struct cgroup_subsys_state *
3988 css_leftmost_descendant(struct cgroup_subsys_state *pos)
3990 struct cgroup_subsys_state *last;
3992 do {
3993 last = pos;
3994 pos = css_next_child(NULL, pos);
3995 } while (pos);
3997 return last;
4001 * css_next_descendant_post - find the next descendant for post-order walk
4002 * @pos: the current position (%NULL to initiate traversal)
4003 * @root: css whose descendants to walk
4005 * To be used by css_for_each_descendant_post(). Find the next descendant
4006 * to visit for post-order traversal of @root's descendants. @root is
4007 * included in the iteration and the last node to be visited.
4009 * While this function requires cgroup_mutex or RCU read locking, it
4010 * doesn't require the whole traversal to be contained in a single critical
4011 * section. This function will return the correct next descendant as long
4012 * as both @pos and @cgroup are accessible and @pos is a descendant of
4013 * @cgroup.
4015 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4016 * css which finished ->css_online() is guaranteed to be visible in the
4017 * future iterations and will stay visible until the last reference is put.
4018 * A css which hasn't finished ->css_online() or already finished
4019 * ->css_offline() may show up during traversal. It's each subsystem's
4020 * responsibility to synchronize against on/offlining.
4022 struct cgroup_subsys_state *
4023 css_next_descendant_post(struct cgroup_subsys_state *pos,
4024 struct cgroup_subsys_state *root)
4026 struct cgroup_subsys_state *next;
4028 cgroup_assert_mutex_or_rcu_locked();
4030 /* if first iteration, visit leftmost descendant which may be @root */
4031 if (!pos)
4032 return css_leftmost_descendant(root);
4034 /* if we visited @root, we're done */
4035 if (pos == root)
4036 return NULL;
4038 /* if there's an unvisited sibling, visit its leftmost descendant */
4039 next = css_next_child(pos, pos->parent);
4040 if (next)
4041 return css_leftmost_descendant(next);
4043 /* no sibling left, visit parent */
4044 return pos->parent;
4048 * css_has_online_children - does a css have online children
4049 * @css: the target css
4051 * Returns %true if @css has any online children; otherwise, %false. This
4052 * function can be called from any context but the caller is responsible
4053 * for synchronizing against on/offlining as necessary.
4055 bool css_has_online_children(struct cgroup_subsys_state *css)
4057 struct cgroup_subsys_state *child;
4058 bool ret = false;
4060 rcu_read_lock();
4061 css_for_each_child(child, css) {
4062 if (child->flags & CSS_ONLINE) {
4063 ret = true;
4064 break;
4067 rcu_read_unlock();
4068 return ret;
4071 static struct css_set *css_task_iter_next_css_set(struct css_task_iter *it)
4073 struct list_head *l;
4074 struct cgrp_cset_link *link;
4075 struct css_set *cset;
4077 lockdep_assert_held(&css_set_lock);
4079 /* find the next threaded cset */
4080 if (it->tcset_pos) {
4081 l = it->tcset_pos->next;
4083 if (l != it->tcset_head) {
4084 it->tcset_pos = l;
4085 return container_of(l, struct css_set,
4086 threaded_csets_node);
4089 it->tcset_pos = NULL;
4092 /* find the next cset */
4093 l = it->cset_pos;
4094 l = l->next;
4095 if (l == it->cset_head) {
4096 it->cset_pos = NULL;
4097 return NULL;
4100 if (it->ss) {
4101 cset = container_of(l, struct css_set, e_cset_node[it->ss->id]);
4102 } else {
4103 link = list_entry(l, struct cgrp_cset_link, cset_link);
4104 cset = link->cset;
4107 it->cset_pos = l;
4109 /* initialize threaded css_set walking */
4110 if (it->flags & CSS_TASK_ITER_THREADED) {
4111 if (it->cur_dcset)
4112 put_css_set_locked(it->cur_dcset);
4113 it->cur_dcset = cset;
4114 get_css_set(cset);
4116 it->tcset_head = &cset->threaded_csets;
4117 it->tcset_pos = &cset->threaded_csets;
4120 return cset;
4124 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4125 * @it: the iterator to advance
4127 * Advance @it to the next css_set to walk.
4129 static void css_task_iter_advance_css_set(struct css_task_iter *it)
4131 struct css_set *cset;
4133 lockdep_assert_held(&css_set_lock);
4135 /* Advance to the next non-empty css_set */
4136 do {
4137 cset = css_task_iter_next_css_set(it);
4138 if (!cset) {
4139 it->task_pos = NULL;
4140 return;
4142 } while (!css_set_populated(cset));
4144 if (!list_empty(&cset->tasks))
4145 it->task_pos = cset->tasks.next;
4146 else
4147 it->task_pos = cset->mg_tasks.next;
4149 it->tasks_head = &cset->tasks;
4150 it->mg_tasks_head = &cset->mg_tasks;
4153 * We don't keep css_sets locked across iteration steps and thus
4154 * need to take steps to ensure that iteration can be resumed after
4155 * the lock is re-acquired. Iteration is performed at two levels -
4156 * css_sets and tasks in them.
4158 * Once created, a css_set never leaves its cgroup lists, so a
4159 * pinned css_set is guaranteed to stay put and we can resume
4160 * iteration afterwards.
4162 * Tasks may leave @cset across iteration steps. This is resolved
4163 * by registering each iterator with the css_set currently being
4164 * walked and making css_set_move_task() advance iterators whose
4165 * next task is leaving.
4167 if (it->cur_cset) {
4168 list_del(&it->iters_node);
4169 put_css_set_locked(it->cur_cset);
4171 get_css_set(cset);
4172 it->cur_cset = cset;
4173 list_add(&it->iters_node, &cset->task_iters);
4176 static void css_task_iter_advance(struct css_task_iter *it)
4178 struct list_head *next;
4180 lockdep_assert_held(&css_set_lock);
4181 repeat:
4183 * Advance iterator to find next entry. cset->tasks is consumed
4184 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4185 * next cset.
4187 next = it->task_pos->next;
4189 if (next == it->tasks_head)
4190 next = it->mg_tasks_head->next;
4192 if (next == it->mg_tasks_head)
4193 css_task_iter_advance_css_set(it);
4194 else
4195 it->task_pos = next;
4197 /* if PROCS, skip over tasks which aren't group leaders */
4198 if ((it->flags & CSS_TASK_ITER_PROCS) && it->task_pos &&
4199 !thread_group_leader(list_entry(it->task_pos, struct task_struct,
4200 cg_list)))
4201 goto repeat;
4205 * css_task_iter_start - initiate task iteration
4206 * @css: the css to walk tasks of
4207 * @flags: CSS_TASK_ITER_* flags
4208 * @it: the task iterator to use
4210 * Initiate iteration through the tasks of @css. The caller can call
4211 * css_task_iter_next() to walk through the tasks until the function
4212 * returns NULL. On completion of iteration, css_task_iter_end() must be
4213 * called.
4215 void css_task_iter_start(struct cgroup_subsys_state *css, unsigned int flags,
4216 struct css_task_iter *it)
4218 /* no one should try to iterate before mounting cgroups */
4219 WARN_ON_ONCE(!use_task_css_set_links);
4221 memset(it, 0, sizeof(*it));
4223 spin_lock_irq(&css_set_lock);
4225 it->ss = css->ss;
4226 it->flags = flags;
4228 if (it->ss)
4229 it->cset_pos = &css->cgroup->e_csets[css->ss->id];
4230 else
4231 it->cset_pos = &css->cgroup->cset_links;
4233 it->cset_head = it->cset_pos;
4235 css_task_iter_advance_css_set(it);
4237 spin_unlock_irq(&css_set_lock);
4241 * css_task_iter_next - return the next task for the iterator
4242 * @it: the task iterator being iterated
4244 * The "next" function for task iteration. @it should have been
4245 * initialized via css_task_iter_start(). Returns NULL when the iteration
4246 * reaches the end.
4248 struct task_struct *css_task_iter_next(struct css_task_iter *it)
4250 if (it->cur_task) {
4251 put_task_struct(it->cur_task);
4252 it->cur_task = NULL;
4255 spin_lock_irq(&css_set_lock);
4257 if (it->task_pos) {
4258 it->cur_task = list_entry(it->task_pos, struct task_struct,
4259 cg_list);
4260 get_task_struct(it->cur_task);
4261 css_task_iter_advance(it);
4264 spin_unlock_irq(&css_set_lock);
4266 return it->cur_task;
4270 * css_task_iter_end - finish task iteration
4271 * @it: the task iterator to finish
4273 * Finish task iteration started by css_task_iter_start().
4275 void css_task_iter_end(struct css_task_iter *it)
4277 if (it->cur_cset) {
4278 spin_lock_irq(&css_set_lock);
4279 list_del(&it->iters_node);
4280 put_css_set_locked(it->cur_cset);
4281 spin_unlock_irq(&css_set_lock);
4284 if (it->cur_dcset)
4285 put_css_set(it->cur_dcset);
4287 if (it->cur_task)
4288 put_task_struct(it->cur_task);
4291 static void cgroup_procs_release(struct kernfs_open_file *of)
4293 if (of->priv) {
4294 css_task_iter_end(of->priv);
4295 kfree(of->priv);
4299 static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos)
4301 struct kernfs_open_file *of = s->private;
4302 struct css_task_iter *it = of->priv;
4304 return css_task_iter_next(it);
4307 static void *__cgroup_procs_start(struct seq_file *s, loff_t *pos,
4308 unsigned int iter_flags)
4310 struct kernfs_open_file *of = s->private;
4311 struct cgroup *cgrp = seq_css(s)->cgroup;
4312 struct css_task_iter *it = of->priv;
4315 * When a seq_file is seeked, it's always traversed sequentially
4316 * from position 0, so we can simply keep iterating on !0 *pos.
4318 if (!it) {
4319 if (WARN_ON_ONCE((*pos)++))
4320 return ERR_PTR(-EINVAL);
4322 it = kzalloc(sizeof(*it), GFP_KERNEL);
4323 if (!it)
4324 return ERR_PTR(-ENOMEM);
4325 of->priv = it;
4326 css_task_iter_start(&cgrp->self, iter_flags, it);
4327 } else if (!(*pos)++) {
4328 css_task_iter_end(it);
4329 css_task_iter_start(&cgrp->self, iter_flags, it);
4332 return cgroup_procs_next(s, NULL, NULL);
4335 static void *cgroup_procs_start(struct seq_file *s, loff_t *pos)
4337 struct cgroup *cgrp = seq_css(s)->cgroup;
4340 * All processes of a threaded subtree belong to the domain cgroup
4341 * of the subtree. Only threads can be distributed across the
4342 * subtree. Reject reads on cgroup.procs in the subtree proper.
4343 * They're always empty anyway.
4345 if (cgroup_is_threaded(cgrp))
4346 return ERR_PTR(-EOPNOTSUPP);
4348 return __cgroup_procs_start(s, pos, CSS_TASK_ITER_PROCS |
4349 CSS_TASK_ITER_THREADED);
4352 static int cgroup_procs_show(struct seq_file *s, void *v)
4354 seq_printf(s, "%d\n", task_pid_vnr(v));
4355 return 0;
4358 static int cgroup_procs_write_permission(struct cgroup *src_cgrp,
4359 struct cgroup *dst_cgrp,
4360 struct super_block *sb)
4362 struct cgroup_namespace *ns = current->nsproxy->cgroup_ns;
4363 struct cgroup *com_cgrp = src_cgrp;
4364 struct inode *inode;
4365 int ret;
4367 lockdep_assert_held(&cgroup_mutex);
4369 /* find the common ancestor */
4370 while (!cgroup_is_descendant(dst_cgrp, com_cgrp))
4371 com_cgrp = cgroup_parent(com_cgrp);
4373 /* %current should be authorized to migrate to the common ancestor */
4374 inode = kernfs_get_inode(sb, com_cgrp->procs_file.kn);
4375 if (!inode)
4376 return -ENOMEM;
4378 ret = inode_permission(inode, MAY_WRITE);
4379 iput(inode);
4380 if (ret)
4381 return ret;
4384 * If namespaces are delegation boundaries, %current must be able
4385 * to see both source and destination cgroups from its namespace.
4387 if ((cgrp_dfl_root.flags & CGRP_ROOT_NS_DELEGATE) &&
4388 (!cgroup_is_descendant(src_cgrp, ns->root_cset->dfl_cgrp) ||
4389 !cgroup_is_descendant(dst_cgrp, ns->root_cset->dfl_cgrp)))
4390 return -ENOENT;
4392 return 0;
4395 static ssize_t cgroup_procs_write(struct kernfs_open_file *of,
4396 char *buf, size_t nbytes, loff_t off)
4398 struct cgroup *src_cgrp, *dst_cgrp;
4399 struct task_struct *task;
4400 ssize_t ret;
4402 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4403 if (!dst_cgrp)
4404 return -ENODEV;
4406 task = cgroup_procs_write_start(buf, true);
4407 ret = PTR_ERR_OR_ZERO(task);
4408 if (ret)
4409 goto out_unlock;
4411 /* find the source cgroup */
4412 spin_lock_irq(&css_set_lock);
4413 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4414 spin_unlock_irq(&css_set_lock);
4416 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4417 of->file->f_path.dentry->d_sb);
4418 if (ret)
4419 goto out_finish;
4421 ret = cgroup_attach_task(dst_cgrp, task, true);
4423 out_finish:
4424 cgroup_procs_write_finish(task);
4425 out_unlock:
4426 cgroup_kn_unlock(of->kn);
4428 return ret ?: nbytes;
4431 static void *cgroup_threads_start(struct seq_file *s, loff_t *pos)
4433 return __cgroup_procs_start(s, pos, 0);
4436 static ssize_t cgroup_threads_write(struct kernfs_open_file *of,
4437 char *buf, size_t nbytes, loff_t off)
4439 struct cgroup *src_cgrp, *dst_cgrp;
4440 struct task_struct *task;
4441 ssize_t ret;
4443 buf = strstrip(buf);
4445 dst_cgrp = cgroup_kn_lock_live(of->kn, false);
4446 if (!dst_cgrp)
4447 return -ENODEV;
4449 task = cgroup_procs_write_start(buf, false);
4450 ret = PTR_ERR_OR_ZERO(task);
4451 if (ret)
4452 goto out_unlock;
4454 /* find the source cgroup */
4455 spin_lock_irq(&css_set_lock);
4456 src_cgrp = task_cgroup_from_root(task, &cgrp_dfl_root);
4457 spin_unlock_irq(&css_set_lock);
4459 /* thread migrations follow the cgroup.procs delegation rule */
4460 ret = cgroup_procs_write_permission(src_cgrp, dst_cgrp,
4461 of->file->f_path.dentry->d_sb);
4462 if (ret)
4463 goto out_finish;
4465 /* and must be contained in the same domain */
4466 ret = -EOPNOTSUPP;
4467 if (src_cgrp->dom_cgrp != dst_cgrp->dom_cgrp)
4468 goto out_finish;
4470 ret = cgroup_attach_task(dst_cgrp, task, false);
4472 out_finish:
4473 cgroup_procs_write_finish(task);
4474 out_unlock:
4475 cgroup_kn_unlock(of->kn);
4477 return ret ?: nbytes;
4480 /* cgroup core interface files for the default hierarchy */
4481 static struct cftype cgroup_base_files[] = {
4483 .name = "cgroup.type",
4484 .flags = CFTYPE_NOT_ON_ROOT,
4485 .seq_show = cgroup_type_show,
4486 .write = cgroup_type_write,
4489 .name = "cgroup.procs",
4490 .flags = CFTYPE_NS_DELEGATABLE,
4491 .file_offset = offsetof(struct cgroup, procs_file),
4492 .release = cgroup_procs_release,
4493 .seq_start = cgroup_procs_start,
4494 .seq_next = cgroup_procs_next,
4495 .seq_show = cgroup_procs_show,
4496 .write = cgroup_procs_write,
4499 .name = "cgroup.threads",
4500 .flags = CFTYPE_NS_DELEGATABLE,
4501 .release = cgroup_procs_release,
4502 .seq_start = cgroup_threads_start,
4503 .seq_next = cgroup_procs_next,
4504 .seq_show = cgroup_procs_show,
4505 .write = cgroup_threads_write,
4508 .name = "cgroup.controllers",
4509 .seq_show = cgroup_controllers_show,
4512 .name = "cgroup.subtree_control",
4513 .flags = CFTYPE_NS_DELEGATABLE,
4514 .seq_show = cgroup_subtree_control_show,
4515 .write = cgroup_subtree_control_write,
4518 .name = "cgroup.events",
4519 .flags = CFTYPE_NOT_ON_ROOT,
4520 .file_offset = offsetof(struct cgroup, events_file),
4521 .seq_show = cgroup_events_show,
4524 .name = "cgroup.max.descendants",
4525 .seq_show = cgroup_max_descendants_show,
4526 .write = cgroup_max_descendants_write,
4529 .name = "cgroup.max.depth",
4530 .seq_show = cgroup_max_depth_show,
4531 .write = cgroup_max_depth_write,
4534 .name = "cgroup.stat",
4535 .seq_show = cgroup_stat_show,
4538 .name = "cpu.stat",
4539 .flags = CFTYPE_NOT_ON_ROOT,
4540 .seq_show = cpu_stat_show,
4542 { } /* terminate */
4546 * css destruction is four-stage process.
4548 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4549 * Implemented in kill_css().
4551 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4552 * and thus css_tryget_online() is guaranteed to fail, the css can be
4553 * offlined by invoking offline_css(). After offlining, the base ref is
4554 * put. Implemented in css_killed_work_fn().
4556 * 3. When the percpu_ref reaches zero, the only possible remaining
4557 * accessors are inside RCU read sections. css_release() schedules the
4558 * RCU callback.
4560 * 4. After the grace period, the css can be freed. Implemented in
4561 * css_free_work_fn().
4563 * It is actually hairier because both step 2 and 4 require process context
4564 * and thus involve punting to css->destroy_work adding two additional
4565 * steps to the already complex sequence.
4567 static void css_free_rwork_fn(struct work_struct *work)
4569 struct cgroup_subsys_state *css = container_of(to_rcu_work(work),
4570 struct cgroup_subsys_state, destroy_rwork);
4571 struct cgroup_subsys *ss = css->ss;
4572 struct cgroup *cgrp = css->cgroup;
4574 percpu_ref_exit(&css->refcnt);
4576 if (ss) {
4577 /* css free path */
4578 struct cgroup_subsys_state *parent = css->parent;
4579 int id = css->id;
4581 ss->css_free(css);
4582 cgroup_idr_remove(&ss->css_idr, id);
4583 cgroup_put(cgrp);
4585 if (parent)
4586 css_put(parent);
4587 } else {
4588 /* cgroup free path */
4589 atomic_dec(&cgrp->root->nr_cgrps);
4590 cgroup1_pidlist_destroy_all(cgrp);
4591 cancel_work_sync(&cgrp->release_agent_work);
4593 if (cgroup_parent(cgrp)) {
4595 * We get a ref to the parent, and put the ref when
4596 * this cgroup is being freed, so it's guaranteed
4597 * that the parent won't be destroyed before its
4598 * children.
4600 cgroup_put(cgroup_parent(cgrp));
4601 kernfs_put(cgrp->kn);
4602 if (cgroup_on_dfl(cgrp))
4603 cgroup_rstat_exit(cgrp);
4604 kfree(cgrp);
4605 } else {
4607 * This is root cgroup's refcnt reaching zero,
4608 * which indicates that the root should be
4609 * released.
4611 cgroup_destroy_root(cgrp->root);
4616 static void css_release_work_fn(struct work_struct *work)
4618 struct cgroup_subsys_state *css =
4619 container_of(work, struct cgroup_subsys_state, destroy_work);
4620 struct cgroup_subsys *ss = css->ss;
4621 struct cgroup *cgrp = css->cgroup;
4623 mutex_lock(&cgroup_mutex);
4625 css->flags |= CSS_RELEASED;
4626 list_del_rcu(&css->sibling);
4628 if (ss) {
4629 /* css release path */
4630 if (!list_empty(&css->rstat_css_node)) {
4631 cgroup_rstat_flush(cgrp);
4632 list_del_rcu(&css->rstat_css_node);
4635 cgroup_idr_replace(&ss->css_idr, NULL, css->id);
4636 if (ss->css_released)
4637 ss->css_released(css);
4638 } else {
4639 struct cgroup *tcgrp;
4641 /* cgroup release path */
4642 TRACE_CGROUP_PATH(release, cgrp);
4644 if (cgroup_on_dfl(cgrp))
4645 cgroup_rstat_flush(cgrp);
4647 for (tcgrp = cgroup_parent(cgrp); tcgrp;
4648 tcgrp = cgroup_parent(tcgrp))
4649 tcgrp->nr_dying_descendants--;
4651 cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id);
4652 cgrp->id = -1;
4655 * There are two control paths which try to determine
4656 * cgroup from dentry without going through kernfs -
4657 * cgroupstats_build() and css_tryget_online_from_dir().
4658 * Those are supported by RCU protecting clearing of
4659 * cgrp->kn->priv backpointer.
4661 if (cgrp->kn)
4662 RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv,
4663 NULL);
4665 cgroup_bpf_put(cgrp);
4668 mutex_unlock(&cgroup_mutex);
4670 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4671 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4674 static void css_release(struct percpu_ref *ref)
4676 struct cgroup_subsys_state *css =
4677 container_of(ref, struct cgroup_subsys_state, refcnt);
4679 INIT_WORK(&css->destroy_work, css_release_work_fn);
4680 queue_work(cgroup_destroy_wq, &css->destroy_work);
4683 static void init_and_link_css(struct cgroup_subsys_state *css,
4684 struct cgroup_subsys *ss, struct cgroup *cgrp)
4686 lockdep_assert_held(&cgroup_mutex);
4688 cgroup_get_live(cgrp);
4690 memset(css, 0, sizeof(*css));
4691 css->cgroup = cgrp;
4692 css->ss = ss;
4693 css->id = -1;
4694 INIT_LIST_HEAD(&css->sibling);
4695 INIT_LIST_HEAD(&css->children);
4696 INIT_LIST_HEAD(&css->rstat_css_node);
4697 css->serial_nr = css_serial_nr_next++;
4698 atomic_set(&css->online_cnt, 0);
4700 if (cgroup_parent(cgrp)) {
4701 css->parent = cgroup_css(cgroup_parent(cgrp), ss);
4702 css_get(css->parent);
4705 if (cgroup_on_dfl(cgrp) && ss->css_rstat_flush)
4706 list_add_rcu(&css->rstat_css_node, &cgrp->rstat_css_list);
4708 BUG_ON(cgroup_css(cgrp, ss));
4711 /* invoke ->css_online() on a new CSS and mark it online if successful */
4712 static int online_css(struct cgroup_subsys_state *css)
4714 struct cgroup_subsys *ss = css->ss;
4715 int ret = 0;
4717 lockdep_assert_held(&cgroup_mutex);
4719 if (ss->css_online)
4720 ret = ss->css_online(css);
4721 if (!ret) {
4722 css->flags |= CSS_ONLINE;
4723 rcu_assign_pointer(css->cgroup->subsys[ss->id], css);
4725 atomic_inc(&css->online_cnt);
4726 if (css->parent)
4727 atomic_inc(&css->parent->online_cnt);
4729 return ret;
4732 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4733 static void offline_css(struct cgroup_subsys_state *css)
4735 struct cgroup_subsys *ss = css->ss;
4737 lockdep_assert_held(&cgroup_mutex);
4739 if (!(css->flags & CSS_ONLINE))
4740 return;
4742 if (ss->css_offline)
4743 ss->css_offline(css);
4745 css->flags &= ~CSS_ONLINE;
4746 RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL);
4748 wake_up_all(&css->cgroup->offline_waitq);
4752 * css_create - create a cgroup_subsys_state
4753 * @cgrp: the cgroup new css will be associated with
4754 * @ss: the subsys of new css
4756 * Create a new css associated with @cgrp - @ss pair. On success, the new
4757 * css is online and installed in @cgrp. This function doesn't create the
4758 * interface files. Returns 0 on success, -errno on failure.
4760 static struct cgroup_subsys_state *css_create(struct cgroup *cgrp,
4761 struct cgroup_subsys *ss)
4763 struct cgroup *parent = cgroup_parent(cgrp);
4764 struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss);
4765 struct cgroup_subsys_state *css;
4766 int err;
4768 lockdep_assert_held(&cgroup_mutex);
4770 css = ss->css_alloc(parent_css);
4771 if (!css)
4772 css = ERR_PTR(-ENOMEM);
4773 if (IS_ERR(css))
4774 return css;
4776 init_and_link_css(css, ss, cgrp);
4778 err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL);
4779 if (err)
4780 goto err_free_css;
4782 err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL);
4783 if (err < 0)
4784 goto err_free_css;
4785 css->id = err;
4787 /* @css is ready to be brought online now, make it visible */
4788 list_add_tail_rcu(&css->sibling, &parent_css->children);
4789 cgroup_idr_replace(&ss->css_idr, css, css->id);
4791 err = online_css(css);
4792 if (err)
4793 goto err_list_del;
4795 if (ss->broken_hierarchy && !ss->warned_broken_hierarchy &&
4796 cgroup_parent(parent)) {
4797 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4798 current->comm, current->pid, ss->name);
4799 if (!strcmp(ss->name, "memory"))
4800 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4801 ss->warned_broken_hierarchy = true;
4804 return css;
4806 err_list_del:
4807 list_del_rcu(&css->sibling);
4808 err_free_css:
4809 list_del_rcu(&css->rstat_css_node);
4810 INIT_RCU_WORK(&css->destroy_rwork, css_free_rwork_fn);
4811 queue_rcu_work(cgroup_destroy_wq, &css->destroy_rwork);
4812 return ERR_PTR(err);
4816 * The returned cgroup is fully initialized including its control mask, but
4817 * it isn't associated with its kernfs_node and doesn't have the control
4818 * mask applied.
4820 static struct cgroup *cgroup_create(struct cgroup *parent)
4822 struct cgroup_root *root = parent->root;
4823 struct cgroup *cgrp, *tcgrp;
4824 int level = parent->level + 1;
4825 int ret;
4827 /* allocate the cgroup and its ID, 0 is reserved for the root */
4828 cgrp = kzalloc(struct_size(cgrp, ancestor_ids, (level + 1)),
4829 GFP_KERNEL);
4830 if (!cgrp)
4831 return ERR_PTR(-ENOMEM);
4833 ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL);
4834 if (ret)
4835 goto out_free_cgrp;
4837 if (cgroup_on_dfl(parent)) {
4838 ret = cgroup_rstat_init(cgrp);
4839 if (ret)
4840 goto out_cancel_ref;
4844 * Temporarily set the pointer to NULL, so idr_find() won't return
4845 * a half-baked cgroup.
4847 cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL);
4848 if (cgrp->id < 0) {
4849 ret = -ENOMEM;
4850 goto out_stat_exit;
4853 init_cgroup_housekeeping(cgrp);
4855 cgrp->self.parent = &parent->self;
4856 cgrp->root = root;
4857 cgrp->level = level;
4858 ret = cgroup_bpf_inherit(cgrp);
4859 if (ret)
4860 goto out_idr_free;
4862 for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) {
4863 cgrp->ancestor_ids[tcgrp->level] = tcgrp->id;
4865 if (tcgrp != cgrp)
4866 tcgrp->nr_descendants++;
4869 if (notify_on_release(parent))
4870 set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags);
4872 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags))
4873 set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags);
4875 cgrp->self.serial_nr = css_serial_nr_next++;
4877 /* allocation complete, commit to creation */
4878 list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children);
4879 atomic_inc(&root->nr_cgrps);
4880 cgroup_get_live(parent);
4883 * @cgrp is now fully operational. If something fails after this
4884 * point, it'll be released via the normal destruction path.
4886 cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id);
4889 * On the default hierarchy, a child doesn't automatically inherit
4890 * subtree_control from the parent. Each is configured manually.
4892 if (!cgroup_on_dfl(cgrp))
4893 cgrp->subtree_control = cgroup_control(cgrp);
4895 cgroup_propagate_control(cgrp);
4897 return cgrp;
4899 out_idr_free:
4900 cgroup_idr_remove(&root->cgroup_idr, cgrp->id);
4901 out_stat_exit:
4902 if (cgroup_on_dfl(parent))
4903 cgroup_rstat_exit(cgrp);
4904 out_cancel_ref:
4905 percpu_ref_exit(&cgrp->self.refcnt);
4906 out_free_cgrp:
4907 kfree(cgrp);
4908 return ERR_PTR(ret);
4911 static bool cgroup_check_hierarchy_limits(struct cgroup *parent)
4913 struct cgroup *cgroup;
4914 int ret = false;
4915 int level = 1;
4917 lockdep_assert_held(&cgroup_mutex);
4919 for (cgroup = parent; cgroup; cgroup = cgroup_parent(cgroup)) {
4920 if (cgroup->nr_descendants >= cgroup->max_descendants)
4921 goto fail;
4923 if (level > cgroup->max_depth)
4924 goto fail;
4926 level++;
4929 ret = true;
4930 fail:
4931 return ret;
4934 int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode)
4936 struct cgroup *parent, *cgrp;
4937 struct kernfs_node *kn;
4938 int ret;
4940 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4941 if (strchr(name, '\n'))
4942 return -EINVAL;
4944 parent = cgroup_kn_lock_live(parent_kn, false);
4945 if (!parent)
4946 return -ENODEV;
4948 if (!cgroup_check_hierarchy_limits(parent)) {
4949 ret = -EAGAIN;
4950 goto out_unlock;
4953 cgrp = cgroup_create(parent);
4954 if (IS_ERR(cgrp)) {
4955 ret = PTR_ERR(cgrp);
4956 goto out_unlock;
4959 /* create the directory */
4960 kn = kernfs_create_dir(parent->kn, name, mode, cgrp);
4961 if (IS_ERR(kn)) {
4962 ret = PTR_ERR(kn);
4963 goto out_destroy;
4965 cgrp->kn = kn;
4968 * This extra ref will be put in cgroup_free_fn() and guarantees
4969 * that @cgrp->kn is always accessible.
4971 kernfs_get(kn);
4973 ret = cgroup_kn_set_ugid(kn);
4974 if (ret)
4975 goto out_destroy;
4977 ret = css_populate_dir(&cgrp->self);
4978 if (ret)
4979 goto out_destroy;
4981 ret = cgroup_apply_control_enable(cgrp);
4982 if (ret)
4983 goto out_destroy;
4985 TRACE_CGROUP_PATH(mkdir, cgrp);
4987 /* let's create and online css's */
4988 kernfs_activate(kn);
4990 ret = 0;
4991 goto out_unlock;
4993 out_destroy:
4994 cgroup_destroy_locked(cgrp);
4995 out_unlock:
4996 cgroup_kn_unlock(parent_kn);
4997 return ret;
5001 * This is called when the refcnt of a css is confirmed to be killed.
5002 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5003 * initate destruction and put the css ref from kill_css().
5005 static void css_killed_work_fn(struct work_struct *work)
5007 struct cgroup_subsys_state *css =
5008 container_of(work, struct cgroup_subsys_state, destroy_work);
5010 mutex_lock(&cgroup_mutex);
5012 do {
5013 offline_css(css);
5014 css_put(css);
5015 /* @css can't go away while we're holding cgroup_mutex */
5016 css = css->parent;
5017 } while (css && atomic_dec_and_test(&css->online_cnt));
5019 mutex_unlock(&cgroup_mutex);
5022 /* css kill confirmation processing requires process context, bounce */
5023 static void css_killed_ref_fn(struct percpu_ref *ref)
5025 struct cgroup_subsys_state *css =
5026 container_of(ref, struct cgroup_subsys_state, refcnt);
5028 if (atomic_dec_and_test(&css->online_cnt)) {
5029 INIT_WORK(&css->destroy_work, css_killed_work_fn);
5030 queue_work(cgroup_destroy_wq, &css->destroy_work);
5035 * kill_css - destroy a css
5036 * @css: css to destroy
5038 * This function initiates destruction of @css by removing cgroup interface
5039 * files and putting its base reference. ->css_offline() will be invoked
5040 * asynchronously once css_tryget_online() is guaranteed to fail and when
5041 * the reference count reaches zero, @css will be released.
5043 static void kill_css(struct cgroup_subsys_state *css)
5045 lockdep_assert_held(&cgroup_mutex);
5047 if (css->flags & CSS_DYING)
5048 return;
5050 css->flags |= CSS_DYING;
5053 * This must happen before css is disassociated with its cgroup.
5054 * See seq_css() for details.
5056 css_clear_dir(css);
5059 * Killing would put the base ref, but we need to keep it alive
5060 * until after ->css_offline().
5062 css_get(css);
5065 * cgroup core guarantees that, by the time ->css_offline() is
5066 * invoked, no new css reference will be given out via
5067 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5068 * proceed to offlining css's because percpu_ref_kill() doesn't
5069 * guarantee that the ref is seen as killed on all CPUs on return.
5071 * Use percpu_ref_kill_and_confirm() to get notifications as each
5072 * css is confirmed to be seen as killed on all CPUs.
5074 percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn);
5078 * cgroup_destroy_locked - the first stage of cgroup destruction
5079 * @cgrp: cgroup to be destroyed
5081 * css's make use of percpu refcnts whose killing latency shouldn't be
5082 * exposed to userland and are RCU protected. Also, cgroup core needs to
5083 * guarantee that css_tryget_online() won't succeed by the time
5084 * ->css_offline() is invoked. To satisfy all the requirements,
5085 * destruction is implemented in the following two steps.
5087 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5088 * userland visible parts and start killing the percpu refcnts of
5089 * css's. Set up so that the next stage will be kicked off once all
5090 * the percpu refcnts are confirmed to be killed.
5092 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5093 * rest of destruction. Once all cgroup references are gone, the
5094 * cgroup is RCU-freed.
5096 * This function implements s1. After this step, @cgrp is gone as far as
5097 * the userland is concerned and a new cgroup with the same name may be
5098 * created. As cgroup doesn't care about the names internally, this
5099 * doesn't cause any problem.
5101 static int cgroup_destroy_locked(struct cgroup *cgrp)
5102 __releases(&cgroup_mutex) __acquires(&cgroup_mutex)
5104 struct cgroup *tcgrp, *parent = cgroup_parent(cgrp);
5105 struct cgroup_subsys_state *css;
5106 struct cgrp_cset_link *link;
5107 int ssid;
5109 lockdep_assert_held(&cgroup_mutex);
5112 * Only migration can raise populated from zero and we're already
5113 * holding cgroup_mutex.
5115 if (cgroup_is_populated(cgrp))
5116 return -EBUSY;
5119 * Make sure there's no live children. We can't test emptiness of
5120 * ->self.children as dead children linger on it while being
5121 * drained; otherwise, "rmdir parent/child parent" may fail.
5123 if (css_has_online_children(&cgrp->self))
5124 return -EBUSY;
5127 * Mark @cgrp and the associated csets dead. The former prevents
5128 * further task migration and child creation by disabling
5129 * cgroup_lock_live_group(). The latter makes the csets ignored by
5130 * the migration path.
5132 cgrp->self.flags &= ~CSS_ONLINE;
5134 spin_lock_irq(&css_set_lock);
5135 list_for_each_entry(link, &cgrp->cset_links, cset_link)
5136 link->cset->dead = true;
5137 spin_unlock_irq(&css_set_lock);
5139 /* initiate massacre of all css's */
5140 for_each_css(css, ssid, cgrp)
5141 kill_css(css);
5143 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5144 css_clear_dir(&cgrp->self);
5145 kernfs_remove(cgrp->kn);
5147 if (parent && cgroup_is_threaded(cgrp))
5148 parent->nr_threaded_children--;
5150 for (tcgrp = cgroup_parent(cgrp); tcgrp; tcgrp = cgroup_parent(tcgrp)) {
5151 tcgrp->nr_descendants--;
5152 tcgrp->nr_dying_descendants++;
5155 cgroup1_check_for_release(parent);
5157 /* put the base reference */
5158 percpu_ref_kill(&cgrp->self.refcnt);
5160 return 0;
5163 int cgroup_rmdir(struct kernfs_node *kn)
5165 struct cgroup *cgrp;
5166 int ret = 0;
5168 cgrp = cgroup_kn_lock_live(kn, false);
5169 if (!cgrp)
5170 return 0;
5172 ret = cgroup_destroy_locked(cgrp);
5173 if (!ret)
5174 TRACE_CGROUP_PATH(rmdir, cgrp);
5176 cgroup_kn_unlock(kn);
5177 return ret;
5180 static struct kernfs_syscall_ops cgroup_kf_syscall_ops = {
5181 .show_options = cgroup_show_options,
5182 .remount_fs = cgroup_remount,
5183 .mkdir = cgroup_mkdir,
5184 .rmdir = cgroup_rmdir,
5185 .show_path = cgroup_show_path,
5188 static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early)
5190 struct cgroup_subsys_state *css;
5192 pr_debug("Initializing cgroup subsys %s\n", ss->name);
5194 mutex_lock(&cgroup_mutex);
5196 idr_init(&ss->css_idr);
5197 INIT_LIST_HEAD(&ss->cfts);
5199 /* Create the root cgroup state for this subsystem */
5200 ss->root = &cgrp_dfl_root;
5201 css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss));
5202 /* We don't handle early failures gracefully */
5203 BUG_ON(IS_ERR(css));
5204 init_and_link_css(css, ss, &cgrp_dfl_root.cgrp);
5207 * Root csses are never destroyed and we can't initialize
5208 * percpu_ref during early init. Disable refcnting.
5210 css->flags |= CSS_NO_REF;
5212 if (early) {
5213 /* allocation can't be done safely during early init */
5214 css->id = 1;
5215 } else {
5216 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL);
5217 BUG_ON(css->id < 0);
5220 /* Update the init_css_set to contain a subsys
5221 * pointer to this state - since the subsystem is
5222 * newly registered, all tasks and hence the
5223 * init_css_set is in the subsystem's root cgroup. */
5224 init_css_set.subsys[ss->id] = css;
5226 have_fork_callback |= (bool)ss->fork << ss->id;
5227 have_exit_callback |= (bool)ss->exit << ss->id;
5228 have_free_callback |= (bool)ss->free << ss->id;
5229 have_canfork_callback |= (bool)ss->can_fork << ss->id;
5231 /* At system boot, before all subsystems have been
5232 * registered, no tasks have been forked, so we don't
5233 * need to invoke fork callbacks here. */
5234 BUG_ON(!list_empty(&init_task.tasks));
5236 BUG_ON(online_css(css));
5238 mutex_unlock(&cgroup_mutex);
5242 * cgroup_init_early - cgroup initialization at system boot
5244 * Initialize cgroups at system boot, and initialize any
5245 * subsystems that request early init.
5247 int __init cgroup_init_early(void)
5249 static struct cgroup_sb_opts __initdata opts;
5250 struct cgroup_subsys *ss;
5251 int i;
5253 init_cgroup_root(&cgrp_dfl_root, &opts);
5254 cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF;
5256 RCU_INIT_POINTER(init_task.cgroups, &init_css_set);
5258 for_each_subsys(ss, i) {
5259 WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id,
5260 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5261 i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free,
5262 ss->id, ss->name);
5263 WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN,
5264 "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]);
5266 ss->id = i;
5267 ss->name = cgroup_subsys_name[i];
5268 if (!ss->legacy_name)
5269 ss->legacy_name = cgroup_subsys_name[i];
5271 if (ss->early_init)
5272 cgroup_init_subsys(ss, true);
5274 return 0;
5277 static u16 cgroup_disable_mask __initdata;
5280 * cgroup_init - cgroup initialization
5282 * Register cgroup filesystem and /proc file, and initialize
5283 * any subsystems that didn't request early init.
5285 int __init cgroup_init(void)
5287 struct cgroup_subsys *ss;
5288 int ssid;
5290 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16);
5291 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem));
5292 BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files));
5293 BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files));
5295 cgroup_rstat_boot();
5298 * The latency of the synchronize_sched() is too high for cgroups,
5299 * avoid it at the cost of forcing all readers into the slow path.
5301 rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss);
5303 get_user_ns(init_cgroup_ns.user_ns);
5305 mutex_lock(&cgroup_mutex);
5308 * Add init_css_set to the hash table so that dfl_root can link to
5309 * it during init.
5311 hash_add(css_set_table, &init_css_set.hlist,
5312 css_set_hash(init_css_set.subsys));
5314 BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0, 0));
5316 mutex_unlock(&cgroup_mutex);
5318 for_each_subsys(ss, ssid) {
5319 if (ss->early_init) {
5320 struct cgroup_subsys_state *css =
5321 init_css_set.subsys[ss->id];
5323 css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2,
5324 GFP_KERNEL);
5325 BUG_ON(css->id < 0);
5326 } else {
5327 cgroup_init_subsys(ss, false);
5330 list_add_tail(&init_css_set.e_cset_node[ssid],
5331 &cgrp_dfl_root.cgrp.e_csets[ssid]);
5334 * Setting dfl_root subsys_mask needs to consider the
5335 * disabled flag and cftype registration needs kmalloc,
5336 * both of which aren't available during early_init.
5338 if (cgroup_disable_mask & (1 << ssid)) {
5339 static_branch_disable(cgroup_subsys_enabled_key[ssid]);
5340 printk(KERN_INFO "Disabling %s control group subsystem\n",
5341 ss->name);
5342 continue;
5345 if (cgroup1_ssid_disabled(ssid))
5346 printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n",
5347 ss->name);
5349 cgrp_dfl_root.subsys_mask |= 1 << ss->id;
5351 /* implicit controllers must be threaded too */
5352 WARN_ON(ss->implicit_on_dfl && !ss->threaded);
5354 if (ss->implicit_on_dfl)
5355 cgrp_dfl_implicit_ss_mask |= 1 << ss->id;
5356 else if (!ss->dfl_cftypes)
5357 cgrp_dfl_inhibit_ss_mask |= 1 << ss->id;
5359 if (ss->threaded)
5360 cgrp_dfl_threaded_ss_mask |= 1 << ss->id;
5362 if (ss->dfl_cftypes == ss->legacy_cftypes) {
5363 WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes));
5364 } else {
5365 WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes));
5366 WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes));
5369 if (ss->bind)
5370 ss->bind(init_css_set.subsys[ssid]);
5372 mutex_lock(&cgroup_mutex);
5373 css_populate_dir(init_css_set.subsys[ssid]);
5374 mutex_unlock(&cgroup_mutex);
5377 /* init_css_set.subsys[] has been updated, re-hash */
5378 hash_del(&init_css_set.hlist);
5379 hash_add(css_set_table, &init_css_set.hlist,
5380 css_set_hash(init_css_set.subsys));
5382 WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup"));
5383 WARN_ON(register_filesystem(&cgroup_fs_type));
5384 WARN_ON(register_filesystem(&cgroup2_fs_type));
5385 WARN_ON(!proc_create_single("cgroups", 0, NULL, proc_cgroupstats_show));
5387 return 0;
5390 static int __init cgroup_wq_init(void)
5393 * There isn't much point in executing destruction path in
5394 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5395 * Use 1 for @max_active.
5397 * We would prefer to do this in cgroup_init() above, but that
5398 * is called before init_workqueues(): so leave this until after.
5400 cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1);
5401 BUG_ON(!cgroup_destroy_wq);
5402 return 0;
5404 core_initcall(cgroup_wq_init);
5406 void cgroup_path_from_kernfs_id(const union kernfs_node_id *id,
5407 char *buf, size_t buflen)
5409 struct kernfs_node *kn;
5411 kn = kernfs_get_node_by_id(cgrp_dfl_root.kf_root, id);
5412 if (!kn)
5413 return;
5414 kernfs_path(kn, buf, buflen);
5415 kernfs_put(kn);
5419 * proc_cgroup_show()
5420 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5421 * - Used for /proc/<pid>/cgroup.
5423 int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns,
5424 struct pid *pid, struct task_struct *tsk)
5426 char *buf;
5427 int retval;
5428 struct cgroup_root *root;
5430 retval = -ENOMEM;
5431 buf = kmalloc(PATH_MAX, GFP_KERNEL);
5432 if (!buf)
5433 goto out;
5435 mutex_lock(&cgroup_mutex);
5436 spin_lock_irq(&css_set_lock);
5438 for_each_root(root) {
5439 struct cgroup_subsys *ss;
5440 struct cgroup *cgrp;
5441 int ssid, count = 0;
5443 if (root == &cgrp_dfl_root && !cgrp_dfl_visible)
5444 continue;
5446 seq_printf(m, "%d:", root->hierarchy_id);
5447 if (root != &cgrp_dfl_root)
5448 for_each_subsys(ss, ssid)
5449 if (root->subsys_mask & (1 << ssid))
5450 seq_printf(m, "%s%s", count++ ? "," : "",
5451 ss->legacy_name);
5452 if (strlen(root->name))
5453 seq_printf(m, "%sname=%s", count ? "," : "",
5454 root->name);
5455 seq_putc(m, ':');
5457 cgrp = task_cgroup_from_root(tsk, root);
5460 * On traditional hierarchies, all zombie tasks show up as
5461 * belonging to the root cgroup. On the default hierarchy,
5462 * while a zombie doesn't show up in "cgroup.procs" and
5463 * thus can't be migrated, its /proc/PID/cgroup keeps
5464 * reporting the cgroup it belonged to before exiting. If
5465 * the cgroup is removed before the zombie is reaped,
5466 * " (deleted)" is appended to the cgroup path.
5468 if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) {
5469 retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX,
5470 current->nsproxy->cgroup_ns);
5471 if (retval >= PATH_MAX)
5472 retval = -ENAMETOOLONG;
5473 if (retval < 0)
5474 goto out_unlock;
5476 seq_puts(m, buf);
5477 } else {
5478 seq_puts(m, "/");
5481 if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp))
5482 seq_puts(m, " (deleted)\n");
5483 else
5484 seq_putc(m, '\n');
5487 retval = 0;
5488 out_unlock:
5489 spin_unlock_irq(&css_set_lock);
5490 mutex_unlock(&cgroup_mutex);
5491 kfree(buf);
5492 out:
5493 return retval;
5497 * cgroup_fork - initialize cgroup related fields during copy_process()
5498 * @child: pointer to task_struct of forking parent process.
5500 * A task is associated with the init_css_set until cgroup_post_fork()
5501 * attaches it to the parent's css_set. Empty cg_list indicates that
5502 * @child isn't holding reference to its css_set.
5504 void cgroup_fork(struct task_struct *child)
5506 RCU_INIT_POINTER(child->cgroups, &init_css_set);
5507 INIT_LIST_HEAD(&child->cg_list);
5511 * cgroup_can_fork - called on a new task before the process is exposed
5512 * @child: the task in question.
5514 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5515 * returns an error, the fork aborts with that error code. This allows for
5516 * a cgroup subsystem to conditionally allow or deny new forks.
5518 int cgroup_can_fork(struct task_struct *child)
5520 struct cgroup_subsys *ss;
5521 int i, j, ret;
5523 do_each_subsys_mask(ss, i, have_canfork_callback) {
5524 ret = ss->can_fork(child);
5525 if (ret)
5526 goto out_revert;
5527 } while_each_subsys_mask();
5529 return 0;
5531 out_revert:
5532 for_each_subsys(ss, j) {
5533 if (j >= i)
5534 break;
5535 if (ss->cancel_fork)
5536 ss->cancel_fork(child);
5539 return ret;
5543 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5544 * @child: the task in question
5546 * This calls the cancel_fork() callbacks if a fork failed *after*
5547 * cgroup_can_fork() succeded.
5549 void cgroup_cancel_fork(struct task_struct *child)
5551 struct cgroup_subsys *ss;
5552 int i;
5554 for_each_subsys(ss, i)
5555 if (ss->cancel_fork)
5556 ss->cancel_fork(child);
5560 * cgroup_post_fork - called on a new task after adding it to the task list
5561 * @child: the task in question
5563 * Adds the task to the list running through its css_set if necessary and
5564 * call the subsystem fork() callbacks. Has to be after the task is
5565 * visible on the task list in case we race with the first call to
5566 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5567 * list.
5569 void cgroup_post_fork(struct task_struct *child)
5571 struct cgroup_subsys *ss;
5572 int i;
5575 * This may race against cgroup_enable_task_cg_lists(). As that
5576 * function sets use_task_css_set_links before grabbing
5577 * tasklist_lock and we just went through tasklist_lock to add
5578 * @child, it's guaranteed that either we see the set
5579 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5580 * @child during its iteration.
5582 * If we won the race, @child is associated with %current's
5583 * css_set. Grabbing css_set_lock guarantees both that the
5584 * association is stable, and, on completion of the parent's
5585 * migration, @child is visible in the source of migration or
5586 * already in the destination cgroup. This guarantee is necessary
5587 * when implementing operations which need to migrate all tasks of
5588 * a cgroup to another.
5590 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5591 * will remain in init_css_set. This is safe because all tasks are
5592 * in the init_css_set before cg_links is enabled and there's no
5593 * operation which transfers all tasks out of init_css_set.
5595 if (use_task_css_set_links) {
5596 struct css_set *cset;
5598 spin_lock_irq(&css_set_lock);
5599 cset = task_css_set(current);
5600 if (list_empty(&child->cg_list)) {
5601 get_css_set(cset);
5602 cset->nr_tasks++;
5603 css_set_move_task(child, NULL, cset, false);
5605 spin_unlock_irq(&css_set_lock);
5609 * Call ss->fork(). This must happen after @child is linked on
5610 * css_set; otherwise, @child might change state between ->fork()
5611 * and addition to css_set.
5613 do_each_subsys_mask(ss, i, have_fork_callback) {
5614 ss->fork(child);
5615 } while_each_subsys_mask();
5619 * cgroup_exit - detach cgroup from exiting task
5620 * @tsk: pointer to task_struct of exiting process
5622 * Description: Detach cgroup from @tsk and release it.
5624 * Note that cgroups marked notify_on_release force every task in
5625 * them to take the global cgroup_mutex mutex when exiting.
5626 * This could impact scaling on very large systems. Be reluctant to
5627 * use notify_on_release cgroups where very high task exit scaling
5628 * is required on large systems.
5630 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5631 * call cgroup_exit() while the task is still competent to handle
5632 * notify_on_release(), then leave the task attached to the root cgroup in
5633 * each hierarchy for the remainder of its exit. No need to bother with
5634 * init_css_set refcnting. init_css_set never goes away and we can't race
5635 * with migration path - PF_EXITING is visible to migration path.
5637 void cgroup_exit(struct task_struct *tsk)
5639 struct cgroup_subsys *ss;
5640 struct css_set *cset;
5641 int i;
5644 * Unlink from @tsk from its css_set. As migration path can't race
5645 * with us, we can check css_set and cg_list without synchronization.
5647 cset = task_css_set(tsk);
5649 if (!list_empty(&tsk->cg_list)) {
5650 spin_lock_irq(&css_set_lock);
5651 css_set_move_task(tsk, cset, NULL, false);
5652 cset->nr_tasks--;
5653 spin_unlock_irq(&css_set_lock);
5654 } else {
5655 get_css_set(cset);
5658 /* see cgroup_post_fork() for details */
5659 do_each_subsys_mask(ss, i, have_exit_callback) {
5660 ss->exit(tsk);
5661 } while_each_subsys_mask();
5664 void cgroup_free(struct task_struct *task)
5666 struct css_set *cset = task_css_set(task);
5667 struct cgroup_subsys *ss;
5668 int ssid;
5670 do_each_subsys_mask(ss, ssid, have_free_callback) {
5671 ss->free(task);
5672 } while_each_subsys_mask();
5674 put_css_set(cset);
5677 static int __init cgroup_disable(char *str)
5679 struct cgroup_subsys *ss;
5680 char *token;
5681 int i;
5683 while ((token = strsep(&str, ",")) != NULL) {
5684 if (!*token)
5685 continue;
5687 for_each_subsys(ss, i) {
5688 if (strcmp(token, ss->name) &&
5689 strcmp(token, ss->legacy_name))
5690 continue;
5691 cgroup_disable_mask |= 1 << i;
5694 return 1;
5696 __setup("cgroup_disable=", cgroup_disable);
5699 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5700 * @dentry: directory dentry of interest
5701 * @ss: subsystem of interest
5703 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5704 * to get the corresponding css and return it. If such css doesn't exist
5705 * or can't be pinned, an ERR_PTR value is returned.
5707 struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry,
5708 struct cgroup_subsys *ss)
5710 struct kernfs_node *kn = kernfs_node_from_dentry(dentry);
5711 struct file_system_type *s_type = dentry->d_sb->s_type;
5712 struct cgroup_subsys_state *css = NULL;
5713 struct cgroup *cgrp;
5715 /* is @dentry a cgroup dir? */
5716 if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) ||
5717 !kn || kernfs_type(kn) != KERNFS_DIR)
5718 return ERR_PTR(-EBADF);
5720 rcu_read_lock();
5723 * This path doesn't originate from kernfs and @kn could already
5724 * have been or be removed at any point. @kn->priv is RCU
5725 * protected for this access. See css_release_work_fn() for details.
5727 cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv);
5728 if (cgrp)
5729 css = cgroup_css(cgrp, ss);
5731 if (!css || !css_tryget_online(css))
5732 css = ERR_PTR(-ENOENT);
5734 rcu_read_unlock();
5735 return css;
5739 * css_from_id - lookup css by id
5740 * @id: the cgroup id
5741 * @ss: cgroup subsys to be looked into
5743 * Returns the css if there's valid one with @id, otherwise returns NULL.
5744 * Should be called under rcu_read_lock().
5746 struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss)
5748 WARN_ON_ONCE(!rcu_read_lock_held());
5749 return idr_find(&ss->css_idr, id);
5753 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5754 * @path: path on the default hierarchy
5756 * Find the cgroup at @path on the default hierarchy, increment its
5757 * reference count and return it. Returns pointer to the found cgroup on
5758 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5759 * if @path points to a non-directory.
5761 struct cgroup *cgroup_get_from_path(const char *path)
5763 struct kernfs_node *kn;
5764 struct cgroup *cgrp;
5766 mutex_lock(&cgroup_mutex);
5768 kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path);
5769 if (kn) {
5770 if (kernfs_type(kn) == KERNFS_DIR) {
5771 cgrp = kn->priv;
5772 cgroup_get_live(cgrp);
5773 } else {
5774 cgrp = ERR_PTR(-ENOTDIR);
5776 kernfs_put(kn);
5777 } else {
5778 cgrp = ERR_PTR(-ENOENT);
5781 mutex_unlock(&cgroup_mutex);
5782 return cgrp;
5784 EXPORT_SYMBOL_GPL(cgroup_get_from_path);
5787 * cgroup_get_from_fd - get a cgroup pointer from a fd
5788 * @fd: fd obtained by open(cgroup2_dir)
5790 * Find the cgroup from a fd which should be obtained
5791 * by opening a cgroup directory. Returns a pointer to the
5792 * cgroup on success. ERR_PTR is returned if the cgroup
5793 * cannot be found.
5795 struct cgroup *cgroup_get_from_fd(int fd)
5797 struct cgroup_subsys_state *css;
5798 struct cgroup *cgrp;
5799 struct file *f;
5801 f = fget_raw(fd);
5802 if (!f)
5803 return ERR_PTR(-EBADF);
5805 css = css_tryget_online_from_dir(f->f_path.dentry, NULL);
5806 fput(f);
5807 if (IS_ERR(css))
5808 return ERR_CAST(css);
5810 cgrp = css->cgroup;
5811 if (!cgroup_on_dfl(cgrp)) {
5812 cgroup_put(cgrp);
5813 return ERR_PTR(-EBADF);
5816 return cgrp;
5818 EXPORT_SYMBOL_GPL(cgroup_get_from_fd);
5821 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5822 * definition in cgroup-defs.h.
5824 #ifdef CONFIG_SOCK_CGROUP_DATA
5826 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5828 DEFINE_SPINLOCK(cgroup_sk_update_lock);
5829 static bool cgroup_sk_alloc_disabled __read_mostly;
5831 void cgroup_sk_alloc_disable(void)
5833 if (cgroup_sk_alloc_disabled)
5834 return;
5835 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5836 cgroup_sk_alloc_disabled = true;
5839 #else
5841 #define cgroup_sk_alloc_disabled false
5843 #endif
5845 void cgroup_sk_alloc(struct sock_cgroup_data *skcd)
5847 if (cgroup_sk_alloc_disabled)
5848 return;
5850 /* Socket clone path */
5851 if (skcd->val) {
5853 * We might be cloning a socket which is left in an empty
5854 * cgroup and the cgroup might have already been rmdir'd.
5855 * Don't use cgroup_get_live().
5857 cgroup_get(sock_cgroup_ptr(skcd));
5858 return;
5861 rcu_read_lock();
5863 while (true) {
5864 struct css_set *cset;
5866 cset = task_css_set(current);
5867 if (likely(cgroup_tryget(cset->dfl_cgrp))) {
5868 skcd->val = (unsigned long)cset->dfl_cgrp;
5869 break;
5871 cpu_relax();
5874 rcu_read_unlock();
5877 void cgroup_sk_free(struct sock_cgroup_data *skcd)
5879 cgroup_put(sock_cgroup_ptr(skcd));
5882 #endif /* CONFIG_SOCK_CGROUP_DATA */
5884 #ifdef CONFIG_CGROUP_BPF
5885 int cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
5886 enum bpf_attach_type type, u32 flags)
5888 int ret;
5890 mutex_lock(&cgroup_mutex);
5891 ret = __cgroup_bpf_attach(cgrp, prog, type, flags);
5892 mutex_unlock(&cgroup_mutex);
5893 return ret;
5895 int cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
5896 enum bpf_attach_type type, u32 flags)
5898 int ret;
5900 mutex_lock(&cgroup_mutex);
5901 ret = __cgroup_bpf_detach(cgrp, prog, type, flags);
5902 mutex_unlock(&cgroup_mutex);
5903 return ret;
5905 int cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
5906 union bpf_attr __user *uattr)
5908 int ret;
5910 mutex_lock(&cgroup_mutex);
5911 ret = __cgroup_bpf_query(cgrp, attr, uattr);
5912 mutex_unlock(&cgroup_mutex);
5913 return ret;
5915 #endif /* CONFIG_CGROUP_BPF */
5917 #ifdef CONFIG_SYSFS
5918 static ssize_t show_delegatable_files(struct cftype *files, char *buf,
5919 ssize_t size, const char *prefix)
5921 struct cftype *cft;
5922 ssize_t ret = 0;
5924 for (cft = files; cft && cft->name[0] != '\0'; cft++) {
5925 if (!(cft->flags & CFTYPE_NS_DELEGATABLE))
5926 continue;
5928 if (prefix)
5929 ret += snprintf(buf + ret, size - ret, "%s.", prefix);
5931 ret += snprintf(buf + ret, size - ret, "%s\n", cft->name);
5933 if (unlikely(ret >= size)) {
5934 WARN_ON(1);
5935 break;
5939 return ret;
5942 static ssize_t delegate_show(struct kobject *kobj, struct kobj_attribute *attr,
5943 char *buf)
5945 struct cgroup_subsys *ss;
5946 int ssid;
5947 ssize_t ret = 0;
5949 ret = show_delegatable_files(cgroup_base_files, buf, PAGE_SIZE - ret,
5950 NULL);
5952 for_each_subsys(ss, ssid)
5953 ret += show_delegatable_files(ss->dfl_cftypes, buf + ret,
5954 PAGE_SIZE - ret,
5955 cgroup_subsys_name[ssid]);
5957 return ret;
5959 static struct kobj_attribute cgroup_delegate_attr = __ATTR_RO(delegate);
5961 static ssize_t features_show(struct kobject *kobj, struct kobj_attribute *attr,
5962 char *buf)
5964 return snprintf(buf, PAGE_SIZE, "nsdelegate\n");
5966 static struct kobj_attribute cgroup_features_attr = __ATTR_RO(features);
5968 static struct attribute *cgroup_sysfs_attrs[] = {
5969 &cgroup_delegate_attr.attr,
5970 &cgroup_features_attr.attr,
5971 NULL,
5974 static const struct attribute_group cgroup_sysfs_attr_group = {
5975 .attrs = cgroup_sysfs_attrs,
5976 .name = "cgroup",
5979 static int __init cgroup_sysfs_init(void)
5981 return sysfs_create_group(kernel_kobj, &cgroup_sysfs_attr_group);
5983 subsys_initcall(cgroup_sysfs_init);
5984 #endif /* CONFIG_SYSFS */