2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Notifications support
8 * Copyright (C) 2009 Nokia Corporation
9 * Author: Kirill A. Shutemov
11 * Copyright notices from the original cpuset code:
12 * --------------------------------------------------
13 * Copyright (C) 2003 BULL SA.
14 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
16 * Portions derived from Patrick Mochel's sysfs code.
17 * sysfs is Copyright (c) 2001-3 Patrick Mochel
19 * 2003-10-10 Written by Simon Derr.
20 * 2003-10-22 Updates by Stephen Hemminger.
21 * 2004 May-July Rework by Paul Jackson.
22 * ---------------------------------------------------
24 * This file is subject to the terms and conditions of the GNU General Public
25 * License. See the file COPYING in the main directory of the Linux
26 * distribution for more details.
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
31 #include "cgroup-internal.h"
33 #include <linux/cred.h>
34 #include <linux/errno.h>
35 #include <linux/init_task.h>
36 #include <linux/kernel.h>
37 #include <linux/magic.h>
38 #include <linux/mutex.h>
39 #include <linux/mount.h>
40 #include <linux/pagemap.h>
41 #include <linux/proc_fs.h>
42 #include <linux/rcupdate.h>
43 #include <linux/sched.h>
44 #include <linux/sched/task.h>
45 #include <linux/slab.h>
46 #include <linux/spinlock.h>
47 #include <linux/percpu-rwsem.h>
48 #include <linux/string.h>
49 #include <linux/hashtable.h>
50 #include <linux/idr.h>
51 #include <linux/kthread.h>
52 #include <linux/atomic.h>
53 #include <linux/cpuset.h>
54 #include <linux/proc_ns.h>
55 #include <linux/nsproxy.h>
56 #include <linux/file.h>
57 #include <linux/sched/cputime.h>
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/cgroup.h>
63 #define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \
65 /* let's not notify more than 100 times per second */
66 #define CGROUP_FILE_NOTIFY_MIN_INTV DIV_ROUND_UP(HZ, 100)
69 * cgroup_mutex is the master lock. Any modification to cgroup or its
70 * hierarchy must be performed while holding it.
72 * css_set_lock protects task->cgroups pointer, the list of css_set
73 * objects, and the chain of tasks off each css_set.
75 * These locks are exported if CONFIG_PROVE_RCU so that accessors in
76 * cgroup.h can use them for lockdep annotations.
78 DEFINE_MUTEX(cgroup_mutex
);
79 DEFINE_SPINLOCK(css_set_lock
);
81 #ifdef CONFIG_PROVE_RCU
82 EXPORT_SYMBOL_GPL(cgroup_mutex
);
83 EXPORT_SYMBOL_GPL(css_set_lock
);
86 DEFINE_SPINLOCK(trace_cgroup_path_lock
);
87 char trace_cgroup_path
[TRACE_CGROUP_PATH_LEN
];
90 * Protects cgroup_idr and css_idr so that IDs can be released without
91 * grabbing cgroup_mutex.
93 static DEFINE_SPINLOCK(cgroup_idr_lock
);
96 * Protects cgroup_file->kn for !self csses. It synchronizes notifications
97 * against file removal/re-creation across css hiding.
99 static DEFINE_SPINLOCK(cgroup_file_kn_lock
);
101 struct percpu_rw_semaphore cgroup_threadgroup_rwsem
;
103 #define cgroup_assert_mutex_or_rcu_locked() \
104 RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \
105 !lockdep_is_held(&cgroup_mutex), \
106 "cgroup_mutex or RCU read lock required");
109 * cgroup destruction makes heavy use of work items and there can be a lot
110 * of concurrent destructions. Use a separate workqueue so that cgroup
111 * destruction work items don't end up filling up max_active of system_wq
112 * which may lead to deadlock.
114 static struct workqueue_struct
*cgroup_destroy_wq
;
116 /* generate an array of cgroup subsystem pointers */
117 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys,
118 struct cgroup_subsys
*cgroup_subsys
[] = {
119 #include <linux/cgroup_subsys.h>
123 /* array of cgroup subsystem names */
124 #define SUBSYS(_x) [_x ## _cgrp_id] = #_x,
125 static const char *cgroup_subsys_name
[] = {
126 #include <linux/cgroup_subsys.h>
130 /* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */
132 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \
133 DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \
134 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \
135 EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key);
136 #include <linux/cgroup_subsys.h>
139 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key,
140 static struct static_key_true
*cgroup_subsys_enabled_key
[] = {
141 #include <linux/cgroup_subsys.h>
145 #define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key,
146 static struct static_key_true
*cgroup_subsys_on_dfl_key
[] = {
147 #include <linux/cgroup_subsys.h>
151 static DEFINE_PER_CPU(struct cgroup_rstat_cpu
, cgrp_dfl_root_rstat_cpu
);
154 * The default hierarchy, reserved for the subsystems that are otherwise
155 * unattached - it never has more than a single cgroup, and all tasks are
156 * part of that cgroup.
158 struct cgroup_root cgrp_dfl_root
= { .cgrp
.rstat_cpu
= &cgrp_dfl_root_rstat_cpu
};
159 EXPORT_SYMBOL_GPL(cgrp_dfl_root
);
162 * The default hierarchy always exists but is hidden until mounted for the
163 * first time. This is for backward compatibility.
165 static bool cgrp_dfl_visible
;
167 /* some controllers are not supported in the default hierarchy */
168 static u16 cgrp_dfl_inhibit_ss_mask
;
170 /* some controllers are implicitly enabled on the default hierarchy */
171 static u16 cgrp_dfl_implicit_ss_mask
;
173 /* some controllers can be threaded on the default hierarchy */
174 static u16 cgrp_dfl_threaded_ss_mask
;
176 /* The list of hierarchy roots */
177 LIST_HEAD(cgroup_roots
);
178 static int cgroup_root_count
;
180 /* hierarchy ID allocation and mapping, protected by cgroup_mutex */
181 static DEFINE_IDR(cgroup_hierarchy_idr
);
184 * Assign a monotonically increasing serial number to csses. It guarantees
185 * cgroups with bigger numbers are newer than those with smaller numbers.
186 * Also, as csses are always appended to the parent's ->children list, it
187 * guarantees that sibling csses are always sorted in the ascending serial
188 * number order on the list. Protected by cgroup_mutex.
190 static u64 css_serial_nr_next
= 1;
193 * These bitmasks identify subsystems with specific features to avoid
194 * having to do iterative checks repeatedly.
196 static u16 have_fork_callback __read_mostly
;
197 static u16 have_exit_callback __read_mostly
;
198 static u16 have_free_callback __read_mostly
;
199 static u16 have_canfork_callback __read_mostly
;
201 /* cgroup namespace for init task */
202 struct cgroup_namespace init_cgroup_ns
= {
203 .count
= REFCOUNT_INIT(2),
204 .user_ns
= &init_user_ns
,
205 .ns
.ops
= &cgroupns_operations
,
206 .ns
.inum
= PROC_CGROUP_INIT_INO
,
207 .root_cset
= &init_css_set
,
210 static struct file_system_type cgroup2_fs_type
;
211 static struct cftype cgroup_base_files
[];
213 static int cgroup_apply_control(struct cgroup
*cgrp
);
214 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
);
215 static void css_task_iter_advance(struct css_task_iter
*it
);
216 static int cgroup_destroy_locked(struct cgroup
*cgrp
);
217 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
218 struct cgroup_subsys
*ss
);
219 static void css_release(struct percpu_ref
*ref
);
220 static void kill_css(struct cgroup_subsys_state
*css
);
221 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
222 struct cgroup
*cgrp
, struct cftype cfts
[],
226 * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID
227 * @ssid: subsys ID of interest
229 * cgroup_subsys_enabled() can only be used with literal subsys names which
230 * is fine for individual subsystems but unsuitable for cgroup core. This
231 * is slower static_key_enabled() based test indexed by @ssid.
233 bool cgroup_ssid_enabled(int ssid
)
235 if (CGROUP_SUBSYS_COUNT
== 0)
238 return static_key_enabled(cgroup_subsys_enabled_key
[ssid
]);
242 * cgroup_on_dfl - test whether a cgroup is on the default hierarchy
243 * @cgrp: the cgroup of interest
245 * The default hierarchy is the v2 interface of cgroup and this function
246 * can be used to test whether a cgroup is on the default hierarchy for
247 * cases where a subsystem should behave differnetly depending on the
250 * The set of behaviors which change on the default hierarchy are still
251 * being determined and the mount option is prefixed with __DEVEL__.
253 * List of changed behaviors:
255 * - Mount options "noprefix", "xattr", "clone_children", "release_agent"
256 * and "name" are disallowed.
258 * - When mounting an existing superblock, mount options should match.
260 * - Remount is disallowed.
262 * - rename(2) is disallowed.
264 * - "tasks" is removed. Everything should be at process granularity. Use
265 * "cgroup.procs" instead.
267 * - "cgroup.procs" is not sorted. pids will be unique unless they got
268 * recycled inbetween reads.
270 * - "release_agent" and "notify_on_release" are removed. Replacement
271 * notification mechanism will be implemented.
273 * - "cgroup.clone_children" is removed.
275 * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup
276 * and its descendants contain no task; otherwise, 1. The file also
277 * generates kernfs notification which can be monitored through poll and
278 * [di]notify when the value of the file changes.
280 * - cpuset: tasks will be kept in empty cpusets when hotplug happens and
281 * take masks of ancestors with non-empty cpus/mems, instead of being
282 * moved to an ancestor.
284 * - cpuset: a task can be moved into an empty cpuset, and again it takes
285 * masks of ancestors.
287 * - memcg: use_hierarchy is on by default and the cgroup file for the flag
290 * - blkcg: blk-throttle becomes properly hierarchical.
292 * - debug: disallowed on the default hierarchy.
294 bool cgroup_on_dfl(const struct cgroup
*cgrp
)
296 return cgrp
->root
== &cgrp_dfl_root
;
299 /* IDR wrappers which synchronize using cgroup_idr_lock */
300 static int cgroup_idr_alloc(struct idr
*idr
, void *ptr
, int start
, int end
,
305 idr_preload(gfp_mask
);
306 spin_lock_bh(&cgroup_idr_lock
);
307 ret
= idr_alloc(idr
, ptr
, start
, end
, gfp_mask
& ~__GFP_DIRECT_RECLAIM
);
308 spin_unlock_bh(&cgroup_idr_lock
);
313 static void *cgroup_idr_replace(struct idr
*idr
, void *ptr
, int id
)
317 spin_lock_bh(&cgroup_idr_lock
);
318 ret
= idr_replace(idr
, ptr
, id
);
319 spin_unlock_bh(&cgroup_idr_lock
);
323 static void cgroup_idr_remove(struct idr
*idr
, int id
)
325 spin_lock_bh(&cgroup_idr_lock
);
327 spin_unlock_bh(&cgroup_idr_lock
);
330 static bool cgroup_has_tasks(struct cgroup
*cgrp
)
332 return cgrp
->nr_populated_csets
;
335 bool cgroup_is_threaded(struct cgroup
*cgrp
)
337 return cgrp
->dom_cgrp
!= cgrp
;
340 /* can @cgrp host both domain and threaded children? */
341 static bool cgroup_is_mixable(struct cgroup
*cgrp
)
344 * Root isn't under domain level resource control exempting it from
345 * the no-internal-process constraint, so it can serve as a thread
346 * root and a parent of resource domains at the same time.
348 return !cgroup_parent(cgrp
);
351 /* can @cgrp become a thread root? should always be true for a thread root */
352 static bool cgroup_can_be_thread_root(struct cgroup
*cgrp
)
354 /* mixables don't care */
355 if (cgroup_is_mixable(cgrp
))
358 /* domain roots can't be nested under threaded */
359 if (cgroup_is_threaded(cgrp
))
362 /* can only have either domain or threaded children */
363 if (cgrp
->nr_populated_domain_children
)
366 /* and no domain controllers can be enabled */
367 if (cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
373 /* is @cgrp root of a threaded subtree? */
374 bool cgroup_is_thread_root(struct cgroup
*cgrp
)
376 /* thread root should be a domain */
377 if (cgroup_is_threaded(cgrp
))
380 /* a domain w/ threaded children is a thread root */
381 if (cgrp
->nr_threaded_children
)
385 * A domain which has tasks and explicit threaded controllers
386 * enabled is a thread root.
388 if (cgroup_has_tasks(cgrp
) &&
389 (cgrp
->subtree_control
& cgrp_dfl_threaded_ss_mask
))
395 /* a domain which isn't connected to the root w/o brekage can't be used */
396 static bool cgroup_is_valid_domain(struct cgroup
*cgrp
)
398 /* the cgroup itself can be a thread root */
399 if (cgroup_is_threaded(cgrp
))
402 /* but the ancestors can't be unless mixable */
403 while ((cgrp
= cgroup_parent(cgrp
))) {
404 if (!cgroup_is_mixable(cgrp
) && cgroup_is_thread_root(cgrp
))
406 if (cgroup_is_threaded(cgrp
))
413 /* subsystems visibly enabled on a cgroup */
414 static u16
cgroup_control(struct cgroup
*cgrp
)
416 struct cgroup
*parent
= cgroup_parent(cgrp
);
417 u16 root_ss_mask
= cgrp
->root
->subsys_mask
;
420 u16 ss_mask
= parent
->subtree_control
;
422 /* threaded cgroups can only have threaded controllers */
423 if (cgroup_is_threaded(cgrp
))
424 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
428 if (cgroup_on_dfl(cgrp
))
429 root_ss_mask
&= ~(cgrp_dfl_inhibit_ss_mask
|
430 cgrp_dfl_implicit_ss_mask
);
434 /* subsystems enabled on a cgroup */
435 static u16
cgroup_ss_mask(struct cgroup
*cgrp
)
437 struct cgroup
*parent
= cgroup_parent(cgrp
);
440 u16 ss_mask
= parent
->subtree_ss_mask
;
442 /* threaded cgroups can only have threaded controllers */
443 if (cgroup_is_threaded(cgrp
))
444 ss_mask
&= cgrp_dfl_threaded_ss_mask
;
448 return cgrp
->root
->subsys_mask
;
452 * cgroup_css - obtain a cgroup's css for the specified subsystem
453 * @cgrp: the cgroup of interest
454 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
456 * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This
457 * function must be called either under cgroup_mutex or rcu_read_lock() and
458 * the caller is responsible for pinning the returned css if it wants to
459 * keep accessing it outside the said locks. This function may return
460 * %NULL if @cgrp doesn't have @subsys_id enabled.
462 static struct cgroup_subsys_state
*cgroup_css(struct cgroup
*cgrp
,
463 struct cgroup_subsys
*ss
)
466 return rcu_dereference_check(cgrp
->subsys
[ss
->id
],
467 lockdep_is_held(&cgroup_mutex
));
473 * cgroup_tryget_css - try to get a cgroup's css for the specified subsystem
474 * @cgrp: the cgroup of interest
475 * @ss: the subsystem of interest
477 * Find and get @cgrp's css assocaited with @ss. If the css doesn't exist
478 * or is offline, %NULL is returned.
480 static struct cgroup_subsys_state
*cgroup_tryget_css(struct cgroup
*cgrp
,
481 struct cgroup_subsys
*ss
)
483 struct cgroup_subsys_state
*css
;
486 css
= cgroup_css(cgrp
, ss
);
487 if (!css
|| !css_tryget_online(css
))
495 * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem
496 * @cgrp: the cgroup of interest
497 * @ss: the subsystem of interest (%NULL returns @cgrp->self)
499 * Similar to cgroup_css() but returns the effective css, which is defined
500 * as the matching css of the nearest ancestor including self which has @ss
501 * enabled. If @ss is associated with the hierarchy @cgrp is on, this
502 * function is guaranteed to return non-NULL css.
504 static struct cgroup_subsys_state
*cgroup_e_css(struct cgroup
*cgrp
,
505 struct cgroup_subsys
*ss
)
507 lockdep_assert_held(&cgroup_mutex
);
513 * This function is used while updating css associations and thus
514 * can't test the csses directly. Test ss_mask.
516 while (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
))) {
517 cgrp
= cgroup_parent(cgrp
);
522 return cgroup_css(cgrp
, ss
);
526 * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem
527 * @cgrp: the cgroup of interest
528 * @ss: the subsystem of interest
530 * Find and get the effective css of @cgrp for @ss. The effective css is
531 * defined as the matching css of the nearest ancestor including self which
532 * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on,
533 * the root css is returned, so this function always returns a valid css.
534 * The returned css must be put using css_put().
536 struct cgroup_subsys_state
*cgroup_get_e_css(struct cgroup
*cgrp
,
537 struct cgroup_subsys
*ss
)
539 struct cgroup_subsys_state
*css
;
544 css
= cgroup_css(cgrp
, ss
);
546 if (css
&& css_tryget_online(css
))
548 cgrp
= cgroup_parent(cgrp
);
551 css
= init_css_set
.subsys
[ss
->id
];
558 static void cgroup_get_live(struct cgroup
*cgrp
)
560 WARN_ON_ONCE(cgroup_is_dead(cgrp
));
561 css_get(&cgrp
->self
);
564 struct cgroup_subsys_state
*of_css(struct kernfs_open_file
*of
)
566 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
567 struct cftype
*cft
= of_cft(of
);
570 * This is open and unprotected implementation of cgroup_css().
571 * seq_css() is only called from a kernfs file operation which has
572 * an active reference on the file. Because all the subsystem
573 * files are drained before a css is disassociated with a cgroup,
574 * the matching css from the cgroup's subsys table is guaranteed to
575 * be and stay valid until the enclosing operation is complete.
578 return rcu_dereference_raw(cgrp
->subsys
[cft
->ss
->id
]);
582 EXPORT_SYMBOL_GPL(of_css
);
585 * for_each_css - iterate all css's of a cgroup
586 * @css: the iteration cursor
587 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
588 * @cgrp: the target cgroup to iterate css's of
590 * Should be called under cgroup_[tree_]mutex.
592 #define for_each_css(css, ssid, cgrp) \
593 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
594 if (!((css) = rcu_dereference_check( \
595 (cgrp)->subsys[(ssid)], \
596 lockdep_is_held(&cgroup_mutex)))) { } \
600 * for_each_e_css - iterate all effective css's of a cgroup
601 * @css: the iteration cursor
602 * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end
603 * @cgrp: the target cgroup to iterate css's of
605 * Should be called under cgroup_[tree_]mutex.
607 #define for_each_e_css(css, ssid, cgrp) \
608 for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \
609 if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \
614 * do_each_subsys_mask - filter for_each_subsys with a bitmask
615 * @ss: the iteration cursor
616 * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end
617 * @ss_mask: the bitmask
619 * The block will only run for cases where the ssid-th bit (1 << ssid) of
622 #define do_each_subsys_mask(ss, ssid, ss_mask) do { \
623 unsigned long __ss_mask = (ss_mask); \
624 if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \
628 for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \
629 (ss) = cgroup_subsys[ssid]; \
632 #define while_each_subsys_mask() \
637 /* iterate over child cgrps, lock should be held throughout iteration */
638 #define cgroup_for_each_live_child(child, cgrp) \
639 list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \
640 if (({ lockdep_assert_held(&cgroup_mutex); \
641 cgroup_is_dead(child); })) \
645 /* walk live descendants in preorder */
646 #define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \
647 css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \
648 if (({ lockdep_assert_held(&cgroup_mutex); \
649 (dsct) = (d_css)->cgroup; \
650 cgroup_is_dead(dsct); })) \
654 /* walk live descendants in postorder */
655 #define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \
656 css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \
657 if (({ lockdep_assert_held(&cgroup_mutex); \
658 (dsct) = (d_css)->cgroup; \
659 cgroup_is_dead(dsct); })) \
664 * The default css_set - used by init and its children prior to any
665 * hierarchies being mounted. It contains a pointer to the root state
666 * for each subsystem. Also used to anchor the list of css_sets. Not
667 * reference-counted, to improve performance when child cgroups
668 * haven't been created.
670 struct css_set init_css_set
= {
671 .refcount
= REFCOUNT_INIT(1),
672 .dom_cset
= &init_css_set
,
673 .tasks
= LIST_HEAD_INIT(init_css_set
.tasks
),
674 .mg_tasks
= LIST_HEAD_INIT(init_css_set
.mg_tasks
),
675 .task_iters
= LIST_HEAD_INIT(init_css_set
.task_iters
),
676 .threaded_csets
= LIST_HEAD_INIT(init_css_set
.threaded_csets
),
677 .cgrp_links
= LIST_HEAD_INIT(init_css_set
.cgrp_links
),
678 .mg_preload_node
= LIST_HEAD_INIT(init_css_set
.mg_preload_node
),
679 .mg_node
= LIST_HEAD_INIT(init_css_set
.mg_node
),
682 * The following field is re-initialized when this cset gets linked
683 * in cgroup_init(). However, let's initialize the field
684 * statically too so that the default cgroup can be accessed safely
687 .dfl_cgrp
= &cgrp_dfl_root
.cgrp
,
690 static int css_set_count
= 1; /* 1 for init_css_set */
692 static bool css_set_threaded(struct css_set
*cset
)
694 return cset
->dom_cset
!= cset
;
698 * css_set_populated - does a css_set contain any tasks?
699 * @cset: target css_set
701 * css_set_populated() should be the same as !!cset->nr_tasks at steady
702 * state. However, css_set_populated() can be called while a task is being
703 * added to or removed from the linked list before the nr_tasks is
704 * properly updated. Hence, we can't just look at ->nr_tasks here.
706 static bool css_set_populated(struct css_set
*cset
)
708 lockdep_assert_held(&css_set_lock
);
710 return !list_empty(&cset
->tasks
) || !list_empty(&cset
->mg_tasks
);
714 * cgroup_update_populated - update the populated count of a cgroup
715 * @cgrp: the target cgroup
716 * @populated: inc or dec populated count
718 * One of the css_sets associated with @cgrp is either getting its first
719 * task or losing the last. Update @cgrp->nr_populated_* accordingly. The
720 * count is propagated towards root so that a given cgroup's
721 * nr_populated_children is zero iff none of its descendants contain any
724 * @cgrp's interface file "cgroup.populated" is zero if both
725 * @cgrp->nr_populated_csets and @cgrp->nr_populated_children are zero and
726 * 1 otherwise. When the sum changes from or to zero, userland is notified
727 * that the content of the interface file has changed. This can be used to
728 * detect when @cgrp and its descendants become populated or empty.
730 static void cgroup_update_populated(struct cgroup
*cgrp
, bool populated
)
732 struct cgroup
*child
= NULL
;
733 int adj
= populated
? 1 : -1;
735 lockdep_assert_held(&css_set_lock
);
738 bool was_populated
= cgroup_is_populated(cgrp
);
741 cgrp
->nr_populated_csets
+= adj
;
743 if (cgroup_is_threaded(child
))
744 cgrp
->nr_populated_threaded_children
+= adj
;
746 cgrp
->nr_populated_domain_children
+= adj
;
749 if (was_populated
== cgroup_is_populated(cgrp
))
752 cgroup1_check_for_release(cgrp
);
753 cgroup_file_notify(&cgrp
->events_file
);
756 cgrp
= cgroup_parent(cgrp
);
761 * css_set_update_populated - update populated state of a css_set
762 * @cset: target css_set
763 * @populated: whether @cset is populated or depopulated
765 * @cset is either getting the first task or losing the last. Update the
766 * populated counters of all associated cgroups accordingly.
768 static void css_set_update_populated(struct css_set
*cset
, bool populated
)
770 struct cgrp_cset_link
*link
;
772 lockdep_assert_held(&css_set_lock
);
774 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
)
775 cgroup_update_populated(link
->cgrp
, populated
);
779 * css_set_move_task - move a task from one css_set to another
780 * @task: task being moved
781 * @from_cset: css_set @task currently belongs to (may be NULL)
782 * @to_cset: new css_set @task is being moved to (may be NULL)
783 * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks
785 * Move @task from @from_cset to @to_cset. If @task didn't belong to any
786 * css_set, @from_cset can be NULL. If @task is being disassociated
787 * instead of moved, @to_cset can be NULL.
789 * This function automatically handles populated counter updates and
790 * css_task_iter adjustments but the caller is responsible for managing
791 * @from_cset and @to_cset's reference counts.
793 static void css_set_move_task(struct task_struct
*task
,
794 struct css_set
*from_cset
, struct css_set
*to_cset
,
797 lockdep_assert_held(&css_set_lock
);
799 if (to_cset
&& !css_set_populated(to_cset
))
800 css_set_update_populated(to_cset
, true);
803 struct css_task_iter
*it
, *pos
;
805 WARN_ON_ONCE(list_empty(&task
->cg_list
));
808 * @task is leaving, advance task iterators which are
809 * pointing to it so that they can resume at the next
810 * position. Advancing an iterator might remove it from
811 * the list, use safe walk. See css_task_iter_advance*()
814 list_for_each_entry_safe(it
, pos
, &from_cset
->task_iters
,
816 if (it
->task_pos
== &task
->cg_list
)
817 css_task_iter_advance(it
);
819 list_del_init(&task
->cg_list
);
820 if (!css_set_populated(from_cset
))
821 css_set_update_populated(from_cset
, false);
823 WARN_ON_ONCE(!list_empty(&task
->cg_list
));
828 * We are synchronized through cgroup_threadgroup_rwsem
829 * against PF_EXITING setting such that we can't race
830 * against cgroup_exit() changing the css_set to
831 * init_css_set and dropping the old one.
833 WARN_ON_ONCE(task
->flags
& PF_EXITING
);
835 rcu_assign_pointer(task
->cgroups
, to_cset
);
836 list_add_tail(&task
->cg_list
, use_mg_tasks
? &to_cset
->mg_tasks
:
842 * hash table for cgroup groups. This improves the performance to find
843 * an existing css_set. This hash doesn't (currently) take into
844 * account cgroups in empty hierarchies.
846 #define CSS_SET_HASH_BITS 7
847 static DEFINE_HASHTABLE(css_set_table
, CSS_SET_HASH_BITS
);
849 static unsigned long css_set_hash(struct cgroup_subsys_state
*css
[])
851 unsigned long key
= 0UL;
852 struct cgroup_subsys
*ss
;
855 for_each_subsys(ss
, i
)
856 key
+= (unsigned long)css
[i
];
857 key
= (key
>> 16) ^ key
;
862 void put_css_set_locked(struct css_set
*cset
)
864 struct cgrp_cset_link
*link
, *tmp_link
;
865 struct cgroup_subsys
*ss
;
868 lockdep_assert_held(&css_set_lock
);
870 if (!refcount_dec_and_test(&cset
->refcount
))
873 WARN_ON_ONCE(!list_empty(&cset
->threaded_csets
));
875 /* This css_set is dead. unlink it and release cgroup and css refs */
876 for_each_subsys(ss
, ssid
) {
877 list_del(&cset
->e_cset_node
[ssid
]);
878 css_put(cset
->subsys
[ssid
]);
880 hash_del(&cset
->hlist
);
883 list_for_each_entry_safe(link
, tmp_link
, &cset
->cgrp_links
, cgrp_link
) {
884 list_del(&link
->cset_link
);
885 list_del(&link
->cgrp_link
);
886 if (cgroup_parent(link
->cgrp
))
887 cgroup_put(link
->cgrp
);
891 if (css_set_threaded(cset
)) {
892 list_del(&cset
->threaded_csets_node
);
893 put_css_set_locked(cset
->dom_cset
);
896 kfree_rcu(cset
, rcu_head
);
900 * compare_css_sets - helper function for find_existing_css_set().
901 * @cset: candidate css_set being tested
902 * @old_cset: existing css_set for a task
903 * @new_cgrp: cgroup that's being entered by the task
904 * @template: desired set of css pointers in css_set (pre-calculated)
906 * Returns true if "cset" matches "old_cset" except for the hierarchy
907 * which "new_cgrp" belongs to, for which it should match "new_cgrp".
909 static bool compare_css_sets(struct css_set
*cset
,
910 struct css_set
*old_cset
,
911 struct cgroup
*new_cgrp
,
912 struct cgroup_subsys_state
*template[])
914 struct cgroup
*new_dfl_cgrp
;
915 struct list_head
*l1
, *l2
;
918 * On the default hierarchy, there can be csets which are
919 * associated with the same set of cgroups but different csses.
920 * Let's first ensure that csses match.
922 if (memcmp(template, cset
->subsys
, sizeof(cset
->subsys
)))
926 /* @cset's domain should match the default cgroup's */
927 if (cgroup_on_dfl(new_cgrp
))
928 new_dfl_cgrp
= new_cgrp
;
930 new_dfl_cgrp
= old_cset
->dfl_cgrp
;
932 if (new_dfl_cgrp
->dom_cgrp
!= cset
->dom_cset
->dfl_cgrp
)
936 * Compare cgroup pointers in order to distinguish between
937 * different cgroups in hierarchies. As different cgroups may
938 * share the same effective css, this comparison is always
941 l1
= &cset
->cgrp_links
;
942 l2
= &old_cset
->cgrp_links
;
944 struct cgrp_cset_link
*link1
, *link2
;
945 struct cgroup
*cgrp1
, *cgrp2
;
949 /* See if we reached the end - both lists are equal length. */
950 if (l1
== &cset
->cgrp_links
) {
951 BUG_ON(l2
!= &old_cset
->cgrp_links
);
954 BUG_ON(l2
== &old_cset
->cgrp_links
);
956 /* Locate the cgroups associated with these links. */
957 link1
= list_entry(l1
, struct cgrp_cset_link
, cgrp_link
);
958 link2
= list_entry(l2
, struct cgrp_cset_link
, cgrp_link
);
961 /* Hierarchies should be linked in the same order. */
962 BUG_ON(cgrp1
->root
!= cgrp2
->root
);
965 * If this hierarchy is the hierarchy of the cgroup
966 * that's changing, then we need to check that this
967 * css_set points to the new cgroup; if it's any other
968 * hierarchy, then this css_set should point to the
969 * same cgroup as the old css_set.
971 if (cgrp1
->root
== new_cgrp
->root
) {
972 if (cgrp1
!= new_cgrp
)
983 * find_existing_css_set - init css array and find the matching css_set
984 * @old_cset: the css_set that we're using before the cgroup transition
985 * @cgrp: the cgroup that we're moving into
986 * @template: out param for the new set of csses, should be clear on entry
988 static struct css_set
*find_existing_css_set(struct css_set
*old_cset
,
990 struct cgroup_subsys_state
*template[])
992 struct cgroup_root
*root
= cgrp
->root
;
993 struct cgroup_subsys
*ss
;
994 struct css_set
*cset
;
999 * Build the set of subsystem state objects that we want to see in the
1000 * new css_set. while subsystems can change globally, the entries here
1001 * won't change, so no need for locking.
1003 for_each_subsys(ss
, i
) {
1004 if (root
->subsys_mask
& (1UL << i
)) {
1006 * @ss is in this hierarchy, so we want the
1007 * effective css from @cgrp.
1009 template[i
] = cgroup_e_css(cgrp
, ss
);
1012 * @ss is not in this hierarchy, so we don't want
1013 * to change the css.
1015 template[i
] = old_cset
->subsys
[i
];
1019 key
= css_set_hash(template);
1020 hash_for_each_possible(css_set_table
, cset
, hlist
, key
) {
1021 if (!compare_css_sets(cset
, old_cset
, cgrp
, template))
1024 /* This css_set matches what we need */
1028 /* No existing cgroup group matched */
1032 static void free_cgrp_cset_links(struct list_head
*links_to_free
)
1034 struct cgrp_cset_link
*link
, *tmp_link
;
1036 list_for_each_entry_safe(link
, tmp_link
, links_to_free
, cset_link
) {
1037 list_del(&link
->cset_link
);
1043 * allocate_cgrp_cset_links - allocate cgrp_cset_links
1044 * @count: the number of links to allocate
1045 * @tmp_links: list_head the allocated links are put on
1047 * Allocate @count cgrp_cset_link structures and chain them on @tmp_links
1048 * through ->cset_link. Returns 0 on success or -errno.
1050 static int allocate_cgrp_cset_links(int count
, struct list_head
*tmp_links
)
1052 struct cgrp_cset_link
*link
;
1055 INIT_LIST_HEAD(tmp_links
);
1057 for (i
= 0; i
< count
; i
++) {
1058 link
= kzalloc(sizeof(*link
), GFP_KERNEL
);
1060 free_cgrp_cset_links(tmp_links
);
1063 list_add(&link
->cset_link
, tmp_links
);
1069 * link_css_set - a helper function to link a css_set to a cgroup
1070 * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links()
1071 * @cset: the css_set to be linked
1072 * @cgrp: the destination cgroup
1074 static void link_css_set(struct list_head
*tmp_links
, struct css_set
*cset
,
1075 struct cgroup
*cgrp
)
1077 struct cgrp_cset_link
*link
;
1079 BUG_ON(list_empty(tmp_links
));
1081 if (cgroup_on_dfl(cgrp
))
1082 cset
->dfl_cgrp
= cgrp
;
1084 link
= list_first_entry(tmp_links
, struct cgrp_cset_link
, cset_link
);
1089 * Always add links to the tail of the lists so that the lists are
1090 * in choronological order.
1092 list_move_tail(&link
->cset_link
, &cgrp
->cset_links
);
1093 list_add_tail(&link
->cgrp_link
, &cset
->cgrp_links
);
1095 if (cgroup_parent(cgrp
))
1096 cgroup_get_live(cgrp
);
1100 * find_css_set - return a new css_set with one cgroup updated
1101 * @old_cset: the baseline css_set
1102 * @cgrp: the cgroup to be updated
1104 * Return a new css_set that's equivalent to @old_cset, but with @cgrp
1105 * substituted into the appropriate hierarchy.
1107 static struct css_set
*find_css_set(struct css_set
*old_cset
,
1108 struct cgroup
*cgrp
)
1110 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
] = { };
1111 struct css_set
*cset
;
1112 struct list_head tmp_links
;
1113 struct cgrp_cset_link
*link
;
1114 struct cgroup_subsys
*ss
;
1118 lockdep_assert_held(&cgroup_mutex
);
1120 /* First see if we already have a cgroup group that matches
1121 * the desired set */
1122 spin_lock_irq(&css_set_lock
);
1123 cset
= find_existing_css_set(old_cset
, cgrp
, template);
1126 spin_unlock_irq(&css_set_lock
);
1131 cset
= kzalloc(sizeof(*cset
), GFP_KERNEL
);
1135 /* Allocate all the cgrp_cset_link objects that we'll need */
1136 if (allocate_cgrp_cset_links(cgroup_root_count
, &tmp_links
) < 0) {
1141 refcount_set(&cset
->refcount
, 1);
1142 cset
->dom_cset
= cset
;
1143 INIT_LIST_HEAD(&cset
->tasks
);
1144 INIT_LIST_HEAD(&cset
->mg_tasks
);
1145 INIT_LIST_HEAD(&cset
->task_iters
);
1146 INIT_LIST_HEAD(&cset
->threaded_csets
);
1147 INIT_HLIST_NODE(&cset
->hlist
);
1148 INIT_LIST_HEAD(&cset
->cgrp_links
);
1149 INIT_LIST_HEAD(&cset
->mg_preload_node
);
1150 INIT_LIST_HEAD(&cset
->mg_node
);
1152 /* Copy the set of subsystem state objects generated in
1153 * find_existing_css_set() */
1154 memcpy(cset
->subsys
, template, sizeof(cset
->subsys
));
1156 spin_lock_irq(&css_set_lock
);
1157 /* Add reference counts and links from the new css_set. */
1158 list_for_each_entry(link
, &old_cset
->cgrp_links
, cgrp_link
) {
1159 struct cgroup
*c
= link
->cgrp
;
1161 if (c
->root
== cgrp
->root
)
1163 link_css_set(&tmp_links
, cset
, c
);
1166 BUG_ON(!list_empty(&tmp_links
));
1170 /* Add @cset to the hash table */
1171 key
= css_set_hash(cset
->subsys
);
1172 hash_add(css_set_table
, &cset
->hlist
, key
);
1174 for_each_subsys(ss
, ssid
) {
1175 struct cgroup_subsys_state
*css
= cset
->subsys
[ssid
];
1177 list_add_tail(&cset
->e_cset_node
[ssid
],
1178 &css
->cgroup
->e_csets
[ssid
]);
1182 spin_unlock_irq(&css_set_lock
);
1185 * If @cset should be threaded, look up the matching dom_cset and
1186 * link them up. We first fully initialize @cset then look for the
1187 * dom_cset. It's simpler this way and safe as @cset is guaranteed
1188 * to stay empty until we return.
1190 if (cgroup_is_threaded(cset
->dfl_cgrp
)) {
1191 struct css_set
*dcset
;
1193 dcset
= find_css_set(cset
, cset
->dfl_cgrp
->dom_cgrp
);
1199 spin_lock_irq(&css_set_lock
);
1200 cset
->dom_cset
= dcset
;
1201 list_add_tail(&cset
->threaded_csets_node
,
1202 &dcset
->threaded_csets
);
1203 spin_unlock_irq(&css_set_lock
);
1209 struct cgroup_root
*cgroup_root_from_kf(struct kernfs_root
*kf_root
)
1211 struct cgroup
*root_cgrp
= kf_root
->kn
->priv
;
1213 return root_cgrp
->root
;
1216 static int cgroup_init_root_id(struct cgroup_root
*root
)
1220 lockdep_assert_held(&cgroup_mutex
);
1222 id
= idr_alloc_cyclic(&cgroup_hierarchy_idr
, root
, 0, 0, GFP_KERNEL
);
1226 root
->hierarchy_id
= id
;
1230 static void cgroup_exit_root_id(struct cgroup_root
*root
)
1232 lockdep_assert_held(&cgroup_mutex
);
1234 idr_remove(&cgroup_hierarchy_idr
, root
->hierarchy_id
);
1237 void cgroup_free_root(struct cgroup_root
*root
)
1240 idr_destroy(&root
->cgroup_idr
);
1245 static void cgroup_destroy_root(struct cgroup_root
*root
)
1247 struct cgroup
*cgrp
= &root
->cgrp
;
1248 struct cgrp_cset_link
*link
, *tmp_link
;
1250 trace_cgroup_destroy_root(root
);
1252 cgroup_lock_and_drain_offline(&cgrp_dfl_root
.cgrp
);
1254 BUG_ON(atomic_read(&root
->nr_cgrps
));
1255 BUG_ON(!list_empty(&cgrp
->self
.children
));
1257 /* Rebind all subsystems back to the default hierarchy */
1258 WARN_ON(rebind_subsystems(&cgrp_dfl_root
, root
->subsys_mask
));
1261 * Release all the links from cset_links to this hierarchy's
1264 spin_lock_irq(&css_set_lock
);
1266 list_for_each_entry_safe(link
, tmp_link
, &cgrp
->cset_links
, cset_link
) {
1267 list_del(&link
->cset_link
);
1268 list_del(&link
->cgrp_link
);
1272 spin_unlock_irq(&css_set_lock
);
1274 if (!list_empty(&root
->root_list
)) {
1275 list_del(&root
->root_list
);
1276 cgroup_root_count
--;
1279 cgroup_exit_root_id(root
);
1281 mutex_unlock(&cgroup_mutex
);
1283 kernfs_destroy_root(root
->kf_root
);
1284 cgroup_free_root(root
);
1288 * look up cgroup associated with current task's cgroup namespace on the
1289 * specified hierarchy
1291 static struct cgroup
*
1292 current_cgns_cgroup_from_root(struct cgroup_root
*root
)
1294 struct cgroup
*res
= NULL
;
1295 struct css_set
*cset
;
1297 lockdep_assert_held(&css_set_lock
);
1301 cset
= current
->nsproxy
->cgroup_ns
->root_cset
;
1302 if (cset
== &init_css_set
) {
1305 struct cgrp_cset_link
*link
;
1307 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1308 struct cgroup
*c
= link
->cgrp
;
1310 if (c
->root
== root
) {
1322 /* look up cgroup associated with given css_set on the specified hierarchy */
1323 static struct cgroup
*cset_cgroup_from_root(struct css_set
*cset
,
1324 struct cgroup_root
*root
)
1326 struct cgroup
*res
= NULL
;
1328 lockdep_assert_held(&cgroup_mutex
);
1329 lockdep_assert_held(&css_set_lock
);
1331 if (cset
== &init_css_set
) {
1333 } else if (root
== &cgrp_dfl_root
) {
1334 res
= cset
->dfl_cgrp
;
1336 struct cgrp_cset_link
*link
;
1338 list_for_each_entry(link
, &cset
->cgrp_links
, cgrp_link
) {
1339 struct cgroup
*c
= link
->cgrp
;
1341 if (c
->root
== root
) {
1353 * Return the cgroup for "task" from the given hierarchy. Must be
1354 * called with cgroup_mutex and css_set_lock held.
1356 struct cgroup
*task_cgroup_from_root(struct task_struct
*task
,
1357 struct cgroup_root
*root
)
1360 * No need to lock the task - since we hold cgroup_mutex the
1361 * task can't change groups, so the only thing that can happen
1362 * is that it exits and its css is set back to init_css_set.
1364 return cset_cgroup_from_root(task_css_set(task
), root
);
1368 * A task must hold cgroup_mutex to modify cgroups.
1370 * Any task can increment and decrement the count field without lock.
1371 * So in general, code holding cgroup_mutex can't rely on the count
1372 * field not changing. However, if the count goes to zero, then only
1373 * cgroup_attach_task() can increment it again. Because a count of zero
1374 * means that no tasks are currently attached, therefore there is no
1375 * way a task attached to that cgroup can fork (the other way to
1376 * increment the count). So code holding cgroup_mutex can safely
1377 * assume that if the count is zero, it will stay zero. Similarly, if
1378 * a task holds cgroup_mutex on a cgroup with zero count, it
1379 * knows that the cgroup won't be removed, as cgroup_rmdir()
1382 * A cgroup can only be deleted if both its 'count' of using tasks
1383 * is zero, and its list of 'children' cgroups is empty. Since all
1384 * tasks in the system use _some_ cgroup, and since there is always at
1385 * least one task in the system (init, pid == 1), therefore, root cgroup
1386 * always has either children cgroups and/or using tasks. So we don't
1387 * need a special hack to ensure that root cgroup cannot be deleted.
1389 * P.S. One more locking exception. RCU is used to guard the
1390 * update of a tasks cgroup pointer by cgroup_attach_task()
1393 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
;
1395 static char *cgroup_file_name(struct cgroup
*cgrp
, const struct cftype
*cft
,
1398 struct cgroup_subsys
*ss
= cft
->ss
;
1400 if (cft
->ss
&& !(cft
->flags
& CFTYPE_NO_PREFIX
) &&
1401 !(cgrp
->root
->flags
& CGRP_ROOT_NOPREFIX
))
1402 snprintf(buf
, CGROUP_FILE_NAME_MAX
, "%s.%s",
1403 cgroup_on_dfl(cgrp
) ? ss
->name
: ss
->legacy_name
,
1406 strscpy(buf
, cft
->name
, CGROUP_FILE_NAME_MAX
);
1411 * cgroup_file_mode - deduce file mode of a control file
1412 * @cft: the control file in question
1414 * S_IRUGO for read, S_IWUSR for write.
1416 static umode_t
cgroup_file_mode(const struct cftype
*cft
)
1420 if (cft
->read_u64
|| cft
->read_s64
|| cft
->seq_show
)
1423 if (cft
->write_u64
|| cft
->write_s64
|| cft
->write
) {
1424 if (cft
->flags
& CFTYPE_WORLD_WRITABLE
)
1434 * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask
1435 * @subtree_control: the new subtree_control mask to consider
1436 * @this_ss_mask: available subsystems
1438 * On the default hierarchy, a subsystem may request other subsystems to be
1439 * enabled together through its ->depends_on mask. In such cases, more
1440 * subsystems than specified in "cgroup.subtree_control" may be enabled.
1442 * This function calculates which subsystems need to be enabled if
1443 * @subtree_control is to be applied while restricted to @this_ss_mask.
1445 static u16
cgroup_calc_subtree_ss_mask(u16 subtree_control
, u16 this_ss_mask
)
1447 u16 cur_ss_mask
= subtree_control
;
1448 struct cgroup_subsys
*ss
;
1451 lockdep_assert_held(&cgroup_mutex
);
1453 cur_ss_mask
|= cgrp_dfl_implicit_ss_mask
;
1456 u16 new_ss_mask
= cur_ss_mask
;
1458 do_each_subsys_mask(ss
, ssid
, cur_ss_mask
) {
1459 new_ss_mask
|= ss
->depends_on
;
1460 } while_each_subsys_mask();
1463 * Mask out subsystems which aren't available. This can
1464 * happen only if some depended-upon subsystems were bound
1465 * to non-default hierarchies.
1467 new_ss_mask
&= this_ss_mask
;
1469 if (new_ss_mask
== cur_ss_mask
)
1471 cur_ss_mask
= new_ss_mask
;
1478 * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods
1479 * @kn: the kernfs_node being serviced
1481 * This helper undoes cgroup_kn_lock_live() and should be invoked before
1482 * the method finishes if locking succeeded. Note that once this function
1483 * returns the cgroup returned by cgroup_kn_lock_live() may become
1484 * inaccessible any time. If the caller intends to continue to access the
1485 * cgroup, it should pin it before invoking this function.
1487 void cgroup_kn_unlock(struct kernfs_node
*kn
)
1489 struct cgroup
*cgrp
;
1491 if (kernfs_type(kn
) == KERNFS_DIR
)
1494 cgrp
= kn
->parent
->priv
;
1496 mutex_unlock(&cgroup_mutex
);
1498 kernfs_unbreak_active_protection(kn
);
1503 * cgroup_kn_lock_live - locking helper for cgroup kernfs methods
1504 * @kn: the kernfs_node being serviced
1505 * @drain_offline: perform offline draining on the cgroup
1507 * This helper is to be used by a cgroup kernfs method currently servicing
1508 * @kn. It breaks the active protection, performs cgroup locking and
1509 * verifies that the associated cgroup is alive. Returns the cgroup if
1510 * alive; otherwise, %NULL. A successful return should be undone by a
1511 * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the
1512 * cgroup is drained of offlining csses before return.
1514 * Any cgroup kernfs method implementation which requires locking the
1515 * associated cgroup should use this helper. It avoids nesting cgroup
1516 * locking under kernfs active protection and allows all kernfs operations
1517 * including self-removal.
1519 struct cgroup
*cgroup_kn_lock_live(struct kernfs_node
*kn
, bool drain_offline
)
1521 struct cgroup
*cgrp
;
1523 if (kernfs_type(kn
) == KERNFS_DIR
)
1526 cgrp
= kn
->parent
->priv
;
1529 * We're gonna grab cgroup_mutex which nests outside kernfs
1530 * active_ref. cgroup liveliness check alone provides enough
1531 * protection against removal. Ensure @cgrp stays accessible and
1532 * break the active_ref protection.
1534 if (!cgroup_tryget(cgrp
))
1536 kernfs_break_active_protection(kn
);
1539 cgroup_lock_and_drain_offline(cgrp
);
1541 mutex_lock(&cgroup_mutex
);
1543 if (!cgroup_is_dead(cgrp
))
1546 cgroup_kn_unlock(kn
);
1550 static void cgroup_rm_file(struct cgroup
*cgrp
, const struct cftype
*cft
)
1552 char name
[CGROUP_FILE_NAME_MAX
];
1554 lockdep_assert_held(&cgroup_mutex
);
1556 if (cft
->file_offset
) {
1557 struct cgroup_subsys_state
*css
= cgroup_css(cgrp
, cft
->ss
);
1558 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
1560 spin_lock_irq(&cgroup_file_kn_lock
);
1562 spin_unlock_irq(&cgroup_file_kn_lock
);
1564 del_timer_sync(&cfile
->notify_timer
);
1567 kernfs_remove_by_name(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
));
1571 * css_clear_dir - remove subsys files in a cgroup directory
1574 static void css_clear_dir(struct cgroup_subsys_state
*css
)
1576 struct cgroup
*cgrp
= css
->cgroup
;
1577 struct cftype
*cfts
;
1579 if (!(css
->flags
& CSS_VISIBLE
))
1582 css
->flags
&= ~CSS_VISIBLE
;
1585 if (cgroup_on_dfl(cgrp
))
1586 cfts
= cgroup_base_files
;
1588 cfts
= cgroup1_base_files
;
1590 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1592 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
)
1593 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1598 * css_populate_dir - create subsys files in a cgroup directory
1601 * On failure, no file is added.
1603 static int css_populate_dir(struct cgroup_subsys_state
*css
)
1605 struct cgroup
*cgrp
= css
->cgroup
;
1606 struct cftype
*cfts
, *failed_cfts
;
1609 if ((css
->flags
& CSS_VISIBLE
) || !cgrp
->kn
)
1613 if (cgroup_on_dfl(cgrp
))
1614 cfts
= cgroup_base_files
;
1616 cfts
= cgroup1_base_files
;
1618 ret
= cgroup_addrm_files(&cgrp
->self
, cgrp
, cfts
, true);
1622 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1623 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, true);
1631 css
->flags
|= CSS_VISIBLE
;
1635 list_for_each_entry(cfts
, &css
->ss
->cfts
, node
) {
1636 if (cfts
== failed_cfts
)
1638 cgroup_addrm_files(css
, cgrp
, cfts
, false);
1643 int rebind_subsystems(struct cgroup_root
*dst_root
, u16 ss_mask
)
1645 struct cgroup
*dcgrp
= &dst_root
->cgrp
;
1646 struct cgroup_subsys
*ss
;
1649 lockdep_assert_held(&cgroup_mutex
);
1651 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1653 * If @ss has non-root csses attached to it, can't move.
1654 * If @ss is an implicit controller, it is exempt from this
1655 * rule and can be stolen.
1657 if (css_next_child(NULL
, cgroup_css(&ss
->root
->cgrp
, ss
)) &&
1658 !ss
->implicit_on_dfl
)
1661 /* can't move between two non-dummy roots either */
1662 if (ss
->root
!= &cgrp_dfl_root
&& dst_root
!= &cgrp_dfl_root
)
1664 } while_each_subsys_mask();
1666 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
1667 struct cgroup_root
*src_root
= ss
->root
;
1668 struct cgroup
*scgrp
= &src_root
->cgrp
;
1669 struct cgroup_subsys_state
*css
= cgroup_css(scgrp
, ss
);
1670 struct css_set
*cset
;
1672 WARN_ON(!css
|| cgroup_css(dcgrp
, ss
));
1674 /* disable from the source */
1675 src_root
->subsys_mask
&= ~(1 << ssid
);
1676 WARN_ON(cgroup_apply_control(scgrp
));
1677 cgroup_finalize_control(scgrp
, 0);
1680 RCU_INIT_POINTER(scgrp
->subsys
[ssid
], NULL
);
1681 rcu_assign_pointer(dcgrp
->subsys
[ssid
], css
);
1682 ss
->root
= dst_root
;
1683 css
->cgroup
= dcgrp
;
1685 spin_lock_irq(&css_set_lock
);
1686 hash_for_each(css_set_table
, i
, cset
, hlist
)
1687 list_move_tail(&cset
->e_cset_node
[ss
->id
],
1688 &dcgrp
->e_csets
[ss
->id
]);
1689 spin_unlock_irq(&css_set_lock
);
1691 /* default hierarchy doesn't enable controllers by default */
1692 dst_root
->subsys_mask
|= 1 << ssid
;
1693 if (dst_root
== &cgrp_dfl_root
) {
1694 static_branch_enable(cgroup_subsys_on_dfl_key
[ssid
]);
1696 dcgrp
->subtree_control
|= 1 << ssid
;
1697 static_branch_disable(cgroup_subsys_on_dfl_key
[ssid
]);
1700 ret
= cgroup_apply_control(dcgrp
);
1702 pr_warn("partial failure to rebind %s controller (err=%d)\n",
1707 } while_each_subsys_mask();
1709 kernfs_activate(dcgrp
->kn
);
1713 int cgroup_show_path(struct seq_file
*sf
, struct kernfs_node
*kf_node
,
1714 struct kernfs_root
*kf_root
)
1718 struct cgroup_root
*kf_cgroot
= cgroup_root_from_kf(kf_root
);
1719 struct cgroup
*ns_cgroup
;
1721 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
1725 spin_lock_irq(&css_set_lock
);
1726 ns_cgroup
= current_cgns_cgroup_from_root(kf_cgroot
);
1727 len
= kernfs_path_from_node(kf_node
, ns_cgroup
->kn
, buf
, PATH_MAX
);
1728 spin_unlock_irq(&css_set_lock
);
1730 if (len
>= PATH_MAX
)
1733 seq_escape(sf
, buf
, " \t\n\\");
1740 static int parse_cgroup_root_flags(char *data
, unsigned int *root_flags
)
1749 while ((token
= strsep(&data
, ",")) != NULL
) {
1750 if (!strcmp(token
, "nsdelegate")) {
1751 *root_flags
|= CGRP_ROOT_NS_DELEGATE
;
1755 pr_err("cgroup2: unknown option \"%s\"\n", token
);
1762 static void apply_cgroup_root_flags(unsigned int root_flags
)
1764 if (current
->nsproxy
->cgroup_ns
== &init_cgroup_ns
) {
1765 if (root_flags
& CGRP_ROOT_NS_DELEGATE
)
1766 cgrp_dfl_root
.flags
|= CGRP_ROOT_NS_DELEGATE
;
1768 cgrp_dfl_root
.flags
&= ~CGRP_ROOT_NS_DELEGATE
;
1772 static int cgroup_show_options(struct seq_file
*seq
, struct kernfs_root
*kf_root
)
1774 if (cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
)
1775 seq_puts(seq
, ",nsdelegate");
1779 static int cgroup_remount(struct kernfs_root
*kf_root
, int *flags
, char *data
)
1781 unsigned int root_flags
;
1784 ret
= parse_cgroup_root_flags(data
, &root_flags
);
1788 apply_cgroup_root_flags(root_flags
);
1793 * To reduce the fork() overhead for systems that are not actually using
1794 * their cgroups capability, we don't maintain the lists running through
1795 * each css_set to its tasks until we see the list actually used - in other
1796 * words after the first mount.
1798 static bool use_task_css_set_links __read_mostly
;
1800 static void cgroup_enable_task_cg_lists(void)
1802 struct task_struct
*p
, *g
;
1805 * We need tasklist_lock because RCU is not safe against
1806 * while_each_thread(). Besides, a forking task that has passed
1807 * cgroup_post_fork() without seeing use_task_css_set_links = 1
1808 * is not guaranteed to have its child immediately visible in the
1809 * tasklist if we walk through it with RCU.
1811 read_lock(&tasklist_lock
);
1812 spin_lock_irq(&css_set_lock
);
1814 if (use_task_css_set_links
)
1817 use_task_css_set_links
= true;
1819 do_each_thread(g
, p
) {
1820 WARN_ON_ONCE(!list_empty(&p
->cg_list
) ||
1821 task_css_set(p
) != &init_css_set
);
1824 * We should check if the process is exiting, otherwise
1825 * it will race with cgroup_exit() in that the list
1826 * entry won't be deleted though the process has exited.
1827 * Do it while holding siglock so that we don't end up
1828 * racing against cgroup_exit().
1830 * Interrupts were already disabled while acquiring
1831 * the css_set_lock, so we do not need to disable it
1832 * again when acquiring the sighand->siglock here.
1834 spin_lock(&p
->sighand
->siglock
);
1835 if (!(p
->flags
& PF_EXITING
)) {
1836 struct css_set
*cset
= task_css_set(p
);
1838 if (!css_set_populated(cset
))
1839 css_set_update_populated(cset
, true);
1840 list_add_tail(&p
->cg_list
, &cset
->tasks
);
1844 spin_unlock(&p
->sighand
->siglock
);
1845 } while_each_thread(g
, p
);
1847 spin_unlock_irq(&css_set_lock
);
1848 read_unlock(&tasklist_lock
);
1851 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
1853 struct cgroup_subsys
*ss
;
1856 INIT_LIST_HEAD(&cgrp
->self
.sibling
);
1857 INIT_LIST_HEAD(&cgrp
->self
.children
);
1858 INIT_LIST_HEAD(&cgrp
->cset_links
);
1859 INIT_LIST_HEAD(&cgrp
->pidlists
);
1860 mutex_init(&cgrp
->pidlist_mutex
);
1861 cgrp
->self
.cgroup
= cgrp
;
1862 cgrp
->self
.flags
|= CSS_ONLINE
;
1863 cgrp
->dom_cgrp
= cgrp
;
1864 cgrp
->max_descendants
= INT_MAX
;
1865 cgrp
->max_depth
= INT_MAX
;
1866 INIT_LIST_HEAD(&cgrp
->rstat_css_list
);
1867 prev_cputime_init(&cgrp
->prev_cputime
);
1869 for_each_subsys(ss
, ssid
)
1870 INIT_LIST_HEAD(&cgrp
->e_csets
[ssid
]);
1872 init_waitqueue_head(&cgrp
->offline_waitq
);
1873 INIT_WORK(&cgrp
->release_agent_work
, cgroup1_release_agent
);
1876 void init_cgroup_root(struct cgroup_root
*root
, struct cgroup_sb_opts
*opts
)
1878 struct cgroup
*cgrp
= &root
->cgrp
;
1880 INIT_LIST_HEAD(&root
->root_list
);
1881 atomic_set(&root
->nr_cgrps
, 1);
1883 init_cgroup_housekeeping(cgrp
);
1884 idr_init(&root
->cgroup_idr
);
1886 root
->flags
= opts
->flags
;
1887 if (opts
->release_agent
)
1888 strscpy(root
->release_agent_path
, opts
->release_agent
, PATH_MAX
);
1890 strscpy(root
->name
, opts
->name
, MAX_CGROUP_ROOT_NAMELEN
);
1891 if (opts
->cpuset_clone_children
)
1892 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &root
->cgrp
.flags
);
1895 int cgroup_setup_root(struct cgroup_root
*root
, u16 ss_mask
, int ref_flags
)
1897 LIST_HEAD(tmp_links
);
1898 struct cgroup
*root_cgrp
= &root
->cgrp
;
1899 struct kernfs_syscall_ops
*kf_sops
;
1900 struct css_set
*cset
;
1903 lockdep_assert_held(&cgroup_mutex
);
1905 ret
= cgroup_idr_alloc(&root
->cgroup_idr
, root_cgrp
, 1, 2, GFP_KERNEL
);
1908 root_cgrp
->id
= ret
;
1909 root_cgrp
->ancestor_ids
[0] = ret
;
1911 ret
= percpu_ref_init(&root_cgrp
->self
.refcnt
, css_release
,
1912 ref_flags
, GFP_KERNEL
);
1917 * We're accessing css_set_count without locking css_set_lock here,
1918 * but that's OK - it can only be increased by someone holding
1919 * cgroup_lock, and that's us. Later rebinding may disable
1920 * controllers on the default hierarchy and thus create new csets,
1921 * which can't be more than the existing ones. Allocate 2x.
1923 ret
= allocate_cgrp_cset_links(2 * css_set_count
, &tmp_links
);
1927 ret
= cgroup_init_root_id(root
);
1931 kf_sops
= root
== &cgrp_dfl_root
?
1932 &cgroup_kf_syscall_ops
: &cgroup1_kf_syscall_ops
;
1934 root
->kf_root
= kernfs_create_root(kf_sops
,
1935 KERNFS_ROOT_CREATE_DEACTIVATED
|
1936 KERNFS_ROOT_SUPPORT_EXPORTOP
,
1938 if (IS_ERR(root
->kf_root
)) {
1939 ret
= PTR_ERR(root
->kf_root
);
1942 root_cgrp
->kn
= root
->kf_root
->kn
;
1944 ret
= css_populate_dir(&root_cgrp
->self
);
1948 ret
= rebind_subsystems(root
, ss_mask
);
1952 ret
= cgroup_bpf_inherit(root_cgrp
);
1955 trace_cgroup_setup_root(root
);
1958 * There must be no failure case after here, since rebinding takes
1959 * care of subsystems' refcounts, which are explicitly dropped in
1960 * the failure exit path.
1962 list_add(&root
->root_list
, &cgroup_roots
);
1963 cgroup_root_count
++;
1966 * Link the root cgroup in this hierarchy into all the css_set
1969 spin_lock_irq(&css_set_lock
);
1970 hash_for_each(css_set_table
, i
, cset
, hlist
) {
1971 link_css_set(&tmp_links
, cset
, root_cgrp
);
1972 if (css_set_populated(cset
))
1973 cgroup_update_populated(root_cgrp
, true);
1975 spin_unlock_irq(&css_set_lock
);
1977 BUG_ON(!list_empty(&root_cgrp
->self
.children
));
1978 BUG_ON(atomic_read(&root
->nr_cgrps
) != 1);
1980 kernfs_activate(root_cgrp
->kn
);
1985 kernfs_destroy_root(root
->kf_root
);
1986 root
->kf_root
= NULL
;
1988 cgroup_exit_root_id(root
);
1990 percpu_ref_exit(&root_cgrp
->self
.refcnt
);
1992 free_cgrp_cset_links(&tmp_links
);
1996 struct dentry
*cgroup_do_mount(struct file_system_type
*fs_type
, int flags
,
1997 struct cgroup_root
*root
, unsigned long magic
,
1998 struct cgroup_namespace
*ns
)
2000 struct dentry
*dentry
;
2003 dentry
= kernfs_mount(fs_type
, flags
, root
->kf_root
, magic
, &new_sb
);
2006 * In non-init cgroup namespace, instead of root cgroup's dentry,
2007 * we return the dentry corresponding to the cgroupns->root_cgrp.
2009 if (!IS_ERR(dentry
) && ns
!= &init_cgroup_ns
) {
2010 struct dentry
*nsdentry
;
2011 struct cgroup
*cgrp
;
2013 mutex_lock(&cgroup_mutex
);
2014 spin_lock_irq(&css_set_lock
);
2016 cgrp
= cset_cgroup_from_root(ns
->root_cset
, root
);
2018 spin_unlock_irq(&css_set_lock
);
2019 mutex_unlock(&cgroup_mutex
);
2021 nsdentry
= kernfs_node_dentry(cgrp
->kn
, dentry
->d_sb
);
2026 if (IS_ERR(dentry
) || !new_sb
)
2027 cgroup_put(&root
->cgrp
);
2032 static struct dentry
*cgroup_mount(struct file_system_type
*fs_type
,
2033 int flags
, const char *unused_dev_name
,
2036 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
2037 struct dentry
*dentry
;
2042 /* Check if the caller has permission to mount. */
2043 if (!ns_capable(ns
->user_ns
, CAP_SYS_ADMIN
)) {
2045 return ERR_PTR(-EPERM
);
2049 * The first time anyone tries to mount a cgroup, enable the list
2050 * linking each css_set to its tasks and fix up all existing tasks.
2052 if (!use_task_css_set_links
)
2053 cgroup_enable_task_cg_lists();
2055 if (fs_type
== &cgroup2_fs_type
) {
2056 unsigned int root_flags
;
2058 ret
= parse_cgroup_root_flags(data
, &root_flags
);
2061 return ERR_PTR(ret
);
2064 cgrp_dfl_visible
= true;
2065 cgroup_get_live(&cgrp_dfl_root
.cgrp
);
2067 dentry
= cgroup_do_mount(&cgroup2_fs_type
, flags
, &cgrp_dfl_root
,
2068 CGROUP2_SUPER_MAGIC
, ns
);
2069 if (!IS_ERR(dentry
))
2070 apply_cgroup_root_flags(root_flags
);
2072 dentry
= cgroup1_mount(&cgroup_fs_type
, flags
, data
,
2073 CGROUP_SUPER_MAGIC
, ns
);
2080 static void cgroup_kill_sb(struct super_block
*sb
)
2082 struct kernfs_root
*kf_root
= kernfs_root_from_sb(sb
);
2083 struct cgroup_root
*root
= cgroup_root_from_kf(kf_root
);
2086 * If @root doesn't have any mounts or children, start killing it.
2087 * This prevents new mounts by disabling percpu_ref_tryget_live().
2088 * cgroup_mount() may wait for @root's release.
2090 * And don't kill the default root.
2092 if (!list_empty(&root
->cgrp
.self
.children
) ||
2093 root
== &cgrp_dfl_root
)
2094 cgroup_put(&root
->cgrp
);
2096 percpu_ref_kill(&root
->cgrp
.self
.refcnt
);
2101 struct file_system_type cgroup_fs_type
= {
2103 .mount
= cgroup_mount
,
2104 .kill_sb
= cgroup_kill_sb
,
2105 .fs_flags
= FS_USERNS_MOUNT
,
2108 static struct file_system_type cgroup2_fs_type
= {
2110 .mount
= cgroup_mount
,
2111 .kill_sb
= cgroup_kill_sb
,
2112 .fs_flags
= FS_USERNS_MOUNT
,
2115 int cgroup_path_ns_locked(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2116 struct cgroup_namespace
*ns
)
2118 struct cgroup
*root
= cset_cgroup_from_root(ns
->root_cset
, cgrp
->root
);
2120 return kernfs_path_from_node(cgrp
->kn
, root
->kn
, buf
, buflen
);
2123 int cgroup_path_ns(struct cgroup
*cgrp
, char *buf
, size_t buflen
,
2124 struct cgroup_namespace
*ns
)
2128 mutex_lock(&cgroup_mutex
);
2129 spin_lock_irq(&css_set_lock
);
2131 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, ns
);
2133 spin_unlock_irq(&css_set_lock
);
2134 mutex_unlock(&cgroup_mutex
);
2138 EXPORT_SYMBOL_GPL(cgroup_path_ns
);
2141 * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy
2142 * @task: target task
2143 * @buf: the buffer to write the path into
2144 * @buflen: the length of the buffer
2146 * Determine @task's cgroup on the first (the one with the lowest non-zero
2147 * hierarchy_id) cgroup hierarchy and copy its path into @buf. This
2148 * function grabs cgroup_mutex and shouldn't be used inside locks used by
2149 * cgroup controller callbacks.
2151 * Return value is the same as kernfs_path().
2153 int task_cgroup_path(struct task_struct
*task
, char *buf
, size_t buflen
)
2155 struct cgroup_root
*root
;
2156 struct cgroup
*cgrp
;
2157 int hierarchy_id
= 1;
2160 mutex_lock(&cgroup_mutex
);
2161 spin_lock_irq(&css_set_lock
);
2163 root
= idr_get_next(&cgroup_hierarchy_idr
, &hierarchy_id
);
2166 cgrp
= task_cgroup_from_root(task
, root
);
2167 ret
= cgroup_path_ns_locked(cgrp
, buf
, buflen
, &init_cgroup_ns
);
2169 /* if no hierarchy exists, everyone is in "/" */
2170 ret
= strlcpy(buf
, "/", buflen
);
2173 spin_unlock_irq(&css_set_lock
);
2174 mutex_unlock(&cgroup_mutex
);
2177 EXPORT_SYMBOL_GPL(task_cgroup_path
);
2180 * cgroup_migrate_add_task - add a migration target task to a migration context
2181 * @task: target task
2182 * @mgctx: target migration context
2184 * Add @task, which is a migration target, to @mgctx->tset. This function
2185 * becomes noop if @task doesn't need to be migrated. @task's css_set
2186 * should have been added as a migration source and @task->cg_list will be
2187 * moved from the css_set's tasks list to mg_tasks one.
2189 static void cgroup_migrate_add_task(struct task_struct
*task
,
2190 struct cgroup_mgctx
*mgctx
)
2192 struct css_set
*cset
;
2194 lockdep_assert_held(&css_set_lock
);
2196 /* @task either already exited or can't exit until the end */
2197 if (task
->flags
& PF_EXITING
)
2200 /* leave @task alone if post_fork() hasn't linked it yet */
2201 if (list_empty(&task
->cg_list
))
2204 cset
= task_css_set(task
);
2205 if (!cset
->mg_src_cgrp
)
2208 mgctx
->tset
.nr_tasks
++;
2210 list_move_tail(&task
->cg_list
, &cset
->mg_tasks
);
2211 if (list_empty(&cset
->mg_node
))
2212 list_add_tail(&cset
->mg_node
,
2213 &mgctx
->tset
.src_csets
);
2214 if (list_empty(&cset
->mg_dst_cset
->mg_node
))
2215 list_add_tail(&cset
->mg_dst_cset
->mg_node
,
2216 &mgctx
->tset
.dst_csets
);
2220 * cgroup_taskset_first - reset taskset and return the first task
2221 * @tset: taskset of interest
2222 * @dst_cssp: output variable for the destination css
2224 * @tset iteration is initialized and the first task is returned.
2226 struct task_struct
*cgroup_taskset_first(struct cgroup_taskset
*tset
,
2227 struct cgroup_subsys_state
**dst_cssp
)
2229 tset
->cur_cset
= list_first_entry(tset
->csets
, struct css_set
, mg_node
);
2230 tset
->cur_task
= NULL
;
2232 return cgroup_taskset_next(tset
, dst_cssp
);
2236 * cgroup_taskset_next - iterate to the next task in taskset
2237 * @tset: taskset of interest
2238 * @dst_cssp: output variable for the destination css
2240 * Return the next task in @tset. Iteration must have been initialized
2241 * with cgroup_taskset_first().
2243 struct task_struct
*cgroup_taskset_next(struct cgroup_taskset
*tset
,
2244 struct cgroup_subsys_state
**dst_cssp
)
2246 struct css_set
*cset
= tset
->cur_cset
;
2247 struct task_struct
*task
= tset
->cur_task
;
2249 while (&cset
->mg_node
!= tset
->csets
) {
2251 task
= list_first_entry(&cset
->mg_tasks
,
2252 struct task_struct
, cg_list
);
2254 task
= list_next_entry(task
, cg_list
);
2256 if (&task
->cg_list
!= &cset
->mg_tasks
) {
2257 tset
->cur_cset
= cset
;
2258 tset
->cur_task
= task
;
2261 * This function may be called both before and
2262 * after cgroup_taskset_migrate(). The two cases
2263 * can be distinguished by looking at whether @cset
2264 * has its ->mg_dst_cset set.
2266 if (cset
->mg_dst_cset
)
2267 *dst_cssp
= cset
->mg_dst_cset
->subsys
[tset
->ssid
];
2269 *dst_cssp
= cset
->subsys
[tset
->ssid
];
2274 cset
= list_next_entry(cset
, mg_node
);
2282 * cgroup_taskset_migrate - migrate a taskset
2283 * @mgctx: migration context
2285 * Migrate tasks in @mgctx as setup by migration preparation functions.
2286 * This function fails iff one of the ->can_attach callbacks fails and
2287 * guarantees that either all or none of the tasks in @mgctx are migrated.
2288 * @mgctx is consumed regardless of success.
2290 static int cgroup_migrate_execute(struct cgroup_mgctx
*mgctx
)
2292 struct cgroup_taskset
*tset
= &mgctx
->tset
;
2293 struct cgroup_subsys
*ss
;
2294 struct task_struct
*task
, *tmp_task
;
2295 struct css_set
*cset
, *tmp_cset
;
2296 int ssid
, failed_ssid
, ret
;
2298 /* check that we can legitimately attach to the cgroup */
2299 if (tset
->nr_tasks
) {
2300 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2301 if (ss
->can_attach
) {
2303 ret
= ss
->can_attach(tset
);
2306 goto out_cancel_attach
;
2309 } while_each_subsys_mask();
2313 * Now that we're guaranteed success, proceed to move all tasks to
2314 * the new cgroup. There are no failure cases after here, so this
2315 * is the commit point.
2317 spin_lock_irq(&css_set_lock
);
2318 list_for_each_entry(cset
, &tset
->src_csets
, mg_node
) {
2319 list_for_each_entry_safe(task
, tmp_task
, &cset
->mg_tasks
, cg_list
) {
2320 struct css_set
*from_cset
= task_css_set(task
);
2321 struct css_set
*to_cset
= cset
->mg_dst_cset
;
2323 get_css_set(to_cset
);
2324 to_cset
->nr_tasks
++;
2325 css_set_move_task(task
, from_cset
, to_cset
, true);
2326 put_css_set_locked(from_cset
);
2327 from_cset
->nr_tasks
--;
2330 spin_unlock_irq(&css_set_lock
);
2333 * Migration is committed, all target tasks are now on dst_csets.
2334 * Nothing is sensitive to fork() after this point. Notify
2335 * controllers that migration is complete.
2337 tset
->csets
= &tset
->dst_csets
;
2339 if (tset
->nr_tasks
) {
2340 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2345 } while_each_subsys_mask();
2349 goto out_release_tset
;
2352 if (tset
->nr_tasks
) {
2353 do_each_subsys_mask(ss
, ssid
, mgctx
->ss_mask
) {
2354 if (ssid
== failed_ssid
)
2356 if (ss
->cancel_attach
) {
2358 ss
->cancel_attach(tset
);
2360 } while_each_subsys_mask();
2363 spin_lock_irq(&css_set_lock
);
2364 list_splice_init(&tset
->dst_csets
, &tset
->src_csets
);
2365 list_for_each_entry_safe(cset
, tmp_cset
, &tset
->src_csets
, mg_node
) {
2366 list_splice_tail_init(&cset
->mg_tasks
, &cset
->tasks
);
2367 list_del_init(&cset
->mg_node
);
2369 spin_unlock_irq(&css_set_lock
);
2372 * Re-initialize the cgroup_taskset structure in case it is reused
2373 * again in another cgroup_migrate_add_task()/cgroup_migrate_execute()
2377 tset
->csets
= &tset
->src_csets
;
2382 * cgroup_migrate_vet_dst - verify whether a cgroup can be migration destination
2383 * @dst_cgrp: destination cgroup to test
2385 * On the default hierarchy, except for the mixable, (possible) thread root
2386 * and threaded cgroups, subtree_control must be zero for migration
2387 * destination cgroups with tasks so that child cgroups don't compete
2390 int cgroup_migrate_vet_dst(struct cgroup
*dst_cgrp
)
2392 /* v1 doesn't have any restriction */
2393 if (!cgroup_on_dfl(dst_cgrp
))
2396 /* verify @dst_cgrp can host resources */
2397 if (!cgroup_is_valid_domain(dst_cgrp
->dom_cgrp
))
2400 /* mixables don't care */
2401 if (cgroup_is_mixable(dst_cgrp
))
2405 * If @dst_cgrp is already or can become a thread root or is
2406 * threaded, it doesn't matter.
2408 if (cgroup_can_be_thread_root(dst_cgrp
) || cgroup_is_threaded(dst_cgrp
))
2411 /* apply no-internal-process constraint */
2412 if (dst_cgrp
->subtree_control
)
2419 * cgroup_migrate_finish - cleanup after attach
2420 * @mgctx: migration context
2422 * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See
2423 * those functions for details.
2425 void cgroup_migrate_finish(struct cgroup_mgctx
*mgctx
)
2427 LIST_HEAD(preloaded
);
2428 struct css_set
*cset
, *tmp_cset
;
2430 lockdep_assert_held(&cgroup_mutex
);
2432 spin_lock_irq(&css_set_lock
);
2434 list_splice_tail_init(&mgctx
->preloaded_src_csets
, &preloaded
);
2435 list_splice_tail_init(&mgctx
->preloaded_dst_csets
, &preloaded
);
2437 list_for_each_entry_safe(cset
, tmp_cset
, &preloaded
, mg_preload_node
) {
2438 cset
->mg_src_cgrp
= NULL
;
2439 cset
->mg_dst_cgrp
= NULL
;
2440 cset
->mg_dst_cset
= NULL
;
2441 list_del_init(&cset
->mg_preload_node
);
2442 put_css_set_locked(cset
);
2445 spin_unlock_irq(&css_set_lock
);
2449 * cgroup_migrate_add_src - add a migration source css_set
2450 * @src_cset: the source css_set to add
2451 * @dst_cgrp: the destination cgroup
2452 * @mgctx: migration context
2454 * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin
2455 * @src_cset and add it to @mgctx->src_csets, which should later be cleaned
2456 * up by cgroup_migrate_finish().
2458 * This function may be called without holding cgroup_threadgroup_rwsem
2459 * even if the target is a process. Threads may be created and destroyed
2460 * but as long as cgroup_mutex is not dropped, no new css_set can be put
2461 * into play and the preloaded css_sets are guaranteed to cover all
2464 void cgroup_migrate_add_src(struct css_set
*src_cset
,
2465 struct cgroup
*dst_cgrp
,
2466 struct cgroup_mgctx
*mgctx
)
2468 struct cgroup
*src_cgrp
;
2470 lockdep_assert_held(&cgroup_mutex
);
2471 lockdep_assert_held(&css_set_lock
);
2474 * If ->dead, @src_set is associated with one or more dead cgroups
2475 * and doesn't contain any migratable tasks. Ignore it early so
2476 * that the rest of migration path doesn't get confused by it.
2481 src_cgrp
= cset_cgroup_from_root(src_cset
, dst_cgrp
->root
);
2483 if (!list_empty(&src_cset
->mg_preload_node
))
2486 WARN_ON(src_cset
->mg_src_cgrp
);
2487 WARN_ON(src_cset
->mg_dst_cgrp
);
2488 WARN_ON(!list_empty(&src_cset
->mg_tasks
));
2489 WARN_ON(!list_empty(&src_cset
->mg_node
));
2491 src_cset
->mg_src_cgrp
= src_cgrp
;
2492 src_cset
->mg_dst_cgrp
= dst_cgrp
;
2493 get_css_set(src_cset
);
2494 list_add_tail(&src_cset
->mg_preload_node
, &mgctx
->preloaded_src_csets
);
2498 * cgroup_migrate_prepare_dst - prepare destination css_sets for migration
2499 * @mgctx: migration context
2501 * Tasks are about to be moved and all the source css_sets have been
2502 * preloaded to @mgctx->preloaded_src_csets. This function looks up and
2503 * pins all destination css_sets, links each to its source, and append them
2504 * to @mgctx->preloaded_dst_csets.
2506 * This function must be called after cgroup_migrate_add_src() has been
2507 * called on each migration source css_set. After migration is performed
2508 * using cgroup_migrate(), cgroup_migrate_finish() must be called on
2511 int cgroup_migrate_prepare_dst(struct cgroup_mgctx
*mgctx
)
2513 struct css_set
*src_cset
, *tmp_cset
;
2515 lockdep_assert_held(&cgroup_mutex
);
2517 /* look up the dst cset for each src cset and link it to src */
2518 list_for_each_entry_safe(src_cset
, tmp_cset
, &mgctx
->preloaded_src_csets
,
2520 struct css_set
*dst_cset
;
2521 struct cgroup_subsys
*ss
;
2524 dst_cset
= find_css_set(src_cset
, src_cset
->mg_dst_cgrp
);
2528 WARN_ON_ONCE(src_cset
->mg_dst_cset
|| dst_cset
->mg_dst_cset
);
2531 * If src cset equals dst, it's noop. Drop the src.
2532 * cgroup_migrate() will skip the cset too. Note that we
2533 * can't handle src == dst as some nodes are used by both.
2535 if (src_cset
== dst_cset
) {
2536 src_cset
->mg_src_cgrp
= NULL
;
2537 src_cset
->mg_dst_cgrp
= NULL
;
2538 list_del_init(&src_cset
->mg_preload_node
);
2539 put_css_set(src_cset
);
2540 put_css_set(dst_cset
);
2544 src_cset
->mg_dst_cset
= dst_cset
;
2546 if (list_empty(&dst_cset
->mg_preload_node
))
2547 list_add_tail(&dst_cset
->mg_preload_node
,
2548 &mgctx
->preloaded_dst_csets
);
2550 put_css_set(dst_cset
);
2552 for_each_subsys(ss
, ssid
)
2553 if (src_cset
->subsys
[ssid
] != dst_cset
->subsys
[ssid
])
2554 mgctx
->ss_mask
|= 1 << ssid
;
2559 cgroup_migrate_finish(mgctx
);
2564 * cgroup_migrate - migrate a process or task to a cgroup
2565 * @leader: the leader of the process or the task to migrate
2566 * @threadgroup: whether @leader points to the whole process or a single task
2567 * @mgctx: migration context
2569 * Migrate a process or task denoted by @leader. If migrating a process,
2570 * the caller must be holding cgroup_threadgroup_rwsem. The caller is also
2571 * responsible for invoking cgroup_migrate_add_src() and
2572 * cgroup_migrate_prepare_dst() on the targets before invoking this
2573 * function and following up with cgroup_migrate_finish().
2575 * As long as a controller's ->can_attach() doesn't fail, this function is
2576 * guaranteed to succeed. This means that, excluding ->can_attach()
2577 * failure, when migrating multiple targets, the success or failure can be
2578 * decided for all targets by invoking group_migrate_prepare_dst() before
2579 * actually starting migrating.
2581 int cgroup_migrate(struct task_struct
*leader
, bool threadgroup
,
2582 struct cgroup_mgctx
*mgctx
)
2584 struct task_struct
*task
;
2587 * Prevent freeing of tasks while we take a snapshot. Tasks that are
2588 * already PF_EXITING could be freed from underneath us unless we
2589 * take an rcu_read_lock.
2591 spin_lock_irq(&css_set_lock
);
2595 cgroup_migrate_add_task(task
, mgctx
);
2598 } while_each_thread(leader
, task
);
2600 spin_unlock_irq(&css_set_lock
);
2602 return cgroup_migrate_execute(mgctx
);
2606 * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup
2607 * @dst_cgrp: the cgroup to attach to
2608 * @leader: the task or the leader of the threadgroup to be attached
2609 * @threadgroup: attach the whole threadgroup?
2611 * Call holding cgroup_mutex and cgroup_threadgroup_rwsem.
2613 int cgroup_attach_task(struct cgroup
*dst_cgrp
, struct task_struct
*leader
,
2616 DEFINE_CGROUP_MGCTX(mgctx
);
2617 struct task_struct
*task
;
2620 ret
= cgroup_migrate_vet_dst(dst_cgrp
);
2624 /* look up all src csets */
2625 spin_lock_irq(&css_set_lock
);
2629 cgroup_migrate_add_src(task_css_set(task
), dst_cgrp
, &mgctx
);
2632 } while_each_thread(leader
, task
);
2634 spin_unlock_irq(&css_set_lock
);
2636 /* prepare dst csets and commit */
2637 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2639 ret
= cgroup_migrate(leader
, threadgroup
, &mgctx
);
2641 cgroup_migrate_finish(&mgctx
);
2644 TRACE_CGROUP_PATH(attach_task
, dst_cgrp
, leader
, threadgroup
);
2649 struct task_struct
*cgroup_procs_write_start(char *buf
, bool threadgroup
)
2650 __acquires(&cgroup_threadgroup_rwsem
)
2652 struct task_struct
*tsk
;
2655 if (kstrtoint(strstrip(buf
), 0, &pid
) || pid
< 0)
2656 return ERR_PTR(-EINVAL
);
2658 percpu_down_write(&cgroup_threadgroup_rwsem
);
2662 tsk
= find_task_by_vpid(pid
);
2664 tsk
= ERR_PTR(-ESRCH
);
2665 goto out_unlock_threadgroup
;
2672 tsk
= tsk
->group_leader
;
2675 * kthreads may acquire PF_NO_SETAFFINITY during initialization.
2676 * If userland migrates such a kthread to a non-root cgroup, it can
2677 * become trapped in a cpuset, or RT kthread may be born in a
2678 * cgroup with no rt_runtime allocated. Just say no.
2680 if (tsk
->no_cgroup_migration
|| (tsk
->flags
& PF_NO_SETAFFINITY
)) {
2681 tsk
= ERR_PTR(-EINVAL
);
2682 goto out_unlock_threadgroup
;
2685 get_task_struct(tsk
);
2686 goto out_unlock_rcu
;
2688 out_unlock_threadgroup
:
2689 percpu_up_write(&cgroup_threadgroup_rwsem
);
2695 void cgroup_procs_write_finish(struct task_struct
*task
)
2696 __releases(&cgroup_threadgroup_rwsem
)
2698 struct cgroup_subsys
*ss
;
2701 /* release reference from cgroup_procs_write_start() */
2702 put_task_struct(task
);
2704 percpu_up_write(&cgroup_threadgroup_rwsem
);
2705 for_each_subsys(ss
, ssid
)
2706 if (ss
->post_attach
)
2710 static void cgroup_print_ss_mask(struct seq_file
*seq
, u16 ss_mask
)
2712 struct cgroup_subsys
*ss
;
2713 bool printed
= false;
2716 do_each_subsys_mask(ss
, ssid
, ss_mask
) {
2719 seq_printf(seq
, "%s", ss
->name
);
2721 } while_each_subsys_mask();
2723 seq_putc(seq
, '\n');
2726 /* show controllers which are enabled from the parent */
2727 static int cgroup_controllers_show(struct seq_file
*seq
, void *v
)
2729 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2731 cgroup_print_ss_mask(seq
, cgroup_control(cgrp
));
2735 /* show controllers which are enabled for a given cgroup's children */
2736 static int cgroup_subtree_control_show(struct seq_file
*seq
, void *v
)
2738 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
2740 cgroup_print_ss_mask(seq
, cgrp
->subtree_control
);
2745 * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy
2746 * @cgrp: root of the subtree to update csses for
2748 * @cgrp's control masks have changed and its subtree's css associations
2749 * need to be updated accordingly. This function looks up all css_sets
2750 * which are attached to the subtree, creates the matching updated css_sets
2751 * and migrates the tasks to the new ones.
2753 static int cgroup_update_dfl_csses(struct cgroup
*cgrp
)
2755 DEFINE_CGROUP_MGCTX(mgctx
);
2756 struct cgroup_subsys_state
*d_css
;
2757 struct cgroup
*dsct
;
2758 struct css_set
*src_cset
;
2761 lockdep_assert_held(&cgroup_mutex
);
2763 percpu_down_write(&cgroup_threadgroup_rwsem
);
2765 /* look up all csses currently attached to @cgrp's subtree */
2766 spin_lock_irq(&css_set_lock
);
2767 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2768 struct cgrp_cset_link
*link
;
2770 list_for_each_entry(link
, &dsct
->cset_links
, cset_link
)
2771 cgroup_migrate_add_src(link
->cset
, dsct
, &mgctx
);
2773 spin_unlock_irq(&css_set_lock
);
2775 /* NULL dst indicates self on default hierarchy */
2776 ret
= cgroup_migrate_prepare_dst(&mgctx
);
2780 spin_lock_irq(&css_set_lock
);
2781 list_for_each_entry(src_cset
, &mgctx
.preloaded_src_csets
, mg_preload_node
) {
2782 struct task_struct
*task
, *ntask
;
2784 /* all tasks in src_csets need to be migrated */
2785 list_for_each_entry_safe(task
, ntask
, &src_cset
->tasks
, cg_list
)
2786 cgroup_migrate_add_task(task
, &mgctx
);
2788 spin_unlock_irq(&css_set_lock
);
2790 ret
= cgroup_migrate_execute(&mgctx
);
2792 cgroup_migrate_finish(&mgctx
);
2793 percpu_up_write(&cgroup_threadgroup_rwsem
);
2798 * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses
2799 * @cgrp: root of the target subtree
2801 * Because css offlining is asynchronous, userland may try to re-enable a
2802 * controller while the previous css is still around. This function grabs
2803 * cgroup_mutex and drains the previous css instances of @cgrp's subtree.
2805 void cgroup_lock_and_drain_offline(struct cgroup
*cgrp
)
2806 __acquires(&cgroup_mutex
)
2808 struct cgroup
*dsct
;
2809 struct cgroup_subsys_state
*d_css
;
2810 struct cgroup_subsys
*ss
;
2814 mutex_lock(&cgroup_mutex
);
2816 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2817 for_each_subsys(ss
, ssid
) {
2818 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2821 if (!css
|| !percpu_ref_is_dying(&css
->refcnt
))
2824 cgroup_get_live(dsct
);
2825 prepare_to_wait(&dsct
->offline_waitq
, &wait
,
2826 TASK_UNINTERRUPTIBLE
);
2828 mutex_unlock(&cgroup_mutex
);
2830 finish_wait(&dsct
->offline_waitq
, &wait
);
2839 * cgroup_save_control - save control masks of a subtree
2840 * @cgrp: root of the target subtree
2842 * Save ->subtree_control and ->subtree_ss_mask to the respective old_
2843 * prefixed fields for @cgrp's subtree including @cgrp itself.
2845 static void cgroup_save_control(struct cgroup
*cgrp
)
2847 struct cgroup
*dsct
;
2848 struct cgroup_subsys_state
*d_css
;
2850 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2851 dsct
->old_subtree_control
= dsct
->subtree_control
;
2852 dsct
->old_subtree_ss_mask
= dsct
->subtree_ss_mask
;
2857 * cgroup_propagate_control - refresh control masks of a subtree
2858 * @cgrp: root of the target subtree
2860 * For @cgrp and its subtree, ensure ->subtree_ss_mask matches
2861 * ->subtree_control and propagate controller availability through the
2862 * subtree so that descendants don't have unavailable controllers enabled.
2864 static void cgroup_propagate_control(struct cgroup
*cgrp
)
2866 struct cgroup
*dsct
;
2867 struct cgroup_subsys_state
*d_css
;
2869 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2870 dsct
->subtree_control
&= cgroup_control(dsct
);
2871 dsct
->subtree_ss_mask
=
2872 cgroup_calc_subtree_ss_mask(dsct
->subtree_control
,
2873 cgroup_ss_mask(dsct
));
2878 * cgroup_restore_control - restore control masks of a subtree
2879 * @cgrp: root of the target subtree
2881 * Restore ->subtree_control and ->subtree_ss_mask from the respective old_
2882 * prefixed fields for @cgrp's subtree including @cgrp itself.
2884 static void cgroup_restore_control(struct cgroup
*cgrp
)
2886 struct cgroup
*dsct
;
2887 struct cgroup_subsys_state
*d_css
;
2889 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2890 dsct
->subtree_control
= dsct
->old_subtree_control
;
2891 dsct
->subtree_ss_mask
= dsct
->old_subtree_ss_mask
;
2895 static bool css_visible(struct cgroup_subsys_state
*css
)
2897 struct cgroup_subsys
*ss
= css
->ss
;
2898 struct cgroup
*cgrp
= css
->cgroup
;
2900 if (cgroup_control(cgrp
) & (1 << ss
->id
))
2902 if (!(cgroup_ss_mask(cgrp
) & (1 << ss
->id
)))
2904 return cgroup_on_dfl(cgrp
) && ss
->implicit_on_dfl
;
2908 * cgroup_apply_control_enable - enable or show csses according to control
2909 * @cgrp: root of the target subtree
2911 * Walk @cgrp's subtree and create new csses or make the existing ones
2912 * visible. A css is created invisible if it's being implicitly enabled
2913 * through dependency. An invisible css is made visible when the userland
2914 * explicitly enables it.
2916 * Returns 0 on success, -errno on failure. On failure, csses which have
2917 * been processed already aren't cleaned up. The caller is responsible for
2918 * cleaning up with cgroup_apply_control_disable().
2920 static int cgroup_apply_control_enable(struct cgroup
*cgrp
)
2922 struct cgroup
*dsct
;
2923 struct cgroup_subsys_state
*d_css
;
2924 struct cgroup_subsys
*ss
;
2927 cgroup_for_each_live_descendant_pre(dsct
, d_css
, cgrp
) {
2928 for_each_subsys(ss
, ssid
) {
2929 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2931 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
2933 if (!(cgroup_ss_mask(dsct
) & (1 << ss
->id
)))
2937 css
= css_create(dsct
, ss
);
2939 return PTR_ERR(css
);
2942 if (css_visible(css
)) {
2943 ret
= css_populate_dir(css
);
2954 * cgroup_apply_control_disable - kill or hide csses according to control
2955 * @cgrp: root of the target subtree
2957 * Walk @cgrp's subtree and kill and hide csses so that they match
2958 * cgroup_ss_mask() and cgroup_visible_mask().
2960 * A css is hidden when the userland requests it to be disabled while other
2961 * subsystems are still depending on it. The css must not actively control
2962 * resources and be in the vanilla state if it's made visible again later.
2963 * Controllers which may be depended upon should provide ->css_reset() for
2966 static void cgroup_apply_control_disable(struct cgroup
*cgrp
)
2968 struct cgroup
*dsct
;
2969 struct cgroup_subsys_state
*d_css
;
2970 struct cgroup_subsys
*ss
;
2973 cgroup_for_each_live_descendant_post(dsct
, d_css
, cgrp
) {
2974 for_each_subsys(ss
, ssid
) {
2975 struct cgroup_subsys_state
*css
= cgroup_css(dsct
, ss
);
2977 WARN_ON_ONCE(css
&& percpu_ref_is_dying(&css
->refcnt
));
2983 !(cgroup_ss_mask(dsct
) & (1 << ss
->id
))) {
2985 } else if (!css_visible(css
)) {
2995 * cgroup_apply_control - apply control mask updates to the subtree
2996 * @cgrp: root of the target subtree
2998 * subsystems can be enabled and disabled in a subtree using the following
3001 * 1. Call cgroup_save_control() to stash the current state.
3002 * 2. Update ->subtree_control masks in the subtree as desired.
3003 * 3. Call cgroup_apply_control() to apply the changes.
3004 * 4. Optionally perform other related operations.
3005 * 5. Call cgroup_finalize_control() to finish up.
3007 * This function implements step 3 and propagates the mask changes
3008 * throughout @cgrp's subtree, updates csses accordingly and perform
3009 * process migrations.
3011 static int cgroup_apply_control(struct cgroup
*cgrp
)
3015 cgroup_propagate_control(cgrp
);
3017 ret
= cgroup_apply_control_enable(cgrp
);
3022 * At this point, cgroup_e_css() results reflect the new csses
3023 * making the following cgroup_update_dfl_csses() properly update
3024 * css associations of all tasks in the subtree.
3026 ret
= cgroup_update_dfl_csses(cgrp
);
3034 * cgroup_finalize_control - finalize control mask update
3035 * @cgrp: root of the target subtree
3036 * @ret: the result of the update
3038 * Finalize control mask update. See cgroup_apply_control() for more info.
3040 static void cgroup_finalize_control(struct cgroup
*cgrp
, int ret
)
3043 cgroup_restore_control(cgrp
);
3044 cgroup_propagate_control(cgrp
);
3047 cgroup_apply_control_disable(cgrp
);
3050 static int cgroup_vet_subtree_control_enable(struct cgroup
*cgrp
, u16 enable
)
3052 u16 domain_enable
= enable
& ~cgrp_dfl_threaded_ss_mask
;
3054 /* if nothing is getting enabled, nothing to worry about */
3058 /* can @cgrp host any resources? */
3059 if (!cgroup_is_valid_domain(cgrp
->dom_cgrp
))
3062 /* mixables don't care */
3063 if (cgroup_is_mixable(cgrp
))
3066 if (domain_enable
) {
3067 /* can't enable domain controllers inside a thread subtree */
3068 if (cgroup_is_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3072 * Threaded controllers can handle internal competitions
3073 * and are always allowed inside a (prospective) thread
3076 if (cgroup_can_be_thread_root(cgrp
) || cgroup_is_threaded(cgrp
))
3081 * Controllers can't be enabled for a cgroup with tasks to avoid
3082 * child cgroups competing against tasks.
3084 if (cgroup_has_tasks(cgrp
))
3090 /* change the enabled child controllers for a cgroup in the default hierarchy */
3091 static ssize_t
cgroup_subtree_control_write(struct kernfs_open_file
*of
,
3092 char *buf
, size_t nbytes
,
3095 u16 enable
= 0, disable
= 0;
3096 struct cgroup
*cgrp
, *child
;
3097 struct cgroup_subsys
*ss
;
3102 * Parse input - space separated list of subsystem names prefixed
3103 * with either + or -.
3105 buf
= strstrip(buf
);
3106 while ((tok
= strsep(&buf
, " "))) {
3109 do_each_subsys_mask(ss
, ssid
, ~cgrp_dfl_inhibit_ss_mask
) {
3110 if (!cgroup_ssid_enabled(ssid
) ||
3111 strcmp(tok
+ 1, ss
->name
))
3115 enable
|= 1 << ssid
;
3116 disable
&= ~(1 << ssid
);
3117 } else if (*tok
== '-') {
3118 disable
|= 1 << ssid
;
3119 enable
&= ~(1 << ssid
);
3124 } while_each_subsys_mask();
3125 if (ssid
== CGROUP_SUBSYS_COUNT
)
3129 cgrp
= cgroup_kn_lock_live(of
->kn
, true);
3133 for_each_subsys(ss
, ssid
) {
3134 if (enable
& (1 << ssid
)) {
3135 if (cgrp
->subtree_control
& (1 << ssid
)) {
3136 enable
&= ~(1 << ssid
);
3140 if (!(cgroup_control(cgrp
) & (1 << ssid
))) {
3144 } else if (disable
& (1 << ssid
)) {
3145 if (!(cgrp
->subtree_control
& (1 << ssid
))) {
3146 disable
&= ~(1 << ssid
);
3150 /* a child has it enabled? */
3151 cgroup_for_each_live_child(child
, cgrp
) {
3152 if (child
->subtree_control
& (1 << ssid
)) {
3160 if (!enable
&& !disable
) {
3165 ret
= cgroup_vet_subtree_control_enable(cgrp
, enable
);
3169 /* save and update control masks and prepare csses */
3170 cgroup_save_control(cgrp
);
3172 cgrp
->subtree_control
|= enable
;
3173 cgrp
->subtree_control
&= ~disable
;
3175 ret
= cgroup_apply_control(cgrp
);
3176 cgroup_finalize_control(cgrp
, ret
);
3180 kernfs_activate(cgrp
->kn
);
3182 cgroup_kn_unlock(of
->kn
);
3183 return ret
?: nbytes
;
3187 * cgroup_enable_threaded - make @cgrp threaded
3188 * @cgrp: the target cgroup
3190 * Called when "threaded" is written to the cgroup.type interface file and
3191 * tries to make @cgrp threaded and join the parent's resource domain.
3192 * This function is never called on the root cgroup as cgroup.type doesn't
3195 static int cgroup_enable_threaded(struct cgroup
*cgrp
)
3197 struct cgroup
*parent
= cgroup_parent(cgrp
);
3198 struct cgroup
*dom_cgrp
= parent
->dom_cgrp
;
3201 lockdep_assert_held(&cgroup_mutex
);
3203 /* noop if already threaded */
3204 if (cgroup_is_threaded(cgrp
))
3208 * If @cgroup is populated or has domain controllers enabled, it
3209 * can't be switched. While the below cgroup_can_be_thread_root()
3210 * test can catch the same conditions, that's only when @parent is
3211 * not mixable, so let's check it explicitly.
3213 if (cgroup_is_populated(cgrp
) ||
3214 cgrp
->subtree_control
& ~cgrp_dfl_threaded_ss_mask
)
3217 /* we're joining the parent's domain, ensure its validity */
3218 if (!cgroup_is_valid_domain(dom_cgrp
) ||
3219 !cgroup_can_be_thread_root(dom_cgrp
))
3223 * The following shouldn't cause actual migrations and should
3226 cgroup_save_control(cgrp
);
3228 cgrp
->dom_cgrp
= dom_cgrp
;
3229 ret
= cgroup_apply_control(cgrp
);
3231 parent
->nr_threaded_children
++;
3233 cgrp
->dom_cgrp
= cgrp
;
3235 cgroup_finalize_control(cgrp
, ret
);
3239 static int cgroup_type_show(struct seq_file
*seq
, void *v
)
3241 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3243 if (cgroup_is_threaded(cgrp
))
3244 seq_puts(seq
, "threaded\n");
3245 else if (!cgroup_is_valid_domain(cgrp
))
3246 seq_puts(seq
, "domain invalid\n");
3247 else if (cgroup_is_thread_root(cgrp
))
3248 seq_puts(seq
, "domain threaded\n");
3250 seq_puts(seq
, "domain\n");
3255 static ssize_t
cgroup_type_write(struct kernfs_open_file
*of
, char *buf
,
3256 size_t nbytes
, loff_t off
)
3258 struct cgroup
*cgrp
;
3261 /* only switching to threaded mode is supported */
3262 if (strcmp(strstrip(buf
), "threaded"))
3265 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3269 /* threaded can only be enabled */
3270 ret
= cgroup_enable_threaded(cgrp
);
3272 cgroup_kn_unlock(of
->kn
);
3273 return ret
?: nbytes
;
3276 static int cgroup_max_descendants_show(struct seq_file
*seq
, void *v
)
3278 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3279 int descendants
= READ_ONCE(cgrp
->max_descendants
);
3281 if (descendants
== INT_MAX
)
3282 seq_puts(seq
, "max\n");
3284 seq_printf(seq
, "%d\n", descendants
);
3289 static ssize_t
cgroup_max_descendants_write(struct kernfs_open_file
*of
,
3290 char *buf
, size_t nbytes
, loff_t off
)
3292 struct cgroup
*cgrp
;
3296 buf
= strstrip(buf
);
3297 if (!strcmp(buf
, "max")) {
3298 descendants
= INT_MAX
;
3300 ret
= kstrtoint(buf
, 0, &descendants
);
3305 if (descendants
< 0)
3308 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3312 cgrp
->max_descendants
= descendants
;
3314 cgroup_kn_unlock(of
->kn
);
3319 static int cgroup_max_depth_show(struct seq_file
*seq
, void *v
)
3321 struct cgroup
*cgrp
= seq_css(seq
)->cgroup
;
3322 int depth
= READ_ONCE(cgrp
->max_depth
);
3324 if (depth
== INT_MAX
)
3325 seq_puts(seq
, "max\n");
3327 seq_printf(seq
, "%d\n", depth
);
3332 static ssize_t
cgroup_max_depth_write(struct kernfs_open_file
*of
,
3333 char *buf
, size_t nbytes
, loff_t off
)
3335 struct cgroup
*cgrp
;
3339 buf
= strstrip(buf
);
3340 if (!strcmp(buf
, "max")) {
3343 ret
= kstrtoint(buf
, 0, &depth
);
3351 cgrp
= cgroup_kn_lock_live(of
->kn
, false);
3355 cgrp
->max_depth
= depth
;
3357 cgroup_kn_unlock(of
->kn
);
3362 static int cgroup_events_show(struct seq_file
*seq
, void *v
)
3364 seq_printf(seq
, "populated %d\n",
3365 cgroup_is_populated(seq_css(seq
)->cgroup
));
3369 static int cgroup_stat_show(struct seq_file
*seq
, void *v
)
3371 struct cgroup
*cgroup
= seq_css(seq
)->cgroup
;
3373 seq_printf(seq
, "nr_descendants %d\n",
3374 cgroup
->nr_descendants
);
3375 seq_printf(seq
, "nr_dying_descendants %d\n",
3376 cgroup
->nr_dying_descendants
);
3381 static int __maybe_unused
cgroup_extra_stat_show(struct seq_file
*seq
,
3382 struct cgroup
*cgrp
, int ssid
)
3384 struct cgroup_subsys
*ss
= cgroup_subsys
[ssid
];
3385 struct cgroup_subsys_state
*css
;
3388 if (!ss
->css_extra_stat_show
)
3391 css
= cgroup_tryget_css(cgrp
, ss
);
3395 ret
= ss
->css_extra_stat_show(seq
, css
);
3400 static int cpu_stat_show(struct seq_file
*seq
, void *v
)
3402 struct cgroup __maybe_unused
*cgrp
= seq_css(seq
)->cgroup
;
3405 cgroup_base_stat_cputime_show(seq
);
3406 #ifdef CONFIG_CGROUP_SCHED
3407 ret
= cgroup_extra_stat_show(seq
, cgrp
, cpu_cgrp_id
);
3412 static int cgroup_file_open(struct kernfs_open_file
*of
)
3414 struct cftype
*cft
= of
->kn
->priv
;
3417 return cft
->open(of
);
3421 static void cgroup_file_release(struct kernfs_open_file
*of
)
3423 struct cftype
*cft
= of
->kn
->priv
;
3429 static ssize_t
cgroup_file_write(struct kernfs_open_file
*of
, char *buf
,
3430 size_t nbytes
, loff_t off
)
3432 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
3433 struct cgroup
*cgrp
= of
->kn
->parent
->priv
;
3434 struct cftype
*cft
= of
->kn
->priv
;
3435 struct cgroup_subsys_state
*css
;
3439 * If namespaces are delegation boundaries, disallow writes to
3440 * files in an non-init namespace root from inside the namespace
3441 * except for the files explicitly marked delegatable -
3442 * cgroup.procs and cgroup.subtree_control.
3444 if ((cgrp
->root
->flags
& CGRP_ROOT_NS_DELEGATE
) &&
3445 !(cft
->flags
& CFTYPE_NS_DELEGATABLE
) &&
3446 ns
!= &init_cgroup_ns
&& ns
->root_cset
->dfl_cgrp
== cgrp
)
3450 return cft
->write(of
, buf
, nbytes
, off
);
3453 * kernfs guarantees that a file isn't deleted with operations in
3454 * flight, which means that the matching css is and stays alive and
3455 * doesn't need to be pinned. The RCU locking is not necessary
3456 * either. It's just for the convenience of using cgroup_css().
3459 css
= cgroup_css(cgrp
, cft
->ss
);
3462 if (cft
->write_u64
) {
3463 unsigned long long v
;
3464 ret
= kstrtoull(buf
, 0, &v
);
3466 ret
= cft
->write_u64(css
, cft
, v
);
3467 } else if (cft
->write_s64
) {
3469 ret
= kstrtoll(buf
, 0, &v
);
3471 ret
= cft
->write_s64(css
, cft
, v
);
3476 return ret
?: nbytes
;
3479 static void *cgroup_seqfile_start(struct seq_file
*seq
, loff_t
*ppos
)
3481 return seq_cft(seq
)->seq_start(seq
, ppos
);
3484 static void *cgroup_seqfile_next(struct seq_file
*seq
, void *v
, loff_t
*ppos
)
3486 return seq_cft(seq
)->seq_next(seq
, v
, ppos
);
3489 static void cgroup_seqfile_stop(struct seq_file
*seq
, void *v
)
3491 if (seq_cft(seq
)->seq_stop
)
3492 seq_cft(seq
)->seq_stop(seq
, v
);
3495 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
3497 struct cftype
*cft
= seq_cft(m
);
3498 struct cgroup_subsys_state
*css
= seq_css(m
);
3501 return cft
->seq_show(m
, arg
);
3504 seq_printf(m
, "%llu\n", cft
->read_u64(css
, cft
));
3505 else if (cft
->read_s64
)
3506 seq_printf(m
, "%lld\n", cft
->read_s64(css
, cft
));
3512 static struct kernfs_ops cgroup_kf_single_ops
= {
3513 .atomic_write_len
= PAGE_SIZE
,
3514 .open
= cgroup_file_open
,
3515 .release
= cgroup_file_release
,
3516 .write
= cgroup_file_write
,
3517 .seq_show
= cgroup_seqfile_show
,
3520 static struct kernfs_ops cgroup_kf_ops
= {
3521 .atomic_write_len
= PAGE_SIZE
,
3522 .open
= cgroup_file_open
,
3523 .release
= cgroup_file_release
,
3524 .write
= cgroup_file_write
,
3525 .seq_start
= cgroup_seqfile_start
,
3526 .seq_next
= cgroup_seqfile_next
,
3527 .seq_stop
= cgroup_seqfile_stop
,
3528 .seq_show
= cgroup_seqfile_show
,
3531 /* set uid and gid of cgroup dirs and files to that of the creator */
3532 static int cgroup_kn_set_ugid(struct kernfs_node
*kn
)
3534 struct iattr iattr
= { .ia_valid
= ATTR_UID
| ATTR_GID
,
3535 .ia_uid
= current_fsuid(),
3536 .ia_gid
= current_fsgid(), };
3538 if (uid_eq(iattr
.ia_uid
, GLOBAL_ROOT_UID
) &&
3539 gid_eq(iattr
.ia_gid
, GLOBAL_ROOT_GID
))
3542 return kernfs_setattr(kn
, &iattr
);
3545 static void cgroup_file_notify_timer(struct timer_list
*timer
)
3547 cgroup_file_notify(container_of(timer
, struct cgroup_file
,
3551 static int cgroup_add_file(struct cgroup_subsys_state
*css
, struct cgroup
*cgrp
,
3554 char name
[CGROUP_FILE_NAME_MAX
];
3555 struct kernfs_node
*kn
;
3556 struct lock_class_key
*key
= NULL
;
3559 #ifdef CONFIG_DEBUG_LOCK_ALLOC
3560 key
= &cft
->lockdep_key
;
3562 kn
= __kernfs_create_file(cgrp
->kn
, cgroup_file_name(cgrp
, cft
, name
),
3563 cgroup_file_mode(cft
),
3564 GLOBAL_ROOT_UID
, GLOBAL_ROOT_GID
,
3565 0, cft
->kf_ops
, cft
,
3570 ret
= cgroup_kn_set_ugid(kn
);
3576 if (cft
->file_offset
) {
3577 struct cgroup_file
*cfile
= (void *)css
+ cft
->file_offset
;
3579 timer_setup(&cfile
->notify_timer
, cgroup_file_notify_timer
, 0);
3581 spin_lock_irq(&cgroup_file_kn_lock
);
3583 spin_unlock_irq(&cgroup_file_kn_lock
);
3590 * cgroup_addrm_files - add or remove files to a cgroup directory
3591 * @css: the target css
3592 * @cgrp: the target cgroup (usually css->cgroup)
3593 * @cfts: array of cftypes to be added
3594 * @is_add: whether to add or remove
3596 * Depending on @is_add, add or remove files defined by @cfts on @cgrp.
3597 * For removals, this function never fails.
3599 static int cgroup_addrm_files(struct cgroup_subsys_state
*css
,
3600 struct cgroup
*cgrp
, struct cftype cfts
[],
3603 struct cftype
*cft
, *cft_end
= NULL
;
3606 lockdep_assert_held(&cgroup_mutex
);
3609 for (cft
= cfts
; cft
!= cft_end
&& cft
->name
[0] != '\0'; cft
++) {
3610 /* does cft->flags tell us to skip this file on @cgrp? */
3611 if ((cft
->flags
& __CFTYPE_ONLY_ON_DFL
) && !cgroup_on_dfl(cgrp
))
3613 if ((cft
->flags
& __CFTYPE_NOT_ON_DFL
) && cgroup_on_dfl(cgrp
))
3615 if ((cft
->flags
& CFTYPE_NOT_ON_ROOT
) && !cgroup_parent(cgrp
))
3617 if ((cft
->flags
& CFTYPE_ONLY_ON_ROOT
) && cgroup_parent(cgrp
))
3621 ret
= cgroup_add_file(css
, cgrp
, cft
);
3623 pr_warn("%s: failed to add %s, err=%d\n",
3624 __func__
, cft
->name
, ret
);
3630 cgroup_rm_file(cgrp
, cft
);
3636 static int cgroup_apply_cftypes(struct cftype
*cfts
, bool is_add
)
3638 struct cgroup_subsys
*ss
= cfts
[0].ss
;
3639 struct cgroup
*root
= &ss
->root
->cgrp
;
3640 struct cgroup_subsys_state
*css
;
3643 lockdep_assert_held(&cgroup_mutex
);
3645 /* add/rm files for all cgroups created before */
3646 css_for_each_descendant_pre(css
, cgroup_css(root
, ss
)) {
3647 struct cgroup
*cgrp
= css
->cgroup
;
3649 if (!(css
->flags
& CSS_VISIBLE
))
3652 ret
= cgroup_addrm_files(css
, cgrp
, cfts
, is_add
);
3658 kernfs_activate(root
->kn
);
3662 static void cgroup_exit_cftypes(struct cftype
*cfts
)
3666 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3667 /* free copy for custom atomic_write_len, see init_cftypes() */
3668 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
)
3673 /* revert flags set by cgroup core while adding @cfts */
3674 cft
->flags
&= ~(__CFTYPE_ONLY_ON_DFL
| __CFTYPE_NOT_ON_DFL
);
3678 static int cgroup_init_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3682 for (cft
= cfts
; cft
->name
[0] != '\0'; cft
++) {
3683 struct kernfs_ops
*kf_ops
;
3685 WARN_ON(cft
->ss
|| cft
->kf_ops
);
3688 kf_ops
= &cgroup_kf_ops
;
3690 kf_ops
= &cgroup_kf_single_ops
;
3693 * Ugh... if @cft wants a custom max_write_len, we need to
3694 * make a copy of kf_ops to set its atomic_write_len.
3696 if (cft
->max_write_len
&& cft
->max_write_len
!= PAGE_SIZE
) {
3697 kf_ops
= kmemdup(kf_ops
, sizeof(*kf_ops
), GFP_KERNEL
);
3699 cgroup_exit_cftypes(cfts
);
3702 kf_ops
->atomic_write_len
= cft
->max_write_len
;
3705 cft
->kf_ops
= kf_ops
;
3712 static int cgroup_rm_cftypes_locked(struct cftype
*cfts
)
3714 lockdep_assert_held(&cgroup_mutex
);
3716 if (!cfts
|| !cfts
[0].ss
)
3719 list_del(&cfts
->node
);
3720 cgroup_apply_cftypes(cfts
, false);
3721 cgroup_exit_cftypes(cfts
);
3726 * cgroup_rm_cftypes - remove an array of cftypes from a subsystem
3727 * @cfts: zero-length name terminated array of cftypes
3729 * Unregister @cfts. Files described by @cfts are removed from all
3730 * existing cgroups and all future cgroups won't have them either. This
3731 * function can be called anytime whether @cfts' subsys is attached or not.
3733 * Returns 0 on successful unregistration, -ENOENT if @cfts is not
3736 int cgroup_rm_cftypes(struct cftype
*cfts
)
3740 mutex_lock(&cgroup_mutex
);
3741 ret
= cgroup_rm_cftypes_locked(cfts
);
3742 mutex_unlock(&cgroup_mutex
);
3747 * cgroup_add_cftypes - add an array of cftypes to a subsystem
3748 * @ss: target cgroup subsystem
3749 * @cfts: zero-length name terminated array of cftypes
3751 * Register @cfts to @ss. Files described by @cfts are created for all
3752 * existing cgroups to which @ss is attached and all future cgroups will
3753 * have them too. This function can be called anytime whether @ss is
3756 * Returns 0 on successful registration, -errno on failure. Note that this
3757 * function currently returns 0 as long as @cfts registration is successful
3758 * even if some file creation attempts on existing cgroups fail.
3760 static int cgroup_add_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3764 if (!cgroup_ssid_enabled(ss
->id
))
3767 if (!cfts
|| cfts
[0].name
[0] == '\0')
3770 ret
= cgroup_init_cftypes(ss
, cfts
);
3774 mutex_lock(&cgroup_mutex
);
3776 list_add_tail(&cfts
->node
, &ss
->cfts
);
3777 ret
= cgroup_apply_cftypes(cfts
, true);
3779 cgroup_rm_cftypes_locked(cfts
);
3781 mutex_unlock(&cgroup_mutex
);
3786 * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy
3787 * @ss: target cgroup subsystem
3788 * @cfts: zero-length name terminated array of cftypes
3790 * Similar to cgroup_add_cftypes() but the added files are only used for
3791 * the default hierarchy.
3793 int cgroup_add_dfl_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3797 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3798 cft
->flags
|= __CFTYPE_ONLY_ON_DFL
;
3799 return cgroup_add_cftypes(ss
, cfts
);
3803 * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies
3804 * @ss: target cgroup subsystem
3805 * @cfts: zero-length name terminated array of cftypes
3807 * Similar to cgroup_add_cftypes() but the added files are only used for
3808 * the legacy hierarchies.
3810 int cgroup_add_legacy_cftypes(struct cgroup_subsys
*ss
, struct cftype
*cfts
)
3814 for (cft
= cfts
; cft
&& cft
->name
[0] != '\0'; cft
++)
3815 cft
->flags
|= __CFTYPE_NOT_ON_DFL
;
3816 return cgroup_add_cftypes(ss
, cfts
);
3820 * cgroup_file_notify - generate a file modified event for a cgroup_file
3821 * @cfile: target cgroup_file
3823 * @cfile must have been obtained by setting cftype->file_offset.
3825 void cgroup_file_notify(struct cgroup_file
*cfile
)
3827 unsigned long flags
;
3829 spin_lock_irqsave(&cgroup_file_kn_lock
, flags
);
3831 unsigned long last
= cfile
->notified_at
;
3832 unsigned long next
= last
+ CGROUP_FILE_NOTIFY_MIN_INTV
;
3834 if (time_in_range(jiffies
, last
, next
)) {
3835 timer_reduce(&cfile
->notify_timer
, next
);
3837 kernfs_notify(cfile
->kn
);
3838 cfile
->notified_at
= jiffies
;
3841 spin_unlock_irqrestore(&cgroup_file_kn_lock
, flags
);
3845 * css_next_child - find the next child of a given css
3846 * @pos: the current position (%NULL to initiate traversal)
3847 * @parent: css whose children to walk
3849 * This function returns the next child of @parent and should be called
3850 * under either cgroup_mutex or RCU read lock. The only requirement is
3851 * that @parent and @pos are accessible. The next sibling is guaranteed to
3852 * be returned regardless of their states.
3854 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3855 * css which finished ->css_online() is guaranteed to be visible in the
3856 * future iterations and will stay visible until the last reference is put.
3857 * A css which hasn't finished ->css_online() or already finished
3858 * ->css_offline() may show up during traversal. It's each subsystem's
3859 * responsibility to synchronize against on/offlining.
3861 struct cgroup_subsys_state
*css_next_child(struct cgroup_subsys_state
*pos
,
3862 struct cgroup_subsys_state
*parent
)
3864 struct cgroup_subsys_state
*next
;
3866 cgroup_assert_mutex_or_rcu_locked();
3869 * @pos could already have been unlinked from the sibling list.
3870 * Once a cgroup is removed, its ->sibling.next is no longer
3871 * updated when its next sibling changes. CSS_RELEASED is set when
3872 * @pos is taken off list, at which time its next pointer is valid,
3873 * and, as releases are serialized, the one pointed to by the next
3874 * pointer is guaranteed to not have started release yet. This
3875 * implies that if we observe !CSS_RELEASED on @pos in this RCU
3876 * critical section, the one pointed to by its next pointer is
3877 * guaranteed to not have finished its RCU grace period even if we
3878 * have dropped rcu_read_lock() inbetween iterations.
3880 * If @pos has CSS_RELEASED set, its next pointer can't be
3881 * dereferenced; however, as each css is given a monotonically
3882 * increasing unique serial number and always appended to the
3883 * sibling list, the next one can be found by walking the parent's
3884 * children until the first css with higher serial number than
3885 * @pos's. While this path can be slower, it happens iff iteration
3886 * races against release and the race window is very small.
3889 next
= list_entry_rcu(parent
->children
.next
, struct cgroup_subsys_state
, sibling
);
3890 } else if (likely(!(pos
->flags
& CSS_RELEASED
))) {
3891 next
= list_entry_rcu(pos
->sibling
.next
, struct cgroup_subsys_state
, sibling
);
3893 list_for_each_entry_rcu(next
, &parent
->children
, sibling
)
3894 if (next
->serial_nr
> pos
->serial_nr
)
3899 * @next, if not pointing to the head, can be dereferenced and is
3902 if (&next
->sibling
!= &parent
->children
)
3908 * css_next_descendant_pre - find the next descendant for pre-order walk
3909 * @pos: the current position (%NULL to initiate traversal)
3910 * @root: css whose descendants to walk
3912 * To be used by css_for_each_descendant_pre(). Find the next descendant
3913 * to visit for pre-order traversal of @root's descendants. @root is
3914 * included in the iteration and the first node to be visited.
3916 * While this function requires cgroup_mutex or RCU read locking, it
3917 * doesn't require the whole traversal to be contained in a single critical
3918 * section. This function will return the correct next descendant as long
3919 * as both @pos and @root are accessible and @pos is a descendant of @root.
3921 * If a subsystem synchronizes ->css_online() and the start of iteration, a
3922 * css which finished ->css_online() is guaranteed to be visible in the
3923 * future iterations and will stay visible until the last reference is put.
3924 * A css which hasn't finished ->css_online() or already finished
3925 * ->css_offline() may show up during traversal. It's each subsystem's
3926 * responsibility to synchronize against on/offlining.
3928 struct cgroup_subsys_state
*
3929 css_next_descendant_pre(struct cgroup_subsys_state
*pos
,
3930 struct cgroup_subsys_state
*root
)
3932 struct cgroup_subsys_state
*next
;
3934 cgroup_assert_mutex_or_rcu_locked();
3936 /* if first iteration, visit @root */
3940 /* visit the first child if exists */
3941 next
= css_next_child(NULL
, pos
);
3945 /* no child, visit my or the closest ancestor's next sibling */
3946 while (pos
!= root
) {
3947 next
= css_next_child(pos
, pos
->parent
);
3957 * css_rightmost_descendant - return the rightmost descendant of a css
3958 * @pos: css of interest
3960 * Return the rightmost descendant of @pos. If there's no descendant, @pos
3961 * is returned. This can be used during pre-order traversal to skip
3964 * While this function requires cgroup_mutex or RCU read locking, it
3965 * doesn't require the whole traversal to be contained in a single critical
3966 * section. This function will return the correct rightmost descendant as
3967 * long as @pos is accessible.
3969 struct cgroup_subsys_state
*
3970 css_rightmost_descendant(struct cgroup_subsys_state
*pos
)
3972 struct cgroup_subsys_state
*last
, *tmp
;
3974 cgroup_assert_mutex_or_rcu_locked();
3978 /* ->prev isn't RCU safe, walk ->next till the end */
3980 css_for_each_child(tmp
, last
)
3987 static struct cgroup_subsys_state
*
3988 css_leftmost_descendant(struct cgroup_subsys_state
*pos
)
3990 struct cgroup_subsys_state
*last
;
3994 pos
= css_next_child(NULL
, pos
);
4001 * css_next_descendant_post - find the next descendant for post-order walk
4002 * @pos: the current position (%NULL to initiate traversal)
4003 * @root: css whose descendants to walk
4005 * To be used by css_for_each_descendant_post(). Find the next descendant
4006 * to visit for post-order traversal of @root's descendants. @root is
4007 * included in the iteration and the last node to be visited.
4009 * While this function requires cgroup_mutex or RCU read locking, it
4010 * doesn't require the whole traversal to be contained in a single critical
4011 * section. This function will return the correct next descendant as long
4012 * as both @pos and @cgroup are accessible and @pos is a descendant of
4015 * If a subsystem synchronizes ->css_online() and the start of iteration, a
4016 * css which finished ->css_online() is guaranteed to be visible in the
4017 * future iterations and will stay visible until the last reference is put.
4018 * A css which hasn't finished ->css_online() or already finished
4019 * ->css_offline() may show up during traversal. It's each subsystem's
4020 * responsibility to synchronize against on/offlining.
4022 struct cgroup_subsys_state
*
4023 css_next_descendant_post(struct cgroup_subsys_state
*pos
,
4024 struct cgroup_subsys_state
*root
)
4026 struct cgroup_subsys_state
*next
;
4028 cgroup_assert_mutex_or_rcu_locked();
4030 /* if first iteration, visit leftmost descendant which may be @root */
4032 return css_leftmost_descendant(root
);
4034 /* if we visited @root, we're done */
4038 /* if there's an unvisited sibling, visit its leftmost descendant */
4039 next
= css_next_child(pos
, pos
->parent
);
4041 return css_leftmost_descendant(next
);
4043 /* no sibling left, visit parent */
4048 * css_has_online_children - does a css have online children
4049 * @css: the target css
4051 * Returns %true if @css has any online children; otherwise, %false. This
4052 * function can be called from any context but the caller is responsible
4053 * for synchronizing against on/offlining as necessary.
4055 bool css_has_online_children(struct cgroup_subsys_state
*css
)
4057 struct cgroup_subsys_state
*child
;
4061 css_for_each_child(child
, css
) {
4062 if (child
->flags
& CSS_ONLINE
) {
4071 static struct css_set
*css_task_iter_next_css_set(struct css_task_iter
*it
)
4073 struct list_head
*l
;
4074 struct cgrp_cset_link
*link
;
4075 struct css_set
*cset
;
4077 lockdep_assert_held(&css_set_lock
);
4079 /* find the next threaded cset */
4080 if (it
->tcset_pos
) {
4081 l
= it
->tcset_pos
->next
;
4083 if (l
!= it
->tcset_head
) {
4085 return container_of(l
, struct css_set
,
4086 threaded_csets_node
);
4089 it
->tcset_pos
= NULL
;
4092 /* find the next cset */
4095 if (l
== it
->cset_head
) {
4096 it
->cset_pos
= NULL
;
4101 cset
= container_of(l
, struct css_set
, e_cset_node
[it
->ss
->id
]);
4103 link
= list_entry(l
, struct cgrp_cset_link
, cset_link
);
4109 /* initialize threaded css_set walking */
4110 if (it
->flags
& CSS_TASK_ITER_THREADED
) {
4112 put_css_set_locked(it
->cur_dcset
);
4113 it
->cur_dcset
= cset
;
4116 it
->tcset_head
= &cset
->threaded_csets
;
4117 it
->tcset_pos
= &cset
->threaded_csets
;
4124 * css_task_iter_advance_css_set - advance a task itererator to the next css_set
4125 * @it: the iterator to advance
4127 * Advance @it to the next css_set to walk.
4129 static void css_task_iter_advance_css_set(struct css_task_iter
*it
)
4131 struct css_set
*cset
;
4133 lockdep_assert_held(&css_set_lock
);
4135 /* Advance to the next non-empty css_set */
4137 cset
= css_task_iter_next_css_set(it
);
4139 it
->task_pos
= NULL
;
4142 } while (!css_set_populated(cset
));
4144 if (!list_empty(&cset
->tasks
))
4145 it
->task_pos
= cset
->tasks
.next
;
4147 it
->task_pos
= cset
->mg_tasks
.next
;
4149 it
->tasks_head
= &cset
->tasks
;
4150 it
->mg_tasks_head
= &cset
->mg_tasks
;
4153 * We don't keep css_sets locked across iteration steps and thus
4154 * need to take steps to ensure that iteration can be resumed after
4155 * the lock is re-acquired. Iteration is performed at two levels -
4156 * css_sets and tasks in them.
4158 * Once created, a css_set never leaves its cgroup lists, so a
4159 * pinned css_set is guaranteed to stay put and we can resume
4160 * iteration afterwards.
4162 * Tasks may leave @cset across iteration steps. This is resolved
4163 * by registering each iterator with the css_set currently being
4164 * walked and making css_set_move_task() advance iterators whose
4165 * next task is leaving.
4168 list_del(&it
->iters_node
);
4169 put_css_set_locked(it
->cur_cset
);
4172 it
->cur_cset
= cset
;
4173 list_add(&it
->iters_node
, &cset
->task_iters
);
4176 static void css_task_iter_advance(struct css_task_iter
*it
)
4178 struct list_head
*next
;
4180 lockdep_assert_held(&css_set_lock
);
4183 * Advance iterator to find next entry. cset->tasks is consumed
4184 * first and then ->mg_tasks. After ->mg_tasks, we move onto the
4187 next
= it
->task_pos
->next
;
4189 if (next
== it
->tasks_head
)
4190 next
= it
->mg_tasks_head
->next
;
4192 if (next
== it
->mg_tasks_head
)
4193 css_task_iter_advance_css_set(it
);
4195 it
->task_pos
= next
;
4197 /* if PROCS, skip over tasks which aren't group leaders */
4198 if ((it
->flags
& CSS_TASK_ITER_PROCS
) && it
->task_pos
&&
4199 !thread_group_leader(list_entry(it
->task_pos
, struct task_struct
,
4205 * css_task_iter_start - initiate task iteration
4206 * @css: the css to walk tasks of
4207 * @flags: CSS_TASK_ITER_* flags
4208 * @it: the task iterator to use
4210 * Initiate iteration through the tasks of @css. The caller can call
4211 * css_task_iter_next() to walk through the tasks until the function
4212 * returns NULL. On completion of iteration, css_task_iter_end() must be
4215 void css_task_iter_start(struct cgroup_subsys_state
*css
, unsigned int flags
,
4216 struct css_task_iter
*it
)
4218 /* no one should try to iterate before mounting cgroups */
4219 WARN_ON_ONCE(!use_task_css_set_links
);
4221 memset(it
, 0, sizeof(*it
));
4223 spin_lock_irq(&css_set_lock
);
4229 it
->cset_pos
= &css
->cgroup
->e_csets
[css
->ss
->id
];
4231 it
->cset_pos
= &css
->cgroup
->cset_links
;
4233 it
->cset_head
= it
->cset_pos
;
4235 css_task_iter_advance_css_set(it
);
4237 spin_unlock_irq(&css_set_lock
);
4241 * css_task_iter_next - return the next task for the iterator
4242 * @it: the task iterator being iterated
4244 * The "next" function for task iteration. @it should have been
4245 * initialized via css_task_iter_start(). Returns NULL when the iteration
4248 struct task_struct
*css_task_iter_next(struct css_task_iter
*it
)
4251 put_task_struct(it
->cur_task
);
4252 it
->cur_task
= NULL
;
4255 spin_lock_irq(&css_set_lock
);
4258 it
->cur_task
= list_entry(it
->task_pos
, struct task_struct
,
4260 get_task_struct(it
->cur_task
);
4261 css_task_iter_advance(it
);
4264 spin_unlock_irq(&css_set_lock
);
4266 return it
->cur_task
;
4270 * css_task_iter_end - finish task iteration
4271 * @it: the task iterator to finish
4273 * Finish task iteration started by css_task_iter_start().
4275 void css_task_iter_end(struct css_task_iter
*it
)
4278 spin_lock_irq(&css_set_lock
);
4279 list_del(&it
->iters_node
);
4280 put_css_set_locked(it
->cur_cset
);
4281 spin_unlock_irq(&css_set_lock
);
4285 put_css_set(it
->cur_dcset
);
4288 put_task_struct(it
->cur_task
);
4291 static void cgroup_procs_release(struct kernfs_open_file
*of
)
4294 css_task_iter_end(of
->priv
);
4299 static void *cgroup_procs_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
4301 struct kernfs_open_file
*of
= s
->private;
4302 struct css_task_iter
*it
= of
->priv
;
4304 return css_task_iter_next(it
);
4307 static void *__cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
,
4308 unsigned int iter_flags
)
4310 struct kernfs_open_file
*of
= s
->private;
4311 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4312 struct css_task_iter
*it
= of
->priv
;
4315 * When a seq_file is seeked, it's always traversed sequentially
4316 * from position 0, so we can simply keep iterating on !0 *pos.
4319 if (WARN_ON_ONCE((*pos
)++))
4320 return ERR_PTR(-EINVAL
);
4322 it
= kzalloc(sizeof(*it
), GFP_KERNEL
);
4324 return ERR_PTR(-ENOMEM
);
4326 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4327 } else if (!(*pos
)++) {
4328 css_task_iter_end(it
);
4329 css_task_iter_start(&cgrp
->self
, iter_flags
, it
);
4332 return cgroup_procs_next(s
, NULL
, NULL
);
4335 static void *cgroup_procs_start(struct seq_file
*s
, loff_t
*pos
)
4337 struct cgroup
*cgrp
= seq_css(s
)->cgroup
;
4340 * All processes of a threaded subtree belong to the domain cgroup
4341 * of the subtree. Only threads can be distributed across the
4342 * subtree. Reject reads on cgroup.procs in the subtree proper.
4343 * They're always empty anyway.
4345 if (cgroup_is_threaded(cgrp
))
4346 return ERR_PTR(-EOPNOTSUPP
);
4348 return __cgroup_procs_start(s
, pos
, CSS_TASK_ITER_PROCS
|
4349 CSS_TASK_ITER_THREADED
);
4352 static int cgroup_procs_show(struct seq_file
*s
, void *v
)
4354 seq_printf(s
, "%d\n", task_pid_vnr(v
));
4358 static int cgroup_procs_write_permission(struct cgroup
*src_cgrp
,
4359 struct cgroup
*dst_cgrp
,
4360 struct super_block
*sb
)
4362 struct cgroup_namespace
*ns
= current
->nsproxy
->cgroup_ns
;
4363 struct cgroup
*com_cgrp
= src_cgrp
;
4364 struct inode
*inode
;
4367 lockdep_assert_held(&cgroup_mutex
);
4369 /* find the common ancestor */
4370 while (!cgroup_is_descendant(dst_cgrp
, com_cgrp
))
4371 com_cgrp
= cgroup_parent(com_cgrp
);
4373 /* %current should be authorized to migrate to the common ancestor */
4374 inode
= kernfs_get_inode(sb
, com_cgrp
->procs_file
.kn
);
4378 ret
= inode_permission(inode
, MAY_WRITE
);
4384 * If namespaces are delegation boundaries, %current must be able
4385 * to see both source and destination cgroups from its namespace.
4387 if ((cgrp_dfl_root
.flags
& CGRP_ROOT_NS_DELEGATE
) &&
4388 (!cgroup_is_descendant(src_cgrp
, ns
->root_cset
->dfl_cgrp
) ||
4389 !cgroup_is_descendant(dst_cgrp
, ns
->root_cset
->dfl_cgrp
)))
4395 static ssize_t
cgroup_procs_write(struct kernfs_open_file
*of
,
4396 char *buf
, size_t nbytes
, loff_t off
)
4398 struct cgroup
*src_cgrp
, *dst_cgrp
;
4399 struct task_struct
*task
;
4402 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4406 task
= cgroup_procs_write_start(buf
, true);
4407 ret
= PTR_ERR_OR_ZERO(task
);
4411 /* find the source cgroup */
4412 spin_lock_irq(&css_set_lock
);
4413 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4414 spin_unlock_irq(&css_set_lock
);
4416 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
,
4417 of
->file
->f_path
.dentry
->d_sb
);
4421 ret
= cgroup_attach_task(dst_cgrp
, task
, true);
4424 cgroup_procs_write_finish(task
);
4426 cgroup_kn_unlock(of
->kn
);
4428 return ret
?: nbytes
;
4431 static void *cgroup_threads_start(struct seq_file
*s
, loff_t
*pos
)
4433 return __cgroup_procs_start(s
, pos
, 0);
4436 static ssize_t
cgroup_threads_write(struct kernfs_open_file
*of
,
4437 char *buf
, size_t nbytes
, loff_t off
)
4439 struct cgroup
*src_cgrp
, *dst_cgrp
;
4440 struct task_struct
*task
;
4443 buf
= strstrip(buf
);
4445 dst_cgrp
= cgroup_kn_lock_live(of
->kn
, false);
4449 task
= cgroup_procs_write_start(buf
, false);
4450 ret
= PTR_ERR_OR_ZERO(task
);
4454 /* find the source cgroup */
4455 spin_lock_irq(&css_set_lock
);
4456 src_cgrp
= task_cgroup_from_root(task
, &cgrp_dfl_root
);
4457 spin_unlock_irq(&css_set_lock
);
4459 /* thread migrations follow the cgroup.procs delegation rule */
4460 ret
= cgroup_procs_write_permission(src_cgrp
, dst_cgrp
,
4461 of
->file
->f_path
.dentry
->d_sb
);
4465 /* and must be contained in the same domain */
4467 if (src_cgrp
->dom_cgrp
!= dst_cgrp
->dom_cgrp
)
4470 ret
= cgroup_attach_task(dst_cgrp
, task
, false);
4473 cgroup_procs_write_finish(task
);
4475 cgroup_kn_unlock(of
->kn
);
4477 return ret
?: nbytes
;
4480 /* cgroup core interface files for the default hierarchy */
4481 static struct cftype cgroup_base_files
[] = {
4483 .name
= "cgroup.type",
4484 .flags
= CFTYPE_NOT_ON_ROOT
,
4485 .seq_show
= cgroup_type_show
,
4486 .write
= cgroup_type_write
,
4489 .name
= "cgroup.procs",
4490 .flags
= CFTYPE_NS_DELEGATABLE
,
4491 .file_offset
= offsetof(struct cgroup
, procs_file
),
4492 .release
= cgroup_procs_release
,
4493 .seq_start
= cgroup_procs_start
,
4494 .seq_next
= cgroup_procs_next
,
4495 .seq_show
= cgroup_procs_show
,
4496 .write
= cgroup_procs_write
,
4499 .name
= "cgroup.threads",
4500 .flags
= CFTYPE_NS_DELEGATABLE
,
4501 .release
= cgroup_procs_release
,
4502 .seq_start
= cgroup_threads_start
,
4503 .seq_next
= cgroup_procs_next
,
4504 .seq_show
= cgroup_procs_show
,
4505 .write
= cgroup_threads_write
,
4508 .name
= "cgroup.controllers",
4509 .seq_show
= cgroup_controllers_show
,
4512 .name
= "cgroup.subtree_control",
4513 .flags
= CFTYPE_NS_DELEGATABLE
,
4514 .seq_show
= cgroup_subtree_control_show
,
4515 .write
= cgroup_subtree_control_write
,
4518 .name
= "cgroup.events",
4519 .flags
= CFTYPE_NOT_ON_ROOT
,
4520 .file_offset
= offsetof(struct cgroup
, events_file
),
4521 .seq_show
= cgroup_events_show
,
4524 .name
= "cgroup.max.descendants",
4525 .seq_show
= cgroup_max_descendants_show
,
4526 .write
= cgroup_max_descendants_write
,
4529 .name
= "cgroup.max.depth",
4530 .seq_show
= cgroup_max_depth_show
,
4531 .write
= cgroup_max_depth_write
,
4534 .name
= "cgroup.stat",
4535 .seq_show
= cgroup_stat_show
,
4539 .flags
= CFTYPE_NOT_ON_ROOT
,
4540 .seq_show
= cpu_stat_show
,
4546 * css destruction is four-stage process.
4548 * 1. Destruction starts. Killing of the percpu_ref is initiated.
4549 * Implemented in kill_css().
4551 * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs
4552 * and thus css_tryget_online() is guaranteed to fail, the css can be
4553 * offlined by invoking offline_css(). After offlining, the base ref is
4554 * put. Implemented in css_killed_work_fn().
4556 * 3. When the percpu_ref reaches zero, the only possible remaining
4557 * accessors are inside RCU read sections. css_release() schedules the
4560 * 4. After the grace period, the css can be freed. Implemented in
4561 * css_free_work_fn().
4563 * It is actually hairier because both step 2 and 4 require process context
4564 * and thus involve punting to css->destroy_work adding two additional
4565 * steps to the already complex sequence.
4567 static void css_free_rwork_fn(struct work_struct
*work
)
4569 struct cgroup_subsys_state
*css
= container_of(to_rcu_work(work
),
4570 struct cgroup_subsys_state
, destroy_rwork
);
4571 struct cgroup_subsys
*ss
= css
->ss
;
4572 struct cgroup
*cgrp
= css
->cgroup
;
4574 percpu_ref_exit(&css
->refcnt
);
4578 struct cgroup_subsys_state
*parent
= css
->parent
;
4582 cgroup_idr_remove(&ss
->css_idr
, id
);
4588 /* cgroup free path */
4589 atomic_dec(&cgrp
->root
->nr_cgrps
);
4590 cgroup1_pidlist_destroy_all(cgrp
);
4591 cancel_work_sync(&cgrp
->release_agent_work
);
4593 if (cgroup_parent(cgrp
)) {
4595 * We get a ref to the parent, and put the ref when
4596 * this cgroup is being freed, so it's guaranteed
4597 * that the parent won't be destroyed before its
4600 cgroup_put(cgroup_parent(cgrp
));
4601 kernfs_put(cgrp
->kn
);
4602 if (cgroup_on_dfl(cgrp
))
4603 cgroup_rstat_exit(cgrp
);
4607 * This is root cgroup's refcnt reaching zero,
4608 * which indicates that the root should be
4611 cgroup_destroy_root(cgrp
->root
);
4616 static void css_release_work_fn(struct work_struct
*work
)
4618 struct cgroup_subsys_state
*css
=
4619 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
4620 struct cgroup_subsys
*ss
= css
->ss
;
4621 struct cgroup
*cgrp
= css
->cgroup
;
4623 mutex_lock(&cgroup_mutex
);
4625 css
->flags
|= CSS_RELEASED
;
4626 list_del_rcu(&css
->sibling
);
4629 /* css release path */
4630 if (!list_empty(&css
->rstat_css_node
)) {
4631 cgroup_rstat_flush(cgrp
);
4632 list_del_rcu(&css
->rstat_css_node
);
4635 cgroup_idr_replace(&ss
->css_idr
, NULL
, css
->id
);
4636 if (ss
->css_released
)
4637 ss
->css_released(css
);
4639 struct cgroup
*tcgrp
;
4641 /* cgroup release path */
4642 TRACE_CGROUP_PATH(release
, cgrp
);
4644 if (cgroup_on_dfl(cgrp
))
4645 cgroup_rstat_flush(cgrp
);
4647 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
;
4648 tcgrp
= cgroup_parent(tcgrp
))
4649 tcgrp
->nr_dying_descendants
--;
4651 cgroup_idr_remove(&cgrp
->root
->cgroup_idr
, cgrp
->id
);
4655 * There are two control paths which try to determine
4656 * cgroup from dentry without going through kernfs -
4657 * cgroupstats_build() and css_tryget_online_from_dir().
4658 * Those are supported by RCU protecting clearing of
4659 * cgrp->kn->priv backpointer.
4662 RCU_INIT_POINTER(*(void __rcu __force
**)&cgrp
->kn
->priv
,
4665 cgroup_bpf_put(cgrp
);
4668 mutex_unlock(&cgroup_mutex
);
4670 INIT_RCU_WORK(&css
->destroy_rwork
, css_free_rwork_fn
);
4671 queue_rcu_work(cgroup_destroy_wq
, &css
->destroy_rwork
);
4674 static void css_release(struct percpu_ref
*ref
)
4676 struct cgroup_subsys_state
*css
=
4677 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
4679 INIT_WORK(&css
->destroy_work
, css_release_work_fn
);
4680 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
4683 static void init_and_link_css(struct cgroup_subsys_state
*css
,
4684 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
4686 lockdep_assert_held(&cgroup_mutex
);
4688 cgroup_get_live(cgrp
);
4690 memset(css
, 0, sizeof(*css
));
4694 INIT_LIST_HEAD(&css
->sibling
);
4695 INIT_LIST_HEAD(&css
->children
);
4696 INIT_LIST_HEAD(&css
->rstat_css_node
);
4697 css
->serial_nr
= css_serial_nr_next
++;
4698 atomic_set(&css
->online_cnt
, 0);
4700 if (cgroup_parent(cgrp
)) {
4701 css
->parent
= cgroup_css(cgroup_parent(cgrp
), ss
);
4702 css_get(css
->parent
);
4705 if (cgroup_on_dfl(cgrp
) && ss
->css_rstat_flush
)
4706 list_add_rcu(&css
->rstat_css_node
, &cgrp
->rstat_css_list
);
4708 BUG_ON(cgroup_css(cgrp
, ss
));
4711 /* invoke ->css_online() on a new CSS and mark it online if successful */
4712 static int online_css(struct cgroup_subsys_state
*css
)
4714 struct cgroup_subsys
*ss
= css
->ss
;
4717 lockdep_assert_held(&cgroup_mutex
);
4720 ret
= ss
->css_online(css
);
4722 css
->flags
|= CSS_ONLINE
;
4723 rcu_assign_pointer(css
->cgroup
->subsys
[ss
->id
], css
);
4725 atomic_inc(&css
->online_cnt
);
4727 atomic_inc(&css
->parent
->online_cnt
);
4732 /* if the CSS is online, invoke ->css_offline() on it and mark it offline */
4733 static void offline_css(struct cgroup_subsys_state
*css
)
4735 struct cgroup_subsys
*ss
= css
->ss
;
4737 lockdep_assert_held(&cgroup_mutex
);
4739 if (!(css
->flags
& CSS_ONLINE
))
4742 if (ss
->css_offline
)
4743 ss
->css_offline(css
);
4745 css
->flags
&= ~CSS_ONLINE
;
4746 RCU_INIT_POINTER(css
->cgroup
->subsys
[ss
->id
], NULL
);
4748 wake_up_all(&css
->cgroup
->offline_waitq
);
4752 * css_create - create a cgroup_subsys_state
4753 * @cgrp: the cgroup new css will be associated with
4754 * @ss: the subsys of new css
4756 * Create a new css associated with @cgrp - @ss pair. On success, the new
4757 * css is online and installed in @cgrp. This function doesn't create the
4758 * interface files. Returns 0 on success, -errno on failure.
4760 static struct cgroup_subsys_state
*css_create(struct cgroup
*cgrp
,
4761 struct cgroup_subsys
*ss
)
4763 struct cgroup
*parent
= cgroup_parent(cgrp
);
4764 struct cgroup_subsys_state
*parent_css
= cgroup_css(parent
, ss
);
4765 struct cgroup_subsys_state
*css
;
4768 lockdep_assert_held(&cgroup_mutex
);
4770 css
= ss
->css_alloc(parent_css
);
4772 css
= ERR_PTR(-ENOMEM
);
4776 init_and_link_css(css
, ss
, cgrp
);
4778 err
= percpu_ref_init(&css
->refcnt
, css_release
, 0, GFP_KERNEL
);
4782 err
= cgroup_idr_alloc(&ss
->css_idr
, NULL
, 2, 0, GFP_KERNEL
);
4787 /* @css is ready to be brought online now, make it visible */
4788 list_add_tail_rcu(&css
->sibling
, &parent_css
->children
);
4789 cgroup_idr_replace(&ss
->css_idr
, css
, css
->id
);
4791 err
= online_css(css
);
4795 if (ss
->broken_hierarchy
&& !ss
->warned_broken_hierarchy
&&
4796 cgroup_parent(parent
)) {
4797 pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n",
4798 current
->comm
, current
->pid
, ss
->name
);
4799 if (!strcmp(ss
->name
, "memory"))
4800 pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n");
4801 ss
->warned_broken_hierarchy
= true;
4807 list_del_rcu(&css
->sibling
);
4809 list_del_rcu(&css
->rstat_css_node
);
4810 INIT_RCU_WORK(&css
->destroy_rwork
, css_free_rwork_fn
);
4811 queue_rcu_work(cgroup_destroy_wq
, &css
->destroy_rwork
);
4812 return ERR_PTR(err
);
4816 * The returned cgroup is fully initialized including its control mask, but
4817 * it isn't associated with its kernfs_node and doesn't have the control
4820 static struct cgroup
*cgroup_create(struct cgroup
*parent
)
4822 struct cgroup_root
*root
= parent
->root
;
4823 struct cgroup
*cgrp
, *tcgrp
;
4824 int level
= parent
->level
+ 1;
4827 /* allocate the cgroup and its ID, 0 is reserved for the root */
4828 cgrp
= kzalloc(struct_size(cgrp
, ancestor_ids
, (level
+ 1)),
4831 return ERR_PTR(-ENOMEM
);
4833 ret
= percpu_ref_init(&cgrp
->self
.refcnt
, css_release
, 0, GFP_KERNEL
);
4837 if (cgroup_on_dfl(parent
)) {
4838 ret
= cgroup_rstat_init(cgrp
);
4840 goto out_cancel_ref
;
4844 * Temporarily set the pointer to NULL, so idr_find() won't return
4845 * a half-baked cgroup.
4847 cgrp
->id
= cgroup_idr_alloc(&root
->cgroup_idr
, NULL
, 2, 0, GFP_KERNEL
);
4853 init_cgroup_housekeeping(cgrp
);
4855 cgrp
->self
.parent
= &parent
->self
;
4857 cgrp
->level
= level
;
4858 ret
= cgroup_bpf_inherit(cgrp
);
4862 for (tcgrp
= cgrp
; tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
4863 cgrp
->ancestor_ids
[tcgrp
->level
] = tcgrp
->id
;
4866 tcgrp
->nr_descendants
++;
4869 if (notify_on_release(parent
))
4870 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
4872 if (test_bit(CGRP_CPUSET_CLONE_CHILDREN
, &parent
->flags
))
4873 set_bit(CGRP_CPUSET_CLONE_CHILDREN
, &cgrp
->flags
);
4875 cgrp
->self
.serial_nr
= css_serial_nr_next
++;
4877 /* allocation complete, commit to creation */
4878 list_add_tail_rcu(&cgrp
->self
.sibling
, &cgroup_parent(cgrp
)->self
.children
);
4879 atomic_inc(&root
->nr_cgrps
);
4880 cgroup_get_live(parent
);
4883 * @cgrp is now fully operational. If something fails after this
4884 * point, it'll be released via the normal destruction path.
4886 cgroup_idr_replace(&root
->cgroup_idr
, cgrp
, cgrp
->id
);
4889 * On the default hierarchy, a child doesn't automatically inherit
4890 * subtree_control from the parent. Each is configured manually.
4892 if (!cgroup_on_dfl(cgrp
))
4893 cgrp
->subtree_control
= cgroup_control(cgrp
);
4895 cgroup_propagate_control(cgrp
);
4900 cgroup_idr_remove(&root
->cgroup_idr
, cgrp
->id
);
4902 if (cgroup_on_dfl(parent
))
4903 cgroup_rstat_exit(cgrp
);
4905 percpu_ref_exit(&cgrp
->self
.refcnt
);
4908 return ERR_PTR(ret
);
4911 static bool cgroup_check_hierarchy_limits(struct cgroup
*parent
)
4913 struct cgroup
*cgroup
;
4917 lockdep_assert_held(&cgroup_mutex
);
4919 for (cgroup
= parent
; cgroup
; cgroup
= cgroup_parent(cgroup
)) {
4920 if (cgroup
->nr_descendants
>= cgroup
->max_descendants
)
4923 if (level
> cgroup
->max_depth
)
4934 int cgroup_mkdir(struct kernfs_node
*parent_kn
, const char *name
, umode_t mode
)
4936 struct cgroup
*parent
, *cgrp
;
4937 struct kernfs_node
*kn
;
4940 /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */
4941 if (strchr(name
, '\n'))
4944 parent
= cgroup_kn_lock_live(parent_kn
, false);
4948 if (!cgroup_check_hierarchy_limits(parent
)) {
4953 cgrp
= cgroup_create(parent
);
4955 ret
= PTR_ERR(cgrp
);
4959 /* create the directory */
4960 kn
= kernfs_create_dir(parent
->kn
, name
, mode
, cgrp
);
4968 * This extra ref will be put in cgroup_free_fn() and guarantees
4969 * that @cgrp->kn is always accessible.
4973 ret
= cgroup_kn_set_ugid(kn
);
4977 ret
= css_populate_dir(&cgrp
->self
);
4981 ret
= cgroup_apply_control_enable(cgrp
);
4985 TRACE_CGROUP_PATH(mkdir
, cgrp
);
4987 /* let's create and online css's */
4988 kernfs_activate(kn
);
4994 cgroup_destroy_locked(cgrp
);
4996 cgroup_kn_unlock(parent_kn
);
5001 * This is called when the refcnt of a css is confirmed to be killed.
5002 * css_tryget_online() is now guaranteed to fail. Tell the subsystem to
5003 * initate destruction and put the css ref from kill_css().
5005 static void css_killed_work_fn(struct work_struct
*work
)
5007 struct cgroup_subsys_state
*css
=
5008 container_of(work
, struct cgroup_subsys_state
, destroy_work
);
5010 mutex_lock(&cgroup_mutex
);
5015 /* @css can't go away while we're holding cgroup_mutex */
5017 } while (css
&& atomic_dec_and_test(&css
->online_cnt
));
5019 mutex_unlock(&cgroup_mutex
);
5022 /* css kill confirmation processing requires process context, bounce */
5023 static void css_killed_ref_fn(struct percpu_ref
*ref
)
5025 struct cgroup_subsys_state
*css
=
5026 container_of(ref
, struct cgroup_subsys_state
, refcnt
);
5028 if (atomic_dec_and_test(&css
->online_cnt
)) {
5029 INIT_WORK(&css
->destroy_work
, css_killed_work_fn
);
5030 queue_work(cgroup_destroy_wq
, &css
->destroy_work
);
5035 * kill_css - destroy a css
5036 * @css: css to destroy
5038 * This function initiates destruction of @css by removing cgroup interface
5039 * files and putting its base reference. ->css_offline() will be invoked
5040 * asynchronously once css_tryget_online() is guaranteed to fail and when
5041 * the reference count reaches zero, @css will be released.
5043 static void kill_css(struct cgroup_subsys_state
*css
)
5045 lockdep_assert_held(&cgroup_mutex
);
5047 if (css
->flags
& CSS_DYING
)
5050 css
->flags
|= CSS_DYING
;
5053 * This must happen before css is disassociated with its cgroup.
5054 * See seq_css() for details.
5059 * Killing would put the base ref, but we need to keep it alive
5060 * until after ->css_offline().
5065 * cgroup core guarantees that, by the time ->css_offline() is
5066 * invoked, no new css reference will be given out via
5067 * css_tryget_online(). We can't simply call percpu_ref_kill() and
5068 * proceed to offlining css's because percpu_ref_kill() doesn't
5069 * guarantee that the ref is seen as killed on all CPUs on return.
5071 * Use percpu_ref_kill_and_confirm() to get notifications as each
5072 * css is confirmed to be seen as killed on all CPUs.
5074 percpu_ref_kill_and_confirm(&css
->refcnt
, css_killed_ref_fn
);
5078 * cgroup_destroy_locked - the first stage of cgroup destruction
5079 * @cgrp: cgroup to be destroyed
5081 * css's make use of percpu refcnts whose killing latency shouldn't be
5082 * exposed to userland and are RCU protected. Also, cgroup core needs to
5083 * guarantee that css_tryget_online() won't succeed by the time
5084 * ->css_offline() is invoked. To satisfy all the requirements,
5085 * destruction is implemented in the following two steps.
5087 * s1. Verify @cgrp can be destroyed and mark it dying. Remove all
5088 * userland visible parts and start killing the percpu refcnts of
5089 * css's. Set up so that the next stage will be kicked off once all
5090 * the percpu refcnts are confirmed to be killed.
5092 * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the
5093 * rest of destruction. Once all cgroup references are gone, the
5094 * cgroup is RCU-freed.
5096 * This function implements s1. After this step, @cgrp is gone as far as
5097 * the userland is concerned and a new cgroup with the same name may be
5098 * created. As cgroup doesn't care about the names internally, this
5099 * doesn't cause any problem.
5101 static int cgroup_destroy_locked(struct cgroup
*cgrp
)
5102 __releases(&cgroup_mutex
) __acquires(&cgroup_mutex
)
5104 struct cgroup
*tcgrp
, *parent
= cgroup_parent(cgrp
);
5105 struct cgroup_subsys_state
*css
;
5106 struct cgrp_cset_link
*link
;
5109 lockdep_assert_held(&cgroup_mutex
);
5112 * Only migration can raise populated from zero and we're already
5113 * holding cgroup_mutex.
5115 if (cgroup_is_populated(cgrp
))
5119 * Make sure there's no live children. We can't test emptiness of
5120 * ->self.children as dead children linger on it while being
5121 * drained; otherwise, "rmdir parent/child parent" may fail.
5123 if (css_has_online_children(&cgrp
->self
))
5127 * Mark @cgrp and the associated csets dead. The former prevents
5128 * further task migration and child creation by disabling
5129 * cgroup_lock_live_group(). The latter makes the csets ignored by
5130 * the migration path.
5132 cgrp
->self
.flags
&= ~CSS_ONLINE
;
5134 spin_lock_irq(&css_set_lock
);
5135 list_for_each_entry(link
, &cgrp
->cset_links
, cset_link
)
5136 link
->cset
->dead
= true;
5137 spin_unlock_irq(&css_set_lock
);
5139 /* initiate massacre of all css's */
5140 for_each_css(css
, ssid
, cgrp
)
5143 /* clear and remove @cgrp dir, @cgrp has an extra ref on its kn */
5144 css_clear_dir(&cgrp
->self
);
5145 kernfs_remove(cgrp
->kn
);
5147 if (parent
&& cgroup_is_threaded(cgrp
))
5148 parent
->nr_threaded_children
--;
5150 for (tcgrp
= cgroup_parent(cgrp
); tcgrp
; tcgrp
= cgroup_parent(tcgrp
)) {
5151 tcgrp
->nr_descendants
--;
5152 tcgrp
->nr_dying_descendants
++;
5155 cgroup1_check_for_release(parent
);
5157 /* put the base reference */
5158 percpu_ref_kill(&cgrp
->self
.refcnt
);
5163 int cgroup_rmdir(struct kernfs_node
*kn
)
5165 struct cgroup
*cgrp
;
5168 cgrp
= cgroup_kn_lock_live(kn
, false);
5172 ret
= cgroup_destroy_locked(cgrp
);
5174 TRACE_CGROUP_PATH(rmdir
, cgrp
);
5176 cgroup_kn_unlock(kn
);
5180 static struct kernfs_syscall_ops cgroup_kf_syscall_ops
= {
5181 .show_options
= cgroup_show_options
,
5182 .remount_fs
= cgroup_remount
,
5183 .mkdir
= cgroup_mkdir
,
5184 .rmdir
= cgroup_rmdir
,
5185 .show_path
= cgroup_show_path
,
5188 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
, bool early
)
5190 struct cgroup_subsys_state
*css
;
5192 pr_debug("Initializing cgroup subsys %s\n", ss
->name
);
5194 mutex_lock(&cgroup_mutex
);
5196 idr_init(&ss
->css_idr
);
5197 INIT_LIST_HEAD(&ss
->cfts
);
5199 /* Create the root cgroup state for this subsystem */
5200 ss
->root
= &cgrp_dfl_root
;
5201 css
= ss
->css_alloc(cgroup_css(&cgrp_dfl_root
.cgrp
, ss
));
5202 /* We don't handle early failures gracefully */
5203 BUG_ON(IS_ERR(css
));
5204 init_and_link_css(css
, ss
, &cgrp_dfl_root
.cgrp
);
5207 * Root csses are never destroyed and we can't initialize
5208 * percpu_ref during early init. Disable refcnting.
5210 css
->flags
|= CSS_NO_REF
;
5213 /* allocation can't be done safely during early init */
5216 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2, GFP_KERNEL
);
5217 BUG_ON(css
->id
< 0);
5220 /* Update the init_css_set to contain a subsys
5221 * pointer to this state - since the subsystem is
5222 * newly registered, all tasks and hence the
5223 * init_css_set is in the subsystem's root cgroup. */
5224 init_css_set
.subsys
[ss
->id
] = css
;
5226 have_fork_callback
|= (bool)ss
->fork
<< ss
->id
;
5227 have_exit_callback
|= (bool)ss
->exit
<< ss
->id
;
5228 have_free_callback
|= (bool)ss
->free
<< ss
->id
;
5229 have_canfork_callback
|= (bool)ss
->can_fork
<< ss
->id
;
5231 /* At system boot, before all subsystems have been
5232 * registered, no tasks have been forked, so we don't
5233 * need to invoke fork callbacks here. */
5234 BUG_ON(!list_empty(&init_task
.tasks
));
5236 BUG_ON(online_css(css
));
5238 mutex_unlock(&cgroup_mutex
);
5242 * cgroup_init_early - cgroup initialization at system boot
5244 * Initialize cgroups at system boot, and initialize any
5245 * subsystems that request early init.
5247 int __init
cgroup_init_early(void)
5249 static struct cgroup_sb_opts __initdata opts
;
5250 struct cgroup_subsys
*ss
;
5253 init_cgroup_root(&cgrp_dfl_root
, &opts
);
5254 cgrp_dfl_root
.cgrp
.self
.flags
|= CSS_NO_REF
;
5256 RCU_INIT_POINTER(init_task
.cgroups
, &init_css_set
);
5258 for_each_subsys(ss
, i
) {
5259 WARN(!ss
->css_alloc
|| !ss
->css_free
|| ss
->name
|| ss
->id
,
5260 "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n",
5261 i
, cgroup_subsys_name
[i
], ss
->css_alloc
, ss
->css_free
,
5263 WARN(strlen(cgroup_subsys_name
[i
]) > MAX_CGROUP_TYPE_NAMELEN
,
5264 "cgroup_subsys_name %s too long\n", cgroup_subsys_name
[i
]);
5267 ss
->name
= cgroup_subsys_name
[i
];
5268 if (!ss
->legacy_name
)
5269 ss
->legacy_name
= cgroup_subsys_name
[i
];
5272 cgroup_init_subsys(ss
, true);
5277 static u16 cgroup_disable_mask __initdata
;
5280 * cgroup_init - cgroup initialization
5282 * Register cgroup filesystem and /proc file, and initialize
5283 * any subsystems that didn't request early init.
5285 int __init
cgroup_init(void)
5287 struct cgroup_subsys
*ss
;
5290 BUILD_BUG_ON(CGROUP_SUBSYS_COUNT
> 16);
5291 BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem
));
5292 BUG_ON(cgroup_init_cftypes(NULL
, cgroup_base_files
));
5293 BUG_ON(cgroup_init_cftypes(NULL
, cgroup1_base_files
));
5295 cgroup_rstat_boot();
5298 * The latency of the synchronize_sched() is too high for cgroups,
5299 * avoid it at the cost of forcing all readers into the slow path.
5301 rcu_sync_enter_start(&cgroup_threadgroup_rwsem
.rss
);
5303 get_user_ns(init_cgroup_ns
.user_ns
);
5305 mutex_lock(&cgroup_mutex
);
5308 * Add init_css_set to the hash table so that dfl_root can link to
5311 hash_add(css_set_table
, &init_css_set
.hlist
,
5312 css_set_hash(init_css_set
.subsys
));
5314 BUG_ON(cgroup_setup_root(&cgrp_dfl_root
, 0, 0));
5316 mutex_unlock(&cgroup_mutex
);
5318 for_each_subsys(ss
, ssid
) {
5319 if (ss
->early_init
) {
5320 struct cgroup_subsys_state
*css
=
5321 init_css_set
.subsys
[ss
->id
];
5323 css
->id
= cgroup_idr_alloc(&ss
->css_idr
, css
, 1, 2,
5325 BUG_ON(css
->id
< 0);
5327 cgroup_init_subsys(ss
, false);
5330 list_add_tail(&init_css_set
.e_cset_node
[ssid
],
5331 &cgrp_dfl_root
.cgrp
.e_csets
[ssid
]);
5334 * Setting dfl_root subsys_mask needs to consider the
5335 * disabled flag and cftype registration needs kmalloc,
5336 * both of which aren't available during early_init.
5338 if (cgroup_disable_mask
& (1 << ssid
)) {
5339 static_branch_disable(cgroup_subsys_enabled_key
[ssid
]);
5340 printk(KERN_INFO
"Disabling %s control group subsystem\n",
5345 if (cgroup1_ssid_disabled(ssid
))
5346 printk(KERN_INFO
"Disabling %s control group subsystem in v1 mounts\n",
5349 cgrp_dfl_root
.subsys_mask
|= 1 << ss
->id
;
5351 /* implicit controllers must be threaded too */
5352 WARN_ON(ss
->implicit_on_dfl
&& !ss
->threaded
);
5354 if (ss
->implicit_on_dfl
)
5355 cgrp_dfl_implicit_ss_mask
|= 1 << ss
->id
;
5356 else if (!ss
->dfl_cftypes
)
5357 cgrp_dfl_inhibit_ss_mask
|= 1 << ss
->id
;
5360 cgrp_dfl_threaded_ss_mask
|= 1 << ss
->id
;
5362 if (ss
->dfl_cftypes
== ss
->legacy_cftypes
) {
5363 WARN_ON(cgroup_add_cftypes(ss
, ss
->dfl_cftypes
));
5365 WARN_ON(cgroup_add_dfl_cftypes(ss
, ss
->dfl_cftypes
));
5366 WARN_ON(cgroup_add_legacy_cftypes(ss
, ss
->legacy_cftypes
));
5370 ss
->bind(init_css_set
.subsys
[ssid
]);
5372 mutex_lock(&cgroup_mutex
);
5373 css_populate_dir(init_css_set
.subsys
[ssid
]);
5374 mutex_unlock(&cgroup_mutex
);
5377 /* init_css_set.subsys[] has been updated, re-hash */
5378 hash_del(&init_css_set
.hlist
);
5379 hash_add(css_set_table
, &init_css_set
.hlist
,
5380 css_set_hash(init_css_set
.subsys
));
5382 WARN_ON(sysfs_create_mount_point(fs_kobj
, "cgroup"));
5383 WARN_ON(register_filesystem(&cgroup_fs_type
));
5384 WARN_ON(register_filesystem(&cgroup2_fs_type
));
5385 WARN_ON(!proc_create_single("cgroups", 0, NULL
, proc_cgroupstats_show
));
5390 static int __init
cgroup_wq_init(void)
5393 * There isn't much point in executing destruction path in
5394 * parallel. Good chunk is serialized with cgroup_mutex anyway.
5395 * Use 1 for @max_active.
5397 * We would prefer to do this in cgroup_init() above, but that
5398 * is called before init_workqueues(): so leave this until after.
5400 cgroup_destroy_wq
= alloc_workqueue("cgroup_destroy", 0, 1);
5401 BUG_ON(!cgroup_destroy_wq
);
5404 core_initcall(cgroup_wq_init
);
5406 void cgroup_path_from_kernfs_id(const union kernfs_node_id
*id
,
5407 char *buf
, size_t buflen
)
5409 struct kernfs_node
*kn
;
5411 kn
= kernfs_get_node_by_id(cgrp_dfl_root
.kf_root
, id
);
5414 kernfs_path(kn
, buf
, buflen
);
5419 * proc_cgroup_show()
5420 * - Print task's cgroup paths into seq_file, one line for each hierarchy
5421 * - Used for /proc/<pid>/cgroup.
5423 int proc_cgroup_show(struct seq_file
*m
, struct pid_namespace
*ns
,
5424 struct pid
*pid
, struct task_struct
*tsk
)
5428 struct cgroup_root
*root
;
5431 buf
= kmalloc(PATH_MAX
, GFP_KERNEL
);
5435 mutex_lock(&cgroup_mutex
);
5436 spin_lock_irq(&css_set_lock
);
5438 for_each_root(root
) {
5439 struct cgroup_subsys
*ss
;
5440 struct cgroup
*cgrp
;
5441 int ssid
, count
= 0;
5443 if (root
== &cgrp_dfl_root
&& !cgrp_dfl_visible
)
5446 seq_printf(m
, "%d:", root
->hierarchy_id
);
5447 if (root
!= &cgrp_dfl_root
)
5448 for_each_subsys(ss
, ssid
)
5449 if (root
->subsys_mask
& (1 << ssid
))
5450 seq_printf(m
, "%s%s", count
++ ? "," : "",
5452 if (strlen(root
->name
))
5453 seq_printf(m
, "%sname=%s", count
? "," : "",
5457 cgrp
= task_cgroup_from_root(tsk
, root
);
5460 * On traditional hierarchies, all zombie tasks show up as
5461 * belonging to the root cgroup. On the default hierarchy,
5462 * while a zombie doesn't show up in "cgroup.procs" and
5463 * thus can't be migrated, its /proc/PID/cgroup keeps
5464 * reporting the cgroup it belonged to before exiting. If
5465 * the cgroup is removed before the zombie is reaped,
5466 * " (deleted)" is appended to the cgroup path.
5468 if (cgroup_on_dfl(cgrp
) || !(tsk
->flags
& PF_EXITING
)) {
5469 retval
= cgroup_path_ns_locked(cgrp
, buf
, PATH_MAX
,
5470 current
->nsproxy
->cgroup_ns
);
5471 if (retval
>= PATH_MAX
)
5472 retval
= -ENAMETOOLONG
;
5481 if (cgroup_on_dfl(cgrp
) && cgroup_is_dead(cgrp
))
5482 seq_puts(m
, " (deleted)\n");
5489 spin_unlock_irq(&css_set_lock
);
5490 mutex_unlock(&cgroup_mutex
);
5497 * cgroup_fork - initialize cgroup related fields during copy_process()
5498 * @child: pointer to task_struct of forking parent process.
5500 * A task is associated with the init_css_set until cgroup_post_fork()
5501 * attaches it to the parent's css_set. Empty cg_list indicates that
5502 * @child isn't holding reference to its css_set.
5504 void cgroup_fork(struct task_struct
*child
)
5506 RCU_INIT_POINTER(child
->cgroups
, &init_css_set
);
5507 INIT_LIST_HEAD(&child
->cg_list
);
5511 * cgroup_can_fork - called on a new task before the process is exposed
5512 * @child: the task in question.
5514 * This calls the subsystem can_fork() callbacks. If the can_fork() callback
5515 * returns an error, the fork aborts with that error code. This allows for
5516 * a cgroup subsystem to conditionally allow or deny new forks.
5518 int cgroup_can_fork(struct task_struct
*child
)
5520 struct cgroup_subsys
*ss
;
5523 do_each_subsys_mask(ss
, i
, have_canfork_callback
) {
5524 ret
= ss
->can_fork(child
);
5527 } while_each_subsys_mask();
5532 for_each_subsys(ss
, j
) {
5535 if (ss
->cancel_fork
)
5536 ss
->cancel_fork(child
);
5543 * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork()
5544 * @child: the task in question
5546 * This calls the cancel_fork() callbacks if a fork failed *after*
5547 * cgroup_can_fork() succeded.
5549 void cgroup_cancel_fork(struct task_struct
*child
)
5551 struct cgroup_subsys
*ss
;
5554 for_each_subsys(ss
, i
)
5555 if (ss
->cancel_fork
)
5556 ss
->cancel_fork(child
);
5560 * cgroup_post_fork - called on a new task after adding it to the task list
5561 * @child: the task in question
5563 * Adds the task to the list running through its css_set if necessary and
5564 * call the subsystem fork() callbacks. Has to be after the task is
5565 * visible on the task list in case we race with the first call to
5566 * cgroup_task_iter_start() - to guarantee that the new task ends up on its
5569 void cgroup_post_fork(struct task_struct
*child
)
5571 struct cgroup_subsys
*ss
;
5575 * This may race against cgroup_enable_task_cg_lists(). As that
5576 * function sets use_task_css_set_links before grabbing
5577 * tasklist_lock and we just went through tasklist_lock to add
5578 * @child, it's guaranteed that either we see the set
5579 * use_task_css_set_links or cgroup_enable_task_cg_lists() sees
5580 * @child during its iteration.
5582 * If we won the race, @child is associated with %current's
5583 * css_set. Grabbing css_set_lock guarantees both that the
5584 * association is stable, and, on completion of the parent's
5585 * migration, @child is visible in the source of migration or
5586 * already in the destination cgroup. This guarantee is necessary
5587 * when implementing operations which need to migrate all tasks of
5588 * a cgroup to another.
5590 * Note that if we lose to cgroup_enable_task_cg_lists(), @child
5591 * will remain in init_css_set. This is safe because all tasks are
5592 * in the init_css_set before cg_links is enabled and there's no
5593 * operation which transfers all tasks out of init_css_set.
5595 if (use_task_css_set_links
) {
5596 struct css_set
*cset
;
5598 spin_lock_irq(&css_set_lock
);
5599 cset
= task_css_set(current
);
5600 if (list_empty(&child
->cg_list
)) {
5603 css_set_move_task(child
, NULL
, cset
, false);
5605 spin_unlock_irq(&css_set_lock
);
5609 * Call ss->fork(). This must happen after @child is linked on
5610 * css_set; otherwise, @child might change state between ->fork()
5611 * and addition to css_set.
5613 do_each_subsys_mask(ss
, i
, have_fork_callback
) {
5615 } while_each_subsys_mask();
5619 * cgroup_exit - detach cgroup from exiting task
5620 * @tsk: pointer to task_struct of exiting process
5622 * Description: Detach cgroup from @tsk and release it.
5624 * Note that cgroups marked notify_on_release force every task in
5625 * them to take the global cgroup_mutex mutex when exiting.
5626 * This could impact scaling on very large systems. Be reluctant to
5627 * use notify_on_release cgroups where very high task exit scaling
5628 * is required on large systems.
5630 * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We
5631 * call cgroup_exit() while the task is still competent to handle
5632 * notify_on_release(), then leave the task attached to the root cgroup in
5633 * each hierarchy for the remainder of its exit. No need to bother with
5634 * init_css_set refcnting. init_css_set never goes away and we can't race
5635 * with migration path - PF_EXITING is visible to migration path.
5637 void cgroup_exit(struct task_struct
*tsk
)
5639 struct cgroup_subsys
*ss
;
5640 struct css_set
*cset
;
5644 * Unlink from @tsk from its css_set. As migration path can't race
5645 * with us, we can check css_set and cg_list without synchronization.
5647 cset
= task_css_set(tsk
);
5649 if (!list_empty(&tsk
->cg_list
)) {
5650 spin_lock_irq(&css_set_lock
);
5651 css_set_move_task(tsk
, cset
, NULL
, false);
5653 spin_unlock_irq(&css_set_lock
);
5658 /* see cgroup_post_fork() for details */
5659 do_each_subsys_mask(ss
, i
, have_exit_callback
) {
5661 } while_each_subsys_mask();
5664 void cgroup_free(struct task_struct
*task
)
5666 struct css_set
*cset
= task_css_set(task
);
5667 struct cgroup_subsys
*ss
;
5670 do_each_subsys_mask(ss
, ssid
, have_free_callback
) {
5672 } while_each_subsys_mask();
5677 static int __init
cgroup_disable(char *str
)
5679 struct cgroup_subsys
*ss
;
5683 while ((token
= strsep(&str
, ",")) != NULL
) {
5687 for_each_subsys(ss
, i
) {
5688 if (strcmp(token
, ss
->name
) &&
5689 strcmp(token
, ss
->legacy_name
))
5691 cgroup_disable_mask
|= 1 << i
;
5696 __setup("cgroup_disable=", cgroup_disable
);
5699 * css_tryget_online_from_dir - get corresponding css from a cgroup dentry
5700 * @dentry: directory dentry of interest
5701 * @ss: subsystem of interest
5703 * If @dentry is a directory for a cgroup which has @ss enabled on it, try
5704 * to get the corresponding css and return it. If such css doesn't exist
5705 * or can't be pinned, an ERR_PTR value is returned.
5707 struct cgroup_subsys_state
*css_tryget_online_from_dir(struct dentry
*dentry
,
5708 struct cgroup_subsys
*ss
)
5710 struct kernfs_node
*kn
= kernfs_node_from_dentry(dentry
);
5711 struct file_system_type
*s_type
= dentry
->d_sb
->s_type
;
5712 struct cgroup_subsys_state
*css
= NULL
;
5713 struct cgroup
*cgrp
;
5715 /* is @dentry a cgroup dir? */
5716 if ((s_type
!= &cgroup_fs_type
&& s_type
!= &cgroup2_fs_type
) ||
5717 !kn
|| kernfs_type(kn
) != KERNFS_DIR
)
5718 return ERR_PTR(-EBADF
);
5723 * This path doesn't originate from kernfs and @kn could already
5724 * have been or be removed at any point. @kn->priv is RCU
5725 * protected for this access. See css_release_work_fn() for details.
5727 cgrp
= rcu_dereference(*(void __rcu __force
**)&kn
->priv
);
5729 css
= cgroup_css(cgrp
, ss
);
5731 if (!css
|| !css_tryget_online(css
))
5732 css
= ERR_PTR(-ENOENT
);
5739 * css_from_id - lookup css by id
5740 * @id: the cgroup id
5741 * @ss: cgroup subsys to be looked into
5743 * Returns the css if there's valid one with @id, otherwise returns NULL.
5744 * Should be called under rcu_read_lock().
5746 struct cgroup_subsys_state
*css_from_id(int id
, struct cgroup_subsys
*ss
)
5748 WARN_ON_ONCE(!rcu_read_lock_held());
5749 return idr_find(&ss
->css_idr
, id
);
5753 * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path
5754 * @path: path on the default hierarchy
5756 * Find the cgroup at @path on the default hierarchy, increment its
5757 * reference count and return it. Returns pointer to the found cgroup on
5758 * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR)
5759 * if @path points to a non-directory.
5761 struct cgroup
*cgroup_get_from_path(const char *path
)
5763 struct kernfs_node
*kn
;
5764 struct cgroup
*cgrp
;
5766 mutex_lock(&cgroup_mutex
);
5768 kn
= kernfs_walk_and_get(cgrp_dfl_root
.cgrp
.kn
, path
);
5770 if (kernfs_type(kn
) == KERNFS_DIR
) {
5772 cgroup_get_live(cgrp
);
5774 cgrp
= ERR_PTR(-ENOTDIR
);
5778 cgrp
= ERR_PTR(-ENOENT
);
5781 mutex_unlock(&cgroup_mutex
);
5784 EXPORT_SYMBOL_GPL(cgroup_get_from_path
);
5787 * cgroup_get_from_fd - get a cgroup pointer from a fd
5788 * @fd: fd obtained by open(cgroup2_dir)
5790 * Find the cgroup from a fd which should be obtained
5791 * by opening a cgroup directory. Returns a pointer to the
5792 * cgroup on success. ERR_PTR is returned if the cgroup
5795 struct cgroup
*cgroup_get_from_fd(int fd
)
5797 struct cgroup_subsys_state
*css
;
5798 struct cgroup
*cgrp
;
5803 return ERR_PTR(-EBADF
);
5805 css
= css_tryget_online_from_dir(f
->f_path
.dentry
, NULL
);
5808 return ERR_CAST(css
);
5811 if (!cgroup_on_dfl(cgrp
)) {
5813 return ERR_PTR(-EBADF
);
5818 EXPORT_SYMBOL_GPL(cgroup_get_from_fd
);
5821 * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data
5822 * definition in cgroup-defs.h.
5824 #ifdef CONFIG_SOCK_CGROUP_DATA
5826 #if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID)
5828 DEFINE_SPINLOCK(cgroup_sk_update_lock
);
5829 static bool cgroup_sk_alloc_disabled __read_mostly
;
5831 void cgroup_sk_alloc_disable(void)
5833 if (cgroup_sk_alloc_disabled
)
5835 pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n");
5836 cgroup_sk_alloc_disabled
= true;
5841 #define cgroup_sk_alloc_disabled false
5845 void cgroup_sk_alloc(struct sock_cgroup_data
*skcd
)
5847 if (cgroup_sk_alloc_disabled
)
5850 /* Socket clone path */
5853 * We might be cloning a socket which is left in an empty
5854 * cgroup and the cgroup might have already been rmdir'd.
5855 * Don't use cgroup_get_live().
5857 cgroup_get(sock_cgroup_ptr(skcd
));
5864 struct css_set
*cset
;
5866 cset
= task_css_set(current
);
5867 if (likely(cgroup_tryget(cset
->dfl_cgrp
))) {
5868 skcd
->val
= (unsigned long)cset
->dfl_cgrp
;
5877 void cgroup_sk_free(struct sock_cgroup_data
*skcd
)
5879 cgroup_put(sock_cgroup_ptr(skcd
));
5882 #endif /* CONFIG_SOCK_CGROUP_DATA */
5884 #ifdef CONFIG_CGROUP_BPF
5885 int cgroup_bpf_attach(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
5886 enum bpf_attach_type type
, u32 flags
)
5890 mutex_lock(&cgroup_mutex
);
5891 ret
= __cgroup_bpf_attach(cgrp
, prog
, type
, flags
);
5892 mutex_unlock(&cgroup_mutex
);
5895 int cgroup_bpf_detach(struct cgroup
*cgrp
, struct bpf_prog
*prog
,
5896 enum bpf_attach_type type
, u32 flags
)
5900 mutex_lock(&cgroup_mutex
);
5901 ret
= __cgroup_bpf_detach(cgrp
, prog
, type
, flags
);
5902 mutex_unlock(&cgroup_mutex
);
5905 int cgroup_bpf_query(struct cgroup
*cgrp
, const union bpf_attr
*attr
,
5906 union bpf_attr __user
*uattr
)
5910 mutex_lock(&cgroup_mutex
);
5911 ret
= __cgroup_bpf_query(cgrp
, attr
, uattr
);
5912 mutex_unlock(&cgroup_mutex
);
5915 #endif /* CONFIG_CGROUP_BPF */
5918 static ssize_t
show_delegatable_files(struct cftype
*files
, char *buf
,
5919 ssize_t size
, const char *prefix
)
5924 for (cft
= files
; cft
&& cft
->name
[0] != '\0'; cft
++) {
5925 if (!(cft
->flags
& CFTYPE_NS_DELEGATABLE
))
5929 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s.", prefix
);
5931 ret
+= snprintf(buf
+ ret
, size
- ret
, "%s\n", cft
->name
);
5933 if (unlikely(ret
>= size
)) {
5942 static ssize_t
delegate_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
5945 struct cgroup_subsys
*ss
;
5949 ret
= show_delegatable_files(cgroup_base_files
, buf
, PAGE_SIZE
- ret
,
5952 for_each_subsys(ss
, ssid
)
5953 ret
+= show_delegatable_files(ss
->dfl_cftypes
, buf
+ ret
,
5955 cgroup_subsys_name
[ssid
]);
5959 static struct kobj_attribute cgroup_delegate_attr
= __ATTR_RO(delegate
);
5961 static ssize_t
features_show(struct kobject
*kobj
, struct kobj_attribute
*attr
,
5964 return snprintf(buf
, PAGE_SIZE
, "nsdelegate\n");
5966 static struct kobj_attribute cgroup_features_attr
= __ATTR_RO(features
);
5968 static struct attribute
*cgroup_sysfs_attrs
[] = {
5969 &cgroup_delegate_attr
.attr
,
5970 &cgroup_features_attr
.attr
,
5974 static const struct attribute_group cgroup_sysfs_attr_group
= {
5975 .attrs
= cgroup_sysfs_attrs
,
5979 static int __init
cgroup_sysfs_init(void)
5981 return sysfs_create_group(kernel_kobj
, &cgroup_sysfs_attr_group
);
5983 subsys_initcall(cgroup_sysfs_init
);
5984 #endif /* CONFIG_SYSFS */