1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
6 * Davide Libenzi <davidel@xmailserver.org>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
44 * There are three level of locking required by epoll :
48 * 3) ep->lock (rwlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
103 #define EP_UNACTIVE_PTR ((void *) -1L)
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
107 struct epoll_filefd
{
113 * Structure used to track possible nested calls, for too deep recursions
116 struct nested_call_node
{
117 struct list_head llink
;
123 * This structure is used as collector for nested calls, to check for
124 * maximum recursion dept and loop cycles.
126 struct nested_calls
{
127 struct list_head tasks_call_list
;
132 * Each file descriptor added to the eventpoll interface will
133 * have an entry of this type linked to the "rbr" RB tree.
134 * Avoid increasing the size of this struct, there can be many thousands
135 * of these on a server and we do not want this to take another cache line.
139 /* RB tree node links this structure to the eventpoll RB tree */
141 /* Used to free the struct epitem */
145 /* List header used to link this structure to the eventpoll ready list */
146 struct list_head rdllink
;
149 * Works together "struct eventpoll"->ovflist in keeping the
150 * single linked chain of items.
154 /* The file descriptor information this item refers to */
155 struct epoll_filefd ffd
;
157 /* Number of active wait queue attached to poll operations */
160 /* List containing poll wait queues */
161 struct list_head pwqlist
;
163 /* The "container" of this item */
164 struct eventpoll
*ep
;
166 /* List header used to link this item to the "struct file" items list */
167 struct list_head fllink
;
169 /* wakeup_source used when EPOLLWAKEUP is set */
170 struct wakeup_source __rcu
*ws
;
172 /* The structure that describe the interested events and the source fd */
173 struct epoll_event event
;
177 * This structure is stored inside the "private_data" member of the file
178 * structure and represents the main data structure for the eventpoll
183 * This mutex is used to ensure that files are not removed
184 * while epoll is using them. This is held during the event
185 * collection loop, the file cleanup path, the epoll file exit
186 * code and the ctl operations.
190 /* Wait queue used by sys_epoll_wait() */
191 wait_queue_head_t wq
;
193 /* Wait queue used by file->poll() */
194 wait_queue_head_t poll_wait
;
196 /* List of ready file descriptors */
197 struct list_head rdllist
;
199 /* Lock which protects rdllist and ovflist */
202 /* RB tree root used to store monitored fd structs */
203 struct rb_root_cached rbr
;
206 * This is a single linked list that chains all the "struct epitem" that
207 * happened while transferring ready events to userspace w/out
210 struct epitem
*ovflist
;
212 /* wakeup_source used when ep_scan_ready_list is running */
213 struct wakeup_source
*ws
;
215 /* The user that created the eventpoll descriptor */
216 struct user_struct
*user
;
220 /* used to optimize loop detection check */
222 struct list_head visited_list_link
;
224 #ifdef CONFIG_NET_RX_BUSY_POLL
225 /* used to track busy poll napi_id */
226 unsigned int napi_id
;
230 /* Wait structure used by the poll hooks */
231 struct eppoll_entry
{
232 /* List header used to link this structure to the "struct epitem" */
233 struct list_head llink
;
235 /* The "base" pointer is set to the container "struct epitem" */
239 * Wait queue item that will be linked to the target file wait
242 wait_queue_entry_t wait
;
244 /* The wait queue head that linked the "wait" wait queue item */
245 wait_queue_head_t
*whead
;
248 /* Wrapper struct used by poll queueing */
254 /* Used by the ep_send_events() function as callback private data */
255 struct ep_send_events_data
{
257 struct epoll_event __user
*events
;
262 * Configuration options available inside /proc/sys/fs/epoll/
264 /* Maximum number of epoll watched descriptors, per user */
265 static long max_user_watches __read_mostly
;
268 * This mutex is used to serialize ep_free() and eventpoll_release_file().
270 static DEFINE_MUTEX(epmutex
);
272 /* Used to check for epoll file descriptor inclusion loops */
273 static struct nested_calls poll_loop_ncalls
;
275 /* Slab cache used to allocate "struct epitem" */
276 static struct kmem_cache
*epi_cache __read_mostly
;
278 /* Slab cache used to allocate "struct eppoll_entry" */
279 static struct kmem_cache
*pwq_cache __read_mostly
;
281 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
282 static LIST_HEAD(visited_list
);
285 * List of files with newly added links, where we may need to limit the number
286 * of emanating paths. Protected by the epmutex.
288 static LIST_HEAD(tfile_check_list
);
292 #include <linux/sysctl.h>
294 static long long_zero
;
295 static long long_max
= LONG_MAX
;
297 struct ctl_table epoll_table
[] = {
299 .procname
= "max_user_watches",
300 .data
= &max_user_watches
,
301 .maxlen
= sizeof(max_user_watches
),
303 .proc_handler
= proc_doulongvec_minmax
,
304 .extra1
= &long_zero
,
309 #endif /* CONFIG_SYSCTL */
311 static const struct file_operations eventpoll_fops
;
313 static inline int is_file_epoll(struct file
*f
)
315 return f
->f_op
== &eventpoll_fops
;
318 /* Setup the structure that is used as key for the RB tree */
319 static inline void ep_set_ffd(struct epoll_filefd
*ffd
,
320 struct file
*file
, int fd
)
326 /* Compare RB tree keys */
327 static inline int ep_cmp_ffd(struct epoll_filefd
*p1
,
328 struct epoll_filefd
*p2
)
330 return (p1
->file
> p2
->file
? +1:
331 (p1
->file
< p2
->file
? -1 : p1
->fd
- p2
->fd
));
334 /* Tells us if the item is currently linked */
335 static inline int ep_is_linked(struct epitem
*epi
)
337 return !list_empty(&epi
->rdllink
);
340 static inline struct eppoll_entry
*ep_pwq_from_wait(wait_queue_entry_t
*p
)
342 return container_of(p
, struct eppoll_entry
, wait
);
345 /* Get the "struct epitem" from a wait queue pointer */
346 static inline struct epitem
*ep_item_from_wait(wait_queue_entry_t
*p
)
348 return container_of(p
, struct eppoll_entry
, wait
)->base
;
351 /* Get the "struct epitem" from an epoll queue wrapper */
352 static inline struct epitem
*ep_item_from_epqueue(poll_table
*p
)
354 return container_of(p
, struct ep_pqueue
, pt
)->epi
;
357 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
358 static inline int ep_op_has_event(int op
)
360 return op
!= EPOLL_CTL_DEL
;
363 /* Initialize the poll safe wake up structure */
364 static void ep_nested_calls_init(struct nested_calls
*ncalls
)
366 INIT_LIST_HEAD(&ncalls
->tasks_call_list
);
367 spin_lock_init(&ncalls
->lock
);
371 * ep_events_available - Checks if ready events might be available.
373 * @ep: Pointer to the eventpoll context.
375 * Returns: Returns a value different than zero if ready events are available,
378 static inline int ep_events_available(struct eventpoll
*ep
)
380 return !list_empty_careful(&ep
->rdllist
) ||
381 READ_ONCE(ep
->ovflist
) != EP_UNACTIVE_PTR
;
384 #ifdef CONFIG_NET_RX_BUSY_POLL
385 static bool ep_busy_loop_end(void *p
, unsigned long start_time
)
387 struct eventpoll
*ep
= p
;
389 return ep_events_available(ep
) || busy_loop_timeout(start_time
);
393 * Busy poll if globally on and supporting sockets found && no events,
394 * busy loop will return if need_resched or ep_events_available.
396 * we must do our busy polling with irqs enabled
398 static void ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
400 unsigned int napi_id
= READ_ONCE(ep
->napi_id
);
402 if ((napi_id
>= MIN_NAPI_ID
) && net_busy_loop_on())
403 napi_busy_loop(napi_id
, nonblock
? NULL
: ep_busy_loop_end
, ep
);
406 static inline void ep_reset_busy_poll_napi_id(struct eventpoll
*ep
)
413 * Set epoll busy poll NAPI ID from sk.
415 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
417 struct eventpoll
*ep
;
418 unsigned int napi_id
;
423 if (!net_busy_loop_on())
426 sock
= sock_from_file(epi
->ffd
.file
, &err
);
434 napi_id
= READ_ONCE(sk
->sk_napi_id
);
437 /* Non-NAPI IDs can be rejected
439 * Nothing to do if we already have this ID
441 if (napi_id
< MIN_NAPI_ID
|| napi_id
== ep
->napi_id
)
444 /* record NAPI ID for use in next busy poll */
445 ep
->napi_id
= napi_id
;
450 static inline void ep_busy_loop(struct eventpoll
*ep
, int nonblock
)
454 static inline void ep_reset_busy_poll_napi_id(struct eventpoll
*ep
)
458 static inline void ep_set_busy_poll_napi_id(struct epitem
*epi
)
462 #endif /* CONFIG_NET_RX_BUSY_POLL */
465 * ep_call_nested - Perform a bound (possibly) nested call, by checking
466 * that the recursion limit is not exceeded, and that
467 * the same nested call (by the meaning of same cookie) is
470 * @ncalls: Pointer to the nested_calls structure to be used for this call.
471 * @nproc: Nested call core function pointer.
472 * @priv: Opaque data to be passed to the @nproc callback.
473 * @cookie: Cookie to be used to identify this nested call.
474 * @ctx: This instance context.
476 * Returns: Returns the code returned by the @nproc callback, or -1 if
477 * the maximum recursion limit has been exceeded.
479 static int ep_call_nested(struct nested_calls
*ncalls
,
480 int (*nproc
)(void *, void *, int), void *priv
,
481 void *cookie
, void *ctx
)
483 int error
, call_nests
= 0;
485 struct list_head
*lsthead
= &ncalls
->tasks_call_list
;
486 struct nested_call_node
*tncur
;
487 struct nested_call_node tnode
;
489 spin_lock_irqsave(&ncalls
->lock
, flags
);
492 * Try to see if the current task is already inside this wakeup call.
493 * We use a list here, since the population inside this set is always
496 list_for_each_entry(tncur
, lsthead
, llink
) {
497 if (tncur
->ctx
== ctx
&&
498 (tncur
->cookie
== cookie
|| ++call_nests
> EP_MAX_NESTS
)) {
500 * Ops ... loop detected or maximum nest level reached.
501 * We abort this wake by breaking the cycle itself.
508 /* Add the current task and cookie to the list */
510 tnode
.cookie
= cookie
;
511 list_add(&tnode
.llink
, lsthead
);
513 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
515 /* Call the nested function */
516 error
= (*nproc
)(priv
, cookie
, call_nests
);
518 /* Remove the current task from the list */
519 spin_lock_irqsave(&ncalls
->lock
, flags
);
520 list_del(&tnode
.llink
);
522 spin_unlock_irqrestore(&ncalls
->lock
, flags
);
528 * As described in commit 0ccf831cb lockdep: annotate epoll
529 * the use of wait queues used by epoll is done in a very controlled
530 * manner. Wake ups can nest inside each other, but are never done
531 * with the same locking. For example:
534 * efd1 = epoll_create();
535 * efd2 = epoll_create();
536 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
537 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
539 * When a packet arrives to the device underneath "dfd", the net code will
540 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
541 * callback wakeup entry on that queue, and the wake_up() performed by the
542 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
543 * (efd1) notices that it may have some event ready, so it needs to wake up
544 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
545 * that ends up in another wake_up(), after having checked about the
546 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
547 * avoid stack blasting.
549 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
550 * this special case of epoll.
552 #ifdef CONFIG_DEBUG_LOCK_ALLOC
554 static DEFINE_PER_CPU(int, wakeup_nest
);
556 static void ep_poll_safewake(wait_queue_head_t
*wq
)
561 local_irq_save(flags
);
563 subclass
= __this_cpu_read(wakeup_nest
);
564 spin_lock_nested(&wq
->lock
, subclass
+ 1);
565 __this_cpu_inc(wakeup_nest
);
566 wake_up_locked_poll(wq
, POLLIN
);
567 __this_cpu_dec(wakeup_nest
);
568 spin_unlock(&wq
->lock
);
569 local_irq_restore(flags
);
575 static void ep_poll_safewake(wait_queue_head_t
*wq
)
577 wake_up_poll(wq
, EPOLLIN
);
582 static void ep_remove_wait_queue(struct eppoll_entry
*pwq
)
584 wait_queue_head_t
*whead
;
588 * If it is cleared by POLLFREE, it should be rcu-safe.
589 * If we read NULL we need a barrier paired with
590 * smp_store_release() in ep_poll_callback(), otherwise
591 * we rely on whead->lock.
593 whead
= smp_load_acquire(&pwq
->whead
);
595 remove_wait_queue(whead
, &pwq
->wait
);
600 * This function unregisters poll callbacks from the associated file
601 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
604 static void ep_unregister_pollwait(struct eventpoll
*ep
, struct epitem
*epi
)
606 struct list_head
*lsthead
= &epi
->pwqlist
;
607 struct eppoll_entry
*pwq
;
609 while (!list_empty(lsthead
)) {
610 pwq
= list_first_entry(lsthead
, struct eppoll_entry
, llink
);
612 list_del(&pwq
->llink
);
613 ep_remove_wait_queue(pwq
);
614 kmem_cache_free(pwq_cache
, pwq
);
618 /* call only when ep->mtx is held */
619 static inline struct wakeup_source
*ep_wakeup_source(struct epitem
*epi
)
621 return rcu_dereference_check(epi
->ws
, lockdep_is_held(&epi
->ep
->mtx
));
624 /* call only when ep->mtx is held */
625 static inline void ep_pm_stay_awake(struct epitem
*epi
)
627 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
633 static inline bool ep_has_wakeup_source(struct epitem
*epi
)
635 return rcu_access_pointer(epi
->ws
) ? true : false;
638 /* call when ep->mtx cannot be held (ep_poll_callback) */
639 static inline void ep_pm_stay_awake_rcu(struct epitem
*epi
)
641 struct wakeup_source
*ws
;
644 ws
= rcu_dereference(epi
->ws
);
651 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
652 * the scan code, to call f_op->poll(). Also allows for
653 * O(NumReady) performance.
655 * @ep: Pointer to the epoll private data structure.
656 * @sproc: Pointer to the scan callback.
657 * @priv: Private opaque data passed to the @sproc callback.
658 * @depth: The current depth of recursive f_op->poll calls.
659 * @ep_locked: caller already holds ep->mtx
661 * Returns: The same integer error code returned by the @sproc callback.
663 static __poll_t
ep_scan_ready_list(struct eventpoll
*ep
,
664 __poll_t (*sproc
)(struct eventpoll
*,
665 struct list_head
*, void *),
666 void *priv
, int depth
, bool ep_locked
)
669 struct epitem
*epi
, *nepi
;
672 lockdep_assert_irqs_enabled();
675 * We need to lock this because we could be hit by
676 * eventpoll_release_file() and epoll_ctl().
680 mutex_lock_nested(&ep
->mtx
, depth
);
683 * Steal the ready list, and re-init the original one to the
684 * empty list. Also, set ep->ovflist to NULL so that events
685 * happening while looping w/out locks, are not lost. We cannot
686 * have the poll callback to queue directly on ep->rdllist,
687 * because we want the "sproc" callback to be able to do it
690 write_lock_irq(&ep
->lock
);
691 list_splice_init(&ep
->rdllist
, &txlist
);
692 WRITE_ONCE(ep
->ovflist
, NULL
);
693 write_unlock_irq(&ep
->lock
);
696 * Now call the callback function.
698 res
= (*sproc
)(ep
, &txlist
, priv
);
700 write_lock_irq(&ep
->lock
);
702 * During the time we spent inside the "sproc" callback, some
703 * other events might have been queued by the poll callback.
704 * We re-insert them inside the main ready-list here.
706 for (nepi
= READ_ONCE(ep
->ovflist
); (epi
= nepi
) != NULL
;
707 nepi
= epi
->next
, epi
->next
= EP_UNACTIVE_PTR
) {
709 * We need to check if the item is already in the list.
710 * During the "sproc" callback execution time, items are
711 * queued into ->ovflist but the "txlist" might already
712 * contain them, and the list_splice() below takes care of them.
714 if (!ep_is_linked(epi
)) {
716 * ->ovflist is LIFO, so we have to reverse it in order
719 list_add(&epi
->rdllink
, &ep
->rdllist
);
720 ep_pm_stay_awake(epi
);
724 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
725 * releasing the lock, events will be queued in the normal way inside
728 WRITE_ONCE(ep
->ovflist
, EP_UNACTIVE_PTR
);
731 * Quickly re-inject items left on "txlist".
733 list_splice(&txlist
, &ep
->rdllist
);
735 write_unlock_irq(&ep
->lock
);
738 mutex_unlock(&ep
->mtx
);
743 static void epi_rcu_free(struct rcu_head
*head
)
745 struct epitem
*epi
= container_of(head
, struct epitem
, rcu
);
746 kmem_cache_free(epi_cache
, epi
);
750 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
751 * all the associated resources. Must be called with "mtx" held.
753 static int ep_remove(struct eventpoll
*ep
, struct epitem
*epi
)
755 struct file
*file
= epi
->ffd
.file
;
757 lockdep_assert_irqs_enabled();
760 * Removes poll wait queue hooks.
762 ep_unregister_pollwait(ep
, epi
);
764 /* Remove the current item from the list of epoll hooks */
765 spin_lock(&file
->f_lock
);
766 list_del_rcu(&epi
->fllink
);
767 spin_unlock(&file
->f_lock
);
769 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
771 write_lock_irq(&ep
->lock
);
772 if (ep_is_linked(epi
))
773 list_del_init(&epi
->rdllink
);
774 write_unlock_irq(&ep
->lock
);
776 wakeup_source_unregister(ep_wakeup_source(epi
));
778 * At this point it is safe to free the eventpoll item. Use the union
779 * field epi->rcu, since we are trying to minimize the size of
780 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
781 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
782 * use of the rbn field.
784 call_rcu(&epi
->rcu
, epi_rcu_free
);
786 atomic_long_dec(&ep
->user
->epoll_watches
);
791 static void ep_free(struct eventpoll
*ep
)
796 /* We need to release all tasks waiting for these file */
797 if (waitqueue_active(&ep
->poll_wait
))
798 ep_poll_safewake(&ep
->poll_wait
);
801 * We need to lock this because we could be hit by
802 * eventpoll_release_file() while we're freeing the "struct eventpoll".
803 * We do not need to hold "ep->mtx" here because the epoll file
804 * is on the way to be removed and no one has references to it
805 * anymore. The only hit might come from eventpoll_release_file() but
806 * holding "epmutex" is sufficient here.
808 mutex_lock(&epmutex
);
811 * Walks through the whole tree by unregistering poll callbacks.
813 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
814 epi
= rb_entry(rbp
, struct epitem
, rbn
);
816 ep_unregister_pollwait(ep
, epi
);
821 * Walks through the whole tree by freeing each "struct epitem". At this
822 * point we are sure no poll callbacks will be lingering around, and also by
823 * holding "epmutex" we can be sure that no file cleanup code will hit
824 * us during this operation. So we can avoid the lock on "ep->lock".
825 * We do not need to lock ep->mtx, either, we only do it to prevent
828 mutex_lock(&ep
->mtx
);
829 while ((rbp
= rb_first_cached(&ep
->rbr
)) != NULL
) {
830 epi
= rb_entry(rbp
, struct epitem
, rbn
);
834 mutex_unlock(&ep
->mtx
);
836 mutex_unlock(&epmutex
);
837 mutex_destroy(&ep
->mtx
);
839 wakeup_source_unregister(ep
->ws
);
843 static int ep_eventpoll_release(struct inode
*inode
, struct file
*file
)
845 struct eventpoll
*ep
= file
->private_data
;
853 static __poll_t
ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
855 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
859 * Differs from ep_eventpoll_poll() in that internal callers already have
860 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
861 * is correctly annotated.
863 static __poll_t
ep_item_poll(const struct epitem
*epi
, poll_table
*pt
,
866 struct eventpoll
*ep
;
869 pt
->_key
= epi
->event
.events
;
870 if (!is_file_epoll(epi
->ffd
.file
))
871 return vfs_poll(epi
->ffd
.file
, pt
) & epi
->event
.events
;
873 ep
= epi
->ffd
.file
->private_data
;
874 poll_wait(epi
->ffd
.file
, &ep
->poll_wait
, pt
);
875 locked
= pt
&& (pt
->_qproc
== ep_ptable_queue_proc
);
877 return ep_scan_ready_list(epi
->ffd
.file
->private_data
,
878 ep_read_events_proc
, &depth
, depth
,
879 locked
) & epi
->event
.events
;
882 static __poll_t
ep_read_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
885 struct epitem
*epi
, *tmp
;
887 int depth
= *(int *)priv
;
889 init_poll_funcptr(&pt
, NULL
);
892 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
893 if (ep_item_poll(epi
, &pt
, depth
)) {
894 return EPOLLIN
| EPOLLRDNORM
;
897 * Item has been dropped into the ready list by the poll
898 * callback, but it's not actually ready, as far as
899 * caller requested events goes. We can remove it here.
901 __pm_relax(ep_wakeup_source(epi
));
902 list_del_init(&epi
->rdllink
);
909 static __poll_t
ep_eventpoll_poll(struct file
*file
, poll_table
*wait
)
911 struct eventpoll
*ep
= file
->private_data
;
914 /* Insert inside our poll wait queue */
915 poll_wait(file
, &ep
->poll_wait
, wait
);
918 * Proceed to find out if wanted events are really available inside
921 return ep_scan_ready_list(ep
, ep_read_events_proc
,
922 &depth
, depth
, false);
925 #ifdef CONFIG_PROC_FS
926 static void ep_show_fdinfo(struct seq_file
*m
, struct file
*f
)
928 struct eventpoll
*ep
= f
->private_data
;
931 mutex_lock(&ep
->mtx
);
932 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
933 struct epitem
*epi
= rb_entry(rbp
, struct epitem
, rbn
);
934 struct inode
*inode
= file_inode(epi
->ffd
.file
);
936 seq_printf(m
, "tfd: %8d events: %8x data: %16llx "
937 " pos:%lli ino:%lx sdev:%x\n",
938 epi
->ffd
.fd
, epi
->event
.events
,
939 (long long)epi
->event
.data
,
940 (long long)epi
->ffd
.file
->f_pos
,
941 inode
->i_ino
, inode
->i_sb
->s_dev
);
942 if (seq_has_overflowed(m
))
945 mutex_unlock(&ep
->mtx
);
949 /* File callbacks that implement the eventpoll file behaviour */
950 static const struct file_operations eventpoll_fops
= {
951 #ifdef CONFIG_PROC_FS
952 .show_fdinfo
= ep_show_fdinfo
,
954 .release
= ep_eventpoll_release
,
955 .poll
= ep_eventpoll_poll
,
956 .llseek
= noop_llseek
,
960 * This is called from eventpoll_release() to unlink files from the eventpoll
961 * interface. We need to have this facility to cleanup correctly files that are
962 * closed without being removed from the eventpoll interface.
964 void eventpoll_release_file(struct file
*file
)
966 struct eventpoll
*ep
;
967 struct epitem
*epi
, *next
;
970 * We don't want to get "file->f_lock" because it is not
971 * necessary. It is not necessary because we're in the "struct file"
972 * cleanup path, and this means that no one is using this file anymore.
973 * So, for example, epoll_ctl() cannot hit here since if we reach this
974 * point, the file counter already went to zero and fget() would fail.
975 * The only hit might come from ep_free() but by holding the mutex
976 * will correctly serialize the operation. We do need to acquire
977 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
978 * from anywhere but ep_free().
980 * Besides, ep_remove() acquires the lock, so we can't hold it here.
982 mutex_lock(&epmutex
);
983 list_for_each_entry_safe(epi
, next
, &file
->f_ep_links
, fllink
) {
985 mutex_lock_nested(&ep
->mtx
, 0);
987 mutex_unlock(&ep
->mtx
);
989 mutex_unlock(&epmutex
);
992 static int ep_alloc(struct eventpoll
**pep
)
995 struct user_struct
*user
;
996 struct eventpoll
*ep
;
998 user
= get_current_user();
1000 ep
= kzalloc(sizeof(*ep
), GFP_KERNEL
);
1004 mutex_init(&ep
->mtx
);
1005 rwlock_init(&ep
->lock
);
1006 init_waitqueue_head(&ep
->wq
);
1007 init_waitqueue_head(&ep
->poll_wait
);
1008 INIT_LIST_HEAD(&ep
->rdllist
);
1009 ep
->rbr
= RB_ROOT_CACHED
;
1010 ep
->ovflist
= EP_UNACTIVE_PTR
;
1023 * Search the file inside the eventpoll tree. The RB tree operations
1024 * are protected by the "mtx" mutex, and ep_find() must be called with
1027 static struct epitem
*ep_find(struct eventpoll
*ep
, struct file
*file
, int fd
)
1030 struct rb_node
*rbp
;
1031 struct epitem
*epi
, *epir
= NULL
;
1032 struct epoll_filefd ffd
;
1034 ep_set_ffd(&ffd
, file
, fd
);
1035 for (rbp
= ep
->rbr
.rb_root
.rb_node
; rbp
; ) {
1036 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1037 kcmp
= ep_cmp_ffd(&ffd
, &epi
->ffd
);
1039 rbp
= rbp
->rb_right
;
1051 #ifdef CONFIG_CHECKPOINT_RESTORE
1052 static struct epitem
*ep_find_tfd(struct eventpoll
*ep
, int tfd
, unsigned long toff
)
1054 struct rb_node
*rbp
;
1057 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1058 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1059 if (epi
->ffd
.fd
== tfd
) {
1071 struct file
*get_epoll_tfile_raw_ptr(struct file
*file
, int tfd
,
1074 struct file
*file_raw
;
1075 struct eventpoll
*ep
;
1078 if (!is_file_epoll(file
))
1079 return ERR_PTR(-EINVAL
);
1081 ep
= file
->private_data
;
1083 mutex_lock(&ep
->mtx
);
1084 epi
= ep_find_tfd(ep
, tfd
, toff
);
1086 file_raw
= epi
->ffd
.file
;
1088 file_raw
= ERR_PTR(-ENOENT
);
1089 mutex_unlock(&ep
->mtx
);
1093 #endif /* CONFIG_CHECKPOINT_RESTORE */
1096 * Adds a new entry to the tail of the list in a lockless way, i.e.
1097 * multiple CPUs are allowed to call this function concurrently.
1099 * Beware: it is necessary to prevent any other modifications of the
1100 * existing list until all changes are completed, in other words
1101 * concurrent list_add_tail_lockless() calls should be protected
1102 * with a read lock, where write lock acts as a barrier which
1103 * makes sure all list_add_tail_lockless() calls are fully
1106 * Also an element can be locklessly added to the list only in one
1107 * direction i.e. either to the tail either to the head, otherwise
1108 * concurrent access will corrupt the list.
1110 * Returns %false if element has been already added to the list, %true
1113 static inline bool list_add_tail_lockless(struct list_head
*new,
1114 struct list_head
*head
)
1116 struct list_head
*prev
;
1119 * This is simple 'new->next = head' operation, but cmpxchg()
1120 * is used in order to detect that same element has been just
1121 * added to the list from another CPU: the winner observes
1124 if (cmpxchg(&new->next
, new, head
) != new)
1128 * Initially ->next of a new element must be updated with the head
1129 * (we are inserting to the tail) and only then pointers are atomically
1130 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1131 * updated before pointers are actually swapped and pointers are
1132 * swapped before prev->next is updated.
1135 prev
= xchg(&head
->prev
, new);
1138 * It is safe to modify prev->next and new->prev, because a new element
1139 * is added only to the tail and new->next is updated before XCHG.
1149 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1150 * i.e. multiple CPUs are allowed to call this function concurrently.
1152 * Returns %false if epi element has been already chained, %true otherwise.
1154 static inline bool chain_epi_lockless(struct epitem
*epi
)
1156 struct eventpoll
*ep
= epi
->ep
;
1158 /* Check that the same epi has not been just chained from another CPU */
1159 if (cmpxchg(&epi
->next
, EP_UNACTIVE_PTR
, NULL
) != EP_UNACTIVE_PTR
)
1162 /* Atomically exchange tail */
1163 epi
->next
= xchg(&ep
->ovflist
, epi
);
1169 * This is the callback that is passed to the wait queue wakeup
1170 * mechanism. It is called by the stored file descriptors when they
1171 * have events to report.
1173 * This callback takes a read lock in order not to content with concurrent
1174 * events from another file descriptors, thus all modifications to ->rdllist
1175 * or ->ovflist are lockless. Read lock is paired with the write lock from
1176 * ep_scan_ready_list(), which stops all list modifications and guarantees
1177 * that lists state is seen correctly.
1179 * Another thing worth to mention is that ep_poll_callback() can be called
1180 * concurrently for the same @epi from different CPUs if poll table was inited
1181 * with several wait queues entries. Plural wakeup from different CPUs of a
1182 * single wait queue is serialized by wq.lock, but the case when multiple wait
1183 * queues are used should be detected accordingly. This is detected using
1184 * cmpxchg() operation.
1186 static int ep_poll_callback(wait_queue_entry_t
*wait
, unsigned mode
, int sync
, void *key
)
1189 struct epitem
*epi
= ep_item_from_wait(wait
);
1190 struct eventpoll
*ep
= epi
->ep
;
1191 __poll_t pollflags
= key_to_poll(key
);
1192 unsigned long flags
;
1195 read_lock_irqsave(&ep
->lock
, flags
);
1197 ep_set_busy_poll_napi_id(epi
);
1200 * If the event mask does not contain any poll(2) event, we consider the
1201 * descriptor to be disabled. This condition is likely the effect of the
1202 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1203 * until the next EPOLL_CTL_MOD will be issued.
1205 if (!(epi
->event
.events
& ~EP_PRIVATE_BITS
))
1209 * Check the events coming with the callback. At this stage, not
1210 * every device reports the events in the "key" parameter of the
1211 * callback. We need to be able to handle both cases here, hence the
1212 * test for "key" != NULL before the event match test.
1214 if (pollflags
&& !(pollflags
& epi
->event
.events
))
1218 * If we are transferring events to userspace, we can hold no locks
1219 * (because we're accessing user memory, and because of linux f_op->poll()
1220 * semantics). All the events that happen during that period of time are
1221 * chained in ep->ovflist and requeued later on.
1223 if (READ_ONCE(ep
->ovflist
) != EP_UNACTIVE_PTR
) {
1224 if (epi
->next
== EP_UNACTIVE_PTR
&&
1225 chain_epi_lockless(epi
))
1226 ep_pm_stay_awake_rcu(epi
);
1230 /* If this file is already in the ready list we exit soon */
1231 if (!ep_is_linked(epi
) &&
1232 list_add_tail_lockless(&epi
->rdllink
, &ep
->rdllist
)) {
1233 ep_pm_stay_awake_rcu(epi
);
1237 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1240 if (waitqueue_active(&ep
->wq
)) {
1241 if ((epi
->event
.events
& EPOLLEXCLUSIVE
) &&
1242 !(pollflags
& POLLFREE
)) {
1243 switch (pollflags
& EPOLLINOUT_BITS
) {
1245 if (epi
->event
.events
& EPOLLIN
)
1249 if (epi
->event
.events
& EPOLLOUT
)
1259 if (waitqueue_active(&ep
->poll_wait
))
1263 read_unlock_irqrestore(&ep
->lock
, flags
);
1265 /* We have to call this outside the lock */
1267 ep_poll_safewake(&ep
->poll_wait
);
1269 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
))
1272 if (pollflags
& POLLFREE
) {
1274 * If we race with ep_remove_wait_queue() it can miss
1275 * ->whead = NULL and do another remove_wait_queue() after
1276 * us, so we can't use __remove_wait_queue().
1278 list_del_init(&wait
->entry
);
1280 * ->whead != NULL protects us from the race with ep_free()
1281 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1282 * held by the caller. Once we nullify it, nothing protects
1283 * ep/epi or even wait.
1285 smp_store_release(&ep_pwq_from_wait(wait
)->whead
, NULL
);
1292 * This is the callback that is used to add our wait queue to the
1293 * target file wakeup lists.
1295 static void ep_ptable_queue_proc(struct file
*file
, wait_queue_head_t
*whead
,
1298 struct epitem
*epi
= ep_item_from_epqueue(pt
);
1299 struct eppoll_entry
*pwq
;
1301 if (epi
->nwait
>= 0 && (pwq
= kmem_cache_alloc(pwq_cache
, GFP_KERNEL
))) {
1302 init_waitqueue_func_entry(&pwq
->wait
, ep_poll_callback
);
1305 if (epi
->event
.events
& EPOLLEXCLUSIVE
)
1306 add_wait_queue_exclusive(whead
, &pwq
->wait
);
1308 add_wait_queue(whead
, &pwq
->wait
);
1309 list_add_tail(&pwq
->llink
, &epi
->pwqlist
);
1312 /* We have to signal that an error occurred */
1317 static void ep_rbtree_insert(struct eventpoll
*ep
, struct epitem
*epi
)
1320 struct rb_node
**p
= &ep
->rbr
.rb_root
.rb_node
, *parent
= NULL
;
1321 struct epitem
*epic
;
1322 bool leftmost
= true;
1326 epic
= rb_entry(parent
, struct epitem
, rbn
);
1327 kcmp
= ep_cmp_ffd(&epi
->ffd
, &epic
->ffd
);
1329 p
= &parent
->rb_right
;
1332 p
= &parent
->rb_left
;
1334 rb_link_node(&epi
->rbn
, parent
, p
);
1335 rb_insert_color_cached(&epi
->rbn
, &ep
->rbr
, leftmost
);
1340 #define PATH_ARR_SIZE 5
1342 * These are the number paths of length 1 to 5, that we are allowing to emanate
1343 * from a single file of interest. For example, we allow 1000 paths of length
1344 * 1, to emanate from each file of interest. This essentially represents the
1345 * potential wakeup paths, which need to be limited in order to avoid massive
1346 * uncontrolled wakeup storms. The common use case should be a single ep which
1347 * is connected to n file sources. In this case each file source has 1 path
1348 * of length 1. Thus, the numbers below should be more than sufficient. These
1349 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1350 * and delete can't add additional paths. Protected by the epmutex.
1352 static const int path_limits
[PATH_ARR_SIZE
] = { 1000, 500, 100, 50, 10 };
1353 static int path_count
[PATH_ARR_SIZE
];
1355 static int path_count_inc(int nests
)
1357 /* Allow an arbitrary number of depth 1 paths */
1361 if (++path_count
[nests
] > path_limits
[nests
])
1366 static void path_count_init(void)
1370 for (i
= 0; i
< PATH_ARR_SIZE
; i
++)
1374 static int reverse_path_check_proc(void *priv
, void *cookie
, int call_nests
)
1377 struct file
*file
= priv
;
1378 struct file
*child_file
;
1381 /* CTL_DEL can remove links here, but that can't increase our count */
1383 list_for_each_entry_rcu(epi
, &file
->f_ep_links
, fllink
) {
1384 child_file
= epi
->ep
->file
;
1385 if (is_file_epoll(child_file
)) {
1386 if (list_empty(&child_file
->f_ep_links
)) {
1387 if (path_count_inc(call_nests
)) {
1392 error
= ep_call_nested(&poll_loop_ncalls
,
1393 reverse_path_check_proc
,
1394 child_file
, child_file
,
1400 printk(KERN_ERR
"reverse_path_check_proc: "
1401 "file is not an ep!\n");
1409 * reverse_path_check - The tfile_check_list is list of file *, which have
1410 * links that are proposed to be newly added. We need to
1411 * make sure that those added links don't add too many
1412 * paths such that we will spend all our time waking up
1413 * eventpoll objects.
1415 * Returns: Returns zero if the proposed links don't create too many paths,
1418 static int reverse_path_check(void)
1421 struct file
*current_file
;
1423 /* let's call this for all tfiles */
1424 list_for_each_entry(current_file
, &tfile_check_list
, f_tfile_llink
) {
1426 error
= ep_call_nested(&poll_loop_ncalls
,
1427 reverse_path_check_proc
, current_file
,
1428 current_file
, current
);
1435 static int ep_create_wakeup_source(struct epitem
*epi
)
1438 struct wakeup_source
*ws
;
1441 epi
->ep
->ws
= wakeup_source_register(NULL
, "eventpoll");
1446 name
= epi
->ffd
.file
->f_path
.dentry
->d_name
.name
;
1447 ws
= wakeup_source_register(NULL
, name
);
1451 rcu_assign_pointer(epi
->ws
, ws
);
1456 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1457 static noinline
void ep_destroy_wakeup_source(struct epitem
*epi
)
1459 struct wakeup_source
*ws
= ep_wakeup_source(epi
);
1461 RCU_INIT_POINTER(epi
->ws
, NULL
);
1464 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1465 * used internally by wakeup_source_remove, too (called by
1466 * wakeup_source_unregister), so we cannot use call_rcu
1469 wakeup_source_unregister(ws
);
1473 * Must be called with "mtx" held.
1475 static int ep_insert(struct eventpoll
*ep
, const struct epoll_event
*event
,
1476 struct file
*tfile
, int fd
, int full_check
)
1478 int error
, pwake
= 0;
1482 struct ep_pqueue epq
;
1484 lockdep_assert_irqs_enabled();
1486 user_watches
= atomic_long_read(&ep
->user
->epoll_watches
);
1487 if (unlikely(user_watches
>= max_user_watches
))
1489 if (!(epi
= kmem_cache_alloc(epi_cache
, GFP_KERNEL
)))
1492 /* Item initialization follow here ... */
1493 INIT_LIST_HEAD(&epi
->rdllink
);
1494 INIT_LIST_HEAD(&epi
->fllink
);
1495 INIT_LIST_HEAD(&epi
->pwqlist
);
1497 ep_set_ffd(&epi
->ffd
, tfile
, fd
);
1498 epi
->event
= *event
;
1500 epi
->next
= EP_UNACTIVE_PTR
;
1501 if (epi
->event
.events
& EPOLLWAKEUP
) {
1502 error
= ep_create_wakeup_source(epi
);
1504 goto error_create_wakeup_source
;
1506 RCU_INIT_POINTER(epi
->ws
, NULL
);
1509 /* Initialize the poll table using the queue callback */
1511 init_poll_funcptr(&epq
.pt
, ep_ptable_queue_proc
);
1514 * Attach the item to the poll hooks and get current event bits.
1515 * We can safely use the file* here because its usage count has
1516 * been increased by the caller of this function. Note that after
1517 * this operation completes, the poll callback can start hitting
1520 revents
= ep_item_poll(epi
, &epq
.pt
, 1);
1523 * We have to check if something went wrong during the poll wait queue
1524 * install process. Namely an allocation for a wait queue failed due
1525 * high memory pressure.
1529 goto error_unregister
;
1531 /* Add the current item to the list of active epoll hook for this file */
1532 spin_lock(&tfile
->f_lock
);
1533 list_add_tail_rcu(&epi
->fllink
, &tfile
->f_ep_links
);
1534 spin_unlock(&tfile
->f_lock
);
1537 * Add the current item to the RB tree. All RB tree operations are
1538 * protected by "mtx", and ep_insert() is called with "mtx" held.
1540 ep_rbtree_insert(ep
, epi
);
1542 /* now check if we've created too many backpaths */
1544 if (full_check
&& reverse_path_check())
1545 goto error_remove_epi
;
1547 /* We have to drop the new item inside our item list to keep track of it */
1548 write_lock_irq(&ep
->lock
);
1550 /* record NAPI ID of new item if present */
1551 ep_set_busy_poll_napi_id(epi
);
1553 /* If the file is already "ready" we drop it inside the ready list */
1554 if (revents
&& !ep_is_linked(epi
)) {
1555 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1556 ep_pm_stay_awake(epi
);
1558 /* Notify waiting tasks that events are available */
1559 if (waitqueue_active(&ep
->wq
))
1561 if (waitqueue_active(&ep
->poll_wait
))
1565 write_unlock_irq(&ep
->lock
);
1567 atomic_long_inc(&ep
->user
->epoll_watches
);
1569 /* We have to call this outside the lock */
1571 ep_poll_safewake(&ep
->poll_wait
);
1576 spin_lock(&tfile
->f_lock
);
1577 list_del_rcu(&epi
->fllink
);
1578 spin_unlock(&tfile
->f_lock
);
1580 rb_erase_cached(&epi
->rbn
, &ep
->rbr
);
1583 ep_unregister_pollwait(ep
, epi
);
1586 * We need to do this because an event could have been arrived on some
1587 * allocated wait queue. Note that we don't care about the ep->ovflist
1588 * list, since that is used/cleaned only inside a section bound by "mtx".
1589 * And ep_insert() is called with "mtx" held.
1591 write_lock_irq(&ep
->lock
);
1592 if (ep_is_linked(epi
))
1593 list_del_init(&epi
->rdllink
);
1594 write_unlock_irq(&ep
->lock
);
1596 wakeup_source_unregister(ep_wakeup_source(epi
));
1598 error_create_wakeup_source
:
1599 kmem_cache_free(epi_cache
, epi
);
1605 * Modify the interest event mask by dropping an event if the new mask
1606 * has a match in the current file status. Must be called with "mtx" held.
1608 static int ep_modify(struct eventpoll
*ep
, struct epitem
*epi
,
1609 const struct epoll_event
*event
)
1614 lockdep_assert_irqs_enabled();
1616 init_poll_funcptr(&pt
, NULL
);
1619 * Set the new event interest mask before calling f_op->poll();
1620 * otherwise we might miss an event that happens between the
1621 * f_op->poll() call and the new event set registering.
1623 epi
->event
.events
= event
->events
; /* need barrier below */
1624 epi
->event
.data
= event
->data
; /* protected by mtx */
1625 if (epi
->event
.events
& EPOLLWAKEUP
) {
1626 if (!ep_has_wakeup_source(epi
))
1627 ep_create_wakeup_source(epi
);
1628 } else if (ep_has_wakeup_source(epi
)) {
1629 ep_destroy_wakeup_source(epi
);
1633 * The following barrier has two effects:
1635 * 1) Flush epi changes above to other CPUs. This ensures
1636 * we do not miss events from ep_poll_callback if an
1637 * event occurs immediately after we call f_op->poll().
1638 * We need this because we did not take ep->lock while
1639 * changing epi above (but ep_poll_callback does take
1642 * 2) We also need to ensure we do not miss _past_ events
1643 * when calling f_op->poll(). This barrier also
1644 * pairs with the barrier in wq_has_sleeper (see
1645 * comments for wq_has_sleeper).
1647 * This barrier will now guarantee ep_poll_callback or f_op->poll
1648 * (or both) will notice the readiness of an item.
1653 * Get current event bits. We can safely use the file* here because
1654 * its usage count has been increased by the caller of this function.
1655 * If the item is "hot" and it is not registered inside the ready
1656 * list, push it inside.
1658 if (ep_item_poll(epi
, &pt
, 1)) {
1659 write_lock_irq(&ep
->lock
);
1660 if (!ep_is_linked(epi
)) {
1661 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1662 ep_pm_stay_awake(epi
);
1664 /* Notify waiting tasks that events are available */
1665 if (waitqueue_active(&ep
->wq
))
1667 if (waitqueue_active(&ep
->poll_wait
))
1670 write_unlock_irq(&ep
->lock
);
1673 /* We have to call this outside the lock */
1675 ep_poll_safewake(&ep
->poll_wait
);
1680 static __poll_t
ep_send_events_proc(struct eventpoll
*ep
, struct list_head
*head
,
1683 struct ep_send_events_data
*esed
= priv
;
1685 struct epitem
*epi
, *tmp
;
1686 struct epoll_event __user
*uevent
= esed
->events
;
1687 struct wakeup_source
*ws
;
1690 init_poll_funcptr(&pt
, NULL
);
1694 * We can loop without lock because we are passed a task private list.
1695 * Items cannot vanish during the loop because ep_scan_ready_list() is
1696 * holding "mtx" during this call.
1698 lockdep_assert_held(&ep
->mtx
);
1700 list_for_each_entry_safe(epi
, tmp
, head
, rdllink
) {
1701 if (esed
->res
>= esed
->maxevents
)
1705 * Activate ep->ws before deactivating epi->ws to prevent
1706 * triggering auto-suspend here (in case we reactive epi->ws
1709 * This could be rearranged to delay the deactivation of epi->ws
1710 * instead, but then epi->ws would temporarily be out of sync
1711 * with ep_is_linked().
1713 ws
= ep_wakeup_source(epi
);
1716 __pm_stay_awake(ep
->ws
);
1720 list_del_init(&epi
->rdllink
);
1723 * If the event mask intersect the caller-requested one,
1724 * deliver the event to userspace. Again, ep_scan_ready_list()
1725 * is holding ep->mtx, so no operations coming from userspace
1726 * can change the item.
1728 revents
= ep_item_poll(epi
, &pt
, 1);
1732 if (__put_user(revents
, &uevent
->events
) ||
1733 __put_user(epi
->event
.data
, &uevent
->data
)) {
1734 list_add(&epi
->rdllink
, head
);
1735 ep_pm_stay_awake(epi
);
1737 esed
->res
= -EFAULT
;
1742 if (epi
->event
.events
& EPOLLONESHOT
)
1743 epi
->event
.events
&= EP_PRIVATE_BITS
;
1744 else if (!(epi
->event
.events
& EPOLLET
)) {
1746 * If this file has been added with Level
1747 * Trigger mode, we need to insert back inside
1748 * the ready list, so that the next call to
1749 * epoll_wait() will check again the events
1750 * availability. At this point, no one can insert
1751 * into ep->rdllist besides us. The epoll_ctl()
1752 * callers are locked out by
1753 * ep_scan_ready_list() holding "mtx" and the
1754 * poll callback will queue them in ep->ovflist.
1756 list_add_tail(&epi
->rdllink
, &ep
->rdllist
);
1757 ep_pm_stay_awake(epi
);
1764 static int ep_send_events(struct eventpoll
*ep
,
1765 struct epoll_event __user
*events
, int maxevents
)
1767 struct ep_send_events_data esed
;
1769 esed
.maxevents
= maxevents
;
1770 esed
.events
= events
;
1772 ep_scan_ready_list(ep
, ep_send_events_proc
, &esed
, 0, false);
1776 static inline struct timespec64
ep_set_mstimeout(long ms
)
1778 struct timespec64 now
, ts
= {
1779 .tv_sec
= ms
/ MSEC_PER_SEC
,
1780 .tv_nsec
= NSEC_PER_MSEC
* (ms
% MSEC_PER_SEC
),
1783 ktime_get_ts64(&now
);
1784 return timespec64_add_safe(now
, ts
);
1788 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1791 * @ep: Pointer to the eventpoll context.
1792 * @events: Pointer to the userspace buffer where the ready events should be
1794 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1795 * @timeout: Maximum timeout for the ready events fetch operation, in
1796 * milliseconds. If the @timeout is zero, the function will not block,
1797 * while if the @timeout is less than zero, the function will block
1798 * until at least one event has been retrieved (or an error
1801 * Returns: Returns the number of ready events which have been fetched, or an
1802 * error code, in case of error.
1804 static int ep_poll(struct eventpoll
*ep
, struct epoll_event __user
*events
,
1805 int maxevents
, long timeout
)
1807 int res
= 0, eavail
, timed_out
= 0;
1809 bool waiter
= false;
1810 wait_queue_entry_t wait
;
1811 ktime_t expires
, *to
= NULL
;
1813 lockdep_assert_irqs_enabled();
1816 struct timespec64 end_time
= ep_set_mstimeout(timeout
);
1818 slack
= select_estimate_accuracy(&end_time
);
1820 *to
= timespec64_to_ktime(end_time
);
1821 } else if (timeout
== 0) {
1823 * Avoid the unnecessary trip to the wait queue loop, if the
1824 * caller specified a non blocking operation. We still need
1825 * lock because we could race and not see an epi being added
1826 * to the ready list while in irq callback. Thus incorrectly
1827 * returning 0 back to userspace.
1831 write_lock_irq(&ep
->lock
);
1832 eavail
= ep_events_available(ep
);
1833 write_unlock_irq(&ep
->lock
);
1840 if (!ep_events_available(ep
))
1841 ep_busy_loop(ep
, timed_out
);
1843 eavail
= ep_events_available(ep
);
1848 * Busy poll timed out. Drop NAPI ID for now, we can add
1849 * it back in when we have moved a socket with a valid NAPI
1850 * ID onto the ready list.
1852 ep_reset_busy_poll_napi_id(ep
);
1855 * We don't have any available event to return to the caller. We need
1856 * to sleep here, and we will be woken by ep_poll_callback() when events
1861 init_waitqueue_entry(&wait
, current
);
1863 write_lock_irq(&ep
->lock
);
1864 __add_wait_queue_exclusive(&ep
->wq
, &wait
);
1865 write_unlock_irq(&ep
->lock
);
1870 * We don't want to sleep if the ep_poll_callback() sends us
1871 * a wakeup in between. That's why we set the task state
1872 * to TASK_INTERRUPTIBLE before doing the checks.
1874 set_current_state(TASK_INTERRUPTIBLE
);
1876 * Always short-circuit for fatal signals to allow
1877 * threads to make a timely exit without the chance of
1878 * finding more events available and fetching
1881 if (fatal_signal_pending(current
)) {
1886 eavail
= ep_events_available(ep
);
1889 if (signal_pending(current
)) {
1894 if (!schedule_hrtimeout_range(to
, slack
, HRTIMER_MODE_ABS
)) {
1900 __set_current_state(TASK_RUNNING
);
1904 * Try to transfer events to user space. In case we get 0 events and
1905 * there's still timeout left over, we go trying again in search of
1908 if (!res
&& eavail
&&
1909 !(res
= ep_send_events(ep
, events
, maxevents
)) && !timed_out
)
1913 write_lock_irq(&ep
->lock
);
1914 __remove_wait_queue(&ep
->wq
, &wait
);
1915 write_unlock_irq(&ep
->lock
);
1922 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1923 * API, to verify that adding an epoll file inside another
1924 * epoll structure, does not violate the constraints, in
1925 * terms of closed loops, or too deep chains (which can
1926 * result in excessive stack usage).
1928 * @priv: Pointer to the epoll file to be currently checked.
1929 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1930 * data structure pointer.
1931 * @call_nests: Current dept of the @ep_call_nested() call stack.
1933 * Returns: Returns zero if adding the epoll @file inside current epoll
1934 * structure @ep does not violate the constraints, or -1 otherwise.
1936 static int ep_loop_check_proc(void *priv
, void *cookie
, int call_nests
)
1939 struct file
*file
= priv
;
1940 struct eventpoll
*ep
= file
->private_data
;
1941 struct eventpoll
*ep_tovisit
;
1942 struct rb_node
*rbp
;
1945 mutex_lock_nested(&ep
->mtx
, call_nests
+ 1);
1947 list_add(&ep
->visited_list_link
, &visited_list
);
1948 for (rbp
= rb_first_cached(&ep
->rbr
); rbp
; rbp
= rb_next(rbp
)) {
1949 epi
= rb_entry(rbp
, struct epitem
, rbn
);
1950 if (unlikely(is_file_epoll(epi
->ffd
.file
))) {
1951 ep_tovisit
= epi
->ffd
.file
->private_data
;
1952 if (ep_tovisit
->visited
)
1954 error
= ep_call_nested(&poll_loop_ncalls
,
1955 ep_loop_check_proc
, epi
->ffd
.file
,
1956 ep_tovisit
, current
);
1961 * If we've reached a file that is not associated with
1962 * an ep, then we need to check if the newly added
1963 * links are going to add too many wakeup paths. We do
1964 * this by adding it to the tfile_check_list, if it's
1965 * not already there, and calling reverse_path_check()
1966 * during ep_insert().
1968 if (list_empty(&epi
->ffd
.file
->f_tfile_llink
))
1969 list_add(&epi
->ffd
.file
->f_tfile_llink
,
1973 mutex_unlock(&ep
->mtx
);
1979 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1980 * another epoll file (represented by @ep) does not create
1981 * closed loops or too deep chains.
1983 * @ep: Pointer to the epoll private data structure.
1984 * @file: Pointer to the epoll file to be checked.
1986 * Returns: Returns zero if adding the epoll @file inside current epoll
1987 * structure @ep does not violate the constraints, or -1 otherwise.
1989 static int ep_loop_check(struct eventpoll
*ep
, struct file
*file
)
1992 struct eventpoll
*ep_cur
, *ep_next
;
1994 ret
= ep_call_nested(&poll_loop_ncalls
,
1995 ep_loop_check_proc
, file
, ep
, current
);
1996 /* clear visited list */
1997 list_for_each_entry_safe(ep_cur
, ep_next
, &visited_list
,
1998 visited_list_link
) {
1999 ep_cur
->visited
= 0;
2000 list_del(&ep_cur
->visited_list_link
);
2005 static void clear_tfile_check_list(void)
2009 /* first clear the tfile_check_list */
2010 while (!list_empty(&tfile_check_list
)) {
2011 file
= list_first_entry(&tfile_check_list
, struct file
,
2013 list_del_init(&file
->f_tfile_llink
);
2015 INIT_LIST_HEAD(&tfile_check_list
);
2019 * Open an eventpoll file descriptor.
2021 static int do_epoll_create(int flags
)
2024 struct eventpoll
*ep
= NULL
;
2027 /* Check the EPOLL_* constant for consistency. */
2028 BUILD_BUG_ON(EPOLL_CLOEXEC
!= O_CLOEXEC
);
2030 if (flags
& ~EPOLL_CLOEXEC
)
2033 * Create the internal data structure ("struct eventpoll").
2035 error
= ep_alloc(&ep
);
2039 * Creates all the items needed to setup an eventpoll file. That is,
2040 * a file structure and a free file descriptor.
2042 fd
= get_unused_fd_flags(O_RDWR
| (flags
& O_CLOEXEC
));
2047 file
= anon_inode_getfile("[eventpoll]", &eventpoll_fops
, ep
,
2048 O_RDWR
| (flags
& O_CLOEXEC
));
2050 error
= PTR_ERR(file
);
2054 fd_install(fd
, file
);
2064 SYSCALL_DEFINE1(epoll_create1
, int, flags
)
2066 return do_epoll_create(flags
);
2069 SYSCALL_DEFINE1(epoll_create
, int, size
)
2074 return do_epoll_create(0);
2078 * The following function implements the controller interface for
2079 * the eventpoll file that enables the insertion/removal/change of
2080 * file descriptors inside the interest set.
2082 SYSCALL_DEFINE4(epoll_ctl
, int, epfd
, int, op
, int, fd
,
2083 struct epoll_event __user
*, event
)
2088 struct eventpoll
*ep
;
2090 struct epoll_event epds
;
2091 struct eventpoll
*tep
= NULL
;
2094 if (ep_op_has_event(op
) &&
2095 copy_from_user(&epds
, event
, sizeof(struct epoll_event
)))
2103 /* Get the "struct file *" for the target file */
2108 /* The target file descriptor must support poll */
2110 if (!file_can_poll(tf
.file
))
2111 goto error_tgt_fput
;
2113 /* Check if EPOLLWAKEUP is allowed */
2114 if (ep_op_has_event(op
))
2115 ep_take_care_of_epollwakeup(&epds
);
2118 * We have to check that the file structure underneath the file descriptor
2119 * the user passed to us _is_ an eventpoll file. And also we do not permit
2120 * adding an epoll file descriptor inside itself.
2123 if (f
.file
== tf
.file
|| !is_file_epoll(f
.file
))
2124 goto error_tgt_fput
;
2127 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2128 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2129 * Also, we do not currently supported nested exclusive wakeups.
2131 if (ep_op_has_event(op
) && (epds
.events
& EPOLLEXCLUSIVE
)) {
2132 if (op
== EPOLL_CTL_MOD
)
2133 goto error_tgt_fput
;
2134 if (op
== EPOLL_CTL_ADD
&& (is_file_epoll(tf
.file
) ||
2135 (epds
.events
& ~EPOLLEXCLUSIVE_OK_BITS
)))
2136 goto error_tgt_fput
;
2140 * At this point it is safe to assume that the "private_data" contains
2141 * our own data structure.
2143 ep
= f
.file
->private_data
;
2146 * When we insert an epoll file descriptor, inside another epoll file
2147 * descriptor, there is the change of creating closed loops, which are
2148 * better be handled here, than in more critical paths. While we are
2149 * checking for loops we also determine the list of files reachable
2150 * and hang them on the tfile_check_list, so we can check that we
2151 * haven't created too many possible wakeup paths.
2153 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2154 * the epoll file descriptor is attaching directly to a wakeup source,
2155 * unless the epoll file descriptor is nested. The purpose of taking the
2156 * 'epmutex' on add is to prevent complex toplogies such as loops and
2157 * deep wakeup paths from forming in parallel through multiple
2158 * EPOLL_CTL_ADD operations.
2160 mutex_lock_nested(&ep
->mtx
, 0);
2161 if (op
== EPOLL_CTL_ADD
) {
2162 if (!list_empty(&f
.file
->f_ep_links
) ||
2163 is_file_epoll(tf
.file
)) {
2165 mutex_unlock(&ep
->mtx
);
2166 mutex_lock(&epmutex
);
2167 if (is_file_epoll(tf
.file
)) {
2169 if (ep_loop_check(ep
, tf
.file
) != 0) {
2170 clear_tfile_check_list();
2171 goto error_tgt_fput
;
2174 list_add(&tf
.file
->f_tfile_llink
,
2176 mutex_lock_nested(&ep
->mtx
, 0);
2177 if (is_file_epoll(tf
.file
)) {
2178 tep
= tf
.file
->private_data
;
2179 mutex_lock_nested(&tep
->mtx
, 1);
2185 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2186 * above, we can be sure to be able to use the item looked up by
2187 * ep_find() till we release the mutex.
2189 epi
= ep_find(ep
, tf
.file
, fd
);
2195 epds
.events
|= EPOLLERR
| EPOLLHUP
;
2196 error
= ep_insert(ep
, &epds
, tf
.file
, fd
, full_check
);
2200 clear_tfile_check_list();
2204 error
= ep_remove(ep
, epi
);
2210 if (!(epi
->event
.events
& EPOLLEXCLUSIVE
)) {
2211 epds
.events
|= EPOLLERR
| EPOLLHUP
;
2212 error
= ep_modify(ep
, epi
, &epds
);
2219 mutex_unlock(&tep
->mtx
);
2220 mutex_unlock(&ep
->mtx
);
2224 mutex_unlock(&epmutex
);
2235 * Implement the event wait interface for the eventpoll file. It is the kernel
2236 * part of the user space epoll_wait(2).
2238 static int do_epoll_wait(int epfd
, struct epoll_event __user
*events
,
2239 int maxevents
, int timeout
)
2243 struct eventpoll
*ep
;
2245 /* The maximum number of event must be greater than zero */
2246 if (maxevents
<= 0 || maxevents
> EP_MAX_EVENTS
)
2249 /* Verify that the area passed by the user is writeable */
2250 if (!access_ok(events
, maxevents
* sizeof(struct epoll_event
)))
2253 /* Get the "struct file *" for the eventpoll file */
2259 * We have to check that the file structure underneath the fd
2260 * the user passed to us _is_ an eventpoll file.
2263 if (!is_file_epoll(f
.file
))
2267 * At this point it is safe to assume that the "private_data" contains
2268 * our own data structure.
2270 ep
= f
.file
->private_data
;
2272 /* Time to fish for events ... */
2273 error
= ep_poll(ep
, events
, maxevents
, timeout
);
2280 SYSCALL_DEFINE4(epoll_wait
, int, epfd
, struct epoll_event __user
*, events
,
2281 int, maxevents
, int, timeout
)
2283 return do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2287 * Implement the event wait interface for the eventpoll file. It is the kernel
2288 * part of the user space epoll_pwait(2).
2290 SYSCALL_DEFINE6(epoll_pwait
, int, epfd
, struct epoll_event __user
*, events
,
2291 int, maxevents
, int, timeout
, const sigset_t __user
*, sigmask
,
2297 * If the caller wants a certain signal mask to be set during the wait,
2300 error
= set_user_sigmask(sigmask
, sigsetsize
);
2304 error
= do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2305 restore_saved_sigmask_unless(error
== -EINTR
);
2310 #ifdef CONFIG_COMPAT
2311 COMPAT_SYSCALL_DEFINE6(epoll_pwait
, int, epfd
,
2312 struct epoll_event __user
*, events
,
2313 int, maxevents
, int, timeout
,
2314 const compat_sigset_t __user
*, sigmask
,
2315 compat_size_t
, sigsetsize
)
2320 * If the caller wants a certain signal mask to be set during the wait,
2323 err
= set_compat_user_sigmask(sigmask
, sigsetsize
);
2327 err
= do_epoll_wait(epfd
, events
, maxevents
, timeout
);
2328 restore_saved_sigmask_unless(err
== -EINTR
);
2334 static int __init
eventpoll_init(void)
2340 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2342 max_user_watches
= (((si
.totalram
- si
.totalhigh
) / 25) << PAGE_SHIFT
) /
2344 BUG_ON(max_user_watches
< 0);
2347 * Initialize the structure used to perform epoll file descriptor
2348 * inclusion loops checks.
2350 ep_nested_calls_init(&poll_loop_ncalls
);
2353 * We can have many thousands of epitems, so prevent this from
2354 * using an extra cache line on 64-bit (and smaller) CPUs
2356 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem
) > 128);
2358 /* Allocates slab cache used to allocate "struct epitem" items */
2359 epi_cache
= kmem_cache_create("eventpoll_epi", sizeof(struct epitem
),
2360 0, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2362 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2363 pwq_cache
= kmem_cache_create("eventpoll_pwq",
2364 sizeof(struct eppoll_entry
), 0, SLAB_PANIC
|SLAB_ACCOUNT
, NULL
);
2368 fs_initcall(eventpoll_init
);