bpf: Undo incorrect __reg_bound_offset32 handling
[linux/fpc-iii.git] / fs / eventpoll.c
blobdeebb47b633317dd5ec2d835f1c051d8e0e250f6
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * fs/eventpoll.c (Efficient event retrieval implementation)
4 * Copyright (C) 2001,...,2009 Davide Libenzi
6 * Davide Libenzi <davidel@xmailserver.org>
7 */
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/sched/signal.h>
12 #include <linux/fs.h>
13 #include <linux/file.h>
14 #include <linux/signal.h>
15 #include <linux/errno.h>
16 #include <linux/mm.h>
17 #include <linux/slab.h>
18 #include <linux/poll.h>
19 #include <linux/string.h>
20 #include <linux/list.h>
21 #include <linux/hash.h>
22 #include <linux/spinlock.h>
23 #include <linux/syscalls.h>
24 #include <linux/rbtree.h>
25 #include <linux/wait.h>
26 #include <linux/eventpoll.h>
27 #include <linux/mount.h>
28 #include <linux/bitops.h>
29 #include <linux/mutex.h>
30 #include <linux/anon_inodes.h>
31 #include <linux/device.h>
32 #include <linux/uaccess.h>
33 #include <asm/io.h>
34 #include <asm/mman.h>
35 #include <linux/atomic.h>
36 #include <linux/proc_fs.h>
37 #include <linux/seq_file.h>
38 #include <linux/compat.h>
39 #include <linux/rculist.h>
40 #include <net/busy_poll.h>
43 * LOCKING:
44 * There are three level of locking required by epoll :
46 * 1) epmutex (mutex)
47 * 2) ep->mtx (mutex)
48 * 3) ep->lock (rwlock)
50 * The acquire order is the one listed above, from 1 to 3.
51 * We need a rwlock (ep->lock) because we manipulate objects
52 * from inside the poll callback, that might be triggered from
53 * a wake_up() that in turn might be called from IRQ context.
54 * So we can't sleep inside the poll callback and hence we need
55 * a spinlock. During the event transfer loop (from kernel to
56 * user space) we could end up sleeping due a copy_to_user(), so
57 * we need a lock that will allow us to sleep. This lock is a
58 * mutex (ep->mtx). It is acquired during the event transfer loop,
59 * during epoll_ctl(EPOLL_CTL_DEL) and during eventpoll_release_file().
60 * Then we also need a global mutex to serialize eventpoll_release_file()
61 * and ep_free().
62 * This mutex is acquired by ep_free() during the epoll file
63 * cleanup path and it is also acquired by eventpoll_release_file()
64 * if a file has been pushed inside an epoll set and it is then
65 * close()d without a previous call to epoll_ctl(EPOLL_CTL_DEL).
66 * It is also acquired when inserting an epoll fd onto another epoll
67 * fd. We do this so that we walk the epoll tree and ensure that this
68 * insertion does not create a cycle of epoll file descriptors, which
69 * could lead to deadlock. We need a global mutex to prevent two
70 * simultaneous inserts (A into B and B into A) from racing and
71 * constructing a cycle without either insert observing that it is
72 * going to.
73 * It is necessary to acquire multiple "ep->mtx"es at once in the
74 * case when one epoll fd is added to another. In this case, we
75 * always acquire the locks in the order of nesting (i.e. after
76 * epoll_ctl(e1, EPOLL_CTL_ADD, e2), e1->mtx will always be acquired
77 * before e2->mtx). Since we disallow cycles of epoll file
78 * descriptors, this ensures that the mutexes are well-ordered. In
79 * order to communicate this nesting to lockdep, when walking a tree
80 * of epoll file descriptors, we use the current recursion depth as
81 * the lockdep subkey.
82 * It is possible to drop the "ep->mtx" and to use the global
83 * mutex "epmutex" (together with "ep->lock") to have it working,
84 * but having "ep->mtx" will make the interface more scalable.
85 * Events that require holding "epmutex" are very rare, while for
86 * normal operations the epoll private "ep->mtx" will guarantee
87 * a better scalability.
90 /* Epoll private bits inside the event mask */
91 #define EP_PRIVATE_BITS (EPOLLWAKEUP | EPOLLONESHOT | EPOLLET | EPOLLEXCLUSIVE)
93 #define EPOLLINOUT_BITS (EPOLLIN | EPOLLOUT)
95 #define EPOLLEXCLUSIVE_OK_BITS (EPOLLINOUT_BITS | EPOLLERR | EPOLLHUP | \
96 EPOLLWAKEUP | EPOLLET | EPOLLEXCLUSIVE)
98 /* Maximum number of nesting allowed inside epoll sets */
99 #define EP_MAX_NESTS 4
101 #define EP_MAX_EVENTS (INT_MAX / sizeof(struct epoll_event))
103 #define EP_UNACTIVE_PTR ((void *) -1L)
105 #define EP_ITEM_COST (sizeof(struct epitem) + sizeof(struct eppoll_entry))
107 struct epoll_filefd {
108 struct file *file;
109 int fd;
110 } __packed;
113 * Structure used to track possible nested calls, for too deep recursions
114 * and loop cycles.
116 struct nested_call_node {
117 struct list_head llink;
118 void *cookie;
119 void *ctx;
123 * This structure is used as collector for nested calls, to check for
124 * maximum recursion dept and loop cycles.
126 struct nested_calls {
127 struct list_head tasks_call_list;
128 spinlock_t lock;
132 * Each file descriptor added to the eventpoll interface will
133 * have an entry of this type linked to the "rbr" RB tree.
134 * Avoid increasing the size of this struct, there can be many thousands
135 * of these on a server and we do not want this to take another cache line.
137 struct epitem {
138 union {
139 /* RB tree node links this structure to the eventpoll RB tree */
140 struct rb_node rbn;
141 /* Used to free the struct epitem */
142 struct rcu_head rcu;
145 /* List header used to link this structure to the eventpoll ready list */
146 struct list_head rdllink;
149 * Works together "struct eventpoll"->ovflist in keeping the
150 * single linked chain of items.
152 struct epitem *next;
154 /* The file descriptor information this item refers to */
155 struct epoll_filefd ffd;
157 /* Number of active wait queue attached to poll operations */
158 int nwait;
160 /* List containing poll wait queues */
161 struct list_head pwqlist;
163 /* The "container" of this item */
164 struct eventpoll *ep;
166 /* List header used to link this item to the "struct file" items list */
167 struct list_head fllink;
169 /* wakeup_source used when EPOLLWAKEUP is set */
170 struct wakeup_source __rcu *ws;
172 /* The structure that describe the interested events and the source fd */
173 struct epoll_event event;
177 * This structure is stored inside the "private_data" member of the file
178 * structure and represents the main data structure for the eventpoll
179 * interface.
181 struct eventpoll {
183 * This mutex is used to ensure that files are not removed
184 * while epoll is using them. This is held during the event
185 * collection loop, the file cleanup path, the epoll file exit
186 * code and the ctl operations.
188 struct mutex mtx;
190 /* Wait queue used by sys_epoll_wait() */
191 wait_queue_head_t wq;
193 /* Wait queue used by file->poll() */
194 wait_queue_head_t poll_wait;
196 /* List of ready file descriptors */
197 struct list_head rdllist;
199 /* Lock which protects rdllist and ovflist */
200 rwlock_t lock;
202 /* RB tree root used to store monitored fd structs */
203 struct rb_root_cached rbr;
206 * This is a single linked list that chains all the "struct epitem" that
207 * happened while transferring ready events to userspace w/out
208 * holding ->lock.
210 struct epitem *ovflist;
212 /* wakeup_source used when ep_scan_ready_list is running */
213 struct wakeup_source *ws;
215 /* The user that created the eventpoll descriptor */
216 struct user_struct *user;
218 struct file *file;
220 /* used to optimize loop detection check */
221 int visited;
222 struct list_head visited_list_link;
224 #ifdef CONFIG_NET_RX_BUSY_POLL
225 /* used to track busy poll napi_id */
226 unsigned int napi_id;
227 #endif
230 /* Wait structure used by the poll hooks */
231 struct eppoll_entry {
232 /* List header used to link this structure to the "struct epitem" */
233 struct list_head llink;
235 /* The "base" pointer is set to the container "struct epitem" */
236 struct epitem *base;
239 * Wait queue item that will be linked to the target file wait
240 * queue head.
242 wait_queue_entry_t wait;
244 /* The wait queue head that linked the "wait" wait queue item */
245 wait_queue_head_t *whead;
248 /* Wrapper struct used by poll queueing */
249 struct ep_pqueue {
250 poll_table pt;
251 struct epitem *epi;
254 /* Used by the ep_send_events() function as callback private data */
255 struct ep_send_events_data {
256 int maxevents;
257 struct epoll_event __user *events;
258 int res;
262 * Configuration options available inside /proc/sys/fs/epoll/
264 /* Maximum number of epoll watched descriptors, per user */
265 static long max_user_watches __read_mostly;
268 * This mutex is used to serialize ep_free() and eventpoll_release_file().
270 static DEFINE_MUTEX(epmutex);
272 /* Used to check for epoll file descriptor inclusion loops */
273 static struct nested_calls poll_loop_ncalls;
275 /* Slab cache used to allocate "struct epitem" */
276 static struct kmem_cache *epi_cache __read_mostly;
278 /* Slab cache used to allocate "struct eppoll_entry" */
279 static struct kmem_cache *pwq_cache __read_mostly;
281 /* Visited nodes during ep_loop_check(), so we can unset them when we finish */
282 static LIST_HEAD(visited_list);
285 * List of files with newly added links, where we may need to limit the number
286 * of emanating paths. Protected by the epmutex.
288 static LIST_HEAD(tfile_check_list);
290 #ifdef CONFIG_SYSCTL
292 #include <linux/sysctl.h>
294 static long long_zero;
295 static long long_max = LONG_MAX;
297 struct ctl_table epoll_table[] = {
299 .procname = "max_user_watches",
300 .data = &max_user_watches,
301 .maxlen = sizeof(max_user_watches),
302 .mode = 0644,
303 .proc_handler = proc_doulongvec_minmax,
304 .extra1 = &long_zero,
305 .extra2 = &long_max,
309 #endif /* CONFIG_SYSCTL */
311 static const struct file_operations eventpoll_fops;
313 static inline int is_file_epoll(struct file *f)
315 return f->f_op == &eventpoll_fops;
318 /* Setup the structure that is used as key for the RB tree */
319 static inline void ep_set_ffd(struct epoll_filefd *ffd,
320 struct file *file, int fd)
322 ffd->file = file;
323 ffd->fd = fd;
326 /* Compare RB tree keys */
327 static inline int ep_cmp_ffd(struct epoll_filefd *p1,
328 struct epoll_filefd *p2)
330 return (p1->file > p2->file ? +1:
331 (p1->file < p2->file ? -1 : p1->fd - p2->fd));
334 /* Tells us if the item is currently linked */
335 static inline int ep_is_linked(struct epitem *epi)
337 return !list_empty(&epi->rdllink);
340 static inline struct eppoll_entry *ep_pwq_from_wait(wait_queue_entry_t *p)
342 return container_of(p, struct eppoll_entry, wait);
345 /* Get the "struct epitem" from a wait queue pointer */
346 static inline struct epitem *ep_item_from_wait(wait_queue_entry_t *p)
348 return container_of(p, struct eppoll_entry, wait)->base;
351 /* Get the "struct epitem" from an epoll queue wrapper */
352 static inline struct epitem *ep_item_from_epqueue(poll_table *p)
354 return container_of(p, struct ep_pqueue, pt)->epi;
357 /* Tells if the epoll_ctl(2) operation needs an event copy from userspace */
358 static inline int ep_op_has_event(int op)
360 return op != EPOLL_CTL_DEL;
363 /* Initialize the poll safe wake up structure */
364 static void ep_nested_calls_init(struct nested_calls *ncalls)
366 INIT_LIST_HEAD(&ncalls->tasks_call_list);
367 spin_lock_init(&ncalls->lock);
371 * ep_events_available - Checks if ready events might be available.
373 * @ep: Pointer to the eventpoll context.
375 * Returns: Returns a value different than zero if ready events are available,
376 * or zero otherwise.
378 static inline int ep_events_available(struct eventpoll *ep)
380 return !list_empty_careful(&ep->rdllist) ||
381 READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR;
384 #ifdef CONFIG_NET_RX_BUSY_POLL
385 static bool ep_busy_loop_end(void *p, unsigned long start_time)
387 struct eventpoll *ep = p;
389 return ep_events_available(ep) || busy_loop_timeout(start_time);
393 * Busy poll if globally on and supporting sockets found && no events,
394 * busy loop will return if need_resched or ep_events_available.
396 * we must do our busy polling with irqs enabled
398 static void ep_busy_loop(struct eventpoll *ep, int nonblock)
400 unsigned int napi_id = READ_ONCE(ep->napi_id);
402 if ((napi_id >= MIN_NAPI_ID) && net_busy_loop_on())
403 napi_busy_loop(napi_id, nonblock ? NULL : ep_busy_loop_end, ep);
406 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
408 if (ep->napi_id)
409 ep->napi_id = 0;
413 * Set epoll busy poll NAPI ID from sk.
415 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
417 struct eventpoll *ep;
418 unsigned int napi_id;
419 struct socket *sock;
420 struct sock *sk;
421 int err;
423 if (!net_busy_loop_on())
424 return;
426 sock = sock_from_file(epi->ffd.file, &err);
427 if (!sock)
428 return;
430 sk = sock->sk;
431 if (!sk)
432 return;
434 napi_id = READ_ONCE(sk->sk_napi_id);
435 ep = epi->ep;
437 /* Non-NAPI IDs can be rejected
438 * or
439 * Nothing to do if we already have this ID
441 if (napi_id < MIN_NAPI_ID || napi_id == ep->napi_id)
442 return;
444 /* record NAPI ID for use in next busy poll */
445 ep->napi_id = napi_id;
448 #else
450 static inline void ep_busy_loop(struct eventpoll *ep, int nonblock)
454 static inline void ep_reset_busy_poll_napi_id(struct eventpoll *ep)
458 static inline void ep_set_busy_poll_napi_id(struct epitem *epi)
462 #endif /* CONFIG_NET_RX_BUSY_POLL */
465 * ep_call_nested - Perform a bound (possibly) nested call, by checking
466 * that the recursion limit is not exceeded, and that
467 * the same nested call (by the meaning of same cookie) is
468 * no re-entered.
470 * @ncalls: Pointer to the nested_calls structure to be used for this call.
471 * @nproc: Nested call core function pointer.
472 * @priv: Opaque data to be passed to the @nproc callback.
473 * @cookie: Cookie to be used to identify this nested call.
474 * @ctx: This instance context.
476 * Returns: Returns the code returned by the @nproc callback, or -1 if
477 * the maximum recursion limit has been exceeded.
479 static int ep_call_nested(struct nested_calls *ncalls,
480 int (*nproc)(void *, void *, int), void *priv,
481 void *cookie, void *ctx)
483 int error, call_nests = 0;
484 unsigned long flags;
485 struct list_head *lsthead = &ncalls->tasks_call_list;
486 struct nested_call_node *tncur;
487 struct nested_call_node tnode;
489 spin_lock_irqsave(&ncalls->lock, flags);
492 * Try to see if the current task is already inside this wakeup call.
493 * We use a list here, since the population inside this set is always
494 * very much limited.
496 list_for_each_entry(tncur, lsthead, llink) {
497 if (tncur->ctx == ctx &&
498 (tncur->cookie == cookie || ++call_nests > EP_MAX_NESTS)) {
500 * Ops ... loop detected or maximum nest level reached.
501 * We abort this wake by breaking the cycle itself.
503 error = -1;
504 goto out_unlock;
508 /* Add the current task and cookie to the list */
509 tnode.ctx = ctx;
510 tnode.cookie = cookie;
511 list_add(&tnode.llink, lsthead);
513 spin_unlock_irqrestore(&ncalls->lock, flags);
515 /* Call the nested function */
516 error = (*nproc)(priv, cookie, call_nests);
518 /* Remove the current task from the list */
519 spin_lock_irqsave(&ncalls->lock, flags);
520 list_del(&tnode.llink);
521 out_unlock:
522 spin_unlock_irqrestore(&ncalls->lock, flags);
524 return error;
528 * As described in commit 0ccf831cb lockdep: annotate epoll
529 * the use of wait queues used by epoll is done in a very controlled
530 * manner. Wake ups can nest inside each other, but are never done
531 * with the same locking. For example:
533 * dfd = socket(...);
534 * efd1 = epoll_create();
535 * efd2 = epoll_create();
536 * epoll_ctl(efd1, EPOLL_CTL_ADD, dfd, ...);
537 * epoll_ctl(efd2, EPOLL_CTL_ADD, efd1, ...);
539 * When a packet arrives to the device underneath "dfd", the net code will
540 * issue a wake_up() on its poll wake list. Epoll (efd1) has installed a
541 * callback wakeup entry on that queue, and the wake_up() performed by the
542 * "dfd" net code will end up in ep_poll_callback(). At this point epoll
543 * (efd1) notices that it may have some event ready, so it needs to wake up
544 * the waiters on its poll wait list (efd2). So it calls ep_poll_safewake()
545 * that ends up in another wake_up(), after having checked about the
546 * recursion constraints. That are, no more than EP_MAX_POLLWAKE_NESTS, to
547 * avoid stack blasting.
549 * When CONFIG_DEBUG_LOCK_ALLOC is enabled, make sure lockdep can handle
550 * this special case of epoll.
552 #ifdef CONFIG_DEBUG_LOCK_ALLOC
554 static DEFINE_PER_CPU(int, wakeup_nest);
556 static void ep_poll_safewake(wait_queue_head_t *wq)
558 unsigned long flags;
559 int subclass;
561 local_irq_save(flags);
562 preempt_disable();
563 subclass = __this_cpu_read(wakeup_nest);
564 spin_lock_nested(&wq->lock, subclass + 1);
565 __this_cpu_inc(wakeup_nest);
566 wake_up_locked_poll(wq, POLLIN);
567 __this_cpu_dec(wakeup_nest);
568 spin_unlock(&wq->lock);
569 local_irq_restore(flags);
570 preempt_enable();
573 #else
575 static void ep_poll_safewake(wait_queue_head_t *wq)
577 wake_up_poll(wq, EPOLLIN);
580 #endif
582 static void ep_remove_wait_queue(struct eppoll_entry *pwq)
584 wait_queue_head_t *whead;
586 rcu_read_lock();
588 * If it is cleared by POLLFREE, it should be rcu-safe.
589 * If we read NULL we need a barrier paired with
590 * smp_store_release() in ep_poll_callback(), otherwise
591 * we rely on whead->lock.
593 whead = smp_load_acquire(&pwq->whead);
594 if (whead)
595 remove_wait_queue(whead, &pwq->wait);
596 rcu_read_unlock();
600 * This function unregisters poll callbacks from the associated file
601 * descriptor. Must be called with "mtx" held (or "epmutex" if called from
602 * ep_free).
604 static void ep_unregister_pollwait(struct eventpoll *ep, struct epitem *epi)
606 struct list_head *lsthead = &epi->pwqlist;
607 struct eppoll_entry *pwq;
609 while (!list_empty(lsthead)) {
610 pwq = list_first_entry(lsthead, struct eppoll_entry, llink);
612 list_del(&pwq->llink);
613 ep_remove_wait_queue(pwq);
614 kmem_cache_free(pwq_cache, pwq);
618 /* call only when ep->mtx is held */
619 static inline struct wakeup_source *ep_wakeup_source(struct epitem *epi)
621 return rcu_dereference_check(epi->ws, lockdep_is_held(&epi->ep->mtx));
624 /* call only when ep->mtx is held */
625 static inline void ep_pm_stay_awake(struct epitem *epi)
627 struct wakeup_source *ws = ep_wakeup_source(epi);
629 if (ws)
630 __pm_stay_awake(ws);
633 static inline bool ep_has_wakeup_source(struct epitem *epi)
635 return rcu_access_pointer(epi->ws) ? true : false;
638 /* call when ep->mtx cannot be held (ep_poll_callback) */
639 static inline void ep_pm_stay_awake_rcu(struct epitem *epi)
641 struct wakeup_source *ws;
643 rcu_read_lock();
644 ws = rcu_dereference(epi->ws);
645 if (ws)
646 __pm_stay_awake(ws);
647 rcu_read_unlock();
651 * ep_scan_ready_list - Scans the ready list in a way that makes possible for
652 * the scan code, to call f_op->poll(). Also allows for
653 * O(NumReady) performance.
655 * @ep: Pointer to the epoll private data structure.
656 * @sproc: Pointer to the scan callback.
657 * @priv: Private opaque data passed to the @sproc callback.
658 * @depth: The current depth of recursive f_op->poll calls.
659 * @ep_locked: caller already holds ep->mtx
661 * Returns: The same integer error code returned by the @sproc callback.
663 static __poll_t ep_scan_ready_list(struct eventpoll *ep,
664 __poll_t (*sproc)(struct eventpoll *,
665 struct list_head *, void *),
666 void *priv, int depth, bool ep_locked)
668 __poll_t res;
669 struct epitem *epi, *nepi;
670 LIST_HEAD(txlist);
672 lockdep_assert_irqs_enabled();
675 * We need to lock this because we could be hit by
676 * eventpoll_release_file() and epoll_ctl().
679 if (!ep_locked)
680 mutex_lock_nested(&ep->mtx, depth);
683 * Steal the ready list, and re-init the original one to the
684 * empty list. Also, set ep->ovflist to NULL so that events
685 * happening while looping w/out locks, are not lost. We cannot
686 * have the poll callback to queue directly on ep->rdllist,
687 * because we want the "sproc" callback to be able to do it
688 * in a lockless way.
690 write_lock_irq(&ep->lock);
691 list_splice_init(&ep->rdllist, &txlist);
692 WRITE_ONCE(ep->ovflist, NULL);
693 write_unlock_irq(&ep->lock);
696 * Now call the callback function.
698 res = (*sproc)(ep, &txlist, priv);
700 write_lock_irq(&ep->lock);
702 * During the time we spent inside the "sproc" callback, some
703 * other events might have been queued by the poll callback.
704 * We re-insert them inside the main ready-list here.
706 for (nepi = READ_ONCE(ep->ovflist); (epi = nepi) != NULL;
707 nepi = epi->next, epi->next = EP_UNACTIVE_PTR) {
709 * We need to check if the item is already in the list.
710 * During the "sproc" callback execution time, items are
711 * queued into ->ovflist but the "txlist" might already
712 * contain them, and the list_splice() below takes care of them.
714 if (!ep_is_linked(epi)) {
716 * ->ovflist is LIFO, so we have to reverse it in order
717 * to keep in FIFO.
719 list_add(&epi->rdllink, &ep->rdllist);
720 ep_pm_stay_awake(epi);
724 * We need to set back ep->ovflist to EP_UNACTIVE_PTR, so that after
725 * releasing the lock, events will be queued in the normal way inside
726 * ep->rdllist.
728 WRITE_ONCE(ep->ovflist, EP_UNACTIVE_PTR);
731 * Quickly re-inject items left on "txlist".
733 list_splice(&txlist, &ep->rdllist);
734 __pm_relax(ep->ws);
735 write_unlock_irq(&ep->lock);
737 if (!ep_locked)
738 mutex_unlock(&ep->mtx);
740 return res;
743 static void epi_rcu_free(struct rcu_head *head)
745 struct epitem *epi = container_of(head, struct epitem, rcu);
746 kmem_cache_free(epi_cache, epi);
750 * Removes a "struct epitem" from the eventpoll RB tree and deallocates
751 * all the associated resources. Must be called with "mtx" held.
753 static int ep_remove(struct eventpoll *ep, struct epitem *epi)
755 struct file *file = epi->ffd.file;
757 lockdep_assert_irqs_enabled();
760 * Removes poll wait queue hooks.
762 ep_unregister_pollwait(ep, epi);
764 /* Remove the current item from the list of epoll hooks */
765 spin_lock(&file->f_lock);
766 list_del_rcu(&epi->fllink);
767 spin_unlock(&file->f_lock);
769 rb_erase_cached(&epi->rbn, &ep->rbr);
771 write_lock_irq(&ep->lock);
772 if (ep_is_linked(epi))
773 list_del_init(&epi->rdllink);
774 write_unlock_irq(&ep->lock);
776 wakeup_source_unregister(ep_wakeup_source(epi));
778 * At this point it is safe to free the eventpoll item. Use the union
779 * field epi->rcu, since we are trying to minimize the size of
780 * 'struct epitem'. The 'rbn' field is no longer in use. Protected by
781 * ep->mtx. The rcu read side, reverse_path_check_proc(), does not make
782 * use of the rbn field.
784 call_rcu(&epi->rcu, epi_rcu_free);
786 atomic_long_dec(&ep->user->epoll_watches);
788 return 0;
791 static void ep_free(struct eventpoll *ep)
793 struct rb_node *rbp;
794 struct epitem *epi;
796 /* We need to release all tasks waiting for these file */
797 if (waitqueue_active(&ep->poll_wait))
798 ep_poll_safewake(&ep->poll_wait);
801 * We need to lock this because we could be hit by
802 * eventpoll_release_file() while we're freeing the "struct eventpoll".
803 * We do not need to hold "ep->mtx" here because the epoll file
804 * is on the way to be removed and no one has references to it
805 * anymore. The only hit might come from eventpoll_release_file() but
806 * holding "epmutex" is sufficient here.
808 mutex_lock(&epmutex);
811 * Walks through the whole tree by unregistering poll callbacks.
813 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
814 epi = rb_entry(rbp, struct epitem, rbn);
816 ep_unregister_pollwait(ep, epi);
817 cond_resched();
821 * Walks through the whole tree by freeing each "struct epitem". At this
822 * point we are sure no poll callbacks will be lingering around, and also by
823 * holding "epmutex" we can be sure that no file cleanup code will hit
824 * us during this operation. So we can avoid the lock on "ep->lock".
825 * We do not need to lock ep->mtx, either, we only do it to prevent
826 * a lockdep warning.
828 mutex_lock(&ep->mtx);
829 while ((rbp = rb_first_cached(&ep->rbr)) != NULL) {
830 epi = rb_entry(rbp, struct epitem, rbn);
831 ep_remove(ep, epi);
832 cond_resched();
834 mutex_unlock(&ep->mtx);
836 mutex_unlock(&epmutex);
837 mutex_destroy(&ep->mtx);
838 free_uid(ep->user);
839 wakeup_source_unregister(ep->ws);
840 kfree(ep);
843 static int ep_eventpoll_release(struct inode *inode, struct file *file)
845 struct eventpoll *ep = file->private_data;
847 if (ep)
848 ep_free(ep);
850 return 0;
853 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
854 void *priv);
855 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
856 poll_table *pt);
859 * Differs from ep_eventpoll_poll() in that internal callers already have
860 * the ep->mtx so we need to start from depth=1, such that mutex_lock_nested()
861 * is correctly annotated.
863 static __poll_t ep_item_poll(const struct epitem *epi, poll_table *pt,
864 int depth)
866 struct eventpoll *ep;
867 bool locked;
869 pt->_key = epi->event.events;
870 if (!is_file_epoll(epi->ffd.file))
871 return vfs_poll(epi->ffd.file, pt) & epi->event.events;
873 ep = epi->ffd.file->private_data;
874 poll_wait(epi->ffd.file, &ep->poll_wait, pt);
875 locked = pt && (pt->_qproc == ep_ptable_queue_proc);
877 return ep_scan_ready_list(epi->ffd.file->private_data,
878 ep_read_events_proc, &depth, depth,
879 locked) & epi->event.events;
882 static __poll_t ep_read_events_proc(struct eventpoll *ep, struct list_head *head,
883 void *priv)
885 struct epitem *epi, *tmp;
886 poll_table pt;
887 int depth = *(int *)priv;
889 init_poll_funcptr(&pt, NULL);
890 depth++;
892 list_for_each_entry_safe(epi, tmp, head, rdllink) {
893 if (ep_item_poll(epi, &pt, depth)) {
894 return EPOLLIN | EPOLLRDNORM;
895 } else {
897 * Item has been dropped into the ready list by the poll
898 * callback, but it's not actually ready, as far as
899 * caller requested events goes. We can remove it here.
901 __pm_relax(ep_wakeup_source(epi));
902 list_del_init(&epi->rdllink);
906 return 0;
909 static __poll_t ep_eventpoll_poll(struct file *file, poll_table *wait)
911 struct eventpoll *ep = file->private_data;
912 int depth = 0;
914 /* Insert inside our poll wait queue */
915 poll_wait(file, &ep->poll_wait, wait);
918 * Proceed to find out if wanted events are really available inside
919 * the ready list.
921 return ep_scan_ready_list(ep, ep_read_events_proc,
922 &depth, depth, false);
925 #ifdef CONFIG_PROC_FS
926 static void ep_show_fdinfo(struct seq_file *m, struct file *f)
928 struct eventpoll *ep = f->private_data;
929 struct rb_node *rbp;
931 mutex_lock(&ep->mtx);
932 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
933 struct epitem *epi = rb_entry(rbp, struct epitem, rbn);
934 struct inode *inode = file_inode(epi->ffd.file);
936 seq_printf(m, "tfd: %8d events: %8x data: %16llx "
937 " pos:%lli ino:%lx sdev:%x\n",
938 epi->ffd.fd, epi->event.events,
939 (long long)epi->event.data,
940 (long long)epi->ffd.file->f_pos,
941 inode->i_ino, inode->i_sb->s_dev);
942 if (seq_has_overflowed(m))
943 break;
945 mutex_unlock(&ep->mtx);
947 #endif
949 /* File callbacks that implement the eventpoll file behaviour */
950 static const struct file_operations eventpoll_fops = {
951 #ifdef CONFIG_PROC_FS
952 .show_fdinfo = ep_show_fdinfo,
953 #endif
954 .release = ep_eventpoll_release,
955 .poll = ep_eventpoll_poll,
956 .llseek = noop_llseek,
960 * This is called from eventpoll_release() to unlink files from the eventpoll
961 * interface. We need to have this facility to cleanup correctly files that are
962 * closed without being removed from the eventpoll interface.
964 void eventpoll_release_file(struct file *file)
966 struct eventpoll *ep;
967 struct epitem *epi, *next;
970 * We don't want to get "file->f_lock" because it is not
971 * necessary. It is not necessary because we're in the "struct file"
972 * cleanup path, and this means that no one is using this file anymore.
973 * So, for example, epoll_ctl() cannot hit here since if we reach this
974 * point, the file counter already went to zero and fget() would fail.
975 * The only hit might come from ep_free() but by holding the mutex
976 * will correctly serialize the operation. We do need to acquire
977 * "ep->mtx" after "epmutex" because ep_remove() requires it when called
978 * from anywhere but ep_free().
980 * Besides, ep_remove() acquires the lock, so we can't hold it here.
982 mutex_lock(&epmutex);
983 list_for_each_entry_safe(epi, next, &file->f_ep_links, fllink) {
984 ep = epi->ep;
985 mutex_lock_nested(&ep->mtx, 0);
986 ep_remove(ep, epi);
987 mutex_unlock(&ep->mtx);
989 mutex_unlock(&epmutex);
992 static int ep_alloc(struct eventpoll **pep)
994 int error;
995 struct user_struct *user;
996 struct eventpoll *ep;
998 user = get_current_user();
999 error = -ENOMEM;
1000 ep = kzalloc(sizeof(*ep), GFP_KERNEL);
1001 if (unlikely(!ep))
1002 goto free_uid;
1004 mutex_init(&ep->mtx);
1005 rwlock_init(&ep->lock);
1006 init_waitqueue_head(&ep->wq);
1007 init_waitqueue_head(&ep->poll_wait);
1008 INIT_LIST_HEAD(&ep->rdllist);
1009 ep->rbr = RB_ROOT_CACHED;
1010 ep->ovflist = EP_UNACTIVE_PTR;
1011 ep->user = user;
1013 *pep = ep;
1015 return 0;
1017 free_uid:
1018 free_uid(user);
1019 return error;
1023 * Search the file inside the eventpoll tree. The RB tree operations
1024 * are protected by the "mtx" mutex, and ep_find() must be called with
1025 * "mtx" held.
1027 static struct epitem *ep_find(struct eventpoll *ep, struct file *file, int fd)
1029 int kcmp;
1030 struct rb_node *rbp;
1031 struct epitem *epi, *epir = NULL;
1032 struct epoll_filefd ffd;
1034 ep_set_ffd(&ffd, file, fd);
1035 for (rbp = ep->rbr.rb_root.rb_node; rbp; ) {
1036 epi = rb_entry(rbp, struct epitem, rbn);
1037 kcmp = ep_cmp_ffd(&ffd, &epi->ffd);
1038 if (kcmp > 0)
1039 rbp = rbp->rb_right;
1040 else if (kcmp < 0)
1041 rbp = rbp->rb_left;
1042 else {
1043 epir = epi;
1044 break;
1048 return epir;
1051 #ifdef CONFIG_CHECKPOINT_RESTORE
1052 static struct epitem *ep_find_tfd(struct eventpoll *ep, int tfd, unsigned long toff)
1054 struct rb_node *rbp;
1055 struct epitem *epi;
1057 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1058 epi = rb_entry(rbp, struct epitem, rbn);
1059 if (epi->ffd.fd == tfd) {
1060 if (toff == 0)
1061 return epi;
1062 else
1063 toff--;
1065 cond_resched();
1068 return NULL;
1071 struct file *get_epoll_tfile_raw_ptr(struct file *file, int tfd,
1072 unsigned long toff)
1074 struct file *file_raw;
1075 struct eventpoll *ep;
1076 struct epitem *epi;
1078 if (!is_file_epoll(file))
1079 return ERR_PTR(-EINVAL);
1081 ep = file->private_data;
1083 mutex_lock(&ep->mtx);
1084 epi = ep_find_tfd(ep, tfd, toff);
1085 if (epi)
1086 file_raw = epi->ffd.file;
1087 else
1088 file_raw = ERR_PTR(-ENOENT);
1089 mutex_unlock(&ep->mtx);
1091 return file_raw;
1093 #endif /* CONFIG_CHECKPOINT_RESTORE */
1096 * Adds a new entry to the tail of the list in a lockless way, i.e.
1097 * multiple CPUs are allowed to call this function concurrently.
1099 * Beware: it is necessary to prevent any other modifications of the
1100 * existing list until all changes are completed, in other words
1101 * concurrent list_add_tail_lockless() calls should be protected
1102 * with a read lock, where write lock acts as a barrier which
1103 * makes sure all list_add_tail_lockless() calls are fully
1104 * completed.
1106 * Also an element can be locklessly added to the list only in one
1107 * direction i.e. either to the tail either to the head, otherwise
1108 * concurrent access will corrupt the list.
1110 * Returns %false if element has been already added to the list, %true
1111 * otherwise.
1113 static inline bool list_add_tail_lockless(struct list_head *new,
1114 struct list_head *head)
1116 struct list_head *prev;
1119 * This is simple 'new->next = head' operation, but cmpxchg()
1120 * is used in order to detect that same element has been just
1121 * added to the list from another CPU: the winner observes
1122 * new->next == new.
1124 if (cmpxchg(&new->next, new, head) != new)
1125 return false;
1128 * Initially ->next of a new element must be updated with the head
1129 * (we are inserting to the tail) and only then pointers are atomically
1130 * exchanged. XCHG guarantees memory ordering, thus ->next should be
1131 * updated before pointers are actually swapped and pointers are
1132 * swapped before prev->next is updated.
1135 prev = xchg(&head->prev, new);
1138 * It is safe to modify prev->next and new->prev, because a new element
1139 * is added only to the tail and new->next is updated before XCHG.
1142 prev->next = new;
1143 new->prev = prev;
1145 return true;
1149 * Chains a new epi entry to the tail of the ep->ovflist in a lockless way,
1150 * i.e. multiple CPUs are allowed to call this function concurrently.
1152 * Returns %false if epi element has been already chained, %true otherwise.
1154 static inline bool chain_epi_lockless(struct epitem *epi)
1156 struct eventpoll *ep = epi->ep;
1158 /* Check that the same epi has not been just chained from another CPU */
1159 if (cmpxchg(&epi->next, EP_UNACTIVE_PTR, NULL) != EP_UNACTIVE_PTR)
1160 return false;
1162 /* Atomically exchange tail */
1163 epi->next = xchg(&ep->ovflist, epi);
1165 return true;
1169 * This is the callback that is passed to the wait queue wakeup
1170 * mechanism. It is called by the stored file descriptors when they
1171 * have events to report.
1173 * This callback takes a read lock in order not to content with concurrent
1174 * events from another file descriptors, thus all modifications to ->rdllist
1175 * or ->ovflist are lockless. Read lock is paired with the write lock from
1176 * ep_scan_ready_list(), which stops all list modifications and guarantees
1177 * that lists state is seen correctly.
1179 * Another thing worth to mention is that ep_poll_callback() can be called
1180 * concurrently for the same @epi from different CPUs if poll table was inited
1181 * with several wait queues entries. Plural wakeup from different CPUs of a
1182 * single wait queue is serialized by wq.lock, but the case when multiple wait
1183 * queues are used should be detected accordingly. This is detected using
1184 * cmpxchg() operation.
1186 static int ep_poll_callback(wait_queue_entry_t *wait, unsigned mode, int sync, void *key)
1188 int pwake = 0;
1189 struct epitem *epi = ep_item_from_wait(wait);
1190 struct eventpoll *ep = epi->ep;
1191 __poll_t pollflags = key_to_poll(key);
1192 unsigned long flags;
1193 int ewake = 0;
1195 read_lock_irqsave(&ep->lock, flags);
1197 ep_set_busy_poll_napi_id(epi);
1200 * If the event mask does not contain any poll(2) event, we consider the
1201 * descriptor to be disabled. This condition is likely the effect of the
1202 * EPOLLONESHOT bit that disables the descriptor when an event is received,
1203 * until the next EPOLL_CTL_MOD will be issued.
1205 if (!(epi->event.events & ~EP_PRIVATE_BITS))
1206 goto out_unlock;
1209 * Check the events coming with the callback. At this stage, not
1210 * every device reports the events in the "key" parameter of the
1211 * callback. We need to be able to handle both cases here, hence the
1212 * test for "key" != NULL before the event match test.
1214 if (pollflags && !(pollflags & epi->event.events))
1215 goto out_unlock;
1218 * If we are transferring events to userspace, we can hold no locks
1219 * (because we're accessing user memory, and because of linux f_op->poll()
1220 * semantics). All the events that happen during that period of time are
1221 * chained in ep->ovflist and requeued later on.
1223 if (READ_ONCE(ep->ovflist) != EP_UNACTIVE_PTR) {
1224 if (epi->next == EP_UNACTIVE_PTR &&
1225 chain_epi_lockless(epi))
1226 ep_pm_stay_awake_rcu(epi);
1227 goto out_unlock;
1230 /* If this file is already in the ready list we exit soon */
1231 if (!ep_is_linked(epi) &&
1232 list_add_tail_lockless(&epi->rdllink, &ep->rdllist)) {
1233 ep_pm_stay_awake_rcu(epi);
1237 * Wake up ( if active ) both the eventpoll wait list and the ->poll()
1238 * wait list.
1240 if (waitqueue_active(&ep->wq)) {
1241 if ((epi->event.events & EPOLLEXCLUSIVE) &&
1242 !(pollflags & POLLFREE)) {
1243 switch (pollflags & EPOLLINOUT_BITS) {
1244 case EPOLLIN:
1245 if (epi->event.events & EPOLLIN)
1246 ewake = 1;
1247 break;
1248 case EPOLLOUT:
1249 if (epi->event.events & EPOLLOUT)
1250 ewake = 1;
1251 break;
1252 case 0:
1253 ewake = 1;
1254 break;
1257 wake_up(&ep->wq);
1259 if (waitqueue_active(&ep->poll_wait))
1260 pwake++;
1262 out_unlock:
1263 read_unlock_irqrestore(&ep->lock, flags);
1265 /* We have to call this outside the lock */
1266 if (pwake)
1267 ep_poll_safewake(&ep->poll_wait);
1269 if (!(epi->event.events & EPOLLEXCLUSIVE))
1270 ewake = 1;
1272 if (pollflags & POLLFREE) {
1274 * If we race with ep_remove_wait_queue() it can miss
1275 * ->whead = NULL and do another remove_wait_queue() after
1276 * us, so we can't use __remove_wait_queue().
1278 list_del_init(&wait->entry);
1280 * ->whead != NULL protects us from the race with ep_free()
1281 * or ep_remove(), ep_remove_wait_queue() takes whead->lock
1282 * held by the caller. Once we nullify it, nothing protects
1283 * ep/epi or even wait.
1285 smp_store_release(&ep_pwq_from_wait(wait)->whead, NULL);
1288 return ewake;
1292 * This is the callback that is used to add our wait queue to the
1293 * target file wakeup lists.
1295 static void ep_ptable_queue_proc(struct file *file, wait_queue_head_t *whead,
1296 poll_table *pt)
1298 struct epitem *epi = ep_item_from_epqueue(pt);
1299 struct eppoll_entry *pwq;
1301 if (epi->nwait >= 0 && (pwq = kmem_cache_alloc(pwq_cache, GFP_KERNEL))) {
1302 init_waitqueue_func_entry(&pwq->wait, ep_poll_callback);
1303 pwq->whead = whead;
1304 pwq->base = epi;
1305 if (epi->event.events & EPOLLEXCLUSIVE)
1306 add_wait_queue_exclusive(whead, &pwq->wait);
1307 else
1308 add_wait_queue(whead, &pwq->wait);
1309 list_add_tail(&pwq->llink, &epi->pwqlist);
1310 epi->nwait++;
1311 } else {
1312 /* We have to signal that an error occurred */
1313 epi->nwait = -1;
1317 static void ep_rbtree_insert(struct eventpoll *ep, struct epitem *epi)
1319 int kcmp;
1320 struct rb_node **p = &ep->rbr.rb_root.rb_node, *parent = NULL;
1321 struct epitem *epic;
1322 bool leftmost = true;
1324 while (*p) {
1325 parent = *p;
1326 epic = rb_entry(parent, struct epitem, rbn);
1327 kcmp = ep_cmp_ffd(&epi->ffd, &epic->ffd);
1328 if (kcmp > 0) {
1329 p = &parent->rb_right;
1330 leftmost = false;
1331 } else
1332 p = &parent->rb_left;
1334 rb_link_node(&epi->rbn, parent, p);
1335 rb_insert_color_cached(&epi->rbn, &ep->rbr, leftmost);
1340 #define PATH_ARR_SIZE 5
1342 * These are the number paths of length 1 to 5, that we are allowing to emanate
1343 * from a single file of interest. For example, we allow 1000 paths of length
1344 * 1, to emanate from each file of interest. This essentially represents the
1345 * potential wakeup paths, which need to be limited in order to avoid massive
1346 * uncontrolled wakeup storms. The common use case should be a single ep which
1347 * is connected to n file sources. In this case each file source has 1 path
1348 * of length 1. Thus, the numbers below should be more than sufficient. These
1349 * path limits are enforced during an EPOLL_CTL_ADD operation, since a modify
1350 * and delete can't add additional paths. Protected by the epmutex.
1352 static const int path_limits[PATH_ARR_SIZE] = { 1000, 500, 100, 50, 10 };
1353 static int path_count[PATH_ARR_SIZE];
1355 static int path_count_inc(int nests)
1357 /* Allow an arbitrary number of depth 1 paths */
1358 if (nests == 0)
1359 return 0;
1361 if (++path_count[nests] > path_limits[nests])
1362 return -1;
1363 return 0;
1366 static void path_count_init(void)
1368 int i;
1370 for (i = 0; i < PATH_ARR_SIZE; i++)
1371 path_count[i] = 0;
1374 static int reverse_path_check_proc(void *priv, void *cookie, int call_nests)
1376 int error = 0;
1377 struct file *file = priv;
1378 struct file *child_file;
1379 struct epitem *epi;
1381 /* CTL_DEL can remove links here, but that can't increase our count */
1382 rcu_read_lock();
1383 list_for_each_entry_rcu(epi, &file->f_ep_links, fllink) {
1384 child_file = epi->ep->file;
1385 if (is_file_epoll(child_file)) {
1386 if (list_empty(&child_file->f_ep_links)) {
1387 if (path_count_inc(call_nests)) {
1388 error = -1;
1389 break;
1391 } else {
1392 error = ep_call_nested(&poll_loop_ncalls,
1393 reverse_path_check_proc,
1394 child_file, child_file,
1395 current);
1397 if (error != 0)
1398 break;
1399 } else {
1400 printk(KERN_ERR "reverse_path_check_proc: "
1401 "file is not an ep!\n");
1404 rcu_read_unlock();
1405 return error;
1409 * reverse_path_check - The tfile_check_list is list of file *, which have
1410 * links that are proposed to be newly added. We need to
1411 * make sure that those added links don't add too many
1412 * paths such that we will spend all our time waking up
1413 * eventpoll objects.
1415 * Returns: Returns zero if the proposed links don't create too many paths,
1416 * -1 otherwise.
1418 static int reverse_path_check(void)
1420 int error = 0;
1421 struct file *current_file;
1423 /* let's call this for all tfiles */
1424 list_for_each_entry(current_file, &tfile_check_list, f_tfile_llink) {
1425 path_count_init();
1426 error = ep_call_nested(&poll_loop_ncalls,
1427 reverse_path_check_proc, current_file,
1428 current_file, current);
1429 if (error)
1430 break;
1432 return error;
1435 static int ep_create_wakeup_source(struct epitem *epi)
1437 const char *name;
1438 struct wakeup_source *ws;
1440 if (!epi->ep->ws) {
1441 epi->ep->ws = wakeup_source_register(NULL, "eventpoll");
1442 if (!epi->ep->ws)
1443 return -ENOMEM;
1446 name = epi->ffd.file->f_path.dentry->d_name.name;
1447 ws = wakeup_source_register(NULL, name);
1449 if (!ws)
1450 return -ENOMEM;
1451 rcu_assign_pointer(epi->ws, ws);
1453 return 0;
1456 /* rare code path, only used when EPOLL_CTL_MOD removes a wakeup source */
1457 static noinline void ep_destroy_wakeup_source(struct epitem *epi)
1459 struct wakeup_source *ws = ep_wakeup_source(epi);
1461 RCU_INIT_POINTER(epi->ws, NULL);
1464 * wait for ep_pm_stay_awake_rcu to finish, synchronize_rcu is
1465 * used internally by wakeup_source_remove, too (called by
1466 * wakeup_source_unregister), so we cannot use call_rcu
1468 synchronize_rcu();
1469 wakeup_source_unregister(ws);
1473 * Must be called with "mtx" held.
1475 static int ep_insert(struct eventpoll *ep, const struct epoll_event *event,
1476 struct file *tfile, int fd, int full_check)
1478 int error, pwake = 0;
1479 __poll_t revents;
1480 long user_watches;
1481 struct epitem *epi;
1482 struct ep_pqueue epq;
1484 lockdep_assert_irqs_enabled();
1486 user_watches = atomic_long_read(&ep->user->epoll_watches);
1487 if (unlikely(user_watches >= max_user_watches))
1488 return -ENOSPC;
1489 if (!(epi = kmem_cache_alloc(epi_cache, GFP_KERNEL)))
1490 return -ENOMEM;
1492 /* Item initialization follow here ... */
1493 INIT_LIST_HEAD(&epi->rdllink);
1494 INIT_LIST_HEAD(&epi->fllink);
1495 INIT_LIST_HEAD(&epi->pwqlist);
1496 epi->ep = ep;
1497 ep_set_ffd(&epi->ffd, tfile, fd);
1498 epi->event = *event;
1499 epi->nwait = 0;
1500 epi->next = EP_UNACTIVE_PTR;
1501 if (epi->event.events & EPOLLWAKEUP) {
1502 error = ep_create_wakeup_source(epi);
1503 if (error)
1504 goto error_create_wakeup_source;
1505 } else {
1506 RCU_INIT_POINTER(epi->ws, NULL);
1509 /* Initialize the poll table using the queue callback */
1510 epq.epi = epi;
1511 init_poll_funcptr(&epq.pt, ep_ptable_queue_proc);
1514 * Attach the item to the poll hooks and get current event bits.
1515 * We can safely use the file* here because its usage count has
1516 * been increased by the caller of this function. Note that after
1517 * this operation completes, the poll callback can start hitting
1518 * the new item.
1520 revents = ep_item_poll(epi, &epq.pt, 1);
1523 * We have to check if something went wrong during the poll wait queue
1524 * install process. Namely an allocation for a wait queue failed due
1525 * high memory pressure.
1527 error = -ENOMEM;
1528 if (epi->nwait < 0)
1529 goto error_unregister;
1531 /* Add the current item to the list of active epoll hook for this file */
1532 spin_lock(&tfile->f_lock);
1533 list_add_tail_rcu(&epi->fllink, &tfile->f_ep_links);
1534 spin_unlock(&tfile->f_lock);
1537 * Add the current item to the RB tree. All RB tree operations are
1538 * protected by "mtx", and ep_insert() is called with "mtx" held.
1540 ep_rbtree_insert(ep, epi);
1542 /* now check if we've created too many backpaths */
1543 error = -EINVAL;
1544 if (full_check && reverse_path_check())
1545 goto error_remove_epi;
1547 /* We have to drop the new item inside our item list to keep track of it */
1548 write_lock_irq(&ep->lock);
1550 /* record NAPI ID of new item if present */
1551 ep_set_busy_poll_napi_id(epi);
1553 /* If the file is already "ready" we drop it inside the ready list */
1554 if (revents && !ep_is_linked(epi)) {
1555 list_add_tail(&epi->rdllink, &ep->rdllist);
1556 ep_pm_stay_awake(epi);
1558 /* Notify waiting tasks that events are available */
1559 if (waitqueue_active(&ep->wq))
1560 wake_up(&ep->wq);
1561 if (waitqueue_active(&ep->poll_wait))
1562 pwake++;
1565 write_unlock_irq(&ep->lock);
1567 atomic_long_inc(&ep->user->epoll_watches);
1569 /* We have to call this outside the lock */
1570 if (pwake)
1571 ep_poll_safewake(&ep->poll_wait);
1573 return 0;
1575 error_remove_epi:
1576 spin_lock(&tfile->f_lock);
1577 list_del_rcu(&epi->fllink);
1578 spin_unlock(&tfile->f_lock);
1580 rb_erase_cached(&epi->rbn, &ep->rbr);
1582 error_unregister:
1583 ep_unregister_pollwait(ep, epi);
1586 * We need to do this because an event could have been arrived on some
1587 * allocated wait queue. Note that we don't care about the ep->ovflist
1588 * list, since that is used/cleaned only inside a section bound by "mtx".
1589 * And ep_insert() is called with "mtx" held.
1591 write_lock_irq(&ep->lock);
1592 if (ep_is_linked(epi))
1593 list_del_init(&epi->rdllink);
1594 write_unlock_irq(&ep->lock);
1596 wakeup_source_unregister(ep_wakeup_source(epi));
1598 error_create_wakeup_source:
1599 kmem_cache_free(epi_cache, epi);
1601 return error;
1605 * Modify the interest event mask by dropping an event if the new mask
1606 * has a match in the current file status. Must be called with "mtx" held.
1608 static int ep_modify(struct eventpoll *ep, struct epitem *epi,
1609 const struct epoll_event *event)
1611 int pwake = 0;
1612 poll_table pt;
1614 lockdep_assert_irqs_enabled();
1616 init_poll_funcptr(&pt, NULL);
1619 * Set the new event interest mask before calling f_op->poll();
1620 * otherwise we might miss an event that happens between the
1621 * f_op->poll() call and the new event set registering.
1623 epi->event.events = event->events; /* need barrier below */
1624 epi->event.data = event->data; /* protected by mtx */
1625 if (epi->event.events & EPOLLWAKEUP) {
1626 if (!ep_has_wakeup_source(epi))
1627 ep_create_wakeup_source(epi);
1628 } else if (ep_has_wakeup_source(epi)) {
1629 ep_destroy_wakeup_source(epi);
1633 * The following barrier has two effects:
1635 * 1) Flush epi changes above to other CPUs. This ensures
1636 * we do not miss events from ep_poll_callback if an
1637 * event occurs immediately after we call f_op->poll().
1638 * We need this because we did not take ep->lock while
1639 * changing epi above (but ep_poll_callback does take
1640 * ep->lock).
1642 * 2) We also need to ensure we do not miss _past_ events
1643 * when calling f_op->poll(). This barrier also
1644 * pairs with the barrier in wq_has_sleeper (see
1645 * comments for wq_has_sleeper).
1647 * This barrier will now guarantee ep_poll_callback or f_op->poll
1648 * (or both) will notice the readiness of an item.
1650 smp_mb();
1653 * Get current event bits. We can safely use the file* here because
1654 * its usage count has been increased by the caller of this function.
1655 * If the item is "hot" and it is not registered inside the ready
1656 * list, push it inside.
1658 if (ep_item_poll(epi, &pt, 1)) {
1659 write_lock_irq(&ep->lock);
1660 if (!ep_is_linked(epi)) {
1661 list_add_tail(&epi->rdllink, &ep->rdllist);
1662 ep_pm_stay_awake(epi);
1664 /* Notify waiting tasks that events are available */
1665 if (waitqueue_active(&ep->wq))
1666 wake_up(&ep->wq);
1667 if (waitqueue_active(&ep->poll_wait))
1668 pwake++;
1670 write_unlock_irq(&ep->lock);
1673 /* We have to call this outside the lock */
1674 if (pwake)
1675 ep_poll_safewake(&ep->poll_wait);
1677 return 0;
1680 static __poll_t ep_send_events_proc(struct eventpoll *ep, struct list_head *head,
1681 void *priv)
1683 struct ep_send_events_data *esed = priv;
1684 __poll_t revents;
1685 struct epitem *epi, *tmp;
1686 struct epoll_event __user *uevent = esed->events;
1687 struct wakeup_source *ws;
1688 poll_table pt;
1690 init_poll_funcptr(&pt, NULL);
1691 esed->res = 0;
1694 * We can loop without lock because we are passed a task private list.
1695 * Items cannot vanish during the loop because ep_scan_ready_list() is
1696 * holding "mtx" during this call.
1698 lockdep_assert_held(&ep->mtx);
1700 list_for_each_entry_safe(epi, tmp, head, rdllink) {
1701 if (esed->res >= esed->maxevents)
1702 break;
1705 * Activate ep->ws before deactivating epi->ws to prevent
1706 * triggering auto-suspend here (in case we reactive epi->ws
1707 * below).
1709 * This could be rearranged to delay the deactivation of epi->ws
1710 * instead, but then epi->ws would temporarily be out of sync
1711 * with ep_is_linked().
1713 ws = ep_wakeup_source(epi);
1714 if (ws) {
1715 if (ws->active)
1716 __pm_stay_awake(ep->ws);
1717 __pm_relax(ws);
1720 list_del_init(&epi->rdllink);
1723 * If the event mask intersect the caller-requested one,
1724 * deliver the event to userspace. Again, ep_scan_ready_list()
1725 * is holding ep->mtx, so no operations coming from userspace
1726 * can change the item.
1728 revents = ep_item_poll(epi, &pt, 1);
1729 if (!revents)
1730 continue;
1732 if (__put_user(revents, &uevent->events) ||
1733 __put_user(epi->event.data, &uevent->data)) {
1734 list_add(&epi->rdllink, head);
1735 ep_pm_stay_awake(epi);
1736 if (!esed->res)
1737 esed->res = -EFAULT;
1738 return 0;
1740 esed->res++;
1741 uevent++;
1742 if (epi->event.events & EPOLLONESHOT)
1743 epi->event.events &= EP_PRIVATE_BITS;
1744 else if (!(epi->event.events & EPOLLET)) {
1746 * If this file has been added with Level
1747 * Trigger mode, we need to insert back inside
1748 * the ready list, so that the next call to
1749 * epoll_wait() will check again the events
1750 * availability. At this point, no one can insert
1751 * into ep->rdllist besides us. The epoll_ctl()
1752 * callers are locked out by
1753 * ep_scan_ready_list() holding "mtx" and the
1754 * poll callback will queue them in ep->ovflist.
1756 list_add_tail(&epi->rdllink, &ep->rdllist);
1757 ep_pm_stay_awake(epi);
1761 return 0;
1764 static int ep_send_events(struct eventpoll *ep,
1765 struct epoll_event __user *events, int maxevents)
1767 struct ep_send_events_data esed;
1769 esed.maxevents = maxevents;
1770 esed.events = events;
1772 ep_scan_ready_list(ep, ep_send_events_proc, &esed, 0, false);
1773 return esed.res;
1776 static inline struct timespec64 ep_set_mstimeout(long ms)
1778 struct timespec64 now, ts = {
1779 .tv_sec = ms / MSEC_PER_SEC,
1780 .tv_nsec = NSEC_PER_MSEC * (ms % MSEC_PER_SEC),
1783 ktime_get_ts64(&now);
1784 return timespec64_add_safe(now, ts);
1788 * ep_poll - Retrieves ready events, and delivers them to the caller supplied
1789 * event buffer.
1791 * @ep: Pointer to the eventpoll context.
1792 * @events: Pointer to the userspace buffer where the ready events should be
1793 * stored.
1794 * @maxevents: Size (in terms of number of events) of the caller event buffer.
1795 * @timeout: Maximum timeout for the ready events fetch operation, in
1796 * milliseconds. If the @timeout is zero, the function will not block,
1797 * while if the @timeout is less than zero, the function will block
1798 * until at least one event has been retrieved (or an error
1799 * occurred).
1801 * Returns: Returns the number of ready events which have been fetched, or an
1802 * error code, in case of error.
1804 static int ep_poll(struct eventpoll *ep, struct epoll_event __user *events,
1805 int maxevents, long timeout)
1807 int res = 0, eavail, timed_out = 0;
1808 u64 slack = 0;
1809 bool waiter = false;
1810 wait_queue_entry_t wait;
1811 ktime_t expires, *to = NULL;
1813 lockdep_assert_irqs_enabled();
1815 if (timeout > 0) {
1816 struct timespec64 end_time = ep_set_mstimeout(timeout);
1818 slack = select_estimate_accuracy(&end_time);
1819 to = &expires;
1820 *to = timespec64_to_ktime(end_time);
1821 } else if (timeout == 0) {
1823 * Avoid the unnecessary trip to the wait queue loop, if the
1824 * caller specified a non blocking operation. We still need
1825 * lock because we could race and not see an epi being added
1826 * to the ready list while in irq callback. Thus incorrectly
1827 * returning 0 back to userspace.
1829 timed_out = 1;
1831 write_lock_irq(&ep->lock);
1832 eavail = ep_events_available(ep);
1833 write_unlock_irq(&ep->lock);
1835 goto send_events;
1838 fetch_events:
1840 if (!ep_events_available(ep))
1841 ep_busy_loop(ep, timed_out);
1843 eavail = ep_events_available(ep);
1844 if (eavail)
1845 goto send_events;
1848 * Busy poll timed out. Drop NAPI ID for now, we can add
1849 * it back in when we have moved a socket with a valid NAPI
1850 * ID onto the ready list.
1852 ep_reset_busy_poll_napi_id(ep);
1855 * We don't have any available event to return to the caller. We need
1856 * to sleep here, and we will be woken by ep_poll_callback() when events
1857 * become available.
1859 if (!waiter) {
1860 waiter = true;
1861 init_waitqueue_entry(&wait, current);
1863 write_lock_irq(&ep->lock);
1864 __add_wait_queue_exclusive(&ep->wq, &wait);
1865 write_unlock_irq(&ep->lock);
1868 for (;;) {
1870 * We don't want to sleep if the ep_poll_callback() sends us
1871 * a wakeup in between. That's why we set the task state
1872 * to TASK_INTERRUPTIBLE before doing the checks.
1874 set_current_state(TASK_INTERRUPTIBLE);
1876 * Always short-circuit for fatal signals to allow
1877 * threads to make a timely exit without the chance of
1878 * finding more events available and fetching
1879 * repeatedly.
1881 if (fatal_signal_pending(current)) {
1882 res = -EINTR;
1883 break;
1886 eavail = ep_events_available(ep);
1887 if (eavail)
1888 break;
1889 if (signal_pending(current)) {
1890 res = -EINTR;
1891 break;
1894 if (!schedule_hrtimeout_range(to, slack, HRTIMER_MODE_ABS)) {
1895 timed_out = 1;
1896 break;
1900 __set_current_state(TASK_RUNNING);
1902 send_events:
1904 * Try to transfer events to user space. In case we get 0 events and
1905 * there's still timeout left over, we go trying again in search of
1906 * more luck.
1908 if (!res && eavail &&
1909 !(res = ep_send_events(ep, events, maxevents)) && !timed_out)
1910 goto fetch_events;
1912 if (waiter) {
1913 write_lock_irq(&ep->lock);
1914 __remove_wait_queue(&ep->wq, &wait);
1915 write_unlock_irq(&ep->lock);
1918 return res;
1922 * ep_loop_check_proc - Callback function to be passed to the @ep_call_nested()
1923 * API, to verify that adding an epoll file inside another
1924 * epoll structure, does not violate the constraints, in
1925 * terms of closed loops, or too deep chains (which can
1926 * result in excessive stack usage).
1928 * @priv: Pointer to the epoll file to be currently checked.
1929 * @cookie: Original cookie for this call. This is the top-of-the-chain epoll
1930 * data structure pointer.
1931 * @call_nests: Current dept of the @ep_call_nested() call stack.
1933 * Returns: Returns zero if adding the epoll @file inside current epoll
1934 * structure @ep does not violate the constraints, or -1 otherwise.
1936 static int ep_loop_check_proc(void *priv, void *cookie, int call_nests)
1938 int error = 0;
1939 struct file *file = priv;
1940 struct eventpoll *ep = file->private_data;
1941 struct eventpoll *ep_tovisit;
1942 struct rb_node *rbp;
1943 struct epitem *epi;
1945 mutex_lock_nested(&ep->mtx, call_nests + 1);
1946 ep->visited = 1;
1947 list_add(&ep->visited_list_link, &visited_list);
1948 for (rbp = rb_first_cached(&ep->rbr); rbp; rbp = rb_next(rbp)) {
1949 epi = rb_entry(rbp, struct epitem, rbn);
1950 if (unlikely(is_file_epoll(epi->ffd.file))) {
1951 ep_tovisit = epi->ffd.file->private_data;
1952 if (ep_tovisit->visited)
1953 continue;
1954 error = ep_call_nested(&poll_loop_ncalls,
1955 ep_loop_check_proc, epi->ffd.file,
1956 ep_tovisit, current);
1957 if (error != 0)
1958 break;
1959 } else {
1961 * If we've reached a file that is not associated with
1962 * an ep, then we need to check if the newly added
1963 * links are going to add too many wakeup paths. We do
1964 * this by adding it to the tfile_check_list, if it's
1965 * not already there, and calling reverse_path_check()
1966 * during ep_insert().
1968 if (list_empty(&epi->ffd.file->f_tfile_llink))
1969 list_add(&epi->ffd.file->f_tfile_llink,
1970 &tfile_check_list);
1973 mutex_unlock(&ep->mtx);
1975 return error;
1979 * ep_loop_check - Performs a check to verify that adding an epoll file (@file)
1980 * another epoll file (represented by @ep) does not create
1981 * closed loops or too deep chains.
1983 * @ep: Pointer to the epoll private data structure.
1984 * @file: Pointer to the epoll file to be checked.
1986 * Returns: Returns zero if adding the epoll @file inside current epoll
1987 * structure @ep does not violate the constraints, or -1 otherwise.
1989 static int ep_loop_check(struct eventpoll *ep, struct file *file)
1991 int ret;
1992 struct eventpoll *ep_cur, *ep_next;
1994 ret = ep_call_nested(&poll_loop_ncalls,
1995 ep_loop_check_proc, file, ep, current);
1996 /* clear visited list */
1997 list_for_each_entry_safe(ep_cur, ep_next, &visited_list,
1998 visited_list_link) {
1999 ep_cur->visited = 0;
2000 list_del(&ep_cur->visited_list_link);
2002 return ret;
2005 static void clear_tfile_check_list(void)
2007 struct file *file;
2009 /* first clear the tfile_check_list */
2010 while (!list_empty(&tfile_check_list)) {
2011 file = list_first_entry(&tfile_check_list, struct file,
2012 f_tfile_llink);
2013 list_del_init(&file->f_tfile_llink);
2015 INIT_LIST_HEAD(&tfile_check_list);
2019 * Open an eventpoll file descriptor.
2021 static int do_epoll_create(int flags)
2023 int error, fd;
2024 struct eventpoll *ep = NULL;
2025 struct file *file;
2027 /* Check the EPOLL_* constant for consistency. */
2028 BUILD_BUG_ON(EPOLL_CLOEXEC != O_CLOEXEC);
2030 if (flags & ~EPOLL_CLOEXEC)
2031 return -EINVAL;
2033 * Create the internal data structure ("struct eventpoll").
2035 error = ep_alloc(&ep);
2036 if (error < 0)
2037 return error;
2039 * Creates all the items needed to setup an eventpoll file. That is,
2040 * a file structure and a free file descriptor.
2042 fd = get_unused_fd_flags(O_RDWR | (flags & O_CLOEXEC));
2043 if (fd < 0) {
2044 error = fd;
2045 goto out_free_ep;
2047 file = anon_inode_getfile("[eventpoll]", &eventpoll_fops, ep,
2048 O_RDWR | (flags & O_CLOEXEC));
2049 if (IS_ERR(file)) {
2050 error = PTR_ERR(file);
2051 goto out_free_fd;
2053 ep->file = file;
2054 fd_install(fd, file);
2055 return fd;
2057 out_free_fd:
2058 put_unused_fd(fd);
2059 out_free_ep:
2060 ep_free(ep);
2061 return error;
2064 SYSCALL_DEFINE1(epoll_create1, int, flags)
2066 return do_epoll_create(flags);
2069 SYSCALL_DEFINE1(epoll_create, int, size)
2071 if (size <= 0)
2072 return -EINVAL;
2074 return do_epoll_create(0);
2078 * The following function implements the controller interface for
2079 * the eventpoll file that enables the insertion/removal/change of
2080 * file descriptors inside the interest set.
2082 SYSCALL_DEFINE4(epoll_ctl, int, epfd, int, op, int, fd,
2083 struct epoll_event __user *, event)
2085 int error;
2086 int full_check = 0;
2087 struct fd f, tf;
2088 struct eventpoll *ep;
2089 struct epitem *epi;
2090 struct epoll_event epds;
2091 struct eventpoll *tep = NULL;
2093 error = -EFAULT;
2094 if (ep_op_has_event(op) &&
2095 copy_from_user(&epds, event, sizeof(struct epoll_event)))
2096 goto error_return;
2098 error = -EBADF;
2099 f = fdget(epfd);
2100 if (!f.file)
2101 goto error_return;
2103 /* Get the "struct file *" for the target file */
2104 tf = fdget(fd);
2105 if (!tf.file)
2106 goto error_fput;
2108 /* The target file descriptor must support poll */
2109 error = -EPERM;
2110 if (!file_can_poll(tf.file))
2111 goto error_tgt_fput;
2113 /* Check if EPOLLWAKEUP is allowed */
2114 if (ep_op_has_event(op))
2115 ep_take_care_of_epollwakeup(&epds);
2118 * We have to check that the file structure underneath the file descriptor
2119 * the user passed to us _is_ an eventpoll file. And also we do not permit
2120 * adding an epoll file descriptor inside itself.
2122 error = -EINVAL;
2123 if (f.file == tf.file || !is_file_epoll(f.file))
2124 goto error_tgt_fput;
2127 * epoll adds to the wakeup queue at EPOLL_CTL_ADD time only,
2128 * so EPOLLEXCLUSIVE is not allowed for a EPOLL_CTL_MOD operation.
2129 * Also, we do not currently supported nested exclusive wakeups.
2131 if (ep_op_has_event(op) && (epds.events & EPOLLEXCLUSIVE)) {
2132 if (op == EPOLL_CTL_MOD)
2133 goto error_tgt_fput;
2134 if (op == EPOLL_CTL_ADD && (is_file_epoll(tf.file) ||
2135 (epds.events & ~EPOLLEXCLUSIVE_OK_BITS)))
2136 goto error_tgt_fput;
2140 * At this point it is safe to assume that the "private_data" contains
2141 * our own data structure.
2143 ep = f.file->private_data;
2146 * When we insert an epoll file descriptor, inside another epoll file
2147 * descriptor, there is the change of creating closed loops, which are
2148 * better be handled here, than in more critical paths. While we are
2149 * checking for loops we also determine the list of files reachable
2150 * and hang them on the tfile_check_list, so we can check that we
2151 * haven't created too many possible wakeup paths.
2153 * We do not need to take the global 'epumutex' on EPOLL_CTL_ADD when
2154 * the epoll file descriptor is attaching directly to a wakeup source,
2155 * unless the epoll file descriptor is nested. The purpose of taking the
2156 * 'epmutex' on add is to prevent complex toplogies such as loops and
2157 * deep wakeup paths from forming in parallel through multiple
2158 * EPOLL_CTL_ADD operations.
2160 mutex_lock_nested(&ep->mtx, 0);
2161 if (op == EPOLL_CTL_ADD) {
2162 if (!list_empty(&f.file->f_ep_links) ||
2163 is_file_epoll(tf.file)) {
2164 full_check = 1;
2165 mutex_unlock(&ep->mtx);
2166 mutex_lock(&epmutex);
2167 if (is_file_epoll(tf.file)) {
2168 error = -ELOOP;
2169 if (ep_loop_check(ep, tf.file) != 0) {
2170 clear_tfile_check_list();
2171 goto error_tgt_fput;
2173 } else
2174 list_add(&tf.file->f_tfile_llink,
2175 &tfile_check_list);
2176 mutex_lock_nested(&ep->mtx, 0);
2177 if (is_file_epoll(tf.file)) {
2178 tep = tf.file->private_data;
2179 mutex_lock_nested(&tep->mtx, 1);
2185 * Try to lookup the file inside our RB tree, Since we grabbed "mtx"
2186 * above, we can be sure to be able to use the item looked up by
2187 * ep_find() till we release the mutex.
2189 epi = ep_find(ep, tf.file, fd);
2191 error = -EINVAL;
2192 switch (op) {
2193 case EPOLL_CTL_ADD:
2194 if (!epi) {
2195 epds.events |= EPOLLERR | EPOLLHUP;
2196 error = ep_insert(ep, &epds, tf.file, fd, full_check);
2197 } else
2198 error = -EEXIST;
2199 if (full_check)
2200 clear_tfile_check_list();
2201 break;
2202 case EPOLL_CTL_DEL:
2203 if (epi)
2204 error = ep_remove(ep, epi);
2205 else
2206 error = -ENOENT;
2207 break;
2208 case EPOLL_CTL_MOD:
2209 if (epi) {
2210 if (!(epi->event.events & EPOLLEXCLUSIVE)) {
2211 epds.events |= EPOLLERR | EPOLLHUP;
2212 error = ep_modify(ep, epi, &epds);
2214 } else
2215 error = -ENOENT;
2216 break;
2218 if (tep != NULL)
2219 mutex_unlock(&tep->mtx);
2220 mutex_unlock(&ep->mtx);
2222 error_tgt_fput:
2223 if (full_check)
2224 mutex_unlock(&epmutex);
2226 fdput(tf);
2227 error_fput:
2228 fdput(f);
2229 error_return:
2231 return error;
2235 * Implement the event wait interface for the eventpoll file. It is the kernel
2236 * part of the user space epoll_wait(2).
2238 static int do_epoll_wait(int epfd, struct epoll_event __user *events,
2239 int maxevents, int timeout)
2241 int error;
2242 struct fd f;
2243 struct eventpoll *ep;
2245 /* The maximum number of event must be greater than zero */
2246 if (maxevents <= 0 || maxevents > EP_MAX_EVENTS)
2247 return -EINVAL;
2249 /* Verify that the area passed by the user is writeable */
2250 if (!access_ok(events, maxevents * sizeof(struct epoll_event)))
2251 return -EFAULT;
2253 /* Get the "struct file *" for the eventpoll file */
2254 f = fdget(epfd);
2255 if (!f.file)
2256 return -EBADF;
2259 * We have to check that the file structure underneath the fd
2260 * the user passed to us _is_ an eventpoll file.
2262 error = -EINVAL;
2263 if (!is_file_epoll(f.file))
2264 goto error_fput;
2267 * At this point it is safe to assume that the "private_data" contains
2268 * our own data structure.
2270 ep = f.file->private_data;
2272 /* Time to fish for events ... */
2273 error = ep_poll(ep, events, maxevents, timeout);
2275 error_fput:
2276 fdput(f);
2277 return error;
2280 SYSCALL_DEFINE4(epoll_wait, int, epfd, struct epoll_event __user *, events,
2281 int, maxevents, int, timeout)
2283 return do_epoll_wait(epfd, events, maxevents, timeout);
2287 * Implement the event wait interface for the eventpoll file. It is the kernel
2288 * part of the user space epoll_pwait(2).
2290 SYSCALL_DEFINE6(epoll_pwait, int, epfd, struct epoll_event __user *, events,
2291 int, maxevents, int, timeout, const sigset_t __user *, sigmask,
2292 size_t, sigsetsize)
2294 int error;
2297 * If the caller wants a certain signal mask to be set during the wait,
2298 * we apply it here.
2300 error = set_user_sigmask(sigmask, sigsetsize);
2301 if (error)
2302 return error;
2304 error = do_epoll_wait(epfd, events, maxevents, timeout);
2305 restore_saved_sigmask_unless(error == -EINTR);
2307 return error;
2310 #ifdef CONFIG_COMPAT
2311 COMPAT_SYSCALL_DEFINE6(epoll_pwait, int, epfd,
2312 struct epoll_event __user *, events,
2313 int, maxevents, int, timeout,
2314 const compat_sigset_t __user *, sigmask,
2315 compat_size_t, sigsetsize)
2317 long err;
2320 * If the caller wants a certain signal mask to be set during the wait,
2321 * we apply it here.
2323 err = set_compat_user_sigmask(sigmask, sigsetsize);
2324 if (err)
2325 return err;
2327 err = do_epoll_wait(epfd, events, maxevents, timeout);
2328 restore_saved_sigmask_unless(err == -EINTR);
2330 return err;
2332 #endif
2334 static int __init eventpoll_init(void)
2336 struct sysinfo si;
2338 si_meminfo(&si);
2340 * Allows top 4% of lomem to be allocated for epoll watches (per user).
2342 max_user_watches = (((si.totalram - si.totalhigh) / 25) << PAGE_SHIFT) /
2343 EP_ITEM_COST;
2344 BUG_ON(max_user_watches < 0);
2347 * Initialize the structure used to perform epoll file descriptor
2348 * inclusion loops checks.
2350 ep_nested_calls_init(&poll_loop_ncalls);
2353 * We can have many thousands of epitems, so prevent this from
2354 * using an extra cache line on 64-bit (and smaller) CPUs
2356 BUILD_BUG_ON(sizeof(void *) <= 8 && sizeof(struct epitem) > 128);
2358 /* Allocates slab cache used to allocate "struct epitem" items */
2359 epi_cache = kmem_cache_create("eventpoll_epi", sizeof(struct epitem),
2360 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC|SLAB_ACCOUNT, NULL);
2362 /* Allocates slab cache used to allocate "struct eppoll_entry" */
2363 pwq_cache = kmem_cache_create("eventpoll_pwq",
2364 sizeof(struct eppoll_entry), 0, SLAB_PANIC|SLAB_ACCOUNT, NULL);
2366 return 0;
2368 fs_initcall(eventpoll_init);