mm: numa: Do not mark PTEs pte_numa when splitting huge pages
[linux/fpc-iii.git] / fs / f2fs / data.c
blobf8cf619edb5fc3f3b6035fb3786b4b08937e3ca5
1 /*
2 * fs/f2fs/data.c
4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/fs.h>
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
22 #include "f2fs.h"
23 #include "node.h"
24 #include "segment.h"
25 #include <trace/events/f2fs.h>
27 static void f2fs_read_end_io(struct bio *bio, int err)
29 struct bio_vec *bvec;
30 int i;
32 bio_for_each_segment_all(bvec, bio, i) {
33 struct page *page = bvec->bv_page;
35 if (!err) {
36 SetPageUptodate(page);
37 } else {
38 ClearPageUptodate(page);
39 SetPageError(page);
41 unlock_page(page);
43 bio_put(bio);
46 static void f2fs_write_end_io(struct bio *bio, int err)
48 struct f2fs_sb_info *sbi = bio->bi_private;
49 struct bio_vec *bvec;
50 int i;
52 bio_for_each_segment_all(bvec, bio, i) {
53 struct page *page = bvec->bv_page;
55 if (unlikely(err)) {
56 SetPageError(page);
57 set_bit(AS_EIO, &page->mapping->flags);
58 f2fs_stop_checkpoint(sbi);
60 end_page_writeback(page);
61 dec_page_count(sbi, F2FS_WRITEBACK);
64 if (sbi->wait_io) {
65 complete(sbi->wait_io);
66 sbi->wait_io = NULL;
69 if (!get_pages(sbi, F2FS_WRITEBACK) &&
70 !list_empty(&sbi->cp_wait.task_list))
71 wake_up(&sbi->cp_wait);
73 bio_put(bio);
77 * Low-level block read/write IO operations.
79 static struct bio *__bio_alloc(struct f2fs_sb_info *sbi, block_t blk_addr,
80 int npages, bool is_read)
82 struct bio *bio;
84 /* No failure on bio allocation */
85 bio = bio_alloc(GFP_NOIO, npages);
87 bio->bi_bdev = sbi->sb->s_bdev;
88 bio->bi_iter.bi_sector = SECTOR_FROM_BLOCK(sbi, blk_addr);
89 bio->bi_end_io = is_read ? f2fs_read_end_io : f2fs_write_end_io;
90 bio->bi_private = sbi;
92 return bio;
95 static void __submit_merged_bio(struct f2fs_bio_info *io)
97 struct f2fs_io_info *fio = &io->fio;
98 int rw;
100 if (!io->bio)
101 return;
103 rw = fio->rw;
105 if (is_read_io(rw)) {
106 trace_f2fs_submit_read_bio(io->sbi->sb, rw,
107 fio->type, io->bio);
108 submit_bio(rw, io->bio);
109 } else {
110 trace_f2fs_submit_write_bio(io->sbi->sb, rw,
111 fio->type, io->bio);
113 * META_FLUSH is only from the checkpoint procedure, and we
114 * should wait this metadata bio for FS consistency.
116 if (fio->type == META_FLUSH) {
117 DECLARE_COMPLETION_ONSTACK(wait);
118 io->sbi->wait_io = &wait;
119 submit_bio(rw, io->bio);
120 wait_for_completion(&wait);
121 } else {
122 submit_bio(rw, io->bio);
126 io->bio = NULL;
129 void f2fs_submit_merged_bio(struct f2fs_sb_info *sbi,
130 enum page_type type, int rw)
132 enum page_type btype = PAGE_TYPE_OF_BIO(type);
133 struct f2fs_bio_info *io;
135 io = is_read_io(rw) ? &sbi->read_io : &sbi->write_io[btype];
137 down_write(&io->io_rwsem);
139 /* change META to META_FLUSH in the checkpoint procedure */
140 if (type >= META_FLUSH) {
141 io->fio.type = META_FLUSH;
142 io->fio.rw = WRITE_FLUSH_FUA | REQ_META | REQ_PRIO;
144 __submit_merged_bio(io);
145 up_write(&io->io_rwsem);
149 * Fill the locked page with data located in the block address.
150 * Return unlocked page.
152 int f2fs_submit_page_bio(struct f2fs_sb_info *sbi, struct page *page,
153 block_t blk_addr, int rw)
155 struct bio *bio;
157 trace_f2fs_submit_page_bio(page, blk_addr, rw);
159 /* Allocate a new bio */
160 bio = __bio_alloc(sbi, blk_addr, 1, is_read_io(rw));
162 if (bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) < PAGE_CACHE_SIZE) {
163 bio_put(bio);
164 f2fs_put_page(page, 1);
165 return -EFAULT;
168 submit_bio(rw, bio);
169 return 0;
172 void f2fs_submit_page_mbio(struct f2fs_sb_info *sbi, struct page *page,
173 block_t blk_addr, struct f2fs_io_info *fio)
175 enum page_type btype = PAGE_TYPE_OF_BIO(fio->type);
176 struct f2fs_bio_info *io;
177 bool is_read = is_read_io(fio->rw);
179 io = is_read ? &sbi->read_io : &sbi->write_io[btype];
181 verify_block_addr(sbi, blk_addr);
183 down_write(&io->io_rwsem);
185 if (!is_read)
186 inc_page_count(sbi, F2FS_WRITEBACK);
188 if (io->bio && (io->last_block_in_bio != blk_addr - 1 ||
189 io->fio.rw != fio->rw))
190 __submit_merged_bio(io);
191 alloc_new:
192 if (io->bio == NULL) {
193 int bio_blocks = MAX_BIO_BLOCKS(max_hw_blocks(sbi));
195 io->bio = __bio_alloc(sbi, blk_addr, bio_blocks, is_read);
196 io->fio = *fio;
199 if (bio_add_page(io->bio, page, PAGE_CACHE_SIZE, 0) <
200 PAGE_CACHE_SIZE) {
201 __submit_merged_bio(io);
202 goto alloc_new;
205 io->last_block_in_bio = blk_addr;
207 up_write(&io->io_rwsem);
208 trace_f2fs_submit_page_mbio(page, fio->rw, fio->type, blk_addr);
212 * Lock ordering for the change of data block address:
213 * ->data_page
214 * ->node_page
215 * update block addresses in the node page
217 static void __set_data_blkaddr(struct dnode_of_data *dn, block_t new_addr)
219 struct f2fs_node *rn;
220 __le32 *addr_array;
221 struct page *node_page = dn->node_page;
222 unsigned int ofs_in_node = dn->ofs_in_node;
224 f2fs_wait_on_page_writeback(node_page, NODE);
226 rn = F2FS_NODE(node_page);
228 /* Get physical address of data block */
229 addr_array = blkaddr_in_node(rn);
230 addr_array[ofs_in_node] = cpu_to_le32(new_addr);
231 set_page_dirty(node_page);
234 int reserve_new_block(struct dnode_of_data *dn)
236 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
238 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
239 return -EPERM;
240 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
241 return -ENOSPC;
243 trace_f2fs_reserve_new_block(dn->inode, dn->nid, dn->ofs_in_node);
245 __set_data_blkaddr(dn, NEW_ADDR);
246 dn->data_blkaddr = NEW_ADDR;
247 mark_inode_dirty(dn->inode);
248 sync_inode_page(dn);
249 return 0;
252 int f2fs_reserve_block(struct dnode_of_data *dn, pgoff_t index)
254 bool need_put = dn->inode_page ? false : true;
255 int err;
257 /* if inode_page exists, index should be zero */
258 f2fs_bug_on(!need_put && index);
260 err = get_dnode_of_data(dn, index, ALLOC_NODE);
261 if (err)
262 return err;
264 if (dn->data_blkaddr == NULL_ADDR)
265 err = reserve_new_block(dn);
266 if (err || need_put)
267 f2fs_put_dnode(dn);
268 return err;
271 static int check_extent_cache(struct inode *inode, pgoff_t pgofs,
272 struct buffer_head *bh_result)
274 struct f2fs_inode_info *fi = F2FS_I(inode);
275 pgoff_t start_fofs, end_fofs;
276 block_t start_blkaddr;
278 if (is_inode_flag_set(fi, FI_NO_EXTENT))
279 return 0;
281 read_lock(&fi->ext.ext_lock);
282 if (fi->ext.len == 0) {
283 read_unlock(&fi->ext.ext_lock);
284 return 0;
287 stat_inc_total_hit(inode->i_sb);
289 start_fofs = fi->ext.fofs;
290 end_fofs = fi->ext.fofs + fi->ext.len - 1;
291 start_blkaddr = fi->ext.blk_addr;
293 if (pgofs >= start_fofs && pgofs <= end_fofs) {
294 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
295 size_t count;
297 clear_buffer_new(bh_result);
298 map_bh(bh_result, inode->i_sb,
299 start_blkaddr + pgofs - start_fofs);
300 count = end_fofs - pgofs + 1;
301 if (count < (UINT_MAX >> blkbits))
302 bh_result->b_size = (count << blkbits);
303 else
304 bh_result->b_size = UINT_MAX;
306 stat_inc_read_hit(inode->i_sb);
307 read_unlock(&fi->ext.ext_lock);
308 return 1;
310 read_unlock(&fi->ext.ext_lock);
311 return 0;
314 void update_extent_cache(block_t blk_addr, struct dnode_of_data *dn)
316 struct f2fs_inode_info *fi = F2FS_I(dn->inode);
317 pgoff_t fofs, start_fofs, end_fofs;
318 block_t start_blkaddr, end_blkaddr;
319 int need_update = true;
321 f2fs_bug_on(blk_addr == NEW_ADDR);
322 fofs = start_bidx_of_node(ofs_of_node(dn->node_page), fi) +
323 dn->ofs_in_node;
325 /* Update the page address in the parent node */
326 __set_data_blkaddr(dn, blk_addr);
328 if (is_inode_flag_set(fi, FI_NO_EXTENT))
329 return;
331 write_lock(&fi->ext.ext_lock);
333 start_fofs = fi->ext.fofs;
334 end_fofs = fi->ext.fofs + fi->ext.len - 1;
335 start_blkaddr = fi->ext.blk_addr;
336 end_blkaddr = fi->ext.blk_addr + fi->ext.len - 1;
338 /* Drop and initialize the matched extent */
339 if (fi->ext.len == 1 && fofs == start_fofs)
340 fi->ext.len = 0;
342 /* Initial extent */
343 if (fi->ext.len == 0) {
344 if (blk_addr != NULL_ADDR) {
345 fi->ext.fofs = fofs;
346 fi->ext.blk_addr = blk_addr;
347 fi->ext.len = 1;
349 goto end_update;
352 /* Front merge */
353 if (fofs == start_fofs - 1 && blk_addr == start_blkaddr - 1) {
354 fi->ext.fofs--;
355 fi->ext.blk_addr--;
356 fi->ext.len++;
357 goto end_update;
360 /* Back merge */
361 if (fofs == end_fofs + 1 && blk_addr == end_blkaddr + 1) {
362 fi->ext.len++;
363 goto end_update;
366 /* Split the existing extent */
367 if (fi->ext.len > 1 &&
368 fofs >= start_fofs && fofs <= end_fofs) {
369 if ((end_fofs - fofs) < (fi->ext.len >> 1)) {
370 fi->ext.len = fofs - start_fofs;
371 } else {
372 fi->ext.fofs = fofs + 1;
373 fi->ext.blk_addr = start_blkaddr +
374 fofs - start_fofs + 1;
375 fi->ext.len -= fofs - start_fofs + 1;
377 } else {
378 need_update = false;
381 /* Finally, if the extent is very fragmented, let's drop the cache. */
382 if (fi->ext.len < F2FS_MIN_EXTENT_LEN) {
383 fi->ext.len = 0;
384 set_inode_flag(fi, FI_NO_EXTENT);
385 need_update = true;
387 end_update:
388 write_unlock(&fi->ext.ext_lock);
389 if (need_update)
390 sync_inode_page(dn);
391 return;
394 struct page *find_data_page(struct inode *inode, pgoff_t index, bool sync)
396 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
397 struct address_space *mapping = inode->i_mapping;
398 struct dnode_of_data dn;
399 struct page *page;
400 int err;
402 page = find_get_page(mapping, index);
403 if (page && PageUptodate(page))
404 return page;
405 f2fs_put_page(page, 0);
407 set_new_dnode(&dn, inode, NULL, NULL, 0);
408 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
409 if (err)
410 return ERR_PTR(err);
411 f2fs_put_dnode(&dn);
413 if (dn.data_blkaddr == NULL_ADDR)
414 return ERR_PTR(-ENOENT);
416 /* By fallocate(), there is no cached page, but with NEW_ADDR */
417 if (unlikely(dn.data_blkaddr == NEW_ADDR))
418 return ERR_PTR(-EINVAL);
420 page = grab_cache_page(mapping, index);
421 if (!page)
422 return ERR_PTR(-ENOMEM);
424 if (PageUptodate(page)) {
425 unlock_page(page);
426 return page;
429 err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
430 sync ? READ_SYNC : READA);
431 if (err)
432 return ERR_PTR(err);
434 if (sync) {
435 wait_on_page_locked(page);
436 if (unlikely(!PageUptodate(page))) {
437 f2fs_put_page(page, 0);
438 return ERR_PTR(-EIO);
441 return page;
445 * If it tries to access a hole, return an error.
446 * Because, the callers, functions in dir.c and GC, should be able to know
447 * whether this page exists or not.
449 struct page *get_lock_data_page(struct inode *inode, pgoff_t index)
451 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
452 struct address_space *mapping = inode->i_mapping;
453 struct dnode_of_data dn;
454 struct page *page;
455 int err;
457 repeat:
458 page = grab_cache_page(mapping, index);
459 if (!page)
460 return ERR_PTR(-ENOMEM);
462 set_new_dnode(&dn, inode, NULL, NULL, 0);
463 err = get_dnode_of_data(&dn, index, LOOKUP_NODE);
464 if (err) {
465 f2fs_put_page(page, 1);
466 return ERR_PTR(err);
468 f2fs_put_dnode(&dn);
470 if (unlikely(dn.data_blkaddr == NULL_ADDR)) {
471 f2fs_put_page(page, 1);
472 return ERR_PTR(-ENOENT);
475 if (PageUptodate(page))
476 return page;
479 * A new dentry page is allocated but not able to be written, since its
480 * new inode page couldn't be allocated due to -ENOSPC.
481 * In such the case, its blkaddr can be remained as NEW_ADDR.
482 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
484 if (dn.data_blkaddr == NEW_ADDR) {
485 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
486 SetPageUptodate(page);
487 return page;
490 err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr, READ_SYNC);
491 if (err)
492 return ERR_PTR(err);
494 lock_page(page);
495 if (unlikely(!PageUptodate(page))) {
496 f2fs_put_page(page, 1);
497 return ERR_PTR(-EIO);
499 if (unlikely(page->mapping != mapping)) {
500 f2fs_put_page(page, 1);
501 goto repeat;
503 return page;
507 * Caller ensures that this data page is never allocated.
508 * A new zero-filled data page is allocated in the page cache.
510 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
511 * f2fs_unlock_op().
512 * Note that, ipage is set only by make_empty_dir.
514 struct page *get_new_data_page(struct inode *inode,
515 struct page *ipage, pgoff_t index, bool new_i_size)
517 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
518 struct address_space *mapping = inode->i_mapping;
519 struct page *page;
520 struct dnode_of_data dn;
521 int err;
523 set_new_dnode(&dn, inode, ipage, NULL, 0);
524 err = f2fs_reserve_block(&dn, index);
525 if (err)
526 return ERR_PTR(err);
527 repeat:
528 page = grab_cache_page(mapping, index);
529 if (!page) {
530 err = -ENOMEM;
531 goto put_err;
534 if (PageUptodate(page))
535 return page;
537 if (dn.data_blkaddr == NEW_ADDR) {
538 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
539 SetPageUptodate(page);
540 } else {
541 err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
542 READ_SYNC);
543 if (err)
544 goto put_err;
546 lock_page(page);
547 if (unlikely(!PageUptodate(page))) {
548 f2fs_put_page(page, 1);
549 err = -EIO;
550 goto put_err;
552 if (unlikely(page->mapping != mapping)) {
553 f2fs_put_page(page, 1);
554 goto repeat;
558 if (new_i_size &&
559 i_size_read(inode) < ((index + 1) << PAGE_CACHE_SHIFT)) {
560 i_size_write(inode, ((index + 1) << PAGE_CACHE_SHIFT));
561 /* Only the directory inode sets new_i_size */
562 set_inode_flag(F2FS_I(inode), FI_UPDATE_DIR);
564 return page;
566 put_err:
567 f2fs_put_dnode(&dn);
568 return ERR_PTR(err);
571 static int __allocate_data_block(struct dnode_of_data *dn)
573 struct f2fs_sb_info *sbi = F2FS_SB(dn->inode->i_sb);
574 struct f2fs_summary sum;
575 block_t new_blkaddr;
576 struct node_info ni;
577 int type;
579 if (unlikely(is_inode_flag_set(F2FS_I(dn->inode), FI_NO_ALLOC)))
580 return -EPERM;
581 if (unlikely(!inc_valid_block_count(sbi, dn->inode, 1)))
582 return -ENOSPC;
584 __set_data_blkaddr(dn, NEW_ADDR);
585 dn->data_blkaddr = NEW_ADDR;
587 get_node_info(sbi, dn->nid, &ni);
588 set_summary(&sum, dn->nid, dn->ofs_in_node, ni.version);
590 type = CURSEG_WARM_DATA;
592 allocate_data_block(sbi, NULL, NULL_ADDR, &new_blkaddr, &sum, type);
594 /* direct IO doesn't use extent cache to maximize the performance */
595 set_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
596 update_extent_cache(new_blkaddr, dn);
597 clear_inode_flag(F2FS_I(dn->inode), FI_NO_EXTENT);
599 dn->data_blkaddr = new_blkaddr;
600 return 0;
604 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
605 * If original data blocks are allocated, then give them to blockdev.
606 * Otherwise,
607 * a. preallocate requested block addresses
608 * b. do not use extent cache for better performance
609 * c. give the block addresses to blockdev
611 static int __get_data_block(struct inode *inode, sector_t iblock,
612 struct buffer_head *bh_result, int create, bool fiemap)
614 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
615 unsigned int blkbits = inode->i_sb->s_blocksize_bits;
616 unsigned maxblocks = bh_result->b_size >> blkbits;
617 struct dnode_of_data dn;
618 int mode = create ? ALLOC_NODE : LOOKUP_NODE_RA;
619 pgoff_t pgofs, end_offset;
620 int err = 0, ofs = 1;
621 bool allocated = false;
623 /* Get the page offset from the block offset(iblock) */
624 pgofs = (pgoff_t)(iblock >> (PAGE_CACHE_SHIFT - blkbits));
626 if (check_extent_cache(inode, pgofs, bh_result))
627 goto out;
629 if (create)
630 f2fs_lock_op(sbi);
632 /* When reading holes, we need its node page */
633 set_new_dnode(&dn, inode, NULL, NULL, 0);
634 err = get_dnode_of_data(&dn, pgofs, mode);
635 if (err) {
636 if (err == -ENOENT)
637 err = 0;
638 goto unlock_out;
640 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
641 goto put_out;
643 if (dn.data_blkaddr != NULL_ADDR) {
644 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
645 } else if (create) {
646 err = __allocate_data_block(&dn);
647 if (err)
648 goto put_out;
649 allocated = true;
650 map_bh(bh_result, inode->i_sb, dn.data_blkaddr);
651 } else {
652 goto put_out;
655 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
656 bh_result->b_size = (((size_t)1) << blkbits);
657 dn.ofs_in_node++;
658 pgofs++;
660 get_next:
661 if (dn.ofs_in_node >= end_offset) {
662 if (allocated)
663 sync_inode_page(&dn);
664 allocated = false;
665 f2fs_put_dnode(&dn);
667 set_new_dnode(&dn, inode, NULL, NULL, 0);
668 err = get_dnode_of_data(&dn, pgofs, mode);
669 if (err) {
670 if (err == -ENOENT)
671 err = 0;
672 goto unlock_out;
674 if (dn.data_blkaddr == NEW_ADDR && !fiemap)
675 goto put_out;
677 end_offset = ADDRS_PER_PAGE(dn.node_page, F2FS_I(inode));
680 if (maxblocks > (bh_result->b_size >> blkbits)) {
681 block_t blkaddr = datablock_addr(dn.node_page, dn.ofs_in_node);
682 if (blkaddr == NULL_ADDR && create) {
683 err = __allocate_data_block(&dn);
684 if (err)
685 goto sync_out;
686 allocated = true;
687 blkaddr = dn.data_blkaddr;
689 /* Give more consecutive addresses for the read ahead */
690 if (blkaddr == (bh_result->b_blocknr + ofs)) {
691 ofs++;
692 dn.ofs_in_node++;
693 pgofs++;
694 bh_result->b_size += (((size_t)1) << blkbits);
695 goto get_next;
698 sync_out:
699 if (allocated)
700 sync_inode_page(&dn);
701 put_out:
702 f2fs_put_dnode(&dn);
703 unlock_out:
704 if (create)
705 f2fs_unlock_op(sbi);
706 out:
707 trace_f2fs_get_data_block(inode, iblock, bh_result, err);
708 return err;
711 static int get_data_block(struct inode *inode, sector_t iblock,
712 struct buffer_head *bh_result, int create)
714 return __get_data_block(inode, iblock, bh_result, create, false);
717 static int get_data_block_fiemap(struct inode *inode, sector_t iblock,
718 struct buffer_head *bh_result, int create)
720 return __get_data_block(inode, iblock, bh_result, create, true);
723 int f2fs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
724 u64 start, u64 len)
726 return generic_block_fiemap(inode, fieinfo,
727 start, len, get_data_block_fiemap);
730 static int f2fs_read_data_page(struct file *file, struct page *page)
732 struct inode *inode = page->mapping->host;
733 int ret;
735 trace_f2fs_readpage(page, DATA);
737 /* If the file has inline data, try to read it directlly */
738 if (f2fs_has_inline_data(inode))
739 ret = f2fs_read_inline_data(inode, page);
740 else
741 ret = mpage_readpage(page, get_data_block);
743 return ret;
746 static int f2fs_read_data_pages(struct file *file,
747 struct address_space *mapping,
748 struct list_head *pages, unsigned nr_pages)
750 struct inode *inode = file->f_mapping->host;
752 /* If the file has inline data, skip readpages */
753 if (f2fs_has_inline_data(inode))
754 return 0;
756 return mpage_readpages(mapping, pages, nr_pages, get_data_block);
759 int do_write_data_page(struct page *page, struct f2fs_io_info *fio)
761 struct inode *inode = page->mapping->host;
762 block_t old_blkaddr, new_blkaddr;
763 struct dnode_of_data dn;
764 int err = 0;
766 set_new_dnode(&dn, inode, NULL, NULL, 0);
767 err = get_dnode_of_data(&dn, page->index, LOOKUP_NODE);
768 if (err)
769 return err;
771 old_blkaddr = dn.data_blkaddr;
773 /* This page is already truncated */
774 if (old_blkaddr == NULL_ADDR)
775 goto out_writepage;
777 set_page_writeback(page);
780 * If current allocation needs SSR,
781 * it had better in-place writes for updated data.
783 if (unlikely(old_blkaddr != NEW_ADDR &&
784 !is_cold_data(page) &&
785 need_inplace_update(inode))) {
786 rewrite_data_page(page, old_blkaddr, fio);
787 } else {
788 write_data_page(page, &dn, &new_blkaddr, fio);
789 update_extent_cache(new_blkaddr, &dn);
791 out_writepage:
792 f2fs_put_dnode(&dn);
793 return err;
796 static int f2fs_write_data_page(struct page *page,
797 struct writeback_control *wbc)
799 struct inode *inode = page->mapping->host;
800 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
801 loff_t i_size = i_size_read(inode);
802 const pgoff_t end_index = ((unsigned long long) i_size)
803 >> PAGE_CACHE_SHIFT;
804 unsigned offset = 0;
805 bool need_balance_fs = false;
806 int err = 0;
807 struct f2fs_io_info fio = {
808 .type = DATA,
809 .rw = (wbc->sync_mode == WB_SYNC_ALL) ? WRITE_SYNC : WRITE,
812 trace_f2fs_writepage(page, DATA);
814 if (page->index < end_index)
815 goto write;
818 * If the offset is out-of-range of file size,
819 * this page does not have to be written to disk.
821 offset = i_size & (PAGE_CACHE_SIZE - 1);
822 if ((page->index >= end_index + 1) || !offset)
823 goto out;
825 zero_user_segment(page, offset, PAGE_CACHE_SIZE);
826 write:
827 if (unlikely(sbi->por_doing))
828 goto redirty_out;
830 /* Dentry blocks are controlled by checkpoint */
831 if (S_ISDIR(inode->i_mode)) {
832 err = do_write_data_page(page, &fio);
833 goto done;
836 if (!wbc->for_reclaim)
837 need_balance_fs = true;
838 else if (has_not_enough_free_secs(sbi, 0))
839 goto redirty_out;
841 f2fs_lock_op(sbi);
842 if (f2fs_has_inline_data(inode) || f2fs_may_inline(inode))
843 err = f2fs_write_inline_data(inode, page, offset);
844 else
845 err = do_write_data_page(page, &fio);
846 f2fs_unlock_op(sbi);
847 done:
848 if (err && err != -ENOENT)
849 goto redirty_out;
851 clear_cold_data(page);
852 out:
853 inode_dec_dirty_dents(inode);
854 unlock_page(page);
855 if (need_balance_fs)
856 f2fs_balance_fs(sbi);
857 if (wbc->for_reclaim)
858 f2fs_submit_merged_bio(sbi, DATA, WRITE);
859 return 0;
861 redirty_out:
862 redirty_page_for_writepage(wbc, page);
863 return AOP_WRITEPAGE_ACTIVATE;
866 static int __f2fs_writepage(struct page *page, struct writeback_control *wbc,
867 void *data)
869 struct address_space *mapping = data;
870 int ret = mapping->a_ops->writepage(page, wbc);
871 mapping_set_error(mapping, ret);
872 return ret;
875 static int f2fs_write_data_pages(struct address_space *mapping,
876 struct writeback_control *wbc)
878 struct inode *inode = mapping->host;
879 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
880 bool locked = false;
881 int ret;
882 long diff;
884 trace_f2fs_writepages(mapping->host, wbc, DATA);
886 /* deal with chardevs and other special file */
887 if (!mapping->a_ops->writepage)
888 return 0;
890 if (S_ISDIR(inode->i_mode) && wbc->sync_mode == WB_SYNC_NONE &&
891 get_dirty_dents(inode) < nr_pages_to_skip(sbi, DATA) &&
892 available_free_memory(sbi, DIRTY_DENTS))
893 goto skip_write;
895 diff = nr_pages_to_write(sbi, DATA, wbc);
897 if (!S_ISDIR(inode->i_mode)) {
898 mutex_lock(&sbi->writepages);
899 locked = true;
901 ret = write_cache_pages(mapping, wbc, __f2fs_writepage, mapping);
902 if (locked)
903 mutex_unlock(&sbi->writepages);
905 f2fs_submit_merged_bio(sbi, DATA, WRITE);
907 remove_dirty_dir_inode(inode);
909 wbc->nr_to_write = max((long)0, wbc->nr_to_write - diff);
910 return ret;
912 skip_write:
913 wbc->pages_skipped += get_dirty_dents(inode);
914 return 0;
917 static int f2fs_write_begin(struct file *file, struct address_space *mapping,
918 loff_t pos, unsigned len, unsigned flags,
919 struct page **pagep, void **fsdata)
921 struct inode *inode = mapping->host;
922 struct f2fs_sb_info *sbi = F2FS_SB(inode->i_sb);
923 struct page *page;
924 pgoff_t index = ((unsigned long long) pos) >> PAGE_CACHE_SHIFT;
925 struct dnode_of_data dn;
926 int err = 0;
928 trace_f2fs_write_begin(inode, pos, len, flags);
930 f2fs_balance_fs(sbi);
931 repeat:
932 err = f2fs_convert_inline_data(inode, pos + len);
933 if (err)
934 return err;
936 page = grab_cache_page_write_begin(mapping, index, flags);
937 if (!page)
938 return -ENOMEM;
940 /* to avoid latency during memory pressure */
941 unlock_page(page);
943 *pagep = page;
945 if (f2fs_has_inline_data(inode) && (pos + len) <= MAX_INLINE_DATA)
946 goto inline_data;
948 f2fs_lock_op(sbi);
949 set_new_dnode(&dn, inode, NULL, NULL, 0);
950 err = f2fs_reserve_block(&dn, index);
951 f2fs_unlock_op(sbi);
953 if (err) {
954 f2fs_put_page(page, 0);
955 return err;
957 inline_data:
958 lock_page(page);
959 if (unlikely(page->mapping != mapping)) {
960 f2fs_put_page(page, 1);
961 goto repeat;
964 f2fs_wait_on_page_writeback(page, DATA);
966 if ((len == PAGE_CACHE_SIZE) || PageUptodate(page))
967 return 0;
969 if ((pos & PAGE_CACHE_MASK) >= i_size_read(inode)) {
970 unsigned start = pos & (PAGE_CACHE_SIZE - 1);
971 unsigned end = start + len;
973 /* Reading beyond i_size is simple: memset to zero */
974 zero_user_segments(page, 0, start, end, PAGE_CACHE_SIZE);
975 goto out;
978 if (dn.data_blkaddr == NEW_ADDR) {
979 zero_user_segment(page, 0, PAGE_CACHE_SIZE);
980 } else {
981 if (f2fs_has_inline_data(inode)) {
982 err = f2fs_read_inline_data(inode, page);
983 if (err) {
984 page_cache_release(page);
985 return err;
987 } else {
988 err = f2fs_submit_page_bio(sbi, page, dn.data_blkaddr,
989 READ_SYNC);
990 if (err)
991 return err;
994 lock_page(page);
995 if (unlikely(!PageUptodate(page))) {
996 f2fs_put_page(page, 1);
997 return -EIO;
999 if (unlikely(page->mapping != mapping)) {
1000 f2fs_put_page(page, 1);
1001 goto repeat;
1004 out:
1005 SetPageUptodate(page);
1006 clear_cold_data(page);
1007 return 0;
1010 static int f2fs_write_end(struct file *file,
1011 struct address_space *mapping,
1012 loff_t pos, unsigned len, unsigned copied,
1013 struct page *page, void *fsdata)
1015 struct inode *inode = page->mapping->host;
1017 trace_f2fs_write_end(inode, pos, len, copied);
1019 SetPageUptodate(page);
1020 set_page_dirty(page);
1022 if (pos + copied > i_size_read(inode)) {
1023 i_size_write(inode, pos + copied);
1024 mark_inode_dirty(inode);
1025 update_inode_page(inode);
1028 f2fs_put_page(page, 1);
1029 return copied;
1032 static int check_direct_IO(struct inode *inode, int rw,
1033 struct iov_iter *iter, loff_t offset)
1035 unsigned blocksize_mask = inode->i_sb->s_blocksize - 1;
1037 if (rw == READ)
1038 return 0;
1040 if (offset & blocksize_mask)
1041 return -EINVAL;
1043 if (iov_iter_alignment(iter) & blocksize_mask)
1044 return -EINVAL;
1046 return 0;
1049 static ssize_t f2fs_direct_IO(int rw, struct kiocb *iocb,
1050 struct iov_iter *iter, loff_t offset)
1052 struct file *file = iocb->ki_filp;
1053 struct inode *inode = file->f_mapping->host;
1055 /* Let buffer I/O handle the inline data case. */
1056 if (f2fs_has_inline_data(inode))
1057 return 0;
1059 if (check_direct_IO(inode, rw, iter, offset))
1060 return 0;
1062 /* clear fsync mark to recover these blocks */
1063 fsync_mark_clear(F2FS_SB(inode->i_sb), inode->i_ino);
1065 return blockdev_direct_IO(rw, iocb, inode, iter, offset,
1066 get_data_block);
1069 static void f2fs_invalidate_data_page(struct page *page, unsigned int offset,
1070 unsigned int length)
1072 struct inode *inode = page->mapping->host;
1073 if (PageDirty(page))
1074 inode_dec_dirty_dents(inode);
1075 ClearPagePrivate(page);
1078 static int f2fs_release_data_page(struct page *page, gfp_t wait)
1080 ClearPagePrivate(page);
1081 return 1;
1084 static int f2fs_set_data_page_dirty(struct page *page)
1086 struct address_space *mapping = page->mapping;
1087 struct inode *inode = mapping->host;
1089 trace_f2fs_set_page_dirty(page, DATA);
1091 SetPageUptodate(page);
1092 mark_inode_dirty(inode);
1094 if (!PageDirty(page)) {
1095 __set_page_dirty_nobuffers(page);
1096 set_dirty_dir_page(inode, page);
1097 return 1;
1099 return 0;
1102 static sector_t f2fs_bmap(struct address_space *mapping, sector_t block)
1104 struct inode *inode = mapping->host;
1106 if (f2fs_has_inline_data(inode))
1107 return 0;
1109 return generic_block_bmap(mapping, block, get_data_block);
1112 const struct address_space_operations f2fs_dblock_aops = {
1113 .readpage = f2fs_read_data_page,
1114 .readpages = f2fs_read_data_pages,
1115 .writepage = f2fs_write_data_page,
1116 .writepages = f2fs_write_data_pages,
1117 .write_begin = f2fs_write_begin,
1118 .write_end = f2fs_write_end,
1119 .set_page_dirty = f2fs_set_data_page_dirty,
1120 .invalidatepage = f2fs_invalidate_data_page,
1121 .releasepage = f2fs_release_data_page,
1122 .direct_IO = f2fs_direct_IO,
1123 .bmap = f2fs_bmap,