4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
5 * http://www.samsung.com/
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
12 #include <linux/f2fs_fs.h>
13 #include <linux/buffer_head.h>
14 #include <linux/mpage.h>
15 #include <linux/aio.h>
16 #include <linux/writeback.h>
17 #include <linux/backing-dev.h>
18 #include <linux/blkdev.h>
19 #include <linux/bio.h>
20 #include <linux/prefetch.h>
25 #include <trace/events/f2fs.h>
27 static void f2fs_read_end_io(struct bio
*bio
, int err
)
32 bio_for_each_segment_all(bvec
, bio
, i
) {
33 struct page
*page
= bvec
->bv_page
;
36 SetPageUptodate(page
);
38 ClearPageUptodate(page
);
46 static void f2fs_write_end_io(struct bio
*bio
, int err
)
48 struct f2fs_sb_info
*sbi
= bio
->bi_private
;
52 bio_for_each_segment_all(bvec
, bio
, i
) {
53 struct page
*page
= bvec
->bv_page
;
57 set_bit(AS_EIO
, &page
->mapping
->flags
);
58 f2fs_stop_checkpoint(sbi
);
60 end_page_writeback(page
);
61 dec_page_count(sbi
, F2FS_WRITEBACK
);
65 complete(sbi
->wait_io
);
69 if (!get_pages(sbi
, F2FS_WRITEBACK
) &&
70 !list_empty(&sbi
->cp_wait
.task_list
))
71 wake_up(&sbi
->cp_wait
);
77 * Low-level block read/write IO operations.
79 static struct bio
*__bio_alloc(struct f2fs_sb_info
*sbi
, block_t blk_addr
,
80 int npages
, bool is_read
)
84 /* No failure on bio allocation */
85 bio
= bio_alloc(GFP_NOIO
, npages
);
87 bio
->bi_bdev
= sbi
->sb
->s_bdev
;
88 bio
->bi_iter
.bi_sector
= SECTOR_FROM_BLOCK(sbi
, blk_addr
);
89 bio
->bi_end_io
= is_read
? f2fs_read_end_io
: f2fs_write_end_io
;
90 bio
->bi_private
= sbi
;
95 static void __submit_merged_bio(struct f2fs_bio_info
*io
)
97 struct f2fs_io_info
*fio
= &io
->fio
;
105 if (is_read_io(rw
)) {
106 trace_f2fs_submit_read_bio(io
->sbi
->sb
, rw
,
108 submit_bio(rw
, io
->bio
);
110 trace_f2fs_submit_write_bio(io
->sbi
->sb
, rw
,
113 * META_FLUSH is only from the checkpoint procedure, and we
114 * should wait this metadata bio for FS consistency.
116 if (fio
->type
== META_FLUSH
) {
117 DECLARE_COMPLETION_ONSTACK(wait
);
118 io
->sbi
->wait_io
= &wait
;
119 submit_bio(rw
, io
->bio
);
120 wait_for_completion(&wait
);
122 submit_bio(rw
, io
->bio
);
129 void f2fs_submit_merged_bio(struct f2fs_sb_info
*sbi
,
130 enum page_type type
, int rw
)
132 enum page_type btype
= PAGE_TYPE_OF_BIO(type
);
133 struct f2fs_bio_info
*io
;
135 io
= is_read_io(rw
) ? &sbi
->read_io
: &sbi
->write_io
[btype
];
137 down_write(&io
->io_rwsem
);
139 /* change META to META_FLUSH in the checkpoint procedure */
140 if (type
>= META_FLUSH
) {
141 io
->fio
.type
= META_FLUSH
;
142 io
->fio
.rw
= WRITE_FLUSH_FUA
| REQ_META
| REQ_PRIO
;
144 __submit_merged_bio(io
);
145 up_write(&io
->io_rwsem
);
149 * Fill the locked page with data located in the block address.
150 * Return unlocked page.
152 int f2fs_submit_page_bio(struct f2fs_sb_info
*sbi
, struct page
*page
,
153 block_t blk_addr
, int rw
)
157 trace_f2fs_submit_page_bio(page
, blk_addr
, rw
);
159 /* Allocate a new bio */
160 bio
= __bio_alloc(sbi
, blk_addr
, 1, is_read_io(rw
));
162 if (bio_add_page(bio
, page
, PAGE_CACHE_SIZE
, 0) < PAGE_CACHE_SIZE
) {
164 f2fs_put_page(page
, 1);
172 void f2fs_submit_page_mbio(struct f2fs_sb_info
*sbi
, struct page
*page
,
173 block_t blk_addr
, struct f2fs_io_info
*fio
)
175 enum page_type btype
= PAGE_TYPE_OF_BIO(fio
->type
);
176 struct f2fs_bio_info
*io
;
177 bool is_read
= is_read_io(fio
->rw
);
179 io
= is_read
? &sbi
->read_io
: &sbi
->write_io
[btype
];
181 verify_block_addr(sbi
, blk_addr
);
183 down_write(&io
->io_rwsem
);
186 inc_page_count(sbi
, F2FS_WRITEBACK
);
188 if (io
->bio
&& (io
->last_block_in_bio
!= blk_addr
- 1 ||
189 io
->fio
.rw
!= fio
->rw
))
190 __submit_merged_bio(io
);
192 if (io
->bio
== NULL
) {
193 int bio_blocks
= MAX_BIO_BLOCKS(max_hw_blocks(sbi
));
195 io
->bio
= __bio_alloc(sbi
, blk_addr
, bio_blocks
, is_read
);
199 if (bio_add_page(io
->bio
, page
, PAGE_CACHE_SIZE
, 0) <
201 __submit_merged_bio(io
);
205 io
->last_block_in_bio
= blk_addr
;
207 up_write(&io
->io_rwsem
);
208 trace_f2fs_submit_page_mbio(page
, fio
->rw
, fio
->type
, blk_addr
);
212 * Lock ordering for the change of data block address:
215 * update block addresses in the node page
217 static void __set_data_blkaddr(struct dnode_of_data
*dn
, block_t new_addr
)
219 struct f2fs_node
*rn
;
221 struct page
*node_page
= dn
->node_page
;
222 unsigned int ofs_in_node
= dn
->ofs_in_node
;
224 f2fs_wait_on_page_writeback(node_page
, NODE
);
226 rn
= F2FS_NODE(node_page
);
228 /* Get physical address of data block */
229 addr_array
= blkaddr_in_node(rn
);
230 addr_array
[ofs_in_node
] = cpu_to_le32(new_addr
);
231 set_page_dirty(node_page
);
234 int reserve_new_block(struct dnode_of_data
*dn
)
236 struct f2fs_sb_info
*sbi
= F2FS_SB(dn
->inode
->i_sb
);
238 if (unlikely(is_inode_flag_set(F2FS_I(dn
->inode
), FI_NO_ALLOC
)))
240 if (unlikely(!inc_valid_block_count(sbi
, dn
->inode
, 1)))
243 trace_f2fs_reserve_new_block(dn
->inode
, dn
->nid
, dn
->ofs_in_node
);
245 __set_data_blkaddr(dn
, NEW_ADDR
);
246 dn
->data_blkaddr
= NEW_ADDR
;
247 mark_inode_dirty(dn
->inode
);
252 int f2fs_reserve_block(struct dnode_of_data
*dn
, pgoff_t index
)
254 bool need_put
= dn
->inode_page
? false : true;
257 /* if inode_page exists, index should be zero */
258 f2fs_bug_on(!need_put
&& index
);
260 err
= get_dnode_of_data(dn
, index
, ALLOC_NODE
);
264 if (dn
->data_blkaddr
== NULL_ADDR
)
265 err
= reserve_new_block(dn
);
271 static int check_extent_cache(struct inode
*inode
, pgoff_t pgofs
,
272 struct buffer_head
*bh_result
)
274 struct f2fs_inode_info
*fi
= F2FS_I(inode
);
275 pgoff_t start_fofs
, end_fofs
;
276 block_t start_blkaddr
;
278 if (is_inode_flag_set(fi
, FI_NO_EXTENT
))
281 read_lock(&fi
->ext
.ext_lock
);
282 if (fi
->ext
.len
== 0) {
283 read_unlock(&fi
->ext
.ext_lock
);
287 stat_inc_total_hit(inode
->i_sb
);
289 start_fofs
= fi
->ext
.fofs
;
290 end_fofs
= fi
->ext
.fofs
+ fi
->ext
.len
- 1;
291 start_blkaddr
= fi
->ext
.blk_addr
;
293 if (pgofs
>= start_fofs
&& pgofs
<= end_fofs
) {
294 unsigned int blkbits
= inode
->i_sb
->s_blocksize_bits
;
297 clear_buffer_new(bh_result
);
298 map_bh(bh_result
, inode
->i_sb
,
299 start_blkaddr
+ pgofs
- start_fofs
);
300 count
= end_fofs
- pgofs
+ 1;
301 if (count
< (UINT_MAX
>> blkbits
))
302 bh_result
->b_size
= (count
<< blkbits
);
304 bh_result
->b_size
= UINT_MAX
;
306 stat_inc_read_hit(inode
->i_sb
);
307 read_unlock(&fi
->ext
.ext_lock
);
310 read_unlock(&fi
->ext
.ext_lock
);
314 void update_extent_cache(block_t blk_addr
, struct dnode_of_data
*dn
)
316 struct f2fs_inode_info
*fi
= F2FS_I(dn
->inode
);
317 pgoff_t fofs
, start_fofs
, end_fofs
;
318 block_t start_blkaddr
, end_blkaddr
;
319 int need_update
= true;
321 f2fs_bug_on(blk_addr
== NEW_ADDR
);
322 fofs
= start_bidx_of_node(ofs_of_node(dn
->node_page
), fi
) +
325 /* Update the page address in the parent node */
326 __set_data_blkaddr(dn
, blk_addr
);
328 if (is_inode_flag_set(fi
, FI_NO_EXTENT
))
331 write_lock(&fi
->ext
.ext_lock
);
333 start_fofs
= fi
->ext
.fofs
;
334 end_fofs
= fi
->ext
.fofs
+ fi
->ext
.len
- 1;
335 start_blkaddr
= fi
->ext
.blk_addr
;
336 end_blkaddr
= fi
->ext
.blk_addr
+ fi
->ext
.len
- 1;
338 /* Drop and initialize the matched extent */
339 if (fi
->ext
.len
== 1 && fofs
== start_fofs
)
343 if (fi
->ext
.len
== 0) {
344 if (blk_addr
!= NULL_ADDR
) {
346 fi
->ext
.blk_addr
= blk_addr
;
353 if (fofs
== start_fofs
- 1 && blk_addr
== start_blkaddr
- 1) {
361 if (fofs
== end_fofs
+ 1 && blk_addr
== end_blkaddr
+ 1) {
366 /* Split the existing extent */
367 if (fi
->ext
.len
> 1 &&
368 fofs
>= start_fofs
&& fofs
<= end_fofs
) {
369 if ((end_fofs
- fofs
) < (fi
->ext
.len
>> 1)) {
370 fi
->ext
.len
= fofs
- start_fofs
;
372 fi
->ext
.fofs
= fofs
+ 1;
373 fi
->ext
.blk_addr
= start_blkaddr
+
374 fofs
- start_fofs
+ 1;
375 fi
->ext
.len
-= fofs
- start_fofs
+ 1;
381 /* Finally, if the extent is very fragmented, let's drop the cache. */
382 if (fi
->ext
.len
< F2FS_MIN_EXTENT_LEN
) {
384 set_inode_flag(fi
, FI_NO_EXTENT
);
388 write_unlock(&fi
->ext
.ext_lock
);
394 struct page
*find_data_page(struct inode
*inode
, pgoff_t index
, bool sync
)
396 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
397 struct address_space
*mapping
= inode
->i_mapping
;
398 struct dnode_of_data dn
;
402 page
= find_get_page(mapping
, index
);
403 if (page
&& PageUptodate(page
))
405 f2fs_put_page(page
, 0);
407 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
408 err
= get_dnode_of_data(&dn
, index
, LOOKUP_NODE
);
413 if (dn
.data_blkaddr
== NULL_ADDR
)
414 return ERR_PTR(-ENOENT
);
416 /* By fallocate(), there is no cached page, but with NEW_ADDR */
417 if (unlikely(dn
.data_blkaddr
== NEW_ADDR
))
418 return ERR_PTR(-EINVAL
);
420 page
= grab_cache_page(mapping
, index
);
422 return ERR_PTR(-ENOMEM
);
424 if (PageUptodate(page
)) {
429 err
= f2fs_submit_page_bio(sbi
, page
, dn
.data_blkaddr
,
430 sync
? READ_SYNC
: READA
);
435 wait_on_page_locked(page
);
436 if (unlikely(!PageUptodate(page
))) {
437 f2fs_put_page(page
, 0);
438 return ERR_PTR(-EIO
);
445 * If it tries to access a hole, return an error.
446 * Because, the callers, functions in dir.c and GC, should be able to know
447 * whether this page exists or not.
449 struct page
*get_lock_data_page(struct inode
*inode
, pgoff_t index
)
451 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
452 struct address_space
*mapping
= inode
->i_mapping
;
453 struct dnode_of_data dn
;
458 page
= grab_cache_page(mapping
, index
);
460 return ERR_PTR(-ENOMEM
);
462 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
463 err
= get_dnode_of_data(&dn
, index
, LOOKUP_NODE
);
465 f2fs_put_page(page
, 1);
470 if (unlikely(dn
.data_blkaddr
== NULL_ADDR
)) {
471 f2fs_put_page(page
, 1);
472 return ERR_PTR(-ENOENT
);
475 if (PageUptodate(page
))
479 * A new dentry page is allocated but not able to be written, since its
480 * new inode page couldn't be allocated due to -ENOSPC.
481 * In such the case, its blkaddr can be remained as NEW_ADDR.
482 * see, f2fs_add_link -> get_new_data_page -> init_inode_metadata.
484 if (dn
.data_blkaddr
== NEW_ADDR
) {
485 zero_user_segment(page
, 0, PAGE_CACHE_SIZE
);
486 SetPageUptodate(page
);
490 err
= f2fs_submit_page_bio(sbi
, page
, dn
.data_blkaddr
, READ_SYNC
);
495 if (unlikely(!PageUptodate(page
))) {
496 f2fs_put_page(page
, 1);
497 return ERR_PTR(-EIO
);
499 if (unlikely(page
->mapping
!= mapping
)) {
500 f2fs_put_page(page
, 1);
507 * Caller ensures that this data page is never allocated.
508 * A new zero-filled data page is allocated in the page cache.
510 * Also, caller should grab and release a rwsem by calling f2fs_lock_op() and
512 * Note that, ipage is set only by make_empty_dir.
514 struct page
*get_new_data_page(struct inode
*inode
,
515 struct page
*ipage
, pgoff_t index
, bool new_i_size
)
517 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
518 struct address_space
*mapping
= inode
->i_mapping
;
520 struct dnode_of_data dn
;
523 set_new_dnode(&dn
, inode
, ipage
, NULL
, 0);
524 err
= f2fs_reserve_block(&dn
, index
);
528 page
= grab_cache_page(mapping
, index
);
534 if (PageUptodate(page
))
537 if (dn
.data_blkaddr
== NEW_ADDR
) {
538 zero_user_segment(page
, 0, PAGE_CACHE_SIZE
);
539 SetPageUptodate(page
);
541 err
= f2fs_submit_page_bio(sbi
, page
, dn
.data_blkaddr
,
547 if (unlikely(!PageUptodate(page
))) {
548 f2fs_put_page(page
, 1);
552 if (unlikely(page
->mapping
!= mapping
)) {
553 f2fs_put_page(page
, 1);
559 i_size_read(inode
) < ((index
+ 1) << PAGE_CACHE_SHIFT
)) {
560 i_size_write(inode
, ((index
+ 1) << PAGE_CACHE_SHIFT
));
561 /* Only the directory inode sets new_i_size */
562 set_inode_flag(F2FS_I(inode
), FI_UPDATE_DIR
);
571 static int __allocate_data_block(struct dnode_of_data
*dn
)
573 struct f2fs_sb_info
*sbi
= F2FS_SB(dn
->inode
->i_sb
);
574 struct f2fs_summary sum
;
579 if (unlikely(is_inode_flag_set(F2FS_I(dn
->inode
), FI_NO_ALLOC
)))
581 if (unlikely(!inc_valid_block_count(sbi
, dn
->inode
, 1)))
584 __set_data_blkaddr(dn
, NEW_ADDR
);
585 dn
->data_blkaddr
= NEW_ADDR
;
587 get_node_info(sbi
, dn
->nid
, &ni
);
588 set_summary(&sum
, dn
->nid
, dn
->ofs_in_node
, ni
.version
);
590 type
= CURSEG_WARM_DATA
;
592 allocate_data_block(sbi
, NULL
, NULL_ADDR
, &new_blkaddr
, &sum
, type
);
594 /* direct IO doesn't use extent cache to maximize the performance */
595 set_inode_flag(F2FS_I(dn
->inode
), FI_NO_EXTENT
);
596 update_extent_cache(new_blkaddr
, dn
);
597 clear_inode_flag(F2FS_I(dn
->inode
), FI_NO_EXTENT
);
599 dn
->data_blkaddr
= new_blkaddr
;
604 * get_data_block() now supported readahead/bmap/rw direct_IO with mapped bh.
605 * If original data blocks are allocated, then give them to blockdev.
607 * a. preallocate requested block addresses
608 * b. do not use extent cache for better performance
609 * c. give the block addresses to blockdev
611 static int __get_data_block(struct inode
*inode
, sector_t iblock
,
612 struct buffer_head
*bh_result
, int create
, bool fiemap
)
614 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
615 unsigned int blkbits
= inode
->i_sb
->s_blocksize_bits
;
616 unsigned maxblocks
= bh_result
->b_size
>> blkbits
;
617 struct dnode_of_data dn
;
618 int mode
= create
? ALLOC_NODE
: LOOKUP_NODE_RA
;
619 pgoff_t pgofs
, end_offset
;
620 int err
= 0, ofs
= 1;
621 bool allocated
= false;
623 /* Get the page offset from the block offset(iblock) */
624 pgofs
= (pgoff_t
)(iblock
>> (PAGE_CACHE_SHIFT
- blkbits
));
626 if (check_extent_cache(inode
, pgofs
, bh_result
))
632 /* When reading holes, we need its node page */
633 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
634 err
= get_dnode_of_data(&dn
, pgofs
, mode
);
640 if (dn
.data_blkaddr
== NEW_ADDR
&& !fiemap
)
643 if (dn
.data_blkaddr
!= NULL_ADDR
) {
644 map_bh(bh_result
, inode
->i_sb
, dn
.data_blkaddr
);
646 err
= __allocate_data_block(&dn
);
650 map_bh(bh_result
, inode
->i_sb
, dn
.data_blkaddr
);
655 end_offset
= ADDRS_PER_PAGE(dn
.node_page
, F2FS_I(inode
));
656 bh_result
->b_size
= (((size_t)1) << blkbits
);
661 if (dn
.ofs_in_node
>= end_offset
) {
663 sync_inode_page(&dn
);
667 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
668 err
= get_dnode_of_data(&dn
, pgofs
, mode
);
674 if (dn
.data_blkaddr
== NEW_ADDR
&& !fiemap
)
677 end_offset
= ADDRS_PER_PAGE(dn
.node_page
, F2FS_I(inode
));
680 if (maxblocks
> (bh_result
->b_size
>> blkbits
)) {
681 block_t blkaddr
= datablock_addr(dn
.node_page
, dn
.ofs_in_node
);
682 if (blkaddr
== NULL_ADDR
&& create
) {
683 err
= __allocate_data_block(&dn
);
687 blkaddr
= dn
.data_blkaddr
;
689 /* Give more consecutive addresses for the read ahead */
690 if (blkaddr
== (bh_result
->b_blocknr
+ ofs
)) {
694 bh_result
->b_size
+= (((size_t)1) << blkbits
);
700 sync_inode_page(&dn
);
707 trace_f2fs_get_data_block(inode
, iblock
, bh_result
, err
);
711 static int get_data_block(struct inode
*inode
, sector_t iblock
,
712 struct buffer_head
*bh_result
, int create
)
714 return __get_data_block(inode
, iblock
, bh_result
, create
, false);
717 static int get_data_block_fiemap(struct inode
*inode
, sector_t iblock
,
718 struct buffer_head
*bh_result
, int create
)
720 return __get_data_block(inode
, iblock
, bh_result
, create
, true);
723 int f2fs_fiemap(struct inode
*inode
, struct fiemap_extent_info
*fieinfo
,
726 return generic_block_fiemap(inode
, fieinfo
,
727 start
, len
, get_data_block_fiemap
);
730 static int f2fs_read_data_page(struct file
*file
, struct page
*page
)
732 struct inode
*inode
= page
->mapping
->host
;
735 trace_f2fs_readpage(page
, DATA
);
737 /* If the file has inline data, try to read it directlly */
738 if (f2fs_has_inline_data(inode
))
739 ret
= f2fs_read_inline_data(inode
, page
);
741 ret
= mpage_readpage(page
, get_data_block
);
746 static int f2fs_read_data_pages(struct file
*file
,
747 struct address_space
*mapping
,
748 struct list_head
*pages
, unsigned nr_pages
)
750 struct inode
*inode
= file
->f_mapping
->host
;
752 /* If the file has inline data, skip readpages */
753 if (f2fs_has_inline_data(inode
))
756 return mpage_readpages(mapping
, pages
, nr_pages
, get_data_block
);
759 int do_write_data_page(struct page
*page
, struct f2fs_io_info
*fio
)
761 struct inode
*inode
= page
->mapping
->host
;
762 block_t old_blkaddr
, new_blkaddr
;
763 struct dnode_of_data dn
;
766 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
767 err
= get_dnode_of_data(&dn
, page
->index
, LOOKUP_NODE
);
771 old_blkaddr
= dn
.data_blkaddr
;
773 /* This page is already truncated */
774 if (old_blkaddr
== NULL_ADDR
)
777 set_page_writeback(page
);
780 * If current allocation needs SSR,
781 * it had better in-place writes for updated data.
783 if (unlikely(old_blkaddr
!= NEW_ADDR
&&
784 !is_cold_data(page
) &&
785 need_inplace_update(inode
))) {
786 rewrite_data_page(page
, old_blkaddr
, fio
);
788 write_data_page(page
, &dn
, &new_blkaddr
, fio
);
789 update_extent_cache(new_blkaddr
, &dn
);
796 static int f2fs_write_data_page(struct page
*page
,
797 struct writeback_control
*wbc
)
799 struct inode
*inode
= page
->mapping
->host
;
800 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
801 loff_t i_size
= i_size_read(inode
);
802 const pgoff_t end_index
= ((unsigned long long) i_size
)
805 bool need_balance_fs
= false;
807 struct f2fs_io_info fio
= {
809 .rw
= (wbc
->sync_mode
== WB_SYNC_ALL
) ? WRITE_SYNC
: WRITE
,
812 trace_f2fs_writepage(page
, DATA
);
814 if (page
->index
< end_index
)
818 * If the offset is out-of-range of file size,
819 * this page does not have to be written to disk.
821 offset
= i_size
& (PAGE_CACHE_SIZE
- 1);
822 if ((page
->index
>= end_index
+ 1) || !offset
)
825 zero_user_segment(page
, offset
, PAGE_CACHE_SIZE
);
827 if (unlikely(sbi
->por_doing
))
830 /* Dentry blocks are controlled by checkpoint */
831 if (S_ISDIR(inode
->i_mode
)) {
832 err
= do_write_data_page(page
, &fio
);
836 if (!wbc
->for_reclaim
)
837 need_balance_fs
= true;
838 else if (has_not_enough_free_secs(sbi
, 0))
842 if (f2fs_has_inline_data(inode
) || f2fs_may_inline(inode
))
843 err
= f2fs_write_inline_data(inode
, page
, offset
);
845 err
= do_write_data_page(page
, &fio
);
848 if (err
&& err
!= -ENOENT
)
851 clear_cold_data(page
);
853 inode_dec_dirty_dents(inode
);
856 f2fs_balance_fs(sbi
);
857 if (wbc
->for_reclaim
)
858 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
862 redirty_page_for_writepage(wbc
, page
);
863 return AOP_WRITEPAGE_ACTIVATE
;
866 static int __f2fs_writepage(struct page
*page
, struct writeback_control
*wbc
,
869 struct address_space
*mapping
= data
;
870 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
871 mapping_set_error(mapping
, ret
);
875 static int f2fs_write_data_pages(struct address_space
*mapping
,
876 struct writeback_control
*wbc
)
878 struct inode
*inode
= mapping
->host
;
879 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
884 trace_f2fs_writepages(mapping
->host
, wbc
, DATA
);
886 /* deal with chardevs and other special file */
887 if (!mapping
->a_ops
->writepage
)
890 if (S_ISDIR(inode
->i_mode
) && wbc
->sync_mode
== WB_SYNC_NONE
&&
891 get_dirty_dents(inode
) < nr_pages_to_skip(sbi
, DATA
) &&
892 available_free_memory(sbi
, DIRTY_DENTS
))
895 diff
= nr_pages_to_write(sbi
, DATA
, wbc
);
897 if (!S_ISDIR(inode
->i_mode
)) {
898 mutex_lock(&sbi
->writepages
);
901 ret
= write_cache_pages(mapping
, wbc
, __f2fs_writepage
, mapping
);
903 mutex_unlock(&sbi
->writepages
);
905 f2fs_submit_merged_bio(sbi
, DATA
, WRITE
);
907 remove_dirty_dir_inode(inode
);
909 wbc
->nr_to_write
= max((long)0, wbc
->nr_to_write
- diff
);
913 wbc
->pages_skipped
+= get_dirty_dents(inode
);
917 static int f2fs_write_begin(struct file
*file
, struct address_space
*mapping
,
918 loff_t pos
, unsigned len
, unsigned flags
,
919 struct page
**pagep
, void **fsdata
)
921 struct inode
*inode
= mapping
->host
;
922 struct f2fs_sb_info
*sbi
= F2FS_SB(inode
->i_sb
);
924 pgoff_t index
= ((unsigned long long) pos
) >> PAGE_CACHE_SHIFT
;
925 struct dnode_of_data dn
;
928 trace_f2fs_write_begin(inode
, pos
, len
, flags
);
930 f2fs_balance_fs(sbi
);
932 err
= f2fs_convert_inline_data(inode
, pos
+ len
);
936 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
940 /* to avoid latency during memory pressure */
945 if (f2fs_has_inline_data(inode
) && (pos
+ len
) <= MAX_INLINE_DATA
)
949 set_new_dnode(&dn
, inode
, NULL
, NULL
, 0);
950 err
= f2fs_reserve_block(&dn
, index
);
954 f2fs_put_page(page
, 0);
959 if (unlikely(page
->mapping
!= mapping
)) {
960 f2fs_put_page(page
, 1);
964 f2fs_wait_on_page_writeback(page
, DATA
);
966 if ((len
== PAGE_CACHE_SIZE
) || PageUptodate(page
))
969 if ((pos
& PAGE_CACHE_MASK
) >= i_size_read(inode
)) {
970 unsigned start
= pos
& (PAGE_CACHE_SIZE
- 1);
971 unsigned end
= start
+ len
;
973 /* Reading beyond i_size is simple: memset to zero */
974 zero_user_segments(page
, 0, start
, end
, PAGE_CACHE_SIZE
);
978 if (dn
.data_blkaddr
== NEW_ADDR
) {
979 zero_user_segment(page
, 0, PAGE_CACHE_SIZE
);
981 if (f2fs_has_inline_data(inode
)) {
982 err
= f2fs_read_inline_data(inode
, page
);
984 page_cache_release(page
);
988 err
= f2fs_submit_page_bio(sbi
, page
, dn
.data_blkaddr
,
995 if (unlikely(!PageUptodate(page
))) {
996 f2fs_put_page(page
, 1);
999 if (unlikely(page
->mapping
!= mapping
)) {
1000 f2fs_put_page(page
, 1);
1005 SetPageUptodate(page
);
1006 clear_cold_data(page
);
1010 static int f2fs_write_end(struct file
*file
,
1011 struct address_space
*mapping
,
1012 loff_t pos
, unsigned len
, unsigned copied
,
1013 struct page
*page
, void *fsdata
)
1015 struct inode
*inode
= page
->mapping
->host
;
1017 trace_f2fs_write_end(inode
, pos
, len
, copied
);
1019 SetPageUptodate(page
);
1020 set_page_dirty(page
);
1022 if (pos
+ copied
> i_size_read(inode
)) {
1023 i_size_write(inode
, pos
+ copied
);
1024 mark_inode_dirty(inode
);
1025 update_inode_page(inode
);
1028 f2fs_put_page(page
, 1);
1032 static int check_direct_IO(struct inode
*inode
, int rw
,
1033 struct iov_iter
*iter
, loff_t offset
)
1035 unsigned blocksize_mask
= inode
->i_sb
->s_blocksize
- 1;
1040 if (offset
& blocksize_mask
)
1043 if (iov_iter_alignment(iter
) & blocksize_mask
)
1049 static ssize_t
f2fs_direct_IO(int rw
, struct kiocb
*iocb
,
1050 struct iov_iter
*iter
, loff_t offset
)
1052 struct file
*file
= iocb
->ki_filp
;
1053 struct inode
*inode
= file
->f_mapping
->host
;
1055 /* Let buffer I/O handle the inline data case. */
1056 if (f2fs_has_inline_data(inode
))
1059 if (check_direct_IO(inode
, rw
, iter
, offset
))
1062 /* clear fsync mark to recover these blocks */
1063 fsync_mark_clear(F2FS_SB(inode
->i_sb
), inode
->i_ino
);
1065 return blockdev_direct_IO(rw
, iocb
, inode
, iter
, offset
,
1069 static void f2fs_invalidate_data_page(struct page
*page
, unsigned int offset
,
1070 unsigned int length
)
1072 struct inode
*inode
= page
->mapping
->host
;
1073 if (PageDirty(page
))
1074 inode_dec_dirty_dents(inode
);
1075 ClearPagePrivate(page
);
1078 static int f2fs_release_data_page(struct page
*page
, gfp_t wait
)
1080 ClearPagePrivate(page
);
1084 static int f2fs_set_data_page_dirty(struct page
*page
)
1086 struct address_space
*mapping
= page
->mapping
;
1087 struct inode
*inode
= mapping
->host
;
1089 trace_f2fs_set_page_dirty(page
, DATA
);
1091 SetPageUptodate(page
);
1092 mark_inode_dirty(inode
);
1094 if (!PageDirty(page
)) {
1095 __set_page_dirty_nobuffers(page
);
1096 set_dirty_dir_page(inode
, page
);
1102 static sector_t
f2fs_bmap(struct address_space
*mapping
, sector_t block
)
1104 struct inode
*inode
= mapping
->host
;
1106 if (f2fs_has_inline_data(inode
))
1109 return generic_block_bmap(mapping
, block
, get_data_block
);
1112 const struct address_space_operations f2fs_dblock_aops
= {
1113 .readpage
= f2fs_read_data_page
,
1114 .readpages
= f2fs_read_data_pages
,
1115 .writepage
= f2fs_write_data_page
,
1116 .writepages
= f2fs_write_data_pages
,
1117 .write_begin
= f2fs_write_begin
,
1118 .write_end
= f2fs_write_end
,
1119 .set_page_dirty
= f2fs_set_data_page_dirty
,
1120 .invalidatepage
= f2fs_invalidate_data_page
,
1121 .releasepage
= f2fs_release_data_page
,
1122 .direct_IO
= f2fs_direct_IO
,