USB: serial: ir-usb: fix link-speed handling
[linux/fpc-iii.git] / mm / khugepaged.c
blob8217ee5d66ef259387a9fefe49d985a8fc04f60d
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3 #include <linux/mm.h>
4 #include <linux/sched.h>
5 #include <linux/mmu_notifier.h>
6 #include <linux/rmap.h>
7 #include <linux/swap.h>
8 #include <linux/mm_inline.h>
9 #include <linux/kthread.h>
10 #include <linux/khugepaged.h>
11 #include <linux/freezer.h>
12 #include <linux/mman.h>
13 #include <linux/hashtable.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/page_idle.h>
16 #include <linux/swapops.h>
17 #include <linux/shmem_fs.h>
19 #include <asm/tlb.h>
20 #include <asm/pgalloc.h>
21 #include "internal.h"
23 enum scan_result {
24 SCAN_FAIL,
25 SCAN_SUCCEED,
26 SCAN_PMD_NULL,
27 SCAN_EXCEED_NONE_PTE,
28 SCAN_PTE_NON_PRESENT,
29 SCAN_PAGE_RO,
30 SCAN_LACK_REFERENCED_PAGE,
31 SCAN_PAGE_NULL,
32 SCAN_SCAN_ABORT,
33 SCAN_PAGE_COUNT,
34 SCAN_PAGE_LRU,
35 SCAN_PAGE_LOCK,
36 SCAN_PAGE_ANON,
37 SCAN_PAGE_COMPOUND,
38 SCAN_ANY_PROCESS,
39 SCAN_VMA_NULL,
40 SCAN_VMA_CHECK,
41 SCAN_ADDRESS_RANGE,
42 SCAN_SWAP_CACHE_PAGE,
43 SCAN_DEL_PAGE_LRU,
44 SCAN_ALLOC_HUGE_PAGE_FAIL,
45 SCAN_CGROUP_CHARGE_FAIL,
46 SCAN_EXCEED_SWAP_PTE,
47 SCAN_TRUNCATED,
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/huge_memory.h>
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly;
55 static unsigned int khugepaged_pages_collapsed;
56 static unsigned int khugepaged_full_scans;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60 static unsigned long khugepaged_sleep_expire;
61 static DEFINE_SPINLOCK(khugepaged_mm_lock);
62 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
64 * default collapse hugepages if there is at least one pte mapped like
65 * it would have happened if the vma was large enough during page
66 * fault.
68 static unsigned int khugepaged_max_ptes_none __read_mostly;
69 static unsigned int khugepaged_max_ptes_swap __read_mostly;
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
74 static struct kmem_cache *mm_slot_cache __read_mostly;
76 /**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
82 struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
88 /**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
94 * There is only the one khugepaged_scan instance of this cursor structure.
96 struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
102 static struct khugepaged_scan khugepaged_scan = {
103 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
106 #ifdef CONFIG_SYSFS
107 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
108 struct kobj_attribute *attr,
109 char *buf)
111 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
114 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
115 struct kobj_attribute *attr,
116 const char *buf, size_t count)
118 unsigned long msecs;
119 int err;
121 err = kstrtoul(buf, 10, &msecs);
122 if (err || msecs > UINT_MAX)
123 return -EINVAL;
125 khugepaged_scan_sleep_millisecs = msecs;
126 khugepaged_sleep_expire = 0;
127 wake_up_interruptible(&khugepaged_wait);
129 return count;
131 static struct kobj_attribute scan_sleep_millisecs_attr =
132 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
133 scan_sleep_millisecs_store);
135 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
136 struct kobj_attribute *attr,
137 char *buf)
139 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
142 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
143 struct kobj_attribute *attr,
144 const char *buf, size_t count)
146 unsigned long msecs;
147 int err;
149 err = kstrtoul(buf, 10, &msecs);
150 if (err || msecs > UINT_MAX)
151 return -EINVAL;
153 khugepaged_alloc_sleep_millisecs = msecs;
154 khugepaged_sleep_expire = 0;
155 wake_up_interruptible(&khugepaged_wait);
157 return count;
159 static struct kobj_attribute alloc_sleep_millisecs_attr =
160 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
161 alloc_sleep_millisecs_store);
163 static ssize_t pages_to_scan_show(struct kobject *kobj,
164 struct kobj_attribute *attr,
165 char *buf)
167 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
169 static ssize_t pages_to_scan_store(struct kobject *kobj,
170 struct kobj_attribute *attr,
171 const char *buf, size_t count)
173 int err;
174 unsigned long pages;
176 err = kstrtoul(buf, 10, &pages);
177 if (err || !pages || pages > UINT_MAX)
178 return -EINVAL;
180 khugepaged_pages_to_scan = pages;
182 return count;
184 static struct kobj_attribute pages_to_scan_attr =
185 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
186 pages_to_scan_store);
188 static ssize_t pages_collapsed_show(struct kobject *kobj,
189 struct kobj_attribute *attr,
190 char *buf)
192 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
194 static struct kobj_attribute pages_collapsed_attr =
195 __ATTR_RO(pages_collapsed);
197 static ssize_t full_scans_show(struct kobject *kobj,
198 struct kobj_attribute *attr,
199 char *buf)
201 return sprintf(buf, "%u\n", khugepaged_full_scans);
203 static struct kobj_attribute full_scans_attr =
204 __ATTR_RO(full_scans);
206 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
207 struct kobj_attribute *attr, char *buf)
209 return single_hugepage_flag_show(kobj, attr, buf,
210 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
212 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
213 struct kobj_attribute *attr,
214 const char *buf, size_t count)
216 return single_hugepage_flag_store(kobj, attr, buf, count,
217 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
219 static struct kobj_attribute khugepaged_defrag_attr =
220 __ATTR(defrag, 0644, khugepaged_defrag_show,
221 khugepaged_defrag_store);
224 * max_ptes_none controls if khugepaged should collapse hugepages over
225 * any unmapped ptes in turn potentially increasing the memory
226 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
227 * reduce the available free memory in the system as it
228 * runs. Increasing max_ptes_none will instead potentially reduce the
229 * free memory in the system during the khugepaged scan.
231 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
232 struct kobj_attribute *attr,
233 char *buf)
235 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
237 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
238 struct kobj_attribute *attr,
239 const char *buf, size_t count)
241 int err;
242 unsigned long max_ptes_none;
244 err = kstrtoul(buf, 10, &max_ptes_none);
245 if (err || max_ptes_none > HPAGE_PMD_NR-1)
246 return -EINVAL;
248 khugepaged_max_ptes_none = max_ptes_none;
250 return count;
252 static struct kobj_attribute khugepaged_max_ptes_none_attr =
253 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
254 khugepaged_max_ptes_none_store);
256 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
257 struct kobj_attribute *attr,
258 char *buf)
260 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
263 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
264 struct kobj_attribute *attr,
265 const char *buf, size_t count)
267 int err;
268 unsigned long max_ptes_swap;
270 err = kstrtoul(buf, 10, &max_ptes_swap);
271 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
272 return -EINVAL;
274 khugepaged_max_ptes_swap = max_ptes_swap;
276 return count;
279 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
280 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
281 khugepaged_max_ptes_swap_store);
283 static struct attribute *khugepaged_attr[] = {
284 &khugepaged_defrag_attr.attr,
285 &khugepaged_max_ptes_none_attr.attr,
286 &pages_to_scan_attr.attr,
287 &pages_collapsed_attr.attr,
288 &full_scans_attr.attr,
289 &scan_sleep_millisecs_attr.attr,
290 &alloc_sleep_millisecs_attr.attr,
291 &khugepaged_max_ptes_swap_attr.attr,
292 NULL,
295 struct attribute_group khugepaged_attr_group = {
296 .attrs = khugepaged_attr,
297 .name = "khugepaged",
299 #endif /* CONFIG_SYSFS */
301 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
303 int hugepage_madvise(struct vm_area_struct *vma,
304 unsigned long *vm_flags, int advice)
306 switch (advice) {
307 case MADV_HUGEPAGE:
308 #ifdef CONFIG_S390
310 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
311 * can't handle this properly after s390_enable_sie, so we simply
312 * ignore the madvise to prevent qemu from causing a SIGSEGV.
314 if (mm_has_pgste(vma->vm_mm))
315 return 0;
316 #endif
317 *vm_flags &= ~VM_NOHUGEPAGE;
318 *vm_flags |= VM_HUGEPAGE;
320 * If the vma become good for khugepaged to scan,
321 * register it here without waiting a page fault that
322 * may not happen any time soon.
324 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
325 khugepaged_enter_vma_merge(vma, *vm_flags))
326 return -ENOMEM;
327 break;
328 case MADV_NOHUGEPAGE:
329 *vm_flags &= ~VM_HUGEPAGE;
330 *vm_flags |= VM_NOHUGEPAGE;
332 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
333 * this vma even if we leave the mm registered in khugepaged if
334 * it got registered before VM_NOHUGEPAGE was set.
336 break;
339 return 0;
342 int __init khugepaged_init(void)
344 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
345 sizeof(struct mm_slot),
346 __alignof__(struct mm_slot), 0, NULL);
347 if (!mm_slot_cache)
348 return -ENOMEM;
350 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
351 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
352 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
354 return 0;
357 void __init khugepaged_destroy(void)
359 kmem_cache_destroy(mm_slot_cache);
362 static inline struct mm_slot *alloc_mm_slot(void)
364 if (!mm_slot_cache) /* initialization failed */
365 return NULL;
366 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
369 static inline void free_mm_slot(struct mm_slot *mm_slot)
371 kmem_cache_free(mm_slot_cache, mm_slot);
374 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
376 struct mm_slot *mm_slot;
378 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
379 if (mm == mm_slot->mm)
380 return mm_slot;
382 return NULL;
385 static void insert_to_mm_slots_hash(struct mm_struct *mm,
386 struct mm_slot *mm_slot)
388 mm_slot->mm = mm;
389 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
392 static inline int khugepaged_test_exit(struct mm_struct *mm)
394 return atomic_read(&mm->mm_users) == 0;
397 int __khugepaged_enter(struct mm_struct *mm)
399 struct mm_slot *mm_slot;
400 int wakeup;
402 mm_slot = alloc_mm_slot();
403 if (!mm_slot)
404 return -ENOMEM;
406 /* __khugepaged_exit() must not run from under us */
407 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
408 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
409 free_mm_slot(mm_slot);
410 return 0;
413 spin_lock(&khugepaged_mm_lock);
414 insert_to_mm_slots_hash(mm, mm_slot);
416 * Insert just behind the scanning cursor, to let the area settle
417 * down a little.
419 wakeup = list_empty(&khugepaged_scan.mm_head);
420 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
421 spin_unlock(&khugepaged_mm_lock);
423 atomic_inc(&mm->mm_count);
424 if (wakeup)
425 wake_up_interruptible(&khugepaged_wait);
427 return 0;
430 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
431 unsigned long vm_flags)
433 unsigned long hstart, hend;
434 if (!vma->anon_vma)
436 * Not yet faulted in so we will register later in the
437 * page fault if needed.
439 return 0;
440 if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
441 /* khugepaged not yet working on file or special mappings */
442 return 0;
443 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
444 hend = vma->vm_end & HPAGE_PMD_MASK;
445 if (hstart < hend)
446 return khugepaged_enter(vma, vm_flags);
447 return 0;
450 void __khugepaged_exit(struct mm_struct *mm)
452 struct mm_slot *mm_slot;
453 int free = 0;
455 spin_lock(&khugepaged_mm_lock);
456 mm_slot = get_mm_slot(mm);
457 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
458 hash_del(&mm_slot->hash);
459 list_del(&mm_slot->mm_node);
460 free = 1;
462 spin_unlock(&khugepaged_mm_lock);
464 if (free) {
465 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
466 free_mm_slot(mm_slot);
467 mmdrop(mm);
468 } else if (mm_slot) {
470 * This is required to serialize against
471 * khugepaged_test_exit() (which is guaranteed to run
472 * under mmap sem read mode). Stop here (after we
473 * return all pagetables will be destroyed) until
474 * khugepaged has finished working on the pagetables
475 * under the mmap_sem.
477 down_write(&mm->mmap_sem);
478 up_write(&mm->mmap_sem);
482 static void release_pte_page(struct page *page)
484 /* 0 stands for page_is_file_cache(page) == false */
485 dec_node_page_state(page, NR_ISOLATED_ANON + 0);
486 unlock_page(page);
487 putback_lru_page(page);
490 static void release_pte_pages(pte_t *pte, pte_t *_pte)
492 while (--_pte >= pte) {
493 pte_t pteval = *_pte;
494 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
495 release_pte_page(pte_page(pteval));
499 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
500 unsigned long address,
501 pte_t *pte)
503 struct page *page = NULL;
504 pte_t *_pte;
505 int none_or_zero = 0, result = 0, referenced = 0;
506 bool writable = false;
508 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
509 _pte++, address += PAGE_SIZE) {
510 pte_t pteval = *_pte;
511 if (pte_none(pteval) || (pte_present(pteval) &&
512 is_zero_pfn(pte_pfn(pteval)))) {
513 if (!userfaultfd_armed(vma) &&
514 ++none_or_zero <= khugepaged_max_ptes_none) {
515 continue;
516 } else {
517 result = SCAN_EXCEED_NONE_PTE;
518 goto out;
521 if (!pte_present(pteval)) {
522 result = SCAN_PTE_NON_PRESENT;
523 goto out;
525 page = vm_normal_page(vma, address, pteval);
526 if (unlikely(!page)) {
527 result = SCAN_PAGE_NULL;
528 goto out;
531 /* TODO: teach khugepaged to collapse THP mapped with pte */
532 if (PageCompound(page)) {
533 result = SCAN_PAGE_COMPOUND;
534 goto out;
537 VM_BUG_ON_PAGE(!PageAnon(page), page);
538 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
541 * We can do it before isolate_lru_page because the
542 * page can't be freed from under us. NOTE: PG_lock
543 * is needed to serialize against split_huge_page
544 * when invoked from the VM.
546 if (!trylock_page(page)) {
547 result = SCAN_PAGE_LOCK;
548 goto out;
552 * cannot use mapcount: can't collapse if there's a gup pin.
553 * The page must only be referenced by the scanned process
554 * and page swap cache.
556 if (page_count(page) != 1 + !!PageSwapCache(page)) {
557 unlock_page(page);
558 result = SCAN_PAGE_COUNT;
559 goto out;
561 if (pte_write(pteval)) {
562 writable = true;
563 } else {
564 if (PageSwapCache(page) &&
565 !reuse_swap_page(page, NULL)) {
566 unlock_page(page);
567 result = SCAN_SWAP_CACHE_PAGE;
568 goto out;
571 * Page is not in the swap cache. It can be collapsed
572 * into a THP.
577 * Isolate the page to avoid collapsing an hugepage
578 * currently in use by the VM.
580 if (isolate_lru_page(page)) {
581 unlock_page(page);
582 result = SCAN_DEL_PAGE_LRU;
583 goto out;
585 /* 0 stands for page_is_file_cache(page) == false */
586 inc_node_page_state(page, NR_ISOLATED_ANON + 0);
587 VM_BUG_ON_PAGE(!PageLocked(page), page);
588 VM_BUG_ON_PAGE(PageLRU(page), page);
590 /* There should be enough young pte to collapse the page */
591 if (pte_young(pteval) ||
592 page_is_young(page) || PageReferenced(page) ||
593 mmu_notifier_test_young(vma->vm_mm, address))
594 referenced++;
596 if (likely(writable)) {
597 if (likely(referenced)) {
598 result = SCAN_SUCCEED;
599 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
600 referenced, writable, result);
601 return 1;
603 } else {
604 result = SCAN_PAGE_RO;
607 out:
608 release_pte_pages(pte, _pte);
609 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
610 referenced, writable, result);
611 return 0;
614 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
615 struct vm_area_struct *vma,
616 unsigned long address,
617 spinlock_t *ptl)
619 pte_t *_pte;
620 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
621 pte_t pteval = *_pte;
622 struct page *src_page;
624 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
625 clear_user_highpage(page, address);
626 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
627 if (is_zero_pfn(pte_pfn(pteval))) {
629 * ptl mostly unnecessary.
631 spin_lock(ptl);
633 * paravirt calls inside pte_clear here are
634 * superfluous.
636 pte_clear(vma->vm_mm, address, _pte);
637 spin_unlock(ptl);
639 } else {
640 src_page = pte_page(pteval);
641 copy_user_highpage(page, src_page, address, vma);
642 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
643 release_pte_page(src_page);
645 * ptl mostly unnecessary, but preempt has to
646 * be disabled to update the per-cpu stats
647 * inside page_remove_rmap().
649 spin_lock(ptl);
651 * paravirt calls inside pte_clear here are
652 * superfluous.
654 pte_clear(vma->vm_mm, address, _pte);
655 page_remove_rmap(src_page, false);
656 spin_unlock(ptl);
657 free_page_and_swap_cache(src_page);
660 address += PAGE_SIZE;
661 page++;
665 static void khugepaged_alloc_sleep(void)
667 DEFINE_WAIT(wait);
669 add_wait_queue(&khugepaged_wait, &wait);
670 freezable_schedule_timeout_interruptible(
671 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
672 remove_wait_queue(&khugepaged_wait, &wait);
675 static int khugepaged_node_load[MAX_NUMNODES];
677 static bool khugepaged_scan_abort(int nid)
679 int i;
682 * If node_reclaim_mode is disabled, then no extra effort is made to
683 * allocate memory locally.
685 if (!node_reclaim_mode)
686 return false;
688 /* If there is a count for this node already, it must be acceptable */
689 if (khugepaged_node_load[nid])
690 return false;
692 for (i = 0; i < MAX_NUMNODES; i++) {
693 if (!khugepaged_node_load[i])
694 continue;
695 if (node_distance(nid, i) > RECLAIM_DISTANCE)
696 return true;
698 return false;
701 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
702 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
704 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
707 #ifdef CONFIG_NUMA
708 static int khugepaged_find_target_node(void)
710 static int last_khugepaged_target_node = NUMA_NO_NODE;
711 int nid, target_node = 0, max_value = 0;
713 /* find first node with max normal pages hit */
714 for (nid = 0; nid < MAX_NUMNODES; nid++)
715 if (khugepaged_node_load[nid] > max_value) {
716 max_value = khugepaged_node_load[nid];
717 target_node = nid;
720 /* do some balance if several nodes have the same hit record */
721 if (target_node <= last_khugepaged_target_node)
722 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
723 nid++)
724 if (max_value == khugepaged_node_load[nid]) {
725 target_node = nid;
726 break;
729 last_khugepaged_target_node = target_node;
730 return target_node;
733 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
735 if (IS_ERR(*hpage)) {
736 if (!*wait)
737 return false;
739 *wait = false;
740 *hpage = NULL;
741 khugepaged_alloc_sleep();
742 } else if (*hpage) {
743 put_page(*hpage);
744 *hpage = NULL;
747 return true;
750 static struct page *
751 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
753 VM_BUG_ON_PAGE(*hpage, *hpage);
755 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
756 if (unlikely(!*hpage)) {
757 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
758 *hpage = ERR_PTR(-ENOMEM);
759 return NULL;
762 prep_transhuge_page(*hpage);
763 count_vm_event(THP_COLLAPSE_ALLOC);
764 return *hpage;
766 #else
767 static int khugepaged_find_target_node(void)
769 return 0;
772 static inline struct page *alloc_khugepaged_hugepage(void)
774 struct page *page;
776 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
777 HPAGE_PMD_ORDER);
778 if (page)
779 prep_transhuge_page(page);
780 return page;
783 static struct page *khugepaged_alloc_hugepage(bool *wait)
785 struct page *hpage;
787 do {
788 hpage = alloc_khugepaged_hugepage();
789 if (!hpage) {
790 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
791 if (!*wait)
792 return NULL;
794 *wait = false;
795 khugepaged_alloc_sleep();
796 } else
797 count_vm_event(THP_COLLAPSE_ALLOC);
798 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
800 return hpage;
803 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
805 if (!*hpage)
806 *hpage = khugepaged_alloc_hugepage(wait);
808 if (unlikely(!*hpage))
809 return false;
811 return true;
814 static struct page *
815 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
817 VM_BUG_ON(!*hpage);
819 return *hpage;
821 #endif
823 static bool hugepage_vma_check(struct vm_area_struct *vma)
825 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
826 (vma->vm_flags & VM_NOHUGEPAGE))
827 return false;
828 if (shmem_file(vma->vm_file)) {
829 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
830 return false;
831 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
832 HPAGE_PMD_NR);
834 if (!vma->anon_vma || vma->vm_ops)
835 return false;
836 if (is_vma_temporary_stack(vma))
837 return false;
838 return !(vma->vm_flags & VM_NO_KHUGEPAGED);
842 * If mmap_sem temporarily dropped, revalidate vma
843 * before taking mmap_sem.
844 * Return 0 if succeeds, otherwise return none-zero
845 * value (scan code).
848 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
849 struct vm_area_struct **vmap)
851 struct vm_area_struct *vma;
852 unsigned long hstart, hend;
854 if (unlikely(khugepaged_test_exit(mm)))
855 return SCAN_ANY_PROCESS;
857 *vmap = vma = find_vma(mm, address);
858 if (!vma)
859 return SCAN_VMA_NULL;
861 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
862 hend = vma->vm_end & HPAGE_PMD_MASK;
863 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
864 return SCAN_ADDRESS_RANGE;
865 if (!hugepage_vma_check(vma))
866 return SCAN_VMA_CHECK;
867 return 0;
871 * Bring missing pages in from swap, to complete THP collapse.
872 * Only done if khugepaged_scan_pmd believes it is worthwhile.
874 * Called and returns without pte mapped or spinlocks held,
875 * but with mmap_sem held to protect against vma changes.
878 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
879 struct vm_area_struct *vma,
880 unsigned long address, pmd_t *pmd,
881 int referenced)
883 pte_t pteval;
884 int swapped_in = 0, ret = 0;
885 struct fault_env fe = {
886 .vma = vma,
887 .address = address,
888 .flags = FAULT_FLAG_ALLOW_RETRY,
889 .pmd = pmd,
892 /* we only decide to swapin, if there is enough young ptes */
893 if (referenced < HPAGE_PMD_NR/2) {
894 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
895 return false;
897 fe.pte = pte_offset_map(pmd, address);
898 for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
899 fe.pte++, fe.address += PAGE_SIZE) {
900 pteval = *fe.pte;
901 if (!is_swap_pte(pteval))
902 continue;
903 swapped_in++;
904 ret = do_swap_page(&fe, pteval);
906 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
907 if (ret & VM_FAULT_RETRY) {
908 down_read(&mm->mmap_sem);
909 if (hugepage_vma_revalidate(mm, address, &fe.vma)) {
910 /* vma is no longer available, don't continue to swapin */
911 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
912 return false;
914 /* check if the pmd is still valid */
915 if (mm_find_pmd(mm, address) != pmd)
916 return false;
918 if (ret & VM_FAULT_ERROR) {
919 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
920 return false;
922 /* pte is unmapped now, we need to map it */
923 fe.pte = pte_offset_map(pmd, fe.address);
925 fe.pte--;
926 pte_unmap(fe.pte);
927 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
928 return true;
931 static void collapse_huge_page(struct mm_struct *mm,
932 unsigned long address,
933 struct page **hpage,
934 int node, int referenced)
936 pmd_t *pmd, _pmd;
937 pte_t *pte;
938 pgtable_t pgtable;
939 struct page *new_page;
940 spinlock_t *pmd_ptl, *pte_ptl;
941 int isolated = 0, result = 0;
942 struct mem_cgroup *memcg;
943 struct vm_area_struct *vma;
944 unsigned long mmun_start; /* For mmu_notifiers */
945 unsigned long mmun_end; /* For mmu_notifiers */
946 gfp_t gfp;
948 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
950 /* Only allocate from the target node */
951 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
954 * Before allocating the hugepage, release the mmap_sem read lock.
955 * The allocation can take potentially a long time if it involves
956 * sync compaction, and we do not need to hold the mmap_sem during
957 * that. We will recheck the vma after taking it again in write mode.
959 up_read(&mm->mmap_sem);
960 new_page = khugepaged_alloc_page(hpage, gfp, node);
961 if (!new_page) {
962 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
963 goto out_nolock;
966 /* Do not oom kill for khugepaged charges */
967 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp | __GFP_NORETRY,
968 &memcg, true))) {
969 result = SCAN_CGROUP_CHARGE_FAIL;
970 goto out_nolock;
973 down_read(&mm->mmap_sem);
974 result = hugepage_vma_revalidate(mm, address, &vma);
975 if (result) {
976 mem_cgroup_cancel_charge(new_page, memcg, true);
977 up_read(&mm->mmap_sem);
978 goto out_nolock;
981 pmd = mm_find_pmd(mm, address);
982 if (!pmd) {
983 result = SCAN_PMD_NULL;
984 mem_cgroup_cancel_charge(new_page, memcg, true);
985 up_read(&mm->mmap_sem);
986 goto out_nolock;
990 * __collapse_huge_page_swapin always returns with mmap_sem locked.
991 * If it fails, we release mmap_sem and jump out_nolock.
992 * Continuing to collapse causes inconsistency.
994 if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
995 mem_cgroup_cancel_charge(new_page, memcg, true);
996 up_read(&mm->mmap_sem);
997 goto out_nolock;
1000 up_read(&mm->mmap_sem);
1002 * Prevent all access to pagetables with the exception of
1003 * gup_fast later handled by the ptep_clear_flush and the VM
1004 * handled by the anon_vma lock + PG_lock.
1006 down_write(&mm->mmap_sem);
1007 result = SCAN_ANY_PROCESS;
1008 if (!mmget_still_valid(mm))
1009 goto out;
1010 result = hugepage_vma_revalidate(mm, address, &vma);
1011 if (result)
1012 goto out;
1013 /* check if the pmd is still valid */
1014 if (mm_find_pmd(mm, address) != pmd)
1015 goto out;
1017 anon_vma_lock_write(vma->anon_vma);
1019 pte = pte_offset_map(pmd, address);
1020 pte_ptl = pte_lockptr(mm, pmd);
1022 mmun_start = address;
1023 mmun_end = address + HPAGE_PMD_SIZE;
1024 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1025 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1027 * After this gup_fast can't run anymore. This also removes
1028 * any huge TLB entry from the CPU so we won't allow
1029 * huge and small TLB entries for the same virtual address
1030 * to avoid the risk of CPU bugs in that area.
1032 _pmd = pmdp_collapse_flush(vma, address, pmd);
1033 spin_unlock(pmd_ptl);
1034 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1036 spin_lock(pte_ptl);
1037 isolated = __collapse_huge_page_isolate(vma, address, pte);
1038 spin_unlock(pte_ptl);
1040 if (unlikely(!isolated)) {
1041 pte_unmap(pte);
1042 spin_lock(pmd_ptl);
1043 BUG_ON(!pmd_none(*pmd));
1045 * We can only use set_pmd_at when establishing
1046 * hugepmds and never for establishing regular pmds that
1047 * points to regular pagetables. Use pmd_populate for that
1049 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1050 spin_unlock(pmd_ptl);
1051 anon_vma_unlock_write(vma->anon_vma);
1052 result = SCAN_FAIL;
1053 goto out;
1057 * All pages are isolated and locked so anon_vma rmap
1058 * can't run anymore.
1060 anon_vma_unlock_write(vma->anon_vma);
1062 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1063 pte_unmap(pte);
1064 __SetPageUptodate(new_page);
1065 pgtable = pmd_pgtable(_pmd);
1067 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1068 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1071 * spin_lock() below is not the equivalent of smp_wmb(), so
1072 * this is needed to avoid the copy_huge_page writes to become
1073 * visible after the set_pmd_at() write.
1075 smp_wmb();
1077 spin_lock(pmd_ptl);
1078 BUG_ON(!pmd_none(*pmd));
1079 page_add_new_anon_rmap(new_page, vma, address, true);
1080 mem_cgroup_commit_charge(new_page, memcg, false, true);
1081 lru_cache_add_active_or_unevictable(new_page, vma);
1082 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1083 set_pmd_at(mm, address, pmd, _pmd);
1084 update_mmu_cache_pmd(vma, address, pmd);
1085 spin_unlock(pmd_ptl);
1087 *hpage = NULL;
1089 khugepaged_pages_collapsed++;
1090 result = SCAN_SUCCEED;
1091 out_up_write:
1092 up_write(&mm->mmap_sem);
1093 out_nolock:
1094 trace_mm_collapse_huge_page(mm, isolated, result);
1095 return;
1096 out:
1097 mem_cgroup_cancel_charge(new_page, memcg, true);
1098 goto out_up_write;
1101 static int khugepaged_scan_pmd(struct mm_struct *mm,
1102 struct vm_area_struct *vma,
1103 unsigned long address,
1104 struct page **hpage)
1106 pmd_t *pmd;
1107 pte_t *pte, *_pte;
1108 int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1109 struct page *page = NULL;
1110 unsigned long _address;
1111 spinlock_t *ptl;
1112 int node = NUMA_NO_NODE, unmapped = 0;
1113 bool writable = false;
1115 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1117 pmd = mm_find_pmd(mm, address);
1118 if (!pmd) {
1119 result = SCAN_PMD_NULL;
1120 goto out;
1123 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1124 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1125 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1126 _pte++, _address += PAGE_SIZE) {
1127 pte_t pteval = *_pte;
1128 if (is_swap_pte(pteval)) {
1129 if (++unmapped <= khugepaged_max_ptes_swap) {
1130 continue;
1131 } else {
1132 result = SCAN_EXCEED_SWAP_PTE;
1133 goto out_unmap;
1136 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1137 if (!userfaultfd_armed(vma) &&
1138 ++none_or_zero <= khugepaged_max_ptes_none) {
1139 continue;
1140 } else {
1141 result = SCAN_EXCEED_NONE_PTE;
1142 goto out_unmap;
1145 if (!pte_present(pteval)) {
1146 result = SCAN_PTE_NON_PRESENT;
1147 goto out_unmap;
1149 if (pte_write(pteval))
1150 writable = true;
1152 page = vm_normal_page(vma, _address, pteval);
1153 if (unlikely(!page)) {
1154 result = SCAN_PAGE_NULL;
1155 goto out_unmap;
1158 /* TODO: teach khugepaged to collapse THP mapped with pte */
1159 if (PageCompound(page)) {
1160 result = SCAN_PAGE_COMPOUND;
1161 goto out_unmap;
1165 * Record which node the original page is from and save this
1166 * information to khugepaged_node_load[].
1167 * Khupaged will allocate hugepage from the node has the max
1168 * hit record.
1170 node = page_to_nid(page);
1171 if (khugepaged_scan_abort(node)) {
1172 result = SCAN_SCAN_ABORT;
1173 goto out_unmap;
1175 khugepaged_node_load[node]++;
1176 if (!PageLRU(page)) {
1177 result = SCAN_PAGE_LRU;
1178 goto out_unmap;
1180 if (PageLocked(page)) {
1181 result = SCAN_PAGE_LOCK;
1182 goto out_unmap;
1184 if (!PageAnon(page)) {
1185 result = SCAN_PAGE_ANON;
1186 goto out_unmap;
1190 * cannot use mapcount: can't collapse if there's a gup pin.
1191 * The page must only be referenced by the scanned process
1192 * and page swap cache.
1194 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1195 result = SCAN_PAGE_COUNT;
1196 goto out_unmap;
1198 if (pte_young(pteval) ||
1199 page_is_young(page) || PageReferenced(page) ||
1200 mmu_notifier_test_young(vma->vm_mm, address))
1201 referenced++;
1203 if (writable) {
1204 if (referenced) {
1205 result = SCAN_SUCCEED;
1206 ret = 1;
1207 } else {
1208 result = SCAN_LACK_REFERENCED_PAGE;
1210 } else {
1211 result = SCAN_PAGE_RO;
1213 out_unmap:
1214 pte_unmap_unlock(pte, ptl);
1215 if (ret) {
1216 node = khugepaged_find_target_node();
1217 /* collapse_huge_page will return with the mmap_sem released */
1218 collapse_huge_page(mm, address, hpage, node, referenced);
1220 out:
1221 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1222 none_or_zero, result, unmapped);
1223 return ret;
1226 static void collect_mm_slot(struct mm_slot *mm_slot)
1228 struct mm_struct *mm = mm_slot->mm;
1230 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1232 if (khugepaged_test_exit(mm)) {
1233 /* free mm_slot */
1234 hash_del(&mm_slot->hash);
1235 list_del(&mm_slot->mm_node);
1238 * Not strictly needed because the mm exited already.
1240 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1243 /* khugepaged_mm_lock actually not necessary for the below */
1244 free_mm_slot(mm_slot);
1245 mmdrop(mm);
1249 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1250 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1252 struct vm_area_struct *vma;
1253 unsigned long addr;
1254 pmd_t *pmd, _pmd;
1256 i_mmap_lock_write(mapping);
1257 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1258 /* probably overkill */
1259 if (vma->anon_vma)
1260 continue;
1261 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1262 if (addr & ~HPAGE_PMD_MASK)
1263 continue;
1264 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1265 continue;
1266 pmd = mm_find_pmd(vma->vm_mm, addr);
1267 if (!pmd)
1268 continue;
1270 * We need exclusive mmap_sem to retract page table.
1271 * If trylock fails we would end up with pte-mapped THP after
1272 * re-fault. Not ideal, but it's more important to not disturb
1273 * the system too much.
1275 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1276 spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1277 /* assume page table is clear */
1278 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1279 spin_unlock(ptl);
1280 up_write(&vma->vm_mm->mmap_sem);
1281 atomic_long_dec(&vma->vm_mm->nr_ptes);
1282 pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1285 i_mmap_unlock_write(mapping);
1289 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1291 * Basic scheme is simple, details are more complex:
1292 * - allocate and lock a new huge page;
1293 * - scan over radix tree replacing old pages the new one
1294 * + swap in pages if necessary;
1295 * + fill in gaps;
1296 * + keep old pages around in case if rollback is required;
1297 * - if replacing succeed:
1298 * + copy data over;
1299 * + free old pages;
1300 * + unlock huge page;
1301 * - if replacing failed;
1302 * + put all pages back and unfreeze them;
1303 * + restore gaps in the radix-tree;
1304 * + unlock and free huge page;
1306 static void collapse_shmem(struct mm_struct *mm,
1307 struct address_space *mapping, pgoff_t start,
1308 struct page **hpage, int node)
1310 gfp_t gfp;
1311 struct page *page, *new_page, *tmp;
1312 struct mem_cgroup *memcg;
1313 pgoff_t index, end = start + HPAGE_PMD_NR;
1314 LIST_HEAD(pagelist);
1315 struct radix_tree_iter iter;
1316 void **slot;
1317 int nr_none = 0, result = SCAN_SUCCEED;
1319 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1321 /* Only allocate from the target node */
1322 gfp = alloc_hugepage_khugepaged_gfpmask() |
1323 __GFP_OTHER_NODE | __GFP_THISNODE;
1325 new_page = khugepaged_alloc_page(hpage, gfp, node);
1326 if (!new_page) {
1327 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1328 goto out;
1331 /* Do not oom kill for khugepaged charges */
1332 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp | __GFP_NORETRY,
1333 &memcg, true))) {
1334 result = SCAN_CGROUP_CHARGE_FAIL;
1335 goto out;
1338 __SetPageLocked(new_page);
1339 __SetPageSwapBacked(new_page);
1340 new_page->index = start;
1341 new_page->mapping = mapping;
1344 * At this point the new_page is locked and not up-to-date.
1345 * It's safe to insert it into the page cache, because nobody would
1346 * be able to map it or use it in another way until we unlock it.
1349 index = start;
1350 spin_lock_irq(&mapping->tree_lock);
1351 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1352 int n = min(iter.index, end) - index;
1355 * Stop if extent has been hole-punched, and is now completely
1356 * empty (the more obvious i_size_read() check would take an
1357 * irq-unsafe seqlock on 32-bit).
1359 if (n >= HPAGE_PMD_NR) {
1360 result = SCAN_TRUNCATED;
1361 goto tree_locked;
1365 * Handle holes in the radix tree: charge it from shmem and
1366 * insert relevant subpage of new_page into the radix-tree.
1368 if (n && !shmem_charge(mapping->host, n)) {
1369 result = SCAN_FAIL;
1370 goto tree_locked;
1372 for (; index < min(iter.index, end); index++) {
1373 radix_tree_insert(&mapping->page_tree, index,
1374 new_page + (index % HPAGE_PMD_NR));
1376 nr_none += n;
1378 /* We are done. */
1379 if (index >= end)
1380 break;
1382 page = radix_tree_deref_slot_protected(slot,
1383 &mapping->tree_lock);
1384 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1385 spin_unlock_irq(&mapping->tree_lock);
1386 /* swap in or instantiate fallocated page */
1387 if (shmem_getpage(mapping->host, index, &page,
1388 SGP_NOHUGE)) {
1389 result = SCAN_FAIL;
1390 goto tree_unlocked;
1392 } else if (trylock_page(page)) {
1393 get_page(page);
1394 spin_unlock_irq(&mapping->tree_lock);
1395 } else {
1396 result = SCAN_PAGE_LOCK;
1397 goto tree_locked;
1401 * The page must be locked, so we can drop the tree_lock
1402 * without racing with truncate.
1404 VM_BUG_ON_PAGE(!PageLocked(page), page);
1405 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1408 * If file was truncated then extended, or hole-punched, before
1409 * we locked the first page, then a THP might be there already.
1411 if (PageTransCompound(page)) {
1412 result = SCAN_PAGE_COMPOUND;
1413 goto out_unlock;
1416 if (page_mapping(page) != mapping) {
1417 result = SCAN_TRUNCATED;
1418 goto out_unlock;
1421 if (isolate_lru_page(page)) {
1422 result = SCAN_DEL_PAGE_LRU;
1423 goto out_unlock;
1426 if (page_mapped(page))
1427 unmap_mapping_range(mapping, index << PAGE_SHIFT,
1428 PAGE_SIZE, 0);
1430 spin_lock_irq(&mapping->tree_lock);
1432 slot = radix_tree_lookup_slot(&mapping->page_tree, index);
1433 VM_BUG_ON_PAGE(page != radix_tree_deref_slot_protected(slot,
1434 &mapping->tree_lock), page);
1435 VM_BUG_ON_PAGE(page_mapped(page), page);
1438 * The page is expected to have page_count() == 3:
1439 * - we hold a pin on it;
1440 * - one reference from radix tree;
1441 * - one from isolate_lru_page;
1443 if (!page_ref_freeze(page, 3)) {
1444 result = SCAN_PAGE_COUNT;
1445 spin_unlock_irq(&mapping->tree_lock);
1446 putback_lru_page(page);
1447 goto out_unlock;
1451 * Add the page to the list to be able to undo the collapse if
1452 * something go wrong.
1454 list_add_tail(&page->lru, &pagelist);
1456 /* Finally, replace with the new page. */
1457 radix_tree_replace_slot(slot,
1458 new_page + (index % HPAGE_PMD_NR));
1460 slot = radix_tree_iter_next(&iter);
1461 index++;
1462 continue;
1463 out_unlock:
1464 unlock_page(page);
1465 put_page(page);
1466 goto tree_unlocked;
1470 * Handle hole in radix tree at the end of the range.
1471 * This code only triggers if there's nothing in radix tree
1472 * beyond 'end'.
1474 if (index < end) {
1475 int n = end - index;
1477 /* Stop if extent has been truncated, and is now empty */
1478 if (n >= HPAGE_PMD_NR) {
1479 result = SCAN_TRUNCATED;
1480 goto tree_locked;
1482 if (!shmem_charge(mapping->host, n)) {
1483 result = SCAN_FAIL;
1484 goto tree_locked;
1486 for (; index < end; index++) {
1487 radix_tree_insert(&mapping->page_tree, index,
1488 new_page + (index % HPAGE_PMD_NR));
1490 nr_none += n;
1493 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1494 if (nr_none) {
1495 struct zone *zone = page_zone(new_page);
1497 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1498 __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1501 tree_locked:
1502 spin_unlock_irq(&mapping->tree_lock);
1503 tree_unlocked:
1505 if (result == SCAN_SUCCEED) {
1507 * Replacing old pages with new one has succeed, now we need to
1508 * copy the content and free old pages.
1510 index = start;
1511 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1512 while (index < page->index) {
1513 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1514 index++;
1516 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1517 page);
1518 list_del(&page->lru);
1519 page->mapping = NULL;
1520 page_ref_unfreeze(page, 1);
1521 ClearPageActive(page);
1522 ClearPageUnevictable(page);
1523 unlock_page(page);
1524 put_page(page);
1525 index++;
1527 while (index < end) {
1528 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1529 index++;
1532 SetPageUptodate(new_page);
1533 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1534 set_page_dirty(new_page);
1535 mem_cgroup_commit_charge(new_page, memcg, false, true);
1536 lru_cache_add_anon(new_page);
1539 * Remove pte page tables, so we can re-fault the page as huge.
1541 retract_page_tables(mapping, start);
1542 *hpage = NULL;
1543 } else {
1544 /* Something went wrong: rollback changes to the radix-tree */
1545 spin_lock_irq(&mapping->tree_lock);
1546 mapping->nrpages -= nr_none;
1547 shmem_uncharge(mapping->host, nr_none);
1549 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1550 start) {
1551 if (iter.index >= end)
1552 break;
1553 page = list_first_entry_or_null(&pagelist,
1554 struct page, lru);
1555 if (!page || iter.index < page->index) {
1556 if (!nr_none)
1557 break;
1558 nr_none--;
1559 /* Put holes back where they were */
1560 radix_tree_delete(&mapping->page_tree,
1561 iter.index);
1562 slot = radix_tree_iter_next(&iter);
1563 continue;
1566 VM_BUG_ON_PAGE(page->index != iter.index, page);
1568 /* Unfreeze the page. */
1569 list_del(&page->lru);
1570 page_ref_unfreeze(page, 2);
1571 radix_tree_replace_slot(slot, page);
1572 spin_unlock_irq(&mapping->tree_lock);
1573 unlock_page(page);
1574 putback_lru_page(page);
1575 spin_lock_irq(&mapping->tree_lock);
1576 slot = radix_tree_iter_next(&iter);
1578 VM_BUG_ON(nr_none);
1579 spin_unlock_irq(&mapping->tree_lock);
1581 mem_cgroup_cancel_charge(new_page, memcg, true);
1582 new_page->mapping = NULL;
1585 unlock_page(new_page);
1586 out:
1587 VM_BUG_ON(!list_empty(&pagelist));
1588 /* TODO: tracepoints */
1591 static void khugepaged_scan_shmem(struct mm_struct *mm,
1592 struct address_space *mapping,
1593 pgoff_t start, struct page **hpage)
1595 struct page *page = NULL;
1596 struct radix_tree_iter iter;
1597 void **slot;
1598 int present, swap;
1599 int node = NUMA_NO_NODE;
1600 int result = SCAN_SUCCEED;
1602 present = 0;
1603 swap = 0;
1604 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1605 rcu_read_lock();
1606 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1607 if (iter.index >= start + HPAGE_PMD_NR)
1608 break;
1610 page = radix_tree_deref_slot(slot);
1611 if (radix_tree_deref_retry(page)) {
1612 slot = radix_tree_iter_retry(&iter);
1613 continue;
1616 if (radix_tree_exception(page)) {
1617 if (++swap > khugepaged_max_ptes_swap) {
1618 result = SCAN_EXCEED_SWAP_PTE;
1619 break;
1621 continue;
1624 if (PageTransCompound(page)) {
1625 result = SCAN_PAGE_COMPOUND;
1626 break;
1629 node = page_to_nid(page);
1630 if (khugepaged_scan_abort(node)) {
1631 result = SCAN_SCAN_ABORT;
1632 break;
1634 khugepaged_node_load[node]++;
1636 if (!PageLRU(page)) {
1637 result = SCAN_PAGE_LRU;
1638 break;
1641 if (page_count(page) != 1 + page_mapcount(page)) {
1642 result = SCAN_PAGE_COUNT;
1643 break;
1647 * We probably should check if the page is referenced here, but
1648 * nobody would transfer pte_young() to PageReferenced() for us.
1649 * And rmap walk here is just too costly...
1652 present++;
1654 if (need_resched()) {
1655 cond_resched_rcu();
1656 slot = radix_tree_iter_next(&iter);
1659 rcu_read_unlock();
1661 if (result == SCAN_SUCCEED) {
1662 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1663 result = SCAN_EXCEED_NONE_PTE;
1664 } else {
1665 node = khugepaged_find_target_node();
1666 collapse_shmem(mm, mapping, start, hpage, node);
1670 /* TODO: tracepoints */
1672 #else
1673 static void khugepaged_scan_shmem(struct mm_struct *mm,
1674 struct address_space *mapping,
1675 pgoff_t start, struct page **hpage)
1677 BUILD_BUG();
1679 #endif
1681 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1682 struct page **hpage)
1683 __releases(&khugepaged_mm_lock)
1684 __acquires(&khugepaged_mm_lock)
1686 struct mm_slot *mm_slot;
1687 struct mm_struct *mm;
1688 struct vm_area_struct *vma;
1689 int progress = 0;
1691 VM_BUG_ON(!pages);
1692 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1694 if (khugepaged_scan.mm_slot)
1695 mm_slot = khugepaged_scan.mm_slot;
1696 else {
1697 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1698 struct mm_slot, mm_node);
1699 khugepaged_scan.address = 0;
1700 khugepaged_scan.mm_slot = mm_slot;
1702 spin_unlock(&khugepaged_mm_lock);
1704 mm = mm_slot->mm;
1706 * Don't wait for semaphore (to avoid long wait times). Just move to
1707 * the next mm on the list.
1709 vma = NULL;
1710 if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1711 goto breakouterloop_mmap_sem;
1712 if (likely(!khugepaged_test_exit(mm)))
1713 vma = find_vma(mm, khugepaged_scan.address);
1715 progress++;
1716 for (; vma; vma = vma->vm_next) {
1717 unsigned long hstart, hend;
1719 cond_resched();
1720 if (unlikely(khugepaged_test_exit(mm))) {
1721 progress++;
1722 break;
1724 if (!hugepage_vma_check(vma)) {
1725 skip:
1726 progress++;
1727 continue;
1729 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1730 hend = vma->vm_end & HPAGE_PMD_MASK;
1731 if (hstart >= hend)
1732 goto skip;
1733 if (khugepaged_scan.address > hend)
1734 goto skip;
1735 if (khugepaged_scan.address < hstart)
1736 khugepaged_scan.address = hstart;
1737 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1739 while (khugepaged_scan.address < hend) {
1740 int ret;
1741 cond_resched();
1742 if (unlikely(khugepaged_test_exit(mm)))
1743 goto breakouterloop;
1745 VM_BUG_ON(khugepaged_scan.address < hstart ||
1746 khugepaged_scan.address + HPAGE_PMD_SIZE >
1747 hend);
1748 if (shmem_file(vma->vm_file)) {
1749 struct file *file;
1750 pgoff_t pgoff = linear_page_index(vma,
1751 khugepaged_scan.address);
1752 if (!shmem_huge_enabled(vma))
1753 goto skip;
1754 file = get_file(vma->vm_file);
1755 up_read(&mm->mmap_sem);
1756 ret = 1;
1757 khugepaged_scan_shmem(mm, file->f_mapping,
1758 pgoff, hpage);
1759 fput(file);
1760 } else {
1761 ret = khugepaged_scan_pmd(mm, vma,
1762 khugepaged_scan.address,
1763 hpage);
1765 /* move to next address */
1766 khugepaged_scan.address += HPAGE_PMD_SIZE;
1767 progress += HPAGE_PMD_NR;
1768 if (ret)
1769 /* we released mmap_sem so break loop */
1770 goto breakouterloop_mmap_sem;
1771 if (progress >= pages)
1772 goto breakouterloop;
1775 breakouterloop:
1776 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1777 breakouterloop_mmap_sem:
1779 spin_lock(&khugepaged_mm_lock);
1780 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1782 * Release the current mm_slot if this mm is about to die, or
1783 * if we scanned all vmas of this mm.
1785 if (khugepaged_test_exit(mm) || !vma) {
1787 * Make sure that if mm_users is reaching zero while
1788 * khugepaged runs here, khugepaged_exit will find
1789 * mm_slot not pointing to the exiting mm.
1791 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1792 khugepaged_scan.mm_slot = list_entry(
1793 mm_slot->mm_node.next,
1794 struct mm_slot, mm_node);
1795 khugepaged_scan.address = 0;
1796 } else {
1797 khugepaged_scan.mm_slot = NULL;
1798 khugepaged_full_scans++;
1801 collect_mm_slot(mm_slot);
1804 return progress;
1807 static int khugepaged_has_work(void)
1809 return !list_empty(&khugepaged_scan.mm_head) &&
1810 khugepaged_enabled();
1813 static int khugepaged_wait_event(void)
1815 return !list_empty(&khugepaged_scan.mm_head) ||
1816 kthread_should_stop();
1819 static void khugepaged_do_scan(void)
1821 struct page *hpage = NULL;
1822 unsigned int progress = 0, pass_through_head = 0;
1823 unsigned int pages = khugepaged_pages_to_scan;
1824 bool wait = true;
1826 barrier(); /* write khugepaged_pages_to_scan to local stack */
1828 while (progress < pages) {
1829 if (!khugepaged_prealloc_page(&hpage, &wait))
1830 break;
1832 cond_resched();
1834 if (unlikely(kthread_should_stop() || try_to_freeze()))
1835 break;
1837 spin_lock(&khugepaged_mm_lock);
1838 if (!khugepaged_scan.mm_slot)
1839 pass_through_head++;
1840 if (khugepaged_has_work() &&
1841 pass_through_head < 2)
1842 progress += khugepaged_scan_mm_slot(pages - progress,
1843 &hpage);
1844 else
1845 progress = pages;
1846 spin_unlock(&khugepaged_mm_lock);
1849 if (!IS_ERR_OR_NULL(hpage))
1850 put_page(hpage);
1853 static bool khugepaged_should_wakeup(void)
1855 return kthread_should_stop() ||
1856 time_after_eq(jiffies, khugepaged_sleep_expire);
1859 static void khugepaged_wait_work(void)
1861 if (khugepaged_has_work()) {
1862 const unsigned long scan_sleep_jiffies =
1863 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1865 if (!scan_sleep_jiffies)
1866 return;
1868 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1869 wait_event_freezable_timeout(khugepaged_wait,
1870 khugepaged_should_wakeup(),
1871 scan_sleep_jiffies);
1872 return;
1875 if (khugepaged_enabled())
1876 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1879 static int khugepaged(void *none)
1881 struct mm_slot *mm_slot;
1883 set_freezable();
1884 set_user_nice(current, MAX_NICE);
1886 while (!kthread_should_stop()) {
1887 khugepaged_do_scan();
1888 khugepaged_wait_work();
1891 spin_lock(&khugepaged_mm_lock);
1892 mm_slot = khugepaged_scan.mm_slot;
1893 khugepaged_scan.mm_slot = NULL;
1894 if (mm_slot)
1895 collect_mm_slot(mm_slot);
1896 spin_unlock(&khugepaged_mm_lock);
1897 return 0;
1900 static void set_recommended_min_free_kbytes(void)
1902 struct zone *zone;
1903 int nr_zones = 0;
1904 unsigned long recommended_min;
1906 for_each_populated_zone(zone)
1907 nr_zones++;
1909 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1910 recommended_min = pageblock_nr_pages * nr_zones * 2;
1913 * Make sure that on average at least two pageblocks are almost free
1914 * of another type, one for a migratetype to fall back to and a
1915 * second to avoid subsequent fallbacks of other types There are 3
1916 * MIGRATE_TYPES we care about.
1918 recommended_min += pageblock_nr_pages * nr_zones *
1919 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1921 /* don't ever allow to reserve more than 5% of the lowmem */
1922 recommended_min = min(recommended_min,
1923 (unsigned long) nr_free_buffer_pages() / 20);
1924 recommended_min <<= (PAGE_SHIFT-10);
1926 if (recommended_min > min_free_kbytes) {
1927 if (user_min_free_kbytes >= 0)
1928 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1929 min_free_kbytes, recommended_min);
1931 min_free_kbytes = recommended_min;
1933 setup_per_zone_wmarks();
1936 int start_stop_khugepaged(void)
1938 static struct task_struct *khugepaged_thread __read_mostly;
1939 static DEFINE_MUTEX(khugepaged_mutex);
1940 int err = 0;
1942 mutex_lock(&khugepaged_mutex);
1943 if (khugepaged_enabled()) {
1944 if (!khugepaged_thread)
1945 khugepaged_thread = kthread_run(khugepaged, NULL,
1946 "khugepaged");
1947 if (IS_ERR(khugepaged_thread)) {
1948 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1949 err = PTR_ERR(khugepaged_thread);
1950 khugepaged_thread = NULL;
1951 goto fail;
1954 if (!list_empty(&khugepaged_scan.mm_head))
1955 wake_up_interruptible(&khugepaged_wait);
1957 set_recommended_min_free_kbytes();
1958 } else if (khugepaged_thread) {
1959 kthread_stop(khugepaged_thread);
1960 khugepaged_thread = NULL;
1962 fail:
1963 mutex_unlock(&khugepaged_mutex);
1964 return err;