2 * Copyright (c) 2006, 2018 Oracle and/or its affiliates. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
33 #include <linux/kernel.h>
36 #include <linux/netdevice.h>
37 #include <linux/inetdevice.h>
38 #include <linux/if_arp.h>
39 #include <linux/delay.h>
40 #include <linux/slab.h>
41 #include <linux/module.h>
42 #include <net/addrconf.h>
44 #include "rds_single_path.h"
49 static unsigned int rds_ib_mr_1m_pool_size
= RDS_MR_1M_POOL_SIZE
;
50 static unsigned int rds_ib_mr_8k_pool_size
= RDS_MR_8K_POOL_SIZE
;
51 unsigned int rds_ib_retry_count
= RDS_IB_DEFAULT_RETRY_COUNT
;
52 static atomic_t rds_ib_unloading
;
54 module_param(rds_ib_mr_1m_pool_size
, int, 0444);
55 MODULE_PARM_DESC(rds_ib_mr_1m_pool_size
, " Max number of 1M mr per HCA");
56 module_param(rds_ib_mr_8k_pool_size
, int, 0444);
57 MODULE_PARM_DESC(rds_ib_mr_8k_pool_size
, " Max number of 8K mr per HCA");
58 module_param(rds_ib_retry_count
, int, 0444);
59 MODULE_PARM_DESC(rds_ib_retry_count
, " Number of hw retries before reporting an error");
62 * we have a clumsy combination of RCU and a rwsem protecting this list
63 * because it is used both in the get_mr fast path and while blocking in
64 * the FMR flushing path.
66 DECLARE_RWSEM(rds_ib_devices_lock
);
67 struct list_head rds_ib_devices
;
69 /* NOTE: if also grabbing ibdev lock, grab this first */
70 DEFINE_SPINLOCK(ib_nodev_conns_lock
);
71 LIST_HEAD(ib_nodev_conns
);
73 static void rds_ib_nodev_connect(void)
75 struct rds_ib_connection
*ic
;
77 spin_lock(&ib_nodev_conns_lock
);
78 list_for_each_entry(ic
, &ib_nodev_conns
, ib_node
)
79 rds_conn_connect_if_down(ic
->conn
);
80 spin_unlock(&ib_nodev_conns_lock
);
83 static void rds_ib_dev_shutdown(struct rds_ib_device
*rds_ibdev
)
85 struct rds_ib_connection
*ic
;
88 spin_lock_irqsave(&rds_ibdev
->spinlock
, flags
);
89 list_for_each_entry(ic
, &rds_ibdev
->conn_list
, ib_node
)
90 rds_conn_drop(ic
->conn
);
91 spin_unlock_irqrestore(&rds_ibdev
->spinlock
, flags
);
95 * rds_ib_destroy_mr_pool() blocks on a few things and mrs drop references
96 * from interrupt context so we push freing off into a work struct in krdsd.
98 static void rds_ib_dev_free(struct work_struct
*work
)
100 struct rds_ib_ipaddr
*i_ipaddr
, *i_next
;
101 struct rds_ib_device
*rds_ibdev
= container_of(work
,
102 struct rds_ib_device
, free_work
);
104 if (rds_ibdev
->mr_8k_pool
)
105 rds_ib_destroy_mr_pool(rds_ibdev
->mr_8k_pool
);
106 if (rds_ibdev
->mr_1m_pool
)
107 rds_ib_destroy_mr_pool(rds_ibdev
->mr_1m_pool
);
109 ib_dealloc_pd(rds_ibdev
->pd
);
111 list_for_each_entry_safe(i_ipaddr
, i_next
, &rds_ibdev
->ipaddr_list
, list
) {
112 list_del(&i_ipaddr
->list
);
116 kfree(rds_ibdev
->vector_load
);
121 void rds_ib_dev_put(struct rds_ib_device
*rds_ibdev
)
123 BUG_ON(refcount_read(&rds_ibdev
->refcount
) == 0);
124 if (refcount_dec_and_test(&rds_ibdev
->refcount
))
125 queue_work(rds_wq
, &rds_ibdev
->free_work
);
128 static void rds_ib_add_one(struct ib_device
*device
)
130 struct rds_ib_device
*rds_ibdev
;
131 bool has_fr
, has_fmr
;
133 /* Only handle IB (no iWARP) devices */
134 if (device
->node_type
!= RDMA_NODE_IB_CA
)
137 rds_ibdev
= kzalloc_node(sizeof(struct rds_ib_device
), GFP_KERNEL
,
138 ibdev_to_node(device
));
142 spin_lock_init(&rds_ibdev
->spinlock
);
143 refcount_set(&rds_ibdev
->refcount
, 1);
144 INIT_WORK(&rds_ibdev
->free_work
, rds_ib_dev_free
);
146 rds_ibdev
->max_wrs
= device
->attrs
.max_qp_wr
;
147 rds_ibdev
->max_sge
= min(device
->attrs
.max_send_sge
, RDS_IB_MAX_SGE
);
149 has_fr
= (device
->attrs
.device_cap_flags
&
150 IB_DEVICE_MEM_MGT_EXTENSIONS
);
151 has_fmr
= (device
->alloc_fmr
&& device
->dealloc_fmr
&&
152 device
->map_phys_fmr
&& device
->unmap_fmr
);
153 rds_ibdev
->use_fastreg
= (has_fr
&& !has_fmr
);
155 rds_ibdev
->fmr_max_remaps
= device
->attrs
.max_map_per_fmr
?: 32;
156 rds_ibdev
->max_1m_mrs
= device
->attrs
.max_mr
?
157 min_t(unsigned int, (device
->attrs
.max_mr
/ 2),
158 rds_ib_mr_1m_pool_size
) : rds_ib_mr_1m_pool_size
;
160 rds_ibdev
->max_8k_mrs
= device
->attrs
.max_mr
?
161 min_t(unsigned int, ((device
->attrs
.max_mr
/ 2) * RDS_MR_8K_SCALE
),
162 rds_ib_mr_8k_pool_size
) : rds_ib_mr_8k_pool_size
;
164 rds_ibdev
->max_initiator_depth
= device
->attrs
.max_qp_init_rd_atom
;
165 rds_ibdev
->max_responder_resources
= device
->attrs
.max_qp_rd_atom
;
167 rds_ibdev
->vector_load
= kcalloc(device
->num_comp_vectors
,
170 if (!rds_ibdev
->vector_load
) {
171 pr_err("RDS/IB: %s failed to allocate vector memory\n",
176 rds_ibdev
->dev
= device
;
177 rds_ibdev
->pd
= ib_alloc_pd(device
, 0);
178 if (IS_ERR(rds_ibdev
->pd
)) {
179 rds_ibdev
->pd
= NULL
;
183 rds_ibdev
->mr_1m_pool
=
184 rds_ib_create_mr_pool(rds_ibdev
, RDS_IB_MR_1M_POOL
);
185 if (IS_ERR(rds_ibdev
->mr_1m_pool
)) {
186 rds_ibdev
->mr_1m_pool
= NULL
;
190 rds_ibdev
->mr_8k_pool
=
191 rds_ib_create_mr_pool(rds_ibdev
, RDS_IB_MR_8K_POOL
);
192 if (IS_ERR(rds_ibdev
->mr_8k_pool
)) {
193 rds_ibdev
->mr_8k_pool
= NULL
;
197 rdsdebug("RDS/IB: max_mr = %d, max_wrs = %d, max_sge = %d, fmr_max_remaps = %d, max_1m_mrs = %d, max_8k_mrs = %d\n",
198 device
->attrs
.max_fmr
, rds_ibdev
->max_wrs
, rds_ibdev
->max_sge
,
199 rds_ibdev
->fmr_max_remaps
, rds_ibdev
->max_1m_mrs
,
200 rds_ibdev
->max_8k_mrs
);
202 pr_info("RDS/IB: %s: %s supported and preferred\n",
204 rds_ibdev
->use_fastreg
? "FRMR" : "FMR");
206 INIT_LIST_HEAD(&rds_ibdev
->ipaddr_list
);
207 INIT_LIST_HEAD(&rds_ibdev
->conn_list
);
209 down_write(&rds_ib_devices_lock
);
210 list_add_tail_rcu(&rds_ibdev
->list
, &rds_ib_devices
);
211 up_write(&rds_ib_devices_lock
);
212 refcount_inc(&rds_ibdev
->refcount
);
214 ib_set_client_data(device
, &rds_ib_client
, rds_ibdev
);
215 refcount_inc(&rds_ibdev
->refcount
);
217 rds_ib_nodev_connect();
220 rds_ib_dev_put(rds_ibdev
);
224 * New connections use this to find the device to associate with the
225 * connection. It's not in the fast path so we're not concerned about the
226 * performance of the IB call. (As of this writing, it uses an interrupt
227 * blocking spinlock to serialize walking a per-device list of all registered
230 * RCU is used to handle incoming connections racing with device teardown.
231 * Rather than use a lock to serialize removal from the client_data and
232 * getting a new reference, we use an RCU grace period. The destruction
233 * path removes the device from client_data and then waits for all RCU
236 * A new connection can get NULL from this if its arriving on a
237 * device that is in the process of being removed.
239 struct rds_ib_device
*rds_ib_get_client_data(struct ib_device
*device
)
241 struct rds_ib_device
*rds_ibdev
;
244 rds_ibdev
= ib_get_client_data(device
, &rds_ib_client
);
246 refcount_inc(&rds_ibdev
->refcount
);
252 * The IB stack is letting us know that a device is going away. This can
253 * happen if the underlying HCA driver is removed or if PCI hotplug is removing
254 * the pci function, for example.
256 * This can be called at any time and can be racing with any other RDS path.
258 static void rds_ib_remove_one(struct ib_device
*device
, void *client_data
)
260 struct rds_ib_device
*rds_ibdev
= client_data
;
265 rds_ib_dev_shutdown(rds_ibdev
);
267 /* stop connection attempts from getting a reference to this device. */
268 ib_set_client_data(device
, &rds_ib_client
, NULL
);
270 down_write(&rds_ib_devices_lock
);
271 list_del_rcu(&rds_ibdev
->list
);
272 up_write(&rds_ib_devices_lock
);
275 * This synchronize rcu is waiting for readers of both the ib
276 * client data and the devices list to finish before we drop
277 * both of those references.
280 rds_ib_dev_put(rds_ibdev
);
281 rds_ib_dev_put(rds_ibdev
);
284 struct ib_client rds_ib_client
= {
286 .add
= rds_ib_add_one
,
287 .remove
= rds_ib_remove_one
290 static int rds_ib_conn_info_visitor(struct rds_connection
*conn
,
293 struct rds_info_rdma_connection
*iinfo
= buffer
;
294 struct rds_ib_connection
*ic
;
296 /* We will only ever look at IB transports */
297 if (conn
->c_trans
!= &rds_ib_transport
)
302 iinfo
->src_addr
= conn
->c_laddr
.s6_addr32
[3];
303 iinfo
->dst_addr
= conn
->c_faddr
.s6_addr32
[3];
305 memset(&iinfo
->src_gid
, 0, sizeof(iinfo
->src_gid
));
306 memset(&iinfo
->dst_gid
, 0, sizeof(iinfo
->dst_gid
));
307 if (rds_conn_state(conn
) == RDS_CONN_UP
) {
308 struct rds_ib_device
*rds_ibdev
;
310 ic
= conn
->c_transport_data
;
312 rdma_read_gids(ic
->i_cm_id
, (union ib_gid
*)&iinfo
->src_gid
,
313 (union ib_gid
*)&iinfo
->dst_gid
);
315 rds_ibdev
= ic
->rds_ibdev
;
316 iinfo
->max_send_wr
= ic
->i_send_ring
.w_nr
;
317 iinfo
->max_recv_wr
= ic
->i_recv_ring
.w_nr
;
318 iinfo
->max_send_sge
= rds_ibdev
->max_sge
;
319 rds_ib_get_mr_info(rds_ibdev
, iinfo
);
324 #if IS_ENABLED(CONFIG_IPV6)
325 /* IPv6 version of rds_ib_conn_info_visitor(). */
326 static int rds6_ib_conn_info_visitor(struct rds_connection
*conn
,
329 struct rds6_info_rdma_connection
*iinfo6
= buffer
;
330 struct rds_ib_connection
*ic
;
332 /* We will only ever look at IB transports */
333 if (conn
->c_trans
!= &rds_ib_transport
)
336 iinfo6
->src_addr
= conn
->c_laddr
;
337 iinfo6
->dst_addr
= conn
->c_faddr
;
339 memset(&iinfo6
->src_gid
, 0, sizeof(iinfo6
->src_gid
));
340 memset(&iinfo6
->dst_gid
, 0, sizeof(iinfo6
->dst_gid
));
342 if (rds_conn_state(conn
) == RDS_CONN_UP
) {
343 struct rds_ib_device
*rds_ibdev
;
345 ic
= conn
->c_transport_data
;
346 rdma_read_gids(ic
->i_cm_id
, (union ib_gid
*)&iinfo6
->src_gid
,
347 (union ib_gid
*)&iinfo6
->dst_gid
);
348 rds_ibdev
= ic
->rds_ibdev
;
349 iinfo6
->max_send_wr
= ic
->i_send_ring
.w_nr
;
350 iinfo6
->max_recv_wr
= ic
->i_recv_ring
.w_nr
;
351 iinfo6
->max_send_sge
= rds_ibdev
->max_sge
;
352 rds6_ib_get_mr_info(rds_ibdev
, iinfo6
);
358 static void rds_ib_ic_info(struct socket
*sock
, unsigned int len
,
359 struct rds_info_iterator
*iter
,
360 struct rds_info_lengths
*lens
)
362 u64 buffer
[(sizeof(struct rds_info_rdma_connection
) + 7) / 8];
364 rds_for_each_conn_info(sock
, len
, iter
, lens
,
365 rds_ib_conn_info_visitor
,
367 sizeof(struct rds_info_rdma_connection
));
370 #if IS_ENABLED(CONFIG_IPV6)
371 /* IPv6 version of rds_ib_ic_info(). */
372 static void rds6_ib_ic_info(struct socket
*sock
, unsigned int len
,
373 struct rds_info_iterator
*iter
,
374 struct rds_info_lengths
*lens
)
376 u64 buffer
[(sizeof(struct rds6_info_rdma_connection
) + 7) / 8];
378 rds_for_each_conn_info(sock
, len
, iter
, lens
,
379 rds6_ib_conn_info_visitor
,
381 sizeof(struct rds6_info_rdma_connection
));
386 * Early RDS/IB was built to only bind to an address if there is an IPoIB
387 * device with that address set.
389 * If it were me, I'd advocate for something more flexible. Sending and
390 * receiving should be device-agnostic. Transports would try and maintain
391 * connections between peers who have messages queued. Userspace would be
392 * allowed to influence which paths have priority. We could call userspace
393 * asserting this policy "routing".
395 static int rds_ib_laddr_check(struct net
*net
, const struct in6_addr
*addr
,
399 struct rdma_cm_id
*cm_id
;
400 #if IS_ENABLED(CONFIG_IPV6)
401 struct sockaddr_in6 sin6
;
403 struct sockaddr_in sin
;
407 isv4
= ipv6_addr_v4mapped(addr
);
408 /* Create a CMA ID and try to bind it. This catches both
409 * IB and iWARP capable NICs.
411 cm_id
= rdma_create_id(&init_net
, rds_rdma_cm_event_handler
,
412 NULL
, RDMA_PS_TCP
, IB_QPT_RC
);
414 return PTR_ERR(cm_id
);
417 memset(&sin
, 0, sizeof(sin
));
418 sin
.sin_family
= AF_INET
;
419 sin
.sin_addr
.s_addr
= addr
->s6_addr32
[3];
420 sa
= (struct sockaddr
*)&sin
;
422 #if IS_ENABLED(CONFIG_IPV6)
423 memset(&sin6
, 0, sizeof(sin6
));
424 sin6
.sin6_family
= AF_INET6
;
425 sin6
.sin6_addr
= *addr
;
426 sin6
.sin6_scope_id
= scope_id
;
427 sa
= (struct sockaddr
*)&sin6
;
429 /* XXX Do a special IPv6 link local address check here. The
430 * reason is that rdma_bind_addr() always succeeds with IPv6
431 * link local address regardless it is indeed configured in a
434 if (ipv6_addr_type(addr
) & IPV6_ADDR_LINKLOCAL
) {
435 struct net_device
*dev
;
438 ret
= -EADDRNOTAVAIL
;
442 /* Use init_net for now as RDS is not network
445 dev
= dev_get_by_index(&init_net
, scope_id
);
447 ret
= -EADDRNOTAVAIL
;
450 if (!ipv6_chk_addr(&init_net
, addr
, dev
, 1)) {
452 ret
= -EADDRNOTAVAIL
;
458 ret
= -EADDRNOTAVAIL
;
463 /* rdma_bind_addr will only succeed for IB & iWARP devices */
464 ret
= rdma_bind_addr(cm_id
, sa
);
465 /* due to this, we will claim to support iWARP devices unless we
467 if (ret
|| !cm_id
->device
||
468 cm_id
->device
->node_type
!= RDMA_NODE_IB_CA
)
469 ret
= -EADDRNOTAVAIL
;
471 rdsdebug("addr %pI6c%%%u ret %d node type %d\n",
473 cm_id
->device
? cm_id
->device
->node_type
: -1);
476 rdma_destroy_id(cm_id
);
481 static void rds_ib_unregister_client(void)
483 ib_unregister_client(&rds_ib_client
);
484 /* wait for rds_ib_dev_free() to complete */
485 flush_workqueue(rds_wq
);
488 static void rds_ib_set_unloading(void)
490 atomic_set(&rds_ib_unloading
, 1);
493 static bool rds_ib_is_unloading(struct rds_connection
*conn
)
495 struct rds_conn_path
*cp
= &conn
->c_path
[0];
497 return (test_bit(RDS_DESTROY_PENDING
, &cp
->cp_flags
) ||
498 atomic_read(&rds_ib_unloading
) != 0);
501 void rds_ib_exit(void)
503 rds_ib_set_unloading();
505 rds_info_deregister_func(RDS_INFO_IB_CONNECTIONS
, rds_ib_ic_info
);
506 #if IS_ENABLED(CONFIG_IPV6)
507 rds_info_deregister_func(RDS6_INFO_IB_CONNECTIONS
, rds6_ib_ic_info
);
509 rds_ib_unregister_client();
510 rds_ib_destroy_nodev_conns();
511 rds_ib_sysctl_exit();
513 rds_trans_unregister(&rds_ib_transport
);
517 struct rds_transport rds_ib_transport
= {
518 .laddr_check
= rds_ib_laddr_check
,
519 .xmit_path_complete
= rds_ib_xmit_path_complete
,
521 .xmit_rdma
= rds_ib_xmit_rdma
,
522 .xmit_atomic
= rds_ib_xmit_atomic
,
523 .recv_path
= rds_ib_recv_path
,
524 .conn_alloc
= rds_ib_conn_alloc
,
525 .conn_free
= rds_ib_conn_free
,
526 .conn_path_connect
= rds_ib_conn_path_connect
,
527 .conn_path_shutdown
= rds_ib_conn_path_shutdown
,
528 .inc_copy_to_user
= rds_ib_inc_copy_to_user
,
529 .inc_free
= rds_ib_inc_free
,
530 .cm_initiate_connect
= rds_ib_cm_initiate_connect
,
531 .cm_handle_connect
= rds_ib_cm_handle_connect
,
532 .cm_connect_complete
= rds_ib_cm_connect_complete
,
533 .stats_info_copy
= rds_ib_stats_info_copy
,
535 .get_mr
= rds_ib_get_mr
,
536 .sync_mr
= rds_ib_sync_mr
,
537 .free_mr
= rds_ib_free_mr
,
538 .flush_mrs
= rds_ib_flush_mrs
,
539 .t_owner
= THIS_MODULE
,
540 .t_name
= "infiniband",
541 .t_unloading
= rds_ib_is_unloading
,
542 .t_type
= RDS_TRANS_IB
545 int rds_ib_init(void)
549 INIT_LIST_HEAD(&rds_ib_devices
);
551 ret
= rds_ib_mr_init();
555 ret
= ib_register_client(&rds_ib_client
);
559 ret
= rds_ib_sysctl_init();
563 ret
= rds_ib_recv_init();
567 rds_trans_register(&rds_ib_transport
);
569 rds_info_register_func(RDS_INFO_IB_CONNECTIONS
, rds_ib_ic_info
);
570 #if IS_ENABLED(CONFIG_IPV6)
571 rds_info_register_func(RDS6_INFO_IB_CONNECTIONS
, rds6_ib_ic_info
);
577 rds_ib_sysctl_exit();
579 rds_ib_unregister_client();
586 MODULE_LICENSE("GPL");