Merge branch 'sunrpc'
[linux/fpc-iii.git] / mm / memory_hotplug.c
blobaa992e2df58a42a6307a6324a3aa353e194d6f0f
1 /*
2 * linux/mm/memory_hotplug.c
4 * Copyright (C)
5 */
7 #include <linux/stddef.h>
8 #include <linux/mm.h>
9 #include <linux/swap.h>
10 #include <linux/interrupt.h>
11 #include <linux/pagemap.h>
12 #include <linux/compiler.h>
13 #include <linux/export.h>
14 #include <linux/pagevec.h>
15 #include <linux/writeback.h>
16 #include <linux/slab.h>
17 #include <linux/sysctl.h>
18 #include <linux/cpu.h>
19 #include <linux/memory.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/highmem.h>
22 #include <linux/vmalloc.h>
23 #include <linux/ioport.h>
24 #include <linux/delay.h>
25 #include <linux/migrate.h>
26 #include <linux/page-isolation.h>
27 #include <linux/pfn.h>
28 #include <linux/suspend.h>
29 #include <linux/mm_inline.h>
30 #include <linux/firmware-map.h>
31 #include <linux/stop_machine.h>
32 #include <linux/hugetlb.h>
33 #include <linux/memblock.h>
34 #include <linux/bootmem.h>
36 #include <asm/tlbflush.h>
38 #include "internal.h"
41 * online_page_callback contains pointer to current page onlining function.
42 * Initially it is generic_online_page(). If it is required it could be
43 * changed by calling set_online_page_callback() for callback registration
44 * and restore_online_page_callback() for generic callback restore.
47 static void generic_online_page(struct page *page);
49 static online_page_callback_t online_page_callback = generic_online_page;
50 static DEFINE_MUTEX(online_page_callback_lock);
52 /* The same as the cpu_hotplug lock, but for memory hotplug. */
53 static struct {
54 struct task_struct *active_writer;
55 struct mutex lock; /* Synchronizes accesses to refcount, */
57 * Also blocks the new readers during
58 * an ongoing mem hotplug operation.
60 int refcount;
62 #ifdef CONFIG_DEBUG_LOCK_ALLOC
63 struct lockdep_map dep_map;
64 #endif
65 } mem_hotplug = {
66 .active_writer = NULL,
67 .lock = __MUTEX_INITIALIZER(mem_hotplug.lock),
68 .refcount = 0,
69 #ifdef CONFIG_DEBUG_LOCK_ALLOC
70 .dep_map = {.name = "mem_hotplug.lock" },
71 #endif
74 /* Lockdep annotations for get/put_online_mems() and mem_hotplug_begin/end() */
75 #define memhp_lock_acquire_read() lock_map_acquire_read(&mem_hotplug.dep_map)
76 #define memhp_lock_acquire() lock_map_acquire(&mem_hotplug.dep_map)
77 #define memhp_lock_release() lock_map_release(&mem_hotplug.dep_map)
79 void get_online_mems(void)
81 might_sleep();
82 if (mem_hotplug.active_writer == current)
83 return;
84 memhp_lock_acquire_read();
85 mutex_lock(&mem_hotplug.lock);
86 mem_hotplug.refcount++;
87 mutex_unlock(&mem_hotplug.lock);
91 void put_online_mems(void)
93 if (mem_hotplug.active_writer == current)
94 return;
95 mutex_lock(&mem_hotplug.lock);
97 if (WARN_ON(!mem_hotplug.refcount))
98 mem_hotplug.refcount++; /* try to fix things up */
100 if (!--mem_hotplug.refcount && unlikely(mem_hotplug.active_writer))
101 wake_up_process(mem_hotplug.active_writer);
102 mutex_unlock(&mem_hotplug.lock);
103 memhp_lock_release();
107 void mem_hotplug_begin(void)
109 mem_hotplug.active_writer = current;
111 memhp_lock_acquire();
112 for (;;) {
113 mutex_lock(&mem_hotplug.lock);
114 if (likely(!mem_hotplug.refcount))
115 break;
116 __set_current_state(TASK_UNINTERRUPTIBLE);
117 mutex_unlock(&mem_hotplug.lock);
118 schedule();
122 void mem_hotplug_done(void)
124 mem_hotplug.active_writer = NULL;
125 mutex_unlock(&mem_hotplug.lock);
126 memhp_lock_release();
129 /* add this memory to iomem resource */
130 static struct resource *register_memory_resource(u64 start, u64 size)
132 struct resource *res;
133 res = kzalloc(sizeof(struct resource), GFP_KERNEL);
134 BUG_ON(!res);
136 res->name = "System RAM";
137 res->start = start;
138 res->end = start + size - 1;
139 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
140 if (request_resource(&iomem_resource, res) < 0) {
141 pr_debug("System RAM resource %pR cannot be added\n", res);
142 kfree(res);
143 res = NULL;
145 return res;
148 static void release_memory_resource(struct resource *res)
150 if (!res)
151 return;
152 release_resource(res);
153 kfree(res);
154 return;
157 #ifdef CONFIG_MEMORY_HOTPLUG_SPARSE
158 void get_page_bootmem(unsigned long info, struct page *page,
159 unsigned long type)
161 page->lru.next = (struct list_head *) type;
162 SetPagePrivate(page);
163 set_page_private(page, info);
164 atomic_inc(&page->_count);
167 void put_page_bootmem(struct page *page)
169 unsigned long type;
171 type = (unsigned long) page->lru.next;
172 BUG_ON(type < MEMORY_HOTPLUG_MIN_BOOTMEM_TYPE ||
173 type > MEMORY_HOTPLUG_MAX_BOOTMEM_TYPE);
175 if (atomic_dec_return(&page->_count) == 1) {
176 ClearPagePrivate(page);
177 set_page_private(page, 0);
178 INIT_LIST_HEAD(&page->lru);
179 free_reserved_page(page);
183 #ifdef CONFIG_HAVE_BOOTMEM_INFO_NODE
184 #ifndef CONFIG_SPARSEMEM_VMEMMAP
185 static void register_page_bootmem_info_section(unsigned long start_pfn)
187 unsigned long *usemap, mapsize, section_nr, i;
188 struct mem_section *ms;
189 struct page *page, *memmap;
191 section_nr = pfn_to_section_nr(start_pfn);
192 ms = __nr_to_section(section_nr);
194 /* Get section's memmap address */
195 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
198 * Get page for the memmap's phys address
199 * XXX: need more consideration for sparse_vmemmap...
201 page = virt_to_page(memmap);
202 mapsize = sizeof(struct page) * PAGES_PER_SECTION;
203 mapsize = PAGE_ALIGN(mapsize) >> PAGE_SHIFT;
205 /* remember memmap's page */
206 for (i = 0; i < mapsize; i++, page++)
207 get_page_bootmem(section_nr, page, SECTION_INFO);
209 usemap = __nr_to_section(section_nr)->pageblock_flags;
210 page = virt_to_page(usemap);
212 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
214 for (i = 0; i < mapsize; i++, page++)
215 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
218 #else /* CONFIG_SPARSEMEM_VMEMMAP */
219 static void register_page_bootmem_info_section(unsigned long start_pfn)
221 unsigned long *usemap, mapsize, section_nr, i;
222 struct mem_section *ms;
223 struct page *page, *memmap;
225 if (!pfn_valid(start_pfn))
226 return;
228 section_nr = pfn_to_section_nr(start_pfn);
229 ms = __nr_to_section(section_nr);
231 memmap = sparse_decode_mem_map(ms->section_mem_map, section_nr);
233 register_page_bootmem_memmap(section_nr, memmap, PAGES_PER_SECTION);
235 usemap = __nr_to_section(section_nr)->pageblock_flags;
236 page = virt_to_page(usemap);
238 mapsize = PAGE_ALIGN(usemap_size()) >> PAGE_SHIFT;
240 for (i = 0; i < mapsize; i++, page++)
241 get_page_bootmem(section_nr, page, MIX_SECTION_INFO);
243 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
245 void register_page_bootmem_info_node(struct pglist_data *pgdat)
247 unsigned long i, pfn, end_pfn, nr_pages;
248 int node = pgdat->node_id;
249 struct page *page;
250 struct zone *zone;
252 nr_pages = PAGE_ALIGN(sizeof(struct pglist_data)) >> PAGE_SHIFT;
253 page = virt_to_page(pgdat);
255 for (i = 0; i < nr_pages; i++, page++)
256 get_page_bootmem(node, page, NODE_INFO);
258 zone = &pgdat->node_zones[0];
259 for (; zone < pgdat->node_zones + MAX_NR_ZONES - 1; zone++) {
260 if (zone_is_initialized(zone)) {
261 nr_pages = zone->wait_table_hash_nr_entries
262 * sizeof(wait_queue_head_t);
263 nr_pages = PAGE_ALIGN(nr_pages) >> PAGE_SHIFT;
264 page = virt_to_page(zone->wait_table);
266 for (i = 0; i < nr_pages; i++, page++)
267 get_page_bootmem(node, page, NODE_INFO);
271 pfn = pgdat->node_start_pfn;
272 end_pfn = pgdat_end_pfn(pgdat);
274 /* register section info */
275 for (; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
277 * Some platforms can assign the same pfn to multiple nodes - on
278 * node0 as well as nodeN. To avoid registering a pfn against
279 * multiple nodes we check that this pfn does not already
280 * reside in some other nodes.
282 if (pfn_valid(pfn) && (pfn_to_nid(pfn) == node))
283 register_page_bootmem_info_section(pfn);
286 #endif /* CONFIG_HAVE_BOOTMEM_INFO_NODE */
288 static void __meminit grow_zone_span(struct zone *zone, unsigned long start_pfn,
289 unsigned long end_pfn)
291 unsigned long old_zone_end_pfn;
293 zone_span_writelock(zone);
295 old_zone_end_pfn = zone_end_pfn(zone);
296 if (zone_is_empty(zone) || start_pfn < zone->zone_start_pfn)
297 zone->zone_start_pfn = start_pfn;
299 zone->spanned_pages = max(old_zone_end_pfn, end_pfn) -
300 zone->zone_start_pfn;
302 zone_span_writeunlock(zone);
305 static void resize_zone(struct zone *zone, unsigned long start_pfn,
306 unsigned long end_pfn)
308 zone_span_writelock(zone);
310 if (end_pfn - start_pfn) {
311 zone->zone_start_pfn = start_pfn;
312 zone->spanned_pages = end_pfn - start_pfn;
313 } else {
315 * make it consist as free_area_init_core(),
316 * if spanned_pages = 0, then keep start_pfn = 0
318 zone->zone_start_pfn = 0;
319 zone->spanned_pages = 0;
322 zone_span_writeunlock(zone);
325 static void fix_zone_id(struct zone *zone, unsigned long start_pfn,
326 unsigned long end_pfn)
328 enum zone_type zid = zone_idx(zone);
329 int nid = zone->zone_pgdat->node_id;
330 unsigned long pfn;
332 for (pfn = start_pfn; pfn < end_pfn; pfn++)
333 set_page_links(pfn_to_page(pfn), zid, nid, pfn);
336 /* Can fail with -ENOMEM from allocating a wait table with vmalloc() or
337 * alloc_bootmem_node_nopanic()/memblock_virt_alloc_node_nopanic() */
338 static int __ref ensure_zone_is_initialized(struct zone *zone,
339 unsigned long start_pfn, unsigned long num_pages)
341 if (!zone_is_initialized(zone))
342 return init_currently_empty_zone(zone, start_pfn, num_pages,
343 MEMMAP_HOTPLUG);
344 return 0;
347 static int __meminit move_pfn_range_left(struct zone *z1, struct zone *z2,
348 unsigned long start_pfn, unsigned long end_pfn)
350 int ret;
351 unsigned long flags;
352 unsigned long z1_start_pfn;
354 ret = ensure_zone_is_initialized(z1, start_pfn, end_pfn - start_pfn);
355 if (ret)
356 return ret;
358 pgdat_resize_lock(z1->zone_pgdat, &flags);
360 /* can't move pfns which are higher than @z2 */
361 if (end_pfn > zone_end_pfn(z2))
362 goto out_fail;
363 /* the move out part must be at the left most of @z2 */
364 if (start_pfn > z2->zone_start_pfn)
365 goto out_fail;
366 /* must included/overlap */
367 if (end_pfn <= z2->zone_start_pfn)
368 goto out_fail;
370 /* use start_pfn for z1's start_pfn if z1 is empty */
371 if (!zone_is_empty(z1))
372 z1_start_pfn = z1->zone_start_pfn;
373 else
374 z1_start_pfn = start_pfn;
376 resize_zone(z1, z1_start_pfn, end_pfn);
377 resize_zone(z2, end_pfn, zone_end_pfn(z2));
379 pgdat_resize_unlock(z1->zone_pgdat, &flags);
381 fix_zone_id(z1, start_pfn, end_pfn);
383 return 0;
384 out_fail:
385 pgdat_resize_unlock(z1->zone_pgdat, &flags);
386 return -1;
389 static int __meminit move_pfn_range_right(struct zone *z1, struct zone *z2,
390 unsigned long start_pfn, unsigned long end_pfn)
392 int ret;
393 unsigned long flags;
394 unsigned long z2_end_pfn;
396 ret = ensure_zone_is_initialized(z2, start_pfn, end_pfn - start_pfn);
397 if (ret)
398 return ret;
400 pgdat_resize_lock(z1->zone_pgdat, &flags);
402 /* can't move pfns which are lower than @z1 */
403 if (z1->zone_start_pfn > start_pfn)
404 goto out_fail;
405 /* the move out part mast at the right most of @z1 */
406 if (zone_end_pfn(z1) > end_pfn)
407 goto out_fail;
408 /* must included/overlap */
409 if (start_pfn >= zone_end_pfn(z1))
410 goto out_fail;
412 /* use end_pfn for z2's end_pfn if z2 is empty */
413 if (!zone_is_empty(z2))
414 z2_end_pfn = zone_end_pfn(z2);
415 else
416 z2_end_pfn = end_pfn;
418 resize_zone(z1, z1->zone_start_pfn, start_pfn);
419 resize_zone(z2, start_pfn, z2_end_pfn);
421 pgdat_resize_unlock(z1->zone_pgdat, &flags);
423 fix_zone_id(z2, start_pfn, end_pfn);
425 return 0;
426 out_fail:
427 pgdat_resize_unlock(z1->zone_pgdat, &flags);
428 return -1;
431 static void __meminit grow_pgdat_span(struct pglist_data *pgdat, unsigned long start_pfn,
432 unsigned long end_pfn)
434 unsigned long old_pgdat_end_pfn = pgdat_end_pfn(pgdat);
436 if (!pgdat->node_spanned_pages || start_pfn < pgdat->node_start_pfn)
437 pgdat->node_start_pfn = start_pfn;
439 pgdat->node_spanned_pages = max(old_pgdat_end_pfn, end_pfn) -
440 pgdat->node_start_pfn;
443 static int __meminit __add_zone(struct zone *zone, unsigned long phys_start_pfn)
445 struct pglist_data *pgdat = zone->zone_pgdat;
446 int nr_pages = PAGES_PER_SECTION;
447 int nid = pgdat->node_id;
448 int zone_type;
449 unsigned long flags, pfn;
450 int ret;
452 zone_type = zone - pgdat->node_zones;
453 ret = ensure_zone_is_initialized(zone, phys_start_pfn, nr_pages);
454 if (ret)
455 return ret;
457 pgdat_resize_lock(zone->zone_pgdat, &flags);
458 grow_zone_span(zone, phys_start_pfn, phys_start_pfn + nr_pages);
459 grow_pgdat_span(zone->zone_pgdat, phys_start_pfn,
460 phys_start_pfn + nr_pages);
461 pgdat_resize_unlock(zone->zone_pgdat, &flags);
462 memmap_init_zone(nr_pages, nid, zone_type,
463 phys_start_pfn, MEMMAP_HOTPLUG);
465 /* online_page_range is called later and expects pages reserved */
466 for (pfn = phys_start_pfn; pfn < phys_start_pfn + nr_pages; pfn++) {
467 if (!pfn_valid(pfn))
468 continue;
470 SetPageReserved(pfn_to_page(pfn));
472 return 0;
475 static int __meminit __add_section(int nid, struct zone *zone,
476 unsigned long phys_start_pfn)
478 int ret;
480 if (pfn_valid(phys_start_pfn))
481 return -EEXIST;
483 ret = sparse_add_one_section(zone, phys_start_pfn);
485 if (ret < 0)
486 return ret;
488 ret = __add_zone(zone, phys_start_pfn);
490 if (ret < 0)
491 return ret;
493 return register_new_memory(nid, __pfn_to_section(phys_start_pfn));
497 * Reasonably generic function for adding memory. It is
498 * expected that archs that support memory hotplug will
499 * call this function after deciding the zone to which to
500 * add the new pages.
502 int __ref __add_pages(int nid, struct zone *zone, unsigned long phys_start_pfn,
503 unsigned long nr_pages)
505 unsigned long i;
506 int err = 0;
507 int start_sec, end_sec;
508 /* during initialize mem_map, align hot-added range to section */
509 start_sec = pfn_to_section_nr(phys_start_pfn);
510 end_sec = pfn_to_section_nr(phys_start_pfn + nr_pages - 1);
512 for (i = start_sec; i <= end_sec; i++) {
513 err = __add_section(nid, zone, section_nr_to_pfn(i));
516 * EEXIST is finally dealt with by ioresource collision
517 * check. see add_memory() => register_memory_resource()
518 * Warning will be printed if there is collision.
520 if (err && (err != -EEXIST))
521 break;
522 err = 0;
524 vmemmap_populate_print_last();
526 return err;
528 EXPORT_SYMBOL_GPL(__add_pages);
530 #ifdef CONFIG_MEMORY_HOTREMOVE
531 /* find the smallest valid pfn in the range [start_pfn, end_pfn) */
532 static int find_smallest_section_pfn(int nid, struct zone *zone,
533 unsigned long start_pfn,
534 unsigned long end_pfn)
536 struct mem_section *ms;
538 for (; start_pfn < end_pfn; start_pfn += PAGES_PER_SECTION) {
539 ms = __pfn_to_section(start_pfn);
541 if (unlikely(!valid_section(ms)))
542 continue;
544 if (unlikely(pfn_to_nid(start_pfn) != nid))
545 continue;
547 if (zone && zone != page_zone(pfn_to_page(start_pfn)))
548 continue;
550 return start_pfn;
553 return 0;
556 /* find the biggest valid pfn in the range [start_pfn, end_pfn). */
557 static int find_biggest_section_pfn(int nid, struct zone *zone,
558 unsigned long start_pfn,
559 unsigned long end_pfn)
561 struct mem_section *ms;
562 unsigned long pfn;
564 /* pfn is the end pfn of a memory section. */
565 pfn = end_pfn - 1;
566 for (; pfn >= start_pfn; pfn -= PAGES_PER_SECTION) {
567 ms = __pfn_to_section(pfn);
569 if (unlikely(!valid_section(ms)))
570 continue;
572 if (unlikely(pfn_to_nid(pfn) != nid))
573 continue;
575 if (zone && zone != page_zone(pfn_to_page(pfn)))
576 continue;
578 return pfn;
581 return 0;
584 static void shrink_zone_span(struct zone *zone, unsigned long start_pfn,
585 unsigned long end_pfn)
587 unsigned long zone_start_pfn = zone->zone_start_pfn;
588 unsigned long z = zone_end_pfn(zone); /* zone_end_pfn namespace clash */
589 unsigned long zone_end_pfn = z;
590 unsigned long pfn;
591 struct mem_section *ms;
592 int nid = zone_to_nid(zone);
594 zone_span_writelock(zone);
595 if (zone_start_pfn == start_pfn) {
597 * If the section is smallest section in the zone, it need
598 * shrink zone->zone_start_pfn and zone->zone_spanned_pages.
599 * In this case, we find second smallest valid mem_section
600 * for shrinking zone.
602 pfn = find_smallest_section_pfn(nid, zone, end_pfn,
603 zone_end_pfn);
604 if (pfn) {
605 zone->zone_start_pfn = pfn;
606 zone->spanned_pages = zone_end_pfn - pfn;
608 } else if (zone_end_pfn == end_pfn) {
610 * If the section is biggest section in the zone, it need
611 * shrink zone->spanned_pages.
612 * In this case, we find second biggest valid mem_section for
613 * shrinking zone.
615 pfn = find_biggest_section_pfn(nid, zone, zone_start_pfn,
616 start_pfn);
617 if (pfn)
618 zone->spanned_pages = pfn - zone_start_pfn + 1;
622 * The section is not biggest or smallest mem_section in the zone, it
623 * only creates a hole in the zone. So in this case, we need not
624 * change the zone. But perhaps, the zone has only hole data. Thus
625 * it check the zone has only hole or not.
627 pfn = zone_start_pfn;
628 for (; pfn < zone_end_pfn; pfn += PAGES_PER_SECTION) {
629 ms = __pfn_to_section(pfn);
631 if (unlikely(!valid_section(ms)))
632 continue;
634 if (page_zone(pfn_to_page(pfn)) != zone)
635 continue;
637 /* If the section is current section, it continues the loop */
638 if (start_pfn == pfn)
639 continue;
641 /* If we find valid section, we have nothing to do */
642 zone_span_writeunlock(zone);
643 return;
646 /* The zone has no valid section */
647 zone->zone_start_pfn = 0;
648 zone->spanned_pages = 0;
649 zone_span_writeunlock(zone);
652 static void shrink_pgdat_span(struct pglist_data *pgdat,
653 unsigned long start_pfn, unsigned long end_pfn)
655 unsigned long pgdat_start_pfn = pgdat->node_start_pfn;
656 unsigned long p = pgdat_end_pfn(pgdat); /* pgdat_end_pfn namespace clash */
657 unsigned long pgdat_end_pfn = p;
658 unsigned long pfn;
659 struct mem_section *ms;
660 int nid = pgdat->node_id;
662 if (pgdat_start_pfn == start_pfn) {
664 * If the section is smallest section in the pgdat, it need
665 * shrink pgdat->node_start_pfn and pgdat->node_spanned_pages.
666 * In this case, we find second smallest valid mem_section
667 * for shrinking zone.
669 pfn = find_smallest_section_pfn(nid, NULL, end_pfn,
670 pgdat_end_pfn);
671 if (pfn) {
672 pgdat->node_start_pfn = pfn;
673 pgdat->node_spanned_pages = pgdat_end_pfn - pfn;
675 } else if (pgdat_end_pfn == end_pfn) {
677 * If the section is biggest section in the pgdat, it need
678 * shrink pgdat->node_spanned_pages.
679 * In this case, we find second biggest valid mem_section for
680 * shrinking zone.
682 pfn = find_biggest_section_pfn(nid, NULL, pgdat_start_pfn,
683 start_pfn);
684 if (pfn)
685 pgdat->node_spanned_pages = pfn - pgdat_start_pfn + 1;
689 * If the section is not biggest or smallest mem_section in the pgdat,
690 * it only creates a hole in the pgdat. So in this case, we need not
691 * change the pgdat.
692 * But perhaps, the pgdat has only hole data. Thus it check the pgdat
693 * has only hole or not.
695 pfn = pgdat_start_pfn;
696 for (; pfn < pgdat_end_pfn; pfn += PAGES_PER_SECTION) {
697 ms = __pfn_to_section(pfn);
699 if (unlikely(!valid_section(ms)))
700 continue;
702 if (pfn_to_nid(pfn) != nid)
703 continue;
705 /* If the section is current section, it continues the loop */
706 if (start_pfn == pfn)
707 continue;
709 /* If we find valid section, we have nothing to do */
710 return;
713 /* The pgdat has no valid section */
714 pgdat->node_start_pfn = 0;
715 pgdat->node_spanned_pages = 0;
718 static void __remove_zone(struct zone *zone, unsigned long start_pfn)
720 struct pglist_data *pgdat = zone->zone_pgdat;
721 int nr_pages = PAGES_PER_SECTION;
722 int zone_type;
723 unsigned long flags;
725 zone_type = zone - pgdat->node_zones;
727 pgdat_resize_lock(zone->zone_pgdat, &flags);
728 shrink_zone_span(zone, start_pfn, start_pfn + nr_pages);
729 shrink_pgdat_span(pgdat, start_pfn, start_pfn + nr_pages);
730 pgdat_resize_unlock(zone->zone_pgdat, &flags);
733 static int __remove_section(struct zone *zone, struct mem_section *ms)
735 unsigned long start_pfn;
736 int scn_nr;
737 int ret = -EINVAL;
739 if (!valid_section(ms))
740 return ret;
742 ret = unregister_memory_section(ms);
743 if (ret)
744 return ret;
746 scn_nr = __section_nr(ms);
747 start_pfn = section_nr_to_pfn(scn_nr);
748 __remove_zone(zone, start_pfn);
750 sparse_remove_one_section(zone, ms);
751 return 0;
755 * __remove_pages() - remove sections of pages from a zone
756 * @zone: zone from which pages need to be removed
757 * @phys_start_pfn: starting pageframe (must be aligned to start of a section)
758 * @nr_pages: number of pages to remove (must be multiple of section size)
760 * Generic helper function to remove section mappings and sysfs entries
761 * for the section of the memory we are removing. Caller needs to make
762 * sure that pages are marked reserved and zones are adjust properly by
763 * calling offline_pages().
765 int __remove_pages(struct zone *zone, unsigned long phys_start_pfn,
766 unsigned long nr_pages)
768 unsigned long i;
769 int sections_to_remove;
770 resource_size_t start, size;
771 int ret = 0;
774 * We can only remove entire sections
776 BUG_ON(phys_start_pfn & ~PAGE_SECTION_MASK);
777 BUG_ON(nr_pages % PAGES_PER_SECTION);
779 start = phys_start_pfn << PAGE_SHIFT;
780 size = nr_pages * PAGE_SIZE;
782 /* in the ZONE_DEVICE case device driver owns the memory region */
783 if (!is_dev_zone(zone))
784 ret = release_mem_region_adjustable(&iomem_resource, start, size);
785 if (ret) {
786 resource_size_t endres = start + size - 1;
788 pr_warn("Unable to release resource <%pa-%pa> (%d)\n",
789 &start, &endres, ret);
792 sections_to_remove = nr_pages / PAGES_PER_SECTION;
793 for (i = 0; i < sections_to_remove; i++) {
794 unsigned long pfn = phys_start_pfn + i*PAGES_PER_SECTION;
795 ret = __remove_section(zone, __pfn_to_section(pfn));
796 if (ret)
797 break;
799 return ret;
801 EXPORT_SYMBOL_GPL(__remove_pages);
802 #endif /* CONFIG_MEMORY_HOTREMOVE */
804 int set_online_page_callback(online_page_callback_t callback)
806 int rc = -EINVAL;
808 get_online_mems();
809 mutex_lock(&online_page_callback_lock);
811 if (online_page_callback == generic_online_page) {
812 online_page_callback = callback;
813 rc = 0;
816 mutex_unlock(&online_page_callback_lock);
817 put_online_mems();
819 return rc;
821 EXPORT_SYMBOL_GPL(set_online_page_callback);
823 int restore_online_page_callback(online_page_callback_t callback)
825 int rc = -EINVAL;
827 get_online_mems();
828 mutex_lock(&online_page_callback_lock);
830 if (online_page_callback == callback) {
831 online_page_callback = generic_online_page;
832 rc = 0;
835 mutex_unlock(&online_page_callback_lock);
836 put_online_mems();
838 return rc;
840 EXPORT_SYMBOL_GPL(restore_online_page_callback);
842 void __online_page_set_limits(struct page *page)
845 EXPORT_SYMBOL_GPL(__online_page_set_limits);
847 void __online_page_increment_counters(struct page *page)
849 adjust_managed_page_count(page, 1);
851 EXPORT_SYMBOL_GPL(__online_page_increment_counters);
853 void __online_page_free(struct page *page)
855 __free_reserved_page(page);
857 EXPORT_SYMBOL_GPL(__online_page_free);
859 static void generic_online_page(struct page *page)
861 __online_page_set_limits(page);
862 __online_page_increment_counters(page);
863 __online_page_free(page);
866 static int online_pages_range(unsigned long start_pfn, unsigned long nr_pages,
867 void *arg)
869 unsigned long i;
870 unsigned long onlined_pages = *(unsigned long *)arg;
871 struct page *page;
872 if (PageReserved(pfn_to_page(start_pfn)))
873 for (i = 0; i < nr_pages; i++) {
874 page = pfn_to_page(start_pfn + i);
875 (*online_page_callback)(page);
876 onlined_pages++;
878 *(unsigned long *)arg = onlined_pages;
879 return 0;
882 #ifdef CONFIG_MOVABLE_NODE
884 * When CONFIG_MOVABLE_NODE, we permit onlining of a node which doesn't have
885 * normal memory.
887 static bool can_online_high_movable(struct zone *zone)
889 return true;
891 #else /* CONFIG_MOVABLE_NODE */
892 /* ensure every online node has NORMAL memory */
893 static bool can_online_high_movable(struct zone *zone)
895 return node_state(zone_to_nid(zone), N_NORMAL_MEMORY);
897 #endif /* CONFIG_MOVABLE_NODE */
899 /* check which state of node_states will be changed when online memory */
900 static void node_states_check_changes_online(unsigned long nr_pages,
901 struct zone *zone, struct memory_notify *arg)
903 int nid = zone_to_nid(zone);
904 enum zone_type zone_last = ZONE_NORMAL;
907 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
908 * contains nodes which have zones of 0...ZONE_NORMAL,
909 * set zone_last to ZONE_NORMAL.
911 * If we don't have HIGHMEM nor movable node,
912 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
913 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
915 if (N_MEMORY == N_NORMAL_MEMORY)
916 zone_last = ZONE_MOVABLE;
919 * if the memory to be online is in a zone of 0...zone_last, and
920 * the zones of 0...zone_last don't have memory before online, we will
921 * need to set the node to node_states[N_NORMAL_MEMORY] after
922 * the memory is online.
924 if (zone_idx(zone) <= zone_last && !node_state(nid, N_NORMAL_MEMORY))
925 arg->status_change_nid_normal = nid;
926 else
927 arg->status_change_nid_normal = -1;
929 #ifdef CONFIG_HIGHMEM
931 * If we have movable node, node_states[N_HIGH_MEMORY]
932 * contains nodes which have zones of 0...ZONE_HIGHMEM,
933 * set zone_last to ZONE_HIGHMEM.
935 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
936 * contains nodes which have zones of 0...ZONE_MOVABLE,
937 * set zone_last to ZONE_MOVABLE.
939 zone_last = ZONE_HIGHMEM;
940 if (N_MEMORY == N_HIGH_MEMORY)
941 zone_last = ZONE_MOVABLE;
943 if (zone_idx(zone) <= zone_last && !node_state(nid, N_HIGH_MEMORY))
944 arg->status_change_nid_high = nid;
945 else
946 arg->status_change_nid_high = -1;
947 #else
948 arg->status_change_nid_high = arg->status_change_nid_normal;
949 #endif
952 * if the node don't have memory befor online, we will need to
953 * set the node to node_states[N_MEMORY] after the memory
954 * is online.
956 if (!node_state(nid, N_MEMORY))
957 arg->status_change_nid = nid;
958 else
959 arg->status_change_nid = -1;
962 static void node_states_set_node(int node, struct memory_notify *arg)
964 if (arg->status_change_nid_normal >= 0)
965 node_set_state(node, N_NORMAL_MEMORY);
967 if (arg->status_change_nid_high >= 0)
968 node_set_state(node, N_HIGH_MEMORY);
970 node_set_state(node, N_MEMORY);
974 /* Must be protected by mem_hotplug_begin() */
975 int __ref online_pages(unsigned long pfn, unsigned long nr_pages, int online_type)
977 unsigned long flags;
978 unsigned long onlined_pages = 0;
979 struct zone *zone;
980 int need_zonelists_rebuild = 0;
981 int nid;
982 int ret;
983 struct memory_notify arg;
986 * This doesn't need a lock to do pfn_to_page().
987 * The section can't be removed here because of the
988 * memory_block->state_mutex.
990 zone = page_zone(pfn_to_page(pfn));
992 if ((zone_idx(zone) > ZONE_NORMAL ||
993 online_type == MMOP_ONLINE_MOVABLE) &&
994 !can_online_high_movable(zone))
995 return -EINVAL;
997 if (online_type == MMOP_ONLINE_KERNEL &&
998 zone_idx(zone) == ZONE_MOVABLE) {
999 if (move_pfn_range_left(zone - 1, zone, pfn, pfn + nr_pages))
1000 return -EINVAL;
1002 if (online_type == MMOP_ONLINE_MOVABLE &&
1003 zone_idx(zone) == ZONE_MOVABLE - 1) {
1004 if (move_pfn_range_right(zone, zone + 1, pfn, pfn + nr_pages))
1005 return -EINVAL;
1008 /* Previous code may changed the zone of the pfn range */
1009 zone = page_zone(pfn_to_page(pfn));
1011 arg.start_pfn = pfn;
1012 arg.nr_pages = nr_pages;
1013 node_states_check_changes_online(nr_pages, zone, &arg);
1015 nid = pfn_to_nid(pfn);
1017 ret = memory_notify(MEM_GOING_ONLINE, &arg);
1018 ret = notifier_to_errno(ret);
1019 if (ret) {
1020 memory_notify(MEM_CANCEL_ONLINE, &arg);
1021 return ret;
1024 * If this zone is not populated, then it is not in zonelist.
1025 * This means the page allocator ignores this zone.
1026 * So, zonelist must be updated after online.
1028 mutex_lock(&zonelists_mutex);
1029 if (!populated_zone(zone)) {
1030 need_zonelists_rebuild = 1;
1031 build_all_zonelists(NULL, zone);
1034 ret = walk_system_ram_range(pfn, nr_pages, &onlined_pages,
1035 online_pages_range);
1036 if (ret) {
1037 if (need_zonelists_rebuild)
1038 zone_pcp_reset(zone);
1039 mutex_unlock(&zonelists_mutex);
1040 printk(KERN_DEBUG "online_pages [mem %#010llx-%#010llx] failed\n",
1041 (unsigned long long) pfn << PAGE_SHIFT,
1042 (((unsigned long long) pfn + nr_pages)
1043 << PAGE_SHIFT) - 1);
1044 memory_notify(MEM_CANCEL_ONLINE, &arg);
1045 return ret;
1048 zone->present_pages += onlined_pages;
1050 pgdat_resize_lock(zone->zone_pgdat, &flags);
1051 zone->zone_pgdat->node_present_pages += onlined_pages;
1052 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1054 if (onlined_pages) {
1055 node_states_set_node(zone_to_nid(zone), &arg);
1056 if (need_zonelists_rebuild)
1057 build_all_zonelists(NULL, NULL);
1058 else
1059 zone_pcp_update(zone);
1062 mutex_unlock(&zonelists_mutex);
1064 init_per_zone_wmark_min();
1066 if (onlined_pages)
1067 kswapd_run(zone_to_nid(zone));
1069 vm_total_pages = nr_free_pagecache_pages();
1071 writeback_set_ratelimit();
1073 if (onlined_pages)
1074 memory_notify(MEM_ONLINE, &arg);
1075 return 0;
1077 #endif /* CONFIG_MEMORY_HOTPLUG_SPARSE */
1079 static void reset_node_present_pages(pg_data_t *pgdat)
1081 struct zone *z;
1083 for (z = pgdat->node_zones; z < pgdat->node_zones + MAX_NR_ZONES; z++)
1084 z->present_pages = 0;
1086 pgdat->node_present_pages = 0;
1089 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1090 static pg_data_t __ref *hotadd_new_pgdat(int nid, u64 start)
1092 struct pglist_data *pgdat;
1093 unsigned long zones_size[MAX_NR_ZONES] = {0};
1094 unsigned long zholes_size[MAX_NR_ZONES] = {0};
1095 unsigned long start_pfn = PFN_DOWN(start);
1097 pgdat = NODE_DATA(nid);
1098 if (!pgdat) {
1099 pgdat = arch_alloc_nodedata(nid);
1100 if (!pgdat)
1101 return NULL;
1103 arch_refresh_nodedata(nid, pgdat);
1104 } else {
1105 /* Reset the nr_zones and classzone_idx to 0 before reuse */
1106 pgdat->nr_zones = 0;
1107 pgdat->classzone_idx = 0;
1110 /* we can use NODE_DATA(nid) from here */
1112 /* init node's zones as empty zones, we don't have any present pages.*/
1113 free_area_init_node(nid, zones_size, start_pfn, zholes_size);
1116 * The node we allocated has no zone fallback lists. For avoiding
1117 * to access not-initialized zonelist, build here.
1119 mutex_lock(&zonelists_mutex);
1120 build_all_zonelists(pgdat, NULL);
1121 mutex_unlock(&zonelists_mutex);
1124 * zone->managed_pages is set to an approximate value in
1125 * free_area_init_core(), which will cause
1126 * /sys/device/system/node/nodeX/meminfo has wrong data.
1127 * So reset it to 0 before any memory is onlined.
1129 reset_node_managed_pages(pgdat);
1132 * When memory is hot-added, all the memory is in offline state. So
1133 * clear all zones' present_pages because they will be updated in
1134 * online_pages() and offline_pages().
1136 reset_node_present_pages(pgdat);
1138 return pgdat;
1141 static void rollback_node_hotadd(int nid, pg_data_t *pgdat)
1143 arch_refresh_nodedata(nid, NULL);
1144 arch_free_nodedata(pgdat);
1145 return;
1150 * try_online_node - online a node if offlined
1152 * called by cpu_up() to online a node without onlined memory.
1154 int try_online_node(int nid)
1156 pg_data_t *pgdat;
1157 int ret;
1159 if (node_online(nid))
1160 return 0;
1162 mem_hotplug_begin();
1163 pgdat = hotadd_new_pgdat(nid, 0);
1164 if (!pgdat) {
1165 pr_err("Cannot online node %d due to NULL pgdat\n", nid);
1166 ret = -ENOMEM;
1167 goto out;
1169 node_set_online(nid);
1170 ret = register_one_node(nid);
1171 BUG_ON(ret);
1173 if (pgdat->node_zonelists->_zonerefs->zone == NULL) {
1174 mutex_lock(&zonelists_mutex);
1175 build_all_zonelists(NULL, NULL);
1176 mutex_unlock(&zonelists_mutex);
1179 out:
1180 mem_hotplug_done();
1181 return ret;
1184 static int check_hotplug_memory_range(u64 start, u64 size)
1186 u64 start_pfn = PFN_DOWN(start);
1187 u64 nr_pages = size >> PAGE_SHIFT;
1189 /* Memory range must be aligned with section */
1190 if ((start_pfn & ~PAGE_SECTION_MASK) ||
1191 (nr_pages % PAGES_PER_SECTION) || (!nr_pages)) {
1192 pr_err("Section-unaligned hotplug range: start 0x%llx, size 0x%llx\n",
1193 (unsigned long long)start,
1194 (unsigned long long)size);
1195 return -EINVAL;
1198 return 0;
1202 * If movable zone has already been setup, newly added memory should be check.
1203 * If its address is higher than movable zone, it should be added as movable.
1204 * Without this check, movable zone may overlap with other zone.
1206 static int should_add_memory_movable(int nid, u64 start, u64 size)
1208 unsigned long start_pfn = start >> PAGE_SHIFT;
1209 pg_data_t *pgdat = NODE_DATA(nid);
1210 struct zone *movable_zone = pgdat->node_zones + ZONE_MOVABLE;
1212 if (zone_is_empty(movable_zone))
1213 return 0;
1215 if (movable_zone->zone_start_pfn <= start_pfn)
1216 return 1;
1218 return 0;
1221 int zone_for_memory(int nid, u64 start, u64 size, int zone_default,
1222 bool for_device)
1224 #ifdef CONFIG_ZONE_DEVICE
1225 if (for_device)
1226 return ZONE_DEVICE;
1227 #endif
1228 if (should_add_memory_movable(nid, start, size))
1229 return ZONE_MOVABLE;
1231 return zone_default;
1234 /* we are OK calling __meminit stuff here - we have CONFIG_MEMORY_HOTPLUG */
1235 int __ref add_memory(int nid, u64 start, u64 size)
1237 pg_data_t *pgdat = NULL;
1238 bool new_pgdat;
1239 bool new_node;
1240 struct resource *res;
1241 int ret;
1243 ret = check_hotplug_memory_range(start, size);
1244 if (ret)
1245 return ret;
1247 res = register_memory_resource(start, size);
1248 ret = -EEXIST;
1249 if (!res)
1250 return ret;
1252 { /* Stupid hack to suppress address-never-null warning */
1253 void *p = NODE_DATA(nid);
1254 new_pgdat = !p;
1257 mem_hotplug_begin();
1260 * Add new range to memblock so that when hotadd_new_pgdat() is called
1261 * to allocate new pgdat, get_pfn_range_for_nid() will be able to find
1262 * this new range and calculate total pages correctly. The range will
1263 * be removed at hot-remove time.
1265 memblock_add_node(start, size, nid);
1267 new_node = !node_online(nid);
1268 if (new_node) {
1269 pgdat = hotadd_new_pgdat(nid, start);
1270 ret = -ENOMEM;
1271 if (!pgdat)
1272 goto error;
1275 /* call arch's memory hotadd */
1276 ret = arch_add_memory(nid, start, size, false);
1278 if (ret < 0)
1279 goto error;
1281 /* we online node here. we can't roll back from here. */
1282 node_set_online(nid);
1284 if (new_node) {
1285 ret = register_one_node(nid);
1287 * If sysfs file of new node can't create, cpu on the node
1288 * can't be hot-added. There is no rollback way now.
1289 * So, check by BUG_ON() to catch it reluctantly..
1291 BUG_ON(ret);
1294 /* create new memmap entry */
1295 firmware_map_add_hotplug(start, start + size, "System RAM");
1297 goto out;
1299 error:
1300 /* rollback pgdat allocation and others */
1301 if (new_pgdat)
1302 rollback_node_hotadd(nid, pgdat);
1303 release_memory_resource(res);
1304 memblock_remove(start, size);
1306 out:
1307 mem_hotplug_done();
1308 return ret;
1310 EXPORT_SYMBOL_GPL(add_memory);
1312 #ifdef CONFIG_MEMORY_HOTREMOVE
1314 * A free page on the buddy free lists (not the per-cpu lists) has PageBuddy
1315 * set and the size of the free page is given by page_order(). Using this,
1316 * the function determines if the pageblock contains only free pages.
1317 * Due to buddy contraints, a free page at least the size of a pageblock will
1318 * be located at the start of the pageblock
1320 static inline int pageblock_free(struct page *page)
1322 return PageBuddy(page) && page_order(page) >= pageblock_order;
1325 /* Return the start of the next active pageblock after a given page */
1326 static struct page *next_active_pageblock(struct page *page)
1328 /* Ensure the starting page is pageblock-aligned */
1329 BUG_ON(page_to_pfn(page) & (pageblock_nr_pages - 1));
1331 /* If the entire pageblock is free, move to the end of free page */
1332 if (pageblock_free(page)) {
1333 int order;
1334 /* be careful. we don't have locks, page_order can be changed.*/
1335 order = page_order(page);
1336 if ((order < MAX_ORDER) && (order >= pageblock_order))
1337 return page + (1 << order);
1340 return page + pageblock_nr_pages;
1343 /* Checks if this range of memory is likely to be hot-removable. */
1344 int is_mem_section_removable(unsigned long start_pfn, unsigned long nr_pages)
1346 struct page *page = pfn_to_page(start_pfn);
1347 struct page *end_page = page + nr_pages;
1349 /* Check the starting page of each pageblock within the range */
1350 for (; page < end_page; page = next_active_pageblock(page)) {
1351 if (!is_pageblock_removable_nolock(page))
1352 return 0;
1353 cond_resched();
1356 /* All pageblocks in the memory block are likely to be hot-removable */
1357 return 1;
1361 * Confirm all pages in a range [start, end) is belongs to the same zone.
1363 int test_pages_in_a_zone(unsigned long start_pfn, unsigned long end_pfn)
1365 unsigned long pfn;
1366 struct zone *zone = NULL;
1367 struct page *page;
1368 int i;
1369 for (pfn = start_pfn;
1370 pfn < end_pfn;
1371 pfn += MAX_ORDER_NR_PAGES) {
1372 i = 0;
1373 /* This is just a CONFIG_HOLES_IN_ZONE check.*/
1374 while ((i < MAX_ORDER_NR_PAGES) && !pfn_valid_within(pfn + i))
1375 i++;
1376 if (i == MAX_ORDER_NR_PAGES)
1377 continue;
1378 page = pfn_to_page(pfn + i);
1379 if (zone && page_zone(page) != zone)
1380 return 0;
1381 zone = page_zone(page);
1383 return 1;
1387 * Scan pfn range [start,end) to find movable/migratable pages (LRU pages
1388 * and hugepages). We scan pfn because it's much easier than scanning over
1389 * linked list. This function returns the pfn of the first found movable
1390 * page if it's found, otherwise 0.
1392 static unsigned long scan_movable_pages(unsigned long start, unsigned long end)
1394 unsigned long pfn;
1395 struct page *page;
1396 for (pfn = start; pfn < end; pfn++) {
1397 if (pfn_valid(pfn)) {
1398 page = pfn_to_page(pfn);
1399 if (PageLRU(page))
1400 return pfn;
1401 if (PageHuge(page)) {
1402 if (page_huge_active(page))
1403 return pfn;
1404 else
1405 pfn = round_up(pfn + 1,
1406 1 << compound_order(page)) - 1;
1410 return 0;
1413 #define NR_OFFLINE_AT_ONCE_PAGES (256)
1414 static int
1415 do_migrate_range(unsigned long start_pfn, unsigned long end_pfn)
1417 unsigned long pfn;
1418 struct page *page;
1419 int move_pages = NR_OFFLINE_AT_ONCE_PAGES;
1420 int not_managed = 0;
1421 int ret = 0;
1422 LIST_HEAD(source);
1424 for (pfn = start_pfn; pfn < end_pfn && move_pages > 0; pfn++) {
1425 if (!pfn_valid(pfn))
1426 continue;
1427 page = pfn_to_page(pfn);
1429 if (PageHuge(page)) {
1430 struct page *head = compound_head(page);
1431 pfn = page_to_pfn(head) + (1<<compound_order(head)) - 1;
1432 if (compound_order(head) > PFN_SECTION_SHIFT) {
1433 ret = -EBUSY;
1434 break;
1436 if (isolate_huge_page(page, &source))
1437 move_pages -= 1 << compound_order(head);
1438 continue;
1441 if (!get_page_unless_zero(page))
1442 continue;
1444 * We can skip free pages. And we can only deal with pages on
1445 * LRU.
1447 ret = isolate_lru_page(page);
1448 if (!ret) { /* Success */
1449 put_page(page);
1450 list_add_tail(&page->lru, &source);
1451 move_pages--;
1452 inc_zone_page_state(page, NR_ISOLATED_ANON +
1453 page_is_file_cache(page));
1455 } else {
1456 #ifdef CONFIG_DEBUG_VM
1457 printk(KERN_ALERT "removing pfn %lx from LRU failed\n",
1458 pfn);
1459 dump_page(page, "failed to remove from LRU");
1460 #endif
1461 put_page(page);
1462 /* Because we don't have big zone->lock. we should
1463 check this again here. */
1464 if (page_count(page)) {
1465 not_managed++;
1466 ret = -EBUSY;
1467 break;
1471 if (!list_empty(&source)) {
1472 if (not_managed) {
1473 putback_movable_pages(&source);
1474 goto out;
1478 * alloc_migrate_target should be improooooved!!
1479 * migrate_pages returns # of failed pages.
1481 ret = migrate_pages(&source, alloc_migrate_target, NULL, 0,
1482 MIGRATE_SYNC, MR_MEMORY_HOTPLUG);
1483 if (ret)
1484 putback_movable_pages(&source);
1486 out:
1487 return ret;
1491 * remove from free_area[] and mark all as Reserved.
1493 static int
1494 offline_isolated_pages_cb(unsigned long start, unsigned long nr_pages,
1495 void *data)
1497 __offline_isolated_pages(start, start + nr_pages);
1498 return 0;
1501 static void
1502 offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
1504 walk_system_ram_range(start_pfn, end_pfn - start_pfn, NULL,
1505 offline_isolated_pages_cb);
1509 * Check all pages in range, recoreded as memory resource, are isolated.
1511 static int
1512 check_pages_isolated_cb(unsigned long start_pfn, unsigned long nr_pages,
1513 void *data)
1515 int ret;
1516 long offlined = *(long *)data;
1517 ret = test_pages_isolated(start_pfn, start_pfn + nr_pages, true);
1518 offlined = nr_pages;
1519 if (!ret)
1520 *(long *)data += offlined;
1521 return ret;
1524 static long
1525 check_pages_isolated(unsigned long start_pfn, unsigned long end_pfn)
1527 long offlined = 0;
1528 int ret;
1530 ret = walk_system_ram_range(start_pfn, end_pfn - start_pfn, &offlined,
1531 check_pages_isolated_cb);
1532 if (ret < 0)
1533 offlined = (long)ret;
1534 return offlined;
1537 #ifdef CONFIG_MOVABLE_NODE
1539 * When CONFIG_MOVABLE_NODE, we permit offlining of a node which doesn't have
1540 * normal memory.
1542 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1544 return true;
1546 #else /* CONFIG_MOVABLE_NODE */
1547 /* ensure the node has NORMAL memory if it is still online */
1548 static bool can_offline_normal(struct zone *zone, unsigned long nr_pages)
1550 struct pglist_data *pgdat = zone->zone_pgdat;
1551 unsigned long present_pages = 0;
1552 enum zone_type zt;
1554 for (zt = 0; zt <= ZONE_NORMAL; zt++)
1555 present_pages += pgdat->node_zones[zt].present_pages;
1557 if (present_pages > nr_pages)
1558 return true;
1560 present_pages = 0;
1561 for (; zt <= ZONE_MOVABLE; zt++)
1562 present_pages += pgdat->node_zones[zt].present_pages;
1565 * we can't offline the last normal memory until all
1566 * higher memory is offlined.
1568 return present_pages == 0;
1570 #endif /* CONFIG_MOVABLE_NODE */
1572 static int __init cmdline_parse_movable_node(char *p)
1574 #ifdef CONFIG_MOVABLE_NODE
1576 * Memory used by the kernel cannot be hot-removed because Linux
1577 * cannot migrate the kernel pages. When memory hotplug is
1578 * enabled, we should prevent memblock from allocating memory
1579 * for the kernel.
1581 * ACPI SRAT records all hotpluggable memory ranges. But before
1582 * SRAT is parsed, we don't know about it.
1584 * The kernel image is loaded into memory at very early time. We
1585 * cannot prevent this anyway. So on NUMA system, we set any
1586 * node the kernel resides in as un-hotpluggable.
1588 * Since on modern servers, one node could have double-digit
1589 * gigabytes memory, we can assume the memory around the kernel
1590 * image is also un-hotpluggable. So before SRAT is parsed, just
1591 * allocate memory near the kernel image to try the best to keep
1592 * the kernel away from hotpluggable memory.
1594 memblock_set_bottom_up(true);
1595 movable_node_enabled = true;
1596 #else
1597 pr_warn("movable_node option not supported\n");
1598 #endif
1599 return 0;
1601 early_param("movable_node", cmdline_parse_movable_node);
1603 /* check which state of node_states will be changed when offline memory */
1604 static void node_states_check_changes_offline(unsigned long nr_pages,
1605 struct zone *zone, struct memory_notify *arg)
1607 struct pglist_data *pgdat = zone->zone_pgdat;
1608 unsigned long present_pages = 0;
1609 enum zone_type zt, zone_last = ZONE_NORMAL;
1612 * If we have HIGHMEM or movable node, node_states[N_NORMAL_MEMORY]
1613 * contains nodes which have zones of 0...ZONE_NORMAL,
1614 * set zone_last to ZONE_NORMAL.
1616 * If we don't have HIGHMEM nor movable node,
1617 * node_states[N_NORMAL_MEMORY] contains nodes which have zones of
1618 * 0...ZONE_MOVABLE, set zone_last to ZONE_MOVABLE.
1620 if (N_MEMORY == N_NORMAL_MEMORY)
1621 zone_last = ZONE_MOVABLE;
1624 * check whether node_states[N_NORMAL_MEMORY] will be changed.
1625 * If the memory to be offline is in a zone of 0...zone_last,
1626 * and it is the last present memory, 0...zone_last will
1627 * become empty after offline , thus we can determind we will
1628 * need to clear the node from node_states[N_NORMAL_MEMORY].
1630 for (zt = 0; zt <= zone_last; zt++)
1631 present_pages += pgdat->node_zones[zt].present_pages;
1632 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1633 arg->status_change_nid_normal = zone_to_nid(zone);
1634 else
1635 arg->status_change_nid_normal = -1;
1637 #ifdef CONFIG_HIGHMEM
1639 * If we have movable node, node_states[N_HIGH_MEMORY]
1640 * contains nodes which have zones of 0...ZONE_HIGHMEM,
1641 * set zone_last to ZONE_HIGHMEM.
1643 * If we don't have movable node, node_states[N_NORMAL_MEMORY]
1644 * contains nodes which have zones of 0...ZONE_MOVABLE,
1645 * set zone_last to ZONE_MOVABLE.
1647 zone_last = ZONE_HIGHMEM;
1648 if (N_MEMORY == N_HIGH_MEMORY)
1649 zone_last = ZONE_MOVABLE;
1651 for (; zt <= zone_last; zt++)
1652 present_pages += pgdat->node_zones[zt].present_pages;
1653 if (zone_idx(zone) <= zone_last && nr_pages >= present_pages)
1654 arg->status_change_nid_high = zone_to_nid(zone);
1655 else
1656 arg->status_change_nid_high = -1;
1657 #else
1658 arg->status_change_nid_high = arg->status_change_nid_normal;
1659 #endif
1662 * node_states[N_HIGH_MEMORY] contains nodes which have 0...ZONE_MOVABLE
1664 zone_last = ZONE_MOVABLE;
1667 * check whether node_states[N_HIGH_MEMORY] will be changed
1668 * If we try to offline the last present @nr_pages from the node,
1669 * we can determind we will need to clear the node from
1670 * node_states[N_HIGH_MEMORY].
1672 for (; zt <= zone_last; zt++)
1673 present_pages += pgdat->node_zones[zt].present_pages;
1674 if (nr_pages >= present_pages)
1675 arg->status_change_nid = zone_to_nid(zone);
1676 else
1677 arg->status_change_nid = -1;
1680 static void node_states_clear_node(int node, struct memory_notify *arg)
1682 if (arg->status_change_nid_normal >= 0)
1683 node_clear_state(node, N_NORMAL_MEMORY);
1685 if ((N_MEMORY != N_NORMAL_MEMORY) &&
1686 (arg->status_change_nid_high >= 0))
1687 node_clear_state(node, N_HIGH_MEMORY);
1689 if ((N_MEMORY != N_HIGH_MEMORY) &&
1690 (arg->status_change_nid >= 0))
1691 node_clear_state(node, N_MEMORY);
1694 static int __ref __offline_pages(unsigned long start_pfn,
1695 unsigned long end_pfn, unsigned long timeout)
1697 unsigned long pfn, nr_pages, expire;
1698 long offlined_pages;
1699 int ret, drain, retry_max, node;
1700 unsigned long flags;
1701 struct zone *zone;
1702 struct memory_notify arg;
1704 /* at least, alignment against pageblock is necessary */
1705 if (!IS_ALIGNED(start_pfn, pageblock_nr_pages))
1706 return -EINVAL;
1707 if (!IS_ALIGNED(end_pfn, pageblock_nr_pages))
1708 return -EINVAL;
1709 /* This makes hotplug much easier...and readable.
1710 we assume this for now. .*/
1711 if (!test_pages_in_a_zone(start_pfn, end_pfn))
1712 return -EINVAL;
1714 zone = page_zone(pfn_to_page(start_pfn));
1715 node = zone_to_nid(zone);
1716 nr_pages = end_pfn - start_pfn;
1718 if (zone_idx(zone) <= ZONE_NORMAL && !can_offline_normal(zone, nr_pages))
1719 return -EINVAL;
1721 /* set above range as isolated */
1722 ret = start_isolate_page_range(start_pfn, end_pfn,
1723 MIGRATE_MOVABLE, true);
1724 if (ret)
1725 return ret;
1727 arg.start_pfn = start_pfn;
1728 arg.nr_pages = nr_pages;
1729 node_states_check_changes_offline(nr_pages, zone, &arg);
1731 ret = memory_notify(MEM_GOING_OFFLINE, &arg);
1732 ret = notifier_to_errno(ret);
1733 if (ret)
1734 goto failed_removal;
1736 pfn = start_pfn;
1737 expire = jiffies + timeout;
1738 drain = 0;
1739 retry_max = 5;
1740 repeat:
1741 /* start memory hot removal */
1742 ret = -EAGAIN;
1743 if (time_after(jiffies, expire))
1744 goto failed_removal;
1745 ret = -EINTR;
1746 if (signal_pending(current))
1747 goto failed_removal;
1748 ret = 0;
1749 if (drain) {
1750 lru_add_drain_all();
1751 cond_resched();
1752 drain_all_pages(zone);
1755 pfn = scan_movable_pages(start_pfn, end_pfn);
1756 if (pfn) { /* We have movable pages */
1757 ret = do_migrate_range(pfn, end_pfn);
1758 if (!ret) {
1759 drain = 1;
1760 goto repeat;
1761 } else {
1762 if (ret < 0)
1763 if (--retry_max == 0)
1764 goto failed_removal;
1765 yield();
1766 drain = 1;
1767 goto repeat;
1770 /* drain all zone's lru pagevec, this is asynchronous... */
1771 lru_add_drain_all();
1772 yield();
1773 /* drain pcp pages, this is synchronous. */
1774 drain_all_pages(zone);
1776 * dissolve free hugepages in the memory block before doing offlining
1777 * actually in order to make hugetlbfs's object counting consistent.
1779 dissolve_free_huge_pages(start_pfn, end_pfn);
1780 /* check again */
1781 offlined_pages = check_pages_isolated(start_pfn, end_pfn);
1782 if (offlined_pages < 0) {
1783 ret = -EBUSY;
1784 goto failed_removal;
1786 printk(KERN_INFO "Offlined Pages %ld\n", offlined_pages);
1787 /* Ok, all of our target is isolated.
1788 We cannot do rollback at this point. */
1789 offline_isolated_pages(start_pfn, end_pfn);
1790 /* reset pagetype flags and makes migrate type to be MOVABLE */
1791 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1792 /* removal success */
1793 adjust_managed_page_count(pfn_to_page(start_pfn), -offlined_pages);
1794 zone->present_pages -= offlined_pages;
1796 pgdat_resize_lock(zone->zone_pgdat, &flags);
1797 zone->zone_pgdat->node_present_pages -= offlined_pages;
1798 pgdat_resize_unlock(zone->zone_pgdat, &flags);
1800 init_per_zone_wmark_min();
1802 if (!populated_zone(zone)) {
1803 zone_pcp_reset(zone);
1804 mutex_lock(&zonelists_mutex);
1805 build_all_zonelists(NULL, NULL);
1806 mutex_unlock(&zonelists_mutex);
1807 } else
1808 zone_pcp_update(zone);
1810 node_states_clear_node(node, &arg);
1811 if (arg.status_change_nid >= 0)
1812 kswapd_stop(node);
1814 vm_total_pages = nr_free_pagecache_pages();
1815 writeback_set_ratelimit();
1817 memory_notify(MEM_OFFLINE, &arg);
1818 return 0;
1820 failed_removal:
1821 printk(KERN_INFO "memory offlining [mem %#010llx-%#010llx] failed\n",
1822 (unsigned long long) start_pfn << PAGE_SHIFT,
1823 ((unsigned long long) end_pfn << PAGE_SHIFT) - 1);
1824 memory_notify(MEM_CANCEL_OFFLINE, &arg);
1825 /* pushback to free area */
1826 undo_isolate_page_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1827 return ret;
1830 /* Must be protected by mem_hotplug_begin() */
1831 int offline_pages(unsigned long start_pfn, unsigned long nr_pages)
1833 return __offline_pages(start_pfn, start_pfn + nr_pages, 120 * HZ);
1835 #endif /* CONFIG_MEMORY_HOTREMOVE */
1838 * walk_memory_range - walks through all mem sections in [start_pfn, end_pfn)
1839 * @start_pfn: start pfn of the memory range
1840 * @end_pfn: end pfn of the memory range
1841 * @arg: argument passed to func
1842 * @func: callback for each memory section walked
1844 * This function walks through all present mem sections in range
1845 * [start_pfn, end_pfn) and call func on each mem section.
1847 * Returns the return value of func.
1849 int walk_memory_range(unsigned long start_pfn, unsigned long end_pfn,
1850 void *arg, int (*func)(struct memory_block *, void *))
1852 struct memory_block *mem = NULL;
1853 struct mem_section *section;
1854 unsigned long pfn, section_nr;
1855 int ret;
1857 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1858 section_nr = pfn_to_section_nr(pfn);
1859 if (!present_section_nr(section_nr))
1860 continue;
1862 section = __nr_to_section(section_nr);
1863 /* same memblock? */
1864 if (mem)
1865 if ((section_nr >= mem->start_section_nr) &&
1866 (section_nr <= mem->end_section_nr))
1867 continue;
1869 mem = find_memory_block_hinted(section, mem);
1870 if (!mem)
1871 continue;
1873 ret = func(mem, arg);
1874 if (ret) {
1875 kobject_put(&mem->dev.kobj);
1876 return ret;
1880 if (mem)
1881 kobject_put(&mem->dev.kobj);
1883 return 0;
1886 #ifdef CONFIG_MEMORY_HOTREMOVE
1887 static int check_memblock_offlined_cb(struct memory_block *mem, void *arg)
1889 int ret = !is_memblock_offlined(mem);
1891 if (unlikely(ret)) {
1892 phys_addr_t beginpa, endpa;
1894 beginpa = PFN_PHYS(section_nr_to_pfn(mem->start_section_nr));
1895 endpa = PFN_PHYS(section_nr_to_pfn(mem->end_section_nr + 1))-1;
1896 pr_warn("removing memory fails, because memory "
1897 "[%pa-%pa] is onlined\n",
1898 &beginpa, &endpa);
1901 return ret;
1904 static int check_cpu_on_node(pg_data_t *pgdat)
1906 int cpu;
1908 for_each_present_cpu(cpu) {
1909 if (cpu_to_node(cpu) == pgdat->node_id)
1911 * the cpu on this node isn't removed, and we can't
1912 * offline this node.
1914 return -EBUSY;
1917 return 0;
1920 static void unmap_cpu_on_node(pg_data_t *pgdat)
1922 #ifdef CONFIG_ACPI_NUMA
1923 int cpu;
1925 for_each_possible_cpu(cpu)
1926 if (cpu_to_node(cpu) == pgdat->node_id)
1927 numa_clear_node(cpu);
1928 #endif
1931 static int check_and_unmap_cpu_on_node(pg_data_t *pgdat)
1933 int ret;
1935 ret = check_cpu_on_node(pgdat);
1936 if (ret)
1937 return ret;
1940 * the node will be offlined when we come here, so we can clear
1941 * the cpu_to_node() now.
1944 unmap_cpu_on_node(pgdat);
1945 return 0;
1949 * try_offline_node
1951 * Offline a node if all memory sections and cpus of the node are removed.
1953 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
1954 * and online/offline operations before this call.
1956 void try_offline_node(int nid)
1958 pg_data_t *pgdat = NODE_DATA(nid);
1959 unsigned long start_pfn = pgdat->node_start_pfn;
1960 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1961 unsigned long pfn;
1962 int i;
1964 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
1965 unsigned long section_nr = pfn_to_section_nr(pfn);
1967 if (!present_section_nr(section_nr))
1968 continue;
1970 if (pfn_to_nid(pfn) != nid)
1971 continue;
1974 * some memory sections of this node are not removed, and we
1975 * can't offline node now.
1977 return;
1980 if (check_and_unmap_cpu_on_node(pgdat))
1981 return;
1984 * all memory/cpu of this node are removed, we can offline this
1985 * node now.
1987 node_set_offline(nid);
1988 unregister_one_node(nid);
1990 /* free waittable in each zone */
1991 for (i = 0; i < MAX_NR_ZONES; i++) {
1992 struct zone *zone = pgdat->node_zones + i;
1995 * wait_table may be allocated from boot memory,
1996 * here only free if it's allocated by vmalloc.
1998 if (is_vmalloc_addr(zone->wait_table)) {
1999 vfree(zone->wait_table);
2000 zone->wait_table = NULL;
2004 EXPORT_SYMBOL(try_offline_node);
2007 * remove_memory
2009 * NOTE: The caller must call lock_device_hotplug() to serialize hotplug
2010 * and online/offline operations before this call, as required by
2011 * try_offline_node().
2013 void __ref remove_memory(int nid, u64 start, u64 size)
2015 int ret;
2017 BUG_ON(check_hotplug_memory_range(start, size));
2019 mem_hotplug_begin();
2022 * All memory blocks must be offlined before removing memory. Check
2023 * whether all memory blocks in question are offline and trigger a BUG()
2024 * if this is not the case.
2026 ret = walk_memory_range(PFN_DOWN(start), PFN_UP(start + size - 1), NULL,
2027 check_memblock_offlined_cb);
2028 if (ret)
2029 BUG();
2031 /* remove memmap entry */
2032 firmware_map_remove(start, start + size, "System RAM");
2033 memblock_free(start, size);
2034 memblock_remove(start, size);
2036 arch_remove_memory(start, size);
2038 try_offline_node(nid);
2040 mem_hotplug_done();
2042 EXPORT_SYMBOL_GPL(remove_memory);
2043 #endif /* CONFIG_MEMORY_HOTREMOVE */