2 * Copyright (C) 2008 Red Hat. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/pagemap.h>
20 #include <linux/sched.h>
21 #include <linux/sched/signal.h>
22 #include <linux/slab.h>
23 #include <linux/math64.h>
24 #include <linux/ratelimit.h>
26 #include "free-space-cache.h"
27 #include "transaction.h"
29 #include "extent_io.h"
30 #include "inode-map.h"
33 #define BITS_PER_BITMAP (PAGE_SIZE * 8UL)
34 #define MAX_CACHE_BYTES_PER_GIG SZ_32K
36 struct btrfs_trim_range
{
39 struct list_head list
;
42 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
43 struct btrfs_free_space
*info
);
44 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
45 struct btrfs_free_space
*info
);
46 static int btrfs_wait_cache_io_root(struct btrfs_root
*root
,
47 struct btrfs_trans_handle
*trans
,
48 struct btrfs_io_ctl
*io_ctl
,
49 struct btrfs_path
*path
);
51 static struct inode
*__lookup_free_space_inode(struct btrfs_root
*root
,
52 struct btrfs_path
*path
,
55 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
57 struct btrfs_key location
;
58 struct btrfs_disk_key disk_key
;
59 struct btrfs_free_space_header
*header
;
60 struct extent_buffer
*leaf
;
61 struct inode
*inode
= NULL
;
64 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
68 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
72 btrfs_release_path(path
);
73 return ERR_PTR(-ENOENT
);
76 leaf
= path
->nodes
[0];
77 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
78 struct btrfs_free_space_header
);
79 btrfs_free_space_key(leaf
, header
, &disk_key
);
80 btrfs_disk_key_to_cpu(&location
, &disk_key
);
81 btrfs_release_path(path
);
83 inode
= btrfs_iget(fs_info
->sb
, &location
, root
, NULL
);
86 if (is_bad_inode(inode
)) {
88 return ERR_PTR(-ENOENT
);
91 mapping_set_gfp_mask(inode
->i_mapping
,
92 mapping_gfp_constraint(inode
->i_mapping
,
93 ~(__GFP_FS
| __GFP_HIGHMEM
)));
98 struct inode
*lookup_free_space_inode(struct btrfs_fs_info
*fs_info
,
99 struct btrfs_block_group_cache
100 *block_group
, struct btrfs_path
*path
)
102 struct inode
*inode
= NULL
;
103 u32 flags
= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
105 spin_lock(&block_group
->lock
);
106 if (block_group
->inode
)
107 inode
= igrab(block_group
->inode
);
108 spin_unlock(&block_group
->lock
);
112 inode
= __lookup_free_space_inode(fs_info
->tree_root
, path
,
113 block_group
->key
.objectid
);
117 spin_lock(&block_group
->lock
);
118 if (!((BTRFS_I(inode
)->flags
& flags
) == flags
)) {
119 btrfs_info(fs_info
, "Old style space inode found, converting.");
120 BTRFS_I(inode
)->flags
|= BTRFS_INODE_NODATASUM
|
121 BTRFS_INODE_NODATACOW
;
122 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
125 if (!block_group
->iref
) {
126 block_group
->inode
= igrab(inode
);
127 block_group
->iref
= 1;
129 spin_unlock(&block_group
->lock
);
134 static int __create_free_space_inode(struct btrfs_root
*root
,
135 struct btrfs_trans_handle
*trans
,
136 struct btrfs_path
*path
,
139 struct btrfs_key key
;
140 struct btrfs_disk_key disk_key
;
141 struct btrfs_free_space_header
*header
;
142 struct btrfs_inode_item
*inode_item
;
143 struct extent_buffer
*leaf
;
144 u64 flags
= BTRFS_INODE_NOCOMPRESS
| BTRFS_INODE_PREALLOC
;
147 ret
= btrfs_insert_empty_inode(trans
, root
, path
, ino
);
151 /* We inline crc's for the free disk space cache */
152 if (ino
!= BTRFS_FREE_INO_OBJECTID
)
153 flags
|= BTRFS_INODE_NODATASUM
| BTRFS_INODE_NODATACOW
;
155 leaf
= path
->nodes
[0];
156 inode_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
157 struct btrfs_inode_item
);
158 btrfs_item_key(leaf
, &disk_key
, path
->slots
[0]);
159 memzero_extent_buffer(leaf
, (unsigned long)inode_item
,
160 sizeof(*inode_item
));
161 btrfs_set_inode_generation(leaf
, inode_item
, trans
->transid
);
162 btrfs_set_inode_size(leaf
, inode_item
, 0);
163 btrfs_set_inode_nbytes(leaf
, inode_item
, 0);
164 btrfs_set_inode_uid(leaf
, inode_item
, 0);
165 btrfs_set_inode_gid(leaf
, inode_item
, 0);
166 btrfs_set_inode_mode(leaf
, inode_item
, S_IFREG
| 0600);
167 btrfs_set_inode_flags(leaf
, inode_item
, flags
);
168 btrfs_set_inode_nlink(leaf
, inode_item
, 1);
169 btrfs_set_inode_transid(leaf
, inode_item
, trans
->transid
);
170 btrfs_set_inode_block_group(leaf
, inode_item
, offset
);
171 btrfs_mark_buffer_dirty(leaf
);
172 btrfs_release_path(path
);
174 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
177 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
178 sizeof(struct btrfs_free_space_header
));
180 btrfs_release_path(path
);
184 leaf
= path
->nodes
[0];
185 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
186 struct btrfs_free_space_header
);
187 memzero_extent_buffer(leaf
, (unsigned long)header
, sizeof(*header
));
188 btrfs_set_free_space_key(leaf
, header
, &disk_key
);
189 btrfs_mark_buffer_dirty(leaf
);
190 btrfs_release_path(path
);
195 int create_free_space_inode(struct btrfs_fs_info
*fs_info
,
196 struct btrfs_trans_handle
*trans
,
197 struct btrfs_block_group_cache
*block_group
,
198 struct btrfs_path
*path
)
203 ret
= btrfs_find_free_objectid(fs_info
->tree_root
, &ino
);
207 return __create_free_space_inode(fs_info
->tree_root
, trans
, path
, ino
,
208 block_group
->key
.objectid
);
211 int btrfs_check_trunc_cache_free_space(struct btrfs_fs_info
*fs_info
,
212 struct btrfs_block_rsv
*rsv
)
217 /* 1 for slack space, 1 for updating the inode */
218 needed_bytes
= btrfs_calc_trunc_metadata_size(fs_info
, 1) +
219 btrfs_calc_trans_metadata_size(fs_info
, 1);
221 spin_lock(&rsv
->lock
);
222 if (rsv
->reserved
< needed_bytes
)
226 spin_unlock(&rsv
->lock
);
230 int btrfs_truncate_free_space_cache(struct btrfs_trans_handle
*trans
,
231 struct btrfs_block_group_cache
*block_group
,
234 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
239 struct btrfs_path
*path
= btrfs_alloc_path();
246 mutex_lock(&trans
->transaction
->cache_write_mutex
);
247 if (!list_empty(&block_group
->io_list
)) {
248 list_del_init(&block_group
->io_list
);
250 btrfs_wait_cache_io(trans
, block_group
, path
);
251 btrfs_put_block_group(block_group
);
255 * now that we've truncated the cache away, its no longer
258 spin_lock(&block_group
->lock
);
259 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
260 spin_unlock(&block_group
->lock
);
261 btrfs_free_path(path
);
264 btrfs_i_size_write(BTRFS_I(inode
), 0);
265 truncate_pagecache(inode
, 0);
268 * We don't need an orphan item because truncating the free space cache
269 * will never be split across transactions.
270 * We don't need to check for -EAGAIN because we're a free space
273 ret
= btrfs_truncate_inode_items(trans
, root
, inode
,
274 0, BTRFS_EXTENT_DATA_KEY
);
278 ret
= btrfs_update_inode(trans
, root
, inode
);
282 mutex_unlock(&trans
->transaction
->cache_write_mutex
);
284 btrfs_abort_transaction(trans
, ret
);
289 static void readahead_cache(struct inode
*inode
)
291 struct file_ra_state
*ra
;
292 unsigned long last_index
;
294 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
298 file_ra_state_init(ra
, inode
->i_mapping
);
299 last_index
= (i_size_read(inode
) - 1) >> PAGE_SHIFT
;
301 page_cache_sync_readahead(inode
->i_mapping
, ra
, NULL
, 0, last_index
);
306 static int io_ctl_init(struct btrfs_io_ctl
*io_ctl
, struct inode
*inode
,
312 num_pages
= DIV_ROUND_UP(i_size_read(inode
), PAGE_SIZE
);
314 if (btrfs_ino(BTRFS_I(inode
)) != BTRFS_FREE_INO_OBJECTID
)
317 /* Make sure we can fit our crcs into the first page */
318 if (write
&& check_crcs
&&
319 (num_pages
* sizeof(u32
)) >= PAGE_SIZE
)
322 memset(io_ctl
, 0, sizeof(struct btrfs_io_ctl
));
324 io_ctl
->pages
= kcalloc(num_pages
, sizeof(struct page
*), GFP_NOFS
);
328 io_ctl
->num_pages
= num_pages
;
329 io_ctl
->fs_info
= btrfs_sb(inode
->i_sb
);
330 io_ctl
->check_crcs
= check_crcs
;
331 io_ctl
->inode
= inode
;
336 static void io_ctl_free(struct btrfs_io_ctl
*io_ctl
)
338 kfree(io_ctl
->pages
);
339 io_ctl
->pages
= NULL
;
342 static void io_ctl_unmap_page(struct btrfs_io_ctl
*io_ctl
)
350 static void io_ctl_map_page(struct btrfs_io_ctl
*io_ctl
, int clear
)
352 ASSERT(io_ctl
->index
< io_ctl
->num_pages
);
353 io_ctl
->page
= io_ctl
->pages
[io_ctl
->index
++];
354 io_ctl
->cur
= page_address(io_ctl
->page
);
355 io_ctl
->orig
= io_ctl
->cur
;
356 io_ctl
->size
= PAGE_SIZE
;
358 clear_page(io_ctl
->cur
);
361 static void io_ctl_drop_pages(struct btrfs_io_ctl
*io_ctl
)
365 io_ctl_unmap_page(io_ctl
);
367 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
368 if (io_ctl
->pages
[i
]) {
369 ClearPageChecked(io_ctl
->pages
[i
]);
370 unlock_page(io_ctl
->pages
[i
]);
371 put_page(io_ctl
->pages
[i
]);
376 static int io_ctl_prepare_pages(struct btrfs_io_ctl
*io_ctl
, struct inode
*inode
,
380 gfp_t mask
= btrfs_alloc_write_mask(inode
->i_mapping
);
383 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
384 page
= find_or_create_page(inode
->i_mapping
, i
, mask
);
386 io_ctl_drop_pages(io_ctl
);
389 io_ctl
->pages
[i
] = page
;
390 if (uptodate
&& !PageUptodate(page
)) {
391 btrfs_readpage(NULL
, page
);
393 if (!PageUptodate(page
)) {
394 btrfs_err(BTRFS_I(inode
)->root
->fs_info
,
395 "error reading free space cache");
396 io_ctl_drop_pages(io_ctl
);
402 for (i
= 0; i
< io_ctl
->num_pages
; i
++) {
403 clear_page_dirty_for_io(io_ctl
->pages
[i
]);
404 set_page_extent_mapped(io_ctl
->pages
[i
]);
410 static void io_ctl_set_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
414 io_ctl_map_page(io_ctl
, 1);
417 * Skip the csum areas. If we don't check crcs then we just have a
418 * 64bit chunk at the front of the first page.
420 if (io_ctl
->check_crcs
) {
421 io_ctl
->cur
+= (sizeof(u32
) * io_ctl
->num_pages
);
422 io_ctl
->size
-= sizeof(u64
) + (sizeof(u32
) * io_ctl
->num_pages
);
424 io_ctl
->cur
+= sizeof(u64
);
425 io_ctl
->size
-= sizeof(u64
) * 2;
429 *val
= cpu_to_le64(generation
);
430 io_ctl
->cur
+= sizeof(u64
);
433 static int io_ctl_check_generation(struct btrfs_io_ctl
*io_ctl
, u64 generation
)
438 * Skip the crc area. If we don't check crcs then we just have a 64bit
439 * chunk at the front of the first page.
441 if (io_ctl
->check_crcs
) {
442 io_ctl
->cur
+= sizeof(u32
) * io_ctl
->num_pages
;
443 io_ctl
->size
-= sizeof(u64
) +
444 (sizeof(u32
) * io_ctl
->num_pages
);
446 io_ctl
->cur
+= sizeof(u64
);
447 io_ctl
->size
-= sizeof(u64
) * 2;
451 if (le64_to_cpu(*gen
) != generation
) {
452 btrfs_err_rl(io_ctl
->fs_info
,
453 "space cache generation (%llu) does not match inode (%llu)",
455 io_ctl_unmap_page(io_ctl
);
458 io_ctl
->cur
+= sizeof(u64
);
462 static void io_ctl_set_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
468 if (!io_ctl
->check_crcs
) {
469 io_ctl_unmap_page(io_ctl
);
474 offset
= sizeof(u32
) * io_ctl
->num_pages
;
476 crc
= btrfs_csum_data(io_ctl
->orig
+ offset
, crc
,
478 btrfs_csum_final(crc
, (u8
*)&crc
);
479 io_ctl_unmap_page(io_ctl
);
480 tmp
= page_address(io_ctl
->pages
[0]);
485 static int io_ctl_check_crc(struct btrfs_io_ctl
*io_ctl
, int index
)
491 if (!io_ctl
->check_crcs
) {
492 io_ctl_map_page(io_ctl
, 0);
497 offset
= sizeof(u32
) * io_ctl
->num_pages
;
499 tmp
= page_address(io_ctl
->pages
[0]);
503 io_ctl_map_page(io_ctl
, 0);
504 crc
= btrfs_csum_data(io_ctl
->orig
+ offset
, crc
,
506 btrfs_csum_final(crc
, (u8
*)&crc
);
508 btrfs_err_rl(io_ctl
->fs_info
,
509 "csum mismatch on free space cache");
510 io_ctl_unmap_page(io_ctl
);
517 static int io_ctl_add_entry(struct btrfs_io_ctl
*io_ctl
, u64 offset
, u64 bytes
,
520 struct btrfs_free_space_entry
*entry
;
526 entry
->offset
= cpu_to_le64(offset
);
527 entry
->bytes
= cpu_to_le64(bytes
);
528 entry
->type
= (bitmap
) ? BTRFS_FREE_SPACE_BITMAP
:
529 BTRFS_FREE_SPACE_EXTENT
;
530 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
531 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
533 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
536 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
538 /* No more pages to map */
539 if (io_ctl
->index
>= io_ctl
->num_pages
)
542 /* map the next page */
543 io_ctl_map_page(io_ctl
, 1);
547 static int io_ctl_add_bitmap(struct btrfs_io_ctl
*io_ctl
, void *bitmap
)
553 * If we aren't at the start of the current page, unmap this one and
554 * map the next one if there is any left.
556 if (io_ctl
->cur
!= io_ctl
->orig
) {
557 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
558 if (io_ctl
->index
>= io_ctl
->num_pages
)
560 io_ctl_map_page(io_ctl
, 0);
563 memcpy(io_ctl
->cur
, bitmap
, PAGE_SIZE
);
564 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
565 if (io_ctl
->index
< io_ctl
->num_pages
)
566 io_ctl_map_page(io_ctl
, 0);
570 static void io_ctl_zero_remaining_pages(struct btrfs_io_ctl
*io_ctl
)
573 * If we're not on the boundary we know we've modified the page and we
574 * need to crc the page.
576 if (io_ctl
->cur
!= io_ctl
->orig
)
577 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
579 io_ctl_unmap_page(io_ctl
);
581 while (io_ctl
->index
< io_ctl
->num_pages
) {
582 io_ctl_map_page(io_ctl
, 1);
583 io_ctl_set_crc(io_ctl
, io_ctl
->index
- 1);
587 static int io_ctl_read_entry(struct btrfs_io_ctl
*io_ctl
,
588 struct btrfs_free_space
*entry
, u8
*type
)
590 struct btrfs_free_space_entry
*e
;
594 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
600 entry
->offset
= le64_to_cpu(e
->offset
);
601 entry
->bytes
= le64_to_cpu(e
->bytes
);
603 io_ctl
->cur
+= sizeof(struct btrfs_free_space_entry
);
604 io_ctl
->size
-= sizeof(struct btrfs_free_space_entry
);
606 if (io_ctl
->size
>= sizeof(struct btrfs_free_space_entry
))
609 io_ctl_unmap_page(io_ctl
);
614 static int io_ctl_read_bitmap(struct btrfs_io_ctl
*io_ctl
,
615 struct btrfs_free_space
*entry
)
619 ret
= io_ctl_check_crc(io_ctl
, io_ctl
->index
);
623 memcpy(entry
->bitmap
, io_ctl
->cur
, PAGE_SIZE
);
624 io_ctl_unmap_page(io_ctl
);
630 * Since we attach pinned extents after the fact we can have contiguous sections
631 * of free space that are split up in entries. This poses a problem with the
632 * tree logging stuff since it could have allocated across what appears to be 2
633 * entries since we would have merged the entries when adding the pinned extents
634 * back to the free space cache. So run through the space cache that we just
635 * loaded and merge contiguous entries. This will make the log replay stuff not
636 * blow up and it will make for nicer allocator behavior.
638 static void merge_space_tree(struct btrfs_free_space_ctl
*ctl
)
640 struct btrfs_free_space
*e
, *prev
= NULL
;
644 spin_lock(&ctl
->tree_lock
);
645 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
646 e
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
649 if (e
->bitmap
|| prev
->bitmap
)
651 if (prev
->offset
+ prev
->bytes
== e
->offset
) {
652 unlink_free_space(ctl
, prev
);
653 unlink_free_space(ctl
, e
);
654 prev
->bytes
+= e
->bytes
;
655 kmem_cache_free(btrfs_free_space_cachep
, e
);
656 link_free_space(ctl
, prev
);
658 spin_unlock(&ctl
->tree_lock
);
664 spin_unlock(&ctl
->tree_lock
);
667 static int __load_free_space_cache(struct btrfs_root
*root
, struct inode
*inode
,
668 struct btrfs_free_space_ctl
*ctl
,
669 struct btrfs_path
*path
, u64 offset
)
671 struct btrfs_fs_info
*fs_info
= btrfs_sb(inode
->i_sb
);
672 struct btrfs_free_space_header
*header
;
673 struct extent_buffer
*leaf
;
674 struct btrfs_io_ctl io_ctl
;
675 struct btrfs_key key
;
676 struct btrfs_free_space
*e
, *n
;
684 /* Nothing in the space cache, goodbye */
685 if (!i_size_read(inode
))
688 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
692 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
696 btrfs_release_path(path
);
702 leaf
= path
->nodes
[0];
703 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
704 struct btrfs_free_space_header
);
705 num_entries
= btrfs_free_space_entries(leaf
, header
);
706 num_bitmaps
= btrfs_free_space_bitmaps(leaf
, header
);
707 generation
= btrfs_free_space_generation(leaf
, header
);
708 btrfs_release_path(path
);
710 if (!BTRFS_I(inode
)->generation
) {
712 "The free space cache file (%llu) is invalid. skip it\n",
717 if (BTRFS_I(inode
)->generation
!= generation
) {
719 "free space inode generation (%llu) did not match free space cache generation (%llu)",
720 BTRFS_I(inode
)->generation
, generation
);
727 ret
= io_ctl_init(&io_ctl
, inode
, 0);
731 readahead_cache(inode
);
733 ret
= io_ctl_prepare_pages(&io_ctl
, inode
, 1);
737 ret
= io_ctl_check_crc(&io_ctl
, 0);
741 ret
= io_ctl_check_generation(&io_ctl
, generation
);
745 while (num_entries
) {
746 e
= kmem_cache_zalloc(btrfs_free_space_cachep
,
751 ret
= io_ctl_read_entry(&io_ctl
, e
, &type
);
753 kmem_cache_free(btrfs_free_space_cachep
, e
);
758 kmem_cache_free(btrfs_free_space_cachep
, e
);
762 if (type
== BTRFS_FREE_SPACE_EXTENT
) {
763 spin_lock(&ctl
->tree_lock
);
764 ret
= link_free_space(ctl
, e
);
765 spin_unlock(&ctl
->tree_lock
);
768 "Duplicate entries in free space cache, dumping");
769 kmem_cache_free(btrfs_free_space_cachep
, e
);
775 e
->bitmap
= kzalloc(PAGE_SIZE
, GFP_NOFS
);
778 btrfs_free_space_cachep
, e
);
781 spin_lock(&ctl
->tree_lock
);
782 ret
= link_free_space(ctl
, e
);
783 ctl
->total_bitmaps
++;
784 ctl
->op
->recalc_thresholds(ctl
);
785 spin_unlock(&ctl
->tree_lock
);
788 "Duplicate entries in free space cache, dumping");
789 kmem_cache_free(btrfs_free_space_cachep
, e
);
792 list_add_tail(&e
->list
, &bitmaps
);
798 io_ctl_unmap_page(&io_ctl
);
801 * We add the bitmaps at the end of the entries in order that
802 * the bitmap entries are added to the cache.
804 list_for_each_entry_safe(e
, n
, &bitmaps
, list
) {
805 list_del_init(&e
->list
);
806 ret
= io_ctl_read_bitmap(&io_ctl
, e
);
811 io_ctl_drop_pages(&io_ctl
);
812 merge_space_tree(ctl
);
815 io_ctl_free(&io_ctl
);
818 io_ctl_drop_pages(&io_ctl
);
819 __btrfs_remove_free_space_cache(ctl
);
823 int load_free_space_cache(struct btrfs_fs_info
*fs_info
,
824 struct btrfs_block_group_cache
*block_group
)
826 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
828 struct btrfs_path
*path
;
831 u64 used
= btrfs_block_group_used(&block_group
->item
);
834 * If this block group has been marked to be cleared for one reason or
835 * another then we can't trust the on disk cache, so just return.
837 spin_lock(&block_group
->lock
);
838 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
839 spin_unlock(&block_group
->lock
);
842 spin_unlock(&block_group
->lock
);
844 path
= btrfs_alloc_path();
847 path
->search_commit_root
= 1;
848 path
->skip_locking
= 1;
850 inode
= lookup_free_space_inode(fs_info
, block_group
, path
);
852 btrfs_free_path(path
);
856 /* We may have converted the inode and made the cache invalid. */
857 spin_lock(&block_group
->lock
);
858 if (block_group
->disk_cache_state
!= BTRFS_DC_WRITTEN
) {
859 spin_unlock(&block_group
->lock
);
860 btrfs_free_path(path
);
863 spin_unlock(&block_group
->lock
);
865 ret
= __load_free_space_cache(fs_info
->tree_root
, inode
, ctl
,
866 path
, block_group
->key
.objectid
);
867 btrfs_free_path(path
);
871 spin_lock(&ctl
->tree_lock
);
872 matched
= (ctl
->free_space
== (block_group
->key
.offset
- used
-
873 block_group
->bytes_super
));
874 spin_unlock(&ctl
->tree_lock
);
877 __btrfs_remove_free_space_cache(ctl
);
879 "block group %llu has wrong amount of free space",
880 block_group
->key
.objectid
);
885 /* This cache is bogus, make sure it gets cleared */
886 spin_lock(&block_group
->lock
);
887 block_group
->disk_cache_state
= BTRFS_DC_CLEAR
;
888 spin_unlock(&block_group
->lock
);
892 "failed to load free space cache for block group %llu, rebuilding it now",
893 block_group
->key
.objectid
);
900 static noinline_for_stack
901 int write_cache_extent_entries(struct btrfs_io_ctl
*io_ctl
,
902 struct btrfs_free_space_ctl
*ctl
,
903 struct btrfs_block_group_cache
*block_group
,
904 int *entries
, int *bitmaps
,
905 struct list_head
*bitmap_list
)
908 struct btrfs_free_cluster
*cluster
= NULL
;
909 struct btrfs_free_cluster
*cluster_locked
= NULL
;
910 struct rb_node
*node
= rb_first(&ctl
->free_space_offset
);
911 struct btrfs_trim_range
*trim_entry
;
913 /* Get the cluster for this block_group if it exists */
914 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
915 cluster
= list_entry(block_group
->cluster_list
.next
,
916 struct btrfs_free_cluster
,
920 if (!node
&& cluster
) {
921 cluster_locked
= cluster
;
922 spin_lock(&cluster_locked
->lock
);
923 node
= rb_first(&cluster
->root
);
927 /* Write out the extent entries */
929 struct btrfs_free_space
*e
;
931 e
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
934 ret
= io_ctl_add_entry(io_ctl
, e
->offset
, e
->bytes
,
940 list_add_tail(&e
->list
, bitmap_list
);
943 node
= rb_next(node
);
944 if (!node
&& cluster
) {
945 node
= rb_first(&cluster
->root
);
946 cluster_locked
= cluster
;
947 spin_lock(&cluster_locked
->lock
);
951 if (cluster_locked
) {
952 spin_unlock(&cluster_locked
->lock
);
953 cluster_locked
= NULL
;
957 * Make sure we don't miss any range that was removed from our rbtree
958 * because trimming is running. Otherwise after a umount+mount (or crash
959 * after committing the transaction) we would leak free space and get
960 * an inconsistent free space cache report from fsck.
962 list_for_each_entry(trim_entry
, &ctl
->trimming_ranges
, list
) {
963 ret
= io_ctl_add_entry(io_ctl
, trim_entry
->start
,
964 trim_entry
->bytes
, NULL
);
973 spin_unlock(&cluster_locked
->lock
);
977 static noinline_for_stack
int
978 update_cache_item(struct btrfs_trans_handle
*trans
,
979 struct btrfs_root
*root
,
981 struct btrfs_path
*path
, u64 offset
,
982 int entries
, int bitmaps
)
984 struct btrfs_key key
;
985 struct btrfs_free_space_header
*header
;
986 struct extent_buffer
*leaf
;
989 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
993 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
995 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
996 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, NULL
,
1000 leaf
= path
->nodes
[0];
1002 struct btrfs_key found_key
;
1003 ASSERT(path
->slots
[0]);
1005 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1006 if (found_key
.objectid
!= BTRFS_FREE_SPACE_OBJECTID
||
1007 found_key
.offset
!= offset
) {
1008 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0,
1010 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0,
1012 btrfs_release_path(path
);
1017 BTRFS_I(inode
)->generation
= trans
->transid
;
1018 header
= btrfs_item_ptr(leaf
, path
->slots
[0],
1019 struct btrfs_free_space_header
);
1020 btrfs_set_free_space_entries(leaf
, header
, entries
);
1021 btrfs_set_free_space_bitmaps(leaf
, header
, bitmaps
);
1022 btrfs_set_free_space_generation(leaf
, header
, trans
->transid
);
1023 btrfs_mark_buffer_dirty(leaf
);
1024 btrfs_release_path(path
);
1032 static noinline_for_stack
int
1033 write_pinned_extent_entries(struct btrfs_fs_info
*fs_info
,
1034 struct btrfs_block_group_cache
*block_group
,
1035 struct btrfs_io_ctl
*io_ctl
,
1038 u64 start
, extent_start
, extent_end
, len
;
1039 struct extent_io_tree
*unpin
= NULL
;
1046 * We want to add any pinned extents to our free space cache
1047 * so we don't leak the space
1049 * We shouldn't have switched the pinned extents yet so this is the
1052 unpin
= fs_info
->pinned_extents
;
1054 start
= block_group
->key
.objectid
;
1056 while (start
< block_group
->key
.objectid
+ block_group
->key
.offset
) {
1057 ret
= find_first_extent_bit(unpin
, start
,
1058 &extent_start
, &extent_end
,
1059 EXTENT_DIRTY
, NULL
);
1063 /* This pinned extent is out of our range */
1064 if (extent_start
>= block_group
->key
.objectid
+
1065 block_group
->key
.offset
)
1068 extent_start
= max(extent_start
, start
);
1069 extent_end
= min(block_group
->key
.objectid
+
1070 block_group
->key
.offset
, extent_end
+ 1);
1071 len
= extent_end
- extent_start
;
1074 ret
= io_ctl_add_entry(io_ctl
, extent_start
, len
, NULL
);
1084 static noinline_for_stack
int
1085 write_bitmap_entries(struct btrfs_io_ctl
*io_ctl
, struct list_head
*bitmap_list
)
1087 struct btrfs_free_space
*entry
, *next
;
1090 /* Write out the bitmaps */
1091 list_for_each_entry_safe(entry
, next
, bitmap_list
, list
) {
1092 ret
= io_ctl_add_bitmap(io_ctl
, entry
->bitmap
);
1095 list_del_init(&entry
->list
);
1101 static int flush_dirty_cache(struct inode
*inode
)
1105 ret
= btrfs_wait_ordered_range(inode
, 0, (u64
)-1);
1107 clear_extent_bit(&BTRFS_I(inode
)->io_tree
, 0, inode
->i_size
- 1,
1108 EXTENT_DIRTY
| EXTENT_DELALLOC
, 0, 0, NULL
,
1114 static void noinline_for_stack
1115 cleanup_bitmap_list(struct list_head
*bitmap_list
)
1117 struct btrfs_free_space
*entry
, *next
;
1119 list_for_each_entry_safe(entry
, next
, bitmap_list
, list
)
1120 list_del_init(&entry
->list
);
1123 static void noinline_for_stack
1124 cleanup_write_cache_enospc(struct inode
*inode
,
1125 struct btrfs_io_ctl
*io_ctl
,
1126 struct extent_state
**cached_state
)
1128 io_ctl_drop_pages(io_ctl
);
1129 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1130 i_size_read(inode
) - 1, cached_state
,
1134 static int __btrfs_wait_cache_io(struct btrfs_root
*root
,
1135 struct btrfs_trans_handle
*trans
,
1136 struct btrfs_block_group_cache
*block_group
,
1137 struct btrfs_io_ctl
*io_ctl
,
1138 struct btrfs_path
*path
, u64 offset
)
1141 struct inode
*inode
= io_ctl
->inode
;
1142 struct btrfs_fs_info
*fs_info
;
1147 fs_info
= btrfs_sb(inode
->i_sb
);
1149 /* Flush the dirty pages in the cache file. */
1150 ret
= flush_dirty_cache(inode
);
1154 /* Update the cache item to tell everyone this cache file is valid. */
1155 ret
= update_cache_item(trans
, root
, inode
, path
, offset
,
1156 io_ctl
->entries
, io_ctl
->bitmaps
);
1158 io_ctl_free(io_ctl
);
1160 invalidate_inode_pages2(inode
->i_mapping
);
1161 BTRFS_I(inode
)->generation
= 0;
1165 "failed to write free space cache for block group %llu",
1166 block_group
->key
.objectid
);
1170 btrfs_update_inode(trans
, root
, inode
);
1173 /* the dirty list is protected by the dirty_bgs_lock */
1174 spin_lock(&trans
->transaction
->dirty_bgs_lock
);
1176 /* the disk_cache_state is protected by the block group lock */
1177 spin_lock(&block_group
->lock
);
1180 * only mark this as written if we didn't get put back on
1181 * the dirty list while waiting for IO. Otherwise our
1182 * cache state won't be right, and we won't get written again
1184 if (!ret
&& list_empty(&block_group
->dirty_list
))
1185 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1187 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1189 spin_unlock(&block_group
->lock
);
1190 spin_unlock(&trans
->transaction
->dirty_bgs_lock
);
1191 io_ctl
->inode
= NULL
;
1199 static int btrfs_wait_cache_io_root(struct btrfs_root
*root
,
1200 struct btrfs_trans_handle
*trans
,
1201 struct btrfs_io_ctl
*io_ctl
,
1202 struct btrfs_path
*path
)
1204 return __btrfs_wait_cache_io(root
, trans
, NULL
, io_ctl
, path
, 0);
1207 int btrfs_wait_cache_io(struct btrfs_trans_handle
*trans
,
1208 struct btrfs_block_group_cache
*block_group
,
1209 struct btrfs_path
*path
)
1211 return __btrfs_wait_cache_io(block_group
->fs_info
->tree_root
, trans
,
1212 block_group
, &block_group
->io_ctl
,
1213 path
, block_group
->key
.objectid
);
1217 * __btrfs_write_out_cache - write out cached info to an inode
1218 * @root - the root the inode belongs to
1219 * @ctl - the free space cache we are going to write out
1220 * @block_group - the block_group for this cache if it belongs to a block_group
1221 * @trans - the trans handle
1223 * This function writes out a free space cache struct to disk for quick recovery
1224 * on mount. This will return 0 if it was successful in writing the cache out,
1225 * or an errno if it was not.
1227 static int __btrfs_write_out_cache(struct btrfs_root
*root
, struct inode
*inode
,
1228 struct btrfs_free_space_ctl
*ctl
,
1229 struct btrfs_block_group_cache
*block_group
,
1230 struct btrfs_io_ctl
*io_ctl
,
1231 struct btrfs_trans_handle
*trans
)
1233 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1234 struct extent_state
*cached_state
= NULL
;
1235 LIST_HEAD(bitmap_list
);
1241 if (!i_size_read(inode
))
1244 WARN_ON(io_ctl
->pages
);
1245 ret
= io_ctl_init(io_ctl
, inode
, 1);
1249 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
)) {
1250 down_write(&block_group
->data_rwsem
);
1251 spin_lock(&block_group
->lock
);
1252 if (block_group
->delalloc_bytes
) {
1253 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
1254 spin_unlock(&block_group
->lock
);
1255 up_write(&block_group
->data_rwsem
);
1256 BTRFS_I(inode
)->generation
= 0;
1261 spin_unlock(&block_group
->lock
);
1264 /* Lock all pages first so we can lock the extent safely. */
1265 ret
= io_ctl_prepare_pages(io_ctl
, inode
, 0);
1269 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, 0, i_size_read(inode
) - 1,
1272 io_ctl_set_generation(io_ctl
, trans
->transid
);
1274 mutex_lock(&ctl
->cache_writeout_mutex
);
1275 /* Write out the extent entries in the free space cache */
1276 spin_lock(&ctl
->tree_lock
);
1277 ret
= write_cache_extent_entries(io_ctl
, ctl
,
1278 block_group
, &entries
, &bitmaps
,
1281 goto out_nospc_locked
;
1284 * Some spaces that are freed in the current transaction are pinned,
1285 * they will be added into free space cache after the transaction is
1286 * committed, we shouldn't lose them.
1288 * If this changes while we are working we'll get added back to
1289 * the dirty list and redo it. No locking needed
1291 ret
= write_pinned_extent_entries(fs_info
, block_group
,
1294 goto out_nospc_locked
;
1297 * At last, we write out all the bitmaps and keep cache_writeout_mutex
1298 * locked while doing it because a concurrent trim can be manipulating
1299 * or freeing the bitmap.
1301 ret
= write_bitmap_entries(io_ctl
, &bitmap_list
);
1302 spin_unlock(&ctl
->tree_lock
);
1303 mutex_unlock(&ctl
->cache_writeout_mutex
);
1307 /* Zero out the rest of the pages just to make sure */
1308 io_ctl_zero_remaining_pages(io_ctl
);
1310 /* Everything is written out, now we dirty the pages in the file. */
1311 ret
= btrfs_dirty_pages(inode
, io_ctl
->pages
, io_ctl
->num_pages
, 0,
1312 i_size_read(inode
), &cached_state
);
1316 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1317 up_write(&block_group
->data_rwsem
);
1319 * Release the pages and unlock the extent, we will flush
1322 io_ctl_drop_pages(io_ctl
);
1324 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, 0,
1325 i_size_read(inode
) - 1, &cached_state
, GFP_NOFS
);
1328 * at this point the pages are under IO and we're happy,
1329 * The caller is responsible for waiting on them and updating the
1330 * the cache and the inode
1332 io_ctl
->entries
= entries
;
1333 io_ctl
->bitmaps
= bitmaps
;
1335 ret
= btrfs_fdatawrite_range(inode
, 0, (u64
)-1);
1342 io_ctl
->inode
= NULL
;
1343 io_ctl_free(io_ctl
);
1345 invalidate_inode_pages2(inode
->i_mapping
);
1346 BTRFS_I(inode
)->generation
= 0;
1348 btrfs_update_inode(trans
, root
, inode
);
1354 cleanup_bitmap_list(&bitmap_list
);
1355 spin_unlock(&ctl
->tree_lock
);
1356 mutex_unlock(&ctl
->cache_writeout_mutex
);
1359 cleanup_write_cache_enospc(inode
, io_ctl
, &cached_state
);
1361 if (block_group
&& (block_group
->flags
& BTRFS_BLOCK_GROUP_DATA
))
1362 up_write(&block_group
->data_rwsem
);
1367 int btrfs_write_out_cache(struct btrfs_fs_info
*fs_info
,
1368 struct btrfs_trans_handle
*trans
,
1369 struct btrfs_block_group_cache
*block_group
,
1370 struct btrfs_path
*path
)
1372 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
1373 struct inode
*inode
;
1376 spin_lock(&block_group
->lock
);
1377 if (block_group
->disk_cache_state
< BTRFS_DC_SETUP
) {
1378 spin_unlock(&block_group
->lock
);
1381 spin_unlock(&block_group
->lock
);
1383 inode
= lookup_free_space_inode(fs_info
, block_group
, path
);
1387 ret
= __btrfs_write_out_cache(fs_info
->tree_root
, inode
, ctl
,
1388 block_group
, &block_group
->io_ctl
, trans
);
1392 "failed to write free space cache for block group %llu",
1393 block_group
->key
.objectid
);
1395 spin_lock(&block_group
->lock
);
1396 block_group
->disk_cache_state
= BTRFS_DC_ERROR
;
1397 spin_unlock(&block_group
->lock
);
1399 block_group
->io_ctl
.inode
= NULL
;
1404 * if ret == 0 the caller is expected to call btrfs_wait_cache_io
1405 * to wait for IO and put the inode
1411 static inline unsigned long offset_to_bit(u64 bitmap_start
, u32 unit
,
1414 ASSERT(offset
>= bitmap_start
);
1415 offset
-= bitmap_start
;
1416 return (unsigned long)(div_u64(offset
, unit
));
1419 static inline unsigned long bytes_to_bits(u64 bytes
, u32 unit
)
1421 return (unsigned long)(div_u64(bytes
, unit
));
1424 static inline u64
offset_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1428 u64 bytes_per_bitmap
;
1430 bytes_per_bitmap
= BITS_PER_BITMAP
* ctl
->unit
;
1431 bitmap_start
= offset
- ctl
->start
;
1432 bitmap_start
= div64_u64(bitmap_start
, bytes_per_bitmap
);
1433 bitmap_start
*= bytes_per_bitmap
;
1434 bitmap_start
+= ctl
->start
;
1436 return bitmap_start
;
1439 static int tree_insert_offset(struct rb_root
*root
, u64 offset
,
1440 struct rb_node
*node
, int bitmap
)
1442 struct rb_node
**p
= &root
->rb_node
;
1443 struct rb_node
*parent
= NULL
;
1444 struct btrfs_free_space
*info
;
1448 info
= rb_entry(parent
, struct btrfs_free_space
, offset_index
);
1450 if (offset
< info
->offset
) {
1452 } else if (offset
> info
->offset
) {
1453 p
= &(*p
)->rb_right
;
1456 * we could have a bitmap entry and an extent entry
1457 * share the same offset. If this is the case, we want
1458 * the extent entry to always be found first if we do a
1459 * linear search through the tree, since we want to have
1460 * the quickest allocation time, and allocating from an
1461 * extent is faster than allocating from a bitmap. So
1462 * if we're inserting a bitmap and we find an entry at
1463 * this offset, we want to go right, or after this entry
1464 * logically. If we are inserting an extent and we've
1465 * found a bitmap, we want to go left, or before
1473 p
= &(*p
)->rb_right
;
1475 if (!info
->bitmap
) {
1484 rb_link_node(node
, parent
, p
);
1485 rb_insert_color(node
, root
);
1491 * searches the tree for the given offset.
1493 * fuzzy - If this is set, then we are trying to make an allocation, and we just
1494 * want a section that has at least bytes size and comes at or after the given
1497 static struct btrfs_free_space
*
1498 tree_search_offset(struct btrfs_free_space_ctl
*ctl
,
1499 u64 offset
, int bitmap_only
, int fuzzy
)
1501 struct rb_node
*n
= ctl
->free_space_offset
.rb_node
;
1502 struct btrfs_free_space
*entry
, *prev
= NULL
;
1504 /* find entry that is closest to the 'offset' */
1511 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1514 if (offset
< entry
->offset
)
1516 else if (offset
> entry
->offset
)
1529 * bitmap entry and extent entry may share same offset,
1530 * in that case, bitmap entry comes after extent entry.
1535 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1536 if (entry
->offset
!= offset
)
1539 WARN_ON(!entry
->bitmap
);
1542 if (entry
->bitmap
) {
1544 * if previous extent entry covers the offset,
1545 * we should return it instead of the bitmap entry
1547 n
= rb_prev(&entry
->offset_index
);
1549 prev
= rb_entry(n
, struct btrfs_free_space
,
1551 if (!prev
->bitmap
&&
1552 prev
->offset
+ prev
->bytes
> offset
)
1562 /* find last entry before the 'offset' */
1564 if (entry
->offset
> offset
) {
1565 n
= rb_prev(&entry
->offset_index
);
1567 entry
= rb_entry(n
, struct btrfs_free_space
,
1569 ASSERT(entry
->offset
<= offset
);
1578 if (entry
->bitmap
) {
1579 n
= rb_prev(&entry
->offset_index
);
1581 prev
= rb_entry(n
, struct btrfs_free_space
,
1583 if (!prev
->bitmap
&&
1584 prev
->offset
+ prev
->bytes
> offset
)
1587 if (entry
->offset
+ BITS_PER_BITMAP
* ctl
->unit
> offset
)
1589 } else if (entry
->offset
+ entry
->bytes
> offset
)
1596 if (entry
->bitmap
) {
1597 if (entry
->offset
+ BITS_PER_BITMAP
*
1601 if (entry
->offset
+ entry
->bytes
> offset
)
1605 n
= rb_next(&entry
->offset_index
);
1608 entry
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
1614 __unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1615 struct btrfs_free_space
*info
)
1617 rb_erase(&info
->offset_index
, &ctl
->free_space_offset
);
1618 ctl
->free_extents
--;
1621 static void unlink_free_space(struct btrfs_free_space_ctl
*ctl
,
1622 struct btrfs_free_space
*info
)
1624 __unlink_free_space(ctl
, info
);
1625 ctl
->free_space
-= info
->bytes
;
1628 static int link_free_space(struct btrfs_free_space_ctl
*ctl
,
1629 struct btrfs_free_space
*info
)
1633 ASSERT(info
->bytes
|| info
->bitmap
);
1634 ret
= tree_insert_offset(&ctl
->free_space_offset
, info
->offset
,
1635 &info
->offset_index
, (info
->bitmap
!= NULL
));
1639 ctl
->free_space
+= info
->bytes
;
1640 ctl
->free_extents
++;
1644 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
1646 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1650 u64 size
= block_group
->key
.offset
;
1651 u64 bytes_per_bg
= BITS_PER_BITMAP
* ctl
->unit
;
1652 u64 max_bitmaps
= div64_u64(size
+ bytes_per_bg
- 1, bytes_per_bg
);
1654 max_bitmaps
= max_t(u64
, max_bitmaps
, 1);
1656 ASSERT(ctl
->total_bitmaps
<= max_bitmaps
);
1659 * The goal is to keep the total amount of memory used per 1gb of space
1660 * at or below 32k, so we need to adjust how much memory we allow to be
1661 * used by extent based free space tracking
1664 max_bytes
= MAX_CACHE_BYTES_PER_GIG
;
1666 max_bytes
= MAX_CACHE_BYTES_PER_GIG
* div_u64(size
, SZ_1G
);
1669 * we want to account for 1 more bitmap than what we have so we can make
1670 * sure we don't go over our overall goal of MAX_CACHE_BYTES_PER_GIG as
1671 * we add more bitmaps.
1673 bitmap_bytes
= (ctl
->total_bitmaps
+ 1) * ctl
->unit
;
1675 if (bitmap_bytes
>= max_bytes
) {
1676 ctl
->extents_thresh
= 0;
1681 * we want the extent entry threshold to always be at most 1/2 the max
1682 * bytes we can have, or whatever is less than that.
1684 extent_bytes
= max_bytes
- bitmap_bytes
;
1685 extent_bytes
= min_t(u64
, extent_bytes
, max_bytes
>> 1);
1687 ctl
->extents_thresh
=
1688 div_u64(extent_bytes
, sizeof(struct btrfs_free_space
));
1691 static inline void __bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1692 struct btrfs_free_space
*info
,
1693 u64 offset
, u64 bytes
)
1695 unsigned long start
, count
;
1697 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1698 count
= bytes_to_bits(bytes
, ctl
->unit
);
1699 ASSERT(start
+ count
<= BITS_PER_BITMAP
);
1701 bitmap_clear(info
->bitmap
, start
, count
);
1703 info
->bytes
-= bytes
;
1706 static void bitmap_clear_bits(struct btrfs_free_space_ctl
*ctl
,
1707 struct btrfs_free_space
*info
, u64 offset
,
1710 __bitmap_clear_bits(ctl
, info
, offset
, bytes
);
1711 ctl
->free_space
-= bytes
;
1714 static void bitmap_set_bits(struct btrfs_free_space_ctl
*ctl
,
1715 struct btrfs_free_space
*info
, u64 offset
,
1718 unsigned long start
, count
;
1720 start
= offset_to_bit(info
->offset
, ctl
->unit
, offset
);
1721 count
= bytes_to_bits(bytes
, ctl
->unit
);
1722 ASSERT(start
+ count
<= BITS_PER_BITMAP
);
1724 bitmap_set(info
->bitmap
, start
, count
);
1726 info
->bytes
+= bytes
;
1727 ctl
->free_space
+= bytes
;
1731 * If we can not find suitable extent, we will use bytes to record
1732 * the size of the max extent.
1734 static int search_bitmap(struct btrfs_free_space_ctl
*ctl
,
1735 struct btrfs_free_space
*bitmap_info
, u64
*offset
,
1736 u64
*bytes
, bool for_alloc
)
1738 unsigned long found_bits
= 0;
1739 unsigned long max_bits
= 0;
1740 unsigned long bits
, i
;
1741 unsigned long next_zero
;
1742 unsigned long extent_bits
;
1745 * Skip searching the bitmap if we don't have a contiguous section that
1746 * is large enough for this allocation.
1749 bitmap_info
->max_extent_size
&&
1750 bitmap_info
->max_extent_size
< *bytes
) {
1751 *bytes
= bitmap_info
->max_extent_size
;
1755 i
= offset_to_bit(bitmap_info
->offset
, ctl
->unit
,
1756 max_t(u64
, *offset
, bitmap_info
->offset
));
1757 bits
= bytes_to_bits(*bytes
, ctl
->unit
);
1759 for_each_set_bit_from(i
, bitmap_info
->bitmap
, BITS_PER_BITMAP
) {
1760 if (for_alloc
&& bits
== 1) {
1764 next_zero
= find_next_zero_bit(bitmap_info
->bitmap
,
1765 BITS_PER_BITMAP
, i
);
1766 extent_bits
= next_zero
- i
;
1767 if (extent_bits
>= bits
) {
1768 found_bits
= extent_bits
;
1770 } else if (extent_bits
> max_bits
) {
1771 max_bits
= extent_bits
;
1777 *offset
= (u64
)(i
* ctl
->unit
) + bitmap_info
->offset
;
1778 *bytes
= (u64
)(found_bits
) * ctl
->unit
;
1782 *bytes
= (u64
)(max_bits
) * ctl
->unit
;
1783 bitmap_info
->max_extent_size
= *bytes
;
1787 /* Cache the size of the max extent in bytes */
1788 static struct btrfs_free_space
*
1789 find_free_space(struct btrfs_free_space_ctl
*ctl
, u64
*offset
, u64
*bytes
,
1790 unsigned long align
, u64
*max_extent_size
)
1792 struct btrfs_free_space
*entry
;
1793 struct rb_node
*node
;
1798 if (!ctl
->free_space_offset
.rb_node
)
1801 entry
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, *offset
), 0, 1);
1805 for (node
= &entry
->offset_index
; node
; node
= rb_next(node
)) {
1806 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
1807 if (entry
->bytes
< *bytes
) {
1808 if (entry
->bytes
> *max_extent_size
)
1809 *max_extent_size
= entry
->bytes
;
1813 /* make sure the space returned is big enough
1814 * to match our requested alignment
1816 if (*bytes
>= align
) {
1817 tmp
= entry
->offset
- ctl
->start
+ align
- 1;
1818 tmp
= div64_u64(tmp
, align
);
1819 tmp
= tmp
* align
+ ctl
->start
;
1820 align_off
= tmp
- entry
->offset
;
1823 tmp
= entry
->offset
;
1826 if (entry
->bytes
< *bytes
+ align_off
) {
1827 if (entry
->bytes
> *max_extent_size
)
1828 *max_extent_size
= entry
->bytes
;
1832 if (entry
->bitmap
) {
1835 ret
= search_bitmap(ctl
, entry
, &tmp
, &size
, true);
1840 } else if (size
> *max_extent_size
) {
1841 *max_extent_size
= size
;
1847 *bytes
= entry
->bytes
- align_off
;
1854 static void add_new_bitmap(struct btrfs_free_space_ctl
*ctl
,
1855 struct btrfs_free_space
*info
, u64 offset
)
1857 info
->offset
= offset_to_bitmap(ctl
, offset
);
1859 INIT_LIST_HEAD(&info
->list
);
1860 link_free_space(ctl
, info
);
1861 ctl
->total_bitmaps
++;
1863 ctl
->op
->recalc_thresholds(ctl
);
1866 static void free_bitmap(struct btrfs_free_space_ctl
*ctl
,
1867 struct btrfs_free_space
*bitmap_info
)
1869 unlink_free_space(ctl
, bitmap_info
);
1870 kfree(bitmap_info
->bitmap
);
1871 kmem_cache_free(btrfs_free_space_cachep
, bitmap_info
);
1872 ctl
->total_bitmaps
--;
1873 ctl
->op
->recalc_thresholds(ctl
);
1876 static noinline
int remove_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
1877 struct btrfs_free_space
*bitmap_info
,
1878 u64
*offset
, u64
*bytes
)
1881 u64 search_start
, search_bytes
;
1885 end
= bitmap_info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
) - 1;
1888 * We need to search for bits in this bitmap. We could only cover some
1889 * of the extent in this bitmap thanks to how we add space, so we need
1890 * to search for as much as it as we can and clear that amount, and then
1891 * go searching for the next bit.
1893 search_start
= *offset
;
1894 search_bytes
= ctl
->unit
;
1895 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1896 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
, &search_bytes
,
1898 if (ret
< 0 || search_start
!= *offset
)
1901 /* We may have found more bits than what we need */
1902 search_bytes
= min(search_bytes
, *bytes
);
1904 /* Cannot clear past the end of the bitmap */
1905 search_bytes
= min(search_bytes
, end
- search_start
+ 1);
1907 bitmap_clear_bits(ctl
, bitmap_info
, search_start
, search_bytes
);
1908 *offset
+= search_bytes
;
1909 *bytes
-= search_bytes
;
1912 struct rb_node
*next
= rb_next(&bitmap_info
->offset_index
);
1913 if (!bitmap_info
->bytes
)
1914 free_bitmap(ctl
, bitmap_info
);
1917 * no entry after this bitmap, but we still have bytes to
1918 * remove, so something has gone wrong.
1923 bitmap_info
= rb_entry(next
, struct btrfs_free_space
,
1927 * if the next entry isn't a bitmap we need to return to let the
1928 * extent stuff do its work.
1930 if (!bitmap_info
->bitmap
)
1934 * Ok the next item is a bitmap, but it may not actually hold
1935 * the information for the rest of this free space stuff, so
1936 * look for it, and if we don't find it return so we can try
1937 * everything over again.
1939 search_start
= *offset
;
1940 search_bytes
= ctl
->unit
;
1941 ret
= search_bitmap(ctl
, bitmap_info
, &search_start
,
1942 &search_bytes
, false);
1943 if (ret
< 0 || search_start
!= *offset
)
1947 } else if (!bitmap_info
->bytes
)
1948 free_bitmap(ctl
, bitmap_info
);
1953 static u64
add_bytes_to_bitmap(struct btrfs_free_space_ctl
*ctl
,
1954 struct btrfs_free_space
*info
, u64 offset
,
1957 u64 bytes_to_set
= 0;
1960 end
= info
->offset
+ (u64
)(BITS_PER_BITMAP
* ctl
->unit
);
1962 bytes_to_set
= min(end
- offset
, bytes
);
1964 bitmap_set_bits(ctl
, info
, offset
, bytes_to_set
);
1967 * We set some bytes, we have no idea what the max extent size is
1970 info
->max_extent_size
= 0;
1972 return bytes_to_set
;
1976 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
1977 struct btrfs_free_space
*info
)
1979 struct btrfs_block_group_cache
*block_group
= ctl
->private;
1980 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
1981 bool forced
= false;
1983 #ifdef CONFIG_BTRFS_DEBUG
1984 if (btrfs_should_fragment_free_space(block_group
))
1989 * If we are below the extents threshold then we can add this as an
1990 * extent, and don't have to deal with the bitmap
1992 if (!forced
&& ctl
->free_extents
< ctl
->extents_thresh
) {
1994 * If this block group has some small extents we don't want to
1995 * use up all of our free slots in the cache with them, we want
1996 * to reserve them to larger extents, however if we have plenty
1997 * of cache left then go ahead an dadd them, no sense in adding
1998 * the overhead of a bitmap if we don't have to.
2000 if (info
->bytes
<= fs_info
->sectorsize
* 4) {
2001 if (ctl
->free_extents
* 2 <= ctl
->extents_thresh
)
2009 * The original block groups from mkfs can be really small, like 8
2010 * megabytes, so don't bother with a bitmap for those entries. However
2011 * some block groups can be smaller than what a bitmap would cover but
2012 * are still large enough that they could overflow the 32k memory limit,
2013 * so allow those block groups to still be allowed to have a bitmap
2016 if (((BITS_PER_BITMAP
* ctl
->unit
) >> 1) > block_group
->key
.offset
)
2022 static const struct btrfs_free_space_op free_space_op
= {
2023 .recalc_thresholds
= recalculate_thresholds
,
2024 .use_bitmap
= use_bitmap
,
2027 static int insert_into_bitmap(struct btrfs_free_space_ctl
*ctl
,
2028 struct btrfs_free_space
*info
)
2030 struct btrfs_free_space
*bitmap_info
;
2031 struct btrfs_block_group_cache
*block_group
= NULL
;
2033 u64 bytes
, offset
, bytes_added
;
2036 bytes
= info
->bytes
;
2037 offset
= info
->offset
;
2039 if (!ctl
->op
->use_bitmap(ctl
, info
))
2042 if (ctl
->op
== &free_space_op
)
2043 block_group
= ctl
->private;
2046 * Since we link bitmaps right into the cluster we need to see if we
2047 * have a cluster here, and if so and it has our bitmap we need to add
2048 * the free space to that bitmap.
2050 if (block_group
&& !list_empty(&block_group
->cluster_list
)) {
2051 struct btrfs_free_cluster
*cluster
;
2052 struct rb_node
*node
;
2053 struct btrfs_free_space
*entry
;
2055 cluster
= list_entry(block_group
->cluster_list
.next
,
2056 struct btrfs_free_cluster
,
2058 spin_lock(&cluster
->lock
);
2059 node
= rb_first(&cluster
->root
);
2061 spin_unlock(&cluster
->lock
);
2062 goto no_cluster_bitmap
;
2065 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2066 if (!entry
->bitmap
) {
2067 spin_unlock(&cluster
->lock
);
2068 goto no_cluster_bitmap
;
2071 if (entry
->offset
== offset_to_bitmap(ctl
, offset
)) {
2072 bytes_added
= add_bytes_to_bitmap(ctl
, entry
,
2074 bytes
-= bytes_added
;
2075 offset
+= bytes_added
;
2077 spin_unlock(&cluster
->lock
);
2085 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2092 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
2093 bytes
-= bytes_added
;
2094 offset
+= bytes_added
;
2104 if (info
&& info
->bitmap
) {
2105 add_new_bitmap(ctl
, info
, offset
);
2110 spin_unlock(&ctl
->tree_lock
);
2112 /* no pre-allocated info, allocate a new one */
2114 info
= kmem_cache_zalloc(btrfs_free_space_cachep
,
2117 spin_lock(&ctl
->tree_lock
);
2123 /* allocate the bitmap */
2124 info
->bitmap
= kzalloc(PAGE_SIZE
, GFP_NOFS
);
2125 spin_lock(&ctl
->tree_lock
);
2126 if (!info
->bitmap
) {
2136 kfree(info
->bitmap
);
2137 kmem_cache_free(btrfs_free_space_cachep
, info
);
2143 static bool try_merge_free_space(struct btrfs_free_space_ctl
*ctl
,
2144 struct btrfs_free_space
*info
, bool update_stat
)
2146 struct btrfs_free_space
*left_info
;
2147 struct btrfs_free_space
*right_info
;
2148 bool merged
= false;
2149 u64 offset
= info
->offset
;
2150 u64 bytes
= info
->bytes
;
2153 * first we want to see if there is free space adjacent to the range we
2154 * are adding, if there is remove that struct and add a new one to
2155 * cover the entire range
2157 right_info
= tree_search_offset(ctl
, offset
+ bytes
, 0, 0);
2158 if (right_info
&& rb_prev(&right_info
->offset_index
))
2159 left_info
= rb_entry(rb_prev(&right_info
->offset_index
),
2160 struct btrfs_free_space
, offset_index
);
2162 left_info
= tree_search_offset(ctl
, offset
- 1, 0, 0);
2164 if (right_info
&& !right_info
->bitmap
) {
2166 unlink_free_space(ctl
, right_info
);
2168 __unlink_free_space(ctl
, right_info
);
2169 info
->bytes
+= right_info
->bytes
;
2170 kmem_cache_free(btrfs_free_space_cachep
, right_info
);
2174 if (left_info
&& !left_info
->bitmap
&&
2175 left_info
->offset
+ left_info
->bytes
== offset
) {
2177 unlink_free_space(ctl
, left_info
);
2179 __unlink_free_space(ctl
, left_info
);
2180 info
->offset
= left_info
->offset
;
2181 info
->bytes
+= left_info
->bytes
;
2182 kmem_cache_free(btrfs_free_space_cachep
, left_info
);
2189 static bool steal_from_bitmap_to_end(struct btrfs_free_space_ctl
*ctl
,
2190 struct btrfs_free_space
*info
,
2193 struct btrfs_free_space
*bitmap
;
2196 const u64 end
= info
->offset
+ info
->bytes
;
2197 const u64 bitmap_offset
= offset_to_bitmap(ctl
, end
);
2200 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2204 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, end
);
2205 j
= find_next_zero_bit(bitmap
->bitmap
, BITS_PER_BITMAP
, i
);
2208 bytes
= (j
- i
) * ctl
->unit
;
2209 info
->bytes
+= bytes
;
2212 bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2214 __bitmap_clear_bits(ctl
, bitmap
, end
, bytes
);
2217 free_bitmap(ctl
, bitmap
);
2222 static bool steal_from_bitmap_to_front(struct btrfs_free_space_ctl
*ctl
,
2223 struct btrfs_free_space
*info
,
2226 struct btrfs_free_space
*bitmap
;
2230 unsigned long prev_j
;
2233 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
);
2234 /* If we're on a boundary, try the previous logical bitmap. */
2235 if (bitmap_offset
== info
->offset
) {
2236 if (info
->offset
== 0)
2238 bitmap_offset
= offset_to_bitmap(ctl
, info
->offset
- 1);
2241 bitmap
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2245 i
= offset_to_bit(bitmap
->offset
, ctl
->unit
, info
->offset
) - 1;
2247 prev_j
= (unsigned long)-1;
2248 for_each_clear_bit_from(j
, bitmap
->bitmap
, BITS_PER_BITMAP
) {
2256 if (prev_j
== (unsigned long)-1)
2257 bytes
= (i
+ 1) * ctl
->unit
;
2259 bytes
= (i
- prev_j
) * ctl
->unit
;
2261 info
->offset
-= bytes
;
2262 info
->bytes
+= bytes
;
2265 bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2267 __bitmap_clear_bits(ctl
, bitmap
, info
->offset
, bytes
);
2270 free_bitmap(ctl
, bitmap
);
2276 * We prefer always to allocate from extent entries, both for clustered and
2277 * non-clustered allocation requests. So when attempting to add a new extent
2278 * entry, try to see if there's adjacent free space in bitmap entries, and if
2279 * there is, migrate that space from the bitmaps to the extent.
2280 * Like this we get better chances of satisfying space allocation requests
2281 * because we attempt to satisfy them based on a single cache entry, and never
2282 * on 2 or more entries - even if the entries represent a contiguous free space
2283 * region (e.g. 1 extent entry + 1 bitmap entry starting where the extent entry
2286 static void steal_from_bitmap(struct btrfs_free_space_ctl
*ctl
,
2287 struct btrfs_free_space
*info
,
2291 * Only work with disconnected entries, as we can change their offset,
2292 * and must be extent entries.
2294 ASSERT(!info
->bitmap
);
2295 ASSERT(RB_EMPTY_NODE(&info
->offset_index
));
2297 if (ctl
->total_bitmaps
> 0) {
2299 bool stole_front
= false;
2301 stole_end
= steal_from_bitmap_to_end(ctl
, info
, update_stat
);
2302 if (ctl
->total_bitmaps
> 0)
2303 stole_front
= steal_from_bitmap_to_front(ctl
, info
,
2306 if (stole_end
|| stole_front
)
2307 try_merge_free_space(ctl
, info
, update_stat
);
2311 int __btrfs_add_free_space(struct btrfs_fs_info
*fs_info
,
2312 struct btrfs_free_space_ctl
*ctl
,
2313 u64 offset
, u64 bytes
)
2315 struct btrfs_free_space
*info
;
2318 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
2322 info
->offset
= offset
;
2323 info
->bytes
= bytes
;
2324 RB_CLEAR_NODE(&info
->offset_index
);
2326 spin_lock(&ctl
->tree_lock
);
2328 if (try_merge_free_space(ctl
, info
, true))
2332 * There was no extent directly to the left or right of this new
2333 * extent then we know we're going to have to allocate a new extent, so
2334 * before we do that see if we need to drop this into a bitmap
2336 ret
= insert_into_bitmap(ctl
, info
);
2345 * Only steal free space from adjacent bitmaps if we're sure we're not
2346 * going to add the new free space to existing bitmap entries - because
2347 * that would mean unnecessary work that would be reverted. Therefore
2348 * attempt to steal space from bitmaps if we're adding an extent entry.
2350 steal_from_bitmap(ctl
, info
, true);
2352 ret
= link_free_space(ctl
, info
);
2354 kmem_cache_free(btrfs_free_space_cachep
, info
);
2356 spin_unlock(&ctl
->tree_lock
);
2359 btrfs_crit(fs_info
, "unable to add free space :%d", ret
);
2360 ASSERT(ret
!= -EEXIST
);
2366 int btrfs_remove_free_space(struct btrfs_block_group_cache
*block_group
,
2367 u64 offset
, u64 bytes
)
2369 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2370 struct btrfs_free_space
*info
;
2372 bool re_search
= false;
2374 spin_lock(&ctl
->tree_lock
);
2381 info
= tree_search_offset(ctl
, offset
, 0, 0);
2384 * oops didn't find an extent that matched the space we wanted
2385 * to remove, look for a bitmap instead
2387 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
2391 * If we found a partial bit of our free space in a
2392 * bitmap but then couldn't find the other part this may
2393 * be a problem, so WARN about it.
2401 if (!info
->bitmap
) {
2402 unlink_free_space(ctl
, info
);
2403 if (offset
== info
->offset
) {
2404 u64 to_free
= min(bytes
, info
->bytes
);
2406 info
->bytes
-= to_free
;
2407 info
->offset
+= to_free
;
2409 ret
= link_free_space(ctl
, info
);
2412 kmem_cache_free(btrfs_free_space_cachep
, info
);
2419 u64 old_end
= info
->bytes
+ info
->offset
;
2421 info
->bytes
= offset
- info
->offset
;
2422 ret
= link_free_space(ctl
, info
);
2427 /* Not enough bytes in this entry to satisfy us */
2428 if (old_end
< offset
+ bytes
) {
2429 bytes
-= old_end
- offset
;
2432 } else if (old_end
== offset
+ bytes
) {
2436 spin_unlock(&ctl
->tree_lock
);
2438 ret
= btrfs_add_free_space(block_group
, offset
+ bytes
,
2439 old_end
- (offset
+ bytes
));
2445 ret
= remove_from_bitmap(ctl
, info
, &offset
, &bytes
);
2446 if (ret
== -EAGAIN
) {
2451 spin_unlock(&ctl
->tree_lock
);
2456 void btrfs_dump_free_space(struct btrfs_block_group_cache
*block_group
,
2459 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2460 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2461 struct btrfs_free_space
*info
;
2465 for (n
= rb_first(&ctl
->free_space_offset
); n
; n
= rb_next(n
)) {
2466 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
2467 if (info
->bytes
>= bytes
&& !block_group
->ro
)
2469 btrfs_crit(fs_info
, "entry offset %llu, bytes %llu, bitmap %s",
2470 info
->offset
, info
->bytes
,
2471 (info
->bitmap
) ? "yes" : "no");
2473 btrfs_info(fs_info
, "block group has cluster?: %s",
2474 list_empty(&block_group
->cluster_list
) ? "no" : "yes");
2476 "%d blocks of free space at or bigger than bytes is", count
);
2479 void btrfs_init_free_space_ctl(struct btrfs_block_group_cache
*block_group
)
2481 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
2482 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2484 spin_lock_init(&ctl
->tree_lock
);
2485 ctl
->unit
= fs_info
->sectorsize
;
2486 ctl
->start
= block_group
->key
.objectid
;
2487 ctl
->private = block_group
;
2488 ctl
->op
= &free_space_op
;
2489 INIT_LIST_HEAD(&ctl
->trimming_ranges
);
2490 mutex_init(&ctl
->cache_writeout_mutex
);
2493 * we only want to have 32k of ram per block group for keeping
2494 * track of free space, and if we pass 1/2 of that we want to
2495 * start converting things over to using bitmaps
2497 ctl
->extents_thresh
= (SZ_32K
/ 2) / sizeof(struct btrfs_free_space
);
2501 * for a given cluster, put all of its extents back into the free
2502 * space cache. If the block group passed doesn't match the block group
2503 * pointed to by the cluster, someone else raced in and freed the
2504 * cluster already. In that case, we just return without changing anything
2507 __btrfs_return_cluster_to_free_space(
2508 struct btrfs_block_group_cache
*block_group
,
2509 struct btrfs_free_cluster
*cluster
)
2511 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2512 struct btrfs_free_space
*entry
;
2513 struct rb_node
*node
;
2515 spin_lock(&cluster
->lock
);
2516 if (cluster
->block_group
!= block_group
)
2519 cluster
->block_group
= NULL
;
2520 cluster
->window_start
= 0;
2521 list_del_init(&cluster
->block_group_list
);
2523 node
= rb_first(&cluster
->root
);
2527 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2528 node
= rb_next(&entry
->offset_index
);
2529 rb_erase(&entry
->offset_index
, &cluster
->root
);
2530 RB_CLEAR_NODE(&entry
->offset_index
);
2532 bitmap
= (entry
->bitmap
!= NULL
);
2534 try_merge_free_space(ctl
, entry
, false);
2535 steal_from_bitmap(ctl
, entry
, false);
2537 tree_insert_offset(&ctl
->free_space_offset
,
2538 entry
->offset
, &entry
->offset_index
, bitmap
);
2540 cluster
->root
= RB_ROOT
;
2543 spin_unlock(&cluster
->lock
);
2544 btrfs_put_block_group(block_group
);
2548 static void __btrfs_remove_free_space_cache_locked(
2549 struct btrfs_free_space_ctl
*ctl
)
2551 struct btrfs_free_space
*info
;
2552 struct rb_node
*node
;
2554 while ((node
= rb_last(&ctl
->free_space_offset
)) != NULL
) {
2555 info
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2556 if (!info
->bitmap
) {
2557 unlink_free_space(ctl
, info
);
2558 kmem_cache_free(btrfs_free_space_cachep
, info
);
2560 free_bitmap(ctl
, info
);
2563 cond_resched_lock(&ctl
->tree_lock
);
2567 void __btrfs_remove_free_space_cache(struct btrfs_free_space_ctl
*ctl
)
2569 spin_lock(&ctl
->tree_lock
);
2570 __btrfs_remove_free_space_cache_locked(ctl
);
2571 spin_unlock(&ctl
->tree_lock
);
2574 void btrfs_remove_free_space_cache(struct btrfs_block_group_cache
*block_group
)
2576 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2577 struct btrfs_free_cluster
*cluster
;
2578 struct list_head
*head
;
2580 spin_lock(&ctl
->tree_lock
);
2581 while ((head
= block_group
->cluster_list
.next
) !=
2582 &block_group
->cluster_list
) {
2583 cluster
= list_entry(head
, struct btrfs_free_cluster
,
2586 WARN_ON(cluster
->block_group
!= block_group
);
2587 __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2589 cond_resched_lock(&ctl
->tree_lock
);
2591 __btrfs_remove_free_space_cache_locked(ctl
);
2592 spin_unlock(&ctl
->tree_lock
);
2596 u64
btrfs_find_space_for_alloc(struct btrfs_block_group_cache
*block_group
,
2597 u64 offset
, u64 bytes
, u64 empty_size
,
2598 u64
*max_extent_size
)
2600 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2601 struct btrfs_free_space
*entry
= NULL
;
2602 u64 bytes_search
= bytes
+ empty_size
;
2605 u64 align_gap_len
= 0;
2607 spin_lock(&ctl
->tree_lock
);
2608 entry
= find_free_space(ctl
, &offset
, &bytes_search
,
2609 block_group
->full_stripe_len
, max_extent_size
);
2614 if (entry
->bitmap
) {
2615 bitmap_clear_bits(ctl
, entry
, offset
, bytes
);
2617 free_bitmap(ctl
, entry
);
2619 unlink_free_space(ctl
, entry
);
2620 align_gap_len
= offset
- entry
->offset
;
2621 align_gap
= entry
->offset
;
2623 entry
->offset
= offset
+ bytes
;
2624 WARN_ON(entry
->bytes
< bytes
+ align_gap_len
);
2626 entry
->bytes
-= bytes
+ align_gap_len
;
2628 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2630 link_free_space(ctl
, entry
);
2633 spin_unlock(&ctl
->tree_lock
);
2636 __btrfs_add_free_space(block_group
->fs_info
, ctl
,
2637 align_gap
, align_gap_len
);
2642 * given a cluster, put all of its extents back into the free space
2643 * cache. If a block group is passed, this function will only free
2644 * a cluster that belongs to the passed block group.
2646 * Otherwise, it'll get a reference on the block group pointed to by the
2647 * cluster and remove the cluster from it.
2649 int btrfs_return_cluster_to_free_space(
2650 struct btrfs_block_group_cache
*block_group
,
2651 struct btrfs_free_cluster
*cluster
)
2653 struct btrfs_free_space_ctl
*ctl
;
2656 /* first, get a safe pointer to the block group */
2657 spin_lock(&cluster
->lock
);
2659 block_group
= cluster
->block_group
;
2661 spin_unlock(&cluster
->lock
);
2664 } else if (cluster
->block_group
!= block_group
) {
2665 /* someone else has already freed it don't redo their work */
2666 spin_unlock(&cluster
->lock
);
2669 atomic_inc(&block_group
->count
);
2670 spin_unlock(&cluster
->lock
);
2672 ctl
= block_group
->free_space_ctl
;
2674 /* now return any extents the cluster had on it */
2675 spin_lock(&ctl
->tree_lock
);
2676 ret
= __btrfs_return_cluster_to_free_space(block_group
, cluster
);
2677 spin_unlock(&ctl
->tree_lock
);
2679 /* finally drop our ref */
2680 btrfs_put_block_group(block_group
);
2684 static u64
btrfs_alloc_from_bitmap(struct btrfs_block_group_cache
*block_group
,
2685 struct btrfs_free_cluster
*cluster
,
2686 struct btrfs_free_space
*entry
,
2687 u64 bytes
, u64 min_start
,
2688 u64
*max_extent_size
)
2690 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2692 u64 search_start
= cluster
->window_start
;
2693 u64 search_bytes
= bytes
;
2696 search_start
= min_start
;
2697 search_bytes
= bytes
;
2699 err
= search_bitmap(ctl
, entry
, &search_start
, &search_bytes
, true);
2701 if (search_bytes
> *max_extent_size
)
2702 *max_extent_size
= search_bytes
;
2707 __bitmap_clear_bits(ctl
, entry
, ret
, bytes
);
2713 * given a cluster, try to allocate 'bytes' from it, returns 0
2714 * if it couldn't find anything suitably large, or a logical disk offset
2715 * if things worked out
2717 u64
btrfs_alloc_from_cluster(struct btrfs_block_group_cache
*block_group
,
2718 struct btrfs_free_cluster
*cluster
, u64 bytes
,
2719 u64 min_start
, u64
*max_extent_size
)
2721 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2722 struct btrfs_free_space
*entry
= NULL
;
2723 struct rb_node
*node
;
2726 spin_lock(&cluster
->lock
);
2727 if (bytes
> cluster
->max_size
)
2730 if (cluster
->block_group
!= block_group
)
2733 node
= rb_first(&cluster
->root
);
2737 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2739 if (entry
->bytes
< bytes
&& entry
->bytes
> *max_extent_size
)
2740 *max_extent_size
= entry
->bytes
;
2742 if (entry
->bytes
< bytes
||
2743 (!entry
->bitmap
&& entry
->offset
< min_start
)) {
2744 node
= rb_next(&entry
->offset_index
);
2747 entry
= rb_entry(node
, struct btrfs_free_space
,
2752 if (entry
->bitmap
) {
2753 ret
= btrfs_alloc_from_bitmap(block_group
,
2754 cluster
, entry
, bytes
,
2755 cluster
->window_start
,
2758 node
= rb_next(&entry
->offset_index
);
2761 entry
= rb_entry(node
, struct btrfs_free_space
,
2765 cluster
->window_start
+= bytes
;
2767 ret
= entry
->offset
;
2769 entry
->offset
+= bytes
;
2770 entry
->bytes
-= bytes
;
2773 if (entry
->bytes
== 0)
2774 rb_erase(&entry
->offset_index
, &cluster
->root
);
2778 spin_unlock(&cluster
->lock
);
2783 spin_lock(&ctl
->tree_lock
);
2785 ctl
->free_space
-= bytes
;
2786 if (entry
->bytes
== 0) {
2787 ctl
->free_extents
--;
2788 if (entry
->bitmap
) {
2789 kfree(entry
->bitmap
);
2790 ctl
->total_bitmaps
--;
2791 ctl
->op
->recalc_thresholds(ctl
);
2793 kmem_cache_free(btrfs_free_space_cachep
, entry
);
2796 spin_unlock(&ctl
->tree_lock
);
2801 static int btrfs_bitmap_cluster(struct btrfs_block_group_cache
*block_group
,
2802 struct btrfs_free_space
*entry
,
2803 struct btrfs_free_cluster
*cluster
,
2804 u64 offset
, u64 bytes
,
2805 u64 cont1_bytes
, u64 min_bytes
)
2807 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2808 unsigned long next_zero
;
2810 unsigned long want_bits
;
2811 unsigned long min_bits
;
2812 unsigned long found_bits
;
2813 unsigned long max_bits
= 0;
2814 unsigned long start
= 0;
2815 unsigned long total_found
= 0;
2818 i
= offset_to_bit(entry
->offset
, ctl
->unit
,
2819 max_t(u64
, offset
, entry
->offset
));
2820 want_bits
= bytes_to_bits(bytes
, ctl
->unit
);
2821 min_bits
= bytes_to_bits(min_bytes
, ctl
->unit
);
2824 * Don't bother looking for a cluster in this bitmap if it's heavily
2827 if (entry
->max_extent_size
&&
2828 entry
->max_extent_size
< cont1_bytes
)
2832 for_each_set_bit_from(i
, entry
->bitmap
, BITS_PER_BITMAP
) {
2833 next_zero
= find_next_zero_bit(entry
->bitmap
,
2834 BITS_PER_BITMAP
, i
);
2835 if (next_zero
- i
>= min_bits
) {
2836 found_bits
= next_zero
- i
;
2837 if (found_bits
> max_bits
)
2838 max_bits
= found_bits
;
2841 if (next_zero
- i
> max_bits
)
2842 max_bits
= next_zero
- i
;
2847 entry
->max_extent_size
= (u64
)max_bits
* ctl
->unit
;
2853 cluster
->max_size
= 0;
2856 total_found
+= found_bits
;
2858 if (cluster
->max_size
< found_bits
* ctl
->unit
)
2859 cluster
->max_size
= found_bits
* ctl
->unit
;
2861 if (total_found
< want_bits
|| cluster
->max_size
< cont1_bytes
) {
2866 cluster
->window_start
= start
* ctl
->unit
+ entry
->offset
;
2867 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2868 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2869 &entry
->offset_index
, 1);
2870 ASSERT(!ret
); /* -EEXIST; Logic error */
2872 trace_btrfs_setup_cluster(block_group
, cluster
,
2873 total_found
* ctl
->unit
, 1);
2878 * This searches the block group for just extents to fill the cluster with.
2879 * Try to find a cluster with at least bytes total bytes, at least one
2880 * extent of cont1_bytes, and other clusters of at least min_bytes.
2883 setup_cluster_no_bitmap(struct btrfs_block_group_cache
*block_group
,
2884 struct btrfs_free_cluster
*cluster
,
2885 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2886 u64 cont1_bytes
, u64 min_bytes
)
2888 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2889 struct btrfs_free_space
*first
= NULL
;
2890 struct btrfs_free_space
*entry
= NULL
;
2891 struct btrfs_free_space
*last
;
2892 struct rb_node
*node
;
2897 entry
= tree_search_offset(ctl
, offset
, 0, 1);
2902 * We don't want bitmaps, so just move along until we find a normal
2905 while (entry
->bitmap
|| entry
->bytes
< min_bytes
) {
2906 if (entry
->bitmap
&& list_empty(&entry
->list
))
2907 list_add_tail(&entry
->list
, bitmaps
);
2908 node
= rb_next(&entry
->offset_index
);
2911 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2914 window_free
= entry
->bytes
;
2915 max_extent
= entry
->bytes
;
2919 for (node
= rb_next(&entry
->offset_index
); node
;
2920 node
= rb_next(&entry
->offset_index
)) {
2921 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2923 if (entry
->bitmap
) {
2924 if (list_empty(&entry
->list
))
2925 list_add_tail(&entry
->list
, bitmaps
);
2929 if (entry
->bytes
< min_bytes
)
2933 window_free
+= entry
->bytes
;
2934 if (entry
->bytes
> max_extent
)
2935 max_extent
= entry
->bytes
;
2938 if (window_free
< bytes
|| max_extent
< cont1_bytes
)
2941 cluster
->window_start
= first
->offset
;
2943 node
= &first
->offset_index
;
2946 * now we've found our entries, pull them out of the free space
2947 * cache and put them into the cluster rbtree
2952 entry
= rb_entry(node
, struct btrfs_free_space
, offset_index
);
2953 node
= rb_next(&entry
->offset_index
);
2954 if (entry
->bitmap
|| entry
->bytes
< min_bytes
)
2957 rb_erase(&entry
->offset_index
, &ctl
->free_space_offset
);
2958 ret
= tree_insert_offset(&cluster
->root
, entry
->offset
,
2959 &entry
->offset_index
, 0);
2960 total_size
+= entry
->bytes
;
2961 ASSERT(!ret
); /* -EEXIST; Logic error */
2962 } while (node
&& entry
!= last
);
2964 cluster
->max_size
= max_extent
;
2965 trace_btrfs_setup_cluster(block_group
, cluster
, total_size
, 0);
2970 * This specifically looks for bitmaps that may work in the cluster, we assume
2971 * that we have already failed to find extents that will work.
2974 setup_cluster_bitmap(struct btrfs_block_group_cache
*block_group
,
2975 struct btrfs_free_cluster
*cluster
,
2976 struct list_head
*bitmaps
, u64 offset
, u64 bytes
,
2977 u64 cont1_bytes
, u64 min_bytes
)
2979 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
2980 struct btrfs_free_space
*entry
= NULL
;
2982 u64 bitmap_offset
= offset_to_bitmap(ctl
, offset
);
2984 if (ctl
->total_bitmaps
== 0)
2988 * The bitmap that covers offset won't be in the list unless offset
2989 * is just its start offset.
2991 if (!list_empty(bitmaps
))
2992 entry
= list_first_entry(bitmaps
, struct btrfs_free_space
, list
);
2994 if (!entry
|| entry
->offset
!= bitmap_offset
) {
2995 entry
= tree_search_offset(ctl
, bitmap_offset
, 1, 0);
2996 if (entry
&& list_empty(&entry
->list
))
2997 list_add(&entry
->list
, bitmaps
);
3000 list_for_each_entry(entry
, bitmaps
, list
) {
3001 if (entry
->bytes
< bytes
)
3003 ret
= btrfs_bitmap_cluster(block_group
, entry
, cluster
, offset
,
3004 bytes
, cont1_bytes
, min_bytes
);
3010 * The bitmaps list has all the bitmaps that record free space
3011 * starting after offset, so no more search is required.
3017 * here we try to find a cluster of blocks in a block group. The goal
3018 * is to find at least bytes+empty_size.
3019 * We might not find them all in one contiguous area.
3021 * returns zero and sets up cluster if things worked out, otherwise
3022 * it returns -enospc
3024 int btrfs_find_space_cluster(struct btrfs_fs_info
*fs_info
,
3025 struct btrfs_block_group_cache
*block_group
,
3026 struct btrfs_free_cluster
*cluster
,
3027 u64 offset
, u64 bytes
, u64 empty_size
)
3029 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3030 struct btrfs_free_space
*entry
, *tmp
;
3037 * Choose the minimum extent size we'll require for this
3038 * cluster. For SSD_SPREAD, don't allow any fragmentation.
3039 * For metadata, allow allocates with smaller extents. For
3040 * data, keep it dense.
3042 if (btrfs_test_opt(fs_info
, SSD_SPREAD
)) {
3043 cont1_bytes
= min_bytes
= bytes
+ empty_size
;
3044 } else if (block_group
->flags
& BTRFS_BLOCK_GROUP_METADATA
) {
3045 cont1_bytes
= bytes
;
3046 min_bytes
= fs_info
->sectorsize
;
3048 cont1_bytes
= max(bytes
, (bytes
+ empty_size
) >> 2);
3049 min_bytes
= fs_info
->sectorsize
;
3052 spin_lock(&ctl
->tree_lock
);
3055 * If we know we don't have enough space to make a cluster don't even
3056 * bother doing all the work to try and find one.
3058 if (ctl
->free_space
< bytes
) {
3059 spin_unlock(&ctl
->tree_lock
);
3063 spin_lock(&cluster
->lock
);
3065 /* someone already found a cluster, hooray */
3066 if (cluster
->block_group
) {
3071 trace_btrfs_find_cluster(block_group
, offset
, bytes
, empty_size
,
3074 ret
= setup_cluster_no_bitmap(block_group
, cluster
, &bitmaps
, offset
,
3076 cont1_bytes
, min_bytes
);
3078 ret
= setup_cluster_bitmap(block_group
, cluster
, &bitmaps
,
3079 offset
, bytes
+ empty_size
,
3080 cont1_bytes
, min_bytes
);
3082 /* Clear our temporary list */
3083 list_for_each_entry_safe(entry
, tmp
, &bitmaps
, list
)
3084 list_del_init(&entry
->list
);
3087 atomic_inc(&block_group
->count
);
3088 list_add_tail(&cluster
->block_group_list
,
3089 &block_group
->cluster_list
);
3090 cluster
->block_group
= block_group
;
3092 trace_btrfs_failed_cluster_setup(block_group
);
3095 spin_unlock(&cluster
->lock
);
3096 spin_unlock(&ctl
->tree_lock
);
3102 * simple code to zero out a cluster
3104 void btrfs_init_free_cluster(struct btrfs_free_cluster
*cluster
)
3106 spin_lock_init(&cluster
->lock
);
3107 spin_lock_init(&cluster
->refill_lock
);
3108 cluster
->root
= RB_ROOT
;
3109 cluster
->max_size
= 0;
3110 cluster
->fragmented
= false;
3111 INIT_LIST_HEAD(&cluster
->block_group_list
);
3112 cluster
->block_group
= NULL
;
3115 static int do_trimming(struct btrfs_block_group_cache
*block_group
,
3116 u64
*total_trimmed
, u64 start
, u64 bytes
,
3117 u64 reserved_start
, u64 reserved_bytes
,
3118 struct btrfs_trim_range
*trim_entry
)
3120 struct btrfs_space_info
*space_info
= block_group
->space_info
;
3121 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3122 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3127 spin_lock(&space_info
->lock
);
3128 spin_lock(&block_group
->lock
);
3129 if (!block_group
->ro
) {
3130 block_group
->reserved
+= reserved_bytes
;
3131 space_info
->bytes_reserved
+= reserved_bytes
;
3134 spin_unlock(&block_group
->lock
);
3135 spin_unlock(&space_info
->lock
);
3137 ret
= btrfs_discard_extent(fs_info
, start
, bytes
, &trimmed
);
3139 *total_trimmed
+= trimmed
;
3141 mutex_lock(&ctl
->cache_writeout_mutex
);
3142 btrfs_add_free_space(block_group
, reserved_start
, reserved_bytes
);
3143 list_del(&trim_entry
->list
);
3144 mutex_unlock(&ctl
->cache_writeout_mutex
);
3147 spin_lock(&space_info
->lock
);
3148 spin_lock(&block_group
->lock
);
3149 if (block_group
->ro
)
3150 space_info
->bytes_readonly
+= reserved_bytes
;
3151 block_group
->reserved
-= reserved_bytes
;
3152 space_info
->bytes_reserved
-= reserved_bytes
;
3153 spin_unlock(&space_info
->lock
);
3154 spin_unlock(&block_group
->lock
);
3160 static int trim_no_bitmap(struct btrfs_block_group_cache
*block_group
,
3161 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
3163 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3164 struct btrfs_free_space
*entry
;
3165 struct rb_node
*node
;
3171 while (start
< end
) {
3172 struct btrfs_trim_range trim_entry
;
3174 mutex_lock(&ctl
->cache_writeout_mutex
);
3175 spin_lock(&ctl
->tree_lock
);
3177 if (ctl
->free_space
< minlen
) {
3178 spin_unlock(&ctl
->tree_lock
);
3179 mutex_unlock(&ctl
->cache_writeout_mutex
);
3183 entry
= tree_search_offset(ctl
, start
, 0, 1);
3185 spin_unlock(&ctl
->tree_lock
);
3186 mutex_unlock(&ctl
->cache_writeout_mutex
);
3191 while (entry
->bitmap
) {
3192 node
= rb_next(&entry
->offset_index
);
3194 spin_unlock(&ctl
->tree_lock
);
3195 mutex_unlock(&ctl
->cache_writeout_mutex
);
3198 entry
= rb_entry(node
, struct btrfs_free_space
,
3202 if (entry
->offset
>= end
) {
3203 spin_unlock(&ctl
->tree_lock
);
3204 mutex_unlock(&ctl
->cache_writeout_mutex
);
3208 extent_start
= entry
->offset
;
3209 extent_bytes
= entry
->bytes
;
3210 start
= max(start
, extent_start
);
3211 bytes
= min(extent_start
+ extent_bytes
, end
) - start
;
3212 if (bytes
< minlen
) {
3213 spin_unlock(&ctl
->tree_lock
);
3214 mutex_unlock(&ctl
->cache_writeout_mutex
);
3218 unlink_free_space(ctl
, entry
);
3219 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3221 spin_unlock(&ctl
->tree_lock
);
3222 trim_entry
.start
= extent_start
;
3223 trim_entry
.bytes
= extent_bytes
;
3224 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3225 mutex_unlock(&ctl
->cache_writeout_mutex
);
3227 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3228 extent_start
, extent_bytes
, &trim_entry
);
3234 if (fatal_signal_pending(current
)) {
3245 static int trim_bitmaps(struct btrfs_block_group_cache
*block_group
,
3246 u64
*total_trimmed
, u64 start
, u64 end
, u64 minlen
)
3248 struct btrfs_free_space_ctl
*ctl
= block_group
->free_space_ctl
;
3249 struct btrfs_free_space
*entry
;
3253 u64 offset
= offset_to_bitmap(ctl
, start
);
3255 while (offset
< end
) {
3256 bool next_bitmap
= false;
3257 struct btrfs_trim_range trim_entry
;
3259 mutex_lock(&ctl
->cache_writeout_mutex
);
3260 spin_lock(&ctl
->tree_lock
);
3262 if (ctl
->free_space
< minlen
) {
3263 spin_unlock(&ctl
->tree_lock
);
3264 mutex_unlock(&ctl
->cache_writeout_mutex
);
3268 entry
= tree_search_offset(ctl
, offset
, 1, 0);
3270 spin_unlock(&ctl
->tree_lock
);
3271 mutex_unlock(&ctl
->cache_writeout_mutex
);
3277 ret2
= search_bitmap(ctl
, entry
, &start
, &bytes
, false);
3278 if (ret2
|| start
>= end
) {
3279 spin_unlock(&ctl
->tree_lock
);
3280 mutex_unlock(&ctl
->cache_writeout_mutex
);
3285 bytes
= min(bytes
, end
- start
);
3286 if (bytes
< minlen
) {
3287 spin_unlock(&ctl
->tree_lock
);
3288 mutex_unlock(&ctl
->cache_writeout_mutex
);
3292 bitmap_clear_bits(ctl
, entry
, start
, bytes
);
3293 if (entry
->bytes
== 0)
3294 free_bitmap(ctl
, entry
);
3296 spin_unlock(&ctl
->tree_lock
);
3297 trim_entry
.start
= start
;
3298 trim_entry
.bytes
= bytes
;
3299 list_add_tail(&trim_entry
.list
, &ctl
->trimming_ranges
);
3300 mutex_unlock(&ctl
->cache_writeout_mutex
);
3302 ret
= do_trimming(block_group
, total_trimmed
, start
, bytes
,
3303 start
, bytes
, &trim_entry
);
3308 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
3311 if (start
>= offset
+ BITS_PER_BITMAP
* ctl
->unit
)
3312 offset
+= BITS_PER_BITMAP
* ctl
->unit
;
3315 if (fatal_signal_pending(current
)) {
3326 void btrfs_get_block_group_trimming(struct btrfs_block_group_cache
*cache
)
3328 atomic_inc(&cache
->trimming
);
3331 void btrfs_put_block_group_trimming(struct btrfs_block_group_cache
*block_group
)
3333 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
3334 struct extent_map_tree
*em_tree
;
3335 struct extent_map
*em
;
3338 spin_lock(&block_group
->lock
);
3339 cleanup
= (atomic_dec_and_test(&block_group
->trimming
) &&
3340 block_group
->removed
);
3341 spin_unlock(&block_group
->lock
);
3344 mutex_lock(&fs_info
->chunk_mutex
);
3345 em_tree
= &fs_info
->mapping_tree
.map_tree
;
3346 write_lock(&em_tree
->lock
);
3347 em
= lookup_extent_mapping(em_tree
, block_group
->key
.objectid
,
3349 BUG_ON(!em
); /* logic error, can't happen */
3351 * remove_extent_mapping() will delete us from the pinned_chunks
3352 * list, which is protected by the chunk mutex.
3354 remove_extent_mapping(em_tree
, em
);
3355 write_unlock(&em_tree
->lock
);
3356 mutex_unlock(&fs_info
->chunk_mutex
);
3358 /* once for us and once for the tree */
3359 free_extent_map(em
);
3360 free_extent_map(em
);
3363 * We've left one free space entry and other tasks trimming
3364 * this block group have left 1 entry each one. Free them.
3366 __btrfs_remove_free_space_cache(block_group
->free_space_ctl
);
3370 int btrfs_trim_block_group(struct btrfs_block_group_cache
*block_group
,
3371 u64
*trimmed
, u64 start
, u64 end
, u64 minlen
)
3377 spin_lock(&block_group
->lock
);
3378 if (block_group
->removed
) {
3379 spin_unlock(&block_group
->lock
);
3382 btrfs_get_block_group_trimming(block_group
);
3383 spin_unlock(&block_group
->lock
);
3385 ret
= trim_no_bitmap(block_group
, trimmed
, start
, end
, minlen
);
3389 ret
= trim_bitmaps(block_group
, trimmed
, start
, end
, minlen
);
3391 btrfs_put_block_group_trimming(block_group
);
3396 * Find the left-most item in the cache tree, and then return the
3397 * smallest inode number in the item.
3399 * Note: the returned inode number may not be the smallest one in
3400 * the tree, if the left-most item is a bitmap.
3402 u64
btrfs_find_ino_for_alloc(struct btrfs_root
*fs_root
)
3404 struct btrfs_free_space_ctl
*ctl
= fs_root
->free_ino_ctl
;
3405 struct btrfs_free_space
*entry
= NULL
;
3408 spin_lock(&ctl
->tree_lock
);
3410 if (RB_EMPTY_ROOT(&ctl
->free_space_offset
))
3413 entry
= rb_entry(rb_first(&ctl
->free_space_offset
),
3414 struct btrfs_free_space
, offset_index
);
3416 if (!entry
->bitmap
) {
3417 ino
= entry
->offset
;
3419 unlink_free_space(ctl
, entry
);
3423 kmem_cache_free(btrfs_free_space_cachep
, entry
);
3425 link_free_space(ctl
, entry
);
3431 ret
= search_bitmap(ctl
, entry
, &offset
, &count
, true);
3432 /* Logic error; Should be empty if it can't find anything */
3436 bitmap_clear_bits(ctl
, entry
, offset
, 1);
3437 if (entry
->bytes
== 0)
3438 free_bitmap(ctl
, entry
);
3441 spin_unlock(&ctl
->tree_lock
);
3446 struct inode
*lookup_free_ino_inode(struct btrfs_root
*root
,
3447 struct btrfs_path
*path
)
3449 struct inode
*inode
= NULL
;
3451 spin_lock(&root
->ino_cache_lock
);
3452 if (root
->ino_cache_inode
)
3453 inode
= igrab(root
->ino_cache_inode
);
3454 spin_unlock(&root
->ino_cache_lock
);
3458 inode
= __lookup_free_space_inode(root
, path
, 0);
3462 spin_lock(&root
->ino_cache_lock
);
3463 if (!btrfs_fs_closing(root
->fs_info
))
3464 root
->ino_cache_inode
= igrab(inode
);
3465 spin_unlock(&root
->ino_cache_lock
);
3470 int create_free_ino_inode(struct btrfs_root
*root
,
3471 struct btrfs_trans_handle
*trans
,
3472 struct btrfs_path
*path
)
3474 return __create_free_space_inode(root
, trans
, path
,
3475 BTRFS_FREE_INO_OBJECTID
, 0);
3478 int load_free_ino_cache(struct btrfs_fs_info
*fs_info
, struct btrfs_root
*root
)
3480 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3481 struct btrfs_path
*path
;
3482 struct inode
*inode
;
3484 u64 root_gen
= btrfs_root_generation(&root
->root_item
);
3486 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
3490 * If we're unmounting then just return, since this does a search on the
3491 * normal root and not the commit root and we could deadlock.
3493 if (btrfs_fs_closing(fs_info
))
3496 path
= btrfs_alloc_path();
3500 inode
= lookup_free_ino_inode(root
, path
);
3504 if (root_gen
!= BTRFS_I(inode
)->generation
)
3507 ret
= __load_free_space_cache(root
, inode
, ctl
, path
, 0);
3511 "failed to load free ino cache for root %llu",
3512 root
->root_key
.objectid
);
3516 btrfs_free_path(path
);
3520 int btrfs_write_out_ino_cache(struct btrfs_root
*root
,
3521 struct btrfs_trans_handle
*trans
,
3522 struct btrfs_path
*path
,
3523 struct inode
*inode
)
3525 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3526 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
3528 struct btrfs_io_ctl io_ctl
;
3529 bool release_metadata
= true;
3531 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
3534 memset(&io_ctl
, 0, sizeof(io_ctl
));
3535 ret
= __btrfs_write_out_cache(root
, inode
, ctl
, NULL
, &io_ctl
, trans
);
3538 * At this point writepages() didn't error out, so our metadata
3539 * reservation is released when the writeback finishes, at
3540 * inode.c:btrfs_finish_ordered_io(), regardless of it finishing
3541 * with or without an error.
3543 release_metadata
= false;
3544 ret
= btrfs_wait_cache_io_root(root
, trans
, &io_ctl
, path
);
3548 if (release_metadata
)
3549 btrfs_delalloc_release_metadata(BTRFS_I(inode
),
3553 "failed to write free ino cache for root %llu",
3554 root
->root_key
.objectid
);
3561 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3563 * Use this if you need to make a bitmap or extent entry specifically, it
3564 * doesn't do any of the merging that add_free_space does, this acts a lot like
3565 * how the free space cache loading stuff works, so you can get really weird
3568 int test_add_free_space_entry(struct btrfs_block_group_cache
*cache
,
3569 u64 offset
, u64 bytes
, bool bitmap
)
3571 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3572 struct btrfs_free_space
*info
= NULL
, *bitmap_info
;
3579 info
= kmem_cache_zalloc(btrfs_free_space_cachep
, GFP_NOFS
);
3585 spin_lock(&ctl
->tree_lock
);
3586 info
->offset
= offset
;
3587 info
->bytes
= bytes
;
3588 info
->max_extent_size
= 0;
3589 ret
= link_free_space(ctl
, info
);
3590 spin_unlock(&ctl
->tree_lock
);
3592 kmem_cache_free(btrfs_free_space_cachep
, info
);
3597 map
= kzalloc(PAGE_SIZE
, GFP_NOFS
);
3599 kmem_cache_free(btrfs_free_space_cachep
, info
);
3604 spin_lock(&ctl
->tree_lock
);
3605 bitmap_info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3610 add_new_bitmap(ctl
, info
, offset
);
3615 bytes_added
= add_bytes_to_bitmap(ctl
, bitmap_info
, offset
, bytes
);
3617 bytes
-= bytes_added
;
3618 offset
+= bytes_added
;
3619 spin_unlock(&ctl
->tree_lock
);
3625 kmem_cache_free(btrfs_free_space_cachep
, info
);
3632 * Checks to see if the given range is in the free space cache. This is really
3633 * just used to check the absence of space, so if there is free space in the
3634 * range at all we will return 1.
3636 int test_check_exists(struct btrfs_block_group_cache
*cache
,
3637 u64 offset
, u64 bytes
)
3639 struct btrfs_free_space_ctl
*ctl
= cache
->free_space_ctl
;
3640 struct btrfs_free_space
*info
;
3643 spin_lock(&ctl
->tree_lock
);
3644 info
= tree_search_offset(ctl
, offset
, 0, 0);
3646 info
= tree_search_offset(ctl
, offset_to_bitmap(ctl
, offset
),
3654 u64 bit_off
, bit_bytes
;
3656 struct btrfs_free_space
*tmp
;
3659 bit_bytes
= ctl
->unit
;
3660 ret
= search_bitmap(ctl
, info
, &bit_off
, &bit_bytes
, false);
3662 if (bit_off
== offset
) {
3665 } else if (bit_off
> offset
&&
3666 offset
+ bytes
> bit_off
) {
3672 n
= rb_prev(&info
->offset_index
);
3674 tmp
= rb_entry(n
, struct btrfs_free_space
,
3676 if (tmp
->offset
+ tmp
->bytes
< offset
)
3678 if (offset
+ bytes
< tmp
->offset
) {
3679 n
= rb_prev(&tmp
->offset_index
);
3686 n
= rb_next(&info
->offset_index
);
3688 tmp
= rb_entry(n
, struct btrfs_free_space
,
3690 if (offset
+ bytes
< tmp
->offset
)
3692 if (tmp
->offset
+ tmp
->bytes
< offset
) {
3693 n
= rb_next(&tmp
->offset_index
);
3704 if (info
->offset
== offset
) {
3709 if (offset
> info
->offset
&& offset
< info
->offset
+ info
->bytes
)
3712 spin_unlock(&ctl
->tree_lock
);
3715 #endif /* CONFIG_BTRFS_FS_RUN_SANITY_TESTS */