2 * Copyright (C) 2012 Alexander Block. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/bsearch.h>
21 #include <linux/file.h>
22 #include <linux/sort.h>
23 #include <linux/mount.h>
24 #include <linux/xattr.h>
25 #include <linux/posix_acl_xattr.h>
26 #include <linux/radix-tree.h>
27 #include <linux/vmalloc.h>
28 #include <linux/string.h>
35 #include "btrfs_inode.h"
36 #include "transaction.h"
37 #include "compression.h"
40 * A fs_path is a helper to dynamically build path names with unknown size.
41 * It reallocates the internal buffer on demand.
42 * It allows fast adding of path elements on the right side (normal path) and
43 * fast adding to the left side (reversed path). A reversed path can also be
44 * unreversed if needed.
53 unsigned short buf_len
:15;
54 unsigned short reversed
:1;
58 * Average path length does not exceed 200 bytes, we'll have
59 * better packing in the slab and higher chance to satisfy
60 * a allocation later during send.
65 #define FS_PATH_INLINE_SIZE \
66 (sizeof(struct fs_path) - offsetof(struct fs_path, inline_buf))
69 /* reused for each extent */
71 struct btrfs_root
*root
;
78 #define SEND_CTX_MAX_NAME_CACHE_SIZE 128
79 #define SEND_CTX_NAME_CACHE_CLEAN_SIZE (SEND_CTX_MAX_NAME_CACHE_SIZE * 2)
82 struct file
*send_filp
;
88 u64 cmd_send_size
[BTRFS_SEND_C_MAX
+ 1];
89 u64 flags
; /* 'flags' member of btrfs_ioctl_send_args is u64 */
91 struct btrfs_root
*send_root
;
92 struct btrfs_root
*parent_root
;
93 struct clone_root
*clone_roots
;
96 /* current state of the compare_tree call */
97 struct btrfs_path
*left_path
;
98 struct btrfs_path
*right_path
;
99 struct btrfs_key
*cmp_key
;
102 * infos of the currently processed inode. In case of deleted inodes,
103 * these are the values from the deleted inode.
108 int cur_inode_new_gen
;
109 int cur_inode_deleted
;
113 u64 cur_inode_last_extent
;
117 struct list_head new_refs
;
118 struct list_head deleted_refs
;
120 struct radix_tree_root name_cache
;
121 struct list_head name_cache_list
;
124 struct file_ra_state ra
;
129 * We process inodes by their increasing order, so if before an
130 * incremental send we reverse the parent/child relationship of
131 * directories such that a directory with a lower inode number was
132 * the parent of a directory with a higher inode number, and the one
133 * becoming the new parent got renamed too, we can't rename/move the
134 * directory with lower inode number when we finish processing it - we
135 * must process the directory with higher inode number first, then
136 * rename/move it and then rename/move the directory with lower inode
137 * number. Example follows.
139 * Tree state when the first send was performed:
151 * Tree state when the second (incremental) send is performed:
160 * The sequence of steps that lead to the second state was:
162 * mv /a/b/c/d /a/b/c2/d2
163 * mv /a/b/c /a/b/c2/d2/cc
165 * "c" has lower inode number, but we can't move it (2nd mv operation)
166 * before we move "d", which has higher inode number.
168 * So we just memorize which move/rename operations must be performed
169 * later when their respective parent is processed and moved/renamed.
172 /* Indexed by parent directory inode number. */
173 struct rb_root pending_dir_moves
;
176 * Reverse index, indexed by the inode number of a directory that
177 * is waiting for the move/rename of its immediate parent before its
178 * own move/rename can be performed.
180 struct rb_root waiting_dir_moves
;
183 * A directory that is going to be rm'ed might have a child directory
184 * which is in the pending directory moves index above. In this case,
185 * the directory can only be removed after the move/rename of its child
186 * is performed. Example:
206 * Sequence of steps that lead to the send snapshot:
207 * rm -f /a/b/c/foo.txt
209 * mv /a/b/c/x /a/b/YY
212 * When the child is processed, its move/rename is delayed until its
213 * parent is processed (as explained above), but all other operations
214 * like update utimes, chown, chgrp, etc, are performed and the paths
215 * that it uses for those operations must use the orphanized name of
216 * its parent (the directory we're going to rm later), so we need to
217 * memorize that name.
219 * Indexed by the inode number of the directory to be deleted.
221 struct rb_root orphan_dirs
;
224 struct pending_dir_move
{
226 struct list_head list
;
230 struct list_head update_refs
;
233 struct waiting_dir_move
{
237 * There might be some directory that could not be removed because it
238 * was waiting for this directory inode to be moved first. Therefore
239 * after this directory is moved, we can try to rmdir the ino rmdir_ino.
245 struct orphan_dir_info
{
251 struct name_cache_entry
{
252 struct list_head list
;
254 * radix_tree has only 32bit entries but we need to handle 64bit inums.
255 * We use the lower 32bit of the 64bit inum to store it in the tree. If
256 * more then one inum would fall into the same entry, we use radix_list
257 * to store the additional entries. radix_list is also used to store
258 * entries where two entries have the same inum but different
261 struct list_head radix_list
;
267 int need_later_update
;
272 static void inconsistent_snapshot_error(struct send_ctx
*sctx
,
273 enum btrfs_compare_tree_result result
,
276 const char *result_string
;
279 case BTRFS_COMPARE_TREE_NEW
:
280 result_string
= "new";
282 case BTRFS_COMPARE_TREE_DELETED
:
283 result_string
= "deleted";
285 case BTRFS_COMPARE_TREE_CHANGED
:
286 result_string
= "updated";
288 case BTRFS_COMPARE_TREE_SAME
:
290 result_string
= "unchanged";
294 result_string
= "unexpected";
297 btrfs_err(sctx
->send_root
->fs_info
,
298 "Send: inconsistent snapshot, found %s %s for inode %llu without updated inode item, send root is %llu, parent root is %llu",
299 result_string
, what
, sctx
->cmp_key
->objectid
,
300 sctx
->send_root
->root_key
.objectid
,
302 sctx
->parent_root
->root_key
.objectid
: 0));
305 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
);
307 static struct waiting_dir_move
*
308 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
);
310 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
);
312 static int need_send_hole(struct send_ctx
*sctx
)
314 return (sctx
->parent_root
&& !sctx
->cur_inode_new
&&
315 !sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
&&
316 S_ISREG(sctx
->cur_inode_mode
));
319 static void fs_path_reset(struct fs_path
*p
)
322 p
->start
= p
->buf
+ p
->buf_len
- 1;
332 static struct fs_path
*fs_path_alloc(void)
336 p
= kmalloc(sizeof(*p
), GFP_KERNEL
);
340 p
->buf
= p
->inline_buf
;
341 p
->buf_len
= FS_PATH_INLINE_SIZE
;
346 static struct fs_path
*fs_path_alloc_reversed(void)
358 static void fs_path_free(struct fs_path
*p
)
362 if (p
->buf
!= p
->inline_buf
)
367 static int fs_path_len(struct fs_path
*p
)
369 return p
->end
- p
->start
;
372 static int fs_path_ensure_buf(struct fs_path
*p
, int len
)
380 if (p
->buf_len
>= len
)
383 if (len
> PATH_MAX
) {
388 path_len
= p
->end
- p
->start
;
389 old_buf_len
= p
->buf_len
;
392 * First time the inline_buf does not suffice
394 if (p
->buf
== p
->inline_buf
) {
395 tmp_buf
= kmalloc(len
, GFP_KERNEL
);
397 memcpy(tmp_buf
, p
->buf
, old_buf_len
);
399 tmp_buf
= krealloc(p
->buf
, len
, GFP_KERNEL
);
405 * The real size of the buffer is bigger, this will let the fast path
406 * happen most of the time
408 p
->buf_len
= ksize(p
->buf
);
411 tmp_buf
= p
->buf
+ old_buf_len
- path_len
- 1;
412 p
->end
= p
->buf
+ p
->buf_len
- 1;
413 p
->start
= p
->end
- path_len
;
414 memmove(p
->start
, tmp_buf
, path_len
+ 1);
417 p
->end
= p
->start
+ path_len
;
422 static int fs_path_prepare_for_add(struct fs_path
*p
, int name_len
,
428 new_len
= p
->end
- p
->start
+ name_len
;
429 if (p
->start
!= p
->end
)
431 ret
= fs_path_ensure_buf(p
, new_len
);
436 if (p
->start
!= p
->end
)
438 p
->start
-= name_len
;
439 *prepared
= p
->start
;
441 if (p
->start
!= p
->end
)
452 static int fs_path_add(struct fs_path
*p
, const char *name
, int name_len
)
457 ret
= fs_path_prepare_for_add(p
, name_len
, &prepared
);
460 memcpy(prepared
, name
, name_len
);
466 static int fs_path_add_path(struct fs_path
*p
, struct fs_path
*p2
)
471 ret
= fs_path_prepare_for_add(p
, p2
->end
- p2
->start
, &prepared
);
474 memcpy(prepared
, p2
->start
, p2
->end
- p2
->start
);
480 static int fs_path_add_from_extent_buffer(struct fs_path
*p
,
481 struct extent_buffer
*eb
,
482 unsigned long off
, int len
)
487 ret
= fs_path_prepare_for_add(p
, len
, &prepared
);
491 read_extent_buffer(eb
, prepared
, off
, len
);
497 static int fs_path_copy(struct fs_path
*p
, struct fs_path
*from
)
501 p
->reversed
= from
->reversed
;
504 ret
= fs_path_add_path(p
, from
);
510 static void fs_path_unreverse(struct fs_path
*p
)
519 len
= p
->end
- p
->start
;
521 p
->end
= p
->start
+ len
;
522 memmove(p
->start
, tmp
, len
+ 1);
526 static struct btrfs_path
*alloc_path_for_send(void)
528 struct btrfs_path
*path
;
530 path
= btrfs_alloc_path();
533 path
->search_commit_root
= 1;
534 path
->skip_locking
= 1;
535 path
->need_commit_sem
= 1;
539 static int write_buf(struct file
*filp
, const void *buf
, u32 len
, loff_t
*off
)
549 ret
= vfs_write(filp
, (__force
const char __user
*)buf
+ pos
,
551 /* TODO handle that correctly */
552 /*if (ret == -ERESTARTSYS) {
571 static int tlv_put(struct send_ctx
*sctx
, u16 attr
, const void *data
, int len
)
573 struct btrfs_tlv_header
*hdr
;
574 int total_len
= sizeof(*hdr
) + len
;
575 int left
= sctx
->send_max_size
- sctx
->send_size
;
577 if (unlikely(left
< total_len
))
580 hdr
= (struct btrfs_tlv_header
*) (sctx
->send_buf
+ sctx
->send_size
);
581 hdr
->tlv_type
= cpu_to_le16(attr
);
582 hdr
->tlv_len
= cpu_to_le16(len
);
583 memcpy(hdr
+ 1, data
, len
);
584 sctx
->send_size
+= total_len
;
589 #define TLV_PUT_DEFINE_INT(bits) \
590 static int tlv_put_u##bits(struct send_ctx *sctx, \
591 u##bits attr, u##bits value) \
593 __le##bits __tmp = cpu_to_le##bits(value); \
594 return tlv_put(sctx, attr, &__tmp, sizeof(__tmp)); \
597 TLV_PUT_DEFINE_INT(64)
599 static int tlv_put_string(struct send_ctx
*sctx
, u16 attr
,
600 const char *str
, int len
)
604 return tlv_put(sctx
, attr
, str
, len
);
607 static int tlv_put_uuid(struct send_ctx
*sctx
, u16 attr
,
610 return tlv_put(sctx
, attr
, uuid
, BTRFS_UUID_SIZE
);
613 static int tlv_put_btrfs_timespec(struct send_ctx
*sctx
, u16 attr
,
614 struct extent_buffer
*eb
,
615 struct btrfs_timespec
*ts
)
617 struct btrfs_timespec bts
;
618 read_extent_buffer(eb
, &bts
, (unsigned long)ts
, sizeof(bts
));
619 return tlv_put(sctx
, attr
, &bts
, sizeof(bts
));
623 #define TLV_PUT(sctx, attrtype, attrlen, data) \
625 ret = tlv_put(sctx, attrtype, attrlen, data); \
627 goto tlv_put_failure; \
630 #define TLV_PUT_INT(sctx, attrtype, bits, value) \
632 ret = tlv_put_u##bits(sctx, attrtype, value); \
634 goto tlv_put_failure; \
637 #define TLV_PUT_U8(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 8, data)
638 #define TLV_PUT_U16(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 16, data)
639 #define TLV_PUT_U32(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 32, data)
640 #define TLV_PUT_U64(sctx, attrtype, data) TLV_PUT_INT(sctx, attrtype, 64, data)
641 #define TLV_PUT_STRING(sctx, attrtype, str, len) \
643 ret = tlv_put_string(sctx, attrtype, str, len); \
645 goto tlv_put_failure; \
647 #define TLV_PUT_PATH(sctx, attrtype, p) \
649 ret = tlv_put_string(sctx, attrtype, p->start, \
650 p->end - p->start); \
652 goto tlv_put_failure; \
654 #define TLV_PUT_UUID(sctx, attrtype, uuid) \
656 ret = tlv_put_uuid(sctx, attrtype, uuid); \
658 goto tlv_put_failure; \
660 #define TLV_PUT_BTRFS_TIMESPEC(sctx, attrtype, eb, ts) \
662 ret = tlv_put_btrfs_timespec(sctx, attrtype, eb, ts); \
664 goto tlv_put_failure; \
667 static int send_header(struct send_ctx
*sctx
)
669 struct btrfs_stream_header hdr
;
671 strcpy(hdr
.magic
, BTRFS_SEND_STREAM_MAGIC
);
672 hdr
.version
= cpu_to_le32(BTRFS_SEND_STREAM_VERSION
);
674 return write_buf(sctx
->send_filp
, &hdr
, sizeof(hdr
),
679 * For each command/item we want to send to userspace, we call this function.
681 static int begin_cmd(struct send_ctx
*sctx
, int cmd
)
683 struct btrfs_cmd_header
*hdr
;
685 if (WARN_ON(!sctx
->send_buf
))
688 BUG_ON(sctx
->send_size
);
690 sctx
->send_size
+= sizeof(*hdr
);
691 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
692 hdr
->cmd
= cpu_to_le16(cmd
);
697 static int send_cmd(struct send_ctx
*sctx
)
700 struct btrfs_cmd_header
*hdr
;
703 hdr
= (struct btrfs_cmd_header
*)sctx
->send_buf
;
704 hdr
->len
= cpu_to_le32(sctx
->send_size
- sizeof(*hdr
));
707 crc
= btrfs_crc32c(0, (unsigned char *)sctx
->send_buf
, sctx
->send_size
);
708 hdr
->crc
= cpu_to_le32(crc
);
710 ret
= write_buf(sctx
->send_filp
, sctx
->send_buf
, sctx
->send_size
,
713 sctx
->total_send_size
+= sctx
->send_size
;
714 sctx
->cmd_send_size
[le16_to_cpu(hdr
->cmd
)] += sctx
->send_size
;
721 * Sends a move instruction to user space
723 static int send_rename(struct send_ctx
*sctx
,
724 struct fs_path
*from
, struct fs_path
*to
)
726 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
729 btrfs_debug(fs_info
, "send_rename %s -> %s", from
->start
, to
->start
);
731 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RENAME
);
735 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, from
);
736 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_TO
, to
);
738 ret
= send_cmd(sctx
);
746 * Sends a link instruction to user space
748 static int send_link(struct send_ctx
*sctx
,
749 struct fs_path
*path
, struct fs_path
*lnk
)
751 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
754 btrfs_debug(fs_info
, "send_link %s -> %s", path
->start
, lnk
->start
);
756 ret
= begin_cmd(sctx
, BTRFS_SEND_C_LINK
);
760 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
761 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, lnk
);
763 ret
= send_cmd(sctx
);
771 * Sends an unlink instruction to user space
773 static int send_unlink(struct send_ctx
*sctx
, struct fs_path
*path
)
775 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
778 btrfs_debug(fs_info
, "send_unlink %s", path
->start
);
780 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UNLINK
);
784 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
786 ret
= send_cmd(sctx
);
794 * Sends a rmdir instruction to user space
796 static int send_rmdir(struct send_ctx
*sctx
, struct fs_path
*path
)
798 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
801 btrfs_debug(fs_info
, "send_rmdir %s", path
->start
);
803 ret
= begin_cmd(sctx
, BTRFS_SEND_C_RMDIR
);
807 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
809 ret
= send_cmd(sctx
);
817 * Helper function to retrieve some fields from an inode item.
819 static int __get_inode_info(struct btrfs_root
*root
, struct btrfs_path
*path
,
820 u64 ino
, u64
*size
, u64
*gen
, u64
*mode
, u64
*uid
,
824 struct btrfs_inode_item
*ii
;
825 struct btrfs_key key
;
828 key
.type
= BTRFS_INODE_ITEM_KEY
;
830 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
837 ii
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
838 struct btrfs_inode_item
);
840 *size
= btrfs_inode_size(path
->nodes
[0], ii
);
842 *gen
= btrfs_inode_generation(path
->nodes
[0], ii
);
844 *mode
= btrfs_inode_mode(path
->nodes
[0], ii
);
846 *uid
= btrfs_inode_uid(path
->nodes
[0], ii
);
848 *gid
= btrfs_inode_gid(path
->nodes
[0], ii
);
850 *rdev
= btrfs_inode_rdev(path
->nodes
[0], ii
);
855 static int get_inode_info(struct btrfs_root
*root
,
856 u64 ino
, u64
*size
, u64
*gen
,
857 u64
*mode
, u64
*uid
, u64
*gid
,
860 struct btrfs_path
*path
;
863 path
= alloc_path_for_send();
866 ret
= __get_inode_info(root
, path
, ino
, size
, gen
, mode
, uid
, gid
,
868 btrfs_free_path(path
);
872 typedef int (*iterate_inode_ref_t
)(int num
, u64 dir
, int index
,
877 * Helper function to iterate the entries in ONE btrfs_inode_ref or
878 * btrfs_inode_extref.
879 * The iterate callback may return a non zero value to stop iteration. This can
880 * be a negative value for error codes or 1 to simply stop it.
882 * path must point to the INODE_REF or INODE_EXTREF when called.
884 static int iterate_inode_ref(struct btrfs_root
*root
, struct btrfs_path
*path
,
885 struct btrfs_key
*found_key
, int resolve
,
886 iterate_inode_ref_t iterate
, void *ctx
)
888 struct extent_buffer
*eb
= path
->nodes
[0];
889 struct btrfs_item
*item
;
890 struct btrfs_inode_ref
*iref
;
891 struct btrfs_inode_extref
*extref
;
892 struct btrfs_path
*tmp_path
;
896 int slot
= path
->slots
[0];
903 unsigned long name_off
;
904 unsigned long elem_size
;
907 p
= fs_path_alloc_reversed();
911 tmp_path
= alloc_path_for_send();
918 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
919 ptr
= (unsigned long)btrfs_item_ptr(eb
, slot
,
920 struct btrfs_inode_ref
);
921 item
= btrfs_item_nr(slot
);
922 total
= btrfs_item_size(eb
, item
);
923 elem_size
= sizeof(*iref
);
925 ptr
= btrfs_item_ptr_offset(eb
, slot
);
926 total
= btrfs_item_size_nr(eb
, slot
);
927 elem_size
= sizeof(*extref
);
930 while (cur
< total
) {
933 if (found_key
->type
== BTRFS_INODE_REF_KEY
) {
934 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur
);
935 name_len
= btrfs_inode_ref_name_len(eb
, iref
);
936 name_off
= (unsigned long)(iref
+ 1);
937 index
= btrfs_inode_ref_index(eb
, iref
);
938 dir
= found_key
->offset
;
940 extref
= (struct btrfs_inode_extref
*)(ptr
+ cur
);
941 name_len
= btrfs_inode_extref_name_len(eb
, extref
);
942 name_off
= (unsigned long)&extref
->name
;
943 index
= btrfs_inode_extref_index(eb
, extref
);
944 dir
= btrfs_inode_extref_parent(eb
, extref
);
948 start
= btrfs_ref_to_path(root
, tmp_path
, name_len
,
952 ret
= PTR_ERR(start
);
955 if (start
< p
->buf
) {
956 /* overflow , try again with larger buffer */
957 ret
= fs_path_ensure_buf(p
,
958 p
->buf_len
+ p
->buf
- start
);
961 start
= btrfs_ref_to_path(root
, tmp_path
,
966 ret
= PTR_ERR(start
);
969 BUG_ON(start
< p
->buf
);
973 ret
= fs_path_add_from_extent_buffer(p
, eb
, name_off
,
979 cur
+= elem_size
+ name_len
;
980 ret
= iterate(num
, dir
, index
, p
, ctx
);
987 btrfs_free_path(tmp_path
);
992 typedef int (*iterate_dir_item_t
)(int num
, struct btrfs_key
*di_key
,
993 const char *name
, int name_len
,
994 const char *data
, int data_len
,
998 * Helper function to iterate the entries in ONE btrfs_dir_item.
999 * The iterate callback may return a non zero value to stop iteration. This can
1000 * be a negative value for error codes or 1 to simply stop it.
1002 * path must point to the dir item when called.
1004 static int iterate_dir_item(struct btrfs_root
*root
, struct btrfs_path
*path
,
1005 struct btrfs_key
*found_key
,
1006 iterate_dir_item_t iterate
, void *ctx
)
1009 struct extent_buffer
*eb
;
1010 struct btrfs_item
*item
;
1011 struct btrfs_dir_item
*di
;
1012 struct btrfs_key di_key
;
1025 * Start with a small buffer (1 page). If later we end up needing more
1026 * space, which can happen for xattrs on a fs with a leaf size greater
1027 * then the page size, attempt to increase the buffer. Typically xattr
1031 buf
= kmalloc(buf_len
, GFP_KERNEL
);
1037 eb
= path
->nodes
[0];
1038 slot
= path
->slots
[0];
1039 item
= btrfs_item_nr(slot
);
1040 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
1043 total
= btrfs_item_size(eb
, item
);
1046 while (cur
< total
) {
1047 name_len
= btrfs_dir_name_len(eb
, di
);
1048 data_len
= btrfs_dir_data_len(eb
, di
);
1049 type
= btrfs_dir_type(eb
, di
);
1050 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
1052 if (type
== BTRFS_FT_XATTR
) {
1053 if (name_len
> XATTR_NAME_MAX
) {
1054 ret
= -ENAMETOOLONG
;
1057 if (name_len
+ data_len
>
1058 BTRFS_MAX_XATTR_SIZE(root
->fs_info
)) {
1066 if (name_len
+ data_len
> PATH_MAX
) {
1067 ret
= -ENAMETOOLONG
;
1072 ret
= btrfs_is_name_len_valid(eb
, path
->slots
[0],
1073 (unsigned long)(di
+ 1), name_len
+ data_len
);
1078 if (name_len
+ data_len
> buf_len
) {
1079 buf_len
= name_len
+ data_len
;
1080 if (is_vmalloc_addr(buf
)) {
1084 char *tmp
= krealloc(buf
, buf_len
,
1085 GFP_KERNEL
| __GFP_NOWARN
);
1092 buf
= kvmalloc(buf_len
, GFP_KERNEL
);
1100 read_extent_buffer(eb
, buf
, (unsigned long)(di
+ 1),
1101 name_len
+ data_len
);
1103 len
= sizeof(*di
) + name_len
+ data_len
;
1104 di
= (struct btrfs_dir_item
*)((char *)di
+ len
);
1107 ret
= iterate(num
, &di_key
, buf
, name_len
, buf
+ name_len
,
1108 data_len
, type
, ctx
);
1124 static int __copy_first_ref(int num
, u64 dir
, int index
,
1125 struct fs_path
*p
, void *ctx
)
1128 struct fs_path
*pt
= ctx
;
1130 ret
= fs_path_copy(pt
, p
);
1134 /* we want the first only */
1139 * Retrieve the first path of an inode. If an inode has more then one
1140 * ref/hardlink, this is ignored.
1142 static int get_inode_path(struct btrfs_root
*root
,
1143 u64 ino
, struct fs_path
*path
)
1146 struct btrfs_key key
, found_key
;
1147 struct btrfs_path
*p
;
1149 p
= alloc_path_for_send();
1153 fs_path_reset(path
);
1156 key
.type
= BTRFS_INODE_REF_KEY
;
1159 ret
= btrfs_search_slot_for_read(root
, &key
, p
, 1, 0);
1166 btrfs_item_key_to_cpu(p
->nodes
[0], &found_key
, p
->slots
[0]);
1167 if (found_key
.objectid
!= ino
||
1168 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1169 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1174 ret
= iterate_inode_ref(root
, p
, &found_key
, 1,
1175 __copy_first_ref
, path
);
1185 struct backref_ctx
{
1186 struct send_ctx
*sctx
;
1188 struct btrfs_path
*path
;
1189 /* number of total found references */
1193 * used for clones found in send_root. clones found behind cur_objectid
1194 * and cur_offset are not considered as allowed clones.
1199 /* may be truncated in case it's the last extent in a file */
1202 /* data offset in the file extent item */
1205 /* Just to check for bugs in backref resolving */
1209 static int __clone_root_cmp_bsearch(const void *key
, const void *elt
)
1211 u64 root
= (u64
)(uintptr_t)key
;
1212 struct clone_root
*cr
= (struct clone_root
*)elt
;
1214 if (root
< cr
->root
->objectid
)
1216 if (root
> cr
->root
->objectid
)
1221 static int __clone_root_cmp_sort(const void *e1
, const void *e2
)
1223 struct clone_root
*cr1
= (struct clone_root
*)e1
;
1224 struct clone_root
*cr2
= (struct clone_root
*)e2
;
1226 if (cr1
->root
->objectid
< cr2
->root
->objectid
)
1228 if (cr1
->root
->objectid
> cr2
->root
->objectid
)
1234 * Called for every backref that is found for the current extent.
1235 * Results are collected in sctx->clone_roots->ino/offset/found_refs
1237 static int __iterate_backrefs(u64 ino
, u64 offset
, u64 root
, void *ctx_
)
1239 struct backref_ctx
*bctx
= ctx_
;
1240 struct clone_root
*found
;
1244 /* First check if the root is in the list of accepted clone sources */
1245 found
= bsearch((void *)(uintptr_t)root
, bctx
->sctx
->clone_roots
,
1246 bctx
->sctx
->clone_roots_cnt
,
1247 sizeof(struct clone_root
),
1248 __clone_root_cmp_bsearch
);
1252 if (found
->root
== bctx
->sctx
->send_root
&&
1253 ino
== bctx
->cur_objectid
&&
1254 offset
== bctx
->cur_offset
) {
1255 bctx
->found_itself
= 1;
1259 * There are inodes that have extents that lie behind its i_size. Don't
1260 * accept clones from these extents.
1262 ret
= __get_inode_info(found
->root
, bctx
->path
, ino
, &i_size
, NULL
, NULL
,
1264 btrfs_release_path(bctx
->path
);
1268 if (offset
+ bctx
->data_offset
+ bctx
->extent_len
> i_size
)
1272 * Make sure we don't consider clones from send_root that are
1273 * behind the current inode/offset.
1275 if (found
->root
== bctx
->sctx
->send_root
) {
1277 * TODO for the moment we don't accept clones from the inode
1278 * that is currently send. We may change this when
1279 * BTRFS_IOC_CLONE_RANGE supports cloning from and to the same
1282 if (ino
>= bctx
->cur_objectid
)
1285 if (ino
> bctx
->cur_objectid
)
1287 if (offset
+ bctx
->extent_len
> bctx
->cur_offset
)
1293 found
->found_refs
++;
1294 if (ino
< found
->ino
) {
1296 found
->offset
= offset
;
1297 } else if (found
->ino
== ino
) {
1299 * same extent found more then once in the same file.
1301 if (found
->offset
> offset
+ bctx
->extent_len
)
1302 found
->offset
= offset
;
1309 * Given an inode, offset and extent item, it finds a good clone for a clone
1310 * instruction. Returns -ENOENT when none could be found. The function makes
1311 * sure that the returned clone is usable at the point where sending is at the
1312 * moment. This means, that no clones are accepted which lie behind the current
1315 * path must point to the extent item when called.
1317 static int find_extent_clone(struct send_ctx
*sctx
,
1318 struct btrfs_path
*path
,
1319 u64 ino
, u64 data_offset
,
1321 struct clone_root
**found
)
1323 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
1329 u64 extent_item_pos
;
1331 struct btrfs_file_extent_item
*fi
;
1332 struct extent_buffer
*eb
= path
->nodes
[0];
1333 struct backref_ctx
*backref_ctx
= NULL
;
1334 struct clone_root
*cur_clone_root
;
1335 struct btrfs_key found_key
;
1336 struct btrfs_path
*tmp_path
;
1340 tmp_path
= alloc_path_for_send();
1344 /* We only use this path under the commit sem */
1345 tmp_path
->need_commit_sem
= 0;
1347 backref_ctx
= kmalloc(sizeof(*backref_ctx
), GFP_KERNEL
);
1353 backref_ctx
->path
= tmp_path
;
1355 if (data_offset
>= ino_size
) {
1357 * There may be extents that lie behind the file's size.
1358 * I at least had this in combination with snapshotting while
1359 * writing large files.
1365 fi
= btrfs_item_ptr(eb
, path
->slots
[0],
1366 struct btrfs_file_extent_item
);
1367 extent_type
= btrfs_file_extent_type(eb
, fi
);
1368 if (extent_type
== BTRFS_FILE_EXTENT_INLINE
) {
1372 compressed
= btrfs_file_extent_compression(eb
, fi
);
1374 num_bytes
= btrfs_file_extent_num_bytes(eb
, fi
);
1375 disk_byte
= btrfs_file_extent_disk_bytenr(eb
, fi
);
1376 if (disk_byte
== 0) {
1380 logical
= disk_byte
+ btrfs_file_extent_offset(eb
, fi
);
1382 down_read(&fs_info
->commit_root_sem
);
1383 ret
= extent_from_logical(fs_info
, disk_byte
, tmp_path
,
1384 &found_key
, &flags
);
1385 up_read(&fs_info
->commit_root_sem
);
1386 btrfs_release_path(tmp_path
);
1390 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1396 * Setup the clone roots.
1398 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1399 cur_clone_root
= sctx
->clone_roots
+ i
;
1400 cur_clone_root
->ino
= (u64
)-1;
1401 cur_clone_root
->offset
= 0;
1402 cur_clone_root
->found_refs
= 0;
1405 backref_ctx
->sctx
= sctx
;
1406 backref_ctx
->found
= 0;
1407 backref_ctx
->cur_objectid
= ino
;
1408 backref_ctx
->cur_offset
= data_offset
;
1409 backref_ctx
->found_itself
= 0;
1410 backref_ctx
->extent_len
= num_bytes
;
1412 * For non-compressed extents iterate_extent_inodes() gives us extent
1413 * offsets that already take into account the data offset, but not for
1414 * compressed extents, since the offset is logical and not relative to
1415 * the physical extent locations. We must take this into account to
1416 * avoid sending clone offsets that go beyond the source file's size,
1417 * which would result in the clone ioctl failing with -EINVAL on the
1420 if (compressed
== BTRFS_COMPRESS_NONE
)
1421 backref_ctx
->data_offset
= 0;
1423 backref_ctx
->data_offset
= btrfs_file_extent_offset(eb
, fi
);
1426 * The last extent of a file may be too large due to page alignment.
1427 * We need to adjust extent_len in this case so that the checks in
1428 * __iterate_backrefs work.
1430 if (data_offset
+ num_bytes
>= ino_size
)
1431 backref_ctx
->extent_len
= ino_size
- data_offset
;
1434 * Now collect all backrefs.
1436 if (compressed
== BTRFS_COMPRESS_NONE
)
1437 extent_item_pos
= logical
- found_key
.objectid
;
1439 extent_item_pos
= 0;
1440 ret
= iterate_extent_inodes(fs_info
, found_key
.objectid
,
1441 extent_item_pos
, 1, __iterate_backrefs
,
1447 if (!backref_ctx
->found_itself
) {
1448 /* found a bug in backref code? */
1451 "did not find backref in send_root. inode=%llu, offset=%llu, disk_byte=%llu found extent=%llu",
1452 ino
, data_offset
, disk_byte
, found_key
.objectid
);
1456 btrfs_debug(fs_info
,
1457 "find_extent_clone: data_offset=%llu, ino=%llu, num_bytes=%llu, logical=%llu",
1458 data_offset
, ino
, num_bytes
, logical
);
1460 if (!backref_ctx
->found
)
1461 btrfs_debug(fs_info
, "no clones found");
1463 cur_clone_root
= NULL
;
1464 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++) {
1465 if (sctx
->clone_roots
[i
].found_refs
) {
1466 if (!cur_clone_root
)
1467 cur_clone_root
= sctx
->clone_roots
+ i
;
1468 else if (sctx
->clone_roots
[i
].root
== sctx
->send_root
)
1469 /* prefer clones from send_root over others */
1470 cur_clone_root
= sctx
->clone_roots
+ i
;
1475 if (cur_clone_root
) {
1476 *found
= cur_clone_root
;
1483 btrfs_free_path(tmp_path
);
1488 static int read_symlink(struct btrfs_root
*root
,
1490 struct fs_path
*dest
)
1493 struct btrfs_path
*path
;
1494 struct btrfs_key key
;
1495 struct btrfs_file_extent_item
*ei
;
1501 path
= alloc_path_for_send();
1506 key
.type
= BTRFS_EXTENT_DATA_KEY
;
1508 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1513 * An empty symlink inode. Can happen in rare error paths when
1514 * creating a symlink (transaction committed before the inode
1515 * eviction handler removed the symlink inode items and a crash
1516 * happened in between or the subvol was snapshoted in between).
1517 * Print an informative message to dmesg/syslog so that the user
1518 * can delete the symlink.
1520 btrfs_err(root
->fs_info
,
1521 "Found empty symlink inode %llu at root %llu",
1522 ino
, root
->root_key
.objectid
);
1527 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1528 struct btrfs_file_extent_item
);
1529 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
1530 compression
= btrfs_file_extent_compression(path
->nodes
[0], ei
);
1531 BUG_ON(type
!= BTRFS_FILE_EXTENT_INLINE
);
1532 BUG_ON(compression
);
1534 off
= btrfs_file_extent_inline_start(ei
);
1535 len
= btrfs_file_extent_inline_len(path
->nodes
[0], path
->slots
[0], ei
);
1537 ret
= fs_path_add_from_extent_buffer(dest
, path
->nodes
[0], off
, len
);
1540 btrfs_free_path(path
);
1545 * Helper function to generate a file name that is unique in the root of
1546 * send_root and parent_root. This is used to generate names for orphan inodes.
1548 static int gen_unique_name(struct send_ctx
*sctx
,
1550 struct fs_path
*dest
)
1553 struct btrfs_path
*path
;
1554 struct btrfs_dir_item
*di
;
1559 path
= alloc_path_for_send();
1564 len
= snprintf(tmp
, sizeof(tmp
), "o%llu-%llu-%llu",
1566 ASSERT(len
< sizeof(tmp
));
1568 di
= btrfs_lookup_dir_item(NULL
, sctx
->send_root
,
1569 path
, BTRFS_FIRST_FREE_OBJECTID
,
1570 tmp
, strlen(tmp
), 0);
1571 btrfs_release_path(path
);
1577 /* not unique, try again */
1582 if (!sctx
->parent_root
) {
1588 di
= btrfs_lookup_dir_item(NULL
, sctx
->parent_root
,
1589 path
, BTRFS_FIRST_FREE_OBJECTID
,
1590 tmp
, strlen(tmp
), 0);
1591 btrfs_release_path(path
);
1597 /* not unique, try again */
1605 ret
= fs_path_add(dest
, tmp
, strlen(tmp
));
1608 btrfs_free_path(path
);
1613 inode_state_no_change
,
1614 inode_state_will_create
,
1615 inode_state_did_create
,
1616 inode_state_will_delete
,
1617 inode_state_did_delete
,
1620 static int get_cur_inode_state(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1628 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &left_gen
, NULL
, NULL
,
1630 if (ret
< 0 && ret
!= -ENOENT
)
1634 if (!sctx
->parent_root
) {
1635 right_ret
= -ENOENT
;
1637 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
, &right_gen
,
1638 NULL
, NULL
, NULL
, NULL
);
1639 if (ret
< 0 && ret
!= -ENOENT
)
1644 if (!left_ret
&& !right_ret
) {
1645 if (left_gen
== gen
&& right_gen
== gen
) {
1646 ret
= inode_state_no_change
;
1647 } else if (left_gen
== gen
) {
1648 if (ino
< sctx
->send_progress
)
1649 ret
= inode_state_did_create
;
1651 ret
= inode_state_will_create
;
1652 } else if (right_gen
== gen
) {
1653 if (ino
< sctx
->send_progress
)
1654 ret
= inode_state_did_delete
;
1656 ret
= inode_state_will_delete
;
1660 } else if (!left_ret
) {
1661 if (left_gen
== gen
) {
1662 if (ino
< sctx
->send_progress
)
1663 ret
= inode_state_did_create
;
1665 ret
= inode_state_will_create
;
1669 } else if (!right_ret
) {
1670 if (right_gen
== gen
) {
1671 if (ino
< sctx
->send_progress
)
1672 ret
= inode_state_did_delete
;
1674 ret
= inode_state_will_delete
;
1686 static int is_inode_existent(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
1690 if (ino
== BTRFS_FIRST_FREE_OBJECTID
)
1693 ret
= get_cur_inode_state(sctx
, ino
, gen
);
1697 if (ret
== inode_state_no_change
||
1698 ret
== inode_state_did_create
||
1699 ret
== inode_state_will_delete
)
1709 * Helper function to lookup a dir item in a dir.
1711 static int lookup_dir_item_inode(struct btrfs_root
*root
,
1712 u64 dir
, const char *name
, int name_len
,
1717 struct btrfs_dir_item
*di
;
1718 struct btrfs_key key
;
1719 struct btrfs_path
*path
;
1721 path
= alloc_path_for_send();
1725 di
= btrfs_lookup_dir_item(NULL
, root
, path
,
1726 dir
, name
, name_len
, 0);
1735 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &key
);
1736 if (key
.type
== BTRFS_ROOT_ITEM_KEY
) {
1740 *found_inode
= key
.objectid
;
1741 *found_type
= btrfs_dir_type(path
->nodes
[0], di
);
1744 btrfs_free_path(path
);
1749 * Looks up the first btrfs_inode_ref of a given ino. It returns the parent dir,
1750 * generation of the parent dir and the name of the dir entry.
1752 static int get_first_ref(struct btrfs_root
*root
, u64 ino
,
1753 u64
*dir
, u64
*dir_gen
, struct fs_path
*name
)
1756 struct btrfs_key key
;
1757 struct btrfs_key found_key
;
1758 struct btrfs_path
*path
;
1762 path
= alloc_path_for_send();
1767 key
.type
= BTRFS_INODE_REF_KEY
;
1770 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 1, 0);
1774 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1776 if (ret
|| found_key
.objectid
!= ino
||
1777 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
1778 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
1783 if (found_key
.type
== BTRFS_INODE_REF_KEY
) {
1784 struct btrfs_inode_ref
*iref
;
1785 iref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1786 struct btrfs_inode_ref
);
1787 len
= btrfs_inode_ref_name_len(path
->nodes
[0], iref
);
1788 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1789 (unsigned long)(iref
+ 1),
1791 parent_dir
= found_key
.offset
;
1793 struct btrfs_inode_extref
*extref
;
1794 extref
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1795 struct btrfs_inode_extref
);
1796 len
= btrfs_inode_extref_name_len(path
->nodes
[0], extref
);
1797 ret
= fs_path_add_from_extent_buffer(name
, path
->nodes
[0],
1798 (unsigned long)&extref
->name
, len
);
1799 parent_dir
= btrfs_inode_extref_parent(path
->nodes
[0], extref
);
1803 btrfs_release_path(path
);
1806 ret
= get_inode_info(root
, parent_dir
, NULL
, dir_gen
, NULL
,
1815 btrfs_free_path(path
);
1819 static int is_first_ref(struct btrfs_root
*root
,
1821 const char *name
, int name_len
)
1824 struct fs_path
*tmp_name
;
1827 tmp_name
= fs_path_alloc();
1831 ret
= get_first_ref(root
, ino
, &tmp_dir
, NULL
, tmp_name
);
1835 if (dir
!= tmp_dir
|| name_len
!= fs_path_len(tmp_name
)) {
1840 ret
= !memcmp(tmp_name
->start
, name
, name_len
);
1843 fs_path_free(tmp_name
);
1848 * Used by process_recorded_refs to determine if a new ref would overwrite an
1849 * already existing ref. In case it detects an overwrite, it returns the
1850 * inode/gen in who_ino/who_gen.
1851 * When an overwrite is detected, process_recorded_refs does proper orphanizing
1852 * to make sure later references to the overwritten inode are possible.
1853 * Orphanizing is however only required for the first ref of an inode.
1854 * process_recorded_refs does an additional is_first_ref check to see if
1855 * orphanizing is really required.
1857 static int will_overwrite_ref(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
1858 const char *name
, int name_len
,
1859 u64
*who_ino
, u64
*who_gen
, u64
*who_mode
)
1863 u64 other_inode
= 0;
1866 if (!sctx
->parent_root
)
1869 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1874 * If we have a parent root we need to verify that the parent dir was
1875 * not deleted and then re-created, if it was then we have no overwrite
1876 * and we can just unlink this entry.
1878 if (sctx
->parent_root
&& dir
!= BTRFS_FIRST_FREE_OBJECTID
) {
1879 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &gen
, NULL
,
1881 if (ret
< 0 && ret
!= -ENOENT
)
1891 ret
= lookup_dir_item_inode(sctx
->parent_root
, dir
, name
, name_len
,
1892 &other_inode
, &other_type
);
1893 if (ret
< 0 && ret
!= -ENOENT
)
1901 * Check if the overwritten ref was already processed. If yes, the ref
1902 * was already unlinked/moved, so we can safely assume that we will not
1903 * overwrite anything at this point in time.
1905 if (other_inode
> sctx
->send_progress
||
1906 is_waiting_for_move(sctx
, other_inode
)) {
1907 ret
= get_inode_info(sctx
->parent_root
, other_inode
, NULL
,
1908 who_gen
, who_mode
, NULL
, NULL
, NULL
);
1913 *who_ino
= other_inode
;
1923 * Checks if the ref was overwritten by an already processed inode. This is
1924 * used by __get_cur_name_and_parent to find out if the ref was orphanized and
1925 * thus the orphan name needs be used.
1926 * process_recorded_refs also uses it to avoid unlinking of refs that were
1929 static int did_overwrite_ref(struct send_ctx
*sctx
,
1930 u64 dir
, u64 dir_gen
,
1931 u64 ino
, u64 ino_gen
,
1932 const char *name
, int name_len
)
1939 if (!sctx
->parent_root
)
1942 ret
= is_inode_existent(sctx
, dir
, dir_gen
);
1946 if (dir
!= BTRFS_FIRST_FREE_OBJECTID
) {
1947 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &gen
, NULL
,
1949 if (ret
< 0 && ret
!= -ENOENT
)
1959 /* check if the ref was overwritten by another ref */
1960 ret
= lookup_dir_item_inode(sctx
->send_root
, dir
, name
, name_len
,
1961 &ow_inode
, &other_type
);
1962 if (ret
< 0 && ret
!= -ENOENT
)
1965 /* was never and will never be overwritten */
1970 ret
= get_inode_info(sctx
->send_root
, ow_inode
, NULL
, &gen
, NULL
, NULL
,
1975 if (ow_inode
== ino
&& gen
== ino_gen
) {
1981 * We know that it is or will be overwritten. Check this now.
1982 * The current inode being processed might have been the one that caused
1983 * inode 'ino' to be orphanized, therefore check if ow_inode matches
1984 * the current inode being processed.
1986 if ((ow_inode
< sctx
->send_progress
) ||
1987 (ino
!= sctx
->cur_ino
&& ow_inode
== sctx
->cur_ino
&&
1988 gen
== sctx
->cur_inode_gen
))
1998 * Same as did_overwrite_ref, but also checks if it is the first ref of an inode
1999 * that got overwritten. This is used by process_recorded_refs to determine
2000 * if it has to use the path as returned by get_cur_path or the orphan name.
2002 static int did_overwrite_first_ref(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2005 struct fs_path
*name
= NULL
;
2009 if (!sctx
->parent_root
)
2012 name
= fs_path_alloc();
2016 ret
= get_first_ref(sctx
->parent_root
, ino
, &dir
, &dir_gen
, name
);
2020 ret
= did_overwrite_ref(sctx
, dir
, dir_gen
, ino
, gen
,
2021 name
->start
, fs_path_len(name
));
2029 * Insert a name cache entry. On 32bit kernels the radix tree index is 32bit,
2030 * so we need to do some special handling in case we have clashes. This function
2031 * takes care of this with the help of name_cache_entry::radix_list.
2032 * In case of error, nce is kfreed.
2034 static int name_cache_insert(struct send_ctx
*sctx
,
2035 struct name_cache_entry
*nce
)
2038 struct list_head
*nce_head
;
2040 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2041 (unsigned long)nce
->ino
);
2043 nce_head
= kmalloc(sizeof(*nce_head
), GFP_KERNEL
);
2048 INIT_LIST_HEAD(nce_head
);
2050 ret
= radix_tree_insert(&sctx
->name_cache
, nce
->ino
, nce_head
);
2057 list_add_tail(&nce
->radix_list
, nce_head
);
2058 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2059 sctx
->name_cache_size
++;
2064 static void name_cache_delete(struct send_ctx
*sctx
,
2065 struct name_cache_entry
*nce
)
2067 struct list_head
*nce_head
;
2069 nce_head
= radix_tree_lookup(&sctx
->name_cache
,
2070 (unsigned long)nce
->ino
);
2072 btrfs_err(sctx
->send_root
->fs_info
,
2073 "name_cache_delete lookup failed ino %llu cache size %d, leaking memory",
2074 nce
->ino
, sctx
->name_cache_size
);
2077 list_del(&nce
->radix_list
);
2078 list_del(&nce
->list
);
2079 sctx
->name_cache_size
--;
2082 * We may not get to the final release of nce_head if the lookup fails
2084 if (nce_head
&& list_empty(nce_head
)) {
2085 radix_tree_delete(&sctx
->name_cache
, (unsigned long)nce
->ino
);
2090 static struct name_cache_entry
*name_cache_search(struct send_ctx
*sctx
,
2093 struct list_head
*nce_head
;
2094 struct name_cache_entry
*cur
;
2096 nce_head
= radix_tree_lookup(&sctx
->name_cache
, (unsigned long)ino
);
2100 list_for_each_entry(cur
, nce_head
, radix_list
) {
2101 if (cur
->ino
== ino
&& cur
->gen
== gen
)
2108 * Removes the entry from the list and adds it back to the end. This marks the
2109 * entry as recently used so that name_cache_clean_unused does not remove it.
2111 static void name_cache_used(struct send_ctx
*sctx
, struct name_cache_entry
*nce
)
2113 list_del(&nce
->list
);
2114 list_add_tail(&nce
->list
, &sctx
->name_cache_list
);
2118 * Remove some entries from the beginning of name_cache_list.
2120 static void name_cache_clean_unused(struct send_ctx
*sctx
)
2122 struct name_cache_entry
*nce
;
2124 if (sctx
->name_cache_size
< SEND_CTX_NAME_CACHE_CLEAN_SIZE
)
2127 while (sctx
->name_cache_size
> SEND_CTX_MAX_NAME_CACHE_SIZE
) {
2128 nce
= list_entry(sctx
->name_cache_list
.next
,
2129 struct name_cache_entry
, list
);
2130 name_cache_delete(sctx
, nce
);
2135 static void name_cache_free(struct send_ctx
*sctx
)
2137 struct name_cache_entry
*nce
;
2139 while (!list_empty(&sctx
->name_cache_list
)) {
2140 nce
= list_entry(sctx
->name_cache_list
.next
,
2141 struct name_cache_entry
, list
);
2142 name_cache_delete(sctx
, nce
);
2148 * Used by get_cur_path for each ref up to the root.
2149 * Returns 0 if it succeeded.
2150 * Returns 1 if the inode is not existent or got overwritten. In that case, the
2151 * name is an orphan name. This instructs get_cur_path to stop iterating. If 1
2152 * is returned, parent_ino/parent_gen are not guaranteed to be valid.
2153 * Returns <0 in case of error.
2155 static int __get_cur_name_and_parent(struct send_ctx
*sctx
,
2159 struct fs_path
*dest
)
2163 struct name_cache_entry
*nce
= NULL
;
2166 * First check if we already did a call to this function with the same
2167 * ino/gen. If yes, check if the cache entry is still up-to-date. If yes
2168 * return the cached result.
2170 nce
= name_cache_search(sctx
, ino
, gen
);
2172 if (ino
< sctx
->send_progress
&& nce
->need_later_update
) {
2173 name_cache_delete(sctx
, nce
);
2177 name_cache_used(sctx
, nce
);
2178 *parent_ino
= nce
->parent_ino
;
2179 *parent_gen
= nce
->parent_gen
;
2180 ret
= fs_path_add(dest
, nce
->name
, nce
->name_len
);
2189 * If the inode is not existent yet, add the orphan name and return 1.
2190 * This should only happen for the parent dir that we determine in
2193 ret
= is_inode_existent(sctx
, ino
, gen
);
2198 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2206 * Depending on whether the inode was already processed or not, use
2207 * send_root or parent_root for ref lookup.
2209 if (ino
< sctx
->send_progress
)
2210 ret
= get_first_ref(sctx
->send_root
, ino
,
2211 parent_ino
, parent_gen
, dest
);
2213 ret
= get_first_ref(sctx
->parent_root
, ino
,
2214 parent_ino
, parent_gen
, dest
);
2219 * Check if the ref was overwritten by an inode's ref that was processed
2220 * earlier. If yes, treat as orphan and return 1.
2222 ret
= did_overwrite_ref(sctx
, *parent_ino
, *parent_gen
, ino
, gen
,
2223 dest
->start
, dest
->end
- dest
->start
);
2227 fs_path_reset(dest
);
2228 ret
= gen_unique_name(sctx
, ino
, gen
, dest
);
2236 * Store the result of the lookup in the name cache.
2238 nce
= kmalloc(sizeof(*nce
) + fs_path_len(dest
) + 1, GFP_KERNEL
);
2246 nce
->parent_ino
= *parent_ino
;
2247 nce
->parent_gen
= *parent_gen
;
2248 nce
->name_len
= fs_path_len(dest
);
2250 strcpy(nce
->name
, dest
->start
);
2252 if (ino
< sctx
->send_progress
)
2253 nce
->need_later_update
= 0;
2255 nce
->need_later_update
= 1;
2257 nce_ret
= name_cache_insert(sctx
, nce
);
2260 name_cache_clean_unused(sctx
);
2267 * Magic happens here. This function returns the first ref to an inode as it
2268 * would look like while receiving the stream at this point in time.
2269 * We walk the path up to the root. For every inode in between, we check if it
2270 * was already processed/sent. If yes, we continue with the parent as found
2271 * in send_root. If not, we continue with the parent as found in parent_root.
2272 * If we encounter an inode that was deleted at this point in time, we use the
2273 * inodes "orphan" name instead of the real name and stop. Same with new inodes
2274 * that were not created yet and overwritten inodes/refs.
2276 * When do we have have orphan inodes:
2277 * 1. When an inode is freshly created and thus no valid refs are available yet
2278 * 2. When a directory lost all it's refs (deleted) but still has dir items
2279 * inside which were not processed yet (pending for move/delete). If anyone
2280 * tried to get the path to the dir items, it would get a path inside that
2282 * 3. When an inode is moved around or gets new links, it may overwrite the ref
2283 * of an unprocessed inode. If in that case the first ref would be
2284 * overwritten, the overwritten inode gets "orphanized". Later when we
2285 * process this overwritten inode, it is restored at a new place by moving
2288 * sctx->send_progress tells this function at which point in time receiving
2291 static int get_cur_path(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2292 struct fs_path
*dest
)
2295 struct fs_path
*name
= NULL
;
2296 u64 parent_inode
= 0;
2300 name
= fs_path_alloc();
2307 fs_path_reset(dest
);
2309 while (!stop
&& ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
2310 struct waiting_dir_move
*wdm
;
2312 fs_path_reset(name
);
2314 if (is_waiting_for_rm(sctx
, ino
)) {
2315 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2318 ret
= fs_path_add_path(dest
, name
);
2322 wdm
= get_waiting_dir_move(sctx
, ino
);
2323 if (wdm
&& wdm
->orphanized
) {
2324 ret
= gen_unique_name(sctx
, ino
, gen
, name
);
2327 ret
= get_first_ref(sctx
->parent_root
, ino
,
2328 &parent_inode
, &parent_gen
, name
);
2330 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
2340 ret
= fs_path_add_path(dest
, name
);
2351 fs_path_unreverse(dest
);
2356 * Sends a BTRFS_SEND_C_SUBVOL command/item to userspace
2358 static int send_subvol_begin(struct send_ctx
*sctx
)
2361 struct btrfs_root
*send_root
= sctx
->send_root
;
2362 struct btrfs_root
*parent_root
= sctx
->parent_root
;
2363 struct btrfs_path
*path
;
2364 struct btrfs_key key
;
2365 struct btrfs_root_ref
*ref
;
2366 struct extent_buffer
*leaf
;
2370 path
= btrfs_alloc_path();
2374 name
= kmalloc(BTRFS_PATH_NAME_MAX
, GFP_KERNEL
);
2376 btrfs_free_path(path
);
2380 key
.objectid
= send_root
->objectid
;
2381 key
.type
= BTRFS_ROOT_BACKREF_KEY
;
2384 ret
= btrfs_search_slot_for_read(send_root
->fs_info
->tree_root
,
2393 leaf
= path
->nodes
[0];
2394 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2395 if (key
.type
!= BTRFS_ROOT_BACKREF_KEY
||
2396 key
.objectid
!= send_root
->objectid
) {
2400 ref
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_root_ref
);
2401 namelen
= btrfs_root_ref_name_len(leaf
, ref
);
2402 read_extent_buffer(leaf
, name
, (unsigned long)(ref
+ 1), namelen
);
2403 btrfs_release_path(path
);
2406 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SNAPSHOT
);
2410 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SUBVOL
);
2415 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_PATH
, name
, namelen
);
2417 if (!btrfs_is_empty_uuid(sctx
->send_root
->root_item
.received_uuid
))
2418 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2419 sctx
->send_root
->root_item
.received_uuid
);
2421 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_UUID
,
2422 sctx
->send_root
->root_item
.uuid
);
2424 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CTRANSID
,
2425 le64_to_cpu(sctx
->send_root
->root_item
.ctransid
));
2427 if (!btrfs_is_empty_uuid(parent_root
->root_item
.received_uuid
))
2428 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2429 parent_root
->root_item
.received_uuid
);
2431 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
2432 parent_root
->root_item
.uuid
);
2433 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
2434 le64_to_cpu(sctx
->parent_root
->root_item
.ctransid
));
2437 ret
= send_cmd(sctx
);
2441 btrfs_free_path(path
);
2446 static int send_truncate(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 size
)
2448 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2452 btrfs_debug(fs_info
, "send_truncate %llu size=%llu", ino
, size
);
2454 p
= fs_path_alloc();
2458 ret
= begin_cmd(sctx
, BTRFS_SEND_C_TRUNCATE
);
2462 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2465 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2466 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, size
);
2468 ret
= send_cmd(sctx
);
2476 static int send_chmod(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 mode
)
2478 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2482 btrfs_debug(fs_info
, "send_chmod %llu mode=%llu", ino
, mode
);
2484 p
= fs_path_alloc();
2488 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHMOD
);
2492 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2495 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2496 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
& 07777);
2498 ret
= send_cmd(sctx
);
2506 static int send_chown(struct send_ctx
*sctx
, u64 ino
, u64 gen
, u64 uid
, u64 gid
)
2508 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2512 btrfs_debug(fs_info
, "send_chown %llu uid=%llu, gid=%llu",
2515 p
= fs_path_alloc();
2519 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CHOWN
);
2523 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2526 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2527 TLV_PUT_U64(sctx
, BTRFS_SEND_A_UID
, uid
);
2528 TLV_PUT_U64(sctx
, BTRFS_SEND_A_GID
, gid
);
2530 ret
= send_cmd(sctx
);
2538 static int send_utimes(struct send_ctx
*sctx
, u64 ino
, u64 gen
)
2540 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2542 struct fs_path
*p
= NULL
;
2543 struct btrfs_inode_item
*ii
;
2544 struct btrfs_path
*path
= NULL
;
2545 struct extent_buffer
*eb
;
2546 struct btrfs_key key
;
2549 btrfs_debug(fs_info
, "send_utimes %llu", ino
);
2551 p
= fs_path_alloc();
2555 path
= alloc_path_for_send();
2562 key
.type
= BTRFS_INODE_ITEM_KEY
;
2564 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2570 eb
= path
->nodes
[0];
2571 slot
= path
->slots
[0];
2572 ii
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
2574 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UTIMES
);
2578 ret
= get_cur_path(sctx
, ino
, gen
, p
);
2581 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2582 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_ATIME
, eb
, &ii
->atime
);
2583 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_MTIME
, eb
, &ii
->mtime
);
2584 TLV_PUT_BTRFS_TIMESPEC(sctx
, BTRFS_SEND_A_CTIME
, eb
, &ii
->ctime
);
2585 /* TODO Add otime support when the otime patches get into upstream */
2587 ret
= send_cmd(sctx
);
2592 btrfs_free_path(path
);
2597 * Sends a BTRFS_SEND_C_MKXXX or SYMLINK command to user space. We don't have
2598 * a valid path yet because we did not process the refs yet. So, the inode
2599 * is created as orphan.
2601 static int send_create_inode(struct send_ctx
*sctx
, u64 ino
)
2603 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
2611 btrfs_debug(fs_info
, "send_create_inode %llu", ino
);
2613 p
= fs_path_alloc();
2617 if (ino
!= sctx
->cur_ino
) {
2618 ret
= get_inode_info(sctx
->send_root
, ino
, NULL
, &gen
, &mode
,
2623 gen
= sctx
->cur_inode_gen
;
2624 mode
= sctx
->cur_inode_mode
;
2625 rdev
= sctx
->cur_inode_rdev
;
2628 if (S_ISREG(mode
)) {
2629 cmd
= BTRFS_SEND_C_MKFILE
;
2630 } else if (S_ISDIR(mode
)) {
2631 cmd
= BTRFS_SEND_C_MKDIR
;
2632 } else if (S_ISLNK(mode
)) {
2633 cmd
= BTRFS_SEND_C_SYMLINK
;
2634 } else if (S_ISCHR(mode
) || S_ISBLK(mode
)) {
2635 cmd
= BTRFS_SEND_C_MKNOD
;
2636 } else if (S_ISFIFO(mode
)) {
2637 cmd
= BTRFS_SEND_C_MKFIFO
;
2638 } else if (S_ISSOCK(mode
)) {
2639 cmd
= BTRFS_SEND_C_MKSOCK
;
2641 btrfs_warn(sctx
->send_root
->fs_info
, "unexpected inode type %o",
2642 (int)(mode
& S_IFMT
));
2647 ret
= begin_cmd(sctx
, cmd
);
2651 ret
= gen_unique_name(sctx
, ino
, gen
, p
);
2655 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
2656 TLV_PUT_U64(sctx
, BTRFS_SEND_A_INO
, ino
);
2658 if (S_ISLNK(mode
)) {
2660 ret
= read_symlink(sctx
->send_root
, ino
, p
);
2663 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH_LINK
, p
);
2664 } else if (S_ISCHR(mode
) || S_ISBLK(mode
) ||
2665 S_ISFIFO(mode
) || S_ISSOCK(mode
)) {
2666 TLV_PUT_U64(sctx
, BTRFS_SEND_A_RDEV
, new_encode_dev(rdev
));
2667 TLV_PUT_U64(sctx
, BTRFS_SEND_A_MODE
, mode
);
2670 ret
= send_cmd(sctx
);
2682 * We need some special handling for inodes that get processed before the parent
2683 * directory got created. See process_recorded_refs for details.
2684 * This function does the check if we already created the dir out of order.
2686 static int did_create_dir(struct send_ctx
*sctx
, u64 dir
)
2689 struct btrfs_path
*path
= NULL
;
2690 struct btrfs_key key
;
2691 struct btrfs_key found_key
;
2692 struct btrfs_key di_key
;
2693 struct extent_buffer
*eb
;
2694 struct btrfs_dir_item
*di
;
2697 path
= alloc_path_for_send();
2704 key
.type
= BTRFS_DIR_INDEX_KEY
;
2706 ret
= btrfs_search_slot(NULL
, sctx
->send_root
, &key
, path
, 0, 0);
2711 eb
= path
->nodes
[0];
2712 slot
= path
->slots
[0];
2713 if (slot
>= btrfs_header_nritems(eb
)) {
2714 ret
= btrfs_next_leaf(sctx
->send_root
, path
);
2717 } else if (ret
> 0) {
2724 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
2725 if (found_key
.objectid
!= key
.objectid
||
2726 found_key
.type
!= key
.type
) {
2731 di
= btrfs_item_ptr(eb
, slot
, struct btrfs_dir_item
);
2732 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2734 if (di_key
.type
!= BTRFS_ROOT_ITEM_KEY
&&
2735 di_key
.objectid
< sctx
->send_progress
) {
2744 btrfs_free_path(path
);
2749 * Only creates the inode if it is:
2750 * 1. Not a directory
2751 * 2. Or a directory which was not created already due to out of order
2752 * directories. See did_create_dir and process_recorded_refs for details.
2754 static int send_create_inode_if_needed(struct send_ctx
*sctx
)
2758 if (S_ISDIR(sctx
->cur_inode_mode
)) {
2759 ret
= did_create_dir(sctx
, sctx
->cur_ino
);
2768 ret
= send_create_inode(sctx
, sctx
->cur_ino
);
2776 struct recorded_ref
{
2777 struct list_head list
;
2779 struct fs_path
*full_path
;
2785 static void set_ref_path(struct recorded_ref
*ref
, struct fs_path
*path
)
2787 ref
->full_path
= path
;
2788 ref
->name
= (char *)kbasename(ref
->full_path
->start
);
2789 ref
->name_len
= ref
->full_path
->end
- ref
->name
;
2793 * We need to process new refs before deleted refs, but compare_tree gives us
2794 * everything mixed. So we first record all refs and later process them.
2795 * This function is a helper to record one ref.
2797 static int __record_ref(struct list_head
*head
, u64 dir
,
2798 u64 dir_gen
, struct fs_path
*path
)
2800 struct recorded_ref
*ref
;
2802 ref
= kmalloc(sizeof(*ref
), GFP_KERNEL
);
2807 ref
->dir_gen
= dir_gen
;
2808 set_ref_path(ref
, path
);
2809 list_add_tail(&ref
->list
, head
);
2813 static int dup_ref(struct recorded_ref
*ref
, struct list_head
*list
)
2815 struct recorded_ref
*new;
2817 new = kmalloc(sizeof(*ref
), GFP_KERNEL
);
2821 new->dir
= ref
->dir
;
2822 new->dir_gen
= ref
->dir_gen
;
2823 new->full_path
= NULL
;
2824 INIT_LIST_HEAD(&new->list
);
2825 list_add_tail(&new->list
, list
);
2829 static void __free_recorded_refs(struct list_head
*head
)
2831 struct recorded_ref
*cur
;
2833 while (!list_empty(head
)) {
2834 cur
= list_entry(head
->next
, struct recorded_ref
, list
);
2835 fs_path_free(cur
->full_path
);
2836 list_del(&cur
->list
);
2841 static void free_recorded_refs(struct send_ctx
*sctx
)
2843 __free_recorded_refs(&sctx
->new_refs
);
2844 __free_recorded_refs(&sctx
->deleted_refs
);
2848 * Renames/moves a file/dir to its orphan name. Used when the first
2849 * ref of an unprocessed inode gets overwritten and for all non empty
2852 static int orphanize_inode(struct send_ctx
*sctx
, u64 ino
, u64 gen
,
2853 struct fs_path
*path
)
2856 struct fs_path
*orphan
;
2858 orphan
= fs_path_alloc();
2862 ret
= gen_unique_name(sctx
, ino
, gen
, orphan
);
2866 ret
= send_rename(sctx
, path
, orphan
);
2869 fs_path_free(orphan
);
2873 static struct orphan_dir_info
*
2874 add_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2876 struct rb_node
**p
= &sctx
->orphan_dirs
.rb_node
;
2877 struct rb_node
*parent
= NULL
;
2878 struct orphan_dir_info
*entry
, *odi
;
2880 odi
= kmalloc(sizeof(*odi
), GFP_KERNEL
);
2882 return ERR_PTR(-ENOMEM
);
2888 entry
= rb_entry(parent
, struct orphan_dir_info
, node
);
2889 if (dir_ino
< entry
->ino
) {
2891 } else if (dir_ino
> entry
->ino
) {
2892 p
= &(*p
)->rb_right
;
2899 rb_link_node(&odi
->node
, parent
, p
);
2900 rb_insert_color(&odi
->node
, &sctx
->orphan_dirs
);
2904 static struct orphan_dir_info
*
2905 get_orphan_dir_info(struct send_ctx
*sctx
, u64 dir_ino
)
2907 struct rb_node
*n
= sctx
->orphan_dirs
.rb_node
;
2908 struct orphan_dir_info
*entry
;
2911 entry
= rb_entry(n
, struct orphan_dir_info
, node
);
2912 if (dir_ino
< entry
->ino
)
2914 else if (dir_ino
> entry
->ino
)
2922 static int is_waiting_for_rm(struct send_ctx
*sctx
, u64 dir_ino
)
2924 struct orphan_dir_info
*odi
= get_orphan_dir_info(sctx
, dir_ino
);
2929 static void free_orphan_dir_info(struct send_ctx
*sctx
,
2930 struct orphan_dir_info
*odi
)
2934 rb_erase(&odi
->node
, &sctx
->orphan_dirs
);
2939 * Returns 1 if a directory can be removed at this point in time.
2940 * We check this by iterating all dir items and checking if the inode behind
2941 * the dir item was already processed.
2943 static int can_rmdir(struct send_ctx
*sctx
, u64 dir
, u64 dir_gen
,
2947 struct btrfs_root
*root
= sctx
->parent_root
;
2948 struct btrfs_path
*path
;
2949 struct btrfs_key key
;
2950 struct btrfs_key found_key
;
2951 struct btrfs_key loc
;
2952 struct btrfs_dir_item
*di
;
2955 * Don't try to rmdir the top/root subvolume dir.
2957 if (dir
== BTRFS_FIRST_FREE_OBJECTID
)
2960 path
= alloc_path_for_send();
2965 key
.type
= BTRFS_DIR_INDEX_KEY
;
2967 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2972 struct waiting_dir_move
*dm
;
2974 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
2975 ret
= btrfs_next_leaf(root
, path
);
2982 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2984 if (found_key
.objectid
!= key
.objectid
||
2985 found_key
.type
!= key
.type
)
2988 di
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2989 struct btrfs_dir_item
);
2990 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &loc
);
2992 dm
= get_waiting_dir_move(sctx
, loc
.objectid
);
2994 struct orphan_dir_info
*odi
;
2996 odi
= add_orphan_dir_info(sctx
, dir
);
3002 dm
->rmdir_ino
= dir
;
3007 if (loc
.objectid
> send_progress
) {
3008 struct orphan_dir_info
*odi
;
3010 odi
= get_orphan_dir_info(sctx
, dir
);
3011 free_orphan_dir_info(sctx
, odi
);
3022 btrfs_free_path(path
);
3026 static int is_waiting_for_move(struct send_ctx
*sctx
, u64 ino
)
3028 struct waiting_dir_move
*entry
= get_waiting_dir_move(sctx
, ino
);
3030 return entry
!= NULL
;
3033 static int add_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
, bool orphanized
)
3035 struct rb_node
**p
= &sctx
->waiting_dir_moves
.rb_node
;
3036 struct rb_node
*parent
= NULL
;
3037 struct waiting_dir_move
*entry
, *dm
;
3039 dm
= kmalloc(sizeof(*dm
), GFP_KERNEL
);
3044 dm
->orphanized
= orphanized
;
3048 entry
= rb_entry(parent
, struct waiting_dir_move
, node
);
3049 if (ino
< entry
->ino
) {
3051 } else if (ino
> entry
->ino
) {
3052 p
= &(*p
)->rb_right
;
3059 rb_link_node(&dm
->node
, parent
, p
);
3060 rb_insert_color(&dm
->node
, &sctx
->waiting_dir_moves
);
3064 static struct waiting_dir_move
*
3065 get_waiting_dir_move(struct send_ctx
*sctx
, u64 ino
)
3067 struct rb_node
*n
= sctx
->waiting_dir_moves
.rb_node
;
3068 struct waiting_dir_move
*entry
;
3071 entry
= rb_entry(n
, struct waiting_dir_move
, node
);
3072 if (ino
< entry
->ino
)
3074 else if (ino
> entry
->ino
)
3082 static void free_waiting_dir_move(struct send_ctx
*sctx
,
3083 struct waiting_dir_move
*dm
)
3087 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
3091 static int add_pending_dir_move(struct send_ctx
*sctx
,
3095 struct list_head
*new_refs
,
3096 struct list_head
*deleted_refs
,
3097 const bool is_orphan
)
3099 struct rb_node
**p
= &sctx
->pending_dir_moves
.rb_node
;
3100 struct rb_node
*parent
= NULL
;
3101 struct pending_dir_move
*entry
= NULL
, *pm
;
3102 struct recorded_ref
*cur
;
3106 pm
= kmalloc(sizeof(*pm
), GFP_KERNEL
);
3109 pm
->parent_ino
= parent_ino
;
3112 INIT_LIST_HEAD(&pm
->list
);
3113 INIT_LIST_HEAD(&pm
->update_refs
);
3114 RB_CLEAR_NODE(&pm
->node
);
3118 entry
= rb_entry(parent
, struct pending_dir_move
, node
);
3119 if (parent_ino
< entry
->parent_ino
) {
3121 } else if (parent_ino
> entry
->parent_ino
) {
3122 p
= &(*p
)->rb_right
;
3129 list_for_each_entry(cur
, deleted_refs
, list
) {
3130 ret
= dup_ref(cur
, &pm
->update_refs
);
3134 list_for_each_entry(cur
, new_refs
, list
) {
3135 ret
= dup_ref(cur
, &pm
->update_refs
);
3140 ret
= add_waiting_dir_move(sctx
, pm
->ino
, is_orphan
);
3145 list_add_tail(&pm
->list
, &entry
->list
);
3147 rb_link_node(&pm
->node
, parent
, p
);
3148 rb_insert_color(&pm
->node
, &sctx
->pending_dir_moves
);
3153 __free_recorded_refs(&pm
->update_refs
);
3159 static struct pending_dir_move
*get_pending_dir_moves(struct send_ctx
*sctx
,
3162 struct rb_node
*n
= sctx
->pending_dir_moves
.rb_node
;
3163 struct pending_dir_move
*entry
;
3166 entry
= rb_entry(n
, struct pending_dir_move
, node
);
3167 if (parent_ino
< entry
->parent_ino
)
3169 else if (parent_ino
> entry
->parent_ino
)
3177 static int path_loop(struct send_ctx
*sctx
, struct fs_path
*name
,
3178 u64 ino
, u64 gen
, u64
*ancestor_ino
)
3181 u64 parent_inode
= 0;
3183 u64 start_ino
= ino
;
3186 while (ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
3187 fs_path_reset(name
);
3189 if (is_waiting_for_rm(sctx
, ino
))
3191 if (is_waiting_for_move(sctx
, ino
)) {
3192 if (*ancestor_ino
== 0)
3193 *ancestor_ino
= ino
;
3194 ret
= get_first_ref(sctx
->parent_root
, ino
,
3195 &parent_inode
, &parent_gen
, name
);
3197 ret
= __get_cur_name_and_parent(sctx
, ino
, gen
,
3207 if (parent_inode
== start_ino
) {
3209 if (*ancestor_ino
== 0)
3210 *ancestor_ino
= ino
;
3219 static int apply_dir_move(struct send_ctx
*sctx
, struct pending_dir_move
*pm
)
3221 struct fs_path
*from_path
= NULL
;
3222 struct fs_path
*to_path
= NULL
;
3223 struct fs_path
*name
= NULL
;
3224 u64 orig_progress
= sctx
->send_progress
;
3225 struct recorded_ref
*cur
;
3226 u64 parent_ino
, parent_gen
;
3227 struct waiting_dir_move
*dm
= NULL
;
3233 name
= fs_path_alloc();
3234 from_path
= fs_path_alloc();
3235 if (!name
|| !from_path
) {
3240 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3242 rmdir_ino
= dm
->rmdir_ino
;
3243 is_orphan
= dm
->orphanized
;
3244 free_waiting_dir_move(sctx
, dm
);
3247 ret
= gen_unique_name(sctx
, pm
->ino
,
3248 pm
->gen
, from_path
);
3250 ret
= get_first_ref(sctx
->parent_root
, pm
->ino
,
3251 &parent_ino
, &parent_gen
, name
);
3254 ret
= get_cur_path(sctx
, parent_ino
, parent_gen
,
3258 ret
= fs_path_add_path(from_path
, name
);
3263 sctx
->send_progress
= sctx
->cur_ino
+ 1;
3264 ret
= path_loop(sctx
, name
, pm
->ino
, pm
->gen
, &ancestor
);
3268 LIST_HEAD(deleted_refs
);
3269 ASSERT(ancestor
> BTRFS_FIRST_FREE_OBJECTID
);
3270 ret
= add_pending_dir_move(sctx
, pm
->ino
, pm
->gen
, ancestor
,
3271 &pm
->update_refs
, &deleted_refs
,
3276 dm
= get_waiting_dir_move(sctx
, pm
->ino
);
3278 dm
->rmdir_ino
= rmdir_ino
;
3282 fs_path_reset(name
);
3285 ret
= get_cur_path(sctx
, pm
->ino
, pm
->gen
, to_path
);
3289 ret
= send_rename(sctx
, from_path
, to_path
);
3294 struct orphan_dir_info
*odi
;
3296 odi
= get_orphan_dir_info(sctx
, rmdir_ino
);
3298 /* already deleted */
3301 ret
= can_rmdir(sctx
, rmdir_ino
, odi
->gen
, sctx
->cur_ino
);
3307 name
= fs_path_alloc();
3312 ret
= get_cur_path(sctx
, rmdir_ino
, odi
->gen
, name
);
3315 ret
= send_rmdir(sctx
, name
);
3318 free_orphan_dir_info(sctx
, odi
);
3322 ret
= send_utimes(sctx
, pm
->ino
, pm
->gen
);
3327 * After rename/move, need to update the utimes of both new parent(s)
3328 * and old parent(s).
3330 list_for_each_entry(cur
, &pm
->update_refs
, list
) {
3332 * The parent inode might have been deleted in the send snapshot
3334 ret
= get_inode_info(sctx
->send_root
, cur
->dir
, NULL
,
3335 NULL
, NULL
, NULL
, NULL
, NULL
);
3336 if (ret
== -ENOENT
) {
3343 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
3350 fs_path_free(from_path
);
3351 fs_path_free(to_path
);
3352 sctx
->send_progress
= orig_progress
;
3357 static void free_pending_move(struct send_ctx
*sctx
, struct pending_dir_move
*m
)
3359 if (!list_empty(&m
->list
))
3361 if (!RB_EMPTY_NODE(&m
->node
))
3362 rb_erase(&m
->node
, &sctx
->pending_dir_moves
);
3363 __free_recorded_refs(&m
->update_refs
);
3367 static void tail_append_pending_moves(struct pending_dir_move
*moves
,
3368 struct list_head
*stack
)
3370 if (list_empty(&moves
->list
)) {
3371 list_add_tail(&moves
->list
, stack
);
3374 list_splice_init(&moves
->list
, &list
);
3375 list_add_tail(&moves
->list
, stack
);
3376 list_splice_tail(&list
, stack
);
3380 static int apply_children_dir_moves(struct send_ctx
*sctx
)
3382 struct pending_dir_move
*pm
;
3383 struct list_head stack
;
3384 u64 parent_ino
= sctx
->cur_ino
;
3387 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3391 INIT_LIST_HEAD(&stack
);
3392 tail_append_pending_moves(pm
, &stack
);
3394 while (!list_empty(&stack
)) {
3395 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3396 parent_ino
= pm
->ino
;
3397 ret
= apply_dir_move(sctx
, pm
);
3398 free_pending_move(sctx
, pm
);
3401 pm
= get_pending_dir_moves(sctx
, parent_ino
);
3403 tail_append_pending_moves(pm
, &stack
);
3408 while (!list_empty(&stack
)) {
3409 pm
= list_first_entry(&stack
, struct pending_dir_move
, list
);
3410 free_pending_move(sctx
, pm
);
3416 * We might need to delay a directory rename even when no ancestor directory
3417 * (in the send root) with a higher inode number than ours (sctx->cur_ino) was
3418 * renamed. This happens when we rename a directory to the old name (the name
3419 * in the parent root) of some other unrelated directory that got its rename
3420 * delayed due to some ancestor with higher number that got renamed.
3426 * |---- a/ (ino 257)
3427 * | |---- file (ino 260)
3429 * |---- b/ (ino 258)
3430 * |---- c/ (ino 259)
3434 * |---- a/ (ino 258)
3435 * |---- x/ (ino 259)
3436 * |---- y/ (ino 257)
3437 * |----- file (ino 260)
3439 * Here we can not rename 258 from 'b' to 'a' without the rename of inode 257
3440 * from 'a' to 'x/y' happening first, which in turn depends on the rename of
3441 * inode 259 from 'c' to 'x'. So the order of rename commands the send stream
3444 * 1 - rename 259 from 'c' to 'x'
3445 * 2 - rename 257 from 'a' to 'x/y'
3446 * 3 - rename 258 from 'b' to 'a'
3448 * Returns 1 if the rename of sctx->cur_ino needs to be delayed, 0 if it can
3449 * be done right away and < 0 on error.
3451 static int wait_for_dest_dir_move(struct send_ctx
*sctx
,
3452 struct recorded_ref
*parent_ref
,
3453 const bool is_orphan
)
3455 struct btrfs_fs_info
*fs_info
= sctx
->parent_root
->fs_info
;
3456 struct btrfs_path
*path
;
3457 struct btrfs_key key
;
3458 struct btrfs_key di_key
;
3459 struct btrfs_dir_item
*di
;
3463 struct waiting_dir_move
*wdm
;
3465 if (RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
))
3468 path
= alloc_path_for_send();
3472 key
.objectid
= parent_ref
->dir
;
3473 key
.type
= BTRFS_DIR_ITEM_KEY
;
3474 key
.offset
= btrfs_name_hash(parent_ref
->name
, parent_ref
->name_len
);
3476 ret
= btrfs_search_slot(NULL
, sctx
->parent_root
, &key
, path
, 0, 0);
3479 } else if (ret
> 0) {
3484 di
= btrfs_match_dir_item_name(fs_info
, path
, parent_ref
->name
,
3485 parent_ref
->name_len
);
3491 * di_key.objectid has the number of the inode that has a dentry in the
3492 * parent directory with the same name that sctx->cur_ino is being
3493 * renamed to. We need to check if that inode is in the send root as
3494 * well and if it is currently marked as an inode with a pending rename,
3495 * if it is, we need to delay the rename of sctx->cur_ino as well, so
3496 * that it happens after that other inode is renamed.
3498 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &di_key
);
3499 if (di_key
.type
!= BTRFS_INODE_ITEM_KEY
) {
3504 ret
= get_inode_info(sctx
->parent_root
, di_key
.objectid
, NULL
,
3505 &left_gen
, NULL
, NULL
, NULL
, NULL
);
3508 ret
= get_inode_info(sctx
->send_root
, di_key
.objectid
, NULL
,
3509 &right_gen
, NULL
, NULL
, NULL
, NULL
);
3516 /* Different inode, no need to delay the rename of sctx->cur_ino */
3517 if (right_gen
!= left_gen
) {
3522 wdm
= get_waiting_dir_move(sctx
, di_key
.objectid
);
3523 if (wdm
&& !wdm
->orphanized
) {
3524 ret
= add_pending_dir_move(sctx
,
3526 sctx
->cur_inode_gen
,
3529 &sctx
->deleted_refs
,
3535 btrfs_free_path(path
);
3540 * Check if ino ino1 is an ancestor of inode ino2 in the given root.
3541 * Return 1 if true, 0 if false and < 0 on error.
3543 static int is_ancestor(struct btrfs_root
*root
,
3547 struct fs_path
*fs_path
)
3550 bool free_path
= false;
3554 fs_path
= fs_path_alloc();
3560 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3564 fs_path_reset(fs_path
);
3565 ret
= get_first_ref(root
, ino
, &parent
, &parent_gen
, fs_path
);
3567 if (ret
== -ENOENT
&& ino
== ino2
)
3571 if (parent
== ino1
) {
3572 ret
= parent_gen
== ino1_gen
? 1 : 0;
3579 fs_path_free(fs_path
);
3583 static int wait_for_parent_move(struct send_ctx
*sctx
,
3584 struct recorded_ref
*parent_ref
,
3585 const bool is_orphan
)
3588 u64 ino
= parent_ref
->dir
;
3589 u64 ino_gen
= parent_ref
->dir_gen
;
3590 u64 parent_ino_before
, parent_ino_after
;
3591 struct fs_path
*path_before
= NULL
;
3592 struct fs_path
*path_after
= NULL
;
3595 path_after
= fs_path_alloc();
3596 path_before
= fs_path_alloc();
3597 if (!path_after
|| !path_before
) {
3603 * Our current directory inode may not yet be renamed/moved because some
3604 * ancestor (immediate or not) has to be renamed/moved first. So find if
3605 * such ancestor exists and make sure our own rename/move happens after
3606 * that ancestor is processed to avoid path build infinite loops (done
3607 * at get_cur_path()).
3609 while (ino
> BTRFS_FIRST_FREE_OBJECTID
) {
3610 u64 parent_ino_after_gen
;
3612 if (is_waiting_for_move(sctx
, ino
)) {
3614 * If the current inode is an ancestor of ino in the
3615 * parent root, we need to delay the rename of the
3616 * current inode, otherwise don't delayed the rename
3617 * because we can end up with a circular dependency
3618 * of renames, resulting in some directories never
3619 * getting the respective rename operations issued in
3620 * the send stream or getting into infinite path build
3623 ret
= is_ancestor(sctx
->parent_root
,
3624 sctx
->cur_ino
, sctx
->cur_inode_gen
,
3630 fs_path_reset(path_before
);
3631 fs_path_reset(path_after
);
3633 ret
= get_first_ref(sctx
->send_root
, ino
, &parent_ino_after
,
3634 &parent_ino_after_gen
, path_after
);
3637 ret
= get_first_ref(sctx
->parent_root
, ino
, &parent_ino_before
,
3639 if (ret
< 0 && ret
!= -ENOENT
) {
3641 } else if (ret
== -ENOENT
) {
3646 len1
= fs_path_len(path_before
);
3647 len2
= fs_path_len(path_after
);
3648 if (ino
> sctx
->cur_ino
&&
3649 (parent_ino_before
!= parent_ino_after
|| len1
!= len2
||
3650 memcmp(path_before
->start
, path_after
->start
, len1
))) {
3653 ret
= get_inode_info(sctx
->parent_root
, ino
, NULL
,
3654 &parent_ino_gen
, NULL
, NULL
, NULL
,
3658 if (ino_gen
== parent_ino_gen
) {
3663 ino
= parent_ino_after
;
3664 ino_gen
= parent_ino_after_gen
;
3668 fs_path_free(path_before
);
3669 fs_path_free(path_after
);
3672 ret
= add_pending_dir_move(sctx
,
3674 sctx
->cur_inode_gen
,
3677 &sctx
->deleted_refs
,
3686 static int update_ref_path(struct send_ctx
*sctx
, struct recorded_ref
*ref
)
3689 struct fs_path
*new_path
;
3692 * Our reference's name member points to its full_path member string, so
3693 * we use here a new path.
3695 new_path
= fs_path_alloc();
3699 ret
= get_cur_path(sctx
, ref
->dir
, ref
->dir_gen
, new_path
);
3701 fs_path_free(new_path
);
3704 ret
= fs_path_add(new_path
, ref
->name
, ref
->name_len
);
3706 fs_path_free(new_path
);
3710 fs_path_free(ref
->full_path
);
3711 set_ref_path(ref
, new_path
);
3717 * This does all the move/link/unlink/rmdir magic.
3719 static int process_recorded_refs(struct send_ctx
*sctx
, int *pending_move
)
3721 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
3723 struct recorded_ref
*cur
;
3724 struct recorded_ref
*cur2
;
3725 struct list_head check_dirs
;
3726 struct fs_path
*valid_path
= NULL
;
3730 int did_overwrite
= 0;
3732 u64 last_dir_ino_rm
= 0;
3733 bool can_rename
= true;
3734 bool orphanized_dir
= false;
3735 bool orphanized_ancestor
= false;
3737 btrfs_debug(fs_info
, "process_recorded_refs %llu", sctx
->cur_ino
);
3740 * This should never happen as the root dir always has the same ref
3741 * which is always '..'
3743 BUG_ON(sctx
->cur_ino
<= BTRFS_FIRST_FREE_OBJECTID
);
3744 INIT_LIST_HEAD(&check_dirs
);
3746 valid_path
= fs_path_alloc();
3753 * First, check if the first ref of the current inode was overwritten
3754 * before. If yes, we know that the current inode was already orphanized
3755 * and thus use the orphan name. If not, we can use get_cur_path to
3756 * get the path of the first ref as it would like while receiving at
3757 * this point in time.
3758 * New inodes are always orphan at the beginning, so force to use the
3759 * orphan name in this case.
3760 * The first ref is stored in valid_path and will be updated if it
3761 * gets moved around.
3763 if (!sctx
->cur_inode_new
) {
3764 ret
= did_overwrite_first_ref(sctx
, sctx
->cur_ino
,
3765 sctx
->cur_inode_gen
);
3771 if (sctx
->cur_inode_new
|| did_overwrite
) {
3772 ret
= gen_unique_name(sctx
, sctx
->cur_ino
,
3773 sctx
->cur_inode_gen
, valid_path
);
3778 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3784 list_for_each_entry(cur
, &sctx
->new_refs
, list
) {
3786 * We may have refs where the parent directory does not exist
3787 * yet. This happens if the parent directories inum is higher
3788 * the the current inum. To handle this case, we create the
3789 * parent directory out of order. But we need to check if this
3790 * did already happen before due to other refs in the same dir.
3792 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
3795 if (ret
== inode_state_will_create
) {
3798 * First check if any of the current inodes refs did
3799 * already create the dir.
3801 list_for_each_entry(cur2
, &sctx
->new_refs
, list
) {
3804 if (cur2
->dir
== cur
->dir
) {
3811 * If that did not happen, check if a previous inode
3812 * did already create the dir.
3815 ret
= did_create_dir(sctx
, cur
->dir
);
3819 ret
= send_create_inode(sctx
, cur
->dir
);
3826 * Check if this new ref would overwrite the first ref of
3827 * another unprocessed inode. If yes, orphanize the
3828 * overwritten inode. If we find an overwritten ref that is
3829 * not the first ref, simply unlink it.
3831 ret
= will_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
3832 cur
->name
, cur
->name_len
,
3833 &ow_inode
, &ow_gen
, &ow_mode
);
3837 ret
= is_first_ref(sctx
->parent_root
,
3838 ow_inode
, cur
->dir
, cur
->name
,
3843 struct name_cache_entry
*nce
;
3844 struct waiting_dir_move
*wdm
;
3846 ret
= orphanize_inode(sctx
, ow_inode
, ow_gen
,
3850 if (S_ISDIR(ow_mode
))
3851 orphanized_dir
= true;
3854 * If ow_inode has its rename operation delayed
3855 * make sure that its orphanized name is used in
3856 * the source path when performing its rename
3859 if (is_waiting_for_move(sctx
, ow_inode
)) {
3860 wdm
= get_waiting_dir_move(sctx
,
3863 wdm
->orphanized
= true;
3867 * Make sure we clear our orphanized inode's
3868 * name from the name cache. This is because the
3869 * inode ow_inode might be an ancestor of some
3870 * other inode that will be orphanized as well
3871 * later and has an inode number greater than
3872 * sctx->send_progress. We need to prevent
3873 * future name lookups from using the old name
3874 * and get instead the orphan name.
3876 nce
= name_cache_search(sctx
, ow_inode
, ow_gen
);
3878 name_cache_delete(sctx
, nce
);
3883 * ow_inode might currently be an ancestor of
3884 * cur_ino, therefore compute valid_path (the
3885 * current path of cur_ino) again because it
3886 * might contain the pre-orphanization name of
3887 * ow_inode, which is no longer valid.
3889 ret
= is_ancestor(sctx
->parent_root
,
3891 sctx
->cur_ino
, NULL
);
3893 orphanized_ancestor
= true;
3894 fs_path_reset(valid_path
);
3895 ret
= get_cur_path(sctx
, sctx
->cur_ino
,
3896 sctx
->cur_inode_gen
,
3902 ret
= send_unlink(sctx
, cur
->full_path
);
3908 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
) {
3909 ret
= wait_for_dest_dir_move(sctx
, cur
, is_orphan
);
3918 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->parent_root
&&
3920 ret
= wait_for_parent_move(sctx
, cur
, is_orphan
);
3930 * link/move the ref to the new place. If we have an orphan
3931 * inode, move it and update valid_path. If not, link or move
3932 * it depending on the inode mode.
3934 if (is_orphan
&& can_rename
) {
3935 ret
= send_rename(sctx
, valid_path
, cur
->full_path
);
3939 ret
= fs_path_copy(valid_path
, cur
->full_path
);
3942 } else if (can_rename
) {
3943 if (S_ISDIR(sctx
->cur_inode_mode
)) {
3945 * Dirs can't be linked, so move it. For moved
3946 * dirs, we always have one new and one deleted
3947 * ref. The deleted ref is ignored later.
3949 ret
= send_rename(sctx
, valid_path
,
3952 ret
= fs_path_copy(valid_path
,
3958 * We might have previously orphanized an inode
3959 * which is an ancestor of our current inode,
3960 * so our reference's full path, which was
3961 * computed before any such orphanizations, must
3964 if (orphanized_dir
) {
3965 ret
= update_ref_path(sctx
, cur
);
3969 ret
= send_link(sctx
, cur
->full_path
,
3975 ret
= dup_ref(cur
, &check_dirs
);
3980 if (S_ISDIR(sctx
->cur_inode_mode
) && sctx
->cur_inode_deleted
) {
3982 * Check if we can already rmdir the directory. If not,
3983 * orphanize it. For every dir item inside that gets deleted
3984 * later, we do this check again and rmdir it then if possible.
3985 * See the use of check_dirs for more details.
3987 ret
= can_rmdir(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
3992 ret
= send_rmdir(sctx
, valid_path
);
3995 } else if (!is_orphan
) {
3996 ret
= orphanize_inode(sctx
, sctx
->cur_ino
,
3997 sctx
->cur_inode_gen
, valid_path
);
4003 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
4004 ret
= dup_ref(cur
, &check_dirs
);
4008 } else if (S_ISDIR(sctx
->cur_inode_mode
) &&
4009 !list_empty(&sctx
->deleted_refs
)) {
4011 * We have a moved dir. Add the old parent to check_dirs
4013 cur
= list_entry(sctx
->deleted_refs
.next
, struct recorded_ref
,
4015 ret
= dup_ref(cur
, &check_dirs
);
4018 } else if (!S_ISDIR(sctx
->cur_inode_mode
)) {
4020 * We have a non dir inode. Go through all deleted refs and
4021 * unlink them if they were not already overwritten by other
4024 list_for_each_entry(cur
, &sctx
->deleted_refs
, list
) {
4025 ret
= did_overwrite_ref(sctx
, cur
->dir
, cur
->dir_gen
,
4026 sctx
->cur_ino
, sctx
->cur_inode_gen
,
4027 cur
->name
, cur
->name_len
);
4032 * If we orphanized any ancestor before, we need
4033 * to recompute the full path for deleted names,
4034 * since any such path was computed before we
4035 * processed any references and orphanized any
4038 if (orphanized_ancestor
) {
4039 ret
= update_ref_path(sctx
, cur
);
4043 ret
= send_unlink(sctx
, cur
->full_path
);
4047 ret
= dup_ref(cur
, &check_dirs
);
4052 * If the inode is still orphan, unlink the orphan. This may
4053 * happen when a previous inode did overwrite the first ref
4054 * of this inode and no new refs were added for the current
4055 * inode. Unlinking does not mean that the inode is deleted in
4056 * all cases. There may still be links to this inode in other
4060 ret
= send_unlink(sctx
, valid_path
);
4067 * We did collect all parent dirs where cur_inode was once located. We
4068 * now go through all these dirs and check if they are pending for
4069 * deletion and if it's finally possible to perform the rmdir now.
4070 * We also update the inode stats of the parent dirs here.
4072 list_for_each_entry(cur
, &check_dirs
, list
) {
4074 * In case we had refs into dirs that were not processed yet,
4075 * we don't need to do the utime and rmdir logic for these dirs.
4076 * The dir will be processed later.
4078 if (cur
->dir
> sctx
->cur_ino
)
4081 ret
= get_cur_inode_state(sctx
, cur
->dir
, cur
->dir_gen
);
4085 if (ret
== inode_state_did_create
||
4086 ret
== inode_state_no_change
) {
4087 /* TODO delayed utimes */
4088 ret
= send_utimes(sctx
, cur
->dir
, cur
->dir_gen
);
4091 } else if (ret
== inode_state_did_delete
&&
4092 cur
->dir
!= last_dir_ino_rm
) {
4093 ret
= can_rmdir(sctx
, cur
->dir
, cur
->dir_gen
,
4098 ret
= get_cur_path(sctx
, cur
->dir
,
4099 cur
->dir_gen
, valid_path
);
4102 ret
= send_rmdir(sctx
, valid_path
);
4105 last_dir_ino_rm
= cur
->dir
;
4113 __free_recorded_refs(&check_dirs
);
4114 free_recorded_refs(sctx
);
4115 fs_path_free(valid_path
);
4119 static int record_ref(struct btrfs_root
*root
, int num
, u64 dir
, int index
,
4120 struct fs_path
*name
, void *ctx
, struct list_head
*refs
)
4123 struct send_ctx
*sctx
= ctx
;
4127 p
= fs_path_alloc();
4131 ret
= get_inode_info(root
, dir
, NULL
, &gen
, NULL
, NULL
,
4136 ret
= get_cur_path(sctx
, dir
, gen
, p
);
4139 ret
= fs_path_add_path(p
, name
);
4143 ret
= __record_ref(refs
, dir
, gen
, p
);
4151 static int __record_new_ref(int num
, u64 dir
, int index
,
4152 struct fs_path
*name
,
4155 struct send_ctx
*sctx
= ctx
;
4156 return record_ref(sctx
->send_root
, num
, dir
, index
, name
,
4157 ctx
, &sctx
->new_refs
);
4161 static int __record_deleted_ref(int num
, u64 dir
, int index
,
4162 struct fs_path
*name
,
4165 struct send_ctx
*sctx
= ctx
;
4166 return record_ref(sctx
->parent_root
, num
, dir
, index
, name
,
4167 ctx
, &sctx
->deleted_refs
);
4170 static int record_new_ref(struct send_ctx
*sctx
)
4174 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4175 sctx
->cmp_key
, 0, __record_new_ref
, sctx
);
4184 static int record_deleted_ref(struct send_ctx
*sctx
)
4188 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4189 sctx
->cmp_key
, 0, __record_deleted_ref
, sctx
);
4198 struct find_ref_ctx
{
4201 struct btrfs_root
*root
;
4202 struct fs_path
*name
;
4206 static int __find_iref(int num
, u64 dir
, int index
,
4207 struct fs_path
*name
,
4210 struct find_ref_ctx
*ctx
= ctx_
;
4214 if (dir
== ctx
->dir
&& fs_path_len(name
) == fs_path_len(ctx
->name
) &&
4215 strncmp(name
->start
, ctx
->name
->start
, fs_path_len(name
)) == 0) {
4217 * To avoid doing extra lookups we'll only do this if everything
4220 ret
= get_inode_info(ctx
->root
, dir
, NULL
, &dir_gen
, NULL
,
4224 if (dir_gen
!= ctx
->dir_gen
)
4226 ctx
->found_idx
= num
;
4232 static int find_iref(struct btrfs_root
*root
,
4233 struct btrfs_path
*path
,
4234 struct btrfs_key
*key
,
4235 u64 dir
, u64 dir_gen
, struct fs_path
*name
)
4238 struct find_ref_ctx ctx
;
4242 ctx
.dir_gen
= dir_gen
;
4246 ret
= iterate_inode_ref(root
, path
, key
, 0, __find_iref
, &ctx
);
4250 if (ctx
.found_idx
== -1)
4253 return ctx
.found_idx
;
4256 static int __record_changed_new_ref(int num
, u64 dir
, int index
,
4257 struct fs_path
*name
,
4262 struct send_ctx
*sctx
= ctx
;
4264 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &dir_gen
, NULL
,
4269 ret
= find_iref(sctx
->parent_root
, sctx
->right_path
,
4270 sctx
->cmp_key
, dir
, dir_gen
, name
);
4272 ret
= __record_new_ref(num
, dir
, index
, name
, sctx
);
4279 static int __record_changed_deleted_ref(int num
, u64 dir
, int index
,
4280 struct fs_path
*name
,
4285 struct send_ctx
*sctx
= ctx
;
4287 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &dir_gen
, NULL
,
4292 ret
= find_iref(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4293 dir
, dir_gen
, name
);
4295 ret
= __record_deleted_ref(num
, dir
, index
, name
, sctx
);
4302 static int record_changed_ref(struct send_ctx
*sctx
)
4306 ret
= iterate_inode_ref(sctx
->send_root
, sctx
->left_path
,
4307 sctx
->cmp_key
, 0, __record_changed_new_ref
, sctx
);
4310 ret
= iterate_inode_ref(sctx
->parent_root
, sctx
->right_path
,
4311 sctx
->cmp_key
, 0, __record_changed_deleted_ref
, sctx
);
4321 * Record and process all refs at once. Needed when an inode changes the
4322 * generation number, which means that it was deleted and recreated.
4324 static int process_all_refs(struct send_ctx
*sctx
,
4325 enum btrfs_compare_tree_result cmd
)
4328 struct btrfs_root
*root
;
4329 struct btrfs_path
*path
;
4330 struct btrfs_key key
;
4331 struct btrfs_key found_key
;
4332 struct extent_buffer
*eb
;
4334 iterate_inode_ref_t cb
;
4335 int pending_move
= 0;
4337 path
= alloc_path_for_send();
4341 if (cmd
== BTRFS_COMPARE_TREE_NEW
) {
4342 root
= sctx
->send_root
;
4343 cb
= __record_new_ref
;
4344 } else if (cmd
== BTRFS_COMPARE_TREE_DELETED
) {
4345 root
= sctx
->parent_root
;
4346 cb
= __record_deleted_ref
;
4348 btrfs_err(sctx
->send_root
->fs_info
,
4349 "Wrong command %d in process_all_refs", cmd
);
4354 key
.objectid
= sctx
->cmp_key
->objectid
;
4355 key
.type
= BTRFS_INODE_REF_KEY
;
4357 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4362 eb
= path
->nodes
[0];
4363 slot
= path
->slots
[0];
4364 if (slot
>= btrfs_header_nritems(eb
)) {
4365 ret
= btrfs_next_leaf(root
, path
);
4373 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4375 if (found_key
.objectid
!= key
.objectid
||
4376 (found_key
.type
!= BTRFS_INODE_REF_KEY
&&
4377 found_key
.type
!= BTRFS_INODE_EXTREF_KEY
))
4380 ret
= iterate_inode_ref(root
, path
, &found_key
, 0, cb
, sctx
);
4386 btrfs_release_path(path
);
4389 * We don't actually care about pending_move as we are simply
4390 * re-creating this inode and will be rename'ing it into place once we
4391 * rename the parent directory.
4393 ret
= process_recorded_refs(sctx
, &pending_move
);
4395 btrfs_free_path(path
);
4399 static int send_set_xattr(struct send_ctx
*sctx
,
4400 struct fs_path
*path
,
4401 const char *name
, int name_len
,
4402 const char *data
, int data_len
)
4406 ret
= begin_cmd(sctx
, BTRFS_SEND_C_SET_XATTR
);
4410 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4411 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4412 TLV_PUT(sctx
, BTRFS_SEND_A_XATTR_DATA
, data
, data_len
);
4414 ret
= send_cmd(sctx
);
4421 static int send_remove_xattr(struct send_ctx
*sctx
,
4422 struct fs_path
*path
,
4423 const char *name
, int name_len
)
4427 ret
= begin_cmd(sctx
, BTRFS_SEND_C_REMOVE_XATTR
);
4431 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, path
);
4432 TLV_PUT_STRING(sctx
, BTRFS_SEND_A_XATTR_NAME
, name
, name_len
);
4434 ret
= send_cmd(sctx
);
4441 static int __process_new_xattr(int num
, struct btrfs_key
*di_key
,
4442 const char *name
, int name_len
,
4443 const char *data
, int data_len
,
4447 struct send_ctx
*sctx
= ctx
;
4449 struct posix_acl_xattr_header dummy_acl
;
4451 p
= fs_path_alloc();
4456 * This hack is needed because empty acls are stored as zero byte
4457 * data in xattrs. Problem with that is, that receiving these zero byte
4458 * acls will fail later. To fix this, we send a dummy acl list that
4459 * only contains the version number and no entries.
4461 if (!strncmp(name
, XATTR_NAME_POSIX_ACL_ACCESS
, name_len
) ||
4462 !strncmp(name
, XATTR_NAME_POSIX_ACL_DEFAULT
, name_len
)) {
4463 if (data_len
== 0) {
4464 dummy_acl
.a_version
=
4465 cpu_to_le32(POSIX_ACL_XATTR_VERSION
);
4466 data
= (char *)&dummy_acl
;
4467 data_len
= sizeof(dummy_acl
);
4471 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4475 ret
= send_set_xattr(sctx
, p
, name
, name_len
, data
, data_len
);
4482 static int __process_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4483 const char *name
, int name_len
,
4484 const char *data
, int data_len
,
4488 struct send_ctx
*sctx
= ctx
;
4491 p
= fs_path_alloc();
4495 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4499 ret
= send_remove_xattr(sctx
, p
, name
, name_len
);
4506 static int process_new_xattr(struct send_ctx
*sctx
)
4510 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4511 sctx
->cmp_key
, __process_new_xattr
, sctx
);
4516 static int process_deleted_xattr(struct send_ctx
*sctx
)
4518 return iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4519 sctx
->cmp_key
, __process_deleted_xattr
, sctx
);
4522 struct find_xattr_ctx
{
4530 static int __find_xattr(int num
, struct btrfs_key
*di_key
,
4531 const char *name
, int name_len
,
4532 const char *data
, int data_len
,
4533 u8 type
, void *vctx
)
4535 struct find_xattr_ctx
*ctx
= vctx
;
4537 if (name_len
== ctx
->name_len
&&
4538 strncmp(name
, ctx
->name
, name_len
) == 0) {
4539 ctx
->found_idx
= num
;
4540 ctx
->found_data_len
= data_len
;
4541 ctx
->found_data
= kmemdup(data
, data_len
, GFP_KERNEL
);
4542 if (!ctx
->found_data
)
4549 static int find_xattr(struct btrfs_root
*root
,
4550 struct btrfs_path
*path
,
4551 struct btrfs_key
*key
,
4552 const char *name
, int name_len
,
4553 char **data
, int *data_len
)
4556 struct find_xattr_ctx ctx
;
4559 ctx
.name_len
= name_len
;
4561 ctx
.found_data
= NULL
;
4562 ctx
.found_data_len
= 0;
4564 ret
= iterate_dir_item(root
, path
, key
, __find_xattr
, &ctx
);
4568 if (ctx
.found_idx
== -1)
4571 *data
= ctx
.found_data
;
4572 *data_len
= ctx
.found_data_len
;
4574 kfree(ctx
.found_data
);
4576 return ctx
.found_idx
;
4580 static int __process_changed_new_xattr(int num
, struct btrfs_key
*di_key
,
4581 const char *name
, int name_len
,
4582 const char *data
, int data_len
,
4586 struct send_ctx
*sctx
= ctx
;
4587 char *found_data
= NULL
;
4588 int found_data_len
= 0;
4590 ret
= find_xattr(sctx
->parent_root
, sctx
->right_path
,
4591 sctx
->cmp_key
, name
, name_len
, &found_data
,
4593 if (ret
== -ENOENT
) {
4594 ret
= __process_new_xattr(num
, di_key
, name
, name_len
, data
,
4595 data_len
, type
, ctx
);
4596 } else if (ret
>= 0) {
4597 if (data_len
!= found_data_len
||
4598 memcmp(data
, found_data
, data_len
)) {
4599 ret
= __process_new_xattr(num
, di_key
, name
, name_len
,
4600 data
, data_len
, type
, ctx
);
4610 static int __process_changed_deleted_xattr(int num
, struct btrfs_key
*di_key
,
4611 const char *name
, int name_len
,
4612 const char *data
, int data_len
,
4616 struct send_ctx
*sctx
= ctx
;
4618 ret
= find_xattr(sctx
->send_root
, sctx
->left_path
, sctx
->cmp_key
,
4619 name
, name_len
, NULL
, NULL
);
4621 ret
= __process_deleted_xattr(num
, di_key
, name
, name_len
, data
,
4622 data_len
, type
, ctx
);
4629 static int process_changed_xattr(struct send_ctx
*sctx
)
4633 ret
= iterate_dir_item(sctx
->send_root
, sctx
->left_path
,
4634 sctx
->cmp_key
, __process_changed_new_xattr
, sctx
);
4637 ret
= iterate_dir_item(sctx
->parent_root
, sctx
->right_path
,
4638 sctx
->cmp_key
, __process_changed_deleted_xattr
, sctx
);
4644 static int process_all_new_xattrs(struct send_ctx
*sctx
)
4647 struct btrfs_root
*root
;
4648 struct btrfs_path
*path
;
4649 struct btrfs_key key
;
4650 struct btrfs_key found_key
;
4651 struct extent_buffer
*eb
;
4654 path
= alloc_path_for_send();
4658 root
= sctx
->send_root
;
4660 key
.objectid
= sctx
->cmp_key
->objectid
;
4661 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4663 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4668 eb
= path
->nodes
[0];
4669 slot
= path
->slots
[0];
4670 if (slot
>= btrfs_header_nritems(eb
)) {
4671 ret
= btrfs_next_leaf(root
, path
);
4674 } else if (ret
> 0) {
4681 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
4682 if (found_key
.objectid
!= key
.objectid
||
4683 found_key
.type
!= key
.type
) {
4688 ret
= iterate_dir_item(root
, path
, &found_key
,
4689 __process_new_xattr
, sctx
);
4697 btrfs_free_path(path
);
4701 static ssize_t
fill_read_buf(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4703 struct btrfs_root
*root
= sctx
->send_root
;
4704 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4705 struct inode
*inode
;
4708 struct btrfs_key key
;
4709 pgoff_t index
= offset
>> PAGE_SHIFT
;
4711 unsigned pg_offset
= offset
& ~PAGE_MASK
;
4714 key
.objectid
= sctx
->cur_ino
;
4715 key
.type
= BTRFS_INODE_ITEM_KEY
;
4718 inode
= btrfs_iget(fs_info
->sb
, &key
, root
, NULL
);
4720 return PTR_ERR(inode
);
4722 if (offset
+ len
> i_size_read(inode
)) {
4723 if (offset
> i_size_read(inode
))
4726 len
= offset
- i_size_read(inode
);
4731 last_index
= (offset
+ len
- 1) >> PAGE_SHIFT
;
4733 /* initial readahead */
4734 memset(&sctx
->ra
, 0, sizeof(struct file_ra_state
));
4735 file_ra_state_init(&sctx
->ra
, inode
->i_mapping
);
4736 btrfs_force_ra(inode
->i_mapping
, &sctx
->ra
, NULL
, index
,
4737 last_index
- index
+ 1);
4739 while (index
<= last_index
) {
4740 unsigned cur_len
= min_t(unsigned, len
,
4741 PAGE_SIZE
- pg_offset
);
4742 page
= find_or_create_page(inode
->i_mapping
, index
, GFP_KERNEL
);
4748 if (!PageUptodate(page
)) {
4749 btrfs_readpage(NULL
, page
);
4751 if (!PageUptodate(page
)) {
4760 memcpy(sctx
->read_buf
+ ret
, addr
+ pg_offset
, cur_len
);
4775 * Read some bytes from the current inode/file and send a write command to
4778 static int send_write(struct send_ctx
*sctx
, u64 offset
, u32 len
)
4780 struct btrfs_fs_info
*fs_info
= sctx
->send_root
->fs_info
;
4783 ssize_t num_read
= 0;
4785 p
= fs_path_alloc();
4789 btrfs_debug(fs_info
, "send_write offset=%llu, len=%d", offset
, len
);
4791 num_read
= fill_read_buf(sctx
, offset
, len
);
4792 if (num_read
<= 0) {
4798 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4802 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4806 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4807 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4808 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, num_read
);
4810 ret
= send_cmd(sctx
);
4821 * Send a clone command to user space.
4823 static int send_clone(struct send_ctx
*sctx
,
4824 u64 offset
, u32 len
,
4825 struct clone_root
*clone_root
)
4831 btrfs_debug(sctx
->send_root
->fs_info
,
4832 "send_clone offset=%llu, len=%d, clone_root=%llu, clone_inode=%llu, clone_offset=%llu",
4833 offset
, len
, clone_root
->root
->objectid
, clone_root
->ino
,
4834 clone_root
->offset
);
4836 p
= fs_path_alloc();
4840 ret
= begin_cmd(sctx
, BTRFS_SEND_C_CLONE
);
4844 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4848 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4849 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_LEN
, len
);
4850 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4852 if (clone_root
->root
== sctx
->send_root
) {
4853 ret
= get_inode_info(sctx
->send_root
, clone_root
->ino
, NULL
,
4854 &gen
, NULL
, NULL
, NULL
, NULL
);
4857 ret
= get_cur_path(sctx
, clone_root
->ino
, gen
, p
);
4859 ret
= get_inode_path(clone_root
->root
, clone_root
->ino
, p
);
4865 * If the parent we're using has a received_uuid set then use that as
4866 * our clone source as that is what we will look for when doing a
4869 * This covers the case that we create a snapshot off of a received
4870 * subvolume and then use that as the parent and try to receive on a
4873 if (!btrfs_is_empty_uuid(clone_root
->root
->root_item
.received_uuid
))
4874 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4875 clone_root
->root
->root_item
.received_uuid
);
4877 TLV_PUT_UUID(sctx
, BTRFS_SEND_A_CLONE_UUID
,
4878 clone_root
->root
->root_item
.uuid
);
4879 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_CTRANSID
,
4880 le64_to_cpu(clone_root
->root
->root_item
.ctransid
));
4881 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_CLONE_PATH
, p
);
4882 TLV_PUT_U64(sctx
, BTRFS_SEND_A_CLONE_OFFSET
,
4883 clone_root
->offset
);
4885 ret
= send_cmd(sctx
);
4894 * Send an update extent command to user space.
4896 static int send_update_extent(struct send_ctx
*sctx
,
4897 u64 offset
, u32 len
)
4902 p
= fs_path_alloc();
4906 ret
= begin_cmd(sctx
, BTRFS_SEND_C_UPDATE_EXTENT
);
4910 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4914 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4915 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4916 TLV_PUT_U64(sctx
, BTRFS_SEND_A_SIZE
, len
);
4918 ret
= send_cmd(sctx
);
4926 static int send_hole(struct send_ctx
*sctx
, u64 end
)
4928 struct fs_path
*p
= NULL
;
4929 u64 offset
= sctx
->cur_inode_last_extent
;
4933 p
= fs_path_alloc();
4936 ret
= get_cur_path(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
, p
);
4938 goto tlv_put_failure
;
4939 memset(sctx
->read_buf
, 0, BTRFS_SEND_READ_SIZE
);
4940 while (offset
< end
) {
4941 len
= min_t(u64
, end
- offset
, BTRFS_SEND_READ_SIZE
);
4943 ret
= begin_cmd(sctx
, BTRFS_SEND_C_WRITE
);
4946 TLV_PUT_PATH(sctx
, BTRFS_SEND_A_PATH
, p
);
4947 TLV_PUT_U64(sctx
, BTRFS_SEND_A_FILE_OFFSET
, offset
);
4948 TLV_PUT(sctx
, BTRFS_SEND_A_DATA
, sctx
->read_buf
, len
);
4949 ret
= send_cmd(sctx
);
4959 static int send_extent_data(struct send_ctx
*sctx
,
4965 if (sctx
->flags
& BTRFS_SEND_FLAG_NO_FILE_DATA
)
4966 return send_update_extent(sctx
, offset
, len
);
4968 while (sent
< len
) {
4969 u64 size
= len
- sent
;
4972 if (size
> BTRFS_SEND_READ_SIZE
)
4973 size
= BTRFS_SEND_READ_SIZE
;
4974 ret
= send_write(sctx
, offset
+ sent
, size
);
4984 static int clone_range(struct send_ctx
*sctx
,
4985 struct clone_root
*clone_root
,
4986 const u64 disk_byte
,
4991 struct btrfs_path
*path
;
4992 struct btrfs_key key
;
4995 path
= alloc_path_for_send();
5000 * We can't send a clone operation for the entire range if we find
5001 * extent items in the respective range in the source file that
5002 * refer to different extents or if we find holes.
5003 * So check for that and do a mix of clone and regular write/copy
5004 * operations if needed.
5008 * mkfs.btrfs -f /dev/sda
5009 * mount /dev/sda /mnt
5010 * xfs_io -f -c "pwrite -S 0xaa 0K 100K" /mnt/foo
5011 * cp --reflink=always /mnt/foo /mnt/bar
5012 * xfs_io -c "pwrite -S 0xbb 50K 50K" /mnt/foo
5013 * btrfs subvolume snapshot -r /mnt /mnt/snap
5015 * If when we send the snapshot and we are processing file bar (which
5016 * has a higher inode number than foo) we blindly send a clone operation
5017 * for the [0, 100K[ range from foo to bar, the receiver ends up getting
5018 * a file bar that matches the content of file foo - iow, doesn't match
5019 * the content from bar in the original filesystem.
5021 key
.objectid
= clone_root
->ino
;
5022 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5023 key
.offset
= clone_root
->offset
;
5024 ret
= btrfs_search_slot(NULL
, clone_root
->root
, &key
, path
, 0, 0);
5027 if (ret
> 0 && path
->slots
[0] > 0) {
5028 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0] - 1);
5029 if (key
.objectid
== clone_root
->ino
&&
5030 key
.type
== BTRFS_EXTENT_DATA_KEY
)
5035 struct extent_buffer
*leaf
= path
->nodes
[0];
5036 int slot
= path
->slots
[0];
5037 struct btrfs_file_extent_item
*ei
;
5042 if (slot
>= btrfs_header_nritems(leaf
)) {
5043 ret
= btrfs_next_leaf(clone_root
->root
, path
);
5051 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5054 * We might have an implicit trailing hole (NO_HOLES feature
5055 * enabled). We deal with it after leaving this loop.
5057 if (key
.objectid
!= clone_root
->ino
||
5058 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5061 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5062 type
= btrfs_file_extent_type(leaf
, ei
);
5063 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5064 ext_len
= btrfs_file_extent_inline_len(leaf
, slot
, ei
);
5065 ext_len
= PAGE_ALIGN(ext_len
);
5067 ext_len
= btrfs_file_extent_num_bytes(leaf
, ei
);
5070 if (key
.offset
+ ext_len
<= clone_root
->offset
)
5073 if (key
.offset
> clone_root
->offset
) {
5074 /* Implicit hole, NO_HOLES feature enabled. */
5075 u64 hole_len
= key
.offset
- clone_root
->offset
;
5079 ret
= send_extent_data(sctx
, offset
, hole_len
);
5087 clone_root
->offset
+= hole_len
;
5088 data_offset
+= hole_len
;
5091 if (key
.offset
>= clone_root
->offset
+ len
)
5094 clone_len
= min_t(u64
, ext_len
, len
);
5096 if (btrfs_file_extent_disk_bytenr(leaf
, ei
) == disk_byte
&&
5097 btrfs_file_extent_offset(leaf
, ei
) == data_offset
)
5098 ret
= send_clone(sctx
, offset
, clone_len
, clone_root
);
5100 ret
= send_extent_data(sctx
, offset
, clone_len
);
5108 offset
+= clone_len
;
5109 clone_root
->offset
+= clone_len
;
5110 data_offset
+= clone_len
;
5116 ret
= send_extent_data(sctx
, offset
, len
);
5120 btrfs_free_path(path
);
5124 static int send_write_or_clone(struct send_ctx
*sctx
,
5125 struct btrfs_path
*path
,
5126 struct btrfs_key
*key
,
5127 struct clone_root
*clone_root
)
5130 struct btrfs_file_extent_item
*ei
;
5131 u64 offset
= key
->offset
;
5134 u64 bs
= sctx
->send_root
->fs_info
->sb
->s_blocksize
;
5136 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5137 struct btrfs_file_extent_item
);
5138 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5139 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5140 len
= btrfs_file_extent_inline_len(path
->nodes
[0],
5141 path
->slots
[0], ei
);
5143 * it is possible the inline item won't cover the whole page,
5144 * but there may be items after this page. Make
5145 * sure to send the whole thing
5147 len
= PAGE_ALIGN(len
);
5149 len
= btrfs_file_extent_num_bytes(path
->nodes
[0], ei
);
5152 if (offset
+ len
> sctx
->cur_inode_size
)
5153 len
= sctx
->cur_inode_size
- offset
;
5159 if (clone_root
&& IS_ALIGNED(offset
+ len
, bs
)) {
5163 disk_byte
= btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
);
5164 data_offset
= btrfs_file_extent_offset(path
->nodes
[0], ei
);
5165 ret
= clone_range(sctx
, clone_root
, disk_byte
, data_offset
,
5168 ret
= send_extent_data(sctx
, offset
, len
);
5174 static int is_extent_unchanged(struct send_ctx
*sctx
,
5175 struct btrfs_path
*left_path
,
5176 struct btrfs_key
*ekey
)
5179 struct btrfs_key key
;
5180 struct btrfs_path
*path
= NULL
;
5181 struct extent_buffer
*eb
;
5183 struct btrfs_key found_key
;
5184 struct btrfs_file_extent_item
*ei
;
5189 u64 left_offset_fixed
;
5197 path
= alloc_path_for_send();
5201 eb
= left_path
->nodes
[0];
5202 slot
= left_path
->slots
[0];
5203 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5204 left_type
= btrfs_file_extent_type(eb
, ei
);
5206 if (left_type
!= BTRFS_FILE_EXTENT_REG
) {
5210 left_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5211 left_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5212 left_offset
= btrfs_file_extent_offset(eb
, ei
);
5213 left_gen
= btrfs_file_extent_generation(eb
, ei
);
5216 * Following comments will refer to these graphics. L is the left
5217 * extents which we are checking at the moment. 1-8 are the right
5218 * extents that we iterate.
5221 * |-1-|-2a-|-3-|-4-|-5-|-6-|
5224 * |--1--|-2b-|...(same as above)
5226 * Alternative situation. Happens on files where extents got split.
5228 * |-----------7-----------|-6-|
5230 * Alternative situation. Happens on files which got larger.
5233 * Nothing follows after 8.
5236 key
.objectid
= ekey
->objectid
;
5237 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5238 key
.offset
= ekey
->offset
;
5239 ret
= btrfs_search_slot_for_read(sctx
->parent_root
, &key
, path
, 0, 0);
5248 * Handle special case where the right side has no extents at all.
5250 eb
= path
->nodes
[0];
5251 slot
= path
->slots
[0];
5252 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5253 if (found_key
.objectid
!= key
.objectid
||
5254 found_key
.type
!= key
.type
) {
5255 /* If we're a hole then just pretend nothing changed */
5256 ret
= (left_disknr
) ? 0 : 1;
5261 * We're now on 2a, 2b or 7.
5264 while (key
.offset
< ekey
->offset
+ left_len
) {
5265 ei
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
5266 right_type
= btrfs_file_extent_type(eb
, ei
);
5267 if (right_type
!= BTRFS_FILE_EXTENT_REG
&&
5268 right_type
!= BTRFS_FILE_EXTENT_INLINE
) {
5273 if (right_type
== BTRFS_FILE_EXTENT_INLINE
) {
5274 right_len
= btrfs_file_extent_inline_len(eb
, slot
, ei
);
5275 right_len
= PAGE_ALIGN(right_len
);
5277 right_len
= btrfs_file_extent_num_bytes(eb
, ei
);
5281 * Are we at extent 8? If yes, we know the extent is changed.
5282 * This may only happen on the first iteration.
5284 if (found_key
.offset
+ right_len
<= ekey
->offset
) {
5285 /* If we're a hole just pretend nothing changed */
5286 ret
= (left_disknr
) ? 0 : 1;
5291 * We just wanted to see if when we have an inline extent, what
5292 * follows it is a regular extent (wanted to check the above
5293 * condition for inline extents too). This should normally not
5294 * happen but it's possible for example when we have an inline
5295 * compressed extent representing data with a size matching
5296 * the page size (currently the same as sector size).
5298 if (right_type
== BTRFS_FILE_EXTENT_INLINE
) {
5303 right_disknr
= btrfs_file_extent_disk_bytenr(eb
, ei
);
5304 right_offset
= btrfs_file_extent_offset(eb
, ei
);
5305 right_gen
= btrfs_file_extent_generation(eb
, ei
);
5307 left_offset_fixed
= left_offset
;
5308 if (key
.offset
< ekey
->offset
) {
5309 /* Fix the right offset for 2a and 7. */
5310 right_offset
+= ekey
->offset
- key
.offset
;
5312 /* Fix the left offset for all behind 2a and 2b */
5313 left_offset_fixed
+= key
.offset
- ekey
->offset
;
5317 * Check if we have the same extent.
5319 if (left_disknr
!= right_disknr
||
5320 left_offset_fixed
!= right_offset
||
5321 left_gen
!= right_gen
) {
5327 * Go to the next extent.
5329 ret
= btrfs_next_item(sctx
->parent_root
, path
);
5333 eb
= path
->nodes
[0];
5334 slot
= path
->slots
[0];
5335 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5337 if (ret
|| found_key
.objectid
!= key
.objectid
||
5338 found_key
.type
!= key
.type
) {
5339 key
.offset
+= right_len
;
5342 if (found_key
.offset
!= key
.offset
+ right_len
) {
5350 * We're now behind the left extent (treat as unchanged) or at the end
5351 * of the right side (treat as changed).
5353 if (key
.offset
>= ekey
->offset
+ left_len
)
5360 btrfs_free_path(path
);
5364 static int get_last_extent(struct send_ctx
*sctx
, u64 offset
)
5366 struct btrfs_path
*path
;
5367 struct btrfs_root
*root
= sctx
->send_root
;
5368 struct btrfs_file_extent_item
*fi
;
5369 struct btrfs_key key
;
5374 path
= alloc_path_for_send();
5378 sctx
->cur_inode_last_extent
= 0;
5380 key
.objectid
= sctx
->cur_ino
;
5381 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5382 key
.offset
= offset
;
5383 ret
= btrfs_search_slot_for_read(root
, &key
, path
, 0, 1);
5387 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
5388 if (key
.objectid
!= sctx
->cur_ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
5391 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5392 struct btrfs_file_extent_item
);
5393 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
5394 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5395 u64 size
= btrfs_file_extent_inline_len(path
->nodes
[0],
5396 path
->slots
[0], fi
);
5397 extent_end
= ALIGN(key
.offset
+ size
,
5398 sctx
->send_root
->fs_info
->sectorsize
);
5400 extent_end
= key
.offset
+
5401 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
5403 sctx
->cur_inode_last_extent
= extent_end
;
5405 btrfs_free_path(path
);
5409 static int range_is_hole_in_parent(struct send_ctx
*sctx
,
5413 struct btrfs_path
*path
;
5414 struct btrfs_key key
;
5415 struct btrfs_root
*root
= sctx
->parent_root
;
5416 u64 search_start
= start
;
5419 path
= alloc_path_for_send();
5423 key
.objectid
= sctx
->cur_ino
;
5424 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5425 key
.offset
= search_start
;
5426 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5429 if (ret
> 0 && path
->slots
[0] > 0)
5432 while (search_start
< end
) {
5433 struct extent_buffer
*leaf
= path
->nodes
[0];
5434 int slot
= path
->slots
[0];
5435 struct btrfs_file_extent_item
*fi
;
5438 if (slot
>= btrfs_header_nritems(leaf
)) {
5439 ret
= btrfs_next_leaf(root
, path
);
5447 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5448 if (key
.objectid
< sctx
->cur_ino
||
5449 key
.type
< BTRFS_EXTENT_DATA_KEY
)
5451 if (key
.objectid
> sctx
->cur_ino
||
5452 key
.type
> BTRFS_EXTENT_DATA_KEY
||
5456 fi
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
5457 if (btrfs_file_extent_type(leaf
, fi
) ==
5458 BTRFS_FILE_EXTENT_INLINE
) {
5459 u64 size
= btrfs_file_extent_inline_len(leaf
, slot
, fi
);
5461 extent_end
= ALIGN(key
.offset
+ size
,
5462 root
->fs_info
->sectorsize
);
5464 extent_end
= key
.offset
+
5465 btrfs_file_extent_num_bytes(leaf
, fi
);
5467 if (extent_end
<= start
)
5469 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0) {
5470 search_start
= extent_end
;
5480 btrfs_free_path(path
);
5484 static int maybe_send_hole(struct send_ctx
*sctx
, struct btrfs_path
*path
,
5485 struct btrfs_key
*key
)
5487 struct btrfs_file_extent_item
*fi
;
5492 if (sctx
->cur_ino
!= key
->objectid
|| !need_send_hole(sctx
))
5495 if (sctx
->cur_inode_last_extent
== (u64
)-1) {
5496 ret
= get_last_extent(sctx
, key
->offset
- 1);
5501 fi
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5502 struct btrfs_file_extent_item
);
5503 type
= btrfs_file_extent_type(path
->nodes
[0], fi
);
5504 if (type
== BTRFS_FILE_EXTENT_INLINE
) {
5505 u64 size
= btrfs_file_extent_inline_len(path
->nodes
[0],
5506 path
->slots
[0], fi
);
5507 extent_end
= ALIGN(key
->offset
+ size
,
5508 sctx
->send_root
->fs_info
->sectorsize
);
5510 extent_end
= key
->offset
+
5511 btrfs_file_extent_num_bytes(path
->nodes
[0], fi
);
5514 if (path
->slots
[0] == 0 &&
5515 sctx
->cur_inode_last_extent
< key
->offset
) {
5517 * We might have skipped entire leafs that contained only
5518 * file extent items for our current inode. These leafs have
5519 * a generation number smaller (older) than the one in the
5520 * current leaf and the leaf our last extent came from, and
5521 * are located between these 2 leafs.
5523 ret
= get_last_extent(sctx
, key
->offset
- 1);
5528 if (sctx
->cur_inode_last_extent
< key
->offset
) {
5529 ret
= range_is_hole_in_parent(sctx
,
5530 sctx
->cur_inode_last_extent
,
5535 ret
= send_hole(sctx
, key
->offset
);
5539 sctx
->cur_inode_last_extent
= extent_end
;
5543 static int process_extent(struct send_ctx
*sctx
,
5544 struct btrfs_path
*path
,
5545 struct btrfs_key
*key
)
5547 struct clone_root
*found_clone
= NULL
;
5550 if (S_ISLNK(sctx
->cur_inode_mode
))
5553 if (sctx
->parent_root
&& !sctx
->cur_inode_new
) {
5554 ret
= is_extent_unchanged(sctx
, path
, key
);
5562 struct btrfs_file_extent_item
*ei
;
5565 ei
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
5566 struct btrfs_file_extent_item
);
5567 type
= btrfs_file_extent_type(path
->nodes
[0], ei
);
5568 if (type
== BTRFS_FILE_EXTENT_PREALLOC
||
5569 type
== BTRFS_FILE_EXTENT_REG
) {
5571 * The send spec does not have a prealloc command yet,
5572 * so just leave a hole for prealloc'ed extents until
5573 * we have enough commands queued up to justify rev'ing
5576 if (type
== BTRFS_FILE_EXTENT_PREALLOC
) {
5581 /* Have a hole, just skip it. */
5582 if (btrfs_file_extent_disk_bytenr(path
->nodes
[0], ei
) == 0) {
5589 ret
= find_extent_clone(sctx
, path
, key
->objectid
, key
->offset
,
5590 sctx
->cur_inode_size
, &found_clone
);
5591 if (ret
!= -ENOENT
&& ret
< 0)
5594 ret
= send_write_or_clone(sctx
, path
, key
, found_clone
);
5598 ret
= maybe_send_hole(sctx
, path
, key
);
5603 static int process_all_extents(struct send_ctx
*sctx
)
5606 struct btrfs_root
*root
;
5607 struct btrfs_path
*path
;
5608 struct btrfs_key key
;
5609 struct btrfs_key found_key
;
5610 struct extent_buffer
*eb
;
5613 root
= sctx
->send_root
;
5614 path
= alloc_path_for_send();
5618 key
.objectid
= sctx
->cmp_key
->objectid
;
5619 key
.type
= BTRFS_EXTENT_DATA_KEY
;
5621 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5626 eb
= path
->nodes
[0];
5627 slot
= path
->slots
[0];
5629 if (slot
>= btrfs_header_nritems(eb
)) {
5630 ret
= btrfs_next_leaf(root
, path
);
5633 } else if (ret
> 0) {
5640 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
5642 if (found_key
.objectid
!= key
.objectid
||
5643 found_key
.type
!= key
.type
) {
5648 ret
= process_extent(sctx
, path
, &found_key
);
5656 btrfs_free_path(path
);
5660 static int process_recorded_refs_if_needed(struct send_ctx
*sctx
, int at_end
,
5662 int *refs_processed
)
5666 if (sctx
->cur_ino
== 0)
5668 if (!at_end
&& sctx
->cur_ino
== sctx
->cmp_key
->objectid
&&
5669 sctx
->cmp_key
->type
<= BTRFS_INODE_EXTREF_KEY
)
5671 if (list_empty(&sctx
->new_refs
) && list_empty(&sctx
->deleted_refs
))
5674 ret
= process_recorded_refs(sctx
, pending_move
);
5678 *refs_processed
= 1;
5683 static int finish_inode_if_needed(struct send_ctx
*sctx
, int at_end
)
5694 int pending_move
= 0;
5695 int refs_processed
= 0;
5697 ret
= process_recorded_refs_if_needed(sctx
, at_end
, &pending_move
,
5703 * We have processed the refs and thus need to advance send_progress.
5704 * Now, calls to get_cur_xxx will take the updated refs of the current
5705 * inode into account.
5707 * On the other hand, if our current inode is a directory and couldn't
5708 * be moved/renamed because its parent was renamed/moved too and it has
5709 * a higher inode number, we can only move/rename our current inode
5710 * after we moved/renamed its parent. Therefore in this case operate on
5711 * the old path (pre move/rename) of our current inode, and the
5712 * move/rename will be performed later.
5714 if (refs_processed
&& !pending_move
)
5715 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5717 if (sctx
->cur_ino
== 0 || sctx
->cur_inode_deleted
)
5719 if (!at_end
&& sctx
->cmp_key
->objectid
== sctx
->cur_ino
)
5722 ret
= get_inode_info(sctx
->send_root
, sctx
->cur_ino
, NULL
, NULL
,
5723 &left_mode
, &left_uid
, &left_gid
, NULL
);
5727 if (!sctx
->parent_root
|| sctx
->cur_inode_new
) {
5729 if (!S_ISLNK(sctx
->cur_inode_mode
))
5732 ret
= get_inode_info(sctx
->parent_root
, sctx
->cur_ino
,
5733 NULL
, NULL
, &right_mode
, &right_uid
,
5738 if (left_uid
!= right_uid
|| left_gid
!= right_gid
)
5740 if (!S_ISLNK(sctx
->cur_inode_mode
) && left_mode
!= right_mode
)
5744 if (S_ISREG(sctx
->cur_inode_mode
)) {
5745 if (need_send_hole(sctx
)) {
5746 if (sctx
->cur_inode_last_extent
== (u64
)-1 ||
5747 sctx
->cur_inode_last_extent
<
5748 sctx
->cur_inode_size
) {
5749 ret
= get_last_extent(sctx
, (u64
)-1);
5753 if (sctx
->cur_inode_last_extent
<
5754 sctx
->cur_inode_size
) {
5755 ret
= send_hole(sctx
, sctx
->cur_inode_size
);
5760 ret
= send_truncate(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5761 sctx
->cur_inode_size
);
5767 ret
= send_chown(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5768 left_uid
, left_gid
);
5773 ret
= send_chmod(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
,
5780 * If other directory inodes depended on our current directory
5781 * inode's move/rename, now do their move/rename operations.
5783 if (!is_waiting_for_move(sctx
, sctx
->cur_ino
)) {
5784 ret
= apply_children_dir_moves(sctx
);
5788 * Need to send that every time, no matter if it actually
5789 * changed between the two trees as we have done changes to
5790 * the inode before. If our inode is a directory and it's
5791 * waiting to be moved/renamed, we will send its utimes when
5792 * it's moved/renamed, therefore we don't need to do it here.
5794 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5795 ret
= send_utimes(sctx
, sctx
->cur_ino
, sctx
->cur_inode_gen
);
5804 static int changed_inode(struct send_ctx
*sctx
,
5805 enum btrfs_compare_tree_result result
)
5808 struct btrfs_key
*key
= sctx
->cmp_key
;
5809 struct btrfs_inode_item
*left_ii
= NULL
;
5810 struct btrfs_inode_item
*right_ii
= NULL
;
5814 sctx
->cur_ino
= key
->objectid
;
5815 sctx
->cur_inode_new_gen
= 0;
5816 sctx
->cur_inode_last_extent
= (u64
)-1;
5819 * Set send_progress to current inode. This will tell all get_cur_xxx
5820 * functions that the current inode's refs are not updated yet. Later,
5821 * when process_recorded_refs is finished, it is set to cur_ino + 1.
5823 sctx
->send_progress
= sctx
->cur_ino
;
5825 if (result
== BTRFS_COMPARE_TREE_NEW
||
5826 result
== BTRFS_COMPARE_TREE_CHANGED
) {
5827 left_ii
= btrfs_item_ptr(sctx
->left_path
->nodes
[0],
5828 sctx
->left_path
->slots
[0],
5829 struct btrfs_inode_item
);
5830 left_gen
= btrfs_inode_generation(sctx
->left_path
->nodes
[0],
5833 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
5834 sctx
->right_path
->slots
[0],
5835 struct btrfs_inode_item
);
5836 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
5839 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5840 right_ii
= btrfs_item_ptr(sctx
->right_path
->nodes
[0],
5841 sctx
->right_path
->slots
[0],
5842 struct btrfs_inode_item
);
5844 right_gen
= btrfs_inode_generation(sctx
->right_path
->nodes
[0],
5848 * The cur_ino = root dir case is special here. We can't treat
5849 * the inode as deleted+reused because it would generate a
5850 * stream that tries to delete/mkdir the root dir.
5852 if (left_gen
!= right_gen
&&
5853 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
5854 sctx
->cur_inode_new_gen
= 1;
5857 if (result
== BTRFS_COMPARE_TREE_NEW
) {
5858 sctx
->cur_inode_gen
= left_gen
;
5859 sctx
->cur_inode_new
= 1;
5860 sctx
->cur_inode_deleted
= 0;
5861 sctx
->cur_inode_size
= btrfs_inode_size(
5862 sctx
->left_path
->nodes
[0], left_ii
);
5863 sctx
->cur_inode_mode
= btrfs_inode_mode(
5864 sctx
->left_path
->nodes
[0], left_ii
);
5865 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
5866 sctx
->left_path
->nodes
[0], left_ii
);
5867 if (sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
)
5868 ret
= send_create_inode_if_needed(sctx
);
5869 } else if (result
== BTRFS_COMPARE_TREE_DELETED
) {
5870 sctx
->cur_inode_gen
= right_gen
;
5871 sctx
->cur_inode_new
= 0;
5872 sctx
->cur_inode_deleted
= 1;
5873 sctx
->cur_inode_size
= btrfs_inode_size(
5874 sctx
->right_path
->nodes
[0], right_ii
);
5875 sctx
->cur_inode_mode
= btrfs_inode_mode(
5876 sctx
->right_path
->nodes
[0], right_ii
);
5877 } else if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
5879 * We need to do some special handling in case the inode was
5880 * reported as changed with a changed generation number. This
5881 * means that the original inode was deleted and new inode
5882 * reused the same inum. So we have to treat the old inode as
5883 * deleted and the new one as new.
5885 if (sctx
->cur_inode_new_gen
) {
5887 * First, process the inode as if it was deleted.
5889 sctx
->cur_inode_gen
= right_gen
;
5890 sctx
->cur_inode_new
= 0;
5891 sctx
->cur_inode_deleted
= 1;
5892 sctx
->cur_inode_size
= btrfs_inode_size(
5893 sctx
->right_path
->nodes
[0], right_ii
);
5894 sctx
->cur_inode_mode
= btrfs_inode_mode(
5895 sctx
->right_path
->nodes
[0], right_ii
);
5896 ret
= process_all_refs(sctx
,
5897 BTRFS_COMPARE_TREE_DELETED
);
5902 * Now process the inode as if it was new.
5904 sctx
->cur_inode_gen
= left_gen
;
5905 sctx
->cur_inode_new
= 1;
5906 sctx
->cur_inode_deleted
= 0;
5907 sctx
->cur_inode_size
= btrfs_inode_size(
5908 sctx
->left_path
->nodes
[0], left_ii
);
5909 sctx
->cur_inode_mode
= btrfs_inode_mode(
5910 sctx
->left_path
->nodes
[0], left_ii
);
5911 sctx
->cur_inode_rdev
= btrfs_inode_rdev(
5912 sctx
->left_path
->nodes
[0], left_ii
);
5913 ret
= send_create_inode_if_needed(sctx
);
5917 ret
= process_all_refs(sctx
, BTRFS_COMPARE_TREE_NEW
);
5921 * Advance send_progress now as we did not get into
5922 * process_recorded_refs_if_needed in the new_gen case.
5924 sctx
->send_progress
= sctx
->cur_ino
+ 1;
5927 * Now process all extents and xattrs of the inode as if
5928 * they were all new.
5930 ret
= process_all_extents(sctx
);
5933 ret
= process_all_new_xattrs(sctx
);
5937 sctx
->cur_inode_gen
= left_gen
;
5938 sctx
->cur_inode_new
= 0;
5939 sctx
->cur_inode_new_gen
= 0;
5940 sctx
->cur_inode_deleted
= 0;
5941 sctx
->cur_inode_size
= btrfs_inode_size(
5942 sctx
->left_path
->nodes
[0], left_ii
);
5943 sctx
->cur_inode_mode
= btrfs_inode_mode(
5944 sctx
->left_path
->nodes
[0], left_ii
);
5953 * We have to process new refs before deleted refs, but compare_trees gives us
5954 * the new and deleted refs mixed. To fix this, we record the new/deleted refs
5955 * first and later process them in process_recorded_refs.
5956 * For the cur_inode_new_gen case, we skip recording completely because
5957 * changed_inode did already initiate processing of refs. The reason for this is
5958 * that in this case, compare_tree actually compares the refs of 2 different
5959 * inodes. To fix this, process_all_refs is used in changed_inode to handle all
5960 * refs of the right tree as deleted and all refs of the left tree as new.
5962 static int changed_ref(struct send_ctx
*sctx
,
5963 enum btrfs_compare_tree_result result
)
5967 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
5968 inconsistent_snapshot_error(sctx
, result
, "reference");
5972 if (!sctx
->cur_inode_new_gen
&&
5973 sctx
->cur_ino
!= BTRFS_FIRST_FREE_OBJECTID
) {
5974 if (result
== BTRFS_COMPARE_TREE_NEW
)
5975 ret
= record_new_ref(sctx
);
5976 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
5977 ret
= record_deleted_ref(sctx
);
5978 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
5979 ret
= record_changed_ref(sctx
);
5986 * Process new/deleted/changed xattrs. We skip processing in the
5987 * cur_inode_new_gen case because changed_inode did already initiate processing
5988 * of xattrs. The reason is the same as in changed_ref
5990 static int changed_xattr(struct send_ctx
*sctx
,
5991 enum btrfs_compare_tree_result result
)
5995 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
5996 inconsistent_snapshot_error(sctx
, result
, "xattr");
6000 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
6001 if (result
== BTRFS_COMPARE_TREE_NEW
)
6002 ret
= process_new_xattr(sctx
);
6003 else if (result
== BTRFS_COMPARE_TREE_DELETED
)
6004 ret
= process_deleted_xattr(sctx
);
6005 else if (result
== BTRFS_COMPARE_TREE_CHANGED
)
6006 ret
= process_changed_xattr(sctx
);
6013 * Process new/deleted/changed extents. We skip processing in the
6014 * cur_inode_new_gen case because changed_inode did already initiate processing
6015 * of extents. The reason is the same as in changed_ref
6017 static int changed_extent(struct send_ctx
*sctx
,
6018 enum btrfs_compare_tree_result result
)
6022 if (sctx
->cur_ino
!= sctx
->cmp_key
->objectid
) {
6024 if (result
== BTRFS_COMPARE_TREE_CHANGED
) {
6025 struct extent_buffer
*leaf_l
;
6026 struct extent_buffer
*leaf_r
;
6027 struct btrfs_file_extent_item
*ei_l
;
6028 struct btrfs_file_extent_item
*ei_r
;
6030 leaf_l
= sctx
->left_path
->nodes
[0];
6031 leaf_r
= sctx
->right_path
->nodes
[0];
6032 ei_l
= btrfs_item_ptr(leaf_l
,
6033 sctx
->left_path
->slots
[0],
6034 struct btrfs_file_extent_item
);
6035 ei_r
= btrfs_item_ptr(leaf_r
,
6036 sctx
->right_path
->slots
[0],
6037 struct btrfs_file_extent_item
);
6040 * We may have found an extent item that has changed
6041 * only its disk_bytenr field and the corresponding
6042 * inode item was not updated. This case happens due to
6043 * very specific timings during relocation when a leaf
6044 * that contains file extent items is COWed while
6045 * relocation is ongoing and its in the stage where it
6046 * updates data pointers. So when this happens we can
6047 * safely ignore it since we know it's the same extent,
6048 * but just at different logical and physical locations
6049 * (when an extent is fully replaced with a new one, we
6050 * know the generation number must have changed too,
6051 * since snapshot creation implies committing the current
6052 * transaction, and the inode item must have been updated
6054 * This replacement of the disk_bytenr happens at
6055 * relocation.c:replace_file_extents() through
6056 * relocation.c:btrfs_reloc_cow_block().
6058 if (btrfs_file_extent_generation(leaf_l
, ei_l
) ==
6059 btrfs_file_extent_generation(leaf_r
, ei_r
) &&
6060 btrfs_file_extent_ram_bytes(leaf_l
, ei_l
) ==
6061 btrfs_file_extent_ram_bytes(leaf_r
, ei_r
) &&
6062 btrfs_file_extent_compression(leaf_l
, ei_l
) ==
6063 btrfs_file_extent_compression(leaf_r
, ei_r
) &&
6064 btrfs_file_extent_encryption(leaf_l
, ei_l
) ==
6065 btrfs_file_extent_encryption(leaf_r
, ei_r
) &&
6066 btrfs_file_extent_other_encoding(leaf_l
, ei_l
) ==
6067 btrfs_file_extent_other_encoding(leaf_r
, ei_r
) &&
6068 btrfs_file_extent_type(leaf_l
, ei_l
) ==
6069 btrfs_file_extent_type(leaf_r
, ei_r
) &&
6070 btrfs_file_extent_disk_bytenr(leaf_l
, ei_l
) !=
6071 btrfs_file_extent_disk_bytenr(leaf_r
, ei_r
) &&
6072 btrfs_file_extent_disk_num_bytes(leaf_l
, ei_l
) ==
6073 btrfs_file_extent_disk_num_bytes(leaf_r
, ei_r
) &&
6074 btrfs_file_extent_offset(leaf_l
, ei_l
) ==
6075 btrfs_file_extent_offset(leaf_r
, ei_r
) &&
6076 btrfs_file_extent_num_bytes(leaf_l
, ei_l
) ==
6077 btrfs_file_extent_num_bytes(leaf_r
, ei_r
))
6081 inconsistent_snapshot_error(sctx
, result
, "extent");
6085 if (!sctx
->cur_inode_new_gen
&& !sctx
->cur_inode_deleted
) {
6086 if (result
!= BTRFS_COMPARE_TREE_DELETED
)
6087 ret
= process_extent(sctx
, sctx
->left_path
,
6094 static int dir_changed(struct send_ctx
*sctx
, u64 dir
)
6096 u64 orig_gen
, new_gen
;
6099 ret
= get_inode_info(sctx
->send_root
, dir
, NULL
, &new_gen
, NULL
, NULL
,
6104 ret
= get_inode_info(sctx
->parent_root
, dir
, NULL
, &orig_gen
, NULL
,
6109 return (orig_gen
!= new_gen
) ? 1 : 0;
6112 static int compare_refs(struct send_ctx
*sctx
, struct btrfs_path
*path
,
6113 struct btrfs_key
*key
)
6115 struct btrfs_inode_extref
*extref
;
6116 struct extent_buffer
*leaf
;
6117 u64 dirid
= 0, last_dirid
= 0;
6124 /* Easy case, just check this one dirid */
6125 if (key
->type
== BTRFS_INODE_REF_KEY
) {
6126 dirid
= key
->offset
;
6128 ret
= dir_changed(sctx
, dirid
);
6132 leaf
= path
->nodes
[0];
6133 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
6134 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
6135 while (cur_offset
< item_size
) {
6136 extref
= (struct btrfs_inode_extref
*)(ptr
+
6138 dirid
= btrfs_inode_extref_parent(leaf
, extref
);
6139 ref_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
6140 cur_offset
+= ref_name_len
+ sizeof(*extref
);
6141 if (dirid
== last_dirid
)
6143 ret
= dir_changed(sctx
, dirid
);
6153 * Updates compare related fields in sctx and simply forwards to the actual
6154 * changed_xxx functions.
6156 static int changed_cb(struct btrfs_root
*left_root
,
6157 struct btrfs_root
*right_root
,
6158 struct btrfs_path
*left_path
,
6159 struct btrfs_path
*right_path
,
6160 struct btrfs_key
*key
,
6161 enum btrfs_compare_tree_result result
,
6165 struct send_ctx
*sctx
= ctx
;
6167 if (result
== BTRFS_COMPARE_TREE_SAME
) {
6168 if (key
->type
== BTRFS_INODE_REF_KEY
||
6169 key
->type
== BTRFS_INODE_EXTREF_KEY
) {
6170 ret
= compare_refs(sctx
, left_path
, key
);
6175 } else if (key
->type
== BTRFS_EXTENT_DATA_KEY
) {
6176 return maybe_send_hole(sctx
, left_path
, key
);
6180 result
= BTRFS_COMPARE_TREE_CHANGED
;
6184 sctx
->left_path
= left_path
;
6185 sctx
->right_path
= right_path
;
6186 sctx
->cmp_key
= key
;
6188 ret
= finish_inode_if_needed(sctx
, 0);
6192 /* Ignore non-FS objects */
6193 if (key
->objectid
== BTRFS_FREE_INO_OBJECTID
||
6194 key
->objectid
== BTRFS_FREE_SPACE_OBJECTID
)
6197 if (key
->type
== BTRFS_INODE_ITEM_KEY
)
6198 ret
= changed_inode(sctx
, result
);
6199 else if (key
->type
== BTRFS_INODE_REF_KEY
||
6200 key
->type
== BTRFS_INODE_EXTREF_KEY
)
6201 ret
= changed_ref(sctx
, result
);
6202 else if (key
->type
== BTRFS_XATTR_ITEM_KEY
)
6203 ret
= changed_xattr(sctx
, result
);
6204 else if (key
->type
== BTRFS_EXTENT_DATA_KEY
)
6205 ret
= changed_extent(sctx
, result
);
6211 static int full_send_tree(struct send_ctx
*sctx
)
6214 struct btrfs_root
*send_root
= sctx
->send_root
;
6215 struct btrfs_key key
;
6216 struct btrfs_key found_key
;
6217 struct btrfs_path
*path
;
6218 struct extent_buffer
*eb
;
6221 path
= alloc_path_for_send();
6225 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
6226 key
.type
= BTRFS_INODE_ITEM_KEY
;
6229 ret
= btrfs_search_slot_for_read(send_root
, &key
, path
, 1, 0);
6236 eb
= path
->nodes
[0];
6237 slot
= path
->slots
[0];
6238 btrfs_item_key_to_cpu(eb
, &found_key
, slot
);
6240 ret
= changed_cb(send_root
, NULL
, path
, NULL
,
6241 &found_key
, BTRFS_COMPARE_TREE_NEW
, sctx
);
6245 key
.objectid
= found_key
.objectid
;
6246 key
.type
= found_key
.type
;
6247 key
.offset
= found_key
.offset
+ 1;
6249 ret
= btrfs_next_item(send_root
, path
);
6259 ret
= finish_inode_if_needed(sctx
, 1);
6262 btrfs_free_path(path
);
6266 static int send_subvol(struct send_ctx
*sctx
)
6270 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_STREAM_HEADER
)) {
6271 ret
= send_header(sctx
);
6276 ret
= send_subvol_begin(sctx
);
6280 if (sctx
->parent_root
) {
6281 ret
= btrfs_compare_trees(sctx
->send_root
, sctx
->parent_root
,
6285 ret
= finish_inode_if_needed(sctx
, 1);
6289 ret
= full_send_tree(sctx
);
6295 free_recorded_refs(sctx
);
6300 * If orphan cleanup did remove any orphans from a root, it means the tree
6301 * was modified and therefore the commit root is not the same as the current
6302 * root anymore. This is a problem, because send uses the commit root and
6303 * therefore can see inode items that don't exist in the current root anymore,
6304 * and for example make calls to btrfs_iget, which will do tree lookups based
6305 * on the current root and not on the commit root. Those lookups will fail,
6306 * returning a -ESTALE error, and making send fail with that error. So make
6307 * sure a send does not see any orphans we have just removed, and that it will
6308 * see the same inodes regardless of whether a transaction commit happened
6309 * before it started (meaning that the commit root will be the same as the
6310 * current root) or not.
6312 static int ensure_commit_roots_uptodate(struct send_ctx
*sctx
)
6315 struct btrfs_trans_handle
*trans
= NULL
;
6318 if (sctx
->parent_root
&&
6319 sctx
->parent_root
->node
!= sctx
->parent_root
->commit_root
)
6322 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
6323 if (sctx
->clone_roots
[i
].root
->node
!=
6324 sctx
->clone_roots
[i
].root
->commit_root
)
6328 return btrfs_end_transaction(trans
);
6333 /* Use any root, all fs roots will get their commit roots updated. */
6335 trans
= btrfs_join_transaction(sctx
->send_root
);
6337 return PTR_ERR(trans
);
6341 return btrfs_commit_transaction(trans
);
6344 static void btrfs_root_dec_send_in_progress(struct btrfs_root
* root
)
6346 spin_lock(&root
->root_item_lock
);
6347 root
->send_in_progress
--;
6349 * Not much left to do, we don't know why it's unbalanced and
6350 * can't blindly reset it to 0.
6352 if (root
->send_in_progress
< 0)
6353 btrfs_err(root
->fs_info
,
6354 "send_in_progres unbalanced %d root %llu",
6355 root
->send_in_progress
, root
->root_key
.objectid
);
6356 spin_unlock(&root
->root_item_lock
);
6359 long btrfs_ioctl_send(struct file
*mnt_file
, void __user
*arg_
)
6362 struct btrfs_root
*send_root
= BTRFS_I(file_inode(mnt_file
))->root
;
6363 struct btrfs_fs_info
*fs_info
= send_root
->fs_info
;
6364 struct btrfs_root
*clone_root
;
6365 struct btrfs_ioctl_send_args
*arg
= NULL
;
6366 struct btrfs_key key
;
6367 struct send_ctx
*sctx
= NULL
;
6369 u64
*clone_sources_tmp
= NULL
;
6370 int clone_sources_to_rollback
= 0;
6371 unsigned alloc_size
;
6372 int sort_clone_roots
= 0;
6375 if (!capable(CAP_SYS_ADMIN
))
6379 * The subvolume must remain read-only during send, protect against
6380 * making it RW. This also protects against deletion.
6382 spin_lock(&send_root
->root_item_lock
);
6383 send_root
->send_in_progress
++;
6384 spin_unlock(&send_root
->root_item_lock
);
6387 * This is done when we lookup the root, it should already be complete
6388 * by the time we get here.
6390 WARN_ON(send_root
->orphan_cleanup_state
!= ORPHAN_CLEANUP_DONE
);
6393 * Userspace tools do the checks and warn the user if it's
6396 if (!btrfs_root_readonly(send_root
)) {
6401 arg
= memdup_user(arg_
, sizeof(*arg
));
6409 * Check that we don't overflow at later allocations, we request
6410 * clone_sources_count + 1 items, and compare to unsigned long inside
6413 if (arg
->clone_sources_count
>
6414 ULONG_MAX
/ sizeof(struct clone_root
) - 1) {
6419 if (!access_ok(VERIFY_READ
, arg
->clone_sources
,
6420 sizeof(*arg
->clone_sources
) *
6421 arg
->clone_sources_count
)) {
6426 if (arg
->flags
& ~BTRFS_SEND_FLAG_MASK
) {
6431 sctx
= kzalloc(sizeof(struct send_ctx
), GFP_KERNEL
);
6437 INIT_LIST_HEAD(&sctx
->new_refs
);
6438 INIT_LIST_HEAD(&sctx
->deleted_refs
);
6439 INIT_RADIX_TREE(&sctx
->name_cache
, GFP_KERNEL
);
6440 INIT_LIST_HEAD(&sctx
->name_cache_list
);
6442 sctx
->flags
= arg
->flags
;
6444 sctx
->send_filp
= fget(arg
->send_fd
);
6445 if (!sctx
->send_filp
) {
6450 sctx
->send_root
= send_root
;
6452 * Unlikely but possible, if the subvolume is marked for deletion but
6453 * is slow to remove the directory entry, send can still be started
6455 if (btrfs_root_dead(sctx
->send_root
)) {
6460 sctx
->clone_roots_cnt
= arg
->clone_sources_count
;
6462 sctx
->send_max_size
= BTRFS_SEND_BUF_SIZE
;
6463 sctx
->send_buf
= kvmalloc(sctx
->send_max_size
, GFP_KERNEL
);
6464 if (!sctx
->send_buf
) {
6469 sctx
->read_buf
= kvmalloc(BTRFS_SEND_READ_SIZE
, GFP_KERNEL
);
6470 if (!sctx
->read_buf
) {
6475 sctx
->pending_dir_moves
= RB_ROOT
;
6476 sctx
->waiting_dir_moves
= RB_ROOT
;
6477 sctx
->orphan_dirs
= RB_ROOT
;
6479 alloc_size
= sizeof(struct clone_root
) * (arg
->clone_sources_count
+ 1);
6481 sctx
->clone_roots
= kzalloc(alloc_size
, GFP_KERNEL
);
6482 if (!sctx
->clone_roots
) {
6487 alloc_size
= arg
->clone_sources_count
* sizeof(*arg
->clone_sources
);
6489 if (arg
->clone_sources_count
) {
6490 clone_sources_tmp
= kvmalloc(alloc_size
, GFP_KERNEL
);
6491 if (!clone_sources_tmp
) {
6496 ret
= copy_from_user(clone_sources_tmp
, arg
->clone_sources
,
6503 for (i
= 0; i
< arg
->clone_sources_count
; i
++) {
6504 key
.objectid
= clone_sources_tmp
[i
];
6505 key
.type
= BTRFS_ROOT_ITEM_KEY
;
6506 key
.offset
= (u64
)-1;
6508 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
6510 clone_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
6511 if (IS_ERR(clone_root
)) {
6512 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6513 ret
= PTR_ERR(clone_root
);
6516 spin_lock(&clone_root
->root_item_lock
);
6517 if (!btrfs_root_readonly(clone_root
) ||
6518 btrfs_root_dead(clone_root
)) {
6519 spin_unlock(&clone_root
->root_item_lock
);
6520 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6524 clone_root
->send_in_progress
++;
6525 spin_unlock(&clone_root
->root_item_lock
);
6526 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6528 sctx
->clone_roots
[i
].root
= clone_root
;
6529 clone_sources_to_rollback
= i
+ 1;
6531 kvfree(clone_sources_tmp
);
6532 clone_sources_tmp
= NULL
;
6535 if (arg
->parent_root
) {
6536 key
.objectid
= arg
->parent_root
;
6537 key
.type
= BTRFS_ROOT_ITEM_KEY
;
6538 key
.offset
= (u64
)-1;
6540 index
= srcu_read_lock(&fs_info
->subvol_srcu
);
6542 sctx
->parent_root
= btrfs_read_fs_root_no_name(fs_info
, &key
);
6543 if (IS_ERR(sctx
->parent_root
)) {
6544 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6545 ret
= PTR_ERR(sctx
->parent_root
);
6549 spin_lock(&sctx
->parent_root
->root_item_lock
);
6550 sctx
->parent_root
->send_in_progress
++;
6551 if (!btrfs_root_readonly(sctx
->parent_root
) ||
6552 btrfs_root_dead(sctx
->parent_root
)) {
6553 spin_unlock(&sctx
->parent_root
->root_item_lock
);
6554 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6558 spin_unlock(&sctx
->parent_root
->root_item_lock
);
6560 srcu_read_unlock(&fs_info
->subvol_srcu
, index
);
6564 * Clones from send_root are allowed, but only if the clone source
6565 * is behind the current send position. This is checked while searching
6566 * for possible clone sources.
6568 sctx
->clone_roots
[sctx
->clone_roots_cnt
++].root
= sctx
->send_root
;
6570 /* We do a bsearch later */
6571 sort(sctx
->clone_roots
, sctx
->clone_roots_cnt
,
6572 sizeof(*sctx
->clone_roots
), __clone_root_cmp_sort
,
6574 sort_clone_roots
= 1;
6576 ret
= ensure_commit_roots_uptodate(sctx
);
6580 current
->journal_info
= BTRFS_SEND_TRANS_STUB
;
6581 ret
= send_subvol(sctx
);
6582 current
->journal_info
= NULL
;
6586 if (!(sctx
->flags
& BTRFS_SEND_FLAG_OMIT_END_CMD
)) {
6587 ret
= begin_cmd(sctx
, BTRFS_SEND_C_END
);
6590 ret
= send_cmd(sctx
);
6596 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
));
6597 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->pending_dir_moves
)) {
6599 struct pending_dir_move
*pm
;
6601 n
= rb_first(&sctx
->pending_dir_moves
);
6602 pm
= rb_entry(n
, struct pending_dir_move
, node
);
6603 while (!list_empty(&pm
->list
)) {
6604 struct pending_dir_move
*pm2
;
6606 pm2
= list_first_entry(&pm
->list
,
6607 struct pending_dir_move
, list
);
6608 free_pending_move(sctx
, pm2
);
6610 free_pending_move(sctx
, pm
);
6613 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
));
6614 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->waiting_dir_moves
)) {
6616 struct waiting_dir_move
*dm
;
6618 n
= rb_first(&sctx
->waiting_dir_moves
);
6619 dm
= rb_entry(n
, struct waiting_dir_move
, node
);
6620 rb_erase(&dm
->node
, &sctx
->waiting_dir_moves
);
6624 WARN_ON(sctx
&& !ret
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
));
6625 while (sctx
&& !RB_EMPTY_ROOT(&sctx
->orphan_dirs
)) {
6627 struct orphan_dir_info
*odi
;
6629 n
= rb_first(&sctx
->orphan_dirs
);
6630 odi
= rb_entry(n
, struct orphan_dir_info
, node
);
6631 free_orphan_dir_info(sctx
, odi
);
6634 if (sort_clone_roots
) {
6635 for (i
= 0; i
< sctx
->clone_roots_cnt
; i
++)
6636 btrfs_root_dec_send_in_progress(
6637 sctx
->clone_roots
[i
].root
);
6639 for (i
= 0; sctx
&& i
< clone_sources_to_rollback
; i
++)
6640 btrfs_root_dec_send_in_progress(
6641 sctx
->clone_roots
[i
].root
);
6643 btrfs_root_dec_send_in_progress(send_root
);
6645 if (sctx
&& !IS_ERR_OR_NULL(sctx
->parent_root
))
6646 btrfs_root_dec_send_in_progress(sctx
->parent_root
);
6649 kvfree(clone_sources_tmp
);
6652 if (sctx
->send_filp
)
6653 fput(sctx
->send_filp
);
6655 kvfree(sctx
->clone_roots
);
6656 kvfree(sctx
->send_buf
);
6657 kvfree(sctx
->read_buf
);
6659 name_cache_free(sctx
);