2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
12 * This handles all read/write requests to block devices
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/backing-dev.h>
17 #include <linux/bio.h>
18 #include <linux/blkdev.h>
19 #include <linux/blk-mq.h>
20 #include <linux/highmem.h>
22 #include <linux/kernel_stat.h>
23 #include <linux/string.h>
24 #include <linux/init.h>
25 #include <linux/completion.h>
26 #include <linux/slab.h>
27 #include <linux/swap.h>
28 #include <linux/writeback.h>
29 #include <linux/task_io_accounting_ops.h>
30 #include <linux/fault-inject.h>
31 #include <linux/list_sort.h>
32 #include <linux/delay.h>
33 #include <linux/ratelimit.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/blk-cgroup.h>
36 #include <linux/debugfs.h>
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/block.h>
43 #include "blk-mq-sched.h"
46 #ifdef CONFIG_DEBUG_FS
47 struct dentry
*blk_debugfs_root
;
50 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap
);
51 EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap
);
52 EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete
);
53 EXPORT_TRACEPOINT_SYMBOL_GPL(block_split
);
54 EXPORT_TRACEPOINT_SYMBOL_GPL(block_unplug
);
56 DEFINE_IDA(blk_queue_ida
);
59 * For the allocated request tables
61 struct kmem_cache
*request_cachep
;
64 * For queue allocation
66 struct kmem_cache
*blk_requestq_cachep
;
69 * Controlling structure to kblockd
71 static struct workqueue_struct
*kblockd_workqueue
;
73 static void blk_clear_congested(struct request_list
*rl
, int sync
)
75 #ifdef CONFIG_CGROUP_WRITEBACK
76 clear_wb_congested(rl
->blkg
->wb_congested
, sync
);
79 * If !CGROUP_WRITEBACK, all blkg's map to bdi->wb and we shouldn't
80 * flip its congestion state for events on other blkcgs.
82 if (rl
== &rl
->q
->root_rl
)
83 clear_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
87 static void blk_set_congested(struct request_list
*rl
, int sync
)
89 #ifdef CONFIG_CGROUP_WRITEBACK
90 set_wb_congested(rl
->blkg
->wb_congested
, sync
);
92 /* see blk_clear_congested() */
93 if (rl
== &rl
->q
->root_rl
)
94 set_wb_congested(rl
->q
->backing_dev_info
->wb
.congested
, sync
);
98 void blk_queue_congestion_threshold(struct request_queue
*q
)
102 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) + 1;
103 if (nr
> q
->nr_requests
)
105 q
->nr_congestion_on
= nr
;
107 nr
= q
->nr_requests
- (q
->nr_requests
/ 8) - (q
->nr_requests
/ 16) - 1;
110 q
->nr_congestion_off
= nr
;
113 void blk_rq_init(struct request_queue
*q
, struct request
*rq
)
115 memset(rq
, 0, sizeof(*rq
));
117 INIT_LIST_HEAD(&rq
->queuelist
);
118 INIT_LIST_HEAD(&rq
->timeout_list
);
121 rq
->__sector
= (sector_t
) -1;
122 INIT_HLIST_NODE(&rq
->hash
);
123 RB_CLEAR_NODE(&rq
->rb_node
);
125 rq
->internal_tag
= -1;
126 rq
->start_time
= jiffies
;
127 set_start_time_ns(rq
);
130 EXPORT_SYMBOL(blk_rq_init
);
132 static const struct {
136 [BLK_STS_OK
] = { 0, "" },
137 [BLK_STS_NOTSUPP
] = { -EOPNOTSUPP
, "operation not supported" },
138 [BLK_STS_TIMEOUT
] = { -ETIMEDOUT
, "timeout" },
139 [BLK_STS_NOSPC
] = { -ENOSPC
, "critical space allocation" },
140 [BLK_STS_TRANSPORT
] = { -ENOLINK
, "recoverable transport" },
141 [BLK_STS_TARGET
] = { -EREMOTEIO
, "critical target" },
142 [BLK_STS_NEXUS
] = { -EBADE
, "critical nexus" },
143 [BLK_STS_MEDIUM
] = { -ENODATA
, "critical medium" },
144 [BLK_STS_PROTECTION
] = { -EILSEQ
, "protection" },
145 [BLK_STS_RESOURCE
] = { -ENOMEM
, "kernel resource" },
146 [BLK_STS_AGAIN
] = { -EAGAIN
, "nonblocking retry" },
148 /* device mapper special case, should not leak out: */
149 [BLK_STS_DM_REQUEUE
] = { -EREMCHG
, "dm internal retry" },
151 /* everything else not covered above: */
152 [BLK_STS_IOERR
] = { -EIO
, "I/O" },
155 blk_status_t
errno_to_blk_status(int errno
)
159 for (i
= 0; i
< ARRAY_SIZE(blk_errors
); i
++) {
160 if (blk_errors
[i
].errno
== errno
)
161 return (__force blk_status_t
)i
;
164 return BLK_STS_IOERR
;
166 EXPORT_SYMBOL_GPL(errno_to_blk_status
);
168 int blk_status_to_errno(blk_status_t status
)
170 int idx
= (__force
int)status
;
172 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
174 return blk_errors
[idx
].errno
;
176 EXPORT_SYMBOL_GPL(blk_status_to_errno
);
178 static void print_req_error(struct request
*req
, blk_status_t status
)
180 int idx
= (__force
int)status
;
182 if (WARN_ON_ONCE(idx
>= ARRAY_SIZE(blk_errors
)))
185 printk_ratelimited(KERN_ERR
"%s: %s error, dev %s, sector %llu\n",
186 __func__
, blk_errors
[idx
].name
, req
->rq_disk
?
187 req
->rq_disk
->disk_name
: "?",
188 (unsigned long long)blk_rq_pos(req
));
191 static void req_bio_endio(struct request
*rq
, struct bio
*bio
,
192 unsigned int nbytes
, blk_status_t error
)
195 bio
->bi_status
= error
;
197 if (unlikely(rq
->rq_flags
& RQF_QUIET
))
198 bio_set_flag(bio
, BIO_QUIET
);
200 bio_advance(bio
, nbytes
);
202 /* don't actually finish bio if it's part of flush sequence */
203 if (bio
->bi_iter
.bi_size
== 0 && !(rq
->rq_flags
& RQF_FLUSH_SEQ
))
207 void blk_dump_rq_flags(struct request
*rq
, char *msg
)
209 printk(KERN_INFO
"%s: dev %s: flags=%llx\n", msg
,
210 rq
->rq_disk
? rq
->rq_disk
->disk_name
: "?",
211 (unsigned long long) rq
->cmd_flags
);
213 printk(KERN_INFO
" sector %llu, nr/cnr %u/%u\n",
214 (unsigned long long)blk_rq_pos(rq
),
215 blk_rq_sectors(rq
), blk_rq_cur_sectors(rq
));
216 printk(KERN_INFO
" bio %p, biotail %p, len %u\n",
217 rq
->bio
, rq
->biotail
, blk_rq_bytes(rq
));
219 EXPORT_SYMBOL(blk_dump_rq_flags
);
221 static void blk_delay_work(struct work_struct
*work
)
223 struct request_queue
*q
;
225 q
= container_of(work
, struct request_queue
, delay_work
.work
);
226 spin_lock_irq(q
->queue_lock
);
228 spin_unlock_irq(q
->queue_lock
);
232 * blk_delay_queue - restart queueing after defined interval
233 * @q: The &struct request_queue in question
234 * @msecs: Delay in msecs
237 * Sometimes queueing needs to be postponed for a little while, to allow
238 * resources to come back. This function will make sure that queueing is
239 * restarted around the specified time.
241 void blk_delay_queue(struct request_queue
*q
, unsigned long msecs
)
243 lockdep_assert_held(q
->queue_lock
);
244 WARN_ON_ONCE(q
->mq_ops
);
246 if (likely(!blk_queue_dead(q
)))
247 queue_delayed_work(kblockd_workqueue
, &q
->delay_work
,
248 msecs_to_jiffies(msecs
));
250 EXPORT_SYMBOL(blk_delay_queue
);
253 * blk_start_queue_async - asynchronously restart a previously stopped queue
254 * @q: The &struct request_queue in question
257 * blk_start_queue_async() will clear the stop flag on the queue, and
258 * ensure that the request_fn for the queue is run from an async
261 void blk_start_queue_async(struct request_queue
*q
)
263 lockdep_assert_held(q
->queue_lock
);
264 WARN_ON_ONCE(q
->mq_ops
);
266 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
267 blk_run_queue_async(q
);
269 EXPORT_SYMBOL(blk_start_queue_async
);
272 * blk_start_queue - restart a previously stopped queue
273 * @q: The &struct request_queue in question
276 * blk_start_queue() will clear the stop flag on the queue, and call
277 * the request_fn for the queue if it was in a stopped state when
278 * entered. Also see blk_stop_queue().
280 void blk_start_queue(struct request_queue
*q
)
282 lockdep_assert_held(q
->queue_lock
);
283 WARN_ON(!in_interrupt() && !irqs_disabled());
284 WARN_ON_ONCE(q
->mq_ops
);
286 queue_flag_clear(QUEUE_FLAG_STOPPED
, q
);
289 EXPORT_SYMBOL(blk_start_queue
);
292 * blk_stop_queue - stop a queue
293 * @q: The &struct request_queue in question
296 * The Linux block layer assumes that a block driver will consume all
297 * entries on the request queue when the request_fn strategy is called.
298 * Often this will not happen, because of hardware limitations (queue
299 * depth settings). If a device driver gets a 'queue full' response,
300 * or if it simply chooses not to queue more I/O at one point, it can
301 * call this function to prevent the request_fn from being called until
302 * the driver has signalled it's ready to go again. This happens by calling
303 * blk_start_queue() to restart queue operations.
305 void blk_stop_queue(struct request_queue
*q
)
307 lockdep_assert_held(q
->queue_lock
);
308 WARN_ON_ONCE(q
->mq_ops
);
310 cancel_delayed_work(&q
->delay_work
);
311 queue_flag_set(QUEUE_FLAG_STOPPED
, q
);
313 EXPORT_SYMBOL(blk_stop_queue
);
316 * blk_sync_queue - cancel any pending callbacks on a queue
320 * The block layer may perform asynchronous callback activity
321 * on a queue, such as calling the unplug function after a timeout.
322 * A block device may call blk_sync_queue to ensure that any
323 * such activity is cancelled, thus allowing it to release resources
324 * that the callbacks might use. The caller must already have made sure
325 * that its ->make_request_fn will not re-add plugging prior to calling
328 * This function does not cancel any asynchronous activity arising
329 * out of elevator or throttling code. That would require elevator_exit()
330 * and blkcg_exit_queue() to be called with queue lock initialized.
333 void blk_sync_queue(struct request_queue
*q
)
335 del_timer_sync(&q
->timeout
);
338 struct blk_mq_hw_ctx
*hctx
;
341 queue_for_each_hw_ctx(q
, hctx
, i
)
342 cancel_delayed_work_sync(&hctx
->run_work
);
344 cancel_delayed_work_sync(&q
->delay_work
);
347 EXPORT_SYMBOL(blk_sync_queue
);
350 * __blk_run_queue_uncond - run a queue whether or not it has been stopped
351 * @q: The queue to run
354 * Invoke request handling on a queue if there are any pending requests.
355 * May be used to restart request handling after a request has completed.
356 * This variant runs the queue whether or not the queue has been
357 * stopped. Must be called with the queue lock held and interrupts
358 * disabled. See also @blk_run_queue.
360 inline void __blk_run_queue_uncond(struct request_queue
*q
)
362 lockdep_assert_held(q
->queue_lock
);
363 WARN_ON_ONCE(q
->mq_ops
);
365 if (unlikely(blk_queue_dead(q
)))
369 * Some request_fn implementations, e.g. scsi_request_fn(), unlock
370 * the queue lock internally. As a result multiple threads may be
371 * running such a request function concurrently. Keep track of the
372 * number of active request_fn invocations such that blk_drain_queue()
373 * can wait until all these request_fn calls have finished.
375 q
->request_fn_active
++;
377 q
->request_fn_active
--;
379 EXPORT_SYMBOL_GPL(__blk_run_queue_uncond
);
382 * __blk_run_queue - run a single device queue
383 * @q: The queue to run
386 * See @blk_run_queue.
388 void __blk_run_queue(struct request_queue
*q
)
390 lockdep_assert_held(q
->queue_lock
);
391 WARN_ON_ONCE(q
->mq_ops
);
393 if (unlikely(blk_queue_stopped(q
)))
396 __blk_run_queue_uncond(q
);
398 EXPORT_SYMBOL(__blk_run_queue
);
401 * blk_run_queue_async - run a single device queue in workqueue context
402 * @q: The queue to run
405 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
409 * Since it is not allowed to run q->delay_work after blk_cleanup_queue()
410 * has canceled q->delay_work, callers must hold the queue lock to avoid
411 * race conditions between blk_cleanup_queue() and blk_run_queue_async().
413 void blk_run_queue_async(struct request_queue
*q
)
415 lockdep_assert_held(q
->queue_lock
);
416 WARN_ON_ONCE(q
->mq_ops
);
418 if (likely(!blk_queue_stopped(q
) && !blk_queue_dead(q
)))
419 mod_delayed_work(kblockd_workqueue
, &q
->delay_work
, 0);
421 EXPORT_SYMBOL(blk_run_queue_async
);
424 * blk_run_queue - run a single device queue
425 * @q: The queue to run
428 * Invoke request handling on this queue, if it has pending work to do.
429 * May be used to restart queueing when a request has completed.
431 void blk_run_queue(struct request_queue
*q
)
435 WARN_ON_ONCE(q
->mq_ops
);
437 spin_lock_irqsave(q
->queue_lock
, flags
);
439 spin_unlock_irqrestore(q
->queue_lock
, flags
);
441 EXPORT_SYMBOL(blk_run_queue
);
443 void blk_put_queue(struct request_queue
*q
)
445 kobject_put(&q
->kobj
);
447 EXPORT_SYMBOL(blk_put_queue
);
450 * __blk_drain_queue - drain requests from request_queue
452 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
454 * Drain requests from @q. If @drain_all is set, all requests are drained.
455 * If not, only ELVPRIV requests are drained. The caller is responsible
456 * for ensuring that no new requests which need to be drained are queued.
458 static void __blk_drain_queue(struct request_queue
*q
, bool drain_all
)
459 __releases(q
->queue_lock
)
460 __acquires(q
->queue_lock
)
464 lockdep_assert_held(q
->queue_lock
);
465 WARN_ON_ONCE(q
->mq_ops
);
471 * The caller might be trying to drain @q before its
472 * elevator is initialized.
475 elv_drain_elevator(q
);
477 blkcg_drain_queue(q
);
480 * This function might be called on a queue which failed
481 * driver init after queue creation or is not yet fully
482 * active yet. Some drivers (e.g. fd and loop) get unhappy
483 * in such cases. Kick queue iff dispatch queue has
484 * something on it and @q has request_fn set.
486 if (!list_empty(&q
->queue_head
) && q
->request_fn
)
489 drain
|= q
->nr_rqs_elvpriv
;
490 drain
|= q
->request_fn_active
;
493 * Unfortunately, requests are queued at and tracked from
494 * multiple places and there's no single counter which can
495 * be drained. Check all the queues and counters.
498 struct blk_flush_queue
*fq
= blk_get_flush_queue(q
, NULL
);
499 drain
|= !list_empty(&q
->queue_head
);
500 for (i
= 0; i
< 2; i
++) {
501 drain
|= q
->nr_rqs
[i
];
502 drain
|= q
->in_flight
[i
];
504 drain
|= !list_empty(&fq
->flush_queue
[i
]);
511 spin_unlock_irq(q
->queue_lock
);
515 spin_lock_irq(q
->queue_lock
);
519 * With queue marked dead, any woken up waiter will fail the
520 * allocation path, so the wakeup chaining is lost and we're
521 * left with hung waiters. We need to wake up those waiters.
524 struct request_list
*rl
;
526 blk_queue_for_each_rl(rl
, q
)
527 for (i
= 0; i
< ARRAY_SIZE(rl
->wait
); i
++)
528 wake_up_all(&rl
->wait
[i
]);
533 * blk_queue_bypass_start - enter queue bypass mode
534 * @q: queue of interest
536 * In bypass mode, only the dispatch FIFO queue of @q is used. This
537 * function makes @q enter bypass mode and drains all requests which were
538 * throttled or issued before. On return, it's guaranteed that no request
539 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
540 * inside queue or RCU read lock.
542 void blk_queue_bypass_start(struct request_queue
*q
)
544 WARN_ON_ONCE(q
->mq_ops
);
546 spin_lock_irq(q
->queue_lock
);
548 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
549 spin_unlock_irq(q
->queue_lock
);
552 * Queues start drained. Skip actual draining till init is
553 * complete. This avoids lenghty delays during queue init which
554 * can happen many times during boot.
556 if (blk_queue_init_done(q
)) {
557 spin_lock_irq(q
->queue_lock
);
558 __blk_drain_queue(q
, false);
559 spin_unlock_irq(q
->queue_lock
);
561 /* ensure blk_queue_bypass() is %true inside RCU read lock */
565 EXPORT_SYMBOL_GPL(blk_queue_bypass_start
);
568 * blk_queue_bypass_end - leave queue bypass mode
569 * @q: queue of interest
571 * Leave bypass mode and restore the normal queueing behavior.
573 * Note: although blk_queue_bypass_start() is only called for blk-sq queues,
574 * this function is called for both blk-sq and blk-mq queues.
576 void blk_queue_bypass_end(struct request_queue
*q
)
578 spin_lock_irq(q
->queue_lock
);
579 if (!--q
->bypass_depth
)
580 queue_flag_clear(QUEUE_FLAG_BYPASS
, q
);
581 WARN_ON_ONCE(q
->bypass_depth
< 0);
582 spin_unlock_irq(q
->queue_lock
);
584 EXPORT_SYMBOL_GPL(blk_queue_bypass_end
);
586 void blk_set_queue_dying(struct request_queue
*q
)
588 spin_lock_irq(q
->queue_lock
);
589 queue_flag_set(QUEUE_FLAG_DYING
, q
);
590 spin_unlock_irq(q
->queue_lock
);
593 * When queue DYING flag is set, we need to block new req
594 * entering queue, so we call blk_freeze_queue_start() to
595 * prevent I/O from crossing blk_queue_enter().
597 blk_freeze_queue_start(q
);
600 blk_mq_wake_waiters(q
);
602 struct request_list
*rl
;
604 spin_lock_irq(q
->queue_lock
);
605 blk_queue_for_each_rl(rl
, q
) {
607 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
608 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
611 spin_unlock_irq(q
->queue_lock
);
614 EXPORT_SYMBOL_GPL(blk_set_queue_dying
);
617 * blk_cleanup_queue - shutdown a request queue
618 * @q: request queue to shutdown
620 * Mark @q DYING, drain all pending requests, mark @q DEAD, destroy and
621 * put it. All future requests will be failed immediately with -ENODEV.
623 void blk_cleanup_queue(struct request_queue
*q
)
625 spinlock_t
*lock
= q
->queue_lock
;
627 /* mark @q DYING, no new request or merges will be allowed afterwards */
628 mutex_lock(&q
->sysfs_lock
);
629 blk_set_queue_dying(q
);
633 * A dying queue is permanently in bypass mode till released. Note
634 * that, unlike blk_queue_bypass_start(), we aren't performing
635 * synchronize_rcu() after entering bypass mode to avoid the delay
636 * as some drivers create and destroy a lot of queues while
637 * probing. This is still safe because blk_release_queue() will be
638 * called only after the queue refcnt drops to zero and nothing,
639 * RCU or not, would be traversing the queue by then.
642 queue_flag_set(QUEUE_FLAG_BYPASS
, q
);
644 queue_flag_set(QUEUE_FLAG_NOMERGES
, q
);
645 queue_flag_set(QUEUE_FLAG_NOXMERGES
, q
);
646 queue_flag_set(QUEUE_FLAG_DYING
, q
);
647 spin_unlock_irq(lock
);
648 mutex_unlock(&q
->sysfs_lock
);
651 * Drain all requests queued before DYING marking. Set DEAD flag to
652 * prevent that q->request_fn() gets invoked after draining finished.
657 __blk_drain_queue(q
, true);
658 queue_flag_set(QUEUE_FLAG_DEAD
, q
);
659 spin_unlock_irq(lock
);
661 /* for synchronous bio-based driver finish in-flight integrity i/o */
662 blk_flush_integrity();
664 /* @q won't process any more request, flush async actions */
665 del_timer_sync(&q
->backing_dev_info
->laptop_mode_wb_timer
);
669 blk_mq_free_queue(q
);
670 percpu_ref_exit(&q
->q_usage_counter
);
673 if (q
->queue_lock
!= &q
->__queue_lock
)
674 q
->queue_lock
= &q
->__queue_lock
;
675 spin_unlock_irq(lock
);
677 /* @q is and will stay empty, shutdown and put */
680 EXPORT_SYMBOL(blk_cleanup_queue
);
682 /* Allocate memory local to the request queue */
683 static void *alloc_request_simple(gfp_t gfp_mask
, void *data
)
685 struct request_queue
*q
= data
;
687 return kmem_cache_alloc_node(request_cachep
, gfp_mask
, q
->node
);
690 static void free_request_simple(void *element
, void *data
)
692 kmem_cache_free(request_cachep
, element
);
695 static void *alloc_request_size(gfp_t gfp_mask
, void *data
)
697 struct request_queue
*q
= data
;
700 rq
= kmalloc_node(sizeof(struct request
) + q
->cmd_size
, gfp_mask
,
702 if (rq
&& q
->init_rq_fn
&& q
->init_rq_fn(q
, rq
, gfp_mask
) < 0) {
709 static void free_request_size(void *element
, void *data
)
711 struct request_queue
*q
= data
;
714 q
->exit_rq_fn(q
, element
);
718 int blk_init_rl(struct request_list
*rl
, struct request_queue
*q
,
721 if (unlikely(rl
->rq_pool
))
725 rl
->count
[BLK_RW_SYNC
] = rl
->count
[BLK_RW_ASYNC
] = 0;
726 rl
->starved
[BLK_RW_SYNC
] = rl
->starved
[BLK_RW_ASYNC
] = 0;
727 init_waitqueue_head(&rl
->wait
[BLK_RW_SYNC
]);
728 init_waitqueue_head(&rl
->wait
[BLK_RW_ASYNC
]);
731 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
732 alloc_request_size
, free_request_size
,
733 q
, gfp_mask
, q
->node
);
735 rl
->rq_pool
= mempool_create_node(BLKDEV_MIN_RQ
,
736 alloc_request_simple
, free_request_simple
,
737 q
, gfp_mask
, q
->node
);
742 if (rl
!= &q
->root_rl
)
743 WARN_ON_ONCE(!blk_get_queue(q
));
748 void blk_exit_rl(struct request_queue
*q
, struct request_list
*rl
)
751 mempool_destroy(rl
->rq_pool
);
752 if (rl
!= &q
->root_rl
)
757 struct request_queue
*blk_alloc_queue(gfp_t gfp_mask
)
759 return blk_alloc_queue_node(gfp_mask
, NUMA_NO_NODE
);
761 EXPORT_SYMBOL(blk_alloc_queue
);
763 int blk_queue_enter(struct request_queue
*q
, bool nowait
)
768 if (percpu_ref_tryget_live(&q
->q_usage_counter
))
775 * read pair of barrier in blk_freeze_queue_start(),
776 * we need to order reading __PERCPU_REF_DEAD flag of
777 * .q_usage_counter and reading .mq_freeze_depth or
778 * queue dying flag, otherwise the following wait may
779 * never return if the two reads are reordered.
783 ret
= wait_event_interruptible(q
->mq_freeze_wq
,
784 !atomic_read(&q
->mq_freeze_depth
) ||
786 if (blk_queue_dying(q
))
793 void blk_queue_exit(struct request_queue
*q
)
795 percpu_ref_put(&q
->q_usage_counter
);
798 static void blk_queue_usage_counter_release(struct percpu_ref
*ref
)
800 struct request_queue
*q
=
801 container_of(ref
, struct request_queue
, q_usage_counter
);
803 wake_up_all(&q
->mq_freeze_wq
);
806 static void blk_rq_timed_out_timer(unsigned long data
)
808 struct request_queue
*q
= (struct request_queue
*)data
;
810 kblockd_schedule_work(&q
->timeout_work
);
813 struct request_queue
*blk_alloc_queue_node(gfp_t gfp_mask
, int node_id
)
815 struct request_queue
*q
;
817 q
= kmem_cache_alloc_node(blk_requestq_cachep
,
818 gfp_mask
| __GFP_ZERO
, node_id
);
822 q
->id
= ida_simple_get(&blk_queue_ida
, 0, 0, gfp_mask
);
826 q
->bio_split
= bioset_create(BIO_POOL_SIZE
, 0, BIOSET_NEED_BVECS
);
830 q
->backing_dev_info
= bdi_alloc_node(gfp_mask
, node_id
);
831 if (!q
->backing_dev_info
)
834 q
->stats
= blk_alloc_queue_stats();
838 q
->backing_dev_info
->ra_pages
=
839 (VM_MAX_READAHEAD
* 1024) / PAGE_SIZE
;
840 q
->backing_dev_info
->capabilities
= BDI_CAP_CGROUP_WRITEBACK
;
841 q
->backing_dev_info
->name
= "block";
844 setup_timer(&q
->backing_dev_info
->laptop_mode_wb_timer
,
845 laptop_mode_timer_fn
, (unsigned long) q
);
846 setup_timer(&q
->timeout
, blk_rq_timed_out_timer
, (unsigned long) q
);
847 INIT_LIST_HEAD(&q
->queue_head
);
848 INIT_LIST_HEAD(&q
->timeout_list
);
849 INIT_LIST_HEAD(&q
->icq_list
);
850 #ifdef CONFIG_BLK_CGROUP
851 INIT_LIST_HEAD(&q
->blkg_list
);
853 INIT_DELAYED_WORK(&q
->delay_work
, blk_delay_work
);
855 kobject_init(&q
->kobj
, &blk_queue_ktype
);
857 mutex_init(&q
->sysfs_lock
);
858 spin_lock_init(&q
->__queue_lock
);
861 * By default initialize queue_lock to internal lock and driver can
862 * override it later if need be.
864 q
->queue_lock
= &q
->__queue_lock
;
867 * A queue starts its life with bypass turned on to avoid
868 * unnecessary bypass on/off overhead and nasty surprises during
869 * init. The initial bypass will be finished when the queue is
870 * registered by blk_register_queue().
873 __set_bit(QUEUE_FLAG_BYPASS
, &q
->queue_flags
);
875 init_waitqueue_head(&q
->mq_freeze_wq
);
878 * Init percpu_ref in atomic mode so that it's faster to shutdown.
879 * See blk_register_queue() for details.
881 if (percpu_ref_init(&q
->q_usage_counter
,
882 blk_queue_usage_counter_release
,
883 PERCPU_REF_INIT_ATOMIC
, GFP_KERNEL
))
886 if (blkcg_init_queue(q
))
892 percpu_ref_exit(&q
->q_usage_counter
);
894 blk_free_queue_stats(q
->stats
);
896 bdi_put(q
->backing_dev_info
);
898 bioset_free(q
->bio_split
);
900 ida_simple_remove(&blk_queue_ida
, q
->id
);
902 kmem_cache_free(blk_requestq_cachep
, q
);
905 EXPORT_SYMBOL(blk_alloc_queue_node
);
908 * blk_init_queue - prepare a request queue for use with a block device
909 * @rfn: The function to be called to process requests that have been
910 * placed on the queue.
911 * @lock: Request queue spin lock
914 * If a block device wishes to use the standard request handling procedures,
915 * which sorts requests and coalesces adjacent requests, then it must
916 * call blk_init_queue(). The function @rfn will be called when there
917 * are requests on the queue that need to be processed. If the device
918 * supports plugging, then @rfn may not be called immediately when requests
919 * are available on the queue, but may be called at some time later instead.
920 * Plugged queues are generally unplugged when a buffer belonging to one
921 * of the requests on the queue is needed, or due to memory pressure.
923 * @rfn is not required, or even expected, to remove all requests off the
924 * queue, but only as many as it can handle at a time. If it does leave
925 * requests on the queue, it is responsible for arranging that the requests
926 * get dealt with eventually.
928 * The queue spin lock must be held while manipulating the requests on the
929 * request queue; this lock will be taken also from interrupt context, so irq
930 * disabling is needed for it.
932 * Function returns a pointer to the initialized request queue, or %NULL if
936 * blk_init_queue() must be paired with a blk_cleanup_queue() call
937 * when the block device is deactivated (such as at module unload).
940 struct request_queue
*blk_init_queue(request_fn_proc
*rfn
, spinlock_t
*lock
)
942 return blk_init_queue_node(rfn
, lock
, NUMA_NO_NODE
);
944 EXPORT_SYMBOL(blk_init_queue
);
946 struct request_queue
*
947 blk_init_queue_node(request_fn_proc
*rfn
, spinlock_t
*lock
, int node_id
)
949 struct request_queue
*q
;
951 q
= blk_alloc_queue_node(GFP_KERNEL
, node_id
);
957 q
->queue_lock
= lock
;
958 if (blk_init_allocated_queue(q
) < 0) {
959 blk_cleanup_queue(q
);
965 EXPORT_SYMBOL(blk_init_queue_node
);
967 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
);
970 int blk_init_allocated_queue(struct request_queue
*q
)
972 WARN_ON_ONCE(q
->mq_ops
);
974 q
->fq
= blk_alloc_flush_queue(q
, NUMA_NO_NODE
, q
->cmd_size
);
978 if (q
->init_rq_fn
&& q
->init_rq_fn(q
, q
->fq
->flush_rq
, GFP_KERNEL
))
979 goto out_free_flush_queue
;
981 if (blk_init_rl(&q
->root_rl
, q
, GFP_KERNEL
))
982 goto out_exit_flush_rq
;
984 INIT_WORK(&q
->timeout_work
, blk_timeout_work
);
985 q
->queue_flags
|= QUEUE_FLAG_DEFAULT
;
988 * This also sets hw/phys segments, boundary and size
990 blk_queue_make_request(q
, blk_queue_bio
);
992 q
->sg_reserved_size
= INT_MAX
;
994 /* Protect q->elevator from elevator_change */
995 mutex_lock(&q
->sysfs_lock
);
998 if (elevator_init(q
, NULL
)) {
999 mutex_unlock(&q
->sysfs_lock
);
1000 goto out_exit_flush_rq
;
1003 mutex_unlock(&q
->sysfs_lock
);
1008 q
->exit_rq_fn(q
, q
->fq
->flush_rq
);
1009 out_free_flush_queue
:
1010 blk_free_flush_queue(q
->fq
);
1013 EXPORT_SYMBOL(blk_init_allocated_queue
);
1015 bool blk_get_queue(struct request_queue
*q
)
1017 if (likely(!blk_queue_dying(q
))) {
1024 EXPORT_SYMBOL(blk_get_queue
);
1026 static inline void blk_free_request(struct request_list
*rl
, struct request
*rq
)
1028 if (rq
->rq_flags
& RQF_ELVPRIV
) {
1029 elv_put_request(rl
->q
, rq
);
1031 put_io_context(rq
->elv
.icq
->ioc
);
1034 mempool_free(rq
, rl
->rq_pool
);
1038 * ioc_batching returns true if the ioc is a valid batching request and
1039 * should be given priority access to a request.
1041 static inline int ioc_batching(struct request_queue
*q
, struct io_context
*ioc
)
1047 * Make sure the process is able to allocate at least 1 request
1048 * even if the batch times out, otherwise we could theoretically
1051 return ioc
->nr_batch_requests
== q
->nr_batching
||
1052 (ioc
->nr_batch_requests
> 0
1053 && time_before(jiffies
, ioc
->last_waited
+ BLK_BATCH_TIME
));
1057 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
1058 * will cause the process to be a "batcher" on all queues in the system. This
1059 * is the behaviour we want though - once it gets a wakeup it should be given
1062 static void ioc_set_batching(struct request_queue
*q
, struct io_context
*ioc
)
1064 if (!ioc
|| ioc_batching(q
, ioc
))
1067 ioc
->nr_batch_requests
= q
->nr_batching
;
1068 ioc
->last_waited
= jiffies
;
1071 static void __freed_request(struct request_list
*rl
, int sync
)
1073 struct request_queue
*q
= rl
->q
;
1075 if (rl
->count
[sync
] < queue_congestion_off_threshold(q
))
1076 blk_clear_congested(rl
, sync
);
1078 if (rl
->count
[sync
] + 1 <= q
->nr_requests
) {
1079 if (waitqueue_active(&rl
->wait
[sync
]))
1080 wake_up(&rl
->wait
[sync
]);
1082 blk_clear_rl_full(rl
, sync
);
1087 * A request has just been released. Account for it, update the full and
1088 * congestion status, wake up any waiters. Called under q->queue_lock.
1090 static void freed_request(struct request_list
*rl
, bool sync
,
1091 req_flags_t rq_flags
)
1093 struct request_queue
*q
= rl
->q
;
1097 if (rq_flags
& RQF_ELVPRIV
)
1098 q
->nr_rqs_elvpriv
--;
1100 __freed_request(rl
, sync
);
1102 if (unlikely(rl
->starved
[sync
^ 1]))
1103 __freed_request(rl
, sync
^ 1);
1106 int blk_update_nr_requests(struct request_queue
*q
, unsigned int nr
)
1108 struct request_list
*rl
;
1109 int on_thresh
, off_thresh
;
1111 WARN_ON_ONCE(q
->mq_ops
);
1113 spin_lock_irq(q
->queue_lock
);
1114 q
->nr_requests
= nr
;
1115 blk_queue_congestion_threshold(q
);
1116 on_thresh
= queue_congestion_on_threshold(q
);
1117 off_thresh
= queue_congestion_off_threshold(q
);
1119 blk_queue_for_each_rl(rl
, q
) {
1120 if (rl
->count
[BLK_RW_SYNC
] >= on_thresh
)
1121 blk_set_congested(rl
, BLK_RW_SYNC
);
1122 else if (rl
->count
[BLK_RW_SYNC
] < off_thresh
)
1123 blk_clear_congested(rl
, BLK_RW_SYNC
);
1125 if (rl
->count
[BLK_RW_ASYNC
] >= on_thresh
)
1126 blk_set_congested(rl
, BLK_RW_ASYNC
);
1127 else if (rl
->count
[BLK_RW_ASYNC
] < off_thresh
)
1128 blk_clear_congested(rl
, BLK_RW_ASYNC
);
1130 if (rl
->count
[BLK_RW_SYNC
] >= q
->nr_requests
) {
1131 blk_set_rl_full(rl
, BLK_RW_SYNC
);
1133 blk_clear_rl_full(rl
, BLK_RW_SYNC
);
1134 wake_up(&rl
->wait
[BLK_RW_SYNC
]);
1137 if (rl
->count
[BLK_RW_ASYNC
] >= q
->nr_requests
) {
1138 blk_set_rl_full(rl
, BLK_RW_ASYNC
);
1140 blk_clear_rl_full(rl
, BLK_RW_ASYNC
);
1141 wake_up(&rl
->wait
[BLK_RW_ASYNC
]);
1145 spin_unlock_irq(q
->queue_lock
);
1150 * __get_request - get a free request
1151 * @rl: request list to allocate from
1152 * @op: operation and flags
1153 * @bio: bio to allocate request for (can be %NULL)
1154 * @gfp_mask: allocation mask
1156 * Get a free request from @q. This function may fail under memory
1157 * pressure or if @q is dead.
1159 * Must be called with @q->queue_lock held and,
1160 * Returns ERR_PTR on failure, with @q->queue_lock held.
1161 * Returns request pointer on success, with @q->queue_lock *not held*.
1163 static struct request
*__get_request(struct request_list
*rl
, unsigned int op
,
1164 struct bio
*bio
, gfp_t gfp_mask
)
1166 struct request_queue
*q
= rl
->q
;
1168 struct elevator_type
*et
= q
->elevator
->type
;
1169 struct io_context
*ioc
= rq_ioc(bio
);
1170 struct io_cq
*icq
= NULL
;
1171 const bool is_sync
= op_is_sync(op
);
1173 req_flags_t rq_flags
= RQF_ALLOCED
;
1175 lockdep_assert_held(q
->queue_lock
);
1177 if (unlikely(blk_queue_dying(q
)))
1178 return ERR_PTR(-ENODEV
);
1180 may_queue
= elv_may_queue(q
, op
);
1181 if (may_queue
== ELV_MQUEUE_NO
)
1184 if (rl
->count
[is_sync
]+1 >= queue_congestion_on_threshold(q
)) {
1185 if (rl
->count
[is_sync
]+1 >= q
->nr_requests
) {
1187 * The queue will fill after this allocation, so set
1188 * it as full, and mark this process as "batching".
1189 * This process will be allowed to complete a batch of
1190 * requests, others will be blocked.
1192 if (!blk_rl_full(rl
, is_sync
)) {
1193 ioc_set_batching(q
, ioc
);
1194 blk_set_rl_full(rl
, is_sync
);
1196 if (may_queue
!= ELV_MQUEUE_MUST
1197 && !ioc_batching(q
, ioc
)) {
1199 * The queue is full and the allocating
1200 * process is not a "batcher", and not
1201 * exempted by the IO scheduler
1203 return ERR_PTR(-ENOMEM
);
1207 blk_set_congested(rl
, is_sync
);
1211 * Only allow batching queuers to allocate up to 50% over the defined
1212 * limit of requests, otherwise we could have thousands of requests
1213 * allocated with any setting of ->nr_requests
1215 if (rl
->count
[is_sync
] >= (3 * q
->nr_requests
/ 2))
1216 return ERR_PTR(-ENOMEM
);
1218 q
->nr_rqs
[is_sync
]++;
1219 rl
->count
[is_sync
]++;
1220 rl
->starved
[is_sync
] = 0;
1223 * Decide whether the new request will be managed by elevator. If
1224 * so, mark @rq_flags and increment elvpriv. Non-zero elvpriv will
1225 * prevent the current elevator from being destroyed until the new
1226 * request is freed. This guarantees icq's won't be destroyed and
1227 * makes creating new ones safe.
1229 * Flush requests do not use the elevator so skip initialization.
1230 * This allows a request to share the flush and elevator data.
1232 * Also, lookup icq while holding queue_lock. If it doesn't exist,
1233 * it will be created after releasing queue_lock.
1235 if (!op_is_flush(op
) && !blk_queue_bypass(q
)) {
1236 rq_flags
|= RQF_ELVPRIV
;
1237 q
->nr_rqs_elvpriv
++;
1238 if (et
->icq_cache
&& ioc
)
1239 icq
= ioc_lookup_icq(ioc
, q
);
1242 if (blk_queue_io_stat(q
))
1243 rq_flags
|= RQF_IO_STAT
;
1244 spin_unlock_irq(q
->queue_lock
);
1246 /* allocate and init request */
1247 rq
= mempool_alloc(rl
->rq_pool
, gfp_mask
);
1252 blk_rq_set_rl(rq
, rl
);
1254 rq
->rq_flags
= rq_flags
;
1257 if (rq_flags
& RQF_ELVPRIV
) {
1258 if (unlikely(et
->icq_cache
&& !icq
)) {
1260 icq
= ioc_create_icq(ioc
, q
, gfp_mask
);
1266 if (unlikely(elv_set_request(q
, rq
, bio
, gfp_mask
)))
1269 /* @rq->elv.icq holds io_context until @rq is freed */
1271 get_io_context(icq
->ioc
);
1275 * ioc may be NULL here, and ioc_batching will be false. That's
1276 * OK, if the queue is under the request limit then requests need
1277 * not count toward the nr_batch_requests limit. There will always
1278 * be some limit enforced by BLK_BATCH_TIME.
1280 if (ioc_batching(q
, ioc
))
1281 ioc
->nr_batch_requests
--;
1283 trace_block_getrq(q
, bio
, op
);
1288 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
1289 * and may fail indefinitely under memory pressure and thus
1290 * shouldn't stall IO. Treat this request as !elvpriv. This will
1291 * disturb iosched and blkcg but weird is bettern than dead.
1293 printk_ratelimited(KERN_WARNING
"%s: dev %s: request aux data allocation failed, iosched may be disturbed\n",
1294 __func__
, dev_name(q
->backing_dev_info
->dev
));
1296 rq
->rq_flags
&= ~RQF_ELVPRIV
;
1299 spin_lock_irq(q
->queue_lock
);
1300 q
->nr_rqs_elvpriv
--;
1301 spin_unlock_irq(q
->queue_lock
);
1306 * Allocation failed presumably due to memory. Undo anything we
1307 * might have messed up.
1309 * Allocating task should really be put onto the front of the wait
1310 * queue, but this is pretty rare.
1312 spin_lock_irq(q
->queue_lock
);
1313 freed_request(rl
, is_sync
, rq_flags
);
1316 * in the very unlikely event that allocation failed and no
1317 * requests for this direction was pending, mark us starved so that
1318 * freeing of a request in the other direction will notice
1319 * us. another possible fix would be to split the rq mempool into
1323 if (unlikely(rl
->count
[is_sync
] == 0))
1324 rl
->starved
[is_sync
] = 1;
1325 return ERR_PTR(-ENOMEM
);
1329 * get_request - get a free request
1330 * @q: request_queue to allocate request from
1331 * @op: operation and flags
1332 * @bio: bio to allocate request for (can be %NULL)
1333 * @gfp_mask: allocation mask
1335 * Get a free request from @q. If %__GFP_DIRECT_RECLAIM is set in @gfp_mask,
1336 * this function keeps retrying under memory pressure and fails iff @q is dead.
1338 * Must be called with @q->queue_lock held and,
1339 * Returns ERR_PTR on failure, with @q->queue_lock held.
1340 * Returns request pointer on success, with @q->queue_lock *not held*.
1342 static struct request
*get_request(struct request_queue
*q
, unsigned int op
,
1343 struct bio
*bio
, gfp_t gfp_mask
)
1345 const bool is_sync
= op_is_sync(op
);
1347 struct request_list
*rl
;
1350 lockdep_assert_held(q
->queue_lock
);
1351 WARN_ON_ONCE(q
->mq_ops
);
1353 rl
= blk_get_rl(q
, bio
); /* transferred to @rq on success */
1355 rq
= __get_request(rl
, op
, bio
, gfp_mask
);
1359 if (op
& REQ_NOWAIT
) {
1361 return ERR_PTR(-EAGAIN
);
1364 if (!gfpflags_allow_blocking(gfp_mask
) || unlikely(blk_queue_dying(q
))) {
1369 /* wait on @rl and retry */
1370 prepare_to_wait_exclusive(&rl
->wait
[is_sync
], &wait
,
1371 TASK_UNINTERRUPTIBLE
);
1373 trace_block_sleeprq(q
, bio
, op
);
1375 spin_unlock_irq(q
->queue_lock
);
1379 * After sleeping, we become a "batching" process and will be able
1380 * to allocate at least one request, and up to a big batch of them
1381 * for a small period time. See ioc_batching, ioc_set_batching
1383 ioc_set_batching(q
, current
->io_context
);
1385 spin_lock_irq(q
->queue_lock
);
1386 finish_wait(&rl
->wait
[is_sync
], &wait
);
1391 static struct request
*blk_old_get_request(struct request_queue
*q
,
1392 unsigned int op
, gfp_t gfp_mask
)
1396 WARN_ON_ONCE(q
->mq_ops
);
1398 /* create ioc upfront */
1399 create_io_context(gfp_mask
, q
->node
);
1401 spin_lock_irq(q
->queue_lock
);
1402 rq
= get_request(q
, op
, NULL
, gfp_mask
);
1404 spin_unlock_irq(q
->queue_lock
);
1408 /* q->queue_lock is unlocked at this point */
1410 rq
->__sector
= (sector_t
) -1;
1411 rq
->bio
= rq
->biotail
= NULL
;
1415 struct request
*blk_get_request(struct request_queue
*q
, unsigned int op
,
1418 struct request
*req
;
1421 req
= blk_mq_alloc_request(q
, op
,
1422 (gfp_mask
& __GFP_DIRECT_RECLAIM
) ?
1423 0 : BLK_MQ_REQ_NOWAIT
);
1424 if (!IS_ERR(req
) && q
->mq_ops
->initialize_rq_fn
)
1425 q
->mq_ops
->initialize_rq_fn(req
);
1427 req
= blk_old_get_request(q
, op
, gfp_mask
);
1428 if (!IS_ERR(req
) && q
->initialize_rq_fn
)
1429 q
->initialize_rq_fn(req
);
1434 EXPORT_SYMBOL(blk_get_request
);
1437 * blk_requeue_request - put a request back on queue
1438 * @q: request queue where request should be inserted
1439 * @rq: request to be inserted
1442 * Drivers often keep queueing requests until the hardware cannot accept
1443 * more, when that condition happens we need to put the request back
1444 * on the queue. Must be called with queue lock held.
1446 void blk_requeue_request(struct request_queue
*q
, struct request
*rq
)
1448 lockdep_assert_held(q
->queue_lock
);
1449 WARN_ON_ONCE(q
->mq_ops
);
1451 blk_delete_timer(rq
);
1452 blk_clear_rq_complete(rq
);
1453 trace_block_rq_requeue(q
, rq
);
1454 wbt_requeue(q
->rq_wb
, &rq
->issue_stat
);
1456 if (rq
->rq_flags
& RQF_QUEUED
)
1457 blk_queue_end_tag(q
, rq
);
1459 BUG_ON(blk_queued_rq(rq
));
1461 elv_requeue_request(q
, rq
);
1463 EXPORT_SYMBOL(blk_requeue_request
);
1465 static void add_acct_request(struct request_queue
*q
, struct request
*rq
,
1468 blk_account_io_start(rq
, true);
1469 __elv_add_request(q
, rq
, where
);
1472 static void part_round_stats_single(struct request_queue
*q
, int cpu
,
1473 struct hd_struct
*part
, unsigned long now
,
1474 unsigned int inflight
)
1477 __part_stat_add(cpu
, part
, time_in_queue
,
1478 inflight
* (now
- part
->stamp
));
1479 __part_stat_add(cpu
, part
, io_ticks
, (now
- part
->stamp
));
1485 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1486 * @q: target block queue
1487 * @cpu: cpu number for stats access
1488 * @part: target partition
1490 * The average IO queue length and utilisation statistics are maintained
1491 * by observing the current state of the queue length and the amount of
1492 * time it has been in this state for.
1494 * Normally, that accounting is done on IO completion, but that can result
1495 * in more than a second's worth of IO being accounted for within any one
1496 * second, leading to >100% utilisation. To deal with that, we call this
1497 * function to do a round-off before returning the results when reading
1498 * /proc/diskstats. This accounts immediately for all queue usage up to
1499 * the current jiffies and restarts the counters again.
1501 void part_round_stats(struct request_queue
*q
, int cpu
, struct hd_struct
*part
)
1503 struct hd_struct
*part2
= NULL
;
1504 unsigned long now
= jiffies
;
1505 unsigned int inflight
[2];
1508 if (part
->stamp
!= now
)
1512 part2
= &part_to_disk(part
)->part0
;
1513 if (part2
->stamp
!= now
)
1520 part_in_flight(q
, part
, inflight
);
1523 part_round_stats_single(q
, cpu
, part2
, now
, inflight
[1]);
1525 part_round_stats_single(q
, cpu
, part
, now
, inflight
[0]);
1527 EXPORT_SYMBOL_GPL(part_round_stats
);
1530 static void blk_pm_put_request(struct request
*rq
)
1532 if (rq
->q
->dev
&& !(rq
->rq_flags
& RQF_PM
) && !--rq
->q
->nr_pending
)
1533 pm_runtime_mark_last_busy(rq
->q
->dev
);
1536 static inline void blk_pm_put_request(struct request
*rq
) {}
1539 void __blk_put_request(struct request_queue
*q
, struct request
*req
)
1541 req_flags_t rq_flags
= req
->rq_flags
;
1547 blk_mq_free_request(req
);
1551 lockdep_assert_held(q
->queue_lock
);
1553 blk_pm_put_request(req
);
1555 elv_completed_request(q
, req
);
1557 /* this is a bio leak */
1558 WARN_ON(req
->bio
!= NULL
);
1560 wbt_done(q
->rq_wb
, &req
->issue_stat
);
1563 * Request may not have originated from ll_rw_blk. if not,
1564 * it didn't come out of our reserved rq pools
1566 if (rq_flags
& RQF_ALLOCED
) {
1567 struct request_list
*rl
= blk_rq_rl(req
);
1568 bool sync
= op_is_sync(req
->cmd_flags
);
1570 BUG_ON(!list_empty(&req
->queuelist
));
1571 BUG_ON(ELV_ON_HASH(req
));
1573 blk_free_request(rl
, req
);
1574 freed_request(rl
, sync
, rq_flags
);
1578 EXPORT_SYMBOL_GPL(__blk_put_request
);
1580 void blk_put_request(struct request
*req
)
1582 struct request_queue
*q
= req
->q
;
1585 blk_mq_free_request(req
);
1587 unsigned long flags
;
1589 spin_lock_irqsave(q
->queue_lock
, flags
);
1590 __blk_put_request(q
, req
);
1591 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1594 EXPORT_SYMBOL(blk_put_request
);
1596 bool bio_attempt_back_merge(struct request_queue
*q
, struct request
*req
,
1599 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1601 if (!ll_back_merge_fn(q
, req
, bio
))
1604 trace_block_bio_backmerge(q
, req
, bio
);
1606 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1607 blk_rq_set_mixed_merge(req
);
1609 req
->biotail
->bi_next
= bio
;
1611 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1612 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1614 blk_account_io_start(req
, false);
1618 bool bio_attempt_front_merge(struct request_queue
*q
, struct request
*req
,
1621 const int ff
= bio
->bi_opf
& REQ_FAILFAST_MASK
;
1623 if (!ll_front_merge_fn(q
, req
, bio
))
1626 trace_block_bio_frontmerge(q
, req
, bio
);
1628 if ((req
->cmd_flags
& REQ_FAILFAST_MASK
) != ff
)
1629 blk_rq_set_mixed_merge(req
);
1631 bio
->bi_next
= req
->bio
;
1634 req
->__sector
= bio
->bi_iter
.bi_sector
;
1635 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1636 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1638 blk_account_io_start(req
, false);
1642 bool bio_attempt_discard_merge(struct request_queue
*q
, struct request
*req
,
1645 unsigned short segments
= blk_rq_nr_discard_segments(req
);
1647 if (segments
>= queue_max_discard_segments(q
))
1649 if (blk_rq_sectors(req
) + bio_sectors(bio
) >
1650 blk_rq_get_max_sectors(req
, blk_rq_pos(req
)))
1653 req
->biotail
->bi_next
= bio
;
1655 req
->__data_len
+= bio
->bi_iter
.bi_size
;
1656 req
->ioprio
= ioprio_best(req
->ioprio
, bio_prio(bio
));
1657 req
->nr_phys_segments
= segments
+ 1;
1659 blk_account_io_start(req
, false);
1662 req_set_nomerge(q
, req
);
1667 * blk_attempt_plug_merge - try to merge with %current's plugged list
1668 * @q: request_queue new bio is being queued at
1669 * @bio: new bio being queued
1670 * @request_count: out parameter for number of traversed plugged requests
1671 * @same_queue_rq: pointer to &struct request that gets filled in when
1672 * another request associated with @q is found on the plug list
1673 * (optional, may be %NULL)
1675 * Determine whether @bio being queued on @q can be merged with a request
1676 * on %current's plugged list. Returns %true if merge was successful,
1679 * Plugging coalesces IOs from the same issuer for the same purpose without
1680 * going through @q->queue_lock. As such it's more of an issuing mechanism
1681 * than scheduling, and the request, while may have elvpriv data, is not
1682 * added on the elevator at this point. In addition, we don't have
1683 * reliable access to the elevator outside queue lock. Only check basic
1684 * merging parameters without querying the elevator.
1686 * Caller must ensure !blk_queue_nomerges(q) beforehand.
1688 bool blk_attempt_plug_merge(struct request_queue
*q
, struct bio
*bio
,
1689 unsigned int *request_count
,
1690 struct request
**same_queue_rq
)
1692 struct blk_plug
*plug
;
1694 struct list_head
*plug_list
;
1696 plug
= current
->plug
;
1702 plug_list
= &plug
->mq_list
;
1704 plug_list
= &plug
->list
;
1706 list_for_each_entry_reverse(rq
, plug_list
, queuelist
) {
1707 bool merged
= false;
1712 * Only blk-mq multiple hardware queues case checks the
1713 * rq in the same queue, there should be only one such
1717 *same_queue_rq
= rq
;
1720 if (rq
->q
!= q
|| !blk_rq_merge_ok(rq
, bio
))
1723 switch (blk_try_merge(rq
, bio
)) {
1724 case ELEVATOR_BACK_MERGE
:
1725 merged
= bio_attempt_back_merge(q
, rq
, bio
);
1727 case ELEVATOR_FRONT_MERGE
:
1728 merged
= bio_attempt_front_merge(q
, rq
, bio
);
1730 case ELEVATOR_DISCARD_MERGE
:
1731 merged
= bio_attempt_discard_merge(q
, rq
, bio
);
1744 unsigned int blk_plug_queued_count(struct request_queue
*q
)
1746 struct blk_plug
*plug
;
1748 struct list_head
*plug_list
;
1749 unsigned int ret
= 0;
1751 plug
= current
->plug
;
1756 plug_list
= &plug
->mq_list
;
1758 plug_list
= &plug
->list
;
1760 list_for_each_entry(rq
, plug_list
, queuelist
) {
1768 void blk_init_request_from_bio(struct request
*req
, struct bio
*bio
)
1770 struct io_context
*ioc
= rq_ioc(bio
);
1772 if (bio
->bi_opf
& REQ_RAHEAD
)
1773 req
->cmd_flags
|= REQ_FAILFAST_MASK
;
1775 req
->__sector
= bio
->bi_iter
.bi_sector
;
1776 if (ioprio_valid(bio_prio(bio
)))
1777 req
->ioprio
= bio_prio(bio
);
1779 req
->ioprio
= ioc
->ioprio
;
1781 req
->ioprio
= IOPRIO_PRIO_VALUE(IOPRIO_CLASS_NONE
, 0);
1782 req
->write_hint
= bio
->bi_write_hint
;
1783 blk_rq_bio_prep(req
->q
, req
, bio
);
1785 EXPORT_SYMBOL_GPL(blk_init_request_from_bio
);
1787 static blk_qc_t
blk_queue_bio(struct request_queue
*q
, struct bio
*bio
)
1789 struct blk_plug
*plug
;
1790 int where
= ELEVATOR_INSERT_SORT
;
1791 struct request
*req
, *free
;
1792 unsigned int request_count
= 0;
1793 unsigned int wb_acct
;
1796 * low level driver can indicate that it wants pages above a
1797 * certain limit bounced to low memory (ie for highmem, or even
1798 * ISA dma in theory)
1800 blk_queue_bounce(q
, &bio
);
1802 blk_queue_split(q
, &bio
);
1804 if (!bio_integrity_prep(bio
))
1805 return BLK_QC_T_NONE
;
1807 if (op_is_flush(bio
->bi_opf
)) {
1808 spin_lock_irq(q
->queue_lock
);
1809 where
= ELEVATOR_INSERT_FLUSH
;
1814 * Check if we can merge with the plugged list before grabbing
1817 if (!blk_queue_nomerges(q
)) {
1818 if (blk_attempt_plug_merge(q
, bio
, &request_count
, NULL
))
1819 return BLK_QC_T_NONE
;
1821 request_count
= blk_plug_queued_count(q
);
1823 spin_lock_irq(q
->queue_lock
);
1825 switch (elv_merge(q
, &req
, bio
)) {
1826 case ELEVATOR_BACK_MERGE
:
1827 if (!bio_attempt_back_merge(q
, req
, bio
))
1829 elv_bio_merged(q
, req
, bio
);
1830 free
= attempt_back_merge(q
, req
);
1832 __blk_put_request(q
, free
);
1834 elv_merged_request(q
, req
, ELEVATOR_BACK_MERGE
);
1836 case ELEVATOR_FRONT_MERGE
:
1837 if (!bio_attempt_front_merge(q
, req
, bio
))
1839 elv_bio_merged(q
, req
, bio
);
1840 free
= attempt_front_merge(q
, req
);
1842 __blk_put_request(q
, free
);
1844 elv_merged_request(q
, req
, ELEVATOR_FRONT_MERGE
);
1851 wb_acct
= wbt_wait(q
->rq_wb
, bio
, q
->queue_lock
);
1854 * Grab a free request. This is might sleep but can not fail.
1855 * Returns with the queue unlocked.
1857 req
= get_request(q
, bio
->bi_opf
, bio
, GFP_NOIO
);
1859 __wbt_done(q
->rq_wb
, wb_acct
);
1860 if (PTR_ERR(req
) == -ENOMEM
)
1861 bio
->bi_status
= BLK_STS_RESOURCE
;
1863 bio
->bi_status
= BLK_STS_IOERR
;
1868 wbt_track(&req
->issue_stat
, wb_acct
);
1871 * After dropping the lock and possibly sleeping here, our request
1872 * may now be mergeable after it had proven unmergeable (above).
1873 * We don't worry about that case for efficiency. It won't happen
1874 * often, and the elevators are able to handle it.
1876 blk_init_request_from_bio(req
, bio
);
1878 if (test_bit(QUEUE_FLAG_SAME_COMP
, &q
->queue_flags
))
1879 req
->cpu
= raw_smp_processor_id();
1881 plug
= current
->plug
;
1884 * If this is the first request added after a plug, fire
1887 * @request_count may become stale because of schedule
1888 * out, so check plug list again.
1890 if (!request_count
|| list_empty(&plug
->list
))
1891 trace_block_plug(q
);
1893 struct request
*last
= list_entry_rq(plug
->list
.prev
);
1894 if (request_count
>= BLK_MAX_REQUEST_COUNT
||
1895 blk_rq_bytes(last
) >= BLK_PLUG_FLUSH_SIZE
) {
1896 blk_flush_plug_list(plug
, false);
1897 trace_block_plug(q
);
1900 list_add_tail(&req
->queuelist
, &plug
->list
);
1901 blk_account_io_start(req
, true);
1903 spin_lock_irq(q
->queue_lock
);
1904 add_acct_request(q
, req
, where
);
1907 spin_unlock_irq(q
->queue_lock
);
1910 return BLK_QC_T_NONE
;
1913 static void handle_bad_sector(struct bio
*bio
)
1915 char b
[BDEVNAME_SIZE
];
1917 printk(KERN_INFO
"attempt to access beyond end of device\n");
1918 printk(KERN_INFO
"%s: rw=%d, want=%Lu, limit=%Lu\n",
1919 bio_devname(bio
, b
), bio
->bi_opf
,
1920 (unsigned long long)bio_end_sector(bio
),
1921 (long long)get_capacity(bio
->bi_disk
));
1924 #ifdef CONFIG_FAIL_MAKE_REQUEST
1926 static DECLARE_FAULT_ATTR(fail_make_request
);
1928 static int __init
setup_fail_make_request(char *str
)
1930 return setup_fault_attr(&fail_make_request
, str
);
1932 __setup("fail_make_request=", setup_fail_make_request
);
1934 static bool should_fail_request(struct hd_struct
*part
, unsigned int bytes
)
1936 return part
->make_it_fail
&& should_fail(&fail_make_request
, bytes
);
1939 static int __init
fail_make_request_debugfs(void)
1941 struct dentry
*dir
= fault_create_debugfs_attr("fail_make_request",
1942 NULL
, &fail_make_request
);
1944 return PTR_ERR_OR_ZERO(dir
);
1947 late_initcall(fail_make_request_debugfs
);
1949 #else /* CONFIG_FAIL_MAKE_REQUEST */
1951 static inline bool should_fail_request(struct hd_struct
*part
,
1957 #endif /* CONFIG_FAIL_MAKE_REQUEST */
1960 * Remap block n of partition p to block n+start(p) of the disk.
1962 static inline int blk_partition_remap(struct bio
*bio
)
1964 struct hd_struct
*p
;
1968 * Zone reset does not include bi_size so bio_sectors() is always 0.
1969 * Include a test for the reset op code and perform the remap if needed.
1971 if (!bio
->bi_partno
||
1972 (!bio_sectors(bio
) && bio_op(bio
) != REQ_OP_ZONE_RESET
))
1976 p
= __disk_get_part(bio
->bi_disk
, bio
->bi_partno
);
1977 if (likely(p
&& !should_fail_request(p
, bio
->bi_iter
.bi_size
))) {
1978 bio
->bi_iter
.bi_sector
+= p
->start_sect
;
1980 trace_block_bio_remap(bio
->bi_disk
->queue
, bio
, part_devt(p
),
1981 bio
->bi_iter
.bi_sector
- p
->start_sect
);
1983 printk("%s: fail for partition %d\n", __func__
, bio
->bi_partno
);
1992 * Check whether this bio extends beyond the end of the device.
1994 static inline int bio_check_eod(struct bio
*bio
, unsigned int nr_sectors
)
2001 /* Test device or partition size, when known. */
2002 maxsector
= get_capacity(bio
->bi_disk
);
2004 sector_t sector
= bio
->bi_iter
.bi_sector
;
2006 if (maxsector
< nr_sectors
|| maxsector
- nr_sectors
< sector
) {
2008 * This may well happen - the kernel calls bread()
2009 * without checking the size of the device, e.g., when
2010 * mounting a device.
2012 handle_bad_sector(bio
);
2020 static noinline_for_stack
bool
2021 generic_make_request_checks(struct bio
*bio
)
2023 struct request_queue
*q
;
2024 int nr_sectors
= bio_sectors(bio
);
2025 blk_status_t status
= BLK_STS_IOERR
;
2026 char b
[BDEVNAME_SIZE
];
2030 if (bio_check_eod(bio
, nr_sectors
))
2033 q
= bio
->bi_disk
->queue
;
2036 "generic_make_request: Trying to access "
2037 "nonexistent block-device %s (%Lu)\n",
2038 bio_devname(bio
, b
), (long long)bio
->bi_iter
.bi_sector
);
2043 * For a REQ_NOWAIT based request, return -EOPNOTSUPP
2044 * if queue is not a request based queue.
2047 if ((bio
->bi_opf
& REQ_NOWAIT
) && !queue_is_rq_based(q
))
2050 if (should_fail_request(&bio
->bi_disk
->part0
, bio
->bi_iter
.bi_size
))
2053 if (blk_partition_remap(bio
))
2056 if (bio_check_eod(bio
, nr_sectors
))
2060 * Filter flush bio's early so that make_request based
2061 * drivers without flush support don't have to worry
2064 if (op_is_flush(bio
->bi_opf
) &&
2065 !test_bit(QUEUE_FLAG_WC
, &q
->queue_flags
)) {
2066 bio
->bi_opf
&= ~(REQ_PREFLUSH
| REQ_FUA
);
2068 status
= BLK_STS_OK
;
2073 switch (bio_op(bio
)) {
2074 case REQ_OP_DISCARD
:
2075 if (!blk_queue_discard(q
))
2078 case REQ_OP_SECURE_ERASE
:
2079 if (!blk_queue_secure_erase(q
))
2082 case REQ_OP_WRITE_SAME
:
2083 if (!q
->limits
.max_write_same_sectors
)
2086 case REQ_OP_ZONE_REPORT
:
2087 case REQ_OP_ZONE_RESET
:
2088 if (!blk_queue_is_zoned(q
))
2091 case REQ_OP_WRITE_ZEROES
:
2092 if (!q
->limits
.max_write_zeroes_sectors
)
2100 * Various block parts want %current->io_context and lazy ioc
2101 * allocation ends up trading a lot of pain for a small amount of
2102 * memory. Just allocate it upfront. This may fail and block
2103 * layer knows how to live with it.
2105 create_io_context(GFP_ATOMIC
, q
->node
);
2107 if (!blkcg_bio_issue_check(q
, bio
))
2110 if (!bio_flagged(bio
, BIO_TRACE_COMPLETION
)) {
2111 trace_block_bio_queue(q
, bio
);
2112 /* Now that enqueuing has been traced, we need to trace
2113 * completion as well.
2115 bio_set_flag(bio
, BIO_TRACE_COMPLETION
);
2120 status
= BLK_STS_NOTSUPP
;
2122 bio
->bi_status
= status
;
2128 * generic_make_request - hand a buffer to its device driver for I/O
2129 * @bio: The bio describing the location in memory and on the device.
2131 * generic_make_request() is used to make I/O requests of block
2132 * devices. It is passed a &struct bio, which describes the I/O that needs
2135 * generic_make_request() does not return any status. The
2136 * success/failure status of the request, along with notification of
2137 * completion, is delivered asynchronously through the bio->bi_end_io
2138 * function described (one day) else where.
2140 * The caller of generic_make_request must make sure that bi_io_vec
2141 * are set to describe the memory buffer, and that bi_dev and bi_sector are
2142 * set to describe the device address, and the
2143 * bi_end_io and optionally bi_private are set to describe how
2144 * completion notification should be signaled.
2146 * generic_make_request and the drivers it calls may use bi_next if this
2147 * bio happens to be merged with someone else, and may resubmit the bio to
2148 * a lower device by calling into generic_make_request recursively, which
2149 * means the bio should NOT be touched after the call to ->make_request_fn.
2151 blk_qc_t
generic_make_request(struct bio
*bio
)
2154 * bio_list_on_stack[0] contains bios submitted by the current
2156 * bio_list_on_stack[1] contains bios that were submitted before
2157 * the current make_request_fn, but that haven't been processed
2160 struct bio_list bio_list_on_stack
[2];
2161 blk_qc_t ret
= BLK_QC_T_NONE
;
2163 if (!generic_make_request_checks(bio
))
2167 * We only want one ->make_request_fn to be active at a time, else
2168 * stack usage with stacked devices could be a problem. So use
2169 * current->bio_list to keep a list of requests submited by a
2170 * make_request_fn function. current->bio_list is also used as a
2171 * flag to say if generic_make_request is currently active in this
2172 * task or not. If it is NULL, then no make_request is active. If
2173 * it is non-NULL, then a make_request is active, and new requests
2174 * should be added at the tail
2176 if (current
->bio_list
) {
2177 bio_list_add(¤t
->bio_list
[0], bio
);
2181 /* following loop may be a bit non-obvious, and so deserves some
2183 * Before entering the loop, bio->bi_next is NULL (as all callers
2184 * ensure that) so we have a list with a single bio.
2185 * We pretend that we have just taken it off a longer list, so
2186 * we assign bio_list to a pointer to the bio_list_on_stack,
2187 * thus initialising the bio_list of new bios to be
2188 * added. ->make_request() may indeed add some more bios
2189 * through a recursive call to generic_make_request. If it
2190 * did, we find a non-NULL value in bio_list and re-enter the loop
2191 * from the top. In this case we really did just take the bio
2192 * of the top of the list (no pretending) and so remove it from
2193 * bio_list, and call into ->make_request() again.
2195 BUG_ON(bio
->bi_next
);
2196 bio_list_init(&bio_list_on_stack
[0]);
2197 current
->bio_list
= bio_list_on_stack
;
2199 struct request_queue
*q
= bio
->bi_disk
->queue
;
2201 if (likely(blk_queue_enter(q
, bio
->bi_opf
& REQ_NOWAIT
) == 0)) {
2202 struct bio_list lower
, same
;
2204 /* Create a fresh bio_list for all subordinate requests */
2205 bio_list_on_stack
[1] = bio_list_on_stack
[0];
2206 bio_list_init(&bio_list_on_stack
[0]);
2207 ret
= q
->make_request_fn(q
, bio
);
2211 /* sort new bios into those for a lower level
2212 * and those for the same level
2214 bio_list_init(&lower
);
2215 bio_list_init(&same
);
2216 while ((bio
= bio_list_pop(&bio_list_on_stack
[0])) != NULL
)
2217 if (q
== bio
->bi_disk
->queue
)
2218 bio_list_add(&same
, bio
);
2220 bio_list_add(&lower
, bio
);
2221 /* now assemble so we handle the lowest level first */
2222 bio_list_merge(&bio_list_on_stack
[0], &lower
);
2223 bio_list_merge(&bio_list_on_stack
[0], &same
);
2224 bio_list_merge(&bio_list_on_stack
[0], &bio_list_on_stack
[1]);
2226 if (unlikely(!blk_queue_dying(q
) &&
2227 (bio
->bi_opf
& REQ_NOWAIT
)))
2228 bio_wouldblock_error(bio
);
2232 bio
= bio_list_pop(&bio_list_on_stack
[0]);
2234 current
->bio_list
= NULL
; /* deactivate */
2239 EXPORT_SYMBOL(generic_make_request
);
2242 * submit_bio - submit a bio to the block device layer for I/O
2243 * @bio: The &struct bio which describes the I/O
2245 * submit_bio() is very similar in purpose to generic_make_request(), and
2246 * uses that function to do most of the work. Both are fairly rough
2247 * interfaces; @bio must be presetup and ready for I/O.
2250 blk_qc_t
submit_bio(struct bio
*bio
)
2253 * If it's a regular read/write or a barrier with data attached,
2254 * go through the normal accounting stuff before submission.
2256 if (bio_has_data(bio
)) {
2259 if (unlikely(bio_op(bio
) == REQ_OP_WRITE_SAME
))
2260 count
= queue_logical_block_size(bio
->bi_disk
->queue
);
2262 count
= bio_sectors(bio
);
2264 if (op_is_write(bio_op(bio
))) {
2265 count_vm_events(PGPGOUT
, count
);
2267 task_io_account_read(bio
->bi_iter
.bi_size
);
2268 count_vm_events(PGPGIN
, count
);
2271 if (unlikely(block_dump
)) {
2272 char b
[BDEVNAME_SIZE
];
2273 printk(KERN_DEBUG
"%s(%d): %s block %Lu on %s (%u sectors)\n",
2274 current
->comm
, task_pid_nr(current
),
2275 op_is_write(bio_op(bio
)) ? "WRITE" : "READ",
2276 (unsigned long long)bio
->bi_iter
.bi_sector
,
2277 bio_devname(bio
, b
), count
);
2281 return generic_make_request(bio
);
2283 EXPORT_SYMBOL(submit_bio
);
2286 * blk_cloned_rq_check_limits - Helper function to check a cloned request
2287 * for new the queue limits
2289 * @rq: the request being checked
2292 * @rq may have been made based on weaker limitations of upper-level queues
2293 * in request stacking drivers, and it may violate the limitation of @q.
2294 * Since the block layer and the underlying device driver trust @rq
2295 * after it is inserted to @q, it should be checked against @q before
2296 * the insertion using this generic function.
2298 * Request stacking drivers like request-based dm may change the queue
2299 * limits when retrying requests on other queues. Those requests need
2300 * to be checked against the new queue limits again during dispatch.
2302 static int blk_cloned_rq_check_limits(struct request_queue
*q
,
2305 if (blk_rq_sectors(rq
) > blk_queue_get_max_sectors(q
, req_op(rq
))) {
2306 printk(KERN_ERR
"%s: over max size limit.\n", __func__
);
2311 * queue's settings related to segment counting like q->bounce_pfn
2312 * may differ from that of other stacking queues.
2313 * Recalculate it to check the request correctly on this queue's
2316 blk_recalc_rq_segments(rq
);
2317 if (rq
->nr_phys_segments
> queue_max_segments(q
)) {
2318 printk(KERN_ERR
"%s: over max segments limit.\n", __func__
);
2326 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
2327 * @q: the queue to submit the request
2328 * @rq: the request being queued
2330 blk_status_t
blk_insert_cloned_request(struct request_queue
*q
, struct request
*rq
)
2332 unsigned long flags
;
2333 int where
= ELEVATOR_INSERT_BACK
;
2335 if (blk_cloned_rq_check_limits(q
, rq
))
2336 return BLK_STS_IOERR
;
2339 should_fail_request(&rq
->rq_disk
->part0
, blk_rq_bytes(rq
)))
2340 return BLK_STS_IOERR
;
2343 if (blk_queue_io_stat(q
))
2344 blk_account_io_start(rq
, true);
2345 blk_mq_sched_insert_request(rq
, false, true, false, false);
2349 spin_lock_irqsave(q
->queue_lock
, flags
);
2350 if (unlikely(blk_queue_dying(q
))) {
2351 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2352 return BLK_STS_IOERR
;
2356 * Submitting request must be dequeued before calling this function
2357 * because it will be linked to another request_queue
2359 BUG_ON(blk_queued_rq(rq
));
2361 if (op_is_flush(rq
->cmd_flags
))
2362 where
= ELEVATOR_INSERT_FLUSH
;
2364 add_acct_request(q
, rq
, where
);
2365 if (where
== ELEVATOR_INSERT_FLUSH
)
2367 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2371 EXPORT_SYMBOL_GPL(blk_insert_cloned_request
);
2374 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
2375 * @rq: request to examine
2378 * A request could be merge of IOs which require different failure
2379 * handling. This function determines the number of bytes which
2380 * can be failed from the beginning of the request without
2381 * crossing into area which need to be retried further.
2384 * The number of bytes to fail.
2386 unsigned int blk_rq_err_bytes(const struct request
*rq
)
2388 unsigned int ff
= rq
->cmd_flags
& REQ_FAILFAST_MASK
;
2389 unsigned int bytes
= 0;
2392 if (!(rq
->rq_flags
& RQF_MIXED_MERGE
))
2393 return blk_rq_bytes(rq
);
2396 * Currently the only 'mixing' which can happen is between
2397 * different fastfail types. We can safely fail portions
2398 * which have all the failfast bits that the first one has -
2399 * the ones which are at least as eager to fail as the first
2402 for (bio
= rq
->bio
; bio
; bio
= bio
->bi_next
) {
2403 if ((bio
->bi_opf
& ff
) != ff
)
2405 bytes
+= bio
->bi_iter
.bi_size
;
2408 /* this could lead to infinite loop */
2409 BUG_ON(blk_rq_bytes(rq
) && !bytes
);
2412 EXPORT_SYMBOL_GPL(blk_rq_err_bytes
);
2414 void blk_account_io_completion(struct request
*req
, unsigned int bytes
)
2416 if (blk_do_io_stat(req
)) {
2417 const int rw
= rq_data_dir(req
);
2418 struct hd_struct
*part
;
2421 cpu
= part_stat_lock();
2423 part_stat_add(cpu
, part
, sectors
[rw
], bytes
>> 9);
2428 void blk_account_io_done(struct request
*req
)
2431 * Account IO completion. flush_rq isn't accounted as a
2432 * normal IO on queueing nor completion. Accounting the
2433 * containing request is enough.
2435 if (blk_do_io_stat(req
) && !(req
->rq_flags
& RQF_FLUSH_SEQ
)) {
2436 unsigned long duration
= jiffies
- req
->start_time
;
2437 const int rw
= rq_data_dir(req
);
2438 struct hd_struct
*part
;
2441 cpu
= part_stat_lock();
2444 part_stat_inc(cpu
, part
, ios
[rw
]);
2445 part_stat_add(cpu
, part
, ticks
[rw
], duration
);
2446 part_round_stats(req
->q
, cpu
, part
);
2447 part_dec_in_flight(req
->q
, part
, rw
);
2449 hd_struct_put(part
);
2456 * Don't process normal requests when queue is suspended
2457 * or in the process of suspending/resuming
2459 static struct request
*blk_pm_peek_request(struct request_queue
*q
,
2462 if (q
->dev
&& (q
->rpm_status
== RPM_SUSPENDED
||
2463 (q
->rpm_status
!= RPM_ACTIVE
&& !(rq
->rq_flags
& RQF_PM
))))
2469 static inline struct request
*blk_pm_peek_request(struct request_queue
*q
,
2476 void blk_account_io_start(struct request
*rq
, bool new_io
)
2478 struct hd_struct
*part
;
2479 int rw
= rq_data_dir(rq
);
2482 if (!blk_do_io_stat(rq
))
2485 cpu
= part_stat_lock();
2489 part_stat_inc(cpu
, part
, merges
[rw
]);
2491 part
= disk_map_sector_rcu(rq
->rq_disk
, blk_rq_pos(rq
));
2492 if (!hd_struct_try_get(part
)) {
2494 * The partition is already being removed,
2495 * the request will be accounted on the disk only
2497 * We take a reference on disk->part0 although that
2498 * partition will never be deleted, so we can treat
2499 * it as any other partition.
2501 part
= &rq
->rq_disk
->part0
;
2502 hd_struct_get(part
);
2504 part_round_stats(rq
->q
, cpu
, part
);
2505 part_inc_in_flight(rq
->q
, part
, rw
);
2513 * blk_peek_request - peek at the top of a request queue
2514 * @q: request queue to peek at
2517 * Return the request at the top of @q. The returned request
2518 * should be started using blk_start_request() before LLD starts
2522 * Pointer to the request at the top of @q if available. Null
2525 struct request
*blk_peek_request(struct request_queue
*q
)
2530 lockdep_assert_held(q
->queue_lock
);
2531 WARN_ON_ONCE(q
->mq_ops
);
2533 while ((rq
= __elv_next_request(q
)) != NULL
) {
2535 rq
= blk_pm_peek_request(q
, rq
);
2539 if (!(rq
->rq_flags
& RQF_STARTED
)) {
2541 * This is the first time the device driver
2542 * sees this request (possibly after
2543 * requeueing). Notify IO scheduler.
2545 if (rq
->rq_flags
& RQF_SORTED
)
2546 elv_activate_rq(q
, rq
);
2549 * just mark as started even if we don't start
2550 * it, a request that has been delayed should
2551 * not be passed by new incoming requests
2553 rq
->rq_flags
|= RQF_STARTED
;
2554 trace_block_rq_issue(q
, rq
);
2557 if (!q
->boundary_rq
|| q
->boundary_rq
== rq
) {
2558 q
->end_sector
= rq_end_sector(rq
);
2559 q
->boundary_rq
= NULL
;
2562 if (rq
->rq_flags
& RQF_DONTPREP
)
2565 if (q
->dma_drain_size
&& blk_rq_bytes(rq
)) {
2567 * make sure space for the drain appears we
2568 * know we can do this because max_hw_segments
2569 * has been adjusted to be one fewer than the
2572 rq
->nr_phys_segments
++;
2578 ret
= q
->prep_rq_fn(q
, rq
);
2579 if (ret
== BLKPREP_OK
) {
2581 } else if (ret
== BLKPREP_DEFER
) {
2583 * the request may have been (partially) prepped.
2584 * we need to keep this request in the front to
2585 * avoid resource deadlock. RQF_STARTED will
2586 * prevent other fs requests from passing this one.
2588 if (q
->dma_drain_size
&& blk_rq_bytes(rq
) &&
2589 !(rq
->rq_flags
& RQF_DONTPREP
)) {
2591 * remove the space for the drain we added
2592 * so that we don't add it again
2594 --rq
->nr_phys_segments
;
2599 } else if (ret
== BLKPREP_KILL
|| ret
== BLKPREP_INVALID
) {
2600 rq
->rq_flags
|= RQF_QUIET
;
2602 * Mark this request as started so we don't trigger
2603 * any debug logic in the end I/O path.
2605 blk_start_request(rq
);
2606 __blk_end_request_all(rq
, ret
== BLKPREP_INVALID
?
2607 BLK_STS_TARGET
: BLK_STS_IOERR
);
2609 printk(KERN_ERR
"%s: bad return=%d\n", __func__
, ret
);
2616 EXPORT_SYMBOL(blk_peek_request
);
2618 static void blk_dequeue_request(struct request
*rq
)
2620 struct request_queue
*q
= rq
->q
;
2622 BUG_ON(list_empty(&rq
->queuelist
));
2623 BUG_ON(ELV_ON_HASH(rq
));
2625 list_del_init(&rq
->queuelist
);
2628 * the time frame between a request being removed from the lists
2629 * and to it is freed is accounted as io that is in progress at
2632 if (blk_account_rq(rq
)) {
2633 q
->in_flight
[rq_is_sync(rq
)]++;
2634 set_io_start_time_ns(rq
);
2639 * blk_start_request - start request processing on the driver
2640 * @req: request to dequeue
2643 * Dequeue @req and start timeout timer on it. This hands off the
2644 * request to the driver.
2646 void blk_start_request(struct request
*req
)
2648 lockdep_assert_held(req
->q
->queue_lock
);
2649 WARN_ON_ONCE(req
->q
->mq_ops
);
2651 blk_dequeue_request(req
);
2653 if (test_bit(QUEUE_FLAG_STATS
, &req
->q
->queue_flags
)) {
2654 blk_stat_set_issue(&req
->issue_stat
, blk_rq_sectors(req
));
2655 req
->rq_flags
|= RQF_STATS
;
2656 wbt_issue(req
->q
->rq_wb
, &req
->issue_stat
);
2659 BUG_ON(test_bit(REQ_ATOM_COMPLETE
, &req
->atomic_flags
));
2662 EXPORT_SYMBOL(blk_start_request
);
2665 * blk_fetch_request - fetch a request from a request queue
2666 * @q: request queue to fetch a request from
2669 * Return the request at the top of @q. The request is started on
2670 * return and LLD can start processing it immediately.
2673 * Pointer to the request at the top of @q if available. Null
2676 struct request
*blk_fetch_request(struct request_queue
*q
)
2680 lockdep_assert_held(q
->queue_lock
);
2681 WARN_ON_ONCE(q
->mq_ops
);
2683 rq
= blk_peek_request(q
);
2685 blk_start_request(rq
);
2688 EXPORT_SYMBOL(blk_fetch_request
);
2691 * blk_update_request - Special helper function for request stacking drivers
2692 * @req: the request being processed
2693 * @error: block status code
2694 * @nr_bytes: number of bytes to complete @req
2697 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2698 * the request structure even if @req doesn't have leftover.
2699 * If @req has leftover, sets it up for the next range of segments.
2701 * This special helper function is only for request stacking drivers
2702 * (e.g. request-based dm) so that they can handle partial completion.
2703 * Actual device drivers should use blk_end_request instead.
2705 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2706 * %false return from this function.
2709 * %false - this request doesn't have any more data
2710 * %true - this request has more data
2712 bool blk_update_request(struct request
*req
, blk_status_t error
,
2713 unsigned int nr_bytes
)
2717 trace_block_rq_complete(req
, blk_status_to_errno(error
), nr_bytes
);
2722 if (unlikely(error
&& !blk_rq_is_passthrough(req
) &&
2723 !(req
->rq_flags
& RQF_QUIET
)))
2724 print_req_error(req
, error
);
2726 blk_account_io_completion(req
, nr_bytes
);
2730 struct bio
*bio
= req
->bio
;
2731 unsigned bio_bytes
= min(bio
->bi_iter
.bi_size
, nr_bytes
);
2733 if (bio_bytes
== bio
->bi_iter
.bi_size
)
2734 req
->bio
= bio
->bi_next
;
2736 /* Completion has already been traced */
2737 bio_clear_flag(bio
, BIO_TRACE_COMPLETION
);
2738 req_bio_endio(req
, bio
, bio_bytes
, error
);
2740 total_bytes
+= bio_bytes
;
2741 nr_bytes
-= bio_bytes
;
2752 * Reset counters so that the request stacking driver
2753 * can find how many bytes remain in the request
2756 req
->__data_len
= 0;
2760 req
->__data_len
-= total_bytes
;
2762 /* update sector only for requests with clear definition of sector */
2763 if (!blk_rq_is_passthrough(req
))
2764 req
->__sector
+= total_bytes
>> 9;
2766 /* mixed attributes always follow the first bio */
2767 if (req
->rq_flags
& RQF_MIXED_MERGE
) {
2768 req
->cmd_flags
&= ~REQ_FAILFAST_MASK
;
2769 req
->cmd_flags
|= req
->bio
->bi_opf
& REQ_FAILFAST_MASK
;
2772 if (!(req
->rq_flags
& RQF_SPECIAL_PAYLOAD
)) {
2774 * If total number of sectors is less than the first segment
2775 * size, something has gone terribly wrong.
2777 if (blk_rq_bytes(req
) < blk_rq_cur_bytes(req
)) {
2778 blk_dump_rq_flags(req
, "request botched");
2779 req
->__data_len
= blk_rq_cur_bytes(req
);
2782 /* recalculate the number of segments */
2783 blk_recalc_rq_segments(req
);
2788 EXPORT_SYMBOL_GPL(blk_update_request
);
2790 static bool blk_update_bidi_request(struct request
*rq
, blk_status_t error
,
2791 unsigned int nr_bytes
,
2792 unsigned int bidi_bytes
)
2794 if (blk_update_request(rq
, error
, nr_bytes
))
2797 /* Bidi request must be completed as a whole */
2798 if (unlikely(blk_bidi_rq(rq
)) &&
2799 blk_update_request(rq
->next_rq
, error
, bidi_bytes
))
2802 if (blk_queue_add_random(rq
->q
))
2803 add_disk_randomness(rq
->rq_disk
);
2809 * blk_unprep_request - unprepare a request
2812 * This function makes a request ready for complete resubmission (or
2813 * completion). It happens only after all error handling is complete,
2814 * so represents the appropriate moment to deallocate any resources
2815 * that were allocated to the request in the prep_rq_fn. The queue
2816 * lock is held when calling this.
2818 void blk_unprep_request(struct request
*req
)
2820 struct request_queue
*q
= req
->q
;
2822 req
->rq_flags
&= ~RQF_DONTPREP
;
2823 if (q
->unprep_rq_fn
)
2824 q
->unprep_rq_fn(q
, req
);
2826 EXPORT_SYMBOL_GPL(blk_unprep_request
);
2828 void blk_finish_request(struct request
*req
, blk_status_t error
)
2830 struct request_queue
*q
= req
->q
;
2832 lockdep_assert_held(req
->q
->queue_lock
);
2833 WARN_ON_ONCE(q
->mq_ops
);
2835 if (req
->rq_flags
& RQF_STATS
)
2838 if (req
->rq_flags
& RQF_QUEUED
)
2839 blk_queue_end_tag(q
, req
);
2841 BUG_ON(blk_queued_rq(req
));
2843 if (unlikely(laptop_mode
) && !blk_rq_is_passthrough(req
))
2844 laptop_io_completion(req
->q
->backing_dev_info
);
2846 blk_delete_timer(req
);
2848 if (req
->rq_flags
& RQF_DONTPREP
)
2849 blk_unprep_request(req
);
2851 blk_account_io_done(req
);
2854 wbt_done(req
->q
->rq_wb
, &req
->issue_stat
);
2855 req
->end_io(req
, error
);
2857 if (blk_bidi_rq(req
))
2858 __blk_put_request(req
->next_rq
->q
, req
->next_rq
);
2860 __blk_put_request(q
, req
);
2863 EXPORT_SYMBOL(blk_finish_request
);
2866 * blk_end_bidi_request - Complete a bidi request
2867 * @rq: the request to complete
2868 * @error: block status code
2869 * @nr_bytes: number of bytes to complete @rq
2870 * @bidi_bytes: number of bytes to complete @rq->next_rq
2873 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2874 * Drivers that supports bidi can safely call this member for any
2875 * type of request, bidi or uni. In the later case @bidi_bytes is
2879 * %false - we are done with this request
2880 * %true - still buffers pending for this request
2882 static bool blk_end_bidi_request(struct request
*rq
, blk_status_t error
,
2883 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2885 struct request_queue
*q
= rq
->q
;
2886 unsigned long flags
;
2888 WARN_ON_ONCE(q
->mq_ops
);
2890 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2893 spin_lock_irqsave(q
->queue_lock
, flags
);
2894 blk_finish_request(rq
, error
);
2895 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2901 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2902 * @rq: the request to complete
2903 * @error: block status code
2904 * @nr_bytes: number of bytes to complete @rq
2905 * @bidi_bytes: number of bytes to complete @rq->next_rq
2908 * Identical to blk_end_bidi_request() except that queue lock is
2909 * assumed to be locked on entry and remains so on return.
2912 * %false - we are done with this request
2913 * %true - still buffers pending for this request
2915 static bool __blk_end_bidi_request(struct request
*rq
, blk_status_t error
,
2916 unsigned int nr_bytes
, unsigned int bidi_bytes
)
2918 lockdep_assert_held(rq
->q
->queue_lock
);
2919 WARN_ON_ONCE(rq
->q
->mq_ops
);
2921 if (blk_update_bidi_request(rq
, error
, nr_bytes
, bidi_bytes
))
2924 blk_finish_request(rq
, error
);
2930 * blk_end_request - Helper function for drivers to complete the request.
2931 * @rq: the request being processed
2932 * @error: block status code
2933 * @nr_bytes: number of bytes to complete
2936 * Ends I/O on a number of bytes attached to @rq.
2937 * If @rq has leftover, sets it up for the next range of segments.
2940 * %false - we are done with this request
2941 * %true - still buffers pending for this request
2943 bool blk_end_request(struct request
*rq
, blk_status_t error
,
2944 unsigned int nr_bytes
)
2946 WARN_ON_ONCE(rq
->q
->mq_ops
);
2947 return blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2949 EXPORT_SYMBOL(blk_end_request
);
2952 * blk_end_request_all - Helper function for drives to finish the request.
2953 * @rq: the request to finish
2954 * @error: block status code
2957 * Completely finish @rq.
2959 void blk_end_request_all(struct request
*rq
, blk_status_t error
)
2962 unsigned int bidi_bytes
= 0;
2964 if (unlikely(blk_bidi_rq(rq
)))
2965 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
2967 pending
= blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
2970 EXPORT_SYMBOL(blk_end_request_all
);
2973 * __blk_end_request - Helper function for drivers to complete the request.
2974 * @rq: the request being processed
2975 * @error: block status code
2976 * @nr_bytes: number of bytes to complete
2979 * Must be called with queue lock held unlike blk_end_request().
2982 * %false - we are done with this request
2983 * %true - still buffers pending for this request
2985 bool __blk_end_request(struct request
*rq
, blk_status_t error
,
2986 unsigned int nr_bytes
)
2988 lockdep_assert_held(rq
->q
->queue_lock
);
2989 WARN_ON_ONCE(rq
->q
->mq_ops
);
2991 return __blk_end_bidi_request(rq
, error
, nr_bytes
, 0);
2993 EXPORT_SYMBOL(__blk_end_request
);
2996 * __blk_end_request_all - Helper function for drives to finish the request.
2997 * @rq: the request to finish
2998 * @error: block status code
3001 * Completely finish @rq. Must be called with queue lock held.
3003 void __blk_end_request_all(struct request
*rq
, blk_status_t error
)
3006 unsigned int bidi_bytes
= 0;
3008 lockdep_assert_held(rq
->q
->queue_lock
);
3009 WARN_ON_ONCE(rq
->q
->mq_ops
);
3011 if (unlikely(blk_bidi_rq(rq
)))
3012 bidi_bytes
= blk_rq_bytes(rq
->next_rq
);
3014 pending
= __blk_end_bidi_request(rq
, error
, blk_rq_bytes(rq
), bidi_bytes
);
3017 EXPORT_SYMBOL(__blk_end_request_all
);
3020 * __blk_end_request_cur - Helper function to finish the current request chunk.
3021 * @rq: the request to finish the current chunk for
3022 * @error: block status code
3025 * Complete the current consecutively mapped chunk from @rq. Must
3026 * be called with queue lock held.
3029 * %false - we are done with this request
3030 * %true - still buffers pending for this request
3032 bool __blk_end_request_cur(struct request
*rq
, blk_status_t error
)
3034 return __blk_end_request(rq
, error
, blk_rq_cur_bytes(rq
));
3036 EXPORT_SYMBOL(__blk_end_request_cur
);
3038 void blk_rq_bio_prep(struct request_queue
*q
, struct request
*rq
,
3041 if (bio_has_data(bio
))
3042 rq
->nr_phys_segments
= bio_phys_segments(q
, bio
);
3044 rq
->__data_len
= bio
->bi_iter
.bi_size
;
3045 rq
->bio
= rq
->biotail
= bio
;
3048 rq
->rq_disk
= bio
->bi_disk
;
3051 #if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
3053 * rq_flush_dcache_pages - Helper function to flush all pages in a request
3054 * @rq: the request to be flushed
3057 * Flush all pages in @rq.
3059 void rq_flush_dcache_pages(struct request
*rq
)
3061 struct req_iterator iter
;
3062 struct bio_vec bvec
;
3064 rq_for_each_segment(bvec
, rq
, iter
)
3065 flush_dcache_page(bvec
.bv_page
);
3067 EXPORT_SYMBOL_GPL(rq_flush_dcache_pages
);
3071 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
3072 * @q : the queue of the device being checked
3075 * Check if underlying low-level drivers of a device are busy.
3076 * If the drivers want to export their busy state, they must set own
3077 * exporting function using blk_queue_lld_busy() first.
3079 * Basically, this function is used only by request stacking drivers
3080 * to stop dispatching requests to underlying devices when underlying
3081 * devices are busy. This behavior helps more I/O merging on the queue
3082 * of the request stacking driver and prevents I/O throughput regression
3083 * on burst I/O load.
3086 * 0 - Not busy (The request stacking driver should dispatch request)
3087 * 1 - Busy (The request stacking driver should stop dispatching request)
3089 int blk_lld_busy(struct request_queue
*q
)
3092 return q
->lld_busy_fn(q
);
3096 EXPORT_SYMBOL_GPL(blk_lld_busy
);
3099 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
3100 * @rq: the clone request to be cleaned up
3103 * Free all bios in @rq for a cloned request.
3105 void blk_rq_unprep_clone(struct request
*rq
)
3109 while ((bio
= rq
->bio
) != NULL
) {
3110 rq
->bio
= bio
->bi_next
;
3115 EXPORT_SYMBOL_GPL(blk_rq_unprep_clone
);
3118 * Copy attributes of the original request to the clone request.
3119 * The actual data parts (e.g. ->cmd, ->sense) are not copied.
3121 static void __blk_rq_prep_clone(struct request
*dst
, struct request
*src
)
3123 dst
->cpu
= src
->cpu
;
3124 dst
->__sector
= blk_rq_pos(src
);
3125 dst
->__data_len
= blk_rq_bytes(src
);
3126 dst
->nr_phys_segments
= src
->nr_phys_segments
;
3127 dst
->ioprio
= src
->ioprio
;
3128 dst
->extra_len
= src
->extra_len
;
3132 * blk_rq_prep_clone - Helper function to setup clone request
3133 * @rq: the request to be setup
3134 * @rq_src: original request to be cloned
3135 * @bs: bio_set that bios for clone are allocated from
3136 * @gfp_mask: memory allocation mask for bio
3137 * @bio_ctr: setup function to be called for each clone bio.
3138 * Returns %0 for success, non %0 for failure.
3139 * @data: private data to be passed to @bio_ctr
3142 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
3143 * The actual data parts of @rq_src (e.g. ->cmd, ->sense)
3144 * are not copied, and copying such parts is the caller's responsibility.
3145 * Also, pages which the original bios are pointing to are not copied
3146 * and the cloned bios just point same pages.
3147 * So cloned bios must be completed before original bios, which means
3148 * the caller must complete @rq before @rq_src.
3150 int blk_rq_prep_clone(struct request
*rq
, struct request
*rq_src
,
3151 struct bio_set
*bs
, gfp_t gfp_mask
,
3152 int (*bio_ctr
)(struct bio
*, struct bio
*, void *),
3155 struct bio
*bio
, *bio_src
;
3160 __rq_for_each_bio(bio_src
, rq_src
) {
3161 bio
= bio_clone_fast(bio_src
, gfp_mask
, bs
);
3165 if (bio_ctr
&& bio_ctr(bio
, bio_src
, data
))
3169 rq
->biotail
->bi_next
= bio
;
3172 rq
->bio
= rq
->biotail
= bio
;
3175 __blk_rq_prep_clone(rq
, rq_src
);
3182 blk_rq_unprep_clone(rq
);
3186 EXPORT_SYMBOL_GPL(blk_rq_prep_clone
);
3188 int kblockd_schedule_work(struct work_struct
*work
)
3190 return queue_work(kblockd_workqueue
, work
);
3192 EXPORT_SYMBOL(kblockd_schedule_work
);
3194 int kblockd_schedule_work_on(int cpu
, struct work_struct
*work
)
3196 return queue_work_on(cpu
, kblockd_workqueue
, work
);
3198 EXPORT_SYMBOL(kblockd_schedule_work_on
);
3200 int kblockd_mod_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
3201 unsigned long delay
)
3203 return mod_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
3205 EXPORT_SYMBOL(kblockd_mod_delayed_work_on
);
3207 int kblockd_schedule_delayed_work(struct delayed_work
*dwork
,
3208 unsigned long delay
)
3210 return queue_delayed_work(kblockd_workqueue
, dwork
, delay
);
3212 EXPORT_SYMBOL(kblockd_schedule_delayed_work
);
3214 int kblockd_schedule_delayed_work_on(int cpu
, struct delayed_work
*dwork
,
3215 unsigned long delay
)
3217 return queue_delayed_work_on(cpu
, kblockd_workqueue
, dwork
, delay
);
3219 EXPORT_SYMBOL(kblockd_schedule_delayed_work_on
);
3222 * blk_start_plug - initialize blk_plug and track it inside the task_struct
3223 * @plug: The &struct blk_plug that needs to be initialized
3226 * Tracking blk_plug inside the task_struct will help with auto-flushing the
3227 * pending I/O should the task end up blocking between blk_start_plug() and
3228 * blk_finish_plug(). This is important from a performance perspective, but
3229 * also ensures that we don't deadlock. For instance, if the task is blocking
3230 * for a memory allocation, memory reclaim could end up wanting to free a
3231 * page belonging to that request that is currently residing in our private
3232 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
3233 * this kind of deadlock.
3235 void blk_start_plug(struct blk_plug
*plug
)
3237 struct task_struct
*tsk
= current
;
3240 * If this is a nested plug, don't actually assign it.
3245 INIT_LIST_HEAD(&plug
->list
);
3246 INIT_LIST_HEAD(&plug
->mq_list
);
3247 INIT_LIST_HEAD(&plug
->cb_list
);
3249 * Store ordering should not be needed here, since a potential
3250 * preempt will imply a full memory barrier
3254 EXPORT_SYMBOL(blk_start_plug
);
3256 static int plug_rq_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
3258 struct request
*rqa
= container_of(a
, struct request
, queuelist
);
3259 struct request
*rqb
= container_of(b
, struct request
, queuelist
);
3261 return !(rqa
->q
< rqb
->q
||
3262 (rqa
->q
== rqb
->q
&& blk_rq_pos(rqa
) < blk_rq_pos(rqb
)));
3266 * If 'from_schedule' is true, then postpone the dispatch of requests
3267 * until a safe kblockd context. We due this to avoid accidental big
3268 * additional stack usage in driver dispatch, in places where the originally
3269 * plugger did not intend it.
3271 static void queue_unplugged(struct request_queue
*q
, unsigned int depth
,
3273 __releases(q
->queue_lock
)
3275 lockdep_assert_held(q
->queue_lock
);
3277 trace_block_unplug(q
, depth
, !from_schedule
);
3280 blk_run_queue_async(q
);
3283 spin_unlock(q
->queue_lock
);
3286 static void flush_plug_callbacks(struct blk_plug
*plug
, bool from_schedule
)
3288 LIST_HEAD(callbacks
);
3290 while (!list_empty(&plug
->cb_list
)) {
3291 list_splice_init(&plug
->cb_list
, &callbacks
);
3293 while (!list_empty(&callbacks
)) {
3294 struct blk_plug_cb
*cb
= list_first_entry(&callbacks
,
3297 list_del(&cb
->list
);
3298 cb
->callback(cb
, from_schedule
);
3303 struct blk_plug_cb
*blk_check_plugged(blk_plug_cb_fn unplug
, void *data
,
3306 struct blk_plug
*plug
= current
->plug
;
3307 struct blk_plug_cb
*cb
;
3312 list_for_each_entry(cb
, &plug
->cb_list
, list
)
3313 if (cb
->callback
== unplug
&& cb
->data
== data
)
3316 /* Not currently on the callback list */
3317 BUG_ON(size
< sizeof(*cb
));
3318 cb
= kzalloc(size
, GFP_ATOMIC
);
3321 cb
->callback
= unplug
;
3322 list_add(&cb
->list
, &plug
->cb_list
);
3326 EXPORT_SYMBOL(blk_check_plugged
);
3328 void blk_flush_plug_list(struct blk_plug
*plug
, bool from_schedule
)
3330 struct request_queue
*q
;
3331 unsigned long flags
;
3336 flush_plug_callbacks(plug
, from_schedule
);
3338 if (!list_empty(&plug
->mq_list
))
3339 blk_mq_flush_plug_list(plug
, from_schedule
);
3341 if (list_empty(&plug
->list
))
3344 list_splice_init(&plug
->list
, &list
);
3346 list_sort(NULL
, &list
, plug_rq_cmp
);
3352 * Save and disable interrupts here, to avoid doing it for every
3353 * queue lock we have to take.
3355 local_irq_save(flags
);
3356 while (!list_empty(&list
)) {
3357 rq
= list_entry_rq(list
.next
);
3358 list_del_init(&rq
->queuelist
);
3362 * This drops the queue lock
3365 queue_unplugged(q
, depth
, from_schedule
);
3368 spin_lock(q
->queue_lock
);
3372 * Short-circuit if @q is dead
3374 if (unlikely(blk_queue_dying(q
))) {
3375 __blk_end_request_all(rq
, BLK_STS_IOERR
);
3380 * rq is already accounted, so use raw insert
3382 if (op_is_flush(rq
->cmd_flags
))
3383 __elv_add_request(q
, rq
, ELEVATOR_INSERT_FLUSH
);
3385 __elv_add_request(q
, rq
, ELEVATOR_INSERT_SORT_MERGE
);
3391 * This drops the queue lock
3394 queue_unplugged(q
, depth
, from_schedule
);
3396 local_irq_restore(flags
);
3399 void blk_finish_plug(struct blk_plug
*plug
)
3401 if (plug
!= current
->plug
)
3403 blk_flush_plug_list(plug
, false);
3405 current
->plug
= NULL
;
3407 EXPORT_SYMBOL(blk_finish_plug
);
3411 * blk_pm_runtime_init - Block layer runtime PM initialization routine
3412 * @q: the queue of the device
3413 * @dev: the device the queue belongs to
3416 * Initialize runtime-PM-related fields for @q and start auto suspend for
3417 * @dev. Drivers that want to take advantage of request-based runtime PM
3418 * should call this function after @dev has been initialized, and its
3419 * request queue @q has been allocated, and runtime PM for it can not happen
3420 * yet(either due to disabled/forbidden or its usage_count > 0). In most
3421 * cases, driver should call this function before any I/O has taken place.
3423 * This function takes care of setting up using auto suspend for the device,
3424 * the autosuspend delay is set to -1 to make runtime suspend impossible
3425 * until an updated value is either set by user or by driver. Drivers do
3426 * not need to touch other autosuspend settings.
3428 * The block layer runtime PM is request based, so only works for drivers
3429 * that use request as their IO unit instead of those directly use bio's.
3431 void blk_pm_runtime_init(struct request_queue
*q
, struct device
*dev
)
3433 /* not support for RQF_PM and ->rpm_status in blk-mq yet */
3438 q
->rpm_status
= RPM_ACTIVE
;
3439 pm_runtime_set_autosuspend_delay(q
->dev
, -1);
3440 pm_runtime_use_autosuspend(q
->dev
);
3442 EXPORT_SYMBOL(blk_pm_runtime_init
);
3445 * blk_pre_runtime_suspend - Pre runtime suspend check
3446 * @q: the queue of the device
3449 * This function will check if runtime suspend is allowed for the device
3450 * by examining if there are any requests pending in the queue. If there
3451 * are requests pending, the device can not be runtime suspended; otherwise,
3452 * the queue's status will be updated to SUSPENDING and the driver can
3453 * proceed to suspend the device.
3455 * For the not allowed case, we mark last busy for the device so that
3456 * runtime PM core will try to autosuspend it some time later.
3458 * This function should be called near the start of the device's
3459 * runtime_suspend callback.
3462 * 0 - OK to runtime suspend the device
3463 * -EBUSY - Device should not be runtime suspended
3465 int blk_pre_runtime_suspend(struct request_queue
*q
)
3472 spin_lock_irq(q
->queue_lock
);
3473 if (q
->nr_pending
) {
3475 pm_runtime_mark_last_busy(q
->dev
);
3477 q
->rpm_status
= RPM_SUSPENDING
;
3479 spin_unlock_irq(q
->queue_lock
);
3482 EXPORT_SYMBOL(blk_pre_runtime_suspend
);
3485 * blk_post_runtime_suspend - Post runtime suspend processing
3486 * @q: the queue of the device
3487 * @err: return value of the device's runtime_suspend function
3490 * Update the queue's runtime status according to the return value of the
3491 * device's runtime suspend function and mark last busy for the device so
3492 * that PM core will try to auto suspend the device at a later time.
3494 * This function should be called near the end of the device's
3495 * runtime_suspend callback.
3497 void blk_post_runtime_suspend(struct request_queue
*q
, int err
)
3502 spin_lock_irq(q
->queue_lock
);
3504 q
->rpm_status
= RPM_SUSPENDED
;
3506 q
->rpm_status
= RPM_ACTIVE
;
3507 pm_runtime_mark_last_busy(q
->dev
);
3509 spin_unlock_irq(q
->queue_lock
);
3511 EXPORT_SYMBOL(blk_post_runtime_suspend
);
3514 * blk_pre_runtime_resume - Pre runtime resume processing
3515 * @q: the queue of the device
3518 * Update the queue's runtime status to RESUMING in preparation for the
3519 * runtime resume of the device.
3521 * This function should be called near the start of the device's
3522 * runtime_resume callback.
3524 void blk_pre_runtime_resume(struct request_queue
*q
)
3529 spin_lock_irq(q
->queue_lock
);
3530 q
->rpm_status
= RPM_RESUMING
;
3531 spin_unlock_irq(q
->queue_lock
);
3533 EXPORT_SYMBOL(blk_pre_runtime_resume
);
3536 * blk_post_runtime_resume - Post runtime resume processing
3537 * @q: the queue of the device
3538 * @err: return value of the device's runtime_resume function
3541 * Update the queue's runtime status according to the return value of the
3542 * device's runtime_resume function. If it is successfully resumed, process
3543 * the requests that are queued into the device's queue when it is resuming
3544 * and then mark last busy and initiate autosuspend for it.
3546 * This function should be called near the end of the device's
3547 * runtime_resume callback.
3549 void blk_post_runtime_resume(struct request_queue
*q
, int err
)
3554 spin_lock_irq(q
->queue_lock
);
3556 q
->rpm_status
= RPM_ACTIVE
;
3558 pm_runtime_mark_last_busy(q
->dev
);
3559 pm_request_autosuspend(q
->dev
);
3561 q
->rpm_status
= RPM_SUSPENDED
;
3563 spin_unlock_irq(q
->queue_lock
);
3565 EXPORT_SYMBOL(blk_post_runtime_resume
);
3568 * blk_set_runtime_active - Force runtime status of the queue to be active
3569 * @q: the queue of the device
3571 * If the device is left runtime suspended during system suspend the resume
3572 * hook typically resumes the device and corrects runtime status
3573 * accordingly. However, that does not affect the queue runtime PM status
3574 * which is still "suspended". This prevents processing requests from the
3577 * This function can be used in driver's resume hook to correct queue
3578 * runtime PM status and re-enable peeking requests from the queue. It
3579 * should be called before first request is added to the queue.
3581 void blk_set_runtime_active(struct request_queue
*q
)
3583 spin_lock_irq(q
->queue_lock
);
3584 q
->rpm_status
= RPM_ACTIVE
;
3585 pm_runtime_mark_last_busy(q
->dev
);
3586 pm_request_autosuspend(q
->dev
);
3587 spin_unlock_irq(q
->queue_lock
);
3589 EXPORT_SYMBOL(blk_set_runtime_active
);
3592 int __init
blk_dev_init(void)
3594 BUILD_BUG_ON(REQ_OP_LAST
>= (1 << REQ_OP_BITS
));
3595 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3596 FIELD_SIZEOF(struct request
, cmd_flags
));
3597 BUILD_BUG_ON(REQ_OP_BITS
+ REQ_FLAG_BITS
> 8 *
3598 FIELD_SIZEOF(struct bio
, bi_opf
));
3600 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3601 kblockd_workqueue
= alloc_workqueue("kblockd",
3602 WQ_MEM_RECLAIM
| WQ_HIGHPRI
, 0);
3603 if (!kblockd_workqueue
)
3604 panic("Failed to create kblockd\n");
3606 request_cachep
= kmem_cache_create("blkdev_requests",
3607 sizeof(struct request
), 0, SLAB_PANIC
, NULL
);
3609 blk_requestq_cachep
= kmem_cache_create("request_queue",
3610 sizeof(struct request_queue
), 0, SLAB_PANIC
, NULL
);
3612 #ifdef CONFIG_DEBUG_FS
3613 blk_debugfs_root
= debugfs_create_dir("block", NULL
);