2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->rwsem,mapping->i_mutex (memory_failure, collect_procs_anon)
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
65 static struct kmem_cache
*anon_vma_cachep
;
66 static struct kmem_cache
*anon_vma_chain_cachep
;
68 static inline struct anon_vma
*anon_vma_alloc(void)
70 struct anon_vma
*anon_vma
;
72 anon_vma
= kmem_cache_alloc(anon_vma_cachep
, GFP_KERNEL
);
74 atomic_set(&anon_vma
->refcount
, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma
->root
= anon_vma
;
85 static inline void anon_vma_free(struct anon_vma
*anon_vma
)
87 VM_BUG_ON(atomic_read(&anon_vma
->refcount
));
90 * Synchronize against page_lock_anon_vma_read() such that
91 * we can safely hold the lock without the anon_vma getting
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * down_read_trylock() from page_lock_anon_vma_read(). This orders:
98 * page_lock_anon_vma_read() VS put_anon_vma()
99 * down_read_trylock() atomic_dec_and_test()
101 * atomic_read() rwsem_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
106 if (rwsem_is_locked(&anon_vma
->root
->rwsem
)) {
107 anon_vma_lock_write(anon_vma
);
108 anon_vma_unlock_write(anon_vma
);
111 kmem_cache_free(anon_vma_cachep
, anon_vma
);
114 static inline struct anon_vma_chain
*anon_vma_chain_alloc(gfp_t gfp
)
116 return kmem_cache_alloc(anon_vma_chain_cachep
, gfp
);
119 static void anon_vma_chain_free(struct anon_vma_chain
*anon_vma_chain
)
121 kmem_cache_free(anon_vma_chain_cachep
, anon_vma_chain
);
124 static void anon_vma_chain_link(struct vm_area_struct
*vma
,
125 struct anon_vma_chain
*avc
,
126 struct anon_vma
*anon_vma
)
129 avc
->anon_vma
= anon_vma
;
130 list_add(&avc
->same_vma
, &vma
->anon_vma_chain
);
131 anon_vma_interval_tree_insert(avc
, &anon_vma
->rb_root
);
135 * anon_vma_prepare - attach an anon_vma to a memory region
136 * @vma: the memory region in question
138 * This makes sure the memory mapping described by 'vma' has
139 * an 'anon_vma' attached to it, so that we can associate the
140 * anonymous pages mapped into it with that anon_vma.
142 * The common case will be that we already have one, but if
143 * not we either need to find an adjacent mapping that we
144 * can re-use the anon_vma from (very common when the only
145 * reason for splitting a vma has been mprotect()), or we
146 * allocate a new one.
148 * Anon-vma allocations are very subtle, because we may have
149 * optimistically looked up an anon_vma in page_lock_anon_vma_read()
150 * and that may actually touch the spinlock even in the newly
151 * allocated vma (it depends on RCU to make sure that the
152 * anon_vma isn't actually destroyed).
154 * As a result, we need to do proper anon_vma locking even
155 * for the new allocation. At the same time, we do not want
156 * to do any locking for the common case of already having
159 * This must be called with the mmap_sem held for reading.
161 int anon_vma_prepare(struct vm_area_struct
*vma
)
163 struct anon_vma
*anon_vma
= vma
->anon_vma
;
164 struct anon_vma_chain
*avc
;
167 if (unlikely(!anon_vma
)) {
168 struct mm_struct
*mm
= vma
->vm_mm
;
169 struct anon_vma
*allocated
;
171 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
175 anon_vma
= find_mergeable_anon_vma(vma
);
178 anon_vma
= anon_vma_alloc();
179 if (unlikely(!anon_vma
))
180 goto out_enomem_free_avc
;
181 allocated
= anon_vma
;
184 anon_vma_lock_write(anon_vma
);
185 /* page_table_lock to protect against threads */
186 spin_lock(&mm
->page_table_lock
);
187 if (likely(!vma
->anon_vma
)) {
188 vma
->anon_vma
= anon_vma
;
189 anon_vma_chain_link(vma
, avc
, anon_vma
);
193 spin_unlock(&mm
->page_table_lock
);
194 anon_vma_unlock_write(anon_vma
);
196 if (unlikely(allocated
))
197 put_anon_vma(allocated
);
199 anon_vma_chain_free(avc
);
204 anon_vma_chain_free(avc
);
210 * This is a useful helper function for locking the anon_vma root as
211 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
214 * Such anon_vma's should have the same root, so you'd expect to see
215 * just a single mutex_lock for the whole traversal.
217 static inline struct anon_vma
*lock_anon_vma_root(struct anon_vma
*root
, struct anon_vma
*anon_vma
)
219 struct anon_vma
*new_root
= anon_vma
->root
;
220 if (new_root
!= root
) {
221 if (WARN_ON_ONCE(root
))
222 up_write(&root
->rwsem
);
224 down_write(&root
->rwsem
);
229 static inline void unlock_anon_vma_root(struct anon_vma
*root
)
232 up_write(&root
->rwsem
);
236 * Attach the anon_vmas from src to dst.
237 * Returns 0 on success, -ENOMEM on failure.
239 int anon_vma_clone(struct vm_area_struct
*dst
, struct vm_area_struct
*src
)
241 struct anon_vma_chain
*avc
, *pavc
;
242 struct anon_vma
*root
= NULL
;
244 list_for_each_entry_reverse(pavc
, &src
->anon_vma_chain
, same_vma
) {
245 struct anon_vma
*anon_vma
;
247 avc
= anon_vma_chain_alloc(GFP_NOWAIT
| __GFP_NOWARN
);
248 if (unlikely(!avc
)) {
249 unlock_anon_vma_root(root
);
251 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
255 anon_vma
= pavc
->anon_vma
;
256 root
= lock_anon_vma_root(root
, anon_vma
);
257 anon_vma_chain_link(dst
, avc
, anon_vma
);
259 unlock_anon_vma_root(root
);
263 unlink_anon_vmas(dst
);
268 * Attach vma to its own anon_vma, as well as to the anon_vmas that
269 * the corresponding VMA in the parent process is attached to.
270 * Returns 0 on success, non-zero on failure.
272 int anon_vma_fork(struct vm_area_struct
*vma
, struct vm_area_struct
*pvma
)
274 struct anon_vma_chain
*avc
;
275 struct anon_vma
*anon_vma
;
277 /* Don't bother if the parent process has no anon_vma here. */
282 * First, attach the new VMA to the parent VMA's anon_vmas,
283 * so rmap can find non-COWed pages in child processes.
285 if (anon_vma_clone(vma
, pvma
))
288 /* Then add our own anon_vma. */
289 anon_vma
= anon_vma_alloc();
292 avc
= anon_vma_chain_alloc(GFP_KERNEL
);
294 goto out_error_free_anon_vma
;
297 * The root anon_vma's spinlock is the lock actually used when we
298 * lock any of the anon_vmas in this anon_vma tree.
300 anon_vma
->root
= pvma
->anon_vma
->root
;
302 * With refcounts, an anon_vma can stay around longer than the
303 * process it belongs to. The root anon_vma needs to be pinned until
304 * this anon_vma is freed, because the lock lives in the root.
306 get_anon_vma(anon_vma
->root
);
307 /* Mark this anon_vma as the one where our new (COWed) pages go. */
308 vma
->anon_vma
= anon_vma
;
309 anon_vma_lock_write(anon_vma
);
310 anon_vma_chain_link(vma
, avc
, anon_vma
);
311 anon_vma_unlock_write(anon_vma
);
315 out_error_free_anon_vma
:
316 put_anon_vma(anon_vma
);
318 unlink_anon_vmas(vma
);
322 void unlink_anon_vmas(struct vm_area_struct
*vma
)
324 struct anon_vma_chain
*avc
, *next
;
325 struct anon_vma
*root
= NULL
;
328 * Unlink each anon_vma chained to the VMA. This list is ordered
329 * from newest to oldest, ensuring the root anon_vma gets freed last.
331 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
332 struct anon_vma
*anon_vma
= avc
->anon_vma
;
334 root
= lock_anon_vma_root(root
, anon_vma
);
335 anon_vma_interval_tree_remove(avc
, &anon_vma
->rb_root
);
338 * Leave empty anon_vmas on the list - we'll need
339 * to free them outside the lock.
341 if (RB_EMPTY_ROOT(&anon_vma
->rb_root
))
344 list_del(&avc
->same_vma
);
345 anon_vma_chain_free(avc
);
347 unlock_anon_vma_root(root
);
350 * Iterate the list once more, it now only contains empty and unlinked
351 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
352 * needing to write-acquire the anon_vma->root->rwsem.
354 list_for_each_entry_safe(avc
, next
, &vma
->anon_vma_chain
, same_vma
) {
355 struct anon_vma
*anon_vma
= avc
->anon_vma
;
357 put_anon_vma(anon_vma
);
359 list_del(&avc
->same_vma
);
360 anon_vma_chain_free(avc
);
364 static void anon_vma_ctor(void *data
)
366 struct anon_vma
*anon_vma
= data
;
368 init_rwsem(&anon_vma
->rwsem
);
369 atomic_set(&anon_vma
->refcount
, 0);
370 anon_vma
->rb_root
= RB_ROOT
;
373 void __init
anon_vma_init(void)
375 anon_vma_cachep
= kmem_cache_create("anon_vma", sizeof(struct anon_vma
),
376 0, SLAB_DESTROY_BY_RCU
|SLAB_PANIC
, anon_vma_ctor
);
377 anon_vma_chain_cachep
= KMEM_CACHE(anon_vma_chain
, SLAB_PANIC
);
381 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
383 * Since there is no serialization what so ever against page_remove_rmap()
384 * the best this function can do is return a locked anon_vma that might
385 * have been relevant to this page.
387 * The page might have been remapped to a different anon_vma or the anon_vma
388 * returned may already be freed (and even reused).
390 * In case it was remapped to a different anon_vma, the new anon_vma will be a
391 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
392 * ensure that any anon_vma obtained from the page will still be valid for as
393 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
395 * All users of this function must be very careful when walking the anon_vma
396 * chain and verify that the page in question is indeed mapped in it
397 * [ something equivalent to page_mapped_in_vma() ].
399 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
400 * that the anon_vma pointer from page->mapping is valid if there is a
401 * mapcount, we can dereference the anon_vma after observing those.
403 struct anon_vma
*page_get_anon_vma(struct page
*page
)
405 struct anon_vma
*anon_vma
= NULL
;
406 unsigned long anon_mapping
;
409 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
410 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
412 if (!page_mapped(page
))
415 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
416 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
422 * If this page is still mapped, then its anon_vma cannot have been
423 * freed. But if it has been unmapped, we have no security against the
424 * anon_vma structure being freed and reused (for another anon_vma:
425 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
426 * above cannot corrupt).
428 if (!page_mapped(page
)) {
429 put_anon_vma(anon_vma
);
439 * Similar to page_get_anon_vma() except it locks the anon_vma.
441 * Its a little more complex as it tries to keep the fast path to a single
442 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
443 * reference like with page_get_anon_vma() and then block on the mutex.
445 struct anon_vma
*page_lock_anon_vma_read(struct page
*page
)
447 struct anon_vma
*anon_vma
= NULL
;
448 struct anon_vma
*root_anon_vma
;
449 unsigned long anon_mapping
;
452 anon_mapping
= (unsigned long) ACCESS_ONCE(page
->mapping
);
453 if ((anon_mapping
& PAGE_MAPPING_FLAGS
) != PAGE_MAPPING_ANON
)
455 if (!page_mapped(page
))
458 anon_vma
= (struct anon_vma
*) (anon_mapping
- PAGE_MAPPING_ANON
);
459 root_anon_vma
= ACCESS_ONCE(anon_vma
->root
);
460 if (down_read_trylock(&root_anon_vma
->rwsem
)) {
462 * If the page is still mapped, then this anon_vma is still
463 * its anon_vma, and holding the mutex ensures that it will
464 * not go away, see anon_vma_free().
466 if (!page_mapped(page
)) {
467 up_read(&root_anon_vma
->rwsem
);
473 /* trylock failed, we got to sleep */
474 if (!atomic_inc_not_zero(&anon_vma
->refcount
)) {
479 if (!page_mapped(page
)) {
480 put_anon_vma(anon_vma
);
485 /* we pinned the anon_vma, its safe to sleep */
487 anon_vma_lock_read(anon_vma
);
489 if (atomic_dec_and_test(&anon_vma
->refcount
)) {
491 * Oops, we held the last refcount, release the lock
492 * and bail -- can't simply use put_anon_vma() because
493 * we'll deadlock on the anon_vma_lock_write() recursion.
495 anon_vma_unlock_read(anon_vma
);
496 __put_anon_vma(anon_vma
);
507 void page_unlock_anon_vma_read(struct anon_vma
*anon_vma
)
509 anon_vma_unlock_read(anon_vma
);
513 * At what user virtual address is page expected in @vma?
515 static inline unsigned long
516 __vma_address(struct page
*page
, struct vm_area_struct
*vma
)
518 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
520 if (unlikely(is_vm_hugetlb_page(vma
)))
521 pgoff
= page
->index
<< huge_page_order(page_hstate(page
));
523 return vma
->vm_start
+ ((pgoff
- vma
->vm_pgoff
) << PAGE_SHIFT
);
527 vma_address(struct page
*page
, struct vm_area_struct
*vma
)
529 unsigned long address
= __vma_address(page
, vma
);
531 /* page should be within @vma mapping range */
532 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
538 * At what user virtual address is page expected in vma?
539 * Caller should check the page is actually part of the vma.
541 unsigned long page_address_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
543 unsigned long address
;
544 if (PageAnon(page
)) {
545 struct anon_vma
*page__anon_vma
= page_anon_vma(page
);
547 * Note: swapoff's unuse_vma() is more efficient with this
548 * check, and needs it to match anon_vma when KSM is active.
550 if (!vma
->anon_vma
|| !page__anon_vma
||
551 vma
->anon_vma
->root
!= page__anon_vma
->root
)
553 } else if (page
->mapping
&& !(vma
->vm_flags
& VM_NONLINEAR
)) {
555 vma
->vm_file
->f_mapping
!= page
->mapping
)
559 address
= __vma_address(page
, vma
);
560 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
565 pmd_t
*mm_find_pmd(struct mm_struct
*mm
, unsigned long address
)
571 pgd
= pgd_offset(mm
, address
);
572 if (!pgd_present(*pgd
))
575 pud
= pud_offset(pgd
, address
);
576 if (!pud_present(*pud
))
579 pmd
= pmd_offset(pud
, address
);
580 if (!pmd_present(*pmd
))
587 * Check that @page is mapped at @address into @mm.
589 * If @sync is false, page_check_address may perform a racy check to avoid
590 * the page table lock when the pte is not present (helpful when reclaiming
591 * highly shared pages).
593 * On success returns with pte mapped and locked.
595 pte_t
*__page_check_address(struct page
*page
, struct mm_struct
*mm
,
596 unsigned long address
, spinlock_t
**ptlp
, int sync
)
602 if (unlikely(PageHuge(page
))) {
603 pte
= huge_pte_offset(mm
, address
);
604 ptl
= huge_pte_lockptr(page_hstate(page
), mm
, pte
);
608 pmd
= mm_find_pmd(mm
, address
);
612 if (pmd_trans_huge(*pmd
))
615 pte
= pte_offset_map(pmd
, address
);
616 /* Make a quick check before getting the lock */
617 if (!sync
&& !pte_present(*pte
)) {
622 ptl
= pte_lockptr(mm
, pmd
);
625 if (pte_present(*pte
) && page_to_pfn(page
) == pte_pfn(*pte
)) {
629 pte_unmap_unlock(pte
, ptl
);
634 * page_mapped_in_vma - check whether a page is really mapped in a VMA
635 * @page: the page to test
636 * @vma: the VMA to test
638 * Returns 1 if the page is mapped into the page tables of the VMA, 0
639 * if the page is not mapped into the page tables of this VMA. Only
640 * valid for normal file or anonymous VMAs.
642 int page_mapped_in_vma(struct page
*page
, struct vm_area_struct
*vma
)
644 unsigned long address
;
648 address
= __vma_address(page
, vma
);
649 if (unlikely(address
< vma
->vm_start
|| address
>= vma
->vm_end
))
651 pte
= page_check_address(page
, vma
->vm_mm
, address
, &ptl
, 1);
652 if (!pte
) /* the page is not in this mm */
654 pte_unmap_unlock(pte
, ptl
);
660 * Subfunctions of page_referenced: page_referenced_one called
661 * repeatedly from either page_referenced_anon or page_referenced_file.
663 int page_referenced_one(struct page
*page
, struct vm_area_struct
*vma
,
664 unsigned long address
, unsigned int *mapcount
,
665 unsigned long *vm_flags
)
667 struct mm_struct
*mm
= vma
->vm_mm
;
671 if (unlikely(PageTransHuge(page
))) {
675 * rmap might return false positives; we must filter
676 * these out using page_check_address_pmd().
678 pmd
= page_check_address_pmd(page
, mm
, address
,
679 PAGE_CHECK_ADDRESS_PMD_FLAG
, &ptl
);
683 if (vma
->vm_flags
& VM_LOCKED
) {
685 *mapcount
= 0; /* break early from loop */
686 *vm_flags
|= VM_LOCKED
;
690 /* go ahead even if the pmd is pmd_trans_splitting() */
691 if (pmdp_clear_flush_young_notify(vma
, address
, pmd
))
698 * rmap might return false positives; we must filter
699 * these out using page_check_address().
701 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
705 if (vma
->vm_flags
& VM_LOCKED
) {
706 pte_unmap_unlock(pte
, ptl
);
707 *mapcount
= 0; /* break early from loop */
708 *vm_flags
|= VM_LOCKED
;
712 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
714 * Don't treat a reference through a sequentially read
715 * mapping as such. If the page has been used in
716 * another mapping, we will catch it; if this other
717 * mapping is already gone, the unmap path will have
718 * set PG_referenced or activated the page.
720 if (likely(!(vma
->vm_flags
& VM_SEQ_READ
)))
723 pte_unmap_unlock(pte
, ptl
);
729 *vm_flags
|= vma
->vm_flags
;
734 static int page_referenced_anon(struct page
*page
,
735 struct mem_cgroup
*memcg
,
736 unsigned long *vm_flags
)
738 unsigned int mapcount
;
739 struct anon_vma
*anon_vma
;
741 struct anon_vma_chain
*avc
;
744 anon_vma
= page_lock_anon_vma_read(page
);
748 mapcount
= page_mapcount(page
);
749 pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
750 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
751 struct vm_area_struct
*vma
= avc
->vma
;
752 unsigned long address
= vma_address(page
, vma
);
754 * If we are reclaiming on behalf of a cgroup, skip
755 * counting on behalf of references from different
758 if (memcg
&& !mm_match_cgroup(vma
->vm_mm
, memcg
))
760 referenced
+= page_referenced_one(page
, vma
, address
,
761 &mapcount
, vm_flags
);
766 page_unlock_anon_vma_read(anon_vma
);
771 * page_referenced_file - referenced check for object-based rmap
772 * @page: the page we're checking references on.
773 * @memcg: target memory control group
774 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
776 * For an object-based mapped page, find all the places it is mapped and
777 * check/clear the referenced flag. This is done by following the page->mapping
778 * pointer, then walking the chain of vmas it holds. It returns the number
779 * of references it found.
781 * This function is only called from page_referenced for object-based pages.
783 static int page_referenced_file(struct page
*page
,
784 struct mem_cgroup
*memcg
,
785 unsigned long *vm_flags
)
787 unsigned int mapcount
;
788 struct address_space
*mapping
= page
->mapping
;
789 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
790 struct vm_area_struct
*vma
;
794 * The caller's checks on page->mapping and !PageAnon have made
795 * sure that this is a file page: the check for page->mapping
796 * excludes the case just before it gets set on an anon page.
798 BUG_ON(PageAnon(page
));
801 * The page lock not only makes sure that page->mapping cannot
802 * suddenly be NULLified by truncation, it makes sure that the
803 * structure at mapping cannot be freed and reused yet,
804 * so we can safely take mapping->i_mmap_mutex.
806 BUG_ON(!PageLocked(page
));
808 mutex_lock(&mapping
->i_mmap_mutex
);
811 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
812 * is more likely to be accurate if we note it after spinning.
814 mapcount
= page_mapcount(page
);
816 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
817 unsigned long address
= vma_address(page
, vma
);
819 * If we are reclaiming on behalf of a cgroup, skip
820 * counting on behalf of references from different
823 if (memcg
&& !mm_match_cgroup(vma
->vm_mm
, memcg
))
825 referenced
+= page_referenced_one(page
, vma
, address
,
826 &mapcount
, vm_flags
);
831 mutex_unlock(&mapping
->i_mmap_mutex
);
836 * page_referenced - test if the page was referenced
837 * @page: the page to test
838 * @is_locked: caller holds lock on the page
839 * @memcg: target memory cgroup
840 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
842 * Quick test_and_clear_referenced for all mappings to a page,
843 * returns the number of ptes which referenced the page.
845 int page_referenced(struct page
*page
,
847 struct mem_cgroup
*memcg
,
848 unsigned long *vm_flags
)
854 if (page_mapped(page
) && page_rmapping(page
)) {
855 if (!is_locked
&& (!PageAnon(page
) || PageKsm(page
))) {
856 we_locked
= trylock_page(page
);
862 if (unlikely(PageKsm(page
)))
863 referenced
+= page_referenced_ksm(page
, memcg
,
865 else if (PageAnon(page
))
866 referenced
+= page_referenced_anon(page
, memcg
,
868 else if (page
->mapping
)
869 referenced
+= page_referenced_file(page
, memcg
,
878 static int page_mkclean_one(struct page
*page
, struct vm_area_struct
*vma
,
879 unsigned long address
)
881 struct mm_struct
*mm
= vma
->vm_mm
;
886 pte
= page_check_address(page
, mm
, address
, &ptl
, 1);
890 if (pte_dirty(*pte
) || pte_write(*pte
)) {
893 flush_cache_page(vma
, address
, pte_pfn(*pte
));
894 entry
= ptep_clear_flush(vma
, address
, pte
);
895 entry
= pte_wrprotect(entry
);
896 entry
= pte_mkclean(entry
);
897 set_pte_at(mm
, address
, pte
, entry
);
901 pte_unmap_unlock(pte
, ptl
);
904 mmu_notifier_invalidate_page(mm
, address
);
909 static int page_mkclean_file(struct address_space
*mapping
, struct page
*page
)
911 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
912 struct vm_area_struct
*vma
;
915 BUG_ON(PageAnon(page
));
917 mutex_lock(&mapping
->i_mmap_mutex
);
918 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
919 if (vma
->vm_flags
& VM_SHARED
) {
920 unsigned long address
= vma_address(page
, vma
);
921 ret
+= page_mkclean_one(page
, vma
, address
);
924 mutex_unlock(&mapping
->i_mmap_mutex
);
928 int page_mkclean(struct page
*page
)
932 BUG_ON(!PageLocked(page
));
934 if (page_mapped(page
)) {
935 struct address_space
*mapping
= page_mapping(page
);
937 ret
= page_mkclean_file(mapping
, page
);
942 EXPORT_SYMBOL_GPL(page_mkclean
);
945 * page_move_anon_rmap - move a page to our anon_vma
946 * @page: the page to move to our anon_vma
947 * @vma: the vma the page belongs to
948 * @address: the user virtual address mapped
950 * When a page belongs exclusively to one process after a COW event,
951 * that page can be moved into the anon_vma that belongs to just that
952 * process, so the rmap code will not search the parent or sibling
955 void page_move_anon_rmap(struct page
*page
,
956 struct vm_area_struct
*vma
, unsigned long address
)
958 struct anon_vma
*anon_vma
= vma
->anon_vma
;
960 VM_BUG_ON(!PageLocked(page
));
961 VM_BUG_ON(!anon_vma
);
962 VM_BUG_ON(page
->index
!= linear_page_index(vma
, address
));
964 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
965 page
->mapping
= (struct address_space
*) anon_vma
;
969 * __page_set_anon_rmap - set up new anonymous rmap
970 * @page: Page to add to rmap
971 * @vma: VM area to add page to.
972 * @address: User virtual address of the mapping
973 * @exclusive: the page is exclusively owned by the current process
975 static void __page_set_anon_rmap(struct page
*page
,
976 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
978 struct anon_vma
*anon_vma
= vma
->anon_vma
;
986 * If the page isn't exclusively mapped into this vma,
987 * we must use the _oldest_ possible anon_vma for the
991 anon_vma
= anon_vma
->root
;
993 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
994 page
->mapping
= (struct address_space
*) anon_vma
;
995 page
->index
= linear_page_index(vma
, address
);
999 * __page_check_anon_rmap - sanity check anonymous rmap addition
1000 * @page: the page to add the mapping to
1001 * @vma: the vm area in which the mapping is added
1002 * @address: the user virtual address mapped
1004 static void __page_check_anon_rmap(struct page
*page
,
1005 struct vm_area_struct
*vma
, unsigned long address
)
1007 #ifdef CONFIG_DEBUG_VM
1009 * The page's anon-rmap details (mapping and index) are guaranteed to
1010 * be set up correctly at this point.
1012 * We have exclusion against page_add_anon_rmap because the caller
1013 * always holds the page locked, except if called from page_dup_rmap,
1014 * in which case the page is already known to be setup.
1016 * We have exclusion against page_add_new_anon_rmap because those pages
1017 * are initially only visible via the pagetables, and the pte is locked
1018 * over the call to page_add_new_anon_rmap.
1020 BUG_ON(page_anon_vma(page
)->root
!= vma
->anon_vma
->root
);
1021 BUG_ON(page
->index
!= linear_page_index(vma
, address
));
1026 * page_add_anon_rmap - add pte mapping to an anonymous page
1027 * @page: the page to add the mapping to
1028 * @vma: the vm area in which the mapping is added
1029 * @address: the user virtual address mapped
1031 * The caller needs to hold the pte lock, and the page must be locked in
1032 * the anon_vma case: to serialize mapping,index checking after setting,
1033 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1034 * (but PageKsm is never downgraded to PageAnon).
1036 void page_add_anon_rmap(struct page
*page
,
1037 struct vm_area_struct
*vma
, unsigned long address
)
1039 do_page_add_anon_rmap(page
, vma
, address
, 0);
1043 * Special version of the above for do_swap_page, which often runs
1044 * into pages that are exclusively owned by the current process.
1045 * Everybody else should continue to use page_add_anon_rmap above.
1047 void do_page_add_anon_rmap(struct page
*page
,
1048 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1050 int first
= atomic_inc_and_test(&page
->_mapcount
);
1052 if (PageTransHuge(page
))
1053 __inc_zone_page_state(page
,
1054 NR_ANON_TRANSPARENT_HUGEPAGES
);
1055 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1056 hpage_nr_pages(page
));
1058 if (unlikely(PageKsm(page
)))
1061 VM_BUG_ON(!PageLocked(page
));
1062 /* address might be in next vma when migration races vma_adjust */
1064 __page_set_anon_rmap(page
, vma
, address
, exclusive
);
1066 __page_check_anon_rmap(page
, vma
, address
);
1070 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1071 * @page: the page to add the mapping to
1072 * @vma: the vm area in which the mapping is added
1073 * @address: the user virtual address mapped
1075 * Same as page_add_anon_rmap but must only be called on *new* pages.
1076 * This means the inc-and-test can be bypassed.
1077 * Page does not have to be locked.
1079 void page_add_new_anon_rmap(struct page
*page
,
1080 struct vm_area_struct
*vma
, unsigned long address
)
1082 VM_BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1083 SetPageSwapBacked(page
);
1084 atomic_set(&page
->_mapcount
, 0); /* increment count (starts at -1) */
1085 if (PageTransHuge(page
))
1086 __inc_zone_page_state(page
, NR_ANON_TRANSPARENT_HUGEPAGES
);
1087 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1088 hpage_nr_pages(page
));
1089 __page_set_anon_rmap(page
, vma
, address
, 1);
1090 if (!mlocked_vma_newpage(vma
, page
)) {
1091 SetPageActive(page
);
1092 lru_cache_add(page
);
1094 add_page_to_unevictable_list(page
);
1098 * page_add_file_rmap - add pte mapping to a file page
1099 * @page: the page to add the mapping to
1101 * The caller needs to hold the pte lock.
1103 void page_add_file_rmap(struct page
*page
)
1106 unsigned long flags
;
1108 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1109 if (atomic_inc_and_test(&page
->_mapcount
)) {
1110 __inc_zone_page_state(page
, NR_FILE_MAPPED
);
1111 mem_cgroup_inc_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1113 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1117 * page_remove_rmap - take down pte mapping from a page
1118 * @page: page to remove mapping from
1120 * The caller needs to hold the pte lock.
1122 void page_remove_rmap(struct page
*page
)
1124 bool anon
= PageAnon(page
);
1126 unsigned long flags
;
1129 * The anon case has no mem_cgroup page_stat to update; but may
1130 * uncharge_page() below, where the lock ordering can deadlock if
1131 * we hold the lock against page_stat move: so avoid it on anon.
1134 mem_cgroup_begin_update_page_stat(page
, &locked
, &flags
);
1136 /* page still mapped by someone else? */
1137 if (!atomic_add_negative(-1, &page
->_mapcount
))
1141 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1142 * and not charged by memcg for now.
1144 if (unlikely(PageHuge(page
)))
1147 mem_cgroup_uncharge_page(page
);
1148 if (PageTransHuge(page
))
1149 __dec_zone_page_state(page
,
1150 NR_ANON_TRANSPARENT_HUGEPAGES
);
1151 __mod_zone_page_state(page_zone(page
), NR_ANON_PAGES
,
1152 -hpage_nr_pages(page
));
1154 __dec_zone_page_state(page
, NR_FILE_MAPPED
);
1155 mem_cgroup_dec_page_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
);
1156 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1158 if (unlikely(PageMlocked(page
)))
1159 clear_page_mlock(page
);
1161 * It would be tidy to reset the PageAnon mapping here,
1162 * but that might overwrite a racing page_add_anon_rmap
1163 * which increments mapcount after us but sets mapping
1164 * before us: so leave the reset to free_hot_cold_page,
1165 * and remember that it's only reliable while mapped.
1166 * Leaving it set also helps swapoff to reinstate ptes
1167 * faster for those pages still in swapcache.
1172 mem_cgroup_end_update_page_stat(page
, &locked
, &flags
);
1176 * Subfunctions of try_to_unmap: try_to_unmap_one called
1177 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1179 int try_to_unmap_one(struct page
*page
, struct vm_area_struct
*vma
,
1180 unsigned long address
, enum ttu_flags flags
)
1182 struct mm_struct
*mm
= vma
->vm_mm
;
1186 int ret
= SWAP_AGAIN
;
1188 pte
= page_check_address(page
, mm
, address
, &ptl
, 0);
1193 * If the page is mlock()d, we cannot swap it out.
1194 * If it's recently referenced (perhaps page_referenced
1195 * skipped over this mm) then we should reactivate it.
1197 if (!(flags
& TTU_IGNORE_MLOCK
)) {
1198 if (vma
->vm_flags
& VM_LOCKED
)
1201 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1204 if (!(flags
& TTU_IGNORE_ACCESS
)) {
1205 if (ptep_clear_flush_young_notify(vma
, address
, pte
)) {
1211 /* Nuke the page table entry. */
1212 flush_cache_page(vma
, address
, page_to_pfn(page
));
1213 pteval
= ptep_clear_flush(vma
, address
, pte
);
1215 /* Move the dirty bit to the physical page now the pte is gone. */
1216 if (pte_dirty(pteval
))
1217 set_page_dirty(page
);
1219 /* Update high watermark before we lower rss */
1220 update_hiwater_rss(mm
);
1222 if (PageHWPoison(page
) && !(flags
& TTU_IGNORE_HWPOISON
)) {
1223 if (!PageHuge(page
)) {
1225 dec_mm_counter(mm
, MM_ANONPAGES
);
1227 dec_mm_counter(mm
, MM_FILEPAGES
);
1229 set_pte_at(mm
, address
, pte
,
1230 swp_entry_to_pte(make_hwpoison_entry(page
)));
1231 } else if (PageAnon(page
)) {
1232 swp_entry_t entry
= { .val
= page_private(page
) };
1235 if (PageSwapCache(page
)) {
1237 * Store the swap location in the pte.
1238 * See handle_pte_fault() ...
1240 if (swap_duplicate(entry
) < 0) {
1241 set_pte_at(mm
, address
, pte
, pteval
);
1245 if (list_empty(&mm
->mmlist
)) {
1246 spin_lock(&mmlist_lock
);
1247 if (list_empty(&mm
->mmlist
))
1248 list_add(&mm
->mmlist
, &init_mm
.mmlist
);
1249 spin_unlock(&mmlist_lock
);
1251 dec_mm_counter(mm
, MM_ANONPAGES
);
1252 inc_mm_counter(mm
, MM_SWAPENTS
);
1253 } else if (IS_ENABLED(CONFIG_MIGRATION
)) {
1255 * Store the pfn of the page in a special migration
1256 * pte. do_swap_page() will wait until the migration
1257 * pte is removed and then restart fault handling.
1259 BUG_ON(TTU_ACTION(flags
) != TTU_MIGRATION
);
1260 entry
= make_migration_entry(page
, pte_write(pteval
));
1262 swp_pte
= swp_entry_to_pte(entry
);
1263 if (pte_soft_dirty(pteval
))
1264 swp_pte
= pte_swp_mksoft_dirty(swp_pte
);
1265 set_pte_at(mm
, address
, pte
, swp_pte
);
1266 BUG_ON(pte_file(*pte
));
1267 } else if (IS_ENABLED(CONFIG_MIGRATION
) &&
1268 (TTU_ACTION(flags
) == TTU_MIGRATION
)) {
1269 /* Establish migration entry for a file page */
1271 entry
= make_migration_entry(page
, pte_write(pteval
));
1272 set_pte_at(mm
, address
, pte
, swp_entry_to_pte(entry
));
1274 dec_mm_counter(mm
, MM_FILEPAGES
);
1276 page_remove_rmap(page
);
1277 page_cache_release(page
);
1280 pte_unmap_unlock(pte
, ptl
);
1281 if (ret
!= SWAP_FAIL
)
1282 mmu_notifier_invalidate_page(mm
, address
);
1287 pte_unmap_unlock(pte
, ptl
);
1291 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1292 * unstable result and race. Plus, We can't wait here because
1293 * we now hold anon_vma->rwsem or mapping->i_mmap_mutex.
1294 * if trylock failed, the page remain in evictable lru and later
1295 * vmscan could retry to move the page to unevictable lru if the
1296 * page is actually mlocked.
1298 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1299 if (vma
->vm_flags
& VM_LOCKED
) {
1300 mlock_vma_page(page
);
1303 up_read(&vma
->vm_mm
->mmap_sem
);
1309 * objrmap doesn't work for nonlinear VMAs because the assumption that
1310 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1311 * Consequently, given a particular page and its ->index, we cannot locate the
1312 * ptes which are mapping that page without an exhaustive linear search.
1314 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1315 * maps the file to which the target page belongs. The ->vm_private_data field
1316 * holds the current cursor into that scan. Successive searches will circulate
1317 * around the vma's virtual address space.
1319 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1320 * more scanning pressure is placed against them as well. Eventually pages
1321 * will become fully unmapped and are eligible for eviction.
1323 * For very sparsely populated VMAs this is a little inefficient - chances are
1324 * there there won't be many ptes located within the scan cluster. In this case
1325 * maybe we could scan further - to the end of the pte page, perhaps.
1327 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1328 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1329 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1330 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1332 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1333 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1335 static int try_to_unmap_cluster(unsigned long cursor
, unsigned int *mapcount
,
1336 struct vm_area_struct
*vma
, struct page
*check_page
)
1338 struct mm_struct
*mm
= vma
->vm_mm
;
1344 unsigned long address
;
1345 unsigned long mmun_start
; /* For mmu_notifiers */
1346 unsigned long mmun_end
; /* For mmu_notifiers */
1348 int ret
= SWAP_AGAIN
;
1351 address
= (vma
->vm_start
+ cursor
) & CLUSTER_MASK
;
1352 end
= address
+ CLUSTER_SIZE
;
1353 if (address
< vma
->vm_start
)
1354 address
= vma
->vm_start
;
1355 if (end
> vma
->vm_end
)
1358 pmd
= mm_find_pmd(mm
, address
);
1362 mmun_start
= address
;
1364 mmu_notifier_invalidate_range_start(mm
, mmun_start
, mmun_end
);
1367 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1368 * keep the sem while scanning the cluster for mlocking pages.
1370 if (down_read_trylock(&vma
->vm_mm
->mmap_sem
)) {
1371 locked_vma
= (vma
->vm_flags
& VM_LOCKED
);
1373 up_read(&vma
->vm_mm
->mmap_sem
); /* don't need it */
1376 pte
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1378 /* Update high watermark before we lower rss */
1379 update_hiwater_rss(mm
);
1381 for (; address
< end
; pte
++, address
+= PAGE_SIZE
) {
1382 if (!pte_present(*pte
))
1384 page
= vm_normal_page(vma
, address
, *pte
);
1385 BUG_ON(!page
|| PageAnon(page
));
1388 mlock_vma_page(page
); /* no-op if already mlocked */
1389 if (page
== check_page
)
1391 continue; /* don't unmap */
1394 if (ptep_clear_flush_young_notify(vma
, address
, pte
))
1397 /* Nuke the page table entry. */
1398 flush_cache_page(vma
, address
, pte_pfn(*pte
));
1399 pteval
= ptep_clear_flush(vma
, address
, pte
);
1401 /* If nonlinear, store the file page offset in the pte. */
1402 if (page
->index
!= linear_page_index(vma
, address
)) {
1403 pte_t ptfile
= pgoff_to_pte(page
->index
);
1404 if (pte_soft_dirty(pteval
))
1405 pte_file_mksoft_dirty(ptfile
);
1406 set_pte_at(mm
, address
, pte
, ptfile
);
1409 /* Move the dirty bit to the physical page now the pte is gone. */
1410 if (pte_dirty(pteval
))
1411 set_page_dirty(page
);
1413 page_remove_rmap(page
);
1414 page_cache_release(page
);
1415 dec_mm_counter(mm
, MM_FILEPAGES
);
1418 pte_unmap_unlock(pte
- 1, ptl
);
1419 mmu_notifier_invalidate_range_end(mm
, mmun_start
, mmun_end
);
1421 up_read(&vma
->vm_mm
->mmap_sem
);
1425 bool is_vma_temporary_stack(struct vm_area_struct
*vma
)
1427 int maybe_stack
= vma
->vm_flags
& (VM_GROWSDOWN
| VM_GROWSUP
);
1432 if ((vma
->vm_flags
& VM_STACK_INCOMPLETE_SETUP
) ==
1433 VM_STACK_INCOMPLETE_SETUP
)
1440 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1442 * @page: the page to unmap/unlock
1443 * @flags: action and flags
1445 * Find all the mappings of a page using the mapping pointer and the vma chains
1446 * contained in the anon_vma struct it points to.
1448 * This function is only called from try_to_unmap/try_to_munlock for
1450 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1451 * where the page was found will be held for write. So, we won't recheck
1452 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1455 static int try_to_unmap_anon(struct page
*page
, enum ttu_flags flags
)
1457 struct anon_vma
*anon_vma
;
1459 struct anon_vma_chain
*avc
;
1460 int ret
= SWAP_AGAIN
;
1462 anon_vma
= page_lock_anon_vma_read(page
);
1466 pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1467 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1468 struct vm_area_struct
*vma
= avc
->vma
;
1469 unsigned long address
;
1472 * During exec, a temporary VMA is setup and later moved.
1473 * The VMA is moved under the anon_vma lock but not the
1474 * page tables leading to a race where migration cannot
1475 * find the migration ptes. Rather than increasing the
1476 * locking requirements of exec(), migration skips
1477 * temporary VMAs until after exec() completes.
1479 if (IS_ENABLED(CONFIG_MIGRATION
) && (flags
& TTU_MIGRATION
) &&
1480 is_vma_temporary_stack(vma
))
1483 address
= vma_address(page
, vma
);
1484 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1485 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1489 page_unlock_anon_vma_read(anon_vma
);
1494 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1495 * @page: the page to unmap/unlock
1496 * @flags: action and flags
1498 * Find all the mappings of a page using the mapping pointer and the vma chains
1499 * contained in the address_space struct it points to.
1501 * This function is only called from try_to_unmap/try_to_munlock for
1502 * object-based pages.
1503 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1504 * where the page was found will be held for write. So, we won't recheck
1505 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1508 static int try_to_unmap_file(struct page
*page
, enum ttu_flags flags
)
1510 struct address_space
*mapping
= page
->mapping
;
1511 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1512 struct vm_area_struct
*vma
;
1513 int ret
= SWAP_AGAIN
;
1514 unsigned long cursor
;
1515 unsigned long max_nl_cursor
= 0;
1516 unsigned long max_nl_size
= 0;
1517 unsigned int mapcount
;
1520 pgoff
= page
->index
<< compound_order(page
);
1522 mutex_lock(&mapping
->i_mmap_mutex
);
1523 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1524 unsigned long address
= vma_address(page
, vma
);
1525 ret
= try_to_unmap_one(page
, vma
, address
, flags
);
1526 if (ret
!= SWAP_AGAIN
|| !page_mapped(page
))
1530 if (list_empty(&mapping
->i_mmap_nonlinear
))
1534 * We don't bother to try to find the munlocked page in nonlinears.
1535 * It's costly. Instead, later, page reclaim logic may call
1536 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1538 if (TTU_ACTION(flags
) == TTU_MUNLOCK
)
1541 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1543 cursor
= (unsigned long) vma
->vm_private_data
;
1544 if (cursor
> max_nl_cursor
)
1545 max_nl_cursor
= cursor
;
1546 cursor
= vma
->vm_end
- vma
->vm_start
;
1547 if (cursor
> max_nl_size
)
1548 max_nl_size
= cursor
;
1551 if (max_nl_size
== 0) { /* all nonlinears locked or reserved ? */
1557 * We don't try to search for this page in the nonlinear vmas,
1558 * and page_referenced wouldn't have found it anyway. Instead
1559 * just walk the nonlinear vmas trying to age and unmap some.
1560 * The mapcount of the page we came in with is irrelevant,
1561 * but even so use it as a guide to how hard we should try?
1563 mapcount
= page_mapcount(page
);
1568 max_nl_size
= (max_nl_size
+ CLUSTER_SIZE
- 1) & CLUSTER_MASK
;
1569 if (max_nl_cursor
== 0)
1570 max_nl_cursor
= CLUSTER_SIZE
;
1573 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
,
1575 cursor
= (unsigned long) vma
->vm_private_data
;
1576 while ( cursor
< max_nl_cursor
&&
1577 cursor
< vma
->vm_end
- vma
->vm_start
) {
1578 if (try_to_unmap_cluster(cursor
, &mapcount
,
1579 vma
, page
) == SWAP_MLOCK
)
1581 cursor
+= CLUSTER_SIZE
;
1582 vma
->vm_private_data
= (void *) cursor
;
1583 if ((int)mapcount
<= 0)
1586 vma
->vm_private_data
= (void *) max_nl_cursor
;
1589 max_nl_cursor
+= CLUSTER_SIZE
;
1590 } while (max_nl_cursor
<= max_nl_size
);
1593 * Don't loop forever (perhaps all the remaining pages are
1594 * in locked vmas). Reset cursor on all unreserved nonlinear
1595 * vmas, now forgetting on which ones it had fallen behind.
1597 list_for_each_entry(vma
, &mapping
->i_mmap_nonlinear
, shared
.nonlinear
)
1598 vma
->vm_private_data
= NULL
;
1600 mutex_unlock(&mapping
->i_mmap_mutex
);
1605 * try_to_unmap - try to remove all page table mappings to a page
1606 * @page: the page to get unmapped
1607 * @flags: action and flags
1609 * Tries to remove all the page table entries which are mapping this
1610 * page, used in the pageout path. Caller must hold the page lock.
1611 * Return values are:
1613 * SWAP_SUCCESS - we succeeded in removing all mappings
1614 * SWAP_AGAIN - we missed a mapping, try again later
1615 * SWAP_FAIL - the page is unswappable
1616 * SWAP_MLOCK - page is mlocked.
1618 int try_to_unmap(struct page
*page
, enum ttu_flags flags
)
1622 BUG_ON(!PageLocked(page
));
1623 VM_BUG_ON(!PageHuge(page
) && PageTransHuge(page
));
1625 if (unlikely(PageKsm(page
)))
1626 ret
= try_to_unmap_ksm(page
, flags
);
1627 else if (PageAnon(page
))
1628 ret
= try_to_unmap_anon(page
, flags
);
1630 ret
= try_to_unmap_file(page
, flags
);
1631 if (ret
!= SWAP_MLOCK
&& !page_mapped(page
))
1637 * try_to_munlock - try to munlock a page
1638 * @page: the page to be munlocked
1640 * Called from munlock code. Checks all of the VMAs mapping the page
1641 * to make sure nobody else has this page mlocked. The page will be
1642 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1644 * Return values are:
1646 * SWAP_AGAIN - no vma is holding page mlocked, or,
1647 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1648 * SWAP_FAIL - page cannot be located at present
1649 * SWAP_MLOCK - page is now mlocked.
1651 int try_to_munlock(struct page
*page
)
1653 VM_BUG_ON(!PageLocked(page
) || PageLRU(page
));
1655 if (unlikely(PageKsm(page
)))
1656 return try_to_unmap_ksm(page
, TTU_MUNLOCK
);
1657 else if (PageAnon(page
))
1658 return try_to_unmap_anon(page
, TTU_MUNLOCK
);
1660 return try_to_unmap_file(page
, TTU_MUNLOCK
);
1663 void __put_anon_vma(struct anon_vma
*anon_vma
)
1665 struct anon_vma
*root
= anon_vma
->root
;
1667 if (root
!= anon_vma
&& atomic_dec_and_test(&root
->refcount
))
1668 anon_vma_free(root
);
1670 anon_vma_free(anon_vma
);
1673 #ifdef CONFIG_MIGRATION
1675 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1676 * Called by migrate.c to remove migration ptes, but might be used more later.
1678 static int rmap_walk_anon(struct page
*page
, int (*rmap_one
)(struct page
*,
1679 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1681 struct anon_vma
*anon_vma
;
1682 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1683 struct anon_vma_chain
*avc
;
1684 int ret
= SWAP_AGAIN
;
1687 * Note: remove_migration_ptes() cannot use page_lock_anon_vma_read()
1688 * because that depends on page_mapped(); but not all its usages
1689 * are holding mmap_sem. Users without mmap_sem are required to
1690 * take a reference count to prevent the anon_vma disappearing
1692 anon_vma
= page_anon_vma(page
);
1695 anon_vma_lock_read(anon_vma
);
1696 anon_vma_interval_tree_foreach(avc
, &anon_vma
->rb_root
, pgoff
, pgoff
) {
1697 struct vm_area_struct
*vma
= avc
->vma
;
1698 unsigned long address
= vma_address(page
, vma
);
1699 ret
= rmap_one(page
, vma
, address
, arg
);
1700 if (ret
!= SWAP_AGAIN
)
1703 anon_vma_unlock_read(anon_vma
);
1707 static int rmap_walk_file(struct page
*page
, int (*rmap_one
)(struct page
*,
1708 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1710 struct address_space
*mapping
= page
->mapping
;
1711 pgoff_t pgoff
= page
->index
<< (PAGE_CACHE_SHIFT
- PAGE_SHIFT
);
1712 struct vm_area_struct
*vma
;
1713 int ret
= SWAP_AGAIN
;
1717 mutex_lock(&mapping
->i_mmap_mutex
);
1718 vma_interval_tree_foreach(vma
, &mapping
->i_mmap
, pgoff
, pgoff
) {
1719 unsigned long address
= vma_address(page
, vma
);
1720 ret
= rmap_one(page
, vma
, address
, arg
);
1721 if (ret
!= SWAP_AGAIN
)
1725 * No nonlinear handling: being always shared, nonlinear vmas
1726 * never contain migration ptes. Decide what to do about this
1727 * limitation to linear when we need rmap_walk() on nonlinear.
1729 mutex_unlock(&mapping
->i_mmap_mutex
);
1733 int rmap_walk(struct page
*page
, int (*rmap_one
)(struct page
*,
1734 struct vm_area_struct
*, unsigned long, void *), void *arg
)
1736 VM_BUG_ON(!PageLocked(page
));
1738 if (unlikely(PageKsm(page
)))
1739 return rmap_walk_ksm(page
, rmap_one
, arg
);
1740 else if (PageAnon(page
))
1741 return rmap_walk_anon(page
, rmap_one
, arg
);
1743 return rmap_walk_file(page
, rmap_one
, arg
);
1745 #endif /* CONFIG_MIGRATION */
1747 #ifdef CONFIG_HUGETLB_PAGE
1749 * The following three functions are for anonymous (private mapped) hugepages.
1750 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1751 * and no lru code, because we handle hugepages differently from common pages.
1753 static void __hugepage_set_anon_rmap(struct page
*page
,
1754 struct vm_area_struct
*vma
, unsigned long address
, int exclusive
)
1756 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1763 anon_vma
= anon_vma
->root
;
1765 anon_vma
= (void *) anon_vma
+ PAGE_MAPPING_ANON
;
1766 page
->mapping
= (struct address_space
*) anon_vma
;
1767 page
->index
= linear_page_index(vma
, address
);
1770 void hugepage_add_anon_rmap(struct page
*page
,
1771 struct vm_area_struct
*vma
, unsigned long address
)
1773 struct anon_vma
*anon_vma
= vma
->anon_vma
;
1776 BUG_ON(!PageLocked(page
));
1778 /* address might be in next vma when migration races vma_adjust */
1779 first
= atomic_inc_and_test(&page
->_mapcount
);
1781 __hugepage_set_anon_rmap(page
, vma
, address
, 0);
1784 void hugepage_add_new_anon_rmap(struct page
*page
,
1785 struct vm_area_struct
*vma
, unsigned long address
)
1787 BUG_ON(address
< vma
->vm_start
|| address
>= vma
->vm_end
);
1788 atomic_set(&page
->_mapcount
, 0);
1789 __hugepage_set_anon_rmap(page
, vma
, address
, 1);
1791 #endif /* CONFIG_HUGETLB_PAGE */