4 * Copyright (c) 1999-2002 Vojtech Pavlik
8 * This program is free software; you can redistribute it and/or modify it
9 * under the terms of the GNU General Public License version 2 as published by
10 * the Free Software Foundation.
13 #define pr_fmt(fmt) KBUILD_BASENAME ": " fmt
15 #include <linux/init.h>
16 #include <linux/types.h>
17 #include <linux/idr.h>
18 #include <linux/input/mt.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/random.h>
22 #include <linux/major.h>
23 #include <linux/proc_fs.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/poll.h>
27 #include <linux/device.h>
28 #include <linux/mutex.h>
29 #include <linux/rcupdate.h>
30 #include "input-compat.h"
32 MODULE_AUTHOR("Vojtech Pavlik <vojtech@suse.cz>");
33 MODULE_DESCRIPTION("Input core");
34 MODULE_LICENSE("GPL");
36 #define INPUT_MAX_CHAR_DEVICES 1024
37 #define INPUT_FIRST_DYNAMIC_DEV 256
38 static DEFINE_IDA(input_ida
);
40 static LIST_HEAD(input_dev_list
);
41 static LIST_HEAD(input_handler_list
);
44 * input_mutex protects access to both input_dev_list and input_handler_list.
45 * This also causes input_[un]register_device and input_[un]register_handler
46 * be mutually exclusive which simplifies locking in drivers implementing
49 static DEFINE_MUTEX(input_mutex
);
51 static const struct input_value input_value_sync
= { EV_SYN
, SYN_REPORT
, 1 };
53 static inline int is_event_supported(unsigned int code
,
54 unsigned long *bm
, unsigned int max
)
56 return code
<= max
&& test_bit(code
, bm
);
59 static int input_defuzz_abs_event(int value
, int old_val
, int fuzz
)
62 if (value
> old_val
- fuzz
/ 2 && value
< old_val
+ fuzz
/ 2)
65 if (value
> old_val
- fuzz
&& value
< old_val
+ fuzz
)
66 return (old_val
* 3 + value
) / 4;
68 if (value
> old_val
- fuzz
* 2 && value
< old_val
+ fuzz
* 2)
69 return (old_val
+ value
) / 2;
75 static void input_start_autorepeat(struct input_dev
*dev
, int code
)
77 if (test_bit(EV_REP
, dev
->evbit
) &&
78 dev
->rep
[REP_PERIOD
] && dev
->rep
[REP_DELAY
] &&
80 dev
->repeat_key
= code
;
81 mod_timer(&dev
->timer
,
82 jiffies
+ msecs_to_jiffies(dev
->rep
[REP_DELAY
]));
86 static void input_stop_autorepeat(struct input_dev
*dev
)
88 del_timer(&dev
->timer
);
92 * Pass event first through all filters and then, if event has not been
93 * filtered out, through all open handles. This function is called with
94 * dev->event_lock held and interrupts disabled.
96 static unsigned int input_to_handler(struct input_handle
*handle
,
97 struct input_value
*vals
, unsigned int count
)
99 struct input_handler
*handler
= handle
->handler
;
100 struct input_value
*end
= vals
;
101 struct input_value
*v
;
103 for (v
= vals
; v
!= vals
+ count
; v
++) {
104 if (handler
->filter
&&
105 handler
->filter(handle
, v
->type
, v
->code
, v
->value
))
117 handler
->events(handle
, vals
, count
);
118 else if (handler
->event
)
119 for (v
= vals
; v
!= end
; v
++)
120 handler
->event(handle
, v
->type
, v
->code
, v
->value
);
126 * Pass values first through all filters and then, if event has not been
127 * filtered out, through all open handles. This function is called with
128 * dev->event_lock held and interrupts disabled.
130 static void input_pass_values(struct input_dev
*dev
,
131 struct input_value
*vals
, unsigned int count
)
133 struct input_handle
*handle
;
134 struct input_value
*v
;
141 handle
= rcu_dereference(dev
->grab
);
143 count
= input_to_handler(handle
, vals
, count
);
145 list_for_each_entry_rcu(handle
, &dev
->h_list
, d_node
)
147 count
= input_to_handler(handle
, vals
, count
);
152 add_input_randomness(vals
->type
, vals
->code
, vals
->value
);
154 /* trigger auto repeat for key events */
155 for (v
= vals
; v
!= vals
+ count
; v
++) {
156 if (v
->type
== EV_KEY
&& v
->value
!= 2) {
158 input_start_autorepeat(dev
, v
->code
);
160 input_stop_autorepeat(dev
);
165 static void input_pass_event(struct input_dev
*dev
,
166 unsigned int type
, unsigned int code
, int value
)
168 struct input_value vals
[] = { { type
, code
, value
} };
170 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
174 * Generate software autorepeat event. Note that we take
175 * dev->event_lock here to avoid racing with input_event
176 * which may cause keys get "stuck".
178 static void input_repeat_key(unsigned long data
)
180 struct input_dev
*dev
= (void *) data
;
183 spin_lock_irqsave(&dev
->event_lock
, flags
);
185 if (test_bit(dev
->repeat_key
, dev
->key
) &&
186 is_event_supported(dev
->repeat_key
, dev
->keybit
, KEY_MAX
)) {
187 struct input_value vals
[] = {
188 { EV_KEY
, dev
->repeat_key
, 2 },
192 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
194 if (dev
->rep
[REP_PERIOD
])
195 mod_timer(&dev
->timer
, jiffies
+
196 msecs_to_jiffies(dev
->rep
[REP_PERIOD
]));
199 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
202 #define INPUT_IGNORE_EVENT 0
203 #define INPUT_PASS_TO_HANDLERS 1
204 #define INPUT_PASS_TO_DEVICE 2
206 #define INPUT_FLUSH 8
207 #define INPUT_PASS_TO_ALL (INPUT_PASS_TO_HANDLERS | INPUT_PASS_TO_DEVICE)
209 static int input_handle_abs_event(struct input_dev
*dev
,
210 unsigned int code
, int *pval
)
212 struct input_mt
*mt
= dev
->mt
;
216 if (code
== ABS_MT_SLOT
) {
218 * "Stage" the event; we'll flush it later, when we
219 * get actual touch data.
221 if (mt
&& *pval
>= 0 && *pval
< mt
->num_slots
)
224 return INPUT_IGNORE_EVENT
;
227 is_mt_event
= input_is_mt_value(code
);
230 pold
= &dev
->absinfo
[code
].value
;
232 pold
= &mt
->slots
[mt
->slot
].abs
[code
- ABS_MT_FIRST
];
235 * Bypass filtering for multi-touch events when
236 * not employing slots.
242 *pval
= input_defuzz_abs_event(*pval
, *pold
,
243 dev
->absinfo
[code
].fuzz
);
245 return INPUT_IGNORE_EVENT
;
250 /* Flush pending "slot" event */
251 if (is_mt_event
&& mt
&& mt
->slot
!= input_abs_get_val(dev
, ABS_MT_SLOT
)) {
252 input_abs_set_val(dev
, ABS_MT_SLOT
, mt
->slot
);
253 return INPUT_PASS_TO_HANDLERS
| INPUT_SLOT
;
256 return INPUT_PASS_TO_HANDLERS
;
259 static int input_get_disposition(struct input_dev
*dev
,
260 unsigned int type
, unsigned int code
, int value
)
262 int disposition
= INPUT_IGNORE_EVENT
;
269 disposition
= INPUT_PASS_TO_ALL
;
273 disposition
= INPUT_PASS_TO_HANDLERS
| INPUT_FLUSH
;
276 disposition
= INPUT_PASS_TO_HANDLERS
;
282 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
)) {
284 /* auto-repeat bypasses state updates */
286 disposition
= INPUT_PASS_TO_HANDLERS
;
290 if (!!test_bit(code
, dev
->key
) != !!value
) {
292 __change_bit(code
, dev
->key
);
293 disposition
= INPUT_PASS_TO_HANDLERS
;
299 if (is_event_supported(code
, dev
->swbit
, SW_MAX
) &&
300 !!test_bit(code
, dev
->sw
) != !!value
) {
302 __change_bit(code
, dev
->sw
);
303 disposition
= INPUT_PASS_TO_HANDLERS
;
308 if (is_event_supported(code
, dev
->absbit
, ABS_MAX
))
309 disposition
= input_handle_abs_event(dev
, code
, &value
);
314 if (is_event_supported(code
, dev
->relbit
, REL_MAX
) && value
)
315 disposition
= INPUT_PASS_TO_HANDLERS
;
320 if (is_event_supported(code
, dev
->mscbit
, MSC_MAX
))
321 disposition
= INPUT_PASS_TO_ALL
;
326 if (is_event_supported(code
, dev
->ledbit
, LED_MAX
) &&
327 !!test_bit(code
, dev
->led
) != !!value
) {
329 __change_bit(code
, dev
->led
);
330 disposition
= INPUT_PASS_TO_ALL
;
335 if (is_event_supported(code
, dev
->sndbit
, SND_MAX
)) {
337 if (!!test_bit(code
, dev
->snd
) != !!value
)
338 __change_bit(code
, dev
->snd
);
339 disposition
= INPUT_PASS_TO_ALL
;
344 if (code
<= REP_MAX
&& value
>= 0 && dev
->rep
[code
] != value
) {
345 dev
->rep
[code
] = value
;
346 disposition
= INPUT_PASS_TO_ALL
;
352 disposition
= INPUT_PASS_TO_ALL
;
356 disposition
= INPUT_PASS_TO_ALL
;
363 static void input_handle_event(struct input_dev
*dev
,
364 unsigned int type
, unsigned int code
, int value
)
368 disposition
= input_get_disposition(dev
, type
, code
, value
);
370 if ((disposition
& INPUT_PASS_TO_DEVICE
) && dev
->event
)
371 dev
->event(dev
, type
, code
, value
);
376 if (disposition
& INPUT_PASS_TO_HANDLERS
) {
377 struct input_value
*v
;
379 if (disposition
& INPUT_SLOT
) {
380 v
= &dev
->vals
[dev
->num_vals
++];
382 v
->code
= ABS_MT_SLOT
;
383 v
->value
= dev
->mt
->slot
;
386 v
= &dev
->vals
[dev
->num_vals
++];
392 if (disposition
& INPUT_FLUSH
) {
393 if (dev
->num_vals
>= 2)
394 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
396 } else if (dev
->num_vals
>= dev
->max_vals
- 2) {
397 dev
->vals
[dev
->num_vals
++] = input_value_sync
;
398 input_pass_values(dev
, dev
->vals
, dev
->num_vals
);
405 * input_event() - report new input event
406 * @dev: device that generated the event
407 * @type: type of the event
409 * @value: value of the event
411 * This function should be used by drivers implementing various input
412 * devices to report input events. See also input_inject_event().
414 * NOTE: input_event() may be safely used right after input device was
415 * allocated with input_allocate_device(), even before it is registered
416 * with input_register_device(), but the event will not reach any of the
417 * input handlers. Such early invocation of input_event() may be used
418 * to 'seed' initial state of a switch or initial position of absolute
421 void input_event(struct input_dev
*dev
,
422 unsigned int type
, unsigned int code
, int value
)
426 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
428 spin_lock_irqsave(&dev
->event_lock
, flags
);
429 input_handle_event(dev
, type
, code
, value
);
430 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
433 EXPORT_SYMBOL(input_event
);
436 * input_inject_event() - send input event from input handler
437 * @handle: input handle to send event through
438 * @type: type of the event
440 * @value: value of the event
442 * Similar to input_event() but will ignore event if device is
443 * "grabbed" and handle injecting event is not the one that owns
446 void input_inject_event(struct input_handle
*handle
,
447 unsigned int type
, unsigned int code
, int value
)
449 struct input_dev
*dev
= handle
->dev
;
450 struct input_handle
*grab
;
453 if (is_event_supported(type
, dev
->evbit
, EV_MAX
)) {
454 spin_lock_irqsave(&dev
->event_lock
, flags
);
457 grab
= rcu_dereference(dev
->grab
);
458 if (!grab
|| grab
== handle
)
459 input_handle_event(dev
, type
, code
, value
);
462 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
465 EXPORT_SYMBOL(input_inject_event
);
468 * input_alloc_absinfo - allocates array of input_absinfo structs
469 * @dev: the input device emitting absolute events
471 * If the absinfo struct the caller asked for is already allocated, this
472 * functions will not do anything.
474 void input_alloc_absinfo(struct input_dev
*dev
)
477 dev
->absinfo
= kcalloc(ABS_CNT
, sizeof(struct input_absinfo
),
480 WARN(!dev
->absinfo
, "%s(): kcalloc() failed?\n", __func__
);
482 EXPORT_SYMBOL(input_alloc_absinfo
);
484 void input_set_abs_params(struct input_dev
*dev
, unsigned int axis
,
485 int min
, int max
, int fuzz
, int flat
)
487 struct input_absinfo
*absinfo
;
489 input_alloc_absinfo(dev
);
493 absinfo
= &dev
->absinfo
[axis
];
494 absinfo
->minimum
= min
;
495 absinfo
->maximum
= max
;
496 absinfo
->fuzz
= fuzz
;
497 absinfo
->flat
= flat
;
499 dev
->absbit
[BIT_WORD(axis
)] |= BIT_MASK(axis
);
501 EXPORT_SYMBOL(input_set_abs_params
);
505 * input_grab_device - grabs device for exclusive use
506 * @handle: input handle that wants to own the device
508 * When a device is grabbed by an input handle all events generated by
509 * the device are delivered only to this handle. Also events injected
510 * by other input handles are ignored while device is grabbed.
512 int input_grab_device(struct input_handle
*handle
)
514 struct input_dev
*dev
= handle
->dev
;
517 retval
= mutex_lock_interruptible(&dev
->mutex
);
526 rcu_assign_pointer(dev
->grab
, handle
);
529 mutex_unlock(&dev
->mutex
);
532 EXPORT_SYMBOL(input_grab_device
);
534 static void __input_release_device(struct input_handle
*handle
)
536 struct input_dev
*dev
= handle
->dev
;
537 struct input_handle
*grabber
;
539 grabber
= rcu_dereference_protected(dev
->grab
,
540 lockdep_is_held(&dev
->mutex
));
541 if (grabber
== handle
) {
542 rcu_assign_pointer(dev
->grab
, NULL
);
543 /* Make sure input_pass_event() notices that grab is gone */
546 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
547 if (handle
->open
&& handle
->handler
->start
)
548 handle
->handler
->start(handle
);
553 * input_release_device - release previously grabbed device
554 * @handle: input handle that owns the device
556 * Releases previously grabbed device so that other input handles can
557 * start receiving input events. Upon release all handlers attached
558 * to the device have their start() method called so they have a change
559 * to synchronize device state with the rest of the system.
561 void input_release_device(struct input_handle
*handle
)
563 struct input_dev
*dev
= handle
->dev
;
565 mutex_lock(&dev
->mutex
);
566 __input_release_device(handle
);
567 mutex_unlock(&dev
->mutex
);
569 EXPORT_SYMBOL(input_release_device
);
572 * input_open_device - open input device
573 * @handle: handle through which device is being accessed
575 * This function should be called by input handlers when they
576 * want to start receive events from given input device.
578 int input_open_device(struct input_handle
*handle
)
580 struct input_dev
*dev
= handle
->dev
;
583 retval
= mutex_lock_interruptible(&dev
->mutex
);
587 if (dev
->going_away
) {
594 if (!dev
->users
++ && dev
->open
)
595 retval
= dev
->open(dev
);
599 if (!--handle
->open
) {
601 * Make sure we are not delivering any more events
602 * through this handle
609 mutex_unlock(&dev
->mutex
);
612 EXPORT_SYMBOL(input_open_device
);
614 int input_flush_device(struct input_handle
*handle
, struct file
*file
)
616 struct input_dev
*dev
= handle
->dev
;
619 retval
= mutex_lock_interruptible(&dev
->mutex
);
624 retval
= dev
->flush(dev
, file
);
626 mutex_unlock(&dev
->mutex
);
629 EXPORT_SYMBOL(input_flush_device
);
632 * input_close_device - close input device
633 * @handle: handle through which device is being accessed
635 * This function should be called by input handlers when they
636 * want to stop receive events from given input device.
638 void input_close_device(struct input_handle
*handle
)
640 struct input_dev
*dev
= handle
->dev
;
642 mutex_lock(&dev
->mutex
);
644 __input_release_device(handle
);
646 if (!--dev
->users
&& dev
->close
)
649 if (!--handle
->open
) {
651 * synchronize_rcu() makes sure that input_pass_event()
652 * completed and that no more input events are delivered
653 * through this handle
658 mutex_unlock(&dev
->mutex
);
660 EXPORT_SYMBOL(input_close_device
);
663 * Simulate keyup events for all keys that are marked as pressed.
664 * The function must be called with dev->event_lock held.
666 static void input_dev_release_keys(struct input_dev
*dev
)
670 if (is_event_supported(EV_KEY
, dev
->evbit
, EV_MAX
)) {
671 for (code
= 0; code
<= KEY_MAX
; code
++) {
672 if (is_event_supported(code
, dev
->keybit
, KEY_MAX
) &&
673 __test_and_clear_bit(code
, dev
->key
)) {
674 input_pass_event(dev
, EV_KEY
, code
, 0);
677 input_pass_event(dev
, EV_SYN
, SYN_REPORT
, 1);
682 * Prepare device for unregistering
684 static void input_disconnect_device(struct input_dev
*dev
)
686 struct input_handle
*handle
;
689 * Mark device as going away. Note that we take dev->mutex here
690 * not to protect access to dev->going_away but rather to ensure
691 * that there are no threads in the middle of input_open_device()
693 mutex_lock(&dev
->mutex
);
694 dev
->going_away
= true;
695 mutex_unlock(&dev
->mutex
);
697 spin_lock_irq(&dev
->event_lock
);
700 * Simulate keyup events for all pressed keys so that handlers
701 * are not left with "stuck" keys. The driver may continue
702 * generate events even after we done here but they will not
703 * reach any handlers.
705 input_dev_release_keys(dev
);
707 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
710 spin_unlock_irq(&dev
->event_lock
);
714 * input_scancode_to_scalar() - converts scancode in &struct input_keymap_entry
715 * @ke: keymap entry containing scancode to be converted.
716 * @scancode: pointer to the location where converted scancode should
719 * This function is used to convert scancode stored in &struct keymap_entry
720 * into scalar form understood by legacy keymap handling methods. These
721 * methods expect scancodes to be represented as 'unsigned int'.
723 int input_scancode_to_scalar(const struct input_keymap_entry
*ke
,
724 unsigned int *scancode
)
728 *scancode
= *((u8
*)ke
->scancode
);
732 *scancode
= *((u16
*)ke
->scancode
);
736 *scancode
= *((u32
*)ke
->scancode
);
745 EXPORT_SYMBOL(input_scancode_to_scalar
);
748 * Those routines handle the default case where no [gs]etkeycode() is
749 * defined. In this case, an array indexed by the scancode is used.
752 static unsigned int input_fetch_keycode(struct input_dev
*dev
,
755 switch (dev
->keycodesize
) {
757 return ((u8
*)dev
->keycode
)[index
];
760 return ((u16
*)dev
->keycode
)[index
];
763 return ((u32
*)dev
->keycode
)[index
];
767 static int input_default_getkeycode(struct input_dev
*dev
,
768 struct input_keymap_entry
*ke
)
773 if (!dev
->keycodesize
)
776 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
)
779 error
= input_scancode_to_scalar(ke
, &index
);
784 if (index
>= dev
->keycodemax
)
787 ke
->keycode
= input_fetch_keycode(dev
, index
);
789 ke
->len
= sizeof(index
);
790 memcpy(ke
->scancode
, &index
, sizeof(index
));
795 static int input_default_setkeycode(struct input_dev
*dev
,
796 const struct input_keymap_entry
*ke
,
797 unsigned int *old_keycode
)
803 if (!dev
->keycodesize
)
806 if (ke
->flags
& INPUT_KEYMAP_BY_INDEX
) {
809 error
= input_scancode_to_scalar(ke
, &index
);
814 if (index
>= dev
->keycodemax
)
817 if (dev
->keycodesize
< sizeof(ke
->keycode
) &&
818 (ke
->keycode
>> (dev
->keycodesize
* 8)))
821 switch (dev
->keycodesize
) {
823 u8
*k
= (u8
*)dev
->keycode
;
824 *old_keycode
= k
[index
];
825 k
[index
] = ke
->keycode
;
829 u16
*k
= (u16
*)dev
->keycode
;
830 *old_keycode
= k
[index
];
831 k
[index
] = ke
->keycode
;
835 u32
*k
= (u32
*)dev
->keycode
;
836 *old_keycode
= k
[index
];
837 k
[index
] = ke
->keycode
;
842 __clear_bit(*old_keycode
, dev
->keybit
);
843 __set_bit(ke
->keycode
, dev
->keybit
);
845 for (i
= 0; i
< dev
->keycodemax
; i
++) {
846 if (input_fetch_keycode(dev
, i
) == *old_keycode
) {
847 __set_bit(*old_keycode
, dev
->keybit
);
848 break; /* Setting the bit twice is useless, so break */
856 * input_get_keycode - retrieve keycode currently mapped to a given scancode
857 * @dev: input device which keymap is being queried
860 * This function should be called by anyone interested in retrieving current
861 * keymap. Presently evdev handlers use it.
863 int input_get_keycode(struct input_dev
*dev
, struct input_keymap_entry
*ke
)
868 spin_lock_irqsave(&dev
->event_lock
, flags
);
869 retval
= dev
->getkeycode(dev
, ke
);
870 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
874 EXPORT_SYMBOL(input_get_keycode
);
877 * input_set_keycode - attribute a keycode to a given scancode
878 * @dev: input device which keymap is being updated
879 * @ke: new keymap entry
881 * This function should be called by anyone needing to update current
882 * keymap. Presently keyboard and evdev handlers use it.
884 int input_set_keycode(struct input_dev
*dev
,
885 const struct input_keymap_entry
*ke
)
888 unsigned int old_keycode
;
891 if (ke
->keycode
> KEY_MAX
)
894 spin_lock_irqsave(&dev
->event_lock
, flags
);
896 retval
= dev
->setkeycode(dev
, ke
, &old_keycode
);
900 /* Make sure KEY_RESERVED did not get enabled. */
901 __clear_bit(KEY_RESERVED
, dev
->keybit
);
904 * Simulate keyup event if keycode is not present
905 * in the keymap anymore
907 if (test_bit(EV_KEY
, dev
->evbit
) &&
908 !is_event_supported(old_keycode
, dev
->keybit
, KEY_MAX
) &&
909 __test_and_clear_bit(old_keycode
, dev
->key
)) {
910 struct input_value vals
[] = {
911 { EV_KEY
, old_keycode
, 0 },
915 input_pass_values(dev
, vals
, ARRAY_SIZE(vals
));
919 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
923 EXPORT_SYMBOL(input_set_keycode
);
925 static const struct input_device_id
*input_match_device(struct input_handler
*handler
,
926 struct input_dev
*dev
)
928 const struct input_device_id
*id
;
930 for (id
= handler
->id_table
; id
->flags
|| id
->driver_info
; id
++) {
932 if (id
->flags
& INPUT_DEVICE_ID_MATCH_BUS
)
933 if (id
->bustype
!= dev
->id
.bustype
)
936 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VENDOR
)
937 if (id
->vendor
!= dev
->id
.vendor
)
940 if (id
->flags
& INPUT_DEVICE_ID_MATCH_PRODUCT
)
941 if (id
->product
!= dev
->id
.product
)
944 if (id
->flags
& INPUT_DEVICE_ID_MATCH_VERSION
)
945 if (id
->version
!= dev
->id
.version
)
948 if (!bitmap_subset(id
->evbit
, dev
->evbit
, EV_MAX
))
951 if (!bitmap_subset(id
->keybit
, dev
->keybit
, KEY_MAX
))
954 if (!bitmap_subset(id
->relbit
, dev
->relbit
, REL_MAX
))
957 if (!bitmap_subset(id
->absbit
, dev
->absbit
, ABS_MAX
))
960 if (!bitmap_subset(id
->mscbit
, dev
->mscbit
, MSC_MAX
))
963 if (!bitmap_subset(id
->ledbit
, dev
->ledbit
, LED_MAX
))
966 if (!bitmap_subset(id
->sndbit
, dev
->sndbit
, SND_MAX
))
969 if (!bitmap_subset(id
->ffbit
, dev
->ffbit
, FF_MAX
))
972 if (!bitmap_subset(id
->swbit
, dev
->swbit
, SW_MAX
))
975 if (!handler
->match
|| handler
->match(handler
, dev
))
982 static int input_attach_handler(struct input_dev
*dev
, struct input_handler
*handler
)
984 const struct input_device_id
*id
;
987 id
= input_match_device(handler
, dev
);
991 error
= handler
->connect(handler
, dev
, id
);
992 if (error
&& error
!= -ENODEV
)
993 pr_err("failed to attach handler %s to device %s, error: %d\n",
994 handler
->name
, kobject_name(&dev
->dev
.kobj
), error
);
1001 static int input_bits_to_string(char *buf
, int buf_size
,
1002 unsigned long bits
, bool skip_empty
)
1006 if (INPUT_COMPAT_TEST
) {
1007 u32 dword
= bits
>> 32;
1008 if (dword
|| !skip_empty
)
1009 len
+= snprintf(buf
, buf_size
, "%x ", dword
);
1011 dword
= bits
& 0xffffffffUL
;
1012 if (dword
|| !skip_empty
|| len
)
1013 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0),
1016 if (bits
|| !skip_empty
)
1017 len
+= snprintf(buf
, buf_size
, "%lx", bits
);
1023 #else /* !CONFIG_COMPAT */
1025 static int input_bits_to_string(char *buf
, int buf_size
,
1026 unsigned long bits
, bool skip_empty
)
1028 return bits
|| !skip_empty
?
1029 snprintf(buf
, buf_size
, "%lx", bits
) : 0;
1034 #ifdef CONFIG_PROC_FS
1036 static struct proc_dir_entry
*proc_bus_input_dir
;
1037 static DECLARE_WAIT_QUEUE_HEAD(input_devices_poll_wait
);
1038 static int input_devices_state
;
1040 static inline void input_wakeup_procfs_readers(void)
1042 input_devices_state
++;
1043 wake_up(&input_devices_poll_wait
);
1046 static unsigned int input_proc_devices_poll(struct file
*file
, poll_table
*wait
)
1048 poll_wait(file
, &input_devices_poll_wait
, wait
);
1049 if (file
->f_version
!= input_devices_state
) {
1050 file
->f_version
= input_devices_state
;
1051 return POLLIN
| POLLRDNORM
;
1057 union input_seq_state
{
1060 bool mutex_acquired
;
1065 static void *input_devices_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1067 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1070 /* We need to fit into seq->private pointer */
1071 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1073 error
= mutex_lock_interruptible(&input_mutex
);
1075 state
->mutex_acquired
= false;
1076 return ERR_PTR(error
);
1079 state
->mutex_acquired
= true;
1081 return seq_list_start(&input_dev_list
, *pos
);
1084 static void *input_devices_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1086 return seq_list_next(v
, &input_dev_list
, pos
);
1089 static void input_seq_stop(struct seq_file
*seq
, void *v
)
1091 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1093 if (state
->mutex_acquired
)
1094 mutex_unlock(&input_mutex
);
1097 static void input_seq_print_bitmap(struct seq_file
*seq
, const char *name
,
1098 unsigned long *bitmap
, int max
)
1101 bool skip_empty
= true;
1104 seq_printf(seq
, "B: %s=", name
);
1106 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1107 if (input_bits_to_string(buf
, sizeof(buf
),
1108 bitmap
[i
], skip_empty
)) {
1110 seq_printf(seq
, "%s%s", buf
, i
> 0 ? " " : "");
1115 * If no output was produced print a single 0.
1120 seq_putc(seq
, '\n');
1123 static int input_devices_seq_show(struct seq_file
*seq
, void *v
)
1125 struct input_dev
*dev
= container_of(v
, struct input_dev
, node
);
1126 const char *path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
1127 struct input_handle
*handle
;
1129 seq_printf(seq
, "I: Bus=%04x Vendor=%04x Product=%04x Version=%04x\n",
1130 dev
->id
.bustype
, dev
->id
.vendor
, dev
->id
.product
, dev
->id
.version
);
1132 seq_printf(seq
, "N: Name=\"%s\"\n", dev
->name
? dev
->name
: "");
1133 seq_printf(seq
, "P: Phys=%s\n", dev
->phys
? dev
->phys
: "");
1134 seq_printf(seq
, "S: Sysfs=%s\n", path
? path
: "");
1135 seq_printf(seq
, "U: Uniq=%s\n", dev
->uniq
? dev
->uniq
: "");
1136 seq_printf(seq
, "H: Handlers=");
1138 list_for_each_entry(handle
, &dev
->h_list
, d_node
)
1139 seq_printf(seq
, "%s ", handle
->name
);
1140 seq_putc(seq
, '\n');
1142 input_seq_print_bitmap(seq
, "PROP", dev
->propbit
, INPUT_PROP_MAX
);
1144 input_seq_print_bitmap(seq
, "EV", dev
->evbit
, EV_MAX
);
1145 if (test_bit(EV_KEY
, dev
->evbit
))
1146 input_seq_print_bitmap(seq
, "KEY", dev
->keybit
, KEY_MAX
);
1147 if (test_bit(EV_REL
, dev
->evbit
))
1148 input_seq_print_bitmap(seq
, "REL", dev
->relbit
, REL_MAX
);
1149 if (test_bit(EV_ABS
, dev
->evbit
))
1150 input_seq_print_bitmap(seq
, "ABS", dev
->absbit
, ABS_MAX
);
1151 if (test_bit(EV_MSC
, dev
->evbit
))
1152 input_seq_print_bitmap(seq
, "MSC", dev
->mscbit
, MSC_MAX
);
1153 if (test_bit(EV_LED
, dev
->evbit
))
1154 input_seq_print_bitmap(seq
, "LED", dev
->ledbit
, LED_MAX
);
1155 if (test_bit(EV_SND
, dev
->evbit
))
1156 input_seq_print_bitmap(seq
, "SND", dev
->sndbit
, SND_MAX
);
1157 if (test_bit(EV_FF
, dev
->evbit
))
1158 input_seq_print_bitmap(seq
, "FF", dev
->ffbit
, FF_MAX
);
1159 if (test_bit(EV_SW
, dev
->evbit
))
1160 input_seq_print_bitmap(seq
, "SW", dev
->swbit
, SW_MAX
);
1162 seq_putc(seq
, '\n');
1168 static const struct seq_operations input_devices_seq_ops
= {
1169 .start
= input_devices_seq_start
,
1170 .next
= input_devices_seq_next
,
1171 .stop
= input_seq_stop
,
1172 .show
= input_devices_seq_show
,
1175 static int input_proc_devices_open(struct inode
*inode
, struct file
*file
)
1177 return seq_open(file
, &input_devices_seq_ops
);
1180 static const struct file_operations input_devices_fileops
= {
1181 .owner
= THIS_MODULE
,
1182 .open
= input_proc_devices_open
,
1183 .poll
= input_proc_devices_poll
,
1185 .llseek
= seq_lseek
,
1186 .release
= seq_release
,
1189 static void *input_handlers_seq_start(struct seq_file
*seq
, loff_t
*pos
)
1191 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1194 /* We need to fit into seq->private pointer */
1195 BUILD_BUG_ON(sizeof(union input_seq_state
) != sizeof(seq
->private));
1197 error
= mutex_lock_interruptible(&input_mutex
);
1199 state
->mutex_acquired
= false;
1200 return ERR_PTR(error
);
1203 state
->mutex_acquired
= true;
1206 return seq_list_start(&input_handler_list
, *pos
);
1209 static void *input_handlers_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
1211 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1213 state
->pos
= *pos
+ 1;
1214 return seq_list_next(v
, &input_handler_list
, pos
);
1217 static int input_handlers_seq_show(struct seq_file
*seq
, void *v
)
1219 struct input_handler
*handler
= container_of(v
, struct input_handler
, node
);
1220 union input_seq_state
*state
= (union input_seq_state
*)&seq
->private;
1222 seq_printf(seq
, "N: Number=%u Name=%s", state
->pos
, handler
->name
);
1223 if (handler
->filter
)
1224 seq_puts(seq
, " (filter)");
1225 if (handler
->legacy_minors
)
1226 seq_printf(seq
, " Minor=%d", handler
->minor
);
1227 seq_putc(seq
, '\n');
1232 static const struct seq_operations input_handlers_seq_ops
= {
1233 .start
= input_handlers_seq_start
,
1234 .next
= input_handlers_seq_next
,
1235 .stop
= input_seq_stop
,
1236 .show
= input_handlers_seq_show
,
1239 static int input_proc_handlers_open(struct inode
*inode
, struct file
*file
)
1241 return seq_open(file
, &input_handlers_seq_ops
);
1244 static const struct file_operations input_handlers_fileops
= {
1245 .owner
= THIS_MODULE
,
1246 .open
= input_proc_handlers_open
,
1248 .llseek
= seq_lseek
,
1249 .release
= seq_release
,
1252 static int __init
input_proc_init(void)
1254 struct proc_dir_entry
*entry
;
1256 proc_bus_input_dir
= proc_mkdir("bus/input", NULL
);
1257 if (!proc_bus_input_dir
)
1260 entry
= proc_create("devices", 0, proc_bus_input_dir
,
1261 &input_devices_fileops
);
1265 entry
= proc_create("handlers", 0, proc_bus_input_dir
,
1266 &input_handlers_fileops
);
1272 fail2
: remove_proc_entry("devices", proc_bus_input_dir
);
1273 fail1
: remove_proc_entry("bus/input", NULL
);
1277 static void input_proc_exit(void)
1279 remove_proc_entry("devices", proc_bus_input_dir
);
1280 remove_proc_entry("handlers", proc_bus_input_dir
);
1281 remove_proc_entry("bus/input", NULL
);
1284 #else /* !CONFIG_PROC_FS */
1285 static inline void input_wakeup_procfs_readers(void) { }
1286 static inline int input_proc_init(void) { return 0; }
1287 static inline void input_proc_exit(void) { }
1290 #define INPUT_DEV_STRING_ATTR_SHOW(name) \
1291 static ssize_t input_dev_show_##name(struct device *dev, \
1292 struct device_attribute *attr, \
1295 struct input_dev *input_dev = to_input_dev(dev); \
1297 return scnprintf(buf, PAGE_SIZE, "%s\n", \
1298 input_dev->name ? input_dev->name : ""); \
1300 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_##name, NULL)
1302 INPUT_DEV_STRING_ATTR_SHOW(name
);
1303 INPUT_DEV_STRING_ATTR_SHOW(phys
);
1304 INPUT_DEV_STRING_ATTR_SHOW(uniq
);
1306 static int input_print_modalias_bits(char *buf
, int size
,
1307 char name
, unsigned long *bm
,
1308 unsigned int min_bit
, unsigned int max_bit
)
1312 len
+= snprintf(buf
, max(size
, 0), "%c", name
);
1313 for (i
= min_bit
; i
< max_bit
; i
++)
1314 if (bm
[BIT_WORD(i
)] & BIT_MASK(i
))
1315 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "%X,", i
);
1319 static int input_print_modalias(char *buf
, int size
, struct input_dev
*id
,
1324 len
= snprintf(buf
, max(size
, 0),
1325 "input:b%04Xv%04Xp%04Xe%04X-",
1326 id
->id
.bustype
, id
->id
.vendor
,
1327 id
->id
.product
, id
->id
.version
);
1329 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1330 'e', id
->evbit
, 0, EV_MAX
);
1331 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1332 'k', id
->keybit
, KEY_MIN_INTERESTING
, KEY_MAX
);
1333 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1334 'r', id
->relbit
, 0, REL_MAX
);
1335 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1336 'a', id
->absbit
, 0, ABS_MAX
);
1337 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1338 'm', id
->mscbit
, 0, MSC_MAX
);
1339 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1340 'l', id
->ledbit
, 0, LED_MAX
);
1341 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1342 's', id
->sndbit
, 0, SND_MAX
);
1343 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1344 'f', id
->ffbit
, 0, FF_MAX
);
1345 len
+= input_print_modalias_bits(buf
+ len
, size
- len
,
1346 'w', id
->swbit
, 0, SW_MAX
);
1349 len
+= snprintf(buf
+ len
, max(size
- len
, 0), "\n");
1354 static ssize_t
input_dev_show_modalias(struct device
*dev
,
1355 struct device_attribute
*attr
,
1358 struct input_dev
*id
= to_input_dev(dev
);
1361 len
= input_print_modalias(buf
, PAGE_SIZE
, id
, 1);
1363 return min_t(int, len
, PAGE_SIZE
);
1365 static DEVICE_ATTR(modalias
, S_IRUGO
, input_dev_show_modalias
, NULL
);
1367 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1368 int max
, int add_cr
);
1370 static ssize_t
input_dev_show_properties(struct device
*dev
,
1371 struct device_attribute
*attr
,
1374 struct input_dev
*input_dev
= to_input_dev(dev
);
1375 int len
= input_print_bitmap(buf
, PAGE_SIZE
, input_dev
->propbit
,
1376 INPUT_PROP_MAX
, true);
1377 return min_t(int, len
, PAGE_SIZE
);
1379 static DEVICE_ATTR(properties
, S_IRUGO
, input_dev_show_properties
, NULL
);
1381 static struct attribute
*input_dev_attrs
[] = {
1382 &dev_attr_name
.attr
,
1383 &dev_attr_phys
.attr
,
1384 &dev_attr_uniq
.attr
,
1385 &dev_attr_modalias
.attr
,
1386 &dev_attr_properties
.attr
,
1390 static struct attribute_group input_dev_attr_group
= {
1391 .attrs
= input_dev_attrs
,
1394 #define INPUT_DEV_ID_ATTR(name) \
1395 static ssize_t input_dev_show_id_##name(struct device *dev, \
1396 struct device_attribute *attr, \
1399 struct input_dev *input_dev = to_input_dev(dev); \
1400 return scnprintf(buf, PAGE_SIZE, "%04x\n", input_dev->id.name); \
1402 static DEVICE_ATTR(name, S_IRUGO, input_dev_show_id_##name, NULL)
1404 INPUT_DEV_ID_ATTR(bustype
);
1405 INPUT_DEV_ID_ATTR(vendor
);
1406 INPUT_DEV_ID_ATTR(product
);
1407 INPUT_DEV_ID_ATTR(version
);
1409 static struct attribute
*input_dev_id_attrs
[] = {
1410 &dev_attr_bustype
.attr
,
1411 &dev_attr_vendor
.attr
,
1412 &dev_attr_product
.attr
,
1413 &dev_attr_version
.attr
,
1417 static struct attribute_group input_dev_id_attr_group
= {
1419 .attrs
= input_dev_id_attrs
,
1422 static int input_print_bitmap(char *buf
, int buf_size
, unsigned long *bitmap
,
1423 int max
, int add_cr
)
1427 bool skip_empty
= true;
1429 for (i
= BITS_TO_LONGS(max
) - 1; i
>= 0; i
--) {
1430 len
+= input_bits_to_string(buf
+ len
, max(buf_size
- len
, 0),
1431 bitmap
[i
], skip_empty
);
1435 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), " ");
1440 * If no output was produced print a single 0.
1443 len
= snprintf(buf
, buf_size
, "%d", 0);
1446 len
+= snprintf(buf
+ len
, max(buf_size
- len
, 0), "\n");
1451 #define INPUT_DEV_CAP_ATTR(ev, bm) \
1452 static ssize_t input_dev_show_cap_##bm(struct device *dev, \
1453 struct device_attribute *attr, \
1456 struct input_dev *input_dev = to_input_dev(dev); \
1457 int len = input_print_bitmap(buf, PAGE_SIZE, \
1458 input_dev->bm##bit, ev##_MAX, \
1460 return min_t(int, len, PAGE_SIZE); \
1462 static DEVICE_ATTR(bm, S_IRUGO, input_dev_show_cap_##bm, NULL)
1464 INPUT_DEV_CAP_ATTR(EV
, ev
);
1465 INPUT_DEV_CAP_ATTR(KEY
, key
);
1466 INPUT_DEV_CAP_ATTR(REL
, rel
);
1467 INPUT_DEV_CAP_ATTR(ABS
, abs
);
1468 INPUT_DEV_CAP_ATTR(MSC
, msc
);
1469 INPUT_DEV_CAP_ATTR(LED
, led
);
1470 INPUT_DEV_CAP_ATTR(SND
, snd
);
1471 INPUT_DEV_CAP_ATTR(FF
, ff
);
1472 INPUT_DEV_CAP_ATTR(SW
, sw
);
1474 static struct attribute
*input_dev_caps_attrs
[] = {
1487 static struct attribute_group input_dev_caps_attr_group
= {
1488 .name
= "capabilities",
1489 .attrs
= input_dev_caps_attrs
,
1492 static const struct attribute_group
*input_dev_attr_groups
[] = {
1493 &input_dev_attr_group
,
1494 &input_dev_id_attr_group
,
1495 &input_dev_caps_attr_group
,
1499 static void input_dev_release(struct device
*device
)
1501 struct input_dev
*dev
= to_input_dev(device
);
1503 input_ff_destroy(dev
);
1504 input_mt_destroy_slots(dev
);
1505 kfree(dev
->absinfo
);
1509 module_put(THIS_MODULE
);
1513 * Input uevent interface - loading event handlers based on
1516 static int input_add_uevent_bm_var(struct kobj_uevent_env
*env
,
1517 const char *name
, unsigned long *bitmap
, int max
)
1521 if (add_uevent_var(env
, "%s", name
))
1524 len
= input_print_bitmap(&env
->buf
[env
->buflen
- 1],
1525 sizeof(env
->buf
) - env
->buflen
,
1526 bitmap
, max
, false);
1527 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1534 static int input_add_uevent_modalias_var(struct kobj_uevent_env
*env
,
1535 struct input_dev
*dev
)
1539 if (add_uevent_var(env
, "MODALIAS="))
1542 len
= input_print_modalias(&env
->buf
[env
->buflen
- 1],
1543 sizeof(env
->buf
) - env
->buflen
,
1545 if (len
>= (sizeof(env
->buf
) - env
->buflen
))
1552 #define INPUT_ADD_HOTPLUG_VAR(fmt, val...) \
1554 int err = add_uevent_var(env, fmt, val); \
1559 #define INPUT_ADD_HOTPLUG_BM_VAR(name, bm, max) \
1561 int err = input_add_uevent_bm_var(env, name, bm, max); \
1566 #define INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev) \
1568 int err = input_add_uevent_modalias_var(env, dev); \
1573 static int input_dev_uevent(struct device
*device
, struct kobj_uevent_env
*env
)
1575 struct input_dev
*dev
= to_input_dev(device
);
1577 INPUT_ADD_HOTPLUG_VAR("PRODUCT=%x/%x/%x/%x",
1578 dev
->id
.bustype
, dev
->id
.vendor
,
1579 dev
->id
.product
, dev
->id
.version
);
1581 INPUT_ADD_HOTPLUG_VAR("NAME=\"%s\"", dev
->name
);
1583 INPUT_ADD_HOTPLUG_VAR("PHYS=\"%s\"", dev
->phys
);
1585 INPUT_ADD_HOTPLUG_VAR("UNIQ=\"%s\"", dev
->uniq
);
1587 INPUT_ADD_HOTPLUG_BM_VAR("PROP=", dev
->propbit
, INPUT_PROP_MAX
);
1589 INPUT_ADD_HOTPLUG_BM_VAR("EV=", dev
->evbit
, EV_MAX
);
1590 if (test_bit(EV_KEY
, dev
->evbit
))
1591 INPUT_ADD_HOTPLUG_BM_VAR("KEY=", dev
->keybit
, KEY_MAX
);
1592 if (test_bit(EV_REL
, dev
->evbit
))
1593 INPUT_ADD_HOTPLUG_BM_VAR("REL=", dev
->relbit
, REL_MAX
);
1594 if (test_bit(EV_ABS
, dev
->evbit
))
1595 INPUT_ADD_HOTPLUG_BM_VAR("ABS=", dev
->absbit
, ABS_MAX
);
1596 if (test_bit(EV_MSC
, dev
->evbit
))
1597 INPUT_ADD_HOTPLUG_BM_VAR("MSC=", dev
->mscbit
, MSC_MAX
);
1598 if (test_bit(EV_LED
, dev
->evbit
))
1599 INPUT_ADD_HOTPLUG_BM_VAR("LED=", dev
->ledbit
, LED_MAX
);
1600 if (test_bit(EV_SND
, dev
->evbit
))
1601 INPUT_ADD_HOTPLUG_BM_VAR("SND=", dev
->sndbit
, SND_MAX
);
1602 if (test_bit(EV_FF
, dev
->evbit
))
1603 INPUT_ADD_HOTPLUG_BM_VAR("FF=", dev
->ffbit
, FF_MAX
);
1604 if (test_bit(EV_SW
, dev
->evbit
))
1605 INPUT_ADD_HOTPLUG_BM_VAR("SW=", dev
->swbit
, SW_MAX
);
1607 INPUT_ADD_HOTPLUG_MODALIAS_VAR(dev
);
1612 #define INPUT_DO_TOGGLE(dev, type, bits, on) \
1617 if (!test_bit(EV_##type, dev->evbit)) \
1620 for (i = 0; i < type##_MAX; i++) { \
1621 if (!test_bit(i, dev->bits##bit)) \
1624 active = test_bit(i, dev->bits); \
1625 if (!active && !on) \
1628 dev->event(dev, EV_##type, i, on ? active : 0); \
1632 static void input_dev_toggle(struct input_dev
*dev
, bool activate
)
1637 INPUT_DO_TOGGLE(dev
, LED
, led
, activate
);
1638 INPUT_DO_TOGGLE(dev
, SND
, snd
, activate
);
1640 if (activate
&& test_bit(EV_REP
, dev
->evbit
)) {
1641 dev
->event(dev
, EV_REP
, REP_PERIOD
, dev
->rep
[REP_PERIOD
]);
1642 dev
->event(dev
, EV_REP
, REP_DELAY
, dev
->rep
[REP_DELAY
]);
1647 * input_reset_device() - reset/restore the state of input device
1648 * @dev: input device whose state needs to be reset
1650 * This function tries to reset the state of an opened input device and
1651 * bring internal state and state if the hardware in sync with each other.
1652 * We mark all keys as released, restore LED state, repeat rate, etc.
1654 void input_reset_device(struct input_dev
*dev
)
1656 unsigned long flags
;
1658 mutex_lock(&dev
->mutex
);
1659 spin_lock_irqsave(&dev
->event_lock
, flags
);
1661 input_dev_toggle(dev
, true);
1662 input_dev_release_keys(dev
);
1664 spin_unlock_irqrestore(&dev
->event_lock
, flags
);
1665 mutex_unlock(&dev
->mutex
);
1667 EXPORT_SYMBOL(input_reset_device
);
1669 #ifdef CONFIG_PM_SLEEP
1670 static int input_dev_suspend(struct device
*dev
)
1672 struct input_dev
*input_dev
= to_input_dev(dev
);
1674 spin_lock_irq(&input_dev
->event_lock
);
1677 * Keys that are pressed now are unlikely to be
1678 * still pressed when we resume.
1680 input_dev_release_keys(input_dev
);
1682 /* Turn off LEDs and sounds, if any are active. */
1683 input_dev_toggle(input_dev
, false);
1685 spin_unlock_irq(&input_dev
->event_lock
);
1690 static int input_dev_resume(struct device
*dev
)
1692 struct input_dev
*input_dev
= to_input_dev(dev
);
1694 spin_lock_irq(&input_dev
->event_lock
);
1696 /* Restore state of LEDs and sounds, if any were active. */
1697 input_dev_toggle(input_dev
, true);
1699 spin_unlock_irq(&input_dev
->event_lock
);
1704 static int input_dev_freeze(struct device
*dev
)
1706 struct input_dev
*input_dev
= to_input_dev(dev
);
1708 spin_lock_irq(&input_dev
->event_lock
);
1711 * Keys that are pressed now are unlikely to be
1712 * still pressed when we resume.
1714 input_dev_release_keys(input_dev
);
1716 spin_unlock_irq(&input_dev
->event_lock
);
1721 static int input_dev_poweroff(struct device
*dev
)
1723 struct input_dev
*input_dev
= to_input_dev(dev
);
1725 spin_lock_irq(&input_dev
->event_lock
);
1727 /* Turn off LEDs and sounds, if any are active. */
1728 input_dev_toggle(input_dev
, false);
1730 spin_unlock_irq(&input_dev
->event_lock
);
1735 static const struct dev_pm_ops input_dev_pm_ops
= {
1736 .suspend
= input_dev_suspend
,
1737 .resume
= input_dev_resume
,
1738 .freeze
= input_dev_freeze
,
1739 .poweroff
= input_dev_poweroff
,
1740 .restore
= input_dev_resume
,
1742 #endif /* CONFIG_PM */
1744 static struct device_type input_dev_type
= {
1745 .groups
= input_dev_attr_groups
,
1746 .release
= input_dev_release
,
1747 .uevent
= input_dev_uevent
,
1748 #ifdef CONFIG_PM_SLEEP
1749 .pm
= &input_dev_pm_ops
,
1753 static char *input_devnode(struct device
*dev
, umode_t
*mode
)
1755 return kasprintf(GFP_KERNEL
, "input/%s", dev_name(dev
));
1758 struct class input_class
= {
1760 .devnode
= input_devnode
,
1762 EXPORT_SYMBOL_GPL(input_class
);
1765 * input_allocate_device - allocate memory for new input device
1767 * Returns prepared struct input_dev or %NULL.
1769 * NOTE: Use input_free_device() to free devices that have not been
1770 * registered; input_unregister_device() should be used for already
1771 * registered devices.
1773 struct input_dev
*input_allocate_device(void)
1775 static atomic_t input_no
= ATOMIC_INIT(0);
1776 struct input_dev
*dev
;
1778 dev
= kzalloc(sizeof(struct input_dev
), GFP_KERNEL
);
1780 dev
->dev
.type
= &input_dev_type
;
1781 dev
->dev
.class = &input_class
;
1782 device_initialize(&dev
->dev
);
1783 mutex_init(&dev
->mutex
);
1784 spin_lock_init(&dev
->event_lock
);
1785 init_timer(&dev
->timer
);
1786 INIT_LIST_HEAD(&dev
->h_list
);
1787 INIT_LIST_HEAD(&dev
->node
);
1789 dev_set_name(&dev
->dev
, "input%ld",
1790 (unsigned long) atomic_inc_return(&input_no
) - 1);
1792 __module_get(THIS_MODULE
);
1797 EXPORT_SYMBOL(input_allocate_device
);
1799 struct input_devres
{
1800 struct input_dev
*input
;
1803 static int devm_input_device_match(struct device
*dev
, void *res
, void *data
)
1805 struct input_devres
*devres
= res
;
1807 return devres
->input
== data
;
1810 static void devm_input_device_release(struct device
*dev
, void *res
)
1812 struct input_devres
*devres
= res
;
1813 struct input_dev
*input
= devres
->input
;
1815 dev_dbg(dev
, "%s: dropping reference to %s\n",
1816 __func__
, dev_name(&input
->dev
));
1817 input_put_device(input
);
1821 * devm_input_allocate_device - allocate managed input device
1822 * @dev: device owning the input device being created
1824 * Returns prepared struct input_dev or %NULL.
1826 * Managed input devices do not need to be explicitly unregistered or
1827 * freed as it will be done automatically when owner device unbinds from
1828 * its driver (or binding fails). Once managed input device is allocated,
1829 * it is ready to be set up and registered in the same fashion as regular
1830 * input device. There are no special devm_input_device_[un]register()
1831 * variants, regular ones work with both managed and unmanaged devices,
1832 * should you need them. In most cases however, managed input device need
1833 * not be explicitly unregistered or freed.
1835 * NOTE: the owner device is set up as parent of input device and users
1836 * should not override it.
1838 struct input_dev
*devm_input_allocate_device(struct device
*dev
)
1840 struct input_dev
*input
;
1841 struct input_devres
*devres
;
1843 devres
= devres_alloc(devm_input_device_release
,
1844 sizeof(struct input_devres
), GFP_KERNEL
);
1848 input
= input_allocate_device();
1850 devres_free(devres
);
1854 input
->dev
.parent
= dev
;
1855 input
->devres_managed
= true;
1857 devres
->input
= input
;
1858 devres_add(dev
, devres
);
1862 EXPORT_SYMBOL(devm_input_allocate_device
);
1865 * input_free_device - free memory occupied by input_dev structure
1866 * @dev: input device to free
1868 * This function should only be used if input_register_device()
1869 * was not called yet or if it failed. Once device was registered
1870 * use input_unregister_device() and memory will be freed once last
1871 * reference to the device is dropped.
1873 * Device should be allocated by input_allocate_device().
1875 * NOTE: If there are references to the input device then memory
1876 * will not be freed until last reference is dropped.
1878 void input_free_device(struct input_dev
*dev
)
1881 if (dev
->devres_managed
)
1882 WARN_ON(devres_destroy(dev
->dev
.parent
,
1883 devm_input_device_release
,
1884 devm_input_device_match
,
1886 input_put_device(dev
);
1889 EXPORT_SYMBOL(input_free_device
);
1892 * input_set_capability - mark device as capable of a certain event
1893 * @dev: device that is capable of emitting or accepting event
1894 * @type: type of the event (EV_KEY, EV_REL, etc...)
1897 * In addition to setting up corresponding bit in appropriate capability
1898 * bitmap the function also adjusts dev->evbit.
1900 void input_set_capability(struct input_dev
*dev
, unsigned int type
, unsigned int code
)
1904 __set_bit(code
, dev
->keybit
);
1908 __set_bit(code
, dev
->relbit
);
1912 input_alloc_absinfo(dev
);
1916 __set_bit(code
, dev
->absbit
);
1920 __set_bit(code
, dev
->mscbit
);
1924 __set_bit(code
, dev
->swbit
);
1928 __set_bit(code
, dev
->ledbit
);
1932 __set_bit(code
, dev
->sndbit
);
1936 __set_bit(code
, dev
->ffbit
);
1944 pr_err("input_set_capability: unknown type %u (code %u)\n",
1950 __set_bit(type
, dev
->evbit
);
1952 EXPORT_SYMBOL(input_set_capability
);
1954 static unsigned int input_estimate_events_per_packet(struct input_dev
*dev
)
1958 unsigned int events
;
1961 mt_slots
= dev
->mt
->num_slots
;
1962 } else if (test_bit(ABS_MT_TRACKING_ID
, dev
->absbit
)) {
1963 mt_slots
= dev
->absinfo
[ABS_MT_TRACKING_ID
].maximum
-
1964 dev
->absinfo
[ABS_MT_TRACKING_ID
].minimum
+ 1,
1965 mt_slots
= clamp(mt_slots
, 2, 32);
1966 } else if (test_bit(ABS_MT_POSITION_X
, dev
->absbit
)) {
1972 events
= mt_slots
+ 1; /* count SYN_MT_REPORT and SYN_REPORT */
1974 for (i
= 0; i
< ABS_CNT
; i
++) {
1975 if (test_bit(i
, dev
->absbit
)) {
1976 if (input_is_mt_axis(i
))
1983 for (i
= 0; i
< REL_CNT
; i
++)
1984 if (test_bit(i
, dev
->relbit
))
1987 /* Make room for KEY and MSC events */
1993 #define INPUT_CLEANSE_BITMASK(dev, type, bits) \
1995 if (!test_bit(EV_##type, dev->evbit)) \
1996 memset(dev->bits##bit, 0, \
1997 sizeof(dev->bits##bit)); \
2000 static void input_cleanse_bitmasks(struct input_dev
*dev
)
2002 INPUT_CLEANSE_BITMASK(dev
, KEY
, key
);
2003 INPUT_CLEANSE_BITMASK(dev
, REL
, rel
);
2004 INPUT_CLEANSE_BITMASK(dev
, ABS
, abs
);
2005 INPUT_CLEANSE_BITMASK(dev
, MSC
, msc
);
2006 INPUT_CLEANSE_BITMASK(dev
, LED
, led
);
2007 INPUT_CLEANSE_BITMASK(dev
, SND
, snd
);
2008 INPUT_CLEANSE_BITMASK(dev
, FF
, ff
);
2009 INPUT_CLEANSE_BITMASK(dev
, SW
, sw
);
2012 static void __input_unregister_device(struct input_dev
*dev
)
2014 struct input_handle
*handle
, *next
;
2016 input_disconnect_device(dev
);
2018 mutex_lock(&input_mutex
);
2020 list_for_each_entry_safe(handle
, next
, &dev
->h_list
, d_node
)
2021 handle
->handler
->disconnect(handle
);
2022 WARN_ON(!list_empty(&dev
->h_list
));
2024 del_timer_sync(&dev
->timer
);
2025 list_del_init(&dev
->node
);
2027 input_wakeup_procfs_readers();
2029 mutex_unlock(&input_mutex
);
2031 device_del(&dev
->dev
);
2034 static void devm_input_device_unregister(struct device
*dev
, void *res
)
2036 struct input_devres
*devres
= res
;
2037 struct input_dev
*input
= devres
->input
;
2039 dev_dbg(dev
, "%s: unregistering device %s\n",
2040 __func__
, dev_name(&input
->dev
));
2041 __input_unregister_device(input
);
2045 * input_register_device - register device with input core
2046 * @dev: device to be registered
2048 * This function registers device with input core. The device must be
2049 * allocated with input_allocate_device() and all it's capabilities
2050 * set up before registering.
2051 * If function fails the device must be freed with input_free_device().
2052 * Once device has been successfully registered it can be unregistered
2053 * with input_unregister_device(); input_free_device() should not be
2054 * called in this case.
2056 * Note that this function is also used to register managed input devices
2057 * (ones allocated with devm_input_allocate_device()). Such managed input
2058 * devices need not be explicitly unregistered or freed, their tear down
2059 * is controlled by the devres infrastructure. It is also worth noting
2060 * that tear down of managed input devices is internally a 2-step process:
2061 * registered managed input device is first unregistered, but stays in
2062 * memory and can still handle input_event() calls (although events will
2063 * not be delivered anywhere). The freeing of managed input device will
2064 * happen later, when devres stack is unwound to the point where device
2065 * allocation was made.
2067 int input_register_device(struct input_dev
*dev
)
2069 struct input_devres
*devres
= NULL
;
2070 struct input_handler
*handler
;
2071 unsigned int packet_size
;
2075 if (dev
->devres_managed
) {
2076 devres
= devres_alloc(devm_input_device_unregister
,
2077 sizeof(struct input_devres
), GFP_KERNEL
);
2081 devres
->input
= dev
;
2084 /* Every input device generates EV_SYN/SYN_REPORT events. */
2085 __set_bit(EV_SYN
, dev
->evbit
);
2087 /* KEY_RESERVED is not supposed to be transmitted to userspace. */
2088 __clear_bit(KEY_RESERVED
, dev
->keybit
);
2090 /* Make sure that bitmasks not mentioned in dev->evbit are clean. */
2091 input_cleanse_bitmasks(dev
);
2093 packet_size
= input_estimate_events_per_packet(dev
);
2094 if (dev
->hint_events_per_packet
< packet_size
)
2095 dev
->hint_events_per_packet
= packet_size
;
2097 dev
->max_vals
= dev
->hint_events_per_packet
+ 2;
2098 dev
->vals
= kcalloc(dev
->max_vals
, sizeof(*dev
->vals
), GFP_KERNEL
);
2101 goto err_devres_free
;
2105 * If delay and period are pre-set by the driver, then autorepeating
2106 * is handled by the driver itself and we don't do it in input.c.
2108 if (!dev
->rep
[REP_DELAY
] && !dev
->rep
[REP_PERIOD
]) {
2109 dev
->timer
.data
= (long) dev
;
2110 dev
->timer
.function
= input_repeat_key
;
2111 dev
->rep
[REP_DELAY
] = 250;
2112 dev
->rep
[REP_PERIOD
] = 33;
2115 if (!dev
->getkeycode
)
2116 dev
->getkeycode
= input_default_getkeycode
;
2118 if (!dev
->setkeycode
)
2119 dev
->setkeycode
= input_default_setkeycode
;
2121 error
= device_add(&dev
->dev
);
2125 path
= kobject_get_path(&dev
->dev
.kobj
, GFP_KERNEL
);
2126 pr_info("%s as %s\n",
2127 dev
->name
? dev
->name
: "Unspecified device",
2128 path
? path
: "N/A");
2131 error
= mutex_lock_interruptible(&input_mutex
);
2133 goto err_device_del
;
2135 list_add_tail(&dev
->node
, &input_dev_list
);
2137 list_for_each_entry(handler
, &input_handler_list
, node
)
2138 input_attach_handler(dev
, handler
);
2140 input_wakeup_procfs_readers();
2142 mutex_unlock(&input_mutex
);
2144 if (dev
->devres_managed
) {
2145 dev_dbg(dev
->dev
.parent
, "%s: registering %s with devres.\n",
2146 __func__
, dev_name(&dev
->dev
));
2147 devres_add(dev
->dev
.parent
, devres
);
2152 device_del(&dev
->dev
);
2157 devres_free(devres
);
2160 EXPORT_SYMBOL(input_register_device
);
2163 * input_unregister_device - unregister previously registered device
2164 * @dev: device to be unregistered
2166 * This function unregisters an input device. Once device is unregistered
2167 * the caller should not try to access it as it may get freed at any moment.
2169 void input_unregister_device(struct input_dev
*dev
)
2171 if (dev
->devres_managed
) {
2172 WARN_ON(devres_destroy(dev
->dev
.parent
,
2173 devm_input_device_unregister
,
2174 devm_input_device_match
,
2176 __input_unregister_device(dev
);
2178 * We do not do input_put_device() here because it will be done
2179 * when 2nd devres fires up.
2182 __input_unregister_device(dev
);
2183 input_put_device(dev
);
2186 EXPORT_SYMBOL(input_unregister_device
);
2189 * input_register_handler - register a new input handler
2190 * @handler: handler to be registered
2192 * This function registers a new input handler (interface) for input
2193 * devices in the system and attaches it to all input devices that
2194 * are compatible with the handler.
2196 int input_register_handler(struct input_handler
*handler
)
2198 struct input_dev
*dev
;
2201 error
= mutex_lock_interruptible(&input_mutex
);
2205 INIT_LIST_HEAD(&handler
->h_list
);
2207 list_add_tail(&handler
->node
, &input_handler_list
);
2209 list_for_each_entry(dev
, &input_dev_list
, node
)
2210 input_attach_handler(dev
, handler
);
2212 input_wakeup_procfs_readers();
2214 mutex_unlock(&input_mutex
);
2217 EXPORT_SYMBOL(input_register_handler
);
2220 * input_unregister_handler - unregisters an input handler
2221 * @handler: handler to be unregistered
2223 * This function disconnects a handler from its input devices and
2224 * removes it from lists of known handlers.
2226 void input_unregister_handler(struct input_handler
*handler
)
2228 struct input_handle
*handle
, *next
;
2230 mutex_lock(&input_mutex
);
2232 list_for_each_entry_safe(handle
, next
, &handler
->h_list
, h_node
)
2233 handler
->disconnect(handle
);
2234 WARN_ON(!list_empty(&handler
->h_list
));
2236 list_del_init(&handler
->node
);
2238 input_wakeup_procfs_readers();
2240 mutex_unlock(&input_mutex
);
2242 EXPORT_SYMBOL(input_unregister_handler
);
2245 * input_handler_for_each_handle - handle iterator
2246 * @handler: input handler to iterate
2247 * @data: data for the callback
2248 * @fn: function to be called for each handle
2250 * Iterate over @bus's list of devices, and call @fn for each, passing
2251 * it @data and stop when @fn returns a non-zero value. The function is
2252 * using RCU to traverse the list and therefore may be usind in atonic
2253 * contexts. The @fn callback is invoked from RCU critical section and
2254 * thus must not sleep.
2256 int input_handler_for_each_handle(struct input_handler
*handler
, void *data
,
2257 int (*fn
)(struct input_handle
*, void *))
2259 struct input_handle
*handle
;
2264 list_for_each_entry_rcu(handle
, &handler
->h_list
, h_node
) {
2265 retval
= fn(handle
, data
);
2274 EXPORT_SYMBOL(input_handler_for_each_handle
);
2277 * input_register_handle - register a new input handle
2278 * @handle: handle to register
2280 * This function puts a new input handle onto device's
2281 * and handler's lists so that events can flow through
2282 * it once it is opened using input_open_device().
2284 * This function is supposed to be called from handler's
2287 int input_register_handle(struct input_handle
*handle
)
2289 struct input_handler
*handler
= handle
->handler
;
2290 struct input_dev
*dev
= handle
->dev
;
2294 * We take dev->mutex here to prevent race with
2295 * input_release_device().
2297 error
= mutex_lock_interruptible(&dev
->mutex
);
2302 * Filters go to the head of the list, normal handlers
2305 if (handler
->filter
)
2306 list_add_rcu(&handle
->d_node
, &dev
->h_list
);
2308 list_add_tail_rcu(&handle
->d_node
, &dev
->h_list
);
2310 mutex_unlock(&dev
->mutex
);
2313 * Since we are supposed to be called from ->connect()
2314 * which is mutually exclusive with ->disconnect()
2315 * we can't be racing with input_unregister_handle()
2316 * and so separate lock is not needed here.
2318 list_add_tail_rcu(&handle
->h_node
, &handler
->h_list
);
2321 handler
->start(handle
);
2325 EXPORT_SYMBOL(input_register_handle
);
2328 * input_unregister_handle - unregister an input handle
2329 * @handle: handle to unregister
2331 * This function removes input handle from device's
2332 * and handler's lists.
2334 * This function is supposed to be called from handler's
2335 * disconnect() method.
2337 void input_unregister_handle(struct input_handle
*handle
)
2339 struct input_dev
*dev
= handle
->dev
;
2341 list_del_rcu(&handle
->h_node
);
2344 * Take dev->mutex to prevent race with input_release_device().
2346 mutex_lock(&dev
->mutex
);
2347 list_del_rcu(&handle
->d_node
);
2348 mutex_unlock(&dev
->mutex
);
2352 EXPORT_SYMBOL(input_unregister_handle
);
2355 * input_get_new_minor - allocates a new input minor number
2356 * @legacy_base: beginning or the legacy range to be searched
2357 * @legacy_num: size of legacy range
2358 * @allow_dynamic: whether we can also take ID from the dynamic range
2360 * This function allocates a new device minor for from input major namespace.
2361 * Caller can request legacy minor by specifying @legacy_base and @legacy_num
2362 * parameters and whether ID can be allocated from dynamic range if there are
2363 * no free IDs in legacy range.
2365 int input_get_new_minor(int legacy_base
, unsigned int legacy_num
,
2369 * This function should be called from input handler's ->connect()
2370 * methods, which are serialized with input_mutex, so no additional
2371 * locking is needed here.
2373 if (legacy_base
>= 0) {
2374 int minor
= ida_simple_get(&input_ida
,
2376 legacy_base
+ legacy_num
,
2378 if (minor
>= 0 || !allow_dynamic
)
2382 return ida_simple_get(&input_ida
,
2383 INPUT_FIRST_DYNAMIC_DEV
, INPUT_MAX_CHAR_DEVICES
,
2386 EXPORT_SYMBOL(input_get_new_minor
);
2389 * input_free_minor - release previously allocated minor
2390 * @minor: minor to be released
2392 * This function releases previously allocated input minor so that it can be
2395 void input_free_minor(unsigned int minor
)
2397 ida_simple_remove(&input_ida
, minor
);
2399 EXPORT_SYMBOL(input_free_minor
);
2401 static int __init
input_init(void)
2405 err
= class_register(&input_class
);
2407 pr_err("unable to register input_dev class\n");
2411 err
= input_proc_init();
2415 err
= register_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2416 INPUT_MAX_CHAR_DEVICES
, "input");
2418 pr_err("unable to register char major %d", INPUT_MAJOR
);
2424 fail2
: input_proc_exit();
2425 fail1
: class_unregister(&input_class
);
2429 static void __exit
input_exit(void)
2432 unregister_chrdev_region(MKDEV(INPUT_MAJOR
, 0),
2433 INPUT_MAX_CHAR_DEVICES
);
2434 class_unregister(&input_class
);
2437 subsys_initcall(input_init
);
2438 module_exit(input_exit
);