2 * Copyright (C) ST-Ericsson AB 2012
4 * Main and Back-up battery management driver.
6 * Note: Backup battery management is required in case of Li-Ion battery and not
7 * for capacitive battery. HREF boards have capacitive battery and hence backup
8 * battery management is not used and the supported code is available in this
11 * License Terms: GNU General Public License v2
13 * Johan Palsson <johan.palsson@stericsson.com>
14 * Karl Komierowski <karl.komierowski@stericsson.com>
15 * Arun R Murthy <arun.murthy@stericsson.com>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/device.h>
21 #include <linux/interrupt.h>
22 #include <linux/platform_device.h>
23 #include <linux/power_supply.h>
24 #include <linux/kobject.h>
25 #include <linux/slab.h>
26 #include <linux/delay.h>
27 #include <linux/time.h>
29 #include <linux/completion.h>
30 #include <linux/mfd/core.h>
31 #include <linux/mfd/abx500.h>
32 #include <linux/mfd/abx500/ab8500.h>
33 #include <linux/mfd/abx500/ab8500-bm.h>
34 #include <linux/mfd/abx500/ab8500-gpadc.h>
35 #include <linux/kernel.h>
37 #define MILLI_TO_MICRO 1000
38 #define FG_LSB_IN_MA 1627
39 #define QLSB_NANO_AMP_HOURS_X10 1071
40 #define INS_CURR_TIMEOUT (3 * HZ)
42 #define SEC_TO_SAMPLE(S) (S * 4)
44 #define NBR_AVG_SAMPLES 20
46 #define LOW_BAT_CHECK_INTERVAL (HZ / 16) /* 62.5 ms */
48 #define VALID_CAPACITY_SEC (45 * 60) /* 45 minutes */
49 #define BATT_OK_MIN 2360 /* mV */
50 #define BATT_OK_INCREMENT 50 /* mV */
51 #define BATT_OK_MAX_NR_INCREMENTS 0xE
56 #define interpolate(x, x1, y1, x2, y2) \
57 ((y1) + ((((y2) - (y1)) * ((x) - (x1))) / ((x2) - (x1))));
59 #define to_ab8500_fg_device_info(x) container_of((x), \
60 struct ab8500_fg, fg_psy);
63 * struct ab8500_fg_interrupts - ab8500 fg interupts
64 * @name: name of the interrupt
65 * @isr function pointer to the isr
67 struct ab8500_fg_interrupts
{
69 irqreturn_t (*isr
)(int irq
, void *data
);
72 enum ab8500_fg_discharge_state
{
73 AB8500_FG_DISCHARGE_INIT
,
74 AB8500_FG_DISCHARGE_INITMEASURING
,
75 AB8500_FG_DISCHARGE_INIT_RECOVERY
,
76 AB8500_FG_DISCHARGE_RECOVERY
,
77 AB8500_FG_DISCHARGE_READOUT_INIT
,
78 AB8500_FG_DISCHARGE_READOUT
,
79 AB8500_FG_DISCHARGE_WAKEUP
,
82 static char *discharge_state
[] = {
84 "DISCHARGE_INITMEASURING",
85 "DISCHARGE_INIT_RECOVERY",
87 "DISCHARGE_READOUT_INIT",
92 enum ab8500_fg_charge_state
{
93 AB8500_FG_CHARGE_INIT
,
94 AB8500_FG_CHARGE_READOUT
,
97 static char *charge_state
[] = {
102 enum ab8500_fg_calibration_state
{
103 AB8500_FG_CALIB_INIT
,
104 AB8500_FG_CALIB_WAIT
,
108 struct ab8500_fg_avg_cap
{
110 int samples
[NBR_AVG_SAMPLES
];
111 __kernel_time_t time_stamps
[NBR_AVG_SAMPLES
];
117 struct ab8500_fg_cap_scaling
{
120 int disable_cap_level
;
124 struct ab8500_fg_battery_capacity
{
134 struct ab8500_fg_cap_scaling cap_scale
;
137 struct ab8500_fg_flags
{
149 bool batt_id_received
;
152 struct inst_curr_result_list
{
153 struct list_head list
;
158 * struct ab8500_fg - ab8500 FG device information
159 * @dev: Pointer to the structure device
160 * @node: a list of AB8500 FGs, hence prepared for reentrance
161 * @irq holds the CCEOC interrupt number
162 * @vbat: Battery voltage in mV
163 * @vbat_nom: Nominal battery voltage in mV
164 * @inst_curr: Instantenous battery current in mA
165 * @avg_curr: Average battery current in mA
166 * @bat_temp battery temperature
167 * @fg_samples: Number of samples used in the FG accumulation
168 * @accu_charge: Accumulated charge from the last conversion
169 * @recovery_cnt: Counter for recovery mode
170 * @high_curr_cnt: Counter for high current mode
171 * @init_cnt: Counter for init mode
172 * @low_bat_cnt Counter for number of consecutive low battery measures
173 * @nbr_cceoc_irq_cnt Counter for number of CCEOC irqs received since enabled
174 * @recovery_needed: Indicate if recovery is needed
175 * @high_curr_mode: Indicate if we're in high current mode
176 * @init_capacity: Indicate if initial capacity measuring should be done
177 * @turn_off_fg: True if fg was off before current measurement
178 * @calib_state State during offset calibration
179 * @discharge_state: Current discharge state
180 * @charge_state: Current charge state
181 * @ab8500_fg_started Completion struct used for the instant current start
182 * @ab8500_fg_complete Completion struct used for the instant current reading
183 * @flags: Structure for information about events triggered
184 * @bat_cap: Structure for battery capacity specific parameters
185 * @avg_cap: Average capacity filter
186 * @parent: Pointer to the struct ab8500
187 * @gpadc: Pointer to the struct gpadc
188 * @bm: Platform specific battery management information
189 * @fg_psy: Structure that holds the FG specific battery properties
190 * @fg_wq: Work queue for running the FG algorithm
191 * @fg_periodic_work: Work to run the FG algorithm periodically
192 * @fg_low_bat_work: Work to check low bat condition
193 * @fg_reinit_work Work used to reset and reinitialise the FG algorithm
194 * @fg_work: Work to run the FG algorithm instantly
195 * @fg_acc_cur_work: Work to read the FG accumulator
196 * @fg_check_hw_failure_work: Work for checking HW state
197 * @cc_lock: Mutex for locking the CC
198 * @fg_kobject: Structure of type kobject
202 struct list_head node
;
215 int nbr_cceoc_irq_cnt
;
216 bool recovery_needed
;
220 enum ab8500_fg_calibration_state calib_state
;
221 enum ab8500_fg_discharge_state discharge_state
;
222 enum ab8500_fg_charge_state charge_state
;
223 struct completion ab8500_fg_started
;
224 struct completion ab8500_fg_complete
;
225 struct ab8500_fg_flags flags
;
226 struct ab8500_fg_battery_capacity bat_cap
;
227 struct ab8500_fg_avg_cap avg_cap
;
228 struct ab8500
*parent
;
229 struct ab8500_gpadc
*gpadc
;
230 struct abx500_bm_data
*bm
;
231 struct power_supply fg_psy
;
232 struct workqueue_struct
*fg_wq
;
233 struct delayed_work fg_periodic_work
;
234 struct delayed_work fg_low_bat_work
;
235 struct delayed_work fg_reinit_work
;
236 struct work_struct fg_work
;
237 struct work_struct fg_acc_cur_work
;
238 struct delayed_work fg_check_hw_failure_work
;
239 struct mutex cc_lock
;
240 struct kobject fg_kobject
;
242 static LIST_HEAD(ab8500_fg_list
);
245 * ab8500_fg_get() - returns a reference to the primary AB8500 fuel gauge
246 * (i.e. the first fuel gauge in the instance list)
248 struct ab8500_fg
*ab8500_fg_get(void)
250 struct ab8500_fg
*fg
;
252 if (list_empty(&ab8500_fg_list
))
255 fg
= list_first_entry(&ab8500_fg_list
, struct ab8500_fg
, node
);
259 /* Main battery properties */
260 static enum power_supply_property ab8500_fg_props
[] = {
261 POWER_SUPPLY_PROP_VOLTAGE_NOW
,
262 POWER_SUPPLY_PROP_CURRENT_NOW
,
263 POWER_SUPPLY_PROP_CURRENT_AVG
,
264 POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
,
265 POWER_SUPPLY_PROP_ENERGY_FULL
,
266 POWER_SUPPLY_PROP_ENERGY_NOW
,
267 POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN
,
268 POWER_SUPPLY_PROP_CHARGE_FULL
,
269 POWER_SUPPLY_PROP_CHARGE_NOW
,
270 POWER_SUPPLY_PROP_CAPACITY
,
271 POWER_SUPPLY_PROP_CAPACITY_LEVEL
,
275 * This array maps the raw hex value to lowbat voltage used by the AB8500
276 * Values taken from the UM0836
278 static int ab8500_fg_lowbat_voltage_map
[] = {
345 static u8
ab8500_volt_to_regval(int voltage
)
349 if (voltage
< ab8500_fg_lowbat_voltage_map
[0])
352 for (i
= 0; i
< ARRAY_SIZE(ab8500_fg_lowbat_voltage_map
); i
++) {
353 if (voltage
< ab8500_fg_lowbat_voltage_map
[i
])
357 /* If not captured above, return index of last element */
358 return (u8
) ARRAY_SIZE(ab8500_fg_lowbat_voltage_map
) - 1;
362 * ab8500_fg_is_low_curr() - Low or high current mode
363 * @di: pointer to the ab8500_fg structure
364 * @curr: the current to base or our decision on
366 * Low current mode if the current consumption is below a certain threshold
368 static int ab8500_fg_is_low_curr(struct ab8500_fg
*di
, int curr
)
371 * We want to know if we're in low current mode
373 if (curr
> -di
->bm
->fg_params
->high_curr_threshold
)
380 * ab8500_fg_add_cap_sample() - Add capacity to average filter
381 * @di: pointer to the ab8500_fg structure
382 * @sample: the capacity in mAh to add to the filter
384 * A capacity is added to the filter and a new mean capacity is calculated and
387 static int ab8500_fg_add_cap_sample(struct ab8500_fg
*di
, int sample
)
390 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
395 avg
->sum
+= sample
- avg
->samples
[avg
->pos
];
396 avg
->samples
[avg
->pos
] = sample
;
397 avg
->time_stamps
[avg
->pos
] = ts
.tv_sec
;
400 if (avg
->pos
== NBR_AVG_SAMPLES
)
403 if (avg
->nbr_samples
< NBR_AVG_SAMPLES
)
407 * Check the time stamp for each sample. If too old,
408 * replace with latest sample
410 } while (ts
.tv_sec
- VALID_CAPACITY_SEC
> avg
->time_stamps
[avg
->pos
]);
412 avg
->avg
= avg
->sum
/ avg
->nbr_samples
;
418 * ab8500_fg_clear_cap_samples() - Clear average filter
419 * @di: pointer to the ab8500_fg structure
421 * The capacity filter is is reset to zero.
423 static void ab8500_fg_clear_cap_samples(struct ab8500_fg
*di
)
426 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
429 avg
->nbr_samples
= 0;
433 for (i
= 0; i
< NBR_AVG_SAMPLES
; i
++) {
435 avg
->time_stamps
[i
] = 0;
440 * ab8500_fg_fill_cap_sample() - Fill average filter
441 * @di: pointer to the ab8500_fg structure
442 * @sample: the capacity in mAh to fill the filter with
444 * The capacity filter is filled with a capacity in mAh
446 static void ab8500_fg_fill_cap_sample(struct ab8500_fg
*di
, int sample
)
450 struct ab8500_fg_avg_cap
*avg
= &di
->avg_cap
;
454 for (i
= 0; i
< NBR_AVG_SAMPLES
; i
++) {
455 avg
->samples
[i
] = sample
;
456 avg
->time_stamps
[i
] = ts
.tv_sec
;
460 avg
->nbr_samples
= NBR_AVG_SAMPLES
;
461 avg
->sum
= sample
* NBR_AVG_SAMPLES
;
466 * ab8500_fg_coulomb_counter() - enable coulomb counter
467 * @di: pointer to the ab8500_fg structure
468 * @enable: enable/disable
470 * Enable/Disable coulomb counter.
471 * On failure returns negative value.
473 static int ab8500_fg_coulomb_counter(struct ab8500_fg
*di
, bool enable
)
476 mutex_lock(&di
->cc_lock
);
478 /* To be able to reprogram the number of samples, we have to
479 * first stop the CC and then enable it again */
480 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
481 AB8500_RTC_CC_CONF_REG
, 0x00);
485 /* Program the samples */
486 ret
= abx500_set_register_interruptible(di
->dev
,
487 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU
,
493 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
494 AB8500_RTC_CC_CONF_REG
,
495 (CC_DEEP_SLEEP_ENA
| CC_PWR_UP_ENA
));
499 di
->flags
.fg_enabled
= true;
501 /* Clear any pending read requests */
502 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
503 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
504 (RESET_ACCU
| READ_REQ
), 0);
508 ret
= abx500_set_register_interruptible(di
->dev
,
509 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU_CTRL
, 0);
514 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
515 AB8500_RTC_CC_CONF_REG
, 0);
519 di
->flags
.fg_enabled
= false;
522 dev_dbg(di
->dev
, " CC enabled: %d Samples: %d\n",
523 enable
, di
->fg_samples
);
525 mutex_unlock(&di
->cc_lock
);
529 dev_err(di
->dev
, "%s Enabling coulomb counter failed\n", __func__
);
530 mutex_unlock(&di
->cc_lock
);
535 * ab8500_fg_inst_curr_start() - start battery instantaneous current
536 * @di: pointer to the ab8500_fg structure
538 * Returns 0 or error code
539 * Note: This is part "one" and has to be called before
540 * ab8500_fg_inst_curr_finalize()
542 int ab8500_fg_inst_curr_start(struct ab8500_fg
*di
)
547 mutex_lock(&di
->cc_lock
);
549 di
->nbr_cceoc_irq_cnt
= 0;
550 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
551 AB8500_RTC_CC_CONF_REG
, ®_val
);
555 if (!(reg_val
& CC_PWR_UP_ENA
)) {
556 dev_dbg(di
->dev
, "%s Enable FG\n", __func__
);
557 di
->turn_off_fg
= true;
559 /* Program the samples */
560 ret
= abx500_set_register_interruptible(di
->dev
,
561 AB8500_GAS_GAUGE
, AB8500_GASG_CC_NCOV_ACCU
,
567 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
568 AB8500_RTC_CC_CONF_REG
,
569 (CC_DEEP_SLEEP_ENA
| CC_PWR_UP_ENA
));
573 di
->turn_off_fg
= false;
577 reinit_completion(&di
->ab8500_fg_started
);
578 reinit_completion(&di
->ab8500_fg_complete
);
581 /* Note: cc_lock is still locked */
584 mutex_unlock(&di
->cc_lock
);
589 * ab8500_fg_inst_curr_started() - check if fg conversion has started
590 * @di: pointer to the ab8500_fg structure
592 * Returns 1 if conversion started, 0 if still waiting
594 int ab8500_fg_inst_curr_started(struct ab8500_fg
*di
)
596 return completion_done(&di
->ab8500_fg_started
);
600 * ab8500_fg_inst_curr_done() - check if fg conversion is done
601 * @di: pointer to the ab8500_fg structure
603 * Returns 1 if conversion done, 0 if still waiting
605 int ab8500_fg_inst_curr_done(struct ab8500_fg
*di
)
607 return completion_done(&di
->ab8500_fg_complete
);
611 * ab8500_fg_inst_curr_finalize() - battery instantaneous current
612 * @di: pointer to the ab8500_fg structure
613 * @res: battery instantenous current(on success)
615 * Returns 0 or an error code
616 * Note: This is part "two" and has to be called at earliest 250 ms
617 * after ab8500_fg_inst_curr_start()
619 int ab8500_fg_inst_curr_finalize(struct ab8500_fg
*di
, int *res
)
626 if (!completion_done(&di
->ab8500_fg_complete
)) {
627 timeout
= wait_for_completion_timeout(
628 &di
->ab8500_fg_complete
,
630 dev_dbg(di
->dev
, "Finalize time: %d ms\n",
631 ((INS_CURR_TIMEOUT
- timeout
) * 1000) / HZ
);
634 disable_irq(di
->irq
);
635 di
->nbr_cceoc_irq_cnt
= 0;
636 dev_err(di
->dev
, "completion timed out [%d]\n",
642 disable_irq(di
->irq
);
643 di
->nbr_cceoc_irq_cnt
= 0;
645 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
646 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
649 /* 100uS between read request and read is needed */
650 usleep_range(100, 100);
652 /* Read CC Sample conversion value Low and high */
653 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
654 AB8500_GASG_CC_SMPL_CNVL_REG
, &low
);
658 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
659 AB8500_GASG_CC_SMPL_CNVH_REG
, &high
);
664 * negative value for Discharging
665 * convert 2's compliment into decimal
668 val
= (low
| (high
<< 8) | 0xFFFFE000);
670 val
= (low
| (high
<< 8));
673 * Convert to unit value in mA
674 * Full scale input voltage is
675 * 63.160mV => LSB = 63.160mV/(4096*res) = 1.542mA
676 * Given a 250ms conversion cycle time the LSB corresponds
677 * to 107.1 nAh. Convert to current by dividing by the conversion
678 * time in hours (250ms = 1 / (3600 * 4)h)
679 * 107.1nAh assumes 10mOhm, but fg_res is in 0.1mOhm
681 val
= (val
* QLSB_NANO_AMP_HOURS_X10
* 36 * 4) /
682 (1000 * di
->bm
->fg_res
);
684 if (di
->turn_off_fg
) {
685 dev_dbg(di
->dev
, "%s Disable FG\n", __func__
);
687 /* Clear any pending read requests */
688 ret
= abx500_set_register_interruptible(di
->dev
,
689 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
, 0);
694 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
695 AB8500_RTC_CC_CONF_REG
, 0);
699 mutex_unlock(&di
->cc_lock
);
704 mutex_unlock(&di
->cc_lock
);
709 * ab8500_fg_inst_curr_blocking() - battery instantaneous current
710 * @di: pointer to the ab8500_fg structure
711 * @res: battery instantenous current(on success)
713 * Returns 0 else error code
715 int ab8500_fg_inst_curr_blocking(struct ab8500_fg
*di
)
721 ret
= ab8500_fg_inst_curr_start(di
);
723 dev_err(di
->dev
, "Failed to initialize fg_inst\n");
727 /* Wait for CC to actually start */
728 if (!completion_done(&di
->ab8500_fg_started
)) {
729 timeout
= wait_for_completion_timeout(
730 &di
->ab8500_fg_started
,
732 dev_dbg(di
->dev
, "Start time: %d ms\n",
733 ((INS_CURR_TIMEOUT
- timeout
) * 1000) / HZ
);
736 dev_err(di
->dev
, "completion timed out [%d]\n",
742 ret
= ab8500_fg_inst_curr_finalize(di
, &res
);
744 dev_err(di
->dev
, "Failed to finalize fg_inst\n");
748 dev_dbg(di
->dev
, "%s instant current: %d", __func__
, res
);
751 disable_irq(di
->irq
);
752 mutex_unlock(&di
->cc_lock
);
757 * ab8500_fg_acc_cur_work() - average battery current
758 * @work: pointer to the work_struct structure
760 * Updated the average battery current obtained from the
763 static void ab8500_fg_acc_cur_work(struct work_struct
*work
)
769 struct ab8500_fg
*di
= container_of(work
,
770 struct ab8500_fg
, fg_acc_cur_work
);
772 mutex_lock(&di
->cc_lock
);
773 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
774 AB8500_GASG_CC_NCOV_ACCU_CTRL
, RD_NCONV_ACCU_REQ
);
778 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
779 AB8500_GASG_CC_NCOV_ACCU_LOW
, &low
);
783 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
784 AB8500_GASG_CC_NCOV_ACCU_MED
, &med
);
788 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_GAS_GAUGE
,
789 AB8500_GASG_CC_NCOV_ACCU_HIGH
, &high
);
793 /* Check for sign bit in case of negative value, 2's compliment */
795 val
= (low
| (med
<< 8) | (high
<< 16) | 0xFFE00000);
797 val
= (low
| (med
<< 8) | (high
<< 16));
801 * Given a 250ms conversion cycle time the LSB corresponds
803 * 112.9nAh assumes 10mOhm, but fg_res is in 0.1mOhm
805 di
->accu_charge
= (val
* QLSB_NANO_AMP_HOURS_X10
) /
806 (100 * di
->bm
->fg_res
);
809 * Convert to unit value in mA
810 * by dividing by the conversion
811 * time in hours (= samples / (3600 * 4)h)
812 * and multiply with 1000
814 di
->avg_curr
= (val
* QLSB_NANO_AMP_HOURS_X10
* 36) /
815 (1000 * di
->bm
->fg_res
* (di
->fg_samples
/ 4));
817 di
->flags
.conv_done
= true;
819 mutex_unlock(&di
->cc_lock
);
821 queue_work(di
->fg_wq
, &di
->fg_work
);
823 dev_dbg(di
->dev
, "fg_res: %d, fg_samples: %d, gasg: %d, accu_charge: %d \n",
824 di
->bm
->fg_res
, di
->fg_samples
, val
, di
->accu_charge
);
828 "Failed to read or write gas gauge registers\n");
829 mutex_unlock(&di
->cc_lock
);
830 queue_work(di
->fg_wq
, &di
->fg_work
);
834 * ab8500_fg_bat_voltage() - get battery voltage
835 * @di: pointer to the ab8500_fg structure
837 * Returns battery voltage(on success) else error code
839 static int ab8500_fg_bat_voltage(struct ab8500_fg
*di
)
844 vbat
= ab8500_gpadc_convert(di
->gpadc
, MAIN_BAT_V
);
847 "%s gpadc conversion failed, using previous value\n",
857 * ab8500_fg_volt_to_capacity() - Voltage based capacity
858 * @di: pointer to the ab8500_fg structure
859 * @voltage: The voltage to convert to a capacity
861 * Returns battery capacity in per mille based on voltage
863 static int ab8500_fg_volt_to_capacity(struct ab8500_fg
*di
, int voltage
)
866 const struct abx500_v_to_cap
*tbl
;
869 tbl
= di
->bm
->bat_type
[di
->bm
->batt_id
].v_to_cap_tbl
,
870 tbl_size
= di
->bm
->bat_type
[di
->bm
->batt_id
].n_v_cap_tbl_elements
;
872 for (i
= 0; i
< tbl_size
; ++i
) {
873 if (voltage
> tbl
[i
].voltage
)
877 if ((i
> 0) && (i
< tbl_size
)) {
878 cap
= interpolate(voltage
,
880 tbl
[i
].capacity
* 10,
882 tbl
[i
-1].capacity
* 10);
889 dev_dbg(di
->dev
, "%s Vbat: %d, Cap: %d per mille",
890 __func__
, voltage
, cap
);
896 * ab8500_fg_uncomp_volt_to_capacity() - Uncompensated voltage based capacity
897 * @di: pointer to the ab8500_fg structure
899 * Returns battery capacity based on battery voltage that is not compensated
900 * for the voltage drop due to the load
902 static int ab8500_fg_uncomp_volt_to_capacity(struct ab8500_fg
*di
)
904 di
->vbat
= ab8500_fg_bat_voltage(di
);
905 return ab8500_fg_volt_to_capacity(di
, di
->vbat
);
909 * ab8500_fg_battery_resistance() - Returns the battery inner resistance
910 * @di: pointer to the ab8500_fg structure
912 * Returns battery inner resistance added with the fuel gauge resistor value
913 * to get the total resistance in the whole link from gnd to bat+ node.
915 static int ab8500_fg_battery_resistance(struct ab8500_fg
*di
)
918 const struct batres_vs_temp
*tbl
;
921 tbl
= di
->bm
->bat_type
[di
->bm
->batt_id
].batres_tbl
;
922 tbl_size
= di
->bm
->bat_type
[di
->bm
->batt_id
].n_batres_tbl_elements
;
924 for (i
= 0; i
< tbl_size
; ++i
) {
925 if (di
->bat_temp
/ 10 > tbl
[i
].temp
)
929 if ((i
> 0) && (i
< tbl_size
)) {
930 resist
= interpolate(di
->bat_temp
/ 10,
936 resist
= tbl
[0].resist
;
938 resist
= tbl
[tbl_size
- 1].resist
;
941 dev_dbg(di
->dev
, "%s Temp: %d battery internal resistance: %d"
942 " fg resistance %d, total: %d (mOhm)\n",
943 __func__
, di
->bat_temp
, resist
, di
->bm
->fg_res
/ 10,
944 (di
->bm
->fg_res
/ 10) + resist
);
946 /* fg_res variable is in 0.1mOhm */
947 resist
+= di
->bm
->fg_res
/ 10;
953 * ab8500_fg_load_comp_volt_to_capacity() - Load compensated voltage based capacity
954 * @di: pointer to the ab8500_fg structure
956 * Returns battery capacity based on battery voltage that is load compensated
957 * for the voltage drop
959 static int ab8500_fg_load_comp_volt_to_capacity(struct ab8500_fg
*di
)
965 ab8500_fg_inst_curr_start(di
);
968 vbat
+= ab8500_fg_bat_voltage(di
);
970 usleep_range(5000, 6000);
971 } while (!ab8500_fg_inst_curr_done(di
));
973 ab8500_fg_inst_curr_finalize(di
, &di
->inst_curr
);
976 res
= ab8500_fg_battery_resistance(di
);
978 /* Use Ohms law to get the load compensated voltage */
979 vbat_comp
= di
->vbat
- (di
->inst_curr
* res
) / 1000;
981 dev_dbg(di
->dev
, "%s Measured Vbat: %dmV,Compensated Vbat %dmV, "
982 "R: %dmOhm, Current: %dmA Vbat Samples: %d\n",
983 __func__
, di
->vbat
, vbat_comp
, res
, di
->inst_curr
, i
);
985 return ab8500_fg_volt_to_capacity(di
, vbat_comp
);
989 * ab8500_fg_convert_mah_to_permille() - Capacity in mAh to permille
990 * @di: pointer to the ab8500_fg structure
991 * @cap_mah: capacity in mAh
993 * Converts capacity in mAh to capacity in permille
995 static int ab8500_fg_convert_mah_to_permille(struct ab8500_fg
*di
, int cap_mah
)
997 return (cap_mah
* 1000) / di
->bat_cap
.max_mah_design
;
1001 * ab8500_fg_convert_permille_to_mah() - Capacity in permille to mAh
1002 * @di: pointer to the ab8500_fg structure
1003 * @cap_pm: capacity in permille
1005 * Converts capacity in permille to capacity in mAh
1007 static int ab8500_fg_convert_permille_to_mah(struct ab8500_fg
*di
, int cap_pm
)
1009 return cap_pm
* di
->bat_cap
.max_mah_design
/ 1000;
1013 * ab8500_fg_convert_mah_to_uwh() - Capacity in mAh to uWh
1014 * @di: pointer to the ab8500_fg structure
1015 * @cap_mah: capacity in mAh
1017 * Converts capacity in mAh to capacity in uWh
1019 static int ab8500_fg_convert_mah_to_uwh(struct ab8500_fg
*di
, int cap_mah
)
1024 div_res
= ((u64
) cap_mah
) * ((u64
) di
->vbat_nom
);
1025 div_rem
= do_div(div_res
, 1000);
1027 /* Make sure to round upwards if necessary */
1028 if (div_rem
>= 1000 / 2)
1031 return (int) div_res
;
1035 * ab8500_fg_calc_cap_charging() - Calculate remaining capacity while charging
1036 * @di: pointer to the ab8500_fg structure
1038 * Return the capacity in mAh based on previous calculated capcity and the FG
1039 * accumulator register value. The filter is filled with this capacity
1041 static int ab8500_fg_calc_cap_charging(struct ab8500_fg
*di
)
1043 dev_dbg(di
->dev
, "%s cap_mah %d accu_charge %d\n",
1048 /* Capacity should not be less than 0 */
1049 if (di
->bat_cap
.mah
+ di
->accu_charge
> 0)
1050 di
->bat_cap
.mah
+= di
->accu_charge
;
1052 di
->bat_cap
.mah
= 0;
1054 * We force capacity to 100% once when the algorithm
1055 * reports that it's full.
1057 if (di
->bat_cap
.mah
>= di
->bat_cap
.max_mah_design
||
1058 di
->flags
.force_full
) {
1059 di
->bat_cap
.mah
= di
->bat_cap
.max_mah_design
;
1062 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1063 di
->bat_cap
.permille
=
1064 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1066 /* We need to update battery voltage and inst current when charging */
1067 di
->vbat
= ab8500_fg_bat_voltage(di
);
1068 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1070 return di
->bat_cap
.mah
;
1074 * ab8500_fg_calc_cap_discharge_voltage() - Capacity in discharge with voltage
1075 * @di: pointer to the ab8500_fg structure
1076 * @comp: if voltage should be load compensated before capacity calc
1078 * Return the capacity in mAh based on the battery voltage. The voltage can
1079 * either be load compensated or not. This value is added to the filter and a
1080 * new mean value is calculated and returned.
1082 static int ab8500_fg_calc_cap_discharge_voltage(struct ab8500_fg
*di
, bool comp
)
1087 permille
= ab8500_fg_load_comp_volt_to_capacity(di
);
1089 permille
= ab8500_fg_uncomp_volt_to_capacity(di
);
1091 mah
= ab8500_fg_convert_permille_to_mah(di
, permille
);
1093 di
->bat_cap
.mah
= ab8500_fg_add_cap_sample(di
, mah
);
1094 di
->bat_cap
.permille
=
1095 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1097 return di
->bat_cap
.mah
;
1101 * ab8500_fg_calc_cap_discharge_fg() - Capacity in discharge with FG
1102 * @di: pointer to the ab8500_fg structure
1104 * Return the capacity in mAh based on previous calculated capcity and the FG
1105 * accumulator register value. This value is added to the filter and a
1106 * new mean value is calculated and returned.
1108 static int ab8500_fg_calc_cap_discharge_fg(struct ab8500_fg
*di
)
1110 int permille_volt
, permille
;
1112 dev_dbg(di
->dev
, "%s cap_mah %d accu_charge %d\n",
1117 /* Capacity should not be less than 0 */
1118 if (di
->bat_cap
.mah
+ di
->accu_charge
> 0)
1119 di
->bat_cap
.mah
+= di
->accu_charge
;
1121 di
->bat_cap
.mah
= 0;
1123 if (di
->bat_cap
.mah
>= di
->bat_cap
.max_mah_design
)
1124 di
->bat_cap
.mah
= di
->bat_cap
.max_mah_design
;
1127 * Check against voltage based capacity. It can not be lower
1128 * than what the uncompensated voltage says
1130 permille
= ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1131 permille_volt
= ab8500_fg_uncomp_volt_to_capacity(di
);
1133 if (permille
< permille_volt
) {
1134 di
->bat_cap
.permille
= permille_volt
;
1135 di
->bat_cap
.mah
= ab8500_fg_convert_permille_to_mah(di
,
1136 di
->bat_cap
.permille
);
1138 dev_dbg(di
->dev
, "%s voltage based: perm %d perm_volt %d\n",
1143 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1145 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.mah
);
1146 di
->bat_cap
.permille
=
1147 ab8500_fg_convert_mah_to_permille(di
, di
->bat_cap
.mah
);
1150 return di
->bat_cap
.mah
;
1154 * ab8500_fg_capacity_level() - Get the battery capacity level
1155 * @di: pointer to the ab8500_fg structure
1157 * Get the battery capacity level based on the capacity in percent
1159 static int ab8500_fg_capacity_level(struct ab8500_fg
*di
)
1163 percent
= DIV_ROUND_CLOSEST(di
->bat_cap
.permille
, 10);
1165 if (percent
<= di
->bm
->cap_levels
->critical
||
1167 ret
= POWER_SUPPLY_CAPACITY_LEVEL_CRITICAL
;
1168 else if (percent
<= di
->bm
->cap_levels
->low
)
1169 ret
= POWER_SUPPLY_CAPACITY_LEVEL_LOW
;
1170 else if (percent
<= di
->bm
->cap_levels
->normal
)
1171 ret
= POWER_SUPPLY_CAPACITY_LEVEL_NORMAL
;
1172 else if (percent
<= di
->bm
->cap_levels
->high
)
1173 ret
= POWER_SUPPLY_CAPACITY_LEVEL_HIGH
;
1175 ret
= POWER_SUPPLY_CAPACITY_LEVEL_FULL
;
1181 * ab8500_fg_calculate_scaled_capacity() - Capacity scaling
1182 * @di: pointer to the ab8500_fg structure
1184 * Calculates the capacity to be shown to upper layers. Scales the capacity
1185 * to have 100% as a reference from the actual capacity upon removal of charger
1186 * when charging is in maintenance mode.
1188 static int ab8500_fg_calculate_scaled_capacity(struct ab8500_fg
*di
)
1190 struct ab8500_fg_cap_scaling
*cs
= &di
->bat_cap
.cap_scale
;
1191 int capacity
= di
->bat_cap
.prev_percent
;
1197 * As long as we are in fully charge mode scale the capacity
1200 if (di
->flags
.fully_charged
) {
1201 cs
->cap_to_scale
[0] = 100;
1202 cs
->cap_to_scale
[1] =
1203 max(capacity
, di
->bm
->fg_params
->maint_thres
);
1204 dev_dbg(di
->dev
, "Scale cap with %d/%d\n",
1205 cs
->cap_to_scale
[0], cs
->cap_to_scale
[1]);
1208 /* Calculates the scaled capacity. */
1209 if ((cs
->cap_to_scale
[0] != cs
->cap_to_scale
[1])
1210 && (cs
->cap_to_scale
[1] > 0))
1212 DIV_ROUND_CLOSEST(di
->bat_cap
.prev_percent
*
1213 cs
->cap_to_scale
[0],
1214 cs
->cap_to_scale
[1]));
1216 if (di
->flags
.charging
) {
1217 if (capacity
< cs
->disable_cap_level
) {
1218 cs
->disable_cap_level
= capacity
;
1219 dev_dbg(di
->dev
, "Cap to stop scale lowered %d%%\n",
1220 cs
->disable_cap_level
);
1221 } else if (!di
->flags
.fully_charged
) {
1222 if (di
->bat_cap
.prev_percent
>=
1223 cs
->disable_cap_level
) {
1224 dev_dbg(di
->dev
, "Disabling scaled capacity\n");
1226 capacity
= di
->bat_cap
.prev_percent
;
1229 "Waiting in cap to level %d%%\n",
1230 cs
->disable_cap_level
);
1231 capacity
= cs
->disable_cap_level
;
1240 * ab8500_fg_update_cap_scalers() - Capacity scaling
1241 * @di: pointer to the ab8500_fg structure
1243 * To be called when state change from charge<->discharge to update
1244 * the capacity scalers.
1246 static void ab8500_fg_update_cap_scalers(struct ab8500_fg
*di
)
1248 struct ab8500_fg_cap_scaling
*cs
= &di
->bat_cap
.cap_scale
;
1252 if (di
->flags
.charging
) {
1253 di
->bat_cap
.cap_scale
.disable_cap_level
=
1254 di
->bat_cap
.cap_scale
.scaled_cap
;
1255 dev_dbg(di
->dev
, "Cap to stop scale at charge %d%%\n",
1256 di
->bat_cap
.cap_scale
.disable_cap_level
);
1258 if (cs
->scaled_cap
!= 100) {
1259 cs
->cap_to_scale
[0] = cs
->scaled_cap
;
1260 cs
->cap_to_scale
[1] = di
->bat_cap
.prev_percent
;
1262 cs
->cap_to_scale
[0] = 100;
1263 cs
->cap_to_scale
[1] =
1264 max(di
->bat_cap
.prev_percent
,
1265 di
->bm
->fg_params
->maint_thres
);
1268 dev_dbg(di
->dev
, "Cap to scale at discharge %d/%d\n",
1269 cs
->cap_to_scale
[0], cs
->cap_to_scale
[1]);
1274 * ab8500_fg_check_capacity_limits() - Check if capacity has changed
1275 * @di: pointer to the ab8500_fg structure
1276 * @init: capacity is allowed to go up in init mode
1278 * Check if capacity or capacity limit has changed and notify the system
1279 * about it using the power_supply framework
1281 static void ab8500_fg_check_capacity_limits(struct ab8500_fg
*di
, bool init
)
1283 bool changed
= false;
1284 int percent
= DIV_ROUND_CLOSEST(di
->bat_cap
.permille
, 10);
1286 di
->bat_cap
.level
= ab8500_fg_capacity_level(di
);
1288 if (di
->bat_cap
.level
!= di
->bat_cap
.prev_level
) {
1290 * We do not allow reported capacity level to go up
1291 * unless we're charging or if we're in init
1293 if (!(!di
->flags
.charging
&& di
->bat_cap
.level
>
1294 di
->bat_cap
.prev_level
) || init
) {
1295 dev_dbg(di
->dev
, "level changed from %d to %d\n",
1296 di
->bat_cap
.prev_level
,
1298 di
->bat_cap
.prev_level
= di
->bat_cap
.level
;
1301 dev_dbg(di
->dev
, "level not allowed to go up "
1302 "since no charger is connected: %d to %d\n",
1303 di
->bat_cap
.prev_level
,
1309 * If we have received the LOW_BAT IRQ, set capacity to 0 to initiate
1312 if (di
->flags
.low_bat
) {
1313 dev_dbg(di
->dev
, "Battery low, set capacity to 0\n");
1314 di
->bat_cap
.prev_percent
= 0;
1315 di
->bat_cap
.permille
= 0;
1317 di
->bat_cap
.prev_mah
= 0;
1318 di
->bat_cap
.mah
= 0;
1320 } else if (di
->flags
.fully_charged
) {
1322 * We report 100% if algorithm reported fully charged
1323 * and show 100% during maintenance charging (scaling).
1325 if (di
->flags
.force_full
) {
1326 di
->bat_cap
.prev_percent
= percent
;
1327 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1331 if (!di
->bat_cap
.cap_scale
.enable
&&
1332 di
->bm
->capacity_scaling
) {
1333 di
->bat_cap
.cap_scale
.enable
= true;
1334 di
->bat_cap
.cap_scale
.cap_to_scale
[0] = 100;
1335 di
->bat_cap
.cap_scale
.cap_to_scale
[1] =
1336 di
->bat_cap
.prev_percent
;
1337 di
->bat_cap
.cap_scale
.disable_cap_level
= 100;
1339 } else if (di
->bat_cap
.prev_percent
!= percent
) {
1341 "battery reported full "
1342 "but capacity dropping: %d\n",
1344 di
->bat_cap
.prev_percent
= percent
;
1345 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1349 } else if (di
->bat_cap
.prev_percent
!= percent
) {
1352 * We will not report 0% unless we've got
1353 * the LOW_BAT IRQ, no matter what the FG
1356 di
->bat_cap
.prev_percent
= 1;
1360 } else if (!(!di
->flags
.charging
&&
1361 percent
> di
->bat_cap
.prev_percent
) || init
) {
1363 * We do not allow reported capacity to go up
1364 * unless we're charging or if we're in init
1367 "capacity changed from %d to %d (%d)\n",
1368 di
->bat_cap
.prev_percent
,
1370 di
->bat_cap
.permille
);
1371 di
->bat_cap
.prev_percent
= percent
;
1372 di
->bat_cap
.prev_mah
= di
->bat_cap
.mah
;
1376 dev_dbg(di
->dev
, "capacity not allowed to go up since "
1377 "no charger is connected: %d to %d (%d)\n",
1378 di
->bat_cap
.prev_percent
,
1380 di
->bat_cap
.permille
);
1385 if (di
->bm
->capacity_scaling
) {
1386 di
->bat_cap
.cap_scale
.scaled_cap
=
1387 ab8500_fg_calculate_scaled_capacity(di
);
1389 dev_info(di
->dev
, "capacity=%d (%d)\n",
1390 di
->bat_cap
.prev_percent
,
1391 di
->bat_cap
.cap_scale
.scaled_cap
);
1393 power_supply_changed(&di
->fg_psy
);
1394 if (di
->flags
.fully_charged
&& di
->flags
.force_full
) {
1395 dev_dbg(di
->dev
, "Battery full, notifying.\n");
1396 di
->flags
.force_full
= false;
1397 sysfs_notify(&di
->fg_kobject
, NULL
, "charge_full");
1399 sysfs_notify(&di
->fg_kobject
, NULL
, "charge_now");
1403 static void ab8500_fg_charge_state_to(struct ab8500_fg
*di
,
1404 enum ab8500_fg_charge_state new_state
)
1406 dev_dbg(di
->dev
, "Charge state from %d [%s] to %d [%s]\n",
1408 charge_state
[di
->charge_state
],
1410 charge_state
[new_state
]);
1412 di
->charge_state
= new_state
;
1415 static void ab8500_fg_discharge_state_to(struct ab8500_fg
*di
,
1416 enum ab8500_fg_discharge_state new_state
)
1418 dev_dbg(di
->dev
, "Disharge state from %d [%s] to %d [%s]\n",
1419 di
->discharge_state
,
1420 discharge_state
[di
->discharge_state
],
1422 discharge_state
[new_state
]);
1424 di
->discharge_state
= new_state
;
1428 * ab8500_fg_algorithm_charging() - FG algorithm for when charging
1429 * @di: pointer to the ab8500_fg structure
1431 * Battery capacity calculation state machine for when we're charging
1433 static void ab8500_fg_algorithm_charging(struct ab8500_fg
*di
)
1436 * If we change to discharge mode
1437 * we should start with recovery
1439 if (di
->discharge_state
!= AB8500_FG_DISCHARGE_INIT_RECOVERY
)
1440 ab8500_fg_discharge_state_to(di
,
1441 AB8500_FG_DISCHARGE_INIT_RECOVERY
);
1443 switch (di
->charge_state
) {
1444 case AB8500_FG_CHARGE_INIT
:
1445 di
->fg_samples
= SEC_TO_SAMPLE(
1446 di
->bm
->fg_params
->accu_charging
);
1448 ab8500_fg_coulomb_counter(di
, true);
1449 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_READOUT
);
1453 case AB8500_FG_CHARGE_READOUT
:
1455 * Read the FG and calculate the new capacity
1457 mutex_lock(&di
->cc_lock
);
1458 if (!di
->flags
.conv_done
&& !di
->flags
.force_full
) {
1459 /* Wasn't the CC IRQ that got us here */
1460 mutex_unlock(&di
->cc_lock
);
1461 dev_dbg(di
->dev
, "%s CC conv not done\n",
1466 di
->flags
.conv_done
= false;
1467 mutex_unlock(&di
->cc_lock
);
1469 ab8500_fg_calc_cap_charging(di
);
1477 /* Check capacity limits */
1478 ab8500_fg_check_capacity_limits(di
, false);
1481 static void force_capacity(struct ab8500_fg
*di
)
1485 ab8500_fg_clear_cap_samples(di
);
1486 cap
= di
->bat_cap
.user_mah
;
1487 if (cap
> di
->bat_cap
.max_mah_design
) {
1488 dev_dbg(di
->dev
, "Remaining cap %d can't be bigger than total"
1489 " %d\n", cap
, di
->bat_cap
.max_mah_design
);
1490 cap
= di
->bat_cap
.max_mah_design
;
1492 ab8500_fg_fill_cap_sample(di
, di
->bat_cap
.user_mah
);
1493 di
->bat_cap
.permille
= ab8500_fg_convert_mah_to_permille(di
, cap
);
1494 di
->bat_cap
.mah
= cap
;
1495 ab8500_fg_check_capacity_limits(di
, true);
1498 static bool check_sysfs_capacity(struct ab8500_fg
*di
)
1500 int cap
, lower
, upper
;
1503 cap
= di
->bat_cap
.user_mah
;
1505 cap_permille
= ab8500_fg_convert_mah_to_permille(di
,
1506 di
->bat_cap
.user_mah
);
1508 lower
= di
->bat_cap
.permille
- di
->bm
->fg_params
->user_cap_limit
* 10;
1509 upper
= di
->bat_cap
.permille
+ di
->bm
->fg_params
->user_cap_limit
* 10;
1513 /* 1000 is permille, -> 100 percent */
1517 dev_dbg(di
->dev
, "Capacity limits:"
1518 " (Lower: %d User: %d Upper: %d) [user: %d, was: %d]\n",
1519 lower
, cap_permille
, upper
, cap
, di
->bat_cap
.mah
);
1521 /* If within limits, use the saved capacity and exit estimation...*/
1522 if (cap_permille
> lower
&& cap_permille
< upper
) {
1523 dev_dbg(di
->dev
, "OK! Using users cap %d uAh now\n", cap
);
1527 dev_dbg(di
->dev
, "Capacity from user out of limits, ignoring");
1532 * ab8500_fg_algorithm_discharging() - FG algorithm for when discharging
1533 * @di: pointer to the ab8500_fg structure
1535 * Battery capacity calculation state machine for when we're discharging
1537 static void ab8500_fg_algorithm_discharging(struct ab8500_fg
*di
)
1541 /* If we change to charge mode we should start with init */
1542 if (di
->charge_state
!= AB8500_FG_CHARGE_INIT
)
1543 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
1545 switch (di
->discharge_state
) {
1546 case AB8500_FG_DISCHARGE_INIT
:
1547 /* We use the FG IRQ to work on */
1549 di
->fg_samples
= SEC_TO_SAMPLE(di
->bm
->fg_params
->init_timer
);
1550 ab8500_fg_coulomb_counter(di
, true);
1551 ab8500_fg_discharge_state_to(di
,
1552 AB8500_FG_DISCHARGE_INITMEASURING
);
1554 /* Intentional fallthrough */
1555 case AB8500_FG_DISCHARGE_INITMEASURING
:
1557 * Discard a number of samples during startup.
1558 * After that, use compensated voltage for a few
1559 * samples to get an initial capacity.
1560 * Then go to READOUT
1562 sleep_time
= di
->bm
->fg_params
->init_timer
;
1564 /* Discard the first [x] seconds */
1565 if (di
->init_cnt
> di
->bm
->fg_params
->init_discard_time
) {
1566 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1568 ab8500_fg_check_capacity_limits(di
, true);
1571 di
->init_cnt
+= sleep_time
;
1572 if (di
->init_cnt
> di
->bm
->fg_params
->init_total_time
)
1573 ab8500_fg_discharge_state_to(di
,
1574 AB8500_FG_DISCHARGE_READOUT_INIT
);
1578 case AB8500_FG_DISCHARGE_INIT_RECOVERY
:
1579 di
->recovery_cnt
= 0;
1580 di
->recovery_needed
= true;
1581 ab8500_fg_discharge_state_to(di
,
1582 AB8500_FG_DISCHARGE_RECOVERY
);
1584 /* Intentional fallthrough */
1586 case AB8500_FG_DISCHARGE_RECOVERY
:
1587 sleep_time
= di
->bm
->fg_params
->recovery_sleep_timer
;
1590 * We should check the power consumption
1591 * If low, go to READOUT (after x min) or
1592 * RECOVERY_SLEEP if time left.
1593 * If high, go to READOUT
1595 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1597 if (ab8500_fg_is_low_curr(di
, di
->inst_curr
)) {
1598 if (di
->recovery_cnt
>
1599 di
->bm
->fg_params
->recovery_total_time
) {
1600 di
->fg_samples
= SEC_TO_SAMPLE(
1601 di
->bm
->fg_params
->accu_high_curr
);
1602 ab8500_fg_coulomb_counter(di
, true);
1603 ab8500_fg_discharge_state_to(di
,
1604 AB8500_FG_DISCHARGE_READOUT
);
1605 di
->recovery_needed
= false;
1607 queue_delayed_work(di
->fg_wq
,
1608 &di
->fg_periodic_work
,
1611 di
->recovery_cnt
+= sleep_time
;
1613 di
->fg_samples
= SEC_TO_SAMPLE(
1614 di
->bm
->fg_params
->accu_high_curr
);
1615 ab8500_fg_coulomb_counter(di
, true);
1616 ab8500_fg_discharge_state_to(di
,
1617 AB8500_FG_DISCHARGE_READOUT
);
1621 case AB8500_FG_DISCHARGE_READOUT_INIT
:
1622 di
->fg_samples
= SEC_TO_SAMPLE(
1623 di
->bm
->fg_params
->accu_high_curr
);
1624 ab8500_fg_coulomb_counter(di
, true);
1625 ab8500_fg_discharge_state_to(di
,
1626 AB8500_FG_DISCHARGE_READOUT
);
1629 case AB8500_FG_DISCHARGE_READOUT
:
1630 di
->inst_curr
= ab8500_fg_inst_curr_blocking(di
);
1632 if (ab8500_fg_is_low_curr(di
, di
->inst_curr
)) {
1633 /* Detect mode change */
1634 if (di
->high_curr_mode
) {
1635 di
->high_curr_mode
= false;
1636 di
->high_curr_cnt
= 0;
1639 if (di
->recovery_needed
) {
1640 ab8500_fg_discharge_state_to(di
,
1641 AB8500_FG_DISCHARGE_INIT_RECOVERY
);
1643 queue_delayed_work(di
->fg_wq
,
1644 &di
->fg_periodic_work
, 0);
1649 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1651 mutex_lock(&di
->cc_lock
);
1652 if (!di
->flags
.conv_done
) {
1653 /* Wasn't the CC IRQ that got us here */
1654 mutex_unlock(&di
->cc_lock
);
1655 dev_dbg(di
->dev
, "%s CC conv not done\n",
1660 di
->flags
.conv_done
= false;
1661 mutex_unlock(&di
->cc_lock
);
1663 /* Detect mode change */
1664 if (!di
->high_curr_mode
) {
1665 di
->high_curr_mode
= true;
1666 di
->high_curr_cnt
= 0;
1669 di
->high_curr_cnt
+=
1670 di
->bm
->fg_params
->accu_high_curr
;
1671 if (di
->high_curr_cnt
>
1672 di
->bm
->fg_params
->high_curr_time
)
1673 di
->recovery_needed
= true;
1675 ab8500_fg_calc_cap_discharge_fg(di
);
1678 ab8500_fg_check_capacity_limits(di
, false);
1682 case AB8500_FG_DISCHARGE_WAKEUP
:
1683 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1685 di
->fg_samples
= SEC_TO_SAMPLE(
1686 di
->bm
->fg_params
->accu_high_curr
);
1687 ab8500_fg_coulomb_counter(di
, true);
1688 ab8500_fg_discharge_state_to(di
,
1689 AB8500_FG_DISCHARGE_READOUT
);
1691 ab8500_fg_check_capacity_limits(di
, false);
1701 * ab8500_fg_algorithm_calibrate() - Internal columb counter offset calibration
1702 * @di: pointer to the ab8500_fg structure
1705 static void ab8500_fg_algorithm_calibrate(struct ab8500_fg
*di
)
1709 switch (di
->calib_state
) {
1710 case AB8500_FG_CALIB_INIT
:
1711 dev_dbg(di
->dev
, "Calibration ongoing...\n");
1713 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1714 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1715 CC_INT_CAL_N_AVG_MASK
, CC_INT_CAL_SAMPLES_8
);
1719 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1720 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1721 CC_INTAVGOFFSET_ENA
, CC_INTAVGOFFSET_ENA
);
1724 di
->calib_state
= AB8500_FG_CALIB_WAIT
;
1726 case AB8500_FG_CALIB_END
:
1727 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
1728 AB8500_GAS_GAUGE
, AB8500_GASG_CC_CTRL_REG
,
1729 CC_MUXOFFSET
, CC_MUXOFFSET
);
1732 di
->flags
.calibrate
= false;
1733 dev_dbg(di
->dev
, "Calibration done...\n");
1734 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1736 case AB8500_FG_CALIB_WAIT
:
1737 dev_dbg(di
->dev
, "Calibration WFI\n");
1743 /* Something went wrong, don't calibrate then */
1744 dev_err(di
->dev
, "failed to calibrate the CC\n");
1745 di
->flags
.calibrate
= false;
1746 di
->calib_state
= AB8500_FG_CALIB_INIT
;
1747 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1751 * ab8500_fg_algorithm() - Entry point for the FG algorithm
1752 * @di: pointer to the ab8500_fg structure
1754 * Entry point for the battery capacity calculation state machine
1756 static void ab8500_fg_algorithm(struct ab8500_fg
*di
)
1758 if (di
->flags
.calibrate
)
1759 ab8500_fg_algorithm_calibrate(di
);
1761 if (di
->flags
.charging
)
1762 ab8500_fg_algorithm_charging(di
);
1764 ab8500_fg_algorithm_discharging(di
);
1767 dev_dbg(di
->dev
, "[FG_DATA] %d %d %d %d %d %d %d %d %d %d "
1768 "%d %d %d %d %d %d %d\n",
1769 di
->bat_cap
.max_mah_design
,
1770 di
->bat_cap
.max_mah
,
1772 di
->bat_cap
.permille
,
1774 di
->bat_cap
.prev_mah
,
1775 di
->bat_cap
.prev_percent
,
1776 di
->bat_cap
.prev_level
,
1783 di
->discharge_state
,
1785 di
->recovery_needed
);
1789 * ab8500_fg_periodic_work() - Run the FG state machine periodically
1790 * @work: pointer to the work_struct structure
1792 * Work queue function for periodic work
1794 static void ab8500_fg_periodic_work(struct work_struct
*work
)
1796 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1797 fg_periodic_work
.work
);
1799 if (di
->init_capacity
) {
1800 /* Get an initial capacity calculation */
1801 ab8500_fg_calc_cap_discharge_voltage(di
, true);
1802 ab8500_fg_check_capacity_limits(di
, true);
1803 di
->init_capacity
= false;
1805 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1806 } else if (di
->flags
.user_cap
) {
1807 if (check_sysfs_capacity(di
)) {
1808 ab8500_fg_check_capacity_limits(di
, true);
1809 if (di
->flags
.charging
)
1810 ab8500_fg_charge_state_to(di
,
1811 AB8500_FG_CHARGE_INIT
);
1813 ab8500_fg_discharge_state_to(di
,
1814 AB8500_FG_DISCHARGE_READOUT_INIT
);
1816 di
->flags
.user_cap
= false;
1817 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
1819 ab8500_fg_algorithm(di
);
1824 * ab8500_fg_check_hw_failure_work() - Check OVV_BAT condition
1825 * @work: pointer to the work_struct structure
1827 * Work queue function for checking the OVV_BAT condition
1829 static void ab8500_fg_check_hw_failure_work(struct work_struct
*work
)
1834 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1835 fg_check_hw_failure_work
.work
);
1838 * If we have had a battery over-voltage situation,
1839 * check ovv-bit to see if it should be reset.
1841 ret
= abx500_get_register_interruptible(di
->dev
,
1842 AB8500_CHARGER
, AB8500_CH_STAT_REG
,
1845 dev_err(di
->dev
, "%s ab8500 read failed\n", __func__
);
1848 if ((reg_value
& BATT_OVV
) == BATT_OVV
) {
1849 if (!di
->flags
.bat_ovv
) {
1850 dev_dbg(di
->dev
, "Battery OVV\n");
1851 di
->flags
.bat_ovv
= true;
1852 power_supply_changed(&di
->fg_psy
);
1854 /* Not yet recovered from ovv, reschedule this test */
1855 queue_delayed_work(di
->fg_wq
, &di
->fg_check_hw_failure_work
,
1858 dev_dbg(di
->dev
, "Battery recovered from OVV\n");
1859 di
->flags
.bat_ovv
= false;
1860 power_supply_changed(&di
->fg_psy
);
1865 * ab8500_fg_low_bat_work() - Check LOW_BAT condition
1866 * @work: pointer to the work_struct structure
1868 * Work queue function for checking the LOW_BAT condition
1870 static void ab8500_fg_low_bat_work(struct work_struct
*work
)
1874 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
1875 fg_low_bat_work
.work
);
1877 vbat
= ab8500_fg_bat_voltage(di
);
1879 /* Check if LOW_BAT still fulfilled */
1880 if (vbat
< di
->bm
->fg_params
->lowbat_threshold
) {
1881 /* Is it time to shut down? */
1882 if (di
->low_bat_cnt
< 1) {
1883 di
->flags
.low_bat
= true;
1884 dev_warn(di
->dev
, "Shut down pending...\n");
1887 * Else we need to re-schedule this check to be able to detect
1888 * if the voltage increases again during charging or
1889 * due to decreasing load.
1892 dev_warn(di
->dev
, "Battery voltage still LOW\n");
1893 queue_delayed_work(di
->fg_wq
, &di
->fg_low_bat_work
,
1894 round_jiffies(LOW_BAT_CHECK_INTERVAL
));
1897 di
->flags
.low_bat_delay
= false;
1898 di
->low_bat_cnt
= 10;
1899 dev_warn(di
->dev
, "Battery voltage OK again\n");
1902 /* This is needed to dispatch LOW_BAT */
1903 ab8500_fg_check_capacity_limits(di
, false);
1907 * ab8500_fg_battok_calc - calculate the bit pattern corresponding
1908 * to the target voltage.
1909 * @di: pointer to the ab8500_fg structure
1910 * @target target voltage
1912 * Returns bit pattern closest to the target voltage
1913 * valid return values are 0-14. (0-BATT_OK_MAX_NR_INCREMENTS)
1916 static int ab8500_fg_battok_calc(struct ab8500_fg
*di
, int target
)
1918 if (target
> BATT_OK_MIN
+
1919 (BATT_OK_INCREMENT
* BATT_OK_MAX_NR_INCREMENTS
))
1920 return BATT_OK_MAX_NR_INCREMENTS
;
1921 if (target
< BATT_OK_MIN
)
1923 return (target
- BATT_OK_MIN
) / BATT_OK_INCREMENT
;
1927 * ab8500_fg_battok_init_hw_register - init battok levels
1928 * @di: pointer to the ab8500_fg structure
1932 static int ab8500_fg_battok_init_hw_register(struct ab8500_fg
*di
)
1942 sel0
= di
->bm
->fg_params
->battok_falling_th_sel0
;
1943 sel1
= di
->bm
->fg_params
->battok_raising_th_sel1
;
1945 cbp_sel0
= ab8500_fg_battok_calc(di
, sel0
);
1946 cbp_sel1
= ab8500_fg_battok_calc(di
, sel1
);
1948 selected
= BATT_OK_MIN
+ cbp_sel0
* BATT_OK_INCREMENT
;
1950 if (selected
!= sel0
)
1951 dev_warn(di
->dev
, "Invalid voltage step:%d, using %d %d\n",
1952 sel0
, selected
, cbp_sel0
);
1954 selected
= BATT_OK_MIN
+ cbp_sel1
* BATT_OK_INCREMENT
;
1956 if (selected
!= sel1
)
1957 dev_warn(di
->dev
, "Invalid voltage step:%d, using %d %d\n",
1958 sel1
, selected
, cbp_sel1
);
1960 new_val
= cbp_sel0
| (cbp_sel1
<< 4);
1962 dev_dbg(di
->dev
, "using: %x %d %d\n", new_val
, cbp_sel0
, cbp_sel1
);
1963 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_SYS_CTRL2_BLOCK
,
1964 AB8500_BATT_OK_REG
, new_val
);
1969 * ab8500_fg_instant_work() - Run the FG state machine instantly
1970 * @work: pointer to the work_struct structure
1972 * Work queue function for instant work
1974 static void ab8500_fg_instant_work(struct work_struct
*work
)
1976 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
, fg_work
);
1978 ab8500_fg_algorithm(di
);
1982 * ab8500_fg_cc_data_end_handler() - end of data conversion isr.
1983 * @irq: interrupt number
1984 * @_di: pointer to the ab8500_fg structure
1986 * Returns IRQ status(IRQ_HANDLED)
1988 static irqreturn_t
ab8500_fg_cc_data_end_handler(int irq
, void *_di
)
1990 struct ab8500_fg
*di
= _di
;
1991 if (!di
->nbr_cceoc_irq_cnt
) {
1992 di
->nbr_cceoc_irq_cnt
++;
1993 complete(&di
->ab8500_fg_started
);
1995 di
->nbr_cceoc_irq_cnt
= 0;
1996 complete(&di
->ab8500_fg_complete
);
2002 * ab8500_fg_cc_int_calib_handler () - end of calibration isr.
2003 * @irq: interrupt number
2004 * @_di: pointer to the ab8500_fg structure
2006 * Returns IRQ status(IRQ_HANDLED)
2008 static irqreturn_t
ab8500_fg_cc_int_calib_handler(int irq
, void *_di
)
2010 struct ab8500_fg
*di
= _di
;
2011 di
->calib_state
= AB8500_FG_CALIB_END
;
2012 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2017 * ab8500_fg_cc_convend_handler() - isr to get battery avg current.
2018 * @irq: interrupt number
2019 * @_di: pointer to the ab8500_fg structure
2021 * Returns IRQ status(IRQ_HANDLED)
2023 static irqreturn_t
ab8500_fg_cc_convend_handler(int irq
, void *_di
)
2025 struct ab8500_fg
*di
= _di
;
2027 queue_work(di
->fg_wq
, &di
->fg_acc_cur_work
);
2033 * ab8500_fg_batt_ovv_handler() - Battery OVV occured
2034 * @irq: interrupt number
2035 * @_di: pointer to the ab8500_fg structure
2037 * Returns IRQ status(IRQ_HANDLED)
2039 static irqreturn_t
ab8500_fg_batt_ovv_handler(int irq
, void *_di
)
2041 struct ab8500_fg
*di
= _di
;
2043 dev_dbg(di
->dev
, "Battery OVV\n");
2045 /* Schedule a new HW failure check */
2046 queue_delayed_work(di
->fg_wq
, &di
->fg_check_hw_failure_work
, 0);
2052 * ab8500_fg_lowbatf_handler() - Battery voltage is below LOW threshold
2053 * @irq: interrupt number
2054 * @_di: pointer to the ab8500_fg structure
2056 * Returns IRQ status(IRQ_HANDLED)
2058 static irqreturn_t
ab8500_fg_lowbatf_handler(int irq
, void *_di
)
2060 struct ab8500_fg
*di
= _di
;
2062 /* Initiate handling in ab8500_fg_low_bat_work() if not already initiated. */
2063 if (!di
->flags
.low_bat_delay
) {
2064 dev_warn(di
->dev
, "Battery voltage is below LOW threshold\n");
2065 di
->flags
.low_bat_delay
= true;
2067 * Start a timer to check LOW_BAT again after some time
2068 * This is done to avoid shutdown on single voltage dips
2070 queue_delayed_work(di
->fg_wq
, &di
->fg_low_bat_work
,
2071 round_jiffies(LOW_BAT_CHECK_INTERVAL
));
2077 * ab8500_fg_get_property() - get the fg properties
2078 * @psy: pointer to the power_supply structure
2079 * @psp: pointer to the power_supply_property structure
2080 * @val: pointer to the power_supply_propval union
2082 * This function gets called when an application tries to get the
2083 * fg properties by reading the sysfs files.
2084 * voltage_now: battery voltage
2085 * current_now: battery instant current
2086 * current_avg: battery average current
2087 * charge_full_design: capacity where battery is considered full
2088 * charge_now: battery capacity in nAh
2089 * capacity: capacity in percent
2090 * capacity_level: capacity level
2092 * Returns error code in case of failure else 0 on success
2094 static int ab8500_fg_get_property(struct power_supply
*psy
,
2095 enum power_supply_property psp
,
2096 union power_supply_propval
*val
)
2098 struct ab8500_fg
*di
;
2100 di
= to_ab8500_fg_device_info(psy
);
2103 * If battery is identified as unknown and charging of unknown
2104 * batteries is disabled, we always report 100% capacity and
2105 * capacity level UNKNOWN, since we can't calculate
2106 * remaining capacity
2110 case POWER_SUPPLY_PROP_VOLTAGE_NOW
:
2111 if (di
->flags
.bat_ovv
)
2112 val
->intval
= BATT_OVV_VALUE
* 1000;
2114 val
->intval
= di
->vbat
* 1000;
2116 case POWER_SUPPLY_PROP_CURRENT_NOW
:
2117 val
->intval
= di
->inst_curr
* 1000;
2119 case POWER_SUPPLY_PROP_CURRENT_AVG
:
2120 val
->intval
= di
->avg_curr
* 1000;
2122 case POWER_SUPPLY_PROP_ENERGY_FULL_DESIGN
:
2123 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
2124 di
->bat_cap
.max_mah_design
);
2126 case POWER_SUPPLY_PROP_ENERGY_FULL
:
2127 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
2128 di
->bat_cap
.max_mah
);
2130 case POWER_SUPPLY_PROP_ENERGY_NOW
:
2131 if (di
->flags
.batt_unknown
&& !di
->bm
->chg_unknown_bat
&&
2132 di
->flags
.batt_id_received
)
2133 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
2134 di
->bat_cap
.max_mah
);
2136 val
->intval
= ab8500_fg_convert_mah_to_uwh(di
,
2137 di
->bat_cap
.prev_mah
);
2139 case POWER_SUPPLY_PROP_CHARGE_FULL_DESIGN
:
2140 val
->intval
= di
->bat_cap
.max_mah_design
;
2142 case POWER_SUPPLY_PROP_CHARGE_FULL
:
2143 val
->intval
= di
->bat_cap
.max_mah
;
2145 case POWER_SUPPLY_PROP_CHARGE_NOW
:
2146 if (di
->flags
.batt_unknown
&& !di
->bm
->chg_unknown_bat
&&
2147 di
->flags
.batt_id_received
)
2148 val
->intval
= di
->bat_cap
.max_mah
;
2150 val
->intval
= di
->bat_cap
.prev_mah
;
2152 case POWER_SUPPLY_PROP_CAPACITY
:
2153 if (di
->flags
.batt_unknown
&& !di
->bm
->chg_unknown_bat
&&
2154 di
->flags
.batt_id_received
)
2157 val
->intval
= di
->bat_cap
.prev_percent
;
2159 case POWER_SUPPLY_PROP_CAPACITY_LEVEL
:
2160 if (di
->flags
.batt_unknown
&& !di
->bm
->chg_unknown_bat
&&
2161 di
->flags
.batt_id_received
)
2162 val
->intval
= POWER_SUPPLY_CAPACITY_LEVEL_UNKNOWN
;
2164 val
->intval
= di
->bat_cap
.prev_level
;
2172 static int ab8500_fg_get_ext_psy_data(struct device
*dev
, void *data
)
2174 struct power_supply
*psy
;
2175 struct power_supply
*ext
;
2176 struct ab8500_fg
*di
;
2177 union power_supply_propval ret
;
2179 bool psy_found
= false;
2181 psy
= (struct power_supply
*)data
;
2182 ext
= dev_get_drvdata(dev
);
2183 di
= to_ab8500_fg_device_info(psy
);
2186 * For all psy where the name of your driver
2187 * appears in any supplied_to
2189 for (i
= 0; i
< ext
->num_supplicants
; i
++) {
2190 if (!strcmp(ext
->supplied_to
[i
], psy
->name
))
2197 /* Go through all properties for the psy */
2198 for (j
= 0; j
< ext
->num_properties
; j
++) {
2199 enum power_supply_property prop
;
2200 prop
= ext
->properties
[j
];
2202 if (ext
->get_property(ext
, prop
, &ret
))
2206 case POWER_SUPPLY_PROP_STATUS
:
2207 switch (ext
->type
) {
2208 case POWER_SUPPLY_TYPE_BATTERY
:
2209 switch (ret
.intval
) {
2210 case POWER_SUPPLY_STATUS_UNKNOWN
:
2211 case POWER_SUPPLY_STATUS_DISCHARGING
:
2212 case POWER_SUPPLY_STATUS_NOT_CHARGING
:
2213 if (!di
->flags
.charging
)
2215 di
->flags
.charging
= false;
2216 di
->flags
.fully_charged
= false;
2217 if (di
->bm
->capacity_scaling
)
2218 ab8500_fg_update_cap_scalers(di
);
2219 queue_work(di
->fg_wq
, &di
->fg_work
);
2221 case POWER_SUPPLY_STATUS_FULL
:
2222 if (di
->flags
.fully_charged
)
2224 di
->flags
.fully_charged
= true;
2225 di
->flags
.force_full
= true;
2226 /* Save current capacity as maximum */
2227 di
->bat_cap
.max_mah
= di
->bat_cap
.mah
;
2228 queue_work(di
->fg_wq
, &di
->fg_work
);
2230 case POWER_SUPPLY_STATUS_CHARGING
:
2231 if (di
->flags
.charging
&&
2232 !di
->flags
.fully_charged
)
2234 di
->flags
.charging
= true;
2235 di
->flags
.fully_charged
= false;
2236 if (di
->bm
->capacity_scaling
)
2237 ab8500_fg_update_cap_scalers(di
);
2238 queue_work(di
->fg_wq
, &di
->fg_work
);
2245 case POWER_SUPPLY_PROP_TECHNOLOGY
:
2246 switch (ext
->type
) {
2247 case POWER_SUPPLY_TYPE_BATTERY
:
2248 if (!di
->flags
.batt_id_received
&&
2249 di
->bm
->batt_id
!= BATTERY_UNKNOWN
) {
2250 const struct abx500_battery_type
*b
;
2252 b
= &(di
->bm
->bat_type
[di
->bm
->batt_id
]);
2254 di
->flags
.batt_id_received
= true;
2256 di
->bat_cap
.max_mah_design
=
2258 b
->charge_full_design
;
2260 di
->bat_cap
.max_mah
=
2261 di
->bat_cap
.max_mah_design
;
2263 di
->vbat_nom
= b
->nominal_voltage
;
2267 di
->flags
.batt_unknown
= false;
2269 di
->flags
.batt_unknown
= true;
2275 case POWER_SUPPLY_PROP_TEMP
:
2276 switch (ext
->type
) {
2277 case POWER_SUPPLY_TYPE_BATTERY
:
2278 if (di
->flags
.batt_id_received
)
2279 di
->bat_temp
= ret
.intval
;
2293 * ab8500_fg_init_hw_registers() - Set up FG related registers
2294 * @di: pointer to the ab8500_fg structure
2296 * Set up battery OVV, low battery voltage registers
2298 static int ab8500_fg_init_hw_registers(struct ab8500_fg
*di
)
2302 /* Set VBAT OVV threshold */
2303 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
2309 dev_err(di
->dev
, "failed to set BATT_OVV\n");
2313 /* Enable VBAT OVV detection */
2314 ret
= abx500_mask_and_set_register_interruptible(di
->dev
,
2320 dev_err(di
->dev
, "failed to enable BATT_OVV\n");
2324 /* Low Battery Voltage */
2325 ret
= abx500_set_register_interruptible(di
->dev
,
2326 AB8500_SYS_CTRL2_BLOCK
,
2328 ab8500_volt_to_regval(
2329 di
->bm
->fg_params
->lowbat_threshold
) << 1 |
2332 dev_err(di
->dev
, "%s write failed\n", __func__
);
2336 /* Battery OK threshold */
2337 ret
= ab8500_fg_battok_init_hw_register(di
);
2339 dev_err(di
->dev
, "BattOk init write failed.\n");
2343 if (((is_ab8505(di
->parent
) || is_ab9540(di
->parent
)) &&
2344 abx500_get_chip_id(di
->dev
) >= AB8500_CUT2P0
)
2345 || is_ab8540(di
->parent
)) {
2346 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2347 AB8505_RTC_PCUT_MAX_TIME_REG
, di
->bm
->fg_params
->pcut_max_time
);
2350 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_MAX_TIME_REG\n", __func__
);
2354 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2355 AB8505_RTC_PCUT_FLAG_TIME_REG
, di
->bm
->fg_params
->pcut_flag_time
);
2358 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_FLAG_TIME_REG\n", __func__
);
2362 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2363 AB8505_RTC_PCUT_RESTART_REG
, di
->bm
->fg_params
->pcut_max_restart
);
2366 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_RESTART_REG\n", __func__
);
2370 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2371 AB8505_RTC_PCUT_DEBOUNCE_REG
, di
->bm
->fg_params
->pcut_debounce_time
);
2374 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_DEBOUNCE_REG\n", __func__
);
2378 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2379 AB8505_RTC_PCUT_CTL_STATUS_REG
, di
->bm
->fg_params
->pcut_enable
);
2382 dev_err(di
->dev
, "%s write failed AB8505_RTC_PCUT_CTL_STATUS_REG\n", __func__
);
2391 * ab8500_fg_external_power_changed() - callback for power supply changes
2392 * @psy: pointer to the structure power_supply
2394 * This function is the entry point of the pointer external_power_changed
2395 * of the structure power_supply.
2396 * This function gets executed when there is a change in any external power
2397 * supply that this driver needs to be notified of.
2399 static void ab8500_fg_external_power_changed(struct power_supply
*psy
)
2401 struct ab8500_fg
*di
= to_ab8500_fg_device_info(psy
);
2403 class_for_each_device(power_supply_class
, NULL
,
2404 &di
->fg_psy
, ab8500_fg_get_ext_psy_data
);
2408 * abab8500_fg_reinit_work() - work to reset the FG algorithm
2409 * @work: pointer to the work_struct structure
2411 * Used to reset the current battery capacity to be able to
2412 * retrigger a new voltage base capacity calculation. For
2413 * test and verification purpose.
2415 static void ab8500_fg_reinit_work(struct work_struct
*work
)
2417 struct ab8500_fg
*di
= container_of(work
, struct ab8500_fg
,
2418 fg_reinit_work
.work
);
2420 if (di
->flags
.calibrate
== false) {
2421 dev_dbg(di
->dev
, "Resetting FG state machine to init.\n");
2422 ab8500_fg_clear_cap_samples(di
);
2423 ab8500_fg_calc_cap_discharge_voltage(di
, true);
2424 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
2425 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_INIT
);
2426 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2429 dev_err(di
->dev
, "Residual offset calibration ongoing "
2431 /* Wait one second until next try*/
2432 queue_delayed_work(di
->fg_wq
, &di
->fg_reinit_work
,
2438 * ab8500_fg_reinit() - forces FG algorithm to reinitialize with current values
2440 * This function can be used to force the FG algorithm to recalculate a new
2441 * voltage based battery capacity.
2443 void ab8500_fg_reinit(void)
2445 struct ab8500_fg
*di
= ab8500_fg_get();
2446 /* User won't be notified if a null pointer returned. */
2448 queue_delayed_work(di
->fg_wq
, &di
->fg_reinit_work
, 0);
2451 /* Exposure to the sysfs interface */
2453 struct ab8500_fg_sysfs_entry
{
2454 struct attribute attr
;
2455 ssize_t (*show
)(struct ab8500_fg
*, char *);
2456 ssize_t (*store
)(struct ab8500_fg
*, const char *, size_t);
2459 static ssize_t
charge_full_show(struct ab8500_fg
*di
, char *buf
)
2461 return sprintf(buf
, "%d\n", di
->bat_cap
.max_mah
);
2464 static ssize_t
charge_full_store(struct ab8500_fg
*di
, const char *buf
,
2467 unsigned long charge_full
;
2470 ret
= kstrtoul(buf
, 10, &charge_full
);
2472 dev_dbg(di
->dev
, "Ret %zd charge_full %lu", ret
, charge_full
);
2475 di
->bat_cap
.max_mah
= (int) charge_full
;
2481 static ssize_t
charge_now_show(struct ab8500_fg
*di
, char *buf
)
2483 return sprintf(buf
, "%d\n", di
->bat_cap
.prev_mah
);
2486 static ssize_t
charge_now_store(struct ab8500_fg
*di
, const char *buf
,
2489 unsigned long charge_now
;
2492 ret
= kstrtoul(buf
, 10, &charge_now
);
2494 dev_dbg(di
->dev
, "Ret %zd charge_now %lu was %d",
2495 ret
, charge_now
, di
->bat_cap
.prev_mah
);
2498 di
->bat_cap
.user_mah
= (int) charge_now
;
2499 di
->flags
.user_cap
= true;
2501 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
2506 static struct ab8500_fg_sysfs_entry charge_full_attr
=
2507 __ATTR(charge_full
, 0644, charge_full_show
, charge_full_store
);
2509 static struct ab8500_fg_sysfs_entry charge_now_attr
=
2510 __ATTR(charge_now
, 0644, charge_now_show
, charge_now_store
);
2513 ab8500_fg_show(struct kobject
*kobj
, struct attribute
*attr
, char *buf
)
2515 struct ab8500_fg_sysfs_entry
*entry
;
2516 struct ab8500_fg
*di
;
2518 entry
= container_of(attr
, struct ab8500_fg_sysfs_entry
, attr
);
2519 di
= container_of(kobj
, struct ab8500_fg
, fg_kobject
);
2524 return entry
->show(di
, buf
);
2527 ab8500_fg_store(struct kobject
*kobj
, struct attribute
*attr
, const char *buf
,
2530 struct ab8500_fg_sysfs_entry
*entry
;
2531 struct ab8500_fg
*di
;
2533 entry
= container_of(attr
, struct ab8500_fg_sysfs_entry
, attr
);
2534 di
= container_of(kobj
, struct ab8500_fg
, fg_kobject
);
2539 return entry
->store(di
, buf
, count
);
2542 static const struct sysfs_ops ab8500_fg_sysfs_ops
= {
2543 .show
= ab8500_fg_show
,
2544 .store
= ab8500_fg_store
,
2547 static struct attribute
*ab8500_fg_attrs
[] = {
2548 &charge_full_attr
.attr
,
2549 &charge_now_attr
.attr
,
2553 static struct kobj_type ab8500_fg_ktype
= {
2554 .sysfs_ops
= &ab8500_fg_sysfs_ops
,
2555 .default_attrs
= ab8500_fg_attrs
,
2559 * ab8500_chargalg_sysfs_exit() - de-init of sysfs entry
2560 * @di: pointer to the struct ab8500_chargalg
2562 * This function removes the entry in sysfs.
2564 static void ab8500_fg_sysfs_exit(struct ab8500_fg
*di
)
2566 kobject_del(&di
->fg_kobject
);
2570 * ab8500_chargalg_sysfs_init() - init of sysfs entry
2571 * @di: pointer to the struct ab8500_chargalg
2573 * This function adds an entry in sysfs.
2574 * Returns error code in case of failure else 0(on success)
2576 static int ab8500_fg_sysfs_init(struct ab8500_fg
*di
)
2580 ret
= kobject_init_and_add(&di
->fg_kobject
,
2584 dev_err(di
->dev
, "failed to create sysfs entry\n");
2589 static ssize_t
ab8505_powercut_flagtime_read(struct device
*dev
,
2590 struct device_attribute
*attr
,
2595 struct power_supply
*psy
= dev_get_drvdata(dev
);
2596 struct ab8500_fg
*di
;
2598 di
= to_ab8500_fg_device_info(psy
);
2600 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2601 AB8505_RTC_PCUT_FLAG_TIME_REG
, ®_value
);
2604 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2608 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x7F));
2614 static ssize_t
ab8505_powercut_flagtime_write(struct device
*dev
,
2615 struct device_attribute
*attr
,
2616 const char *buf
, size_t count
)
2619 long unsigned reg_value
;
2620 struct power_supply
*psy
= dev_get_drvdata(dev
);
2621 struct ab8500_fg
*di
;
2623 di
= to_ab8500_fg_device_info(psy
);
2625 reg_value
= simple_strtoul(buf
, NULL
, 10);
2627 if (reg_value
> 0x7F) {
2628 dev_err(dev
, "Incorrect parameter, echo 0 (1.98s) - 127 (15.625ms) for flagtime\n");
2632 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2633 AB8505_RTC_PCUT_FLAG_TIME_REG
, (u8
)reg_value
);
2636 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_FLAG_TIME_REG\n");
2642 static ssize_t
ab8505_powercut_maxtime_read(struct device
*dev
,
2643 struct device_attribute
*attr
,
2648 struct power_supply
*psy
= dev_get_drvdata(dev
);
2649 struct ab8500_fg
*di
;
2651 di
= to_ab8500_fg_device_info(psy
);
2653 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2654 AB8505_RTC_PCUT_MAX_TIME_REG
, ®_value
);
2657 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_MAX_TIME_REG\n");
2661 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x7F));
2668 static ssize_t
ab8505_powercut_maxtime_write(struct device
*dev
,
2669 struct device_attribute
*attr
,
2670 const char *buf
, size_t count
)
2674 struct power_supply
*psy
= dev_get_drvdata(dev
);
2675 struct ab8500_fg
*di
;
2677 di
= to_ab8500_fg_device_info(psy
);
2679 reg_value
= simple_strtoul(buf
, NULL
, 10);
2680 if (reg_value
> 0x7F) {
2681 dev_err(dev
, "Incorrect parameter, echo 0 (0.0s) - 127 (1.98s) for maxtime\n");
2685 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2686 AB8505_RTC_PCUT_MAX_TIME_REG
, (u8
)reg_value
);
2689 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_MAX_TIME_REG\n");
2695 static ssize_t
ab8505_powercut_restart_read(struct device
*dev
,
2696 struct device_attribute
*attr
,
2701 struct power_supply
*psy
= dev_get_drvdata(dev
);
2702 struct ab8500_fg
*di
;
2704 di
= to_ab8500_fg_device_info(psy
);
2706 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2707 AB8505_RTC_PCUT_RESTART_REG
, ®_value
);
2710 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2714 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0xF));
2720 static ssize_t
ab8505_powercut_restart_write(struct device
*dev
,
2721 struct device_attribute
*attr
,
2722 const char *buf
, size_t count
)
2726 struct power_supply
*psy
= dev_get_drvdata(dev
);
2727 struct ab8500_fg
*di
;
2729 di
= to_ab8500_fg_device_info(psy
);
2731 reg_value
= simple_strtoul(buf
, NULL
, 10);
2732 if (reg_value
> 0xF) {
2733 dev_err(dev
, "Incorrect parameter, echo 0 - 15 for number of restart\n");
2737 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2738 AB8505_RTC_PCUT_RESTART_REG
, (u8
)reg_value
);
2741 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_RESTART_REG\n");
2748 static ssize_t
ab8505_powercut_timer_read(struct device
*dev
,
2749 struct device_attribute
*attr
,
2754 struct power_supply
*psy
= dev_get_drvdata(dev
);
2755 struct ab8500_fg
*di
;
2757 di
= to_ab8500_fg_device_info(psy
);
2759 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2760 AB8505_RTC_PCUT_TIME_REG
, ®_value
);
2763 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_TIME_REG\n");
2767 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x7F));
2773 static ssize_t
ab8505_powercut_restart_counter_read(struct device
*dev
,
2774 struct device_attribute
*attr
,
2779 struct power_supply
*psy
= dev_get_drvdata(dev
);
2780 struct ab8500_fg
*di
;
2782 di
= to_ab8500_fg_device_info(psy
);
2784 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2785 AB8505_RTC_PCUT_RESTART_REG
, ®_value
);
2788 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_RESTART_REG\n");
2792 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0xF0) >> 4);
2798 static ssize_t
ab8505_powercut_read(struct device
*dev
,
2799 struct device_attribute
*attr
,
2804 struct power_supply
*psy
= dev_get_drvdata(dev
);
2805 struct ab8500_fg
*di
;
2807 di
= to_ab8500_fg_device_info(psy
);
2809 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2810 AB8505_RTC_PCUT_CTL_STATUS_REG
, ®_value
);
2815 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x1));
2821 static ssize_t
ab8505_powercut_write(struct device
*dev
,
2822 struct device_attribute
*attr
,
2823 const char *buf
, size_t count
)
2827 struct power_supply
*psy
= dev_get_drvdata(dev
);
2828 struct ab8500_fg
*di
;
2830 di
= to_ab8500_fg_device_info(psy
);
2832 reg_value
= simple_strtoul(buf
, NULL
, 10);
2833 if (reg_value
> 0x1) {
2834 dev_err(dev
, "Incorrect parameter, echo 0/1 to disable/enable Pcut feature\n");
2838 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2839 AB8505_RTC_PCUT_CTL_STATUS_REG
, (u8
)reg_value
);
2842 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2848 static ssize_t
ab8505_powercut_flag_read(struct device
*dev
,
2849 struct device_attribute
*attr
,
2855 struct power_supply
*psy
= dev_get_drvdata(dev
);
2856 struct ab8500_fg
*di
;
2858 di
= to_ab8500_fg_device_info(psy
);
2860 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2861 AB8505_RTC_PCUT_CTL_STATUS_REG
, ®_value
);
2864 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2868 return scnprintf(buf
, PAGE_SIZE
, "%d\n", ((reg_value
& 0x10) >> 4));
2874 static ssize_t
ab8505_powercut_debounce_read(struct device
*dev
,
2875 struct device_attribute
*attr
,
2880 struct power_supply
*psy
= dev_get_drvdata(dev
);
2881 struct ab8500_fg
*di
;
2883 di
= to_ab8500_fg_device_info(psy
);
2885 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2886 AB8505_RTC_PCUT_DEBOUNCE_REG
, ®_value
);
2889 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2893 return scnprintf(buf
, PAGE_SIZE
, "%d\n", (reg_value
& 0x7));
2899 static ssize_t
ab8505_powercut_debounce_write(struct device
*dev
,
2900 struct device_attribute
*attr
,
2901 const char *buf
, size_t count
)
2905 struct power_supply
*psy
= dev_get_drvdata(dev
);
2906 struct ab8500_fg
*di
;
2908 di
= to_ab8500_fg_device_info(psy
);
2910 reg_value
= simple_strtoul(buf
, NULL
, 10);
2911 if (reg_value
> 0x7) {
2912 dev_err(dev
, "Incorrect parameter, echo 0 to 7 for debounce setting\n");
2916 ret
= abx500_set_register_interruptible(di
->dev
, AB8500_RTC
,
2917 AB8505_RTC_PCUT_DEBOUNCE_REG
, (u8
)reg_value
);
2920 dev_err(dev
, "Failed to set AB8505_RTC_PCUT_DEBOUNCE_REG\n");
2926 static ssize_t
ab8505_powercut_enable_status_read(struct device
*dev
,
2927 struct device_attribute
*attr
,
2932 struct power_supply
*psy
= dev_get_drvdata(dev
);
2933 struct ab8500_fg
*di
;
2935 di
= to_ab8500_fg_device_info(psy
);
2937 ret
= abx500_get_register_interruptible(di
->dev
, AB8500_RTC
,
2938 AB8505_RTC_PCUT_CTL_STATUS_REG
, ®_value
);
2941 dev_err(dev
, "Failed to read AB8505_RTC_PCUT_CTL_STATUS_REG\n");
2945 return scnprintf(buf
, PAGE_SIZE
, "%d\n", ((reg_value
& 0x20) >> 5));
2951 static struct device_attribute ab8505_fg_sysfs_psy_attrs
[] = {
2952 __ATTR(powercut_flagtime
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2953 ab8505_powercut_flagtime_read
, ab8505_powercut_flagtime_write
),
2954 __ATTR(powercut_maxtime
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2955 ab8505_powercut_maxtime_read
, ab8505_powercut_maxtime_write
),
2956 __ATTR(powercut_restart_max
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2957 ab8505_powercut_restart_read
, ab8505_powercut_restart_write
),
2958 __ATTR(powercut_timer
, S_IRUGO
, ab8505_powercut_timer_read
, NULL
),
2959 __ATTR(powercut_restart_counter
, S_IRUGO
,
2960 ab8505_powercut_restart_counter_read
, NULL
),
2961 __ATTR(powercut_enable
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2962 ab8505_powercut_read
, ab8505_powercut_write
),
2963 __ATTR(powercut_flag
, S_IRUGO
, ab8505_powercut_flag_read
, NULL
),
2964 __ATTR(powercut_debounce_time
, (S_IRUGO
| S_IWUSR
| S_IWGRP
),
2965 ab8505_powercut_debounce_read
, ab8505_powercut_debounce_write
),
2966 __ATTR(powercut_enable_status
, S_IRUGO
,
2967 ab8505_powercut_enable_status_read
, NULL
),
2970 static int ab8500_fg_sysfs_psy_create_attrs(struct device
*dev
)
2973 struct power_supply
*psy
= dev_get_drvdata(dev
);
2974 struct ab8500_fg
*di
;
2976 di
= to_ab8500_fg_device_info(psy
);
2978 if (((is_ab8505(di
->parent
) || is_ab9540(di
->parent
)) &&
2979 abx500_get_chip_id(dev
->parent
) >= AB8500_CUT2P0
)
2980 || is_ab8540(di
->parent
)) {
2981 for (j
= 0; j
< ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs
); j
++)
2982 if (device_create_file(dev
, &ab8505_fg_sysfs_psy_attrs
[j
]))
2983 goto sysfs_psy_create_attrs_failed_ab8505
;
2986 sysfs_psy_create_attrs_failed_ab8505
:
2987 dev_err(dev
, "Failed creating sysfs psy attrs for ab8505.\n");
2989 device_remove_file(dev
, &ab8505_fg_sysfs_psy_attrs
[i
]);
2994 static void ab8500_fg_sysfs_psy_remove_attrs(struct device
*dev
)
2997 struct power_supply
*psy
= dev_get_drvdata(dev
);
2998 struct ab8500_fg
*di
;
3000 di
= to_ab8500_fg_device_info(psy
);
3002 if (((is_ab8505(di
->parent
) || is_ab9540(di
->parent
)) &&
3003 abx500_get_chip_id(dev
->parent
) >= AB8500_CUT2P0
)
3004 || is_ab8540(di
->parent
)) {
3005 for (i
= 0; i
< ARRAY_SIZE(ab8505_fg_sysfs_psy_attrs
); i
++)
3006 (void)device_remove_file(dev
, &ab8505_fg_sysfs_psy_attrs
[i
]);
3010 /* Exposure to the sysfs interface <<END>> */
3012 #if defined(CONFIG_PM)
3013 static int ab8500_fg_resume(struct platform_device
*pdev
)
3015 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
3018 * Change state if we're not charging. If we're charging we will wake
3021 if (!di
->flags
.charging
) {
3022 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_WAKEUP
);
3023 queue_work(di
->fg_wq
, &di
->fg_work
);
3029 static int ab8500_fg_suspend(struct platform_device
*pdev
,
3032 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
3034 flush_delayed_work(&di
->fg_periodic_work
);
3035 flush_work(&di
->fg_work
);
3036 flush_work(&di
->fg_acc_cur_work
);
3037 flush_delayed_work(&di
->fg_reinit_work
);
3038 flush_delayed_work(&di
->fg_low_bat_work
);
3039 flush_delayed_work(&di
->fg_check_hw_failure_work
);
3042 * If the FG is enabled we will disable it before going to suspend
3043 * only if we're not charging
3045 if (di
->flags
.fg_enabled
&& !di
->flags
.charging
)
3046 ab8500_fg_coulomb_counter(di
, false);
3051 #define ab8500_fg_suspend NULL
3052 #define ab8500_fg_resume NULL
3055 static int ab8500_fg_remove(struct platform_device
*pdev
)
3058 struct ab8500_fg
*di
= platform_get_drvdata(pdev
);
3060 list_del(&di
->node
);
3062 /* Disable coulomb counter */
3063 ret
= ab8500_fg_coulomb_counter(di
, false);
3065 dev_err(di
->dev
, "failed to disable coulomb counter\n");
3067 destroy_workqueue(di
->fg_wq
);
3068 ab8500_fg_sysfs_exit(di
);
3070 flush_scheduled_work();
3071 ab8500_fg_sysfs_psy_remove_attrs(di
->fg_psy
.dev
);
3072 power_supply_unregister(&di
->fg_psy
);
3076 /* ab8500 fg driver interrupts and their respective isr */
3077 static struct ab8500_fg_interrupts ab8500_fg_irq
[] = {
3078 {"NCONV_ACCU", ab8500_fg_cc_convend_handler
},
3079 {"BATT_OVV", ab8500_fg_batt_ovv_handler
},
3080 {"LOW_BAT_F", ab8500_fg_lowbatf_handler
},
3081 {"CC_INT_CALIB", ab8500_fg_cc_int_calib_handler
},
3082 {"CCEOC", ab8500_fg_cc_data_end_handler
},
3085 static char *supply_interface
[] = {
3090 static int ab8500_fg_probe(struct platform_device
*pdev
)
3092 struct device_node
*np
= pdev
->dev
.of_node
;
3093 struct abx500_bm_data
*plat
= pdev
->dev
.platform_data
;
3094 struct ab8500_fg
*di
;
3098 di
= devm_kzalloc(&pdev
->dev
, sizeof(*di
), GFP_KERNEL
);
3100 dev_err(&pdev
->dev
, "%s no mem for ab8500_fg\n", __func__
);
3105 dev_err(&pdev
->dev
, "no battery management data supplied\n");
3111 ret
= ab8500_bm_of_probe(&pdev
->dev
, np
, di
->bm
);
3113 dev_err(&pdev
->dev
, "failed to get battery information\n");
3118 mutex_init(&di
->cc_lock
);
3120 /* get parent data */
3121 di
->dev
= &pdev
->dev
;
3122 di
->parent
= dev_get_drvdata(pdev
->dev
.parent
);
3123 di
->gpadc
= ab8500_gpadc_get("ab8500-gpadc.0");
3125 di
->fg_psy
.name
= "ab8500_fg";
3126 di
->fg_psy
.type
= POWER_SUPPLY_TYPE_BATTERY
;
3127 di
->fg_psy
.properties
= ab8500_fg_props
;
3128 di
->fg_psy
.num_properties
= ARRAY_SIZE(ab8500_fg_props
);
3129 di
->fg_psy
.get_property
= ab8500_fg_get_property
;
3130 di
->fg_psy
.supplied_to
= supply_interface
;
3131 di
->fg_psy
.num_supplicants
= ARRAY_SIZE(supply_interface
),
3132 di
->fg_psy
.external_power_changed
= ab8500_fg_external_power_changed
;
3134 di
->bat_cap
.max_mah_design
= MILLI_TO_MICRO
*
3135 di
->bm
->bat_type
[di
->bm
->batt_id
].charge_full_design
;
3137 di
->bat_cap
.max_mah
= di
->bat_cap
.max_mah_design
;
3139 di
->vbat_nom
= di
->bm
->bat_type
[di
->bm
->batt_id
].nominal_voltage
;
3141 di
->init_capacity
= true;
3143 ab8500_fg_charge_state_to(di
, AB8500_FG_CHARGE_INIT
);
3144 ab8500_fg_discharge_state_to(di
, AB8500_FG_DISCHARGE_INIT
);
3146 /* Create a work queue for running the FG algorithm */
3147 di
->fg_wq
= create_singlethread_workqueue("ab8500_fg_wq");
3148 if (di
->fg_wq
== NULL
) {
3149 dev_err(di
->dev
, "failed to create work queue\n");
3153 /* Init work for running the fg algorithm instantly */
3154 INIT_WORK(&di
->fg_work
, ab8500_fg_instant_work
);
3156 /* Init work for getting the battery accumulated current */
3157 INIT_WORK(&di
->fg_acc_cur_work
, ab8500_fg_acc_cur_work
);
3159 /* Init work for reinitialising the fg algorithm */
3160 INIT_DEFERRABLE_WORK(&di
->fg_reinit_work
,
3161 ab8500_fg_reinit_work
);
3163 /* Work delayed Queue to run the state machine */
3164 INIT_DEFERRABLE_WORK(&di
->fg_periodic_work
,
3165 ab8500_fg_periodic_work
);
3167 /* Work to check low battery condition */
3168 INIT_DEFERRABLE_WORK(&di
->fg_low_bat_work
,
3169 ab8500_fg_low_bat_work
);
3171 /* Init work for HW failure check */
3172 INIT_DEFERRABLE_WORK(&di
->fg_check_hw_failure_work
,
3173 ab8500_fg_check_hw_failure_work
);
3175 /* Reset battery low voltage flag */
3176 di
->flags
.low_bat
= false;
3178 /* Initialize low battery counter */
3179 di
->low_bat_cnt
= 10;
3181 /* Initialize OVV, and other registers */
3182 ret
= ab8500_fg_init_hw_registers(di
);
3184 dev_err(di
->dev
, "failed to initialize registers\n");
3185 goto free_inst_curr_wq
;
3188 /* Consider battery unknown until we're informed otherwise */
3189 di
->flags
.batt_unknown
= true;
3190 di
->flags
.batt_id_received
= false;
3192 /* Register FG power supply class */
3193 ret
= power_supply_register(di
->dev
, &di
->fg_psy
);
3195 dev_err(di
->dev
, "failed to register FG psy\n");
3196 goto free_inst_curr_wq
;
3199 di
->fg_samples
= SEC_TO_SAMPLE(di
->bm
->fg_params
->init_timer
);
3200 ab8500_fg_coulomb_counter(di
, true);
3203 * Initialize completion used to notify completion and start
3206 init_completion(&di
->ab8500_fg_started
);
3207 init_completion(&di
->ab8500_fg_complete
);
3209 /* Register interrupts */
3210 for (i
= 0; i
< ARRAY_SIZE(ab8500_fg_irq
); i
++) {
3211 irq
= platform_get_irq_byname(pdev
, ab8500_fg_irq
[i
].name
);
3212 ret
= request_threaded_irq(irq
, NULL
, ab8500_fg_irq
[i
].isr
,
3213 IRQF_SHARED
| IRQF_NO_SUSPEND
,
3214 ab8500_fg_irq
[i
].name
, di
);
3217 dev_err(di
->dev
, "failed to request %s IRQ %d: %d\n"
3218 , ab8500_fg_irq
[i
].name
, irq
, ret
);
3221 dev_dbg(di
->dev
, "Requested %s IRQ %d: %d\n",
3222 ab8500_fg_irq
[i
].name
, irq
, ret
);
3224 di
->irq
= platform_get_irq_byname(pdev
, "CCEOC");
3225 disable_irq(di
->irq
);
3226 di
->nbr_cceoc_irq_cnt
= 0;
3228 platform_set_drvdata(pdev
, di
);
3230 ret
= ab8500_fg_sysfs_init(di
);
3232 dev_err(di
->dev
, "failed to create sysfs entry\n");
3236 ret
= ab8500_fg_sysfs_psy_create_attrs(di
->fg_psy
.dev
);
3238 dev_err(di
->dev
, "failed to create FG psy\n");
3239 ab8500_fg_sysfs_exit(di
);
3243 /* Calibrate the fg first time */
3244 di
->flags
.calibrate
= true;
3245 di
->calib_state
= AB8500_FG_CALIB_INIT
;
3247 /* Use room temp as default value until we get an update from driver. */
3250 /* Run the FG algorithm */
3251 queue_delayed_work(di
->fg_wq
, &di
->fg_periodic_work
, 0);
3253 list_add_tail(&di
->node
, &ab8500_fg_list
);
3258 power_supply_unregister(&di
->fg_psy
);
3260 /* We also have to free all successfully registered irqs */
3261 for (i
= i
- 1; i
>= 0; i
--) {
3262 irq
= platform_get_irq_byname(pdev
, ab8500_fg_irq
[i
].name
);
3266 destroy_workqueue(di
->fg_wq
);
3270 static const struct of_device_id ab8500_fg_match
[] = {
3271 { .compatible
= "stericsson,ab8500-fg", },
3275 static struct platform_driver ab8500_fg_driver
= {
3276 .probe
= ab8500_fg_probe
,
3277 .remove
= ab8500_fg_remove
,
3278 .suspend
= ab8500_fg_suspend
,
3279 .resume
= ab8500_fg_resume
,
3281 .name
= "ab8500-fg",
3282 .owner
= THIS_MODULE
,
3283 .of_match_table
= ab8500_fg_match
,
3287 static int __init
ab8500_fg_init(void)
3289 return platform_driver_register(&ab8500_fg_driver
);
3292 static void __exit
ab8500_fg_exit(void)
3294 platform_driver_unregister(&ab8500_fg_driver
);
3297 subsys_initcall_sync(ab8500_fg_init
);
3298 module_exit(ab8500_fg_exit
);
3300 MODULE_LICENSE("GPL v2");
3301 MODULE_AUTHOR("Johan Palsson, Karl Komierowski");
3302 MODULE_ALIAS("platform:ab8500-fg");
3303 MODULE_DESCRIPTION("AB8500 Fuel Gauge driver");