2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
28 #include "transaction.h"
31 #include "inode-map.h"
33 #include "dev-replace.h"
35 #define BTRFS_ROOT_TRANS_TAG 0
37 static unsigned int btrfs_blocked_trans_types
[TRANS_STATE_MAX
] = {
38 [TRANS_STATE_RUNNING
] = 0U,
39 [TRANS_STATE_BLOCKED
] = (__TRANS_USERSPACE
|
41 [TRANS_STATE_COMMIT_START
] = (__TRANS_USERSPACE
|
44 [TRANS_STATE_COMMIT_DOING
] = (__TRANS_USERSPACE
|
48 [TRANS_STATE_UNBLOCKED
] = (__TRANS_USERSPACE
|
53 [TRANS_STATE_COMPLETED
] = (__TRANS_USERSPACE
|
60 void btrfs_put_transaction(struct btrfs_transaction
*transaction
)
62 WARN_ON(atomic_read(&transaction
->use_count
) == 0);
63 if (atomic_dec_and_test(&transaction
->use_count
)) {
64 BUG_ON(!list_empty(&transaction
->list
));
65 WARN_ON(!RB_EMPTY_ROOT(&transaction
->delayed_refs
.href_root
));
66 while (!list_empty(&transaction
->pending_chunks
)) {
67 struct extent_map
*em
;
69 em
= list_first_entry(&transaction
->pending_chunks
,
70 struct extent_map
, list
);
71 list_del_init(&em
->list
);
74 kmem_cache_free(btrfs_transaction_cachep
, transaction
);
78 static noinline
void switch_commit_root(struct btrfs_root
*root
)
80 free_extent_buffer(root
->commit_root
);
81 root
->commit_root
= btrfs_root_node(root
);
84 static inline void extwriter_counter_inc(struct btrfs_transaction
*trans
,
87 if (type
& TRANS_EXTWRITERS
)
88 atomic_inc(&trans
->num_extwriters
);
91 static inline void extwriter_counter_dec(struct btrfs_transaction
*trans
,
94 if (type
& TRANS_EXTWRITERS
)
95 atomic_dec(&trans
->num_extwriters
);
98 static inline void extwriter_counter_init(struct btrfs_transaction
*trans
,
101 atomic_set(&trans
->num_extwriters
, ((type
& TRANS_EXTWRITERS
) ? 1 : 0));
104 static inline int extwriter_counter_read(struct btrfs_transaction
*trans
)
106 return atomic_read(&trans
->num_extwriters
);
110 * either allocate a new transaction or hop into the existing one
112 static noinline
int join_transaction(struct btrfs_root
*root
, unsigned int type
)
114 struct btrfs_transaction
*cur_trans
;
115 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
117 spin_lock(&fs_info
->trans_lock
);
119 /* The file system has been taken offline. No new transactions. */
120 if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
121 spin_unlock(&fs_info
->trans_lock
);
125 cur_trans
= fs_info
->running_transaction
;
127 if (cur_trans
->aborted
) {
128 spin_unlock(&fs_info
->trans_lock
);
129 return cur_trans
->aborted
;
131 if (btrfs_blocked_trans_types
[cur_trans
->state
] & type
) {
132 spin_unlock(&fs_info
->trans_lock
);
135 atomic_inc(&cur_trans
->use_count
);
136 atomic_inc(&cur_trans
->num_writers
);
137 extwriter_counter_inc(cur_trans
, type
);
138 spin_unlock(&fs_info
->trans_lock
);
141 spin_unlock(&fs_info
->trans_lock
);
144 * If we are ATTACH, we just want to catch the current transaction,
145 * and commit it. If there is no transaction, just return ENOENT.
147 if (type
== TRANS_ATTACH
)
151 * JOIN_NOLOCK only happens during the transaction commit, so
152 * it is impossible that ->running_transaction is NULL
154 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
156 cur_trans
= kmem_cache_alloc(btrfs_transaction_cachep
, GFP_NOFS
);
160 spin_lock(&fs_info
->trans_lock
);
161 if (fs_info
->running_transaction
) {
163 * someone started a transaction after we unlocked. Make sure
164 * to redo the checks above
166 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
168 } else if (test_bit(BTRFS_FS_STATE_ERROR
, &fs_info
->fs_state
)) {
169 spin_unlock(&fs_info
->trans_lock
);
170 kmem_cache_free(btrfs_transaction_cachep
, cur_trans
);
174 atomic_set(&cur_trans
->num_writers
, 1);
175 extwriter_counter_init(cur_trans
, type
);
176 init_waitqueue_head(&cur_trans
->writer_wait
);
177 init_waitqueue_head(&cur_trans
->commit_wait
);
178 cur_trans
->state
= TRANS_STATE_RUNNING
;
180 * One for this trans handle, one so it will live on until we
181 * commit the transaction.
183 atomic_set(&cur_trans
->use_count
, 2);
184 cur_trans
->start_time
= get_seconds();
186 cur_trans
->delayed_refs
.href_root
= RB_ROOT
;
187 atomic_set(&cur_trans
->delayed_refs
.num_entries
, 0);
188 cur_trans
->delayed_refs
.num_heads_ready
= 0;
189 cur_trans
->delayed_refs
.num_heads
= 0;
190 cur_trans
->delayed_refs
.flushing
= 0;
191 cur_trans
->delayed_refs
.run_delayed_start
= 0;
194 * although the tree mod log is per file system and not per transaction,
195 * the log must never go across transaction boundaries.
198 if (!list_empty(&fs_info
->tree_mod_seq_list
))
199 WARN(1, KERN_ERR
"BTRFS: tree_mod_seq_list not empty when "
200 "creating a fresh transaction\n");
201 if (!RB_EMPTY_ROOT(&fs_info
->tree_mod_log
))
202 WARN(1, KERN_ERR
"BTRFS: tree_mod_log rb tree not empty when "
203 "creating a fresh transaction\n");
204 atomic64_set(&fs_info
->tree_mod_seq
, 0);
206 spin_lock_init(&cur_trans
->delayed_refs
.lock
);
208 INIT_LIST_HEAD(&cur_trans
->pending_snapshots
);
209 INIT_LIST_HEAD(&cur_trans
->ordered_operations
);
210 INIT_LIST_HEAD(&cur_trans
->pending_chunks
);
211 list_add_tail(&cur_trans
->list
, &fs_info
->trans_list
);
212 extent_io_tree_init(&cur_trans
->dirty_pages
,
213 fs_info
->btree_inode
->i_mapping
);
214 fs_info
->generation
++;
215 cur_trans
->transid
= fs_info
->generation
;
216 fs_info
->running_transaction
= cur_trans
;
217 cur_trans
->aborted
= 0;
218 spin_unlock(&fs_info
->trans_lock
);
224 * this does all the record keeping required to make sure that a reference
225 * counted root is properly recorded in a given transaction. This is required
226 * to make sure the old root from before we joined the transaction is deleted
227 * when the transaction commits
229 static int record_root_in_trans(struct btrfs_trans_handle
*trans
,
230 struct btrfs_root
*root
)
232 if (root
->ref_cows
&& root
->last_trans
< trans
->transid
) {
233 WARN_ON(root
== root
->fs_info
->extent_root
);
234 WARN_ON(root
->commit_root
!= root
->node
);
237 * see below for in_trans_setup usage rules
238 * we have the reloc mutex held now, so there
239 * is only one writer in this function
241 root
->in_trans_setup
= 1;
243 /* make sure readers find in_trans_setup before
244 * they find our root->last_trans update
248 spin_lock(&root
->fs_info
->fs_roots_radix_lock
);
249 if (root
->last_trans
== trans
->transid
) {
250 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
253 radix_tree_tag_set(&root
->fs_info
->fs_roots_radix
,
254 (unsigned long)root
->root_key
.objectid
,
255 BTRFS_ROOT_TRANS_TAG
);
256 spin_unlock(&root
->fs_info
->fs_roots_radix_lock
);
257 root
->last_trans
= trans
->transid
;
259 /* this is pretty tricky. We don't want to
260 * take the relocation lock in btrfs_record_root_in_trans
261 * unless we're really doing the first setup for this root in
264 * Normally we'd use root->last_trans as a flag to decide
265 * if we want to take the expensive mutex.
267 * But, we have to set root->last_trans before we
268 * init the relocation root, otherwise, we trip over warnings
269 * in ctree.c. The solution used here is to flag ourselves
270 * with root->in_trans_setup. When this is 1, we're still
271 * fixing up the reloc trees and everyone must wait.
273 * When this is zero, they can trust root->last_trans and fly
274 * through btrfs_record_root_in_trans without having to take the
275 * lock. smp_wmb() makes sure that all the writes above are
276 * done before we pop in the zero below
278 btrfs_init_reloc_root(trans
, root
);
280 root
->in_trans_setup
= 0;
286 int btrfs_record_root_in_trans(struct btrfs_trans_handle
*trans
,
287 struct btrfs_root
*root
)
293 * see record_root_in_trans for comments about in_trans_setup usage
297 if (root
->last_trans
== trans
->transid
&&
298 !root
->in_trans_setup
)
301 mutex_lock(&root
->fs_info
->reloc_mutex
);
302 record_root_in_trans(trans
, root
);
303 mutex_unlock(&root
->fs_info
->reloc_mutex
);
308 static inline int is_transaction_blocked(struct btrfs_transaction
*trans
)
310 return (trans
->state
>= TRANS_STATE_BLOCKED
&&
311 trans
->state
< TRANS_STATE_UNBLOCKED
&&
315 /* wait for commit against the current transaction to become unblocked
316 * when this is done, it is safe to start a new transaction, but the current
317 * transaction might not be fully on disk.
319 static void wait_current_trans(struct btrfs_root
*root
)
321 struct btrfs_transaction
*cur_trans
;
323 spin_lock(&root
->fs_info
->trans_lock
);
324 cur_trans
= root
->fs_info
->running_transaction
;
325 if (cur_trans
&& is_transaction_blocked(cur_trans
)) {
326 atomic_inc(&cur_trans
->use_count
);
327 spin_unlock(&root
->fs_info
->trans_lock
);
329 wait_event(root
->fs_info
->transaction_wait
,
330 cur_trans
->state
>= TRANS_STATE_UNBLOCKED
||
332 btrfs_put_transaction(cur_trans
);
334 spin_unlock(&root
->fs_info
->trans_lock
);
338 static int may_wait_transaction(struct btrfs_root
*root
, int type
)
340 if (root
->fs_info
->log_root_recovering
)
343 if (type
== TRANS_USERSPACE
)
346 if (type
== TRANS_START
&&
347 !atomic_read(&root
->fs_info
->open_ioctl_trans
))
353 static inline bool need_reserve_reloc_root(struct btrfs_root
*root
)
355 if (!root
->fs_info
->reloc_ctl
||
357 root
->root_key
.objectid
== BTRFS_TREE_RELOC_OBJECTID
||
364 static struct btrfs_trans_handle
*
365 start_transaction(struct btrfs_root
*root
, u64 num_items
, unsigned int type
,
366 enum btrfs_reserve_flush_enum flush
)
368 struct btrfs_trans_handle
*h
;
369 struct btrfs_transaction
*cur_trans
;
371 u64 qgroup_reserved
= 0;
372 bool reloc_reserved
= false;
375 if (test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
))
376 return ERR_PTR(-EROFS
);
378 if (current
->journal_info
) {
379 WARN_ON(type
& TRANS_EXTWRITERS
);
380 h
= current
->journal_info
;
382 WARN_ON(h
->use_count
> 2);
383 h
->orig_rsv
= h
->block_rsv
;
389 * Do the reservation before we join the transaction so we can do all
390 * the appropriate flushing if need be.
392 if (num_items
> 0 && root
!= root
->fs_info
->chunk_root
) {
393 if (root
->fs_info
->quota_enabled
&&
394 is_fstree(root
->root_key
.objectid
)) {
395 qgroup_reserved
= num_items
* root
->leafsize
;
396 ret
= btrfs_qgroup_reserve(root
, qgroup_reserved
);
401 num_bytes
= btrfs_calc_trans_metadata_size(root
, num_items
);
403 * Do the reservation for the relocation root creation
405 if (unlikely(need_reserve_reloc_root(root
))) {
406 num_bytes
+= root
->nodesize
;
407 reloc_reserved
= true;
410 ret
= btrfs_block_rsv_add(root
,
411 &root
->fs_info
->trans_block_rsv
,
417 h
= kmem_cache_alloc(btrfs_trans_handle_cachep
, GFP_NOFS
);
424 * If we are JOIN_NOLOCK we're already committing a transaction and
425 * waiting on this guy, so we don't need to do the sb_start_intwrite
426 * because we're already holding a ref. We need this because we could
427 * have raced in and did an fsync() on a file which can kick a commit
428 * and then we deadlock with somebody doing a freeze.
430 * If we are ATTACH, it means we just want to catch the current
431 * transaction and commit it, so we needn't do sb_start_intwrite().
433 if (type
& __TRANS_FREEZABLE
)
434 sb_start_intwrite(root
->fs_info
->sb
);
436 if (may_wait_transaction(root
, type
))
437 wait_current_trans(root
);
440 ret
= join_transaction(root
, type
);
442 wait_current_trans(root
);
443 if (unlikely(type
== TRANS_ATTACH
))
446 } while (ret
== -EBUSY
);
449 /* We must get the transaction if we are JOIN_NOLOCK. */
450 BUG_ON(type
== TRANS_JOIN_NOLOCK
);
454 cur_trans
= root
->fs_info
->running_transaction
;
456 h
->transid
= cur_trans
->transid
;
457 h
->transaction
= cur_trans
;
459 h
->bytes_reserved
= 0;
461 h
->delayed_ref_updates
= 0;
467 h
->qgroup_reserved
= 0;
468 h
->delayed_ref_elem
.seq
= 0;
470 h
->allocating_chunk
= false;
471 h
->reloc_reserved
= false;
473 INIT_LIST_HEAD(&h
->qgroup_ref_list
);
474 INIT_LIST_HEAD(&h
->new_bgs
);
477 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
&&
478 may_wait_transaction(root
, type
)) {
479 btrfs_commit_transaction(h
, root
);
484 trace_btrfs_space_reservation(root
->fs_info
, "transaction",
485 h
->transid
, num_bytes
, 1);
486 h
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
487 h
->bytes_reserved
= num_bytes
;
488 h
->reloc_reserved
= reloc_reserved
;
490 h
->qgroup_reserved
= qgroup_reserved
;
493 btrfs_record_root_in_trans(h
, root
);
495 if (!current
->journal_info
&& type
!= TRANS_USERSPACE
)
496 current
->journal_info
= h
;
500 if (type
& __TRANS_FREEZABLE
)
501 sb_end_intwrite(root
->fs_info
->sb
);
502 kmem_cache_free(btrfs_trans_handle_cachep
, h
);
505 btrfs_block_rsv_release(root
, &root
->fs_info
->trans_block_rsv
,
509 btrfs_qgroup_free(root
, qgroup_reserved
);
513 struct btrfs_trans_handle
*btrfs_start_transaction(struct btrfs_root
*root
,
516 return start_transaction(root
, num_items
, TRANS_START
,
517 BTRFS_RESERVE_FLUSH_ALL
);
520 struct btrfs_trans_handle
*btrfs_start_transaction_lflush(
521 struct btrfs_root
*root
, int num_items
)
523 return start_transaction(root
, num_items
, TRANS_START
,
524 BTRFS_RESERVE_FLUSH_LIMIT
);
527 struct btrfs_trans_handle
*btrfs_join_transaction(struct btrfs_root
*root
)
529 return start_transaction(root
, 0, TRANS_JOIN
, 0);
532 struct btrfs_trans_handle
*btrfs_join_transaction_nolock(struct btrfs_root
*root
)
534 return start_transaction(root
, 0, TRANS_JOIN_NOLOCK
, 0);
537 struct btrfs_trans_handle
*btrfs_start_ioctl_transaction(struct btrfs_root
*root
)
539 return start_transaction(root
, 0, TRANS_USERSPACE
, 0);
543 * btrfs_attach_transaction() - catch the running transaction
545 * It is used when we want to commit the current the transaction, but
546 * don't want to start a new one.
548 * Note: If this function return -ENOENT, it just means there is no
549 * running transaction. But it is possible that the inactive transaction
550 * is still in the memory, not fully on disk. If you hope there is no
551 * inactive transaction in the fs when -ENOENT is returned, you should
553 * btrfs_attach_transaction_barrier()
555 struct btrfs_trans_handle
*btrfs_attach_transaction(struct btrfs_root
*root
)
557 return start_transaction(root
, 0, TRANS_ATTACH
, 0);
561 * btrfs_attach_transaction_barrier() - catch the running transaction
563 * It is similar to the above function, the differentia is this one
564 * will wait for all the inactive transactions until they fully
567 struct btrfs_trans_handle
*
568 btrfs_attach_transaction_barrier(struct btrfs_root
*root
)
570 struct btrfs_trans_handle
*trans
;
572 trans
= start_transaction(root
, 0, TRANS_ATTACH
, 0);
573 if (IS_ERR(trans
) && PTR_ERR(trans
) == -ENOENT
)
574 btrfs_wait_for_commit(root
, 0);
579 /* wait for a transaction commit to be fully complete */
580 static noinline
void wait_for_commit(struct btrfs_root
*root
,
581 struct btrfs_transaction
*commit
)
583 wait_event(commit
->commit_wait
, commit
->state
== TRANS_STATE_COMPLETED
);
586 int btrfs_wait_for_commit(struct btrfs_root
*root
, u64 transid
)
588 struct btrfs_transaction
*cur_trans
= NULL
, *t
;
592 if (transid
<= root
->fs_info
->last_trans_committed
)
596 /* find specified transaction */
597 spin_lock(&root
->fs_info
->trans_lock
);
598 list_for_each_entry(t
, &root
->fs_info
->trans_list
, list
) {
599 if (t
->transid
== transid
) {
601 atomic_inc(&cur_trans
->use_count
);
605 if (t
->transid
> transid
) {
610 spin_unlock(&root
->fs_info
->trans_lock
);
611 /* The specified transaction doesn't exist */
615 /* find newest transaction that is committing | committed */
616 spin_lock(&root
->fs_info
->trans_lock
);
617 list_for_each_entry_reverse(t
, &root
->fs_info
->trans_list
,
619 if (t
->state
>= TRANS_STATE_COMMIT_START
) {
620 if (t
->state
== TRANS_STATE_COMPLETED
)
623 atomic_inc(&cur_trans
->use_count
);
627 spin_unlock(&root
->fs_info
->trans_lock
);
629 goto out
; /* nothing committing|committed */
632 wait_for_commit(root
, cur_trans
);
633 btrfs_put_transaction(cur_trans
);
638 void btrfs_throttle(struct btrfs_root
*root
)
640 if (!atomic_read(&root
->fs_info
->open_ioctl_trans
))
641 wait_current_trans(root
);
644 static int should_end_transaction(struct btrfs_trans_handle
*trans
,
645 struct btrfs_root
*root
)
647 if (root
->fs_info
->global_block_rsv
.space_info
->full
&&
648 btrfs_check_space_for_delayed_refs(trans
, root
))
651 return !!btrfs_block_rsv_check(root
, &root
->fs_info
->global_block_rsv
, 5);
654 int btrfs_should_end_transaction(struct btrfs_trans_handle
*trans
,
655 struct btrfs_root
*root
)
657 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
662 if (cur_trans
->state
>= TRANS_STATE_BLOCKED
||
663 cur_trans
->delayed_refs
.flushing
)
666 updates
= trans
->delayed_ref_updates
;
667 trans
->delayed_ref_updates
= 0;
669 err
= btrfs_run_delayed_refs(trans
, root
, updates
);
670 if (err
) /* Error code will also eval true */
674 return should_end_transaction(trans
, root
);
677 static int __btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
678 struct btrfs_root
*root
, int throttle
)
680 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
681 struct btrfs_fs_info
*info
= root
->fs_info
;
682 unsigned long cur
= trans
->delayed_ref_updates
;
683 int lock
= (trans
->type
!= TRANS_JOIN_NOLOCK
);
686 if (--trans
->use_count
) {
687 trans
->block_rsv
= trans
->orig_rsv
;
692 * do the qgroup accounting as early as possible
694 err
= btrfs_delayed_refs_qgroup_accounting(trans
, info
);
696 btrfs_trans_release_metadata(trans
, root
);
697 trans
->block_rsv
= NULL
;
699 if (trans
->qgroup_reserved
) {
701 * the same root has to be passed here between start_transaction
702 * and end_transaction. Subvolume quota depends on this.
704 btrfs_qgroup_free(trans
->root
, trans
->qgroup_reserved
);
705 trans
->qgroup_reserved
= 0;
708 if (!list_empty(&trans
->new_bgs
))
709 btrfs_create_pending_block_groups(trans
, root
);
711 trans
->delayed_ref_updates
= 0;
712 if (!trans
->sync
&& btrfs_should_throttle_delayed_refs(trans
, root
)) {
713 cur
= max_t(unsigned long, cur
, 32);
714 trans
->delayed_ref_updates
= 0;
715 btrfs_run_delayed_refs(trans
, root
, cur
);
718 btrfs_trans_release_metadata(trans
, root
);
719 trans
->block_rsv
= NULL
;
721 if (!list_empty(&trans
->new_bgs
))
722 btrfs_create_pending_block_groups(trans
, root
);
724 if (lock
&& !atomic_read(&root
->fs_info
->open_ioctl_trans
) &&
725 should_end_transaction(trans
, root
) &&
726 ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_RUNNING
) {
727 spin_lock(&info
->trans_lock
);
728 if (cur_trans
->state
== TRANS_STATE_RUNNING
)
729 cur_trans
->state
= TRANS_STATE_BLOCKED
;
730 spin_unlock(&info
->trans_lock
);
733 if (lock
&& ACCESS_ONCE(cur_trans
->state
) == TRANS_STATE_BLOCKED
) {
736 * We may race with somebody else here so end up having
737 * to call end_transaction on ourselves again, so inc
741 return btrfs_commit_transaction(trans
, root
);
743 wake_up_process(info
->transaction_kthread
);
747 if (trans
->type
& __TRANS_FREEZABLE
)
748 sb_end_intwrite(root
->fs_info
->sb
);
750 WARN_ON(cur_trans
!= info
->running_transaction
);
751 WARN_ON(atomic_read(&cur_trans
->num_writers
) < 1);
752 atomic_dec(&cur_trans
->num_writers
);
753 extwriter_counter_dec(cur_trans
, trans
->type
);
756 if (waitqueue_active(&cur_trans
->writer_wait
))
757 wake_up(&cur_trans
->writer_wait
);
758 btrfs_put_transaction(cur_trans
);
760 if (current
->journal_info
== trans
)
761 current
->journal_info
= NULL
;
764 btrfs_run_delayed_iputs(root
);
766 if (trans
->aborted
||
767 test_bit(BTRFS_FS_STATE_ERROR
, &root
->fs_info
->fs_state
)) {
768 wake_up_process(info
->transaction_kthread
);
771 assert_qgroups_uptodate(trans
);
773 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
777 int btrfs_end_transaction(struct btrfs_trans_handle
*trans
,
778 struct btrfs_root
*root
)
780 return __btrfs_end_transaction(trans
, root
, 0);
783 int btrfs_end_transaction_throttle(struct btrfs_trans_handle
*trans
,
784 struct btrfs_root
*root
)
786 return __btrfs_end_transaction(trans
, root
, 1);
790 * when btree blocks are allocated, they have some corresponding bits set for
791 * them in one of two extent_io trees. This is used to make sure all of
792 * those extents are sent to disk but does not wait on them
794 int btrfs_write_marked_extents(struct btrfs_root
*root
,
795 struct extent_io_tree
*dirty_pages
, int mark
)
799 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
800 struct extent_state
*cached_state
= NULL
;
804 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
805 mark
, &cached_state
)) {
806 convert_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
,
807 mark
, &cached_state
, GFP_NOFS
);
809 err
= filemap_fdatawrite_range(mapping
, start
, end
);
821 * when btree blocks are allocated, they have some corresponding bits set for
822 * them in one of two extent_io trees. This is used to make sure all of
823 * those extents are on disk for transaction or log commit. We wait
824 * on all the pages and clear them from the dirty pages state tree
826 int btrfs_wait_marked_extents(struct btrfs_root
*root
,
827 struct extent_io_tree
*dirty_pages
, int mark
)
831 struct address_space
*mapping
= root
->fs_info
->btree_inode
->i_mapping
;
832 struct extent_state
*cached_state
= NULL
;
836 while (!find_first_extent_bit(dirty_pages
, start
, &start
, &end
,
837 EXTENT_NEED_WAIT
, &cached_state
)) {
838 clear_extent_bit(dirty_pages
, start
, end
, EXTENT_NEED_WAIT
,
839 0, 0, &cached_state
, GFP_NOFS
);
840 err
= filemap_fdatawait_range(mapping
, start
, end
);
852 * when btree blocks are allocated, they have some corresponding bits set for
853 * them in one of two extent_io trees. This is used to make sure all of
854 * those extents are on disk for transaction or log commit
856 static int btrfs_write_and_wait_marked_extents(struct btrfs_root
*root
,
857 struct extent_io_tree
*dirty_pages
, int mark
)
861 struct blk_plug plug
;
863 blk_start_plug(&plug
);
864 ret
= btrfs_write_marked_extents(root
, dirty_pages
, mark
);
865 blk_finish_plug(&plug
);
866 ret2
= btrfs_wait_marked_extents(root
, dirty_pages
, mark
);
875 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle
*trans
,
876 struct btrfs_root
*root
)
878 if (!trans
|| !trans
->transaction
) {
879 struct inode
*btree_inode
;
880 btree_inode
= root
->fs_info
->btree_inode
;
881 return filemap_write_and_wait(btree_inode
->i_mapping
);
883 return btrfs_write_and_wait_marked_extents(root
,
884 &trans
->transaction
->dirty_pages
,
889 * this is used to update the root pointer in the tree of tree roots.
891 * But, in the case of the extent allocation tree, updating the root
892 * pointer may allocate blocks which may change the root of the extent
895 * So, this loops and repeats and makes sure the cowonly root didn't
896 * change while the root pointer was being updated in the metadata.
898 static int update_cowonly_root(struct btrfs_trans_handle
*trans
,
899 struct btrfs_root
*root
)
904 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
906 old_root_used
= btrfs_root_used(&root
->root_item
);
907 btrfs_write_dirty_block_groups(trans
, root
);
910 old_root_bytenr
= btrfs_root_bytenr(&root
->root_item
);
911 if (old_root_bytenr
== root
->node
->start
&&
912 old_root_used
== btrfs_root_used(&root
->root_item
))
915 btrfs_set_root_node(&root
->root_item
, root
->node
);
916 ret
= btrfs_update_root(trans
, tree_root
,
922 old_root_used
= btrfs_root_used(&root
->root_item
);
923 ret
= btrfs_write_dirty_block_groups(trans
, root
);
928 if (root
!= root
->fs_info
->extent_root
)
929 switch_commit_root(root
);
935 * update all the cowonly tree roots on disk
937 * The error handling in this function may not be obvious. Any of the
938 * failures will cause the file system to go offline. We still need
939 * to clean up the delayed refs.
941 static noinline
int commit_cowonly_roots(struct btrfs_trans_handle
*trans
,
942 struct btrfs_root
*root
)
944 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
945 struct list_head
*next
;
946 struct extent_buffer
*eb
;
949 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
953 eb
= btrfs_lock_root_node(fs_info
->tree_root
);
954 ret
= btrfs_cow_block(trans
, fs_info
->tree_root
, eb
, NULL
,
956 btrfs_tree_unlock(eb
);
957 free_extent_buffer(eb
);
962 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
966 ret
= btrfs_run_dev_stats(trans
, root
->fs_info
);
969 ret
= btrfs_run_dev_replace(trans
, root
->fs_info
);
972 ret
= btrfs_run_qgroups(trans
, root
->fs_info
);
976 /* run_qgroups might have added some more refs */
977 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
981 while (!list_empty(&fs_info
->dirty_cowonly_roots
)) {
982 next
= fs_info
->dirty_cowonly_roots
.next
;
984 root
= list_entry(next
, struct btrfs_root
, dirty_list
);
986 ret
= update_cowonly_root(trans
, root
);
991 down_write(&fs_info
->extent_commit_sem
);
992 switch_commit_root(fs_info
->extent_root
);
993 up_write(&fs_info
->extent_commit_sem
);
995 btrfs_after_dev_replace_commit(fs_info
);
1001 * dead roots are old snapshots that need to be deleted. This allocates
1002 * a dirty root struct and adds it into the list of dead roots that need to
1005 void btrfs_add_dead_root(struct btrfs_root
*root
)
1007 spin_lock(&root
->fs_info
->trans_lock
);
1008 if (list_empty(&root
->root_list
))
1009 list_add_tail(&root
->root_list
, &root
->fs_info
->dead_roots
);
1010 spin_unlock(&root
->fs_info
->trans_lock
);
1014 * update all the cowonly tree roots on disk
1016 static noinline
int commit_fs_roots(struct btrfs_trans_handle
*trans
,
1017 struct btrfs_root
*root
)
1019 struct btrfs_root
*gang
[8];
1020 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1025 spin_lock(&fs_info
->fs_roots_radix_lock
);
1027 ret
= radix_tree_gang_lookup_tag(&fs_info
->fs_roots_radix
,
1030 BTRFS_ROOT_TRANS_TAG
);
1033 for (i
= 0; i
< ret
; i
++) {
1035 radix_tree_tag_clear(&fs_info
->fs_roots_radix
,
1036 (unsigned long)root
->root_key
.objectid
,
1037 BTRFS_ROOT_TRANS_TAG
);
1038 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1040 btrfs_free_log(trans
, root
);
1041 btrfs_update_reloc_root(trans
, root
);
1042 btrfs_orphan_commit_root(trans
, root
);
1044 btrfs_save_ino_cache(root
, trans
);
1046 /* see comments in should_cow_block() */
1047 root
->force_cow
= 0;
1050 if (root
->commit_root
!= root
->node
) {
1051 mutex_lock(&root
->fs_commit_mutex
);
1052 switch_commit_root(root
);
1053 btrfs_unpin_free_ino(root
);
1054 mutex_unlock(&root
->fs_commit_mutex
);
1056 btrfs_set_root_node(&root
->root_item
,
1060 err
= btrfs_update_root(trans
, fs_info
->tree_root
,
1063 spin_lock(&fs_info
->fs_roots_radix_lock
);
1068 spin_unlock(&fs_info
->fs_roots_radix_lock
);
1073 * defrag a given btree.
1074 * Every leaf in the btree is read and defragged.
1076 int btrfs_defrag_root(struct btrfs_root
*root
)
1078 struct btrfs_fs_info
*info
= root
->fs_info
;
1079 struct btrfs_trans_handle
*trans
;
1082 if (xchg(&root
->defrag_running
, 1))
1086 trans
= btrfs_start_transaction(root
, 0);
1088 return PTR_ERR(trans
);
1090 ret
= btrfs_defrag_leaves(trans
, root
);
1092 btrfs_end_transaction(trans
, root
);
1093 btrfs_btree_balance_dirty(info
->tree_root
);
1096 if (btrfs_fs_closing(root
->fs_info
) || ret
!= -EAGAIN
)
1099 if (btrfs_defrag_cancelled(root
->fs_info
)) {
1100 pr_debug("BTRFS: defrag_root cancelled\n");
1105 root
->defrag_running
= 0;
1110 * new snapshots need to be created at a very specific time in the
1111 * transaction commit. This does the actual creation.
1114 * If the error which may affect the commitment of the current transaction
1115 * happens, we should return the error number. If the error which just affect
1116 * the creation of the pending snapshots, just return 0.
1118 static noinline
int create_pending_snapshot(struct btrfs_trans_handle
*trans
,
1119 struct btrfs_fs_info
*fs_info
,
1120 struct btrfs_pending_snapshot
*pending
)
1122 struct btrfs_key key
;
1123 struct btrfs_root_item
*new_root_item
;
1124 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
1125 struct btrfs_root
*root
= pending
->root
;
1126 struct btrfs_root
*parent_root
;
1127 struct btrfs_block_rsv
*rsv
;
1128 struct inode
*parent_inode
;
1129 struct btrfs_path
*path
;
1130 struct btrfs_dir_item
*dir_item
;
1131 struct dentry
*dentry
;
1132 struct extent_buffer
*tmp
;
1133 struct extent_buffer
*old
;
1134 struct timespec cur_time
= CURRENT_TIME
;
1142 path
= btrfs_alloc_path();
1144 pending
->error
= -ENOMEM
;
1148 new_root_item
= kmalloc(sizeof(*new_root_item
), GFP_NOFS
);
1149 if (!new_root_item
) {
1150 pending
->error
= -ENOMEM
;
1151 goto root_item_alloc_fail
;
1154 pending
->error
= btrfs_find_free_objectid(tree_root
, &objectid
);
1156 goto no_free_objectid
;
1158 btrfs_reloc_pre_snapshot(trans
, pending
, &to_reserve
);
1160 if (to_reserve
> 0) {
1161 pending
->error
= btrfs_block_rsv_add(root
,
1162 &pending
->block_rsv
,
1164 BTRFS_RESERVE_NO_FLUSH
);
1166 goto no_free_objectid
;
1169 pending
->error
= btrfs_qgroup_inherit(trans
, fs_info
,
1170 root
->root_key
.objectid
,
1171 objectid
, pending
->inherit
);
1173 goto no_free_objectid
;
1175 key
.objectid
= objectid
;
1176 key
.offset
= (u64
)-1;
1177 key
.type
= BTRFS_ROOT_ITEM_KEY
;
1179 rsv
= trans
->block_rsv
;
1180 trans
->block_rsv
= &pending
->block_rsv
;
1181 trans
->bytes_reserved
= trans
->block_rsv
->reserved
;
1183 dentry
= pending
->dentry
;
1184 parent_inode
= pending
->dir
;
1185 parent_root
= BTRFS_I(parent_inode
)->root
;
1186 record_root_in_trans(trans
, parent_root
);
1189 * insert the directory item
1191 ret
= btrfs_set_inode_index(parent_inode
, &index
);
1192 BUG_ON(ret
); /* -ENOMEM */
1194 /* check if there is a file/dir which has the same name. */
1195 dir_item
= btrfs_lookup_dir_item(NULL
, parent_root
, path
,
1196 btrfs_ino(parent_inode
),
1197 dentry
->d_name
.name
,
1198 dentry
->d_name
.len
, 0);
1199 if (dir_item
!= NULL
&& !IS_ERR(dir_item
)) {
1200 pending
->error
= -EEXIST
;
1201 goto dir_item_existed
;
1202 } else if (IS_ERR(dir_item
)) {
1203 ret
= PTR_ERR(dir_item
);
1204 btrfs_abort_transaction(trans
, root
, ret
);
1207 btrfs_release_path(path
);
1210 * pull in the delayed directory update
1211 * and the delayed inode item
1212 * otherwise we corrupt the FS during
1215 ret
= btrfs_run_delayed_items(trans
, root
);
1216 if (ret
) { /* Transaction aborted */
1217 btrfs_abort_transaction(trans
, root
, ret
);
1221 record_root_in_trans(trans
, root
);
1222 btrfs_set_root_last_snapshot(&root
->root_item
, trans
->transid
);
1223 memcpy(new_root_item
, &root
->root_item
, sizeof(*new_root_item
));
1224 btrfs_check_and_init_root_item(new_root_item
);
1226 root_flags
= btrfs_root_flags(new_root_item
);
1227 if (pending
->readonly
)
1228 root_flags
|= BTRFS_ROOT_SUBVOL_RDONLY
;
1230 root_flags
&= ~BTRFS_ROOT_SUBVOL_RDONLY
;
1231 btrfs_set_root_flags(new_root_item
, root_flags
);
1233 btrfs_set_root_generation_v2(new_root_item
,
1235 uuid_le_gen(&new_uuid
);
1236 memcpy(new_root_item
->uuid
, new_uuid
.b
, BTRFS_UUID_SIZE
);
1237 memcpy(new_root_item
->parent_uuid
, root
->root_item
.uuid
,
1239 if (!(root_flags
& BTRFS_ROOT_SUBVOL_RDONLY
)) {
1240 memset(new_root_item
->received_uuid
, 0,
1241 sizeof(new_root_item
->received_uuid
));
1242 memset(&new_root_item
->stime
, 0, sizeof(new_root_item
->stime
));
1243 memset(&new_root_item
->rtime
, 0, sizeof(new_root_item
->rtime
));
1244 btrfs_set_root_stransid(new_root_item
, 0);
1245 btrfs_set_root_rtransid(new_root_item
, 0);
1247 btrfs_set_stack_timespec_sec(&new_root_item
->otime
, cur_time
.tv_sec
);
1248 btrfs_set_stack_timespec_nsec(&new_root_item
->otime
, cur_time
.tv_nsec
);
1249 btrfs_set_root_otransid(new_root_item
, trans
->transid
);
1251 old
= btrfs_lock_root_node(root
);
1252 ret
= btrfs_cow_block(trans
, root
, old
, NULL
, 0, &old
);
1254 btrfs_tree_unlock(old
);
1255 free_extent_buffer(old
);
1256 btrfs_abort_transaction(trans
, root
, ret
);
1260 btrfs_set_lock_blocking(old
);
1262 ret
= btrfs_copy_root(trans
, root
, old
, &tmp
, objectid
);
1263 /* clean up in any case */
1264 btrfs_tree_unlock(old
);
1265 free_extent_buffer(old
);
1267 btrfs_abort_transaction(trans
, root
, ret
);
1271 /* see comments in should_cow_block() */
1272 root
->force_cow
= 1;
1275 btrfs_set_root_node(new_root_item
, tmp
);
1276 /* record when the snapshot was created in key.offset */
1277 key
.offset
= trans
->transid
;
1278 ret
= btrfs_insert_root(trans
, tree_root
, &key
, new_root_item
);
1279 btrfs_tree_unlock(tmp
);
1280 free_extent_buffer(tmp
);
1282 btrfs_abort_transaction(trans
, root
, ret
);
1287 * insert root back/forward references
1289 ret
= btrfs_add_root_ref(trans
, tree_root
, objectid
,
1290 parent_root
->root_key
.objectid
,
1291 btrfs_ino(parent_inode
), index
,
1292 dentry
->d_name
.name
, dentry
->d_name
.len
);
1294 btrfs_abort_transaction(trans
, root
, ret
);
1298 key
.offset
= (u64
)-1;
1299 pending
->snap
= btrfs_read_fs_root_no_name(root
->fs_info
, &key
);
1300 if (IS_ERR(pending
->snap
)) {
1301 ret
= PTR_ERR(pending
->snap
);
1302 btrfs_abort_transaction(trans
, root
, ret
);
1306 ret
= btrfs_reloc_post_snapshot(trans
, pending
);
1308 btrfs_abort_transaction(trans
, root
, ret
);
1312 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1314 btrfs_abort_transaction(trans
, root
, ret
);
1318 ret
= btrfs_insert_dir_item(trans
, parent_root
,
1319 dentry
->d_name
.name
, dentry
->d_name
.len
,
1321 BTRFS_FT_DIR
, index
);
1322 /* We have check then name at the beginning, so it is impossible. */
1323 BUG_ON(ret
== -EEXIST
|| ret
== -EOVERFLOW
);
1325 btrfs_abort_transaction(trans
, root
, ret
);
1329 btrfs_i_size_write(parent_inode
, parent_inode
->i_size
+
1330 dentry
->d_name
.len
* 2);
1331 parent_inode
->i_mtime
= parent_inode
->i_ctime
= CURRENT_TIME
;
1332 ret
= btrfs_update_inode_fallback(trans
, parent_root
, parent_inode
);
1334 btrfs_abort_transaction(trans
, root
, ret
);
1337 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
, new_uuid
.b
,
1338 BTRFS_UUID_KEY_SUBVOL
, objectid
);
1340 btrfs_abort_transaction(trans
, root
, ret
);
1343 if (!btrfs_is_empty_uuid(new_root_item
->received_uuid
)) {
1344 ret
= btrfs_uuid_tree_add(trans
, fs_info
->uuid_root
,
1345 new_root_item
->received_uuid
,
1346 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
1348 if (ret
&& ret
!= -EEXIST
) {
1349 btrfs_abort_transaction(trans
, root
, ret
);
1354 pending
->error
= ret
;
1356 trans
->block_rsv
= rsv
;
1357 trans
->bytes_reserved
= 0;
1359 kfree(new_root_item
);
1360 root_item_alloc_fail
:
1361 btrfs_free_path(path
);
1366 * create all the snapshots we've scheduled for creation
1368 static noinline
int create_pending_snapshots(struct btrfs_trans_handle
*trans
,
1369 struct btrfs_fs_info
*fs_info
)
1371 struct btrfs_pending_snapshot
*pending
, *next
;
1372 struct list_head
*head
= &trans
->transaction
->pending_snapshots
;
1375 list_for_each_entry_safe(pending
, next
, head
, list
) {
1376 list_del(&pending
->list
);
1377 ret
= create_pending_snapshot(trans
, fs_info
, pending
);
1384 static void update_super_roots(struct btrfs_root
*root
)
1386 struct btrfs_root_item
*root_item
;
1387 struct btrfs_super_block
*super
;
1389 super
= root
->fs_info
->super_copy
;
1391 root_item
= &root
->fs_info
->chunk_root
->root_item
;
1392 super
->chunk_root
= root_item
->bytenr
;
1393 super
->chunk_root_generation
= root_item
->generation
;
1394 super
->chunk_root_level
= root_item
->level
;
1396 root_item
= &root
->fs_info
->tree_root
->root_item
;
1397 super
->root
= root_item
->bytenr
;
1398 super
->generation
= root_item
->generation
;
1399 super
->root_level
= root_item
->level
;
1400 if (btrfs_test_opt(root
, SPACE_CACHE
))
1401 super
->cache_generation
= root_item
->generation
;
1402 if (root
->fs_info
->update_uuid_tree_gen
)
1403 super
->uuid_tree_generation
= root_item
->generation
;
1406 int btrfs_transaction_in_commit(struct btrfs_fs_info
*info
)
1408 struct btrfs_transaction
*trans
;
1411 spin_lock(&info
->trans_lock
);
1412 trans
= info
->running_transaction
;
1414 ret
= (trans
->state
>= TRANS_STATE_COMMIT_START
);
1415 spin_unlock(&info
->trans_lock
);
1419 int btrfs_transaction_blocked(struct btrfs_fs_info
*info
)
1421 struct btrfs_transaction
*trans
;
1424 spin_lock(&info
->trans_lock
);
1425 trans
= info
->running_transaction
;
1427 ret
= is_transaction_blocked(trans
);
1428 spin_unlock(&info
->trans_lock
);
1433 * wait for the current transaction commit to start and block subsequent
1436 static void wait_current_trans_commit_start(struct btrfs_root
*root
,
1437 struct btrfs_transaction
*trans
)
1439 wait_event(root
->fs_info
->transaction_blocked_wait
,
1440 trans
->state
>= TRANS_STATE_COMMIT_START
||
1445 * wait for the current transaction to start and then become unblocked.
1448 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root
*root
,
1449 struct btrfs_transaction
*trans
)
1451 wait_event(root
->fs_info
->transaction_wait
,
1452 trans
->state
>= TRANS_STATE_UNBLOCKED
||
1457 * commit transactions asynchronously. once btrfs_commit_transaction_async
1458 * returns, any subsequent transaction will not be allowed to join.
1460 struct btrfs_async_commit
{
1461 struct btrfs_trans_handle
*newtrans
;
1462 struct btrfs_root
*root
;
1463 struct work_struct work
;
1466 static void do_async_commit(struct work_struct
*work
)
1468 struct btrfs_async_commit
*ac
=
1469 container_of(work
, struct btrfs_async_commit
, work
);
1472 * We've got freeze protection passed with the transaction.
1473 * Tell lockdep about it.
1475 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1477 &ac
->root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1480 current
->journal_info
= ac
->newtrans
;
1482 btrfs_commit_transaction(ac
->newtrans
, ac
->root
);
1486 int btrfs_commit_transaction_async(struct btrfs_trans_handle
*trans
,
1487 struct btrfs_root
*root
,
1488 int wait_for_unblock
)
1490 struct btrfs_async_commit
*ac
;
1491 struct btrfs_transaction
*cur_trans
;
1493 ac
= kmalloc(sizeof(*ac
), GFP_NOFS
);
1497 INIT_WORK(&ac
->work
, do_async_commit
);
1499 ac
->newtrans
= btrfs_join_transaction(root
);
1500 if (IS_ERR(ac
->newtrans
)) {
1501 int err
= PTR_ERR(ac
->newtrans
);
1506 /* take transaction reference */
1507 cur_trans
= trans
->transaction
;
1508 atomic_inc(&cur_trans
->use_count
);
1510 btrfs_end_transaction(trans
, root
);
1513 * Tell lockdep we've released the freeze rwsem, since the
1514 * async commit thread will be the one to unlock it.
1516 if (ac
->newtrans
->type
& __TRANS_FREEZABLE
)
1518 &root
->fs_info
->sb
->s_writers
.lock_map
[SB_FREEZE_FS
-1],
1521 schedule_work(&ac
->work
);
1523 /* wait for transaction to start and unblock */
1524 if (wait_for_unblock
)
1525 wait_current_trans_commit_start_and_unblock(root
, cur_trans
);
1527 wait_current_trans_commit_start(root
, cur_trans
);
1529 if (current
->journal_info
== trans
)
1530 current
->journal_info
= NULL
;
1532 btrfs_put_transaction(cur_trans
);
1537 static void cleanup_transaction(struct btrfs_trans_handle
*trans
,
1538 struct btrfs_root
*root
, int err
)
1540 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1543 WARN_ON(trans
->use_count
> 1);
1545 btrfs_abort_transaction(trans
, root
, err
);
1547 spin_lock(&root
->fs_info
->trans_lock
);
1550 * If the transaction is removed from the list, it means this
1551 * transaction has been committed successfully, so it is impossible
1552 * to call the cleanup function.
1554 BUG_ON(list_empty(&cur_trans
->list
));
1556 list_del_init(&cur_trans
->list
);
1557 if (cur_trans
== root
->fs_info
->running_transaction
) {
1558 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1559 spin_unlock(&root
->fs_info
->trans_lock
);
1560 wait_event(cur_trans
->writer_wait
,
1561 atomic_read(&cur_trans
->num_writers
) == 1);
1563 spin_lock(&root
->fs_info
->trans_lock
);
1565 spin_unlock(&root
->fs_info
->trans_lock
);
1567 btrfs_cleanup_one_transaction(trans
->transaction
, root
);
1569 spin_lock(&root
->fs_info
->trans_lock
);
1570 if (cur_trans
== root
->fs_info
->running_transaction
)
1571 root
->fs_info
->running_transaction
= NULL
;
1572 spin_unlock(&root
->fs_info
->trans_lock
);
1574 if (trans
->type
& __TRANS_FREEZABLE
)
1575 sb_end_intwrite(root
->fs_info
->sb
);
1576 btrfs_put_transaction(cur_trans
);
1577 btrfs_put_transaction(cur_trans
);
1579 trace_btrfs_transaction_commit(root
);
1581 btrfs_scrub_continue(root
);
1583 if (current
->journal_info
== trans
)
1584 current
->journal_info
= NULL
;
1586 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1589 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle
*trans
,
1590 struct btrfs_root
*root
)
1594 ret
= btrfs_run_delayed_items(trans
, root
);
1596 * running the delayed items may have added new refs. account
1597 * them now so that they hinder processing of more delayed refs
1598 * as little as possible.
1601 btrfs_delayed_refs_qgroup_accounting(trans
, root
->fs_info
);
1605 ret
= btrfs_delayed_refs_qgroup_accounting(trans
, root
->fs_info
);
1610 * rename don't use btrfs_join_transaction, so, once we
1611 * set the transaction to blocked above, we aren't going
1612 * to get any new ordered operations. We can safely run
1613 * it here and no for sure that nothing new will be added
1616 ret
= btrfs_run_ordered_operations(trans
, root
, 1);
1621 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1623 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1624 return btrfs_start_delalloc_roots(fs_info
, 1);
1628 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info
*fs_info
)
1630 if (btrfs_test_opt(fs_info
->tree_root
, FLUSHONCOMMIT
))
1631 btrfs_wait_ordered_roots(fs_info
, -1);
1634 int btrfs_commit_transaction(struct btrfs_trans_handle
*trans
,
1635 struct btrfs_root
*root
)
1637 struct btrfs_transaction
*cur_trans
= trans
->transaction
;
1638 struct btrfs_transaction
*prev_trans
= NULL
;
1641 ret
= btrfs_run_ordered_operations(trans
, root
, 0);
1643 btrfs_abort_transaction(trans
, root
, ret
);
1644 btrfs_end_transaction(trans
, root
);
1648 /* Stop the commit early if ->aborted is set */
1649 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1650 ret
= cur_trans
->aborted
;
1651 btrfs_end_transaction(trans
, root
);
1655 /* make a pass through all the delayed refs we have so far
1656 * any runnings procs may add more while we are here
1658 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1660 btrfs_end_transaction(trans
, root
);
1664 btrfs_trans_release_metadata(trans
, root
);
1665 trans
->block_rsv
= NULL
;
1666 if (trans
->qgroup_reserved
) {
1667 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
1668 trans
->qgroup_reserved
= 0;
1671 cur_trans
= trans
->transaction
;
1674 * set the flushing flag so procs in this transaction have to
1675 * start sending their work down.
1677 cur_trans
->delayed_refs
.flushing
= 1;
1680 if (!list_empty(&trans
->new_bgs
))
1681 btrfs_create_pending_block_groups(trans
, root
);
1683 ret
= btrfs_run_delayed_refs(trans
, root
, 0);
1685 btrfs_end_transaction(trans
, root
);
1689 spin_lock(&root
->fs_info
->trans_lock
);
1690 if (cur_trans
->state
>= TRANS_STATE_COMMIT_START
) {
1691 spin_unlock(&root
->fs_info
->trans_lock
);
1692 atomic_inc(&cur_trans
->use_count
);
1693 ret
= btrfs_end_transaction(trans
, root
);
1695 wait_for_commit(root
, cur_trans
);
1697 btrfs_put_transaction(cur_trans
);
1702 cur_trans
->state
= TRANS_STATE_COMMIT_START
;
1703 wake_up(&root
->fs_info
->transaction_blocked_wait
);
1705 if (cur_trans
->list
.prev
!= &root
->fs_info
->trans_list
) {
1706 prev_trans
= list_entry(cur_trans
->list
.prev
,
1707 struct btrfs_transaction
, list
);
1708 if (prev_trans
->state
!= TRANS_STATE_COMPLETED
) {
1709 atomic_inc(&prev_trans
->use_count
);
1710 spin_unlock(&root
->fs_info
->trans_lock
);
1712 wait_for_commit(root
, prev_trans
);
1714 btrfs_put_transaction(prev_trans
);
1716 spin_unlock(&root
->fs_info
->trans_lock
);
1719 spin_unlock(&root
->fs_info
->trans_lock
);
1722 extwriter_counter_dec(cur_trans
, trans
->type
);
1724 ret
= btrfs_start_delalloc_flush(root
->fs_info
);
1726 goto cleanup_transaction
;
1728 ret
= btrfs_flush_all_pending_stuffs(trans
, root
);
1730 goto cleanup_transaction
;
1732 wait_event(cur_trans
->writer_wait
,
1733 extwriter_counter_read(cur_trans
) == 0);
1735 /* some pending stuffs might be added after the previous flush. */
1736 ret
= btrfs_flush_all_pending_stuffs(trans
, root
);
1738 goto cleanup_transaction
;
1740 btrfs_wait_delalloc_flush(root
->fs_info
);
1742 btrfs_scrub_pause(root
);
1744 * Ok now we need to make sure to block out any other joins while we
1745 * commit the transaction. We could have started a join before setting
1746 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1748 spin_lock(&root
->fs_info
->trans_lock
);
1749 cur_trans
->state
= TRANS_STATE_COMMIT_DOING
;
1750 spin_unlock(&root
->fs_info
->trans_lock
);
1751 wait_event(cur_trans
->writer_wait
,
1752 atomic_read(&cur_trans
->num_writers
) == 1);
1754 /* ->aborted might be set after the previous check, so check it */
1755 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1756 ret
= cur_trans
->aborted
;
1757 goto cleanup_transaction
;
1760 * the reloc mutex makes sure that we stop
1761 * the balancing code from coming in and moving
1762 * extents around in the middle of the commit
1764 mutex_lock(&root
->fs_info
->reloc_mutex
);
1767 * We needn't worry about the delayed items because we will
1768 * deal with them in create_pending_snapshot(), which is the
1769 * core function of the snapshot creation.
1771 ret
= create_pending_snapshots(trans
, root
->fs_info
);
1773 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1774 goto cleanup_transaction
;
1778 * We insert the dir indexes of the snapshots and update the inode
1779 * of the snapshots' parents after the snapshot creation, so there
1780 * are some delayed items which are not dealt with. Now deal with
1783 * We needn't worry that this operation will corrupt the snapshots,
1784 * because all the tree which are snapshoted will be forced to COW
1785 * the nodes and leaves.
1787 ret
= btrfs_run_delayed_items(trans
, root
);
1789 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1790 goto cleanup_transaction
;
1793 ret
= btrfs_run_delayed_refs(trans
, root
, (unsigned long)-1);
1795 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1796 goto cleanup_transaction
;
1800 * make sure none of the code above managed to slip in a
1803 btrfs_assert_delayed_root_empty(root
);
1805 WARN_ON(cur_trans
!= trans
->transaction
);
1807 /* btrfs_commit_tree_roots is responsible for getting the
1808 * various roots consistent with each other. Every pointer
1809 * in the tree of tree roots has to point to the most up to date
1810 * root for every subvolume and other tree. So, we have to keep
1811 * the tree logging code from jumping in and changing any
1814 * At this point in the commit, there can't be any tree-log
1815 * writers, but a little lower down we drop the trans mutex
1816 * and let new people in. By holding the tree_log_mutex
1817 * from now until after the super is written, we avoid races
1818 * with the tree-log code.
1820 mutex_lock(&root
->fs_info
->tree_log_mutex
);
1822 ret
= commit_fs_roots(trans
, root
);
1824 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1825 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1826 goto cleanup_transaction
;
1830 * Since the transaction is done, we should set the inode map cache flag
1831 * before any other comming transaction.
1833 if (btrfs_test_opt(root
, CHANGE_INODE_CACHE
))
1834 btrfs_set_opt(root
->fs_info
->mount_opt
, INODE_MAP_CACHE
);
1836 btrfs_clear_opt(root
->fs_info
->mount_opt
, INODE_MAP_CACHE
);
1838 /* commit_fs_roots gets rid of all the tree log roots, it is now
1839 * safe to free the root of tree log roots
1841 btrfs_free_log_root_tree(trans
, root
->fs_info
);
1843 ret
= commit_cowonly_roots(trans
, root
);
1845 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1846 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1847 goto cleanup_transaction
;
1851 * The tasks which save the space cache and inode cache may also
1852 * update ->aborted, check it.
1854 if (unlikely(ACCESS_ONCE(cur_trans
->aborted
))) {
1855 ret
= cur_trans
->aborted
;
1856 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1857 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1858 goto cleanup_transaction
;
1861 btrfs_prepare_extent_commit(trans
, root
);
1863 cur_trans
= root
->fs_info
->running_transaction
;
1865 btrfs_set_root_node(&root
->fs_info
->tree_root
->root_item
,
1866 root
->fs_info
->tree_root
->node
);
1867 switch_commit_root(root
->fs_info
->tree_root
);
1869 btrfs_set_root_node(&root
->fs_info
->chunk_root
->root_item
,
1870 root
->fs_info
->chunk_root
->node
);
1871 switch_commit_root(root
->fs_info
->chunk_root
);
1873 assert_qgroups_uptodate(trans
);
1874 update_super_roots(root
);
1876 btrfs_set_super_log_root(root
->fs_info
->super_copy
, 0);
1877 btrfs_set_super_log_root_level(root
->fs_info
->super_copy
, 0);
1878 memcpy(root
->fs_info
->super_for_commit
, root
->fs_info
->super_copy
,
1879 sizeof(*root
->fs_info
->super_copy
));
1881 spin_lock(&root
->fs_info
->trans_lock
);
1882 cur_trans
->state
= TRANS_STATE_UNBLOCKED
;
1883 root
->fs_info
->running_transaction
= NULL
;
1884 spin_unlock(&root
->fs_info
->trans_lock
);
1885 mutex_unlock(&root
->fs_info
->reloc_mutex
);
1887 wake_up(&root
->fs_info
->transaction_wait
);
1889 ret
= btrfs_write_and_wait_transaction(trans
, root
);
1891 btrfs_error(root
->fs_info
, ret
,
1892 "Error while writing out transaction");
1893 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1894 goto cleanup_transaction
;
1897 ret
= write_ctree_super(trans
, root
, 0);
1899 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1900 goto cleanup_transaction
;
1904 * the super is written, we can safely allow the tree-loggers
1905 * to go about their business
1907 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
1909 btrfs_finish_extent_commit(trans
, root
);
1911 root
->fs_info
->last_trans_committed
= cur_trans
->transid
;
1913 * We needn't acquire the lock here because there is no other task
1914 * which can change it.
1916 cur_trans
->state
= TRANS_STATE_COMPLETED
;
1917 wake_up(&cur_trans
->commit_wait
);
1919 spin_lock(&root
->fs_info
->trans_lock
);
1920 list_del_init(&cur_trans
->list
);
1921 spin_unlock(&root
->fs_info
->trans_lock
);
1923 btrfs_put_transaction(cur_trans
);
1924 btrfs_put_transaction(cur_trans
);
1926 if (trans
->type
& __TRANS_FREEZABLE
)
1927 sb_end_intwrite(root
->fs_info
->sb
);
1929 trace_btrfs_transaction_commit(root
);
1931 btrfs_scrub_continue(root
);
1933 if (current
->journal_info
== trans
)
1934 current
->journal_info
= NULL
;
1936 kmem_cache_free(btrfs_trans_handle_cachep
, trans
);
1938 if (current
!= root
->fs_info
->transaction_kthread
)
1939 btrfs_run_delayed_iputs(root
);
1943 cleanup_transaction
:
1944 btrfs_trans_release_metadata(trans
, root
);
1945 trans
->block_rsv
= NULL
;
1946 if (trans
->qgroup_reserved
) {
1947 btrfs_qgroup_free(root
, trans
->qgroup_reserved
);
1948 trans
->qgroup_reserved
= 0;
1950 btrfs_warn(root
->fs_info
, "Skipping commit of aborted transaction.");
1951 if (current
->journal_info
== trans
)
1952 current
->journal_info
= NULL
;
1953 cleanup_transaction(trans
, root
, ret
);
1959 * return < 0 if error
1960 * 0 if there are no more dead_roots at the time of call
1961 * 1 there are more to be processed, call me again
1963 * The return value indicates there are certainly more snapshots to delete, but
1964 * if there comes a new one during processing, it may return 0. We don't mind,
1965 * because btrfs_commit_super will poke cleaner thread and it will process it a
1966 * few seconds later.
1968 int btrfs_clean_one_deleted_snapshot(struct btrfs_root
*root
)
1971 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
1973 spin_lock(&fs_info
->trans_lock
);
1974 if (list_empty(&fs_info
->dead_roots
)) {
1975 spin_unlock(&fs_info
->trans_lock
);
1978 root
= list_first_entry(&fs_info
->dead_roots
,
1979 struct btrfs_root
, root_list
);
1981 * Make sure root is not involved in send,
1982 * if we fail with first root, we return
1983 * directly rather than continue.
1985 spin_lock(&root
->root_item_lock
);
1986 if (root
->send_in_progress
) {
1987 spin_unlock(&fs_info
->trans_lock
);
1988 spin_unlock(&root
->root_item_lock
);
1991 spin_unlock(&root
->root_item_lock
);
1993 list_del_init(&root
->root_list
);
1994 spin_unlock(&fs_info
->trans_lock
);
1996 pr_debug("BTRFS: cleaner removing %llu\n", root
->objectid
);
1998 btrfs_kill_all_delayed_nodes(root
);
2000 if (btrfs_header_backref_rev(root
->node
) <
2001 BTRFS_MIXED_BACKREF_REV
)
2002 ret
= btrfs_drop_snapshot(root
, NULL
, 0, 0);
2004 ret
= btrfs_drop_snapshot(root
, NULL
, 1, 0);
2006 * If we encounter a transaction abort during snapshot cleaning, we
2007 * don't want to crash here
2009 return (ret
< 0) ? 0 : 1;