powerpc/powernv: Report size of OPAL memcons log
[linux/fpc-iii.git] / arch / powerpc / platforms / cell / spu_base.c
blob96c2b8a406303194737962905330c0a7a3900944
1 /*
2 * Low-level SPU handling
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #undef DEBUG
25 #include <linux/interrupt.h>
26 #include <linux/list.h>
27 #include <linux/init.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/wait.h>
31 #include <linux/mm.h>
32 #include <linux/io.h>
33 #include <linux/mutex.h>
34 #include <linux/linux_logo.h>
35 #include <linux/syscore_ops.h>
36 #include <asm/spu.h>
37 #include <asm/spu_priv1.h>
38 #include <asm/spu_csa.h>
39 #include <asm/xmon.h>
40 #include <asm/prom.h>
41 #include <asm/kexec.h>
43 const struct spu_management_ops *spu_management_ops;
44 EXPORT_SYMBOL_GPL(spu_management_ops);
46 const struct spu_priv1_ops *spu_priv1_ops;
47 EXPORT_SYMBOL_GPL(spu_priv1_ops);
49 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
50 EXPORT_SYMBOL_GPL(cbe_spu_info);
53 * The spufs fault-handling code needs to call force_sig_info to raise signals
54 * on DMA errors. Export it here to avoid general kernel-wide access to this
55 * function
57 EXPORT_SYMBOL_GPL(force_sig_info);
60 * Protects cbe_spu_info and spu->number.
62 static DEFINE_SPINLOCK(spu_lock);
65 * List of all spus in the system.
67 * This list is iterated by callers from irq context and callers that
68 * want to sleep. Thus modifications need to be done with both
69 * spu_full_list_lock and spu_full_list_mutex held, while iterating
70 * through it requires either of these locks.
72 * In addition spu_full_list_lock protects all assignments to
73 * spu->mm.
75 static LIST_HEAD(spu_full_list);
76 static DEFINE_SPINLOCK(spu_full_list_lock);
77 static DEFINE_MUTEX(spu_full_list_mutex);
79 void spu_invalidate_slbs(struct spu *spu)
81 struct spu_priv2 __iomem *priv2 = spu->priv2;
82 unsigned long flags;
84 spin_lock_irqsave(&spu->register_lock, flags);
85 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
86 out_be64(&priv2->slb_invalidate_all_W, 0UL);
87 spin_unlock_irqrestore(&spu->register_lock, flags);
89 EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
91 /* This is called by the MM core when a segment size is changed, to
92 * request a flush of all the SPEs using a given mm
94 void spu_flush_all_slbs(struct mm_struct *mm)
96 struct spu *spu;
97 unsigned long flags;
99 spin_lock_irqsave(&spu_full_list_lock, flags);
100 list_for_each_entry(spu, &spu_full_list, full_list) {
101 if (spu->mm == mm)
102 spu_invalidate_slbs(spu);
104 spin_unlock_irqrestore(&spu_full_list_lock, flags);
107 /* The hack below stinks... try to do something better one of
108 * these days... Does it even work properly with NR_CPUS == 1 ?
110 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
112 int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
114 /* Global TLBIE broadcast required with SPEs. */
115 bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
118 void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
120 unsigned long flags;
122 spin_lock_irqsave(&spu_full_list_lock, flags);
123 spu->mm = mm;
124 spin_unlock_irqrestore(&spu_full_list_lock, flags);
125 if (mm)
126 mm_needs_global_tlbie(mm);
128 EXPORT_SYMBOL_GPL(spu_associate_mm);
130 int spu_64k_pages_available(void)
132 return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
134 EXPORT_SYMBOL_GPL(spu_64k_pages_available);
136 static void spu_restart_dma(struct spu *spu)
138 struct spu_priv2 __iomem *priv2 = spu->priv2;
140 if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
141 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
142 else {
143 set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
144 mb();
148 static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb)
150 struct spu_priv2 __iomem *priv2 = spu->priv2;
152 pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
153 __func__, slbe, slb->vsid, slb->esid);
155 out_be64(&priv2->slb_index_W, slbe);
156 /* set invalid before writing vsid */
157 out_be64(&priv2->slb_esid_RW, 0);
158 /* now it's safe to write the vsid */
159 out_be64(&priv2->slb_vsid_RW, slb->vsid);
160 /* setting the new esid makes the entry valid again */
161 out_be64(&priv2->slb_esid_RW, slb->esid);
164 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
166 struct copro_slb slb;
167 int ret;
169 ret = copro_calculate_slb(spu->mm, ea, &slb);
170 if (ret)
171 return ret;
173 spu_load_slb(spu, spu->slb_replace, &slb);
175 spu->slb_replace++;
176 if (spu->slb_replace >= 8)
177 spu->slb_replace = 0;
179 spu_restart_dma(spu);
180 spu->stats.slb_flt++;
181 return 0;
184 extern int hash_page(unsigned long ea, unsigned long access,
185 unsigned long trap, unsigned long dsisr); //XXX
186 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
188 int ret;
190 pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
193 * Handle kernel space hash faults immediately. User hash
194 * faults need to be deferred to process context.
196 if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
197 (REGION_ID(ea) != USER_REGION_ID)) {
199 spin_unlock(&spu->register_lock);
200 ret = hash_page(ea, _PAGE_PRESENT | _PAGE_READ, 0x300, dsisr);
201 spin_lock(&spu->register_lock);
203 if (!ret) {
204 spu_restart_dma(spu);
205 return 0;
209 spu->class_1_dar = ea;
210 spu->class_1_dsisr = dsisr;
212 spu->stop_callback(spu, 1);
214 spu->class_1_dar = 0;
215 spu->class_1_dsisr = 0;
217 return 0;
220 static void __spu_kernel_slb(void *addr, struct copro_slb *slb)
222 unsigned long ea = (unsigned long)addr;
223 u64 llp;
225 if (REGION_ID(ea) == KERNEL_REGION_ID)
226 llp = mmu_psize_defs[mmu_linear_psize].sllp;
227 else
228 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
230 slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
231 SLB_VSID_KERNEL | llp;
232 slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
236 * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
237 * address @new_addr is present.
239 static inline int __slb_present(struct copro_slb *slbs, int nr_slbs,
240 void *new_addr)
242 unsigned long ea = (unsigned long)new_addr;
243 int i;
245 for (i = 0; i < nr_slbs; i++)
246 if (!((slbs[i].esid ^ ea) & ESID_MASK))
247 return 1;
249 return 0;
253 * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
254 * need to map both the context save area, and the save/restore code.
256 * Because the lscsa and code may cross segment boundaries, we check to see
257 * if mappings are required for the start and end of each range. We currently
258 * assume that the mappings are smaller that one segment - if not, something
259 * is seriously wrong.
261 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
262 void *code, int code_size)
264 struct copro_slb slbs[4];
265 int i, nr_slbs = 0;
266 /* start and end addresses of both mappings */
267 void *addrs[] = {
268 lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
269 code, code + code_size - 1
272 /* check the set of addresses, and create a new entry in the slbs array
273 * if there isn't already a SLB for that address */
274 for (i = 0; i < ARRAY_SIZE(addrs); i++) {
275 if (__slb_present(slbs, nr_slbs, addrs[i]))
276 continue;
278 __spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
279 nr_slbs++;
282 spin_lock_irq(&spu->register_lock);
283 /* Add the set of SLBs */
284 for (i = 0; i < nr_slbs; i++)
285 spu_load_slb(spu, i, &slbs[i]);
286 spin_unlock_irq(&spu->register_lock);
288 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
290 static irqreturn_t
291 spu_irq_class_0(int irq, void *data)
293 struct spu *spu;
294 unsigned long stat, mask;
296 spu = data;
298 spin_lock(&spu->register_lock);
299 mask = spu_int_mask_get(spu, 0);
300 stat = spu_int_stat_get(spu, 0) & mask;
302 spu->class_0_pending |= stat;
303 spu->class_0_dar = spu_mfc_dar_get(spu);
304 spu->stop_callback(spu, 0);
305 spu->class_0_pending = 0;
306 spu->class_0_dar = 0;
308 spu_int_stat_clear(spu, 0, stat);
309 spin_unlock(&spu->register_lock);
311 return IRQ_HANDLED;
314 static irqreturn_t
315 spu_irq_class_1(int irq, void *data)
317 struct spu *spu;
318 unsigned long stat, mask, dar, dsisr;
320 spu = data;
322 /* atomically read & clear class1 status. */
323 spin_lock(&spu->register_lock);
324 mask = spu_int_mask_get(spu, 1);
325 stat = spu_int_stat_get(spu, 1) & mask;
326 dar = spu_mfc_dar_get(spu);
327 dsisr = spu_mfc_dsisr_get(spu);
328 if (stat & CLASS1_STORAGE_FAULT_INTR)
329 spu_mfc_dsisr_set(spu, 0ul);
330 spu_int_stat_clear(spu, 1, stat);
332 pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
333 dar, dsisr);
335 if (stat & CLASS1_SEGMENT_FAULT_INTR)
336 __spu_trap_data_seg(spu, dar);
338 if (stat & CLASS1_STORAGE_FAULT_INTR)
339 __spu_trap_data_map(spu, dar, dsisr);
341 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR)
344 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR)
347 spu->class_1_dsisr = 0;
348 spu->class_1_dar = 0;
350 spin_unlock(&spu->register_lock);
352 return stat ? IRQ_HANDLED : IRQ_NONE;
355 static irqreturn_t
356 spu_irq_class_2(int irq, void *data)
358 struct spu *spu;
359 unsigned long stat;
360 unsigned long mask;
361 const int mailbox_intrs =
362 CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
364 spu = data;
365 spin_lock(&spu->register_lock);
366 stat = spu_int_stat_get(spu, 2);
367 mask = spu_int_mask_get(spu, 2);
368 /* ignore interrupts we're not waiting for */
369 stat &= mask;
370 /* mailbox interrupts are level triggered. mask them now before
371 * acknowledging */
372 if (stat & mailbox_intrs)
373 spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
374 /* acknowledge all interrupts before the callbacks */
375 spu_int_stat_clear(spu, 2, stat);
377 pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
379 if (stat & CLASS2_MAILBOX_INTR)
380 spu->ibox_callback(spu);
382 if (stat & CLASS2_SPU_STOP_INTR)
383 spu->stop_callback(spu, 2);
385 if (stat & CLASS2_SPU_HALT_INTR)
386 spu->stop_callback(spu, 2);
388 if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
389 spu->mfc_callback(spu);
391 if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
392 spu->wbox_callback(spu);
394 spu->stats.class2_intr++;
396 spin_unlock(&spu->register_lock);
398 return stat ? IRQ_HANDLED : IRQ_NONE;
401 static int spu_request_irqs(struct spu *spu)
403 int ret = 0;
405 if (spu->irqs[0]) {
406 snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
407 spu->number);
408 ret = request_irq(spu->irqs[0], spu_irq_class_0,
409 0, spu->irq_c0, spu);
410 if (ret)
411 goto bail0;
413 if (spu->irqs[1]) {
414 snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
415 spu->number);
416 ret = request_irq(spu->irqs[1], spu_irq_class_1,
417 0, spu->irq_c1, spu);
418 if (ret)
419 goto bail1;
421 if (spu->irqs[2]) {
422 snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
423 spu->number);
424 ret = request_irq(spu->irqs[2], spu_irq_class_2,
425 0, spu->irq_c2, spu);
426 if (ret)
427 goto bail2;
429 return 0;
431 bail2:
432 if (spu->irqs[1])
433 free_irq(spu->irqs[1], spu);
434 bail1:
435 if (spu->irqs[0])
436 free_irq(spu->irqs[0], spu);
437 bail0:
438 return ret;
441 static void spu_free_irqs(struct spu *spu)
443 if (spu->irqs[0])
444 free_irq(spu->irqs[0], spu);
445 if (spu->irqs[1])
446 free_irq(spu->irqs[1], spu);
447 if (spu->irqs[2])
448 free_irq(spu->irqs[2], spu);
451 void spu_init_channels(struct spu *spu)
453 static const struct {
454 unsigned channel;
455 unsigned count;
456 } zero_list[] = {
457 { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
458 { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
459 }, count_list[] = {
460 { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
461 { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
462 { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
464 struct spu_priv2 __iomem *priv2;
465 int i;
467 priv2 = spu->priv2;
469 /* initialize all channel data to zero */
470 for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
471 int count;
473 out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
474 for (count = 0; count < zero_list[i].count; count++)
475 out_be64(&priv2->spu_chnldata_RW, 0);
478 /* initialize channel counts to meaningful values */
479 for (i = 0; i < ARRAY_SIZE(count_list); i++) {
480 out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
481 out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
484 EXPORT_SYMBOL_GPL(spu_init_channels);
486 static struct bus_type spu_subsys = {
487 .name = "spu",
488 .dev_name = "spu",
491 int spu_add_dev_attr(struct device_attribute *attr)
493 struct spu *spu;
495 mutex_lock(&spu_full_list_mutex);
496 list_for_each_entry(spu, &spu_full_list, full_list)
497 device_create_file(&spu->dev, attr);
498 mutex_unlock(&spu_full_list_mutex);
500 return 0;
502 EXPORT_SYMBOL_GPL(spu_add_dev_attr);
504 int spu_add_dev_attr_group(struct attribute_group *attrs)
506 struct spu *spu;
507 int rc = 0;
509 mutex_lock(&spu_full_list_mutex);
510 list_for_each_entry(spu, &spu_full_list, full_list) {
511 rc = sysfs_create_group(&spu->dev.kobj, attrs);
513 /* we're in trouble here, but try unwinding anyway */
514 if (rc) {
515 printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
516 __func__, attrs->name);
518 list_for_each_entry_continue_reverse(spu,
519 &spu_full_list, full_list)
520 sysfs_remove_group(&spu->dev.kobj, attrs);
521 break;
525 mutex_unlock(&spu_full_list_mutex);
527 return rc;
529 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group);
532 void spu_remove_dev_attr(struct device_attribute *attr)
534 struct spu *spu;
536 mutex_lock(&spu_full_list_mutex);
537 list_for_each_entry(spu, &spu_full_list, full_list)
538 device_remove_file(&spu->dev, attr);
539 mutex_unlock(&spu_full_list_mutex);
541 EXPORT_SYMBOL_GPL(spu_remove_dev_attr);
543 void spu_remove_dev_attr_group(struct attribute_group *attrs)
545 struct spu *spu;
547 mutex_lock(&spu_full_list_mutex);
548 list_for_each_entry(spu, &spu_full_list, full_list)
549 sysfs_remove_group(&spu->dev.kobj, attrs);
550 mutex_unlock(&spu_full_list_mutex);
552 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group);
554 static int spu_create_dev(struct spu *spu)
556 int ret;
558 spu->dev.id = spu->number;
559 spu->dev.bus = &spu_subsys;
560 ret = device_register(&spu->dev);
561 if (ret) {
562 printk(KERN_ERR "Can't register SPU %d with sysfs\n",
563 spu->number);
564 return ret;
567 sysfs_add_device_to_node(&spu->dev, spu->node);
569 return 0;
572 static int __init create_spu(void *data)
574 struct spu *spu;
575 int ret;
576 static int number;
577 unsigned long flags;
579 ret = -ENOMEM;
580 spu = kzalloc(sizeof (*spu), GFP_KERNEL);
581 if (!spu)
582 goto out;
584 spu->alloc_state = SPU_FREE;
586 spin_lock_init(&spu->register_lock);
587 spin_lock(&spu_lock);
588 spu->number = number++;
589 spin_unlock(&spu_lock);
591 ret = spu_create_spu(spu, data);
593 if (ret)
594 goto out_free;
596 spu_mfc_sdr_setup(spu);
597 spu_mfc_sr1_set(spu, 0x33);
598 ret = spu_request_irqs(spu);
599 if (ret)
600 goto out_destroy;
602 ret = spu_create_dev(spu);
603 if (ret)
604 goto out_free_irqs;
606 mutex_lock(&cbe_spu_info[spu->node].list_mutex);
607 list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
608 cbe_spu_info[spu->node].n_spus++;
609 mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
611 mutex_lock(&spu_full_list_mutex);
612 spin_lock_irqsave(&spu_full_list_lock, flags);
613 list_add(&spu->full_list, &spu_full_list);
614 spin_unlock_irqrestore(&spu_full_list_lock, flags);
615 mutex_unlock(&spu_full_list_mutex);
617 spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
618 spu->stats.tstamp = ktime_get_ns();
620 INIT_LIST_HEAD(&spu->aff_list);
622 goto out;
624 out_free_irqs:
625 spu_free_irqs(spu);
626 out_destroy:
627 spu_destroy_spu(spu);
628 out_free:
629 kfree(spu);
630 out:
631 return ret;
634 static const char *spu_state_names[] = {
635 "user", "system", "iowait", "idle"
638 static unsigned long long spu_acct_time(struct spu *spu,
639 enum spu_utilization_state state)
641 unsigned long long time = spu->stats.times[state];
644 * If the spu is idle or the context is stopped, utilization
645 * statistics are not updated. Apply the time delta from the
646 * last recorded state of the spu.
648 if (spu->stats.util_state == state)
649 time += ktime_get_ns() - spu->stats.tstamp;
651 return time / NSEC_PER_MSEC;
655 static ssize_t spu_stat_show(struct device *dev,
656 struct device_attribute *attr, char *buf)
658 struct spu *spu = container_of(dev, struct spu, dev);
660 return sprintf(buf, "%s %llu %llu %llu %llu "
661 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
662 spu_state_names[spu->stats.util_state],
663 spu_acct_time(spu, SPU_UTIL_USER),
664 spu_acct_time(spu, SPU_UTIL_SYSTEM),
665 spu_acct_time(spu, SPU_UTIL_IOWAIT),
666 spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
667 spu->stats.vol_ctx_switch,
668 spu->stats.invol_ctx_switch,
669 spu->stats.slb_flt,
670 spu->stats.hash_flt,
671 spu->stats.min_flt,
672 spu->stats.maj_flt,
673 spu->stats.class2_intr,
674 spu->stats.libassist);
677 static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL);
679 #ifdef CONFIG_KEXEC_CORE
681 struct crash_spu_info {
682 struct spu *spu;
683 u32 saved_spu_runcntl_RW;
684 u32 saved_spu_status_R;
685 u32 saved_spu_npc_RW;
686 u64 saved_mfc_sr1_RW;
687 u64 saved_mfc_dar;
688 u64 saved_mfc_dsisr;
691 #define CRASH_NUM_SPUS 16 /* Enough for current hardware */
692 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
694 static void crash_kexec_stop_spus(void)
696 struct spu *spu;
697 int i;
698 u64 tmp;
700 for (i = 0; i < CRASH_NUM_SPUS; i++) {
701 if (!crash_spu_info[i].spu)
702 continue;
704 spu = crash_spu_info[i].spu;
706 crash_spu_info[i].saved_spu_runcntl_RW =
707 in_be32(&spu->problem->spu_runcntl_RW);
708 crash_spu_info[i].saved_spu_status_R =
709 in_be32(&spu->problem->spu_status_R);
710 crash_spu_info[i].saved_spu_npc_RW =
711 in_be32(&spu->problem->spu_npc_RW);
713 crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu);
714 crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu);
715 tmp = spu_mfc_sr1_get(spu);
716 crash_spu_info[i].saved_mfc_sr1_RW = tmp;
718 tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
719 spu_mfc_sr1_set(spu, tmp);
721 __delay(200);
725 static void crash_register_spus(struct list_head *list)
727 struct spu *spu;
728 int ret;
730 list_for_each_entry(spu, list, full_list) {
731 if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
732 continue;
734 crash_spu_info[spu->number].spu = spu;
737 ret = crash_shutdown_register(&crash_kexec_stop_spus);
738 if (ret)
739 printk(KERN_ERR "Could not register SPU crash handler");
742 #else
743 static inline void crash_register_spus(struct list_head *list)
746 #endif
748 static void spu_shutdown(void)
750 struct spu *spu;
752 mutex_lock(&spu_full_list_mutex);
753 list_for_each_entry(spu, &spu_full_list, full_list) {
754 spu_free_irqs(spu);
755 spu_destroy_spu(spu);
757 mutex_unlock(&spu_full_list_mutex);
760 static struct syscore_ops spu_syscore_ops = {
761 .shutdown = spu_shutdown,
764 static int __init init_spu_base(void)
766 int i, ret = 0;
768 for (i = 0; i < MAX_NUMNODES; i++) {
769 mutex_init(&cbe_spu_info[i].list_mutex);
770 INIT_LIST_HEAD(&cbe_spu_info[i].spus);
773 if (!spu_management_ops)
774 goto out;
776 /* create system subsystem for spus */
777 ret = subsys_system_register(&spu_subsys, NULL);
778 if (ret)
779 goto out;
781 ret = spu_enumerate_spus(create_spu);
783 if (ret < 0) {
784 printk(KERN_WARNING "%s: Error initializing spus\n",
785 __func__);
786 goto out_unregister_subsys;
789 if (ret > 0)
790 fb_append_extra_logo(&logo_spe_clut224, ret);
792 mutex_lock(&spu_full_list_mutex);
793 xmon_register_spus(&spu_full_list);
794 crash_register_spus(&spu_full_list);
795 mutex_unlock(&spu_full_list_mutex);
796 spu_add_dev_attr(&dev_attr_stat);
797 register_syscore_ops(&spu_syscore_ops);
799 spu_init_affinity();
801 return 0;
803 out_unregister_subsys:
804 bus_unregister(&spu_subsys);
805 out:
806 return ret;
808 device_initcall(init_spu_base);