4 * Copyright (C) 1994-1999 Linus Torvalds
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
12 #include <linux/export.h>
13 #include <linux/compiler.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
43 * FIXME: remove all knowledge of the buffer layer from the core VM
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * Shared mappings now work. 15.8.1995 Bruno.
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
64 * ->i_mmap_mutex (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 * ->lock_page (access_process_vm)
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
88 * ->anon_vma.lock (vma_adjust)
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 static void page_cache_tree_delete(struct address_space
*mapping
,
112 struct page
*page
, void *shadow
)
114 struct radix_tree_node
*node
;
120 VM_BUG_ON(!PageLocked(page
));
122 __radix_tree_lookup(&mapping
->page_tree
, page
->index
, &node
, &slot
);
125 mapping
->nrshadows
++;
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
137 /* Clear direct pointer tags in root node */
138 mapping
->page_tree
.gfp_mask
&= __GFP_BITS_MASK
;
139 radix_tree_replace_slot(slot
, shadow
);
143 /* Clear tree tags for the removed page */
145 offset
= index
& RADIX_TREE_MAP_MASK
;
146 for (tag
= 0; tag
< RADIX_TREE_MAX_TAGS
; tag
++) {
147 if (test_bit(offset
, node
->tags
[tag
]))
148 radix_tree_tag_clear(&mapping
->page_tree
, index
, tag
);
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot
, shadow
);
153 workingset_node_pages_dec(node
);
155 workingset_node_shadows_inc(node
);
157 if (__radix_tree_delete_node(&mapping
->page_tree
, node
))
161 * Track node that only contains shadow entries.
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
167 if (!workingset_node_pages(node
) &&
168 list_empty(&node
->private_list
)) {
169 node
->private_data
= mapping
;
170 list_lru_add(&workingset_shadow_nodes
, &node
->private_list
);
175 * Delete a page from the page cache and free it. Caller has to make
176 * sure the page is locked and that nobody else uses it - or that usage
177 * is safe. The caller must hold the mapping's tree_lock.
179 void __delete_from_page_cache(struct page
*page
, void *shadow
)
181 struct address_space
*mapping
= page
->mapping
;
183 trace_mm_filemap_delete_from_page_cache(page
);
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
189 if (PageUptodate(page
) && PageMappedToDisk(page
))
190 cleancache_put_page(page
);
192 cleancache_invalidate_page(mapping
, page
);
194 page_cache_tree_delete(mapping
, page
, shadow
);
196 page
->mapping
= NULL
;
197 /* Leave page->index set: truncation lookup relies upon it */
199 __dec_zone_page_state(page
, NR_FILE_PAGES
);
200 if (PageSwapBacked(page
))
201 __dec_zone_page_state(page
, NR_SHMEM
);
202 BUG_ON(page_mapped(page
));
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
211 if (PageDirty(page
) && mapping_cap_account_dirty(mapping
)) {
212 dec_zone_page_state(page
, NR_FILE_DIRTY
);
213 dec_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
225 void delete_from_page_cache(struct page
*page
)
227 struct address_space
*mapping
= page
->mapping
;
228 void (*freepage
)(struct page
*);
230 BUG_ON(!PageLocked(page
));
232 freepage
= mapping
->a_ops
->freepage
;
233 spin_lock_irq(&mapping
->tree_lock
);
234 __delete_from_page_cache(page
, NULL
);
235 spin_unlock_irq(&mapping
->tree_lock
);
236 mem_cgroup_uncharge_cache_page(page
);
240 page_cache_release(page
);
242 EXPORT_SYMBOL(delete_from_page_cache
);
244 static int sleep_on_page(void *word
)
250 static int sleep_on_page_killable(void *word
)
253 return fatal_signal_pending(current
) ? -EINTR
: 0;
256 static int filemap_check_errors(struct address_space
*mapping
)
259 /* Check for outstanding write errors */
260 if (test_bit(AS_ENOSPC
, &mapping
->flags
) &&
261 test_and_clear_bit(AS_ENOSPC
, &mapping
->flags
))
263 if (test_bit(AS_EIO
, &mapping
->flags
) &&
264 test_and_clear_bit(AS_EIO
, &mapping
->flags
))
270 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
271 * @mapping: address space structure to write
272 * @start: offset in bytes where the range starts
273 * @end: offset in bytes where the range ends (inclusive)
274 * @sync_mode: enable synchronous operation
276 * Start writeback against all of a mapping's dirty pages that lie
277 * within the byte offsets <start, end> inclusive.
279 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
280 * opposed to a regular memory cleansing writeback. The difference between
281 * these two operations is that if a dirty page/buffer is encountered, it must
282 * be waited upon, and not just skipped over.
284 int __filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
285 loff_t end
, int sync_mode
)
288 struct writeback_control wbc
= {
289 .sync_mode
= sync_mode
,
290 .nr_to_write
= LONG_MAX
,
291 .range_start
= start
,
295 if (!mapping_cap_writeback_dirty(mapping
))
298 ret
= do_writepages(mapping
, &wbc
);
302 static inline int __filemap_fdatawrite(struct address_space
*mapping
,
305 return __filemap_fdatawrite_range(mapping
, 0, LLONG_MAX
, sync_mode
);
308 int filemap_fdatawrite(struct address_space
*mapping
)
310 return __filemap_fdatawrite(mapping
, WB_SYNC_ALL
);
312 EXPORT_SYMBOL(filemap_fdatawrite
);
314 int filemap_fdatawrite_range(struct address_space
*mapping
, loff_t start
,
317 return __filemap_fdatawrite_range(mapping
, start
, end
, WB_SYNC_ALL
);
319 EXPORT_SYMBOL(filemap_fdatawrite_range
);
322 * filemap_flush - mostly a non-blocking flush
323 * @mapping: target address_space
325 * This is a mostly non-blocking flush. Not suitable for data-integrity
326 * purposes - I/O may not be started against all dirty pages.
328 int filemap_flush(struct address_space
*mapping
)
330 return __filemap_fdatawrite(mapping
, WB_SYNC_NONE
);
332 EXPORT_SYMBOL(filemap_flush
);
335 * filemap_fdatawait_range - wait for writeback to complete
336 * @mapping: address space structure to wait for
337 * @start_byte: offset in bytes where the range starts
338 * @end_byte: offset in bytes where the range ends (inclusive)
340 * Walk the list of under-writeback pages of the given address space
341 * in the given range and wait for all of them.
343 int filemap_fdatawait_range(struct address_space
*mapping
, loff_t start_byte
,
346 pgoff_t index
= start_byte
>> PAGE_CACHE_SHIFT
;
347 pgoff_t end
= end_byte
>> PAGE_CACHE_SHIFT
;
352 if (end_byte
< start_byte
)
355 pagevec_init(&pvec
, 0);
356 while ((index
<= end
) &&
357 (nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
358 PAGECACHE_TAG_WRITEBACK
,
359 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1)) != 0) {
362 for (i
= 0; i
< nr_pages
; i
++) {
363 struct page
*page
= pvec
.pages
[i
];
365 /* until radix tree lookup accepts end_index */
366 if (page
->index
> end
)
369 wait_on_page_writeback(page
);
370 if (TestClearPageError(page
))
373 pagevec_release(&pvec
);
377 ret2
= filemap_check_errors(mapping
);
383 EXPORT_SYMBOL(filemap_fdatawait_range
);
386 * filemap_fdatawait - wait for all under-writeback pages to complete
387 * @mapping: address space structure to wait for
389 * Walk the list of under-writeback pages of the given address space
390 * and wait for all of them.
392 int filemap_fdatawait(struct address_space
*mapping
)
394 loff_t i_size
= i_size_read(mapping
->host
);
399 return filemap_fdatawait_range(mapping
, 0, i_size
- 1);
401 EXPORT_SYMBOL(filemap_fdatawait
);
403 int filemap_write_and_wait(struct address_space
*mapping
)
407 if (mapping
->nrpages
) {
408 err
= filemap_fdatawrite(mapping
);
410 * Even if the above returned error, the pages may be
411 * written partially (e.g. -ENOSPC), so we wait for it.
412 * But the -EIO is special case, it may indicate the worst
413 * thing (e.g. bug) happened, so we avoid waiting for it.
416 int err2
= filemap_fdatawait(mapping
);
421 err
= filemap_check_errors(mapping
);
425 EXPORT_SYMBOL(filemap_write_and_wait
);
428 * filemap_write_and_wait_range - write out & wait on a file range
429 * @mapping: the address_space for the pages
430 * @lstart: offset in bytes where the range starts
431 * @lend: offset in bytes where the range ends (inclusive)
433 * Write out and wait upon file offsets lstart->lend, inclusive.
435 * Note that `lend' is inclusive (describes the last byte to be written) so
436 * that this function can be used to write to the very end-of-file (end = -1).
438 int filemap_write_and_wait_range(struct address_space
*mapping
,
439 loff_t lstart
, loff_t lend
)
443 if (mapping
->nrpages
) {
444 err
= __filemap_fdatawrite_range(mapping
, lstart
, lend
,
446 /* See comment of filemap_write_and_wait() */
448 int err2
= filemap_fdatawait_range(mapping
,
454 err
= filemap_check_errors(mapping
);
458 EXPORT_SYMBOL(filemap_write_and_wait_range
);
461 * replace_page_cache_page - replace a pagecache page with a new one
462 * @old: page to be replaced
463 * @new: page to replace with
464 * @gfp_mask: allocation mode
466 * This function replaces a page in the pagecache with a new one. On
467 * success it acquires the pagecache reference for the new page and
468 * drops it for the old page. Both the old and new pages must be
469 * locked. This function does not add the new page to the LRU, the
470 * caller must do that.
472 * The remove + add is atomic. The only way this function can fail is
473 * memory allocation failure.
475 int replace_page_cache_page(struct page
*old
, struct page
*new, gfp_t gfp_mask
)
479 VM_BUG_ON_PAGE(!PageLocked(old
), old
);
480 VM_BUG_ON_PAGE(!PageLocked(new), new);
481 VM_BUG_ON_PAGE(new->mapping
, new);
483 error
= radix_tree_preload(gfp_mask
& ~__GFP_HIGHMEM
);
485 struct address_space
*mapping
= old
->mapping
;
486 void (*freepage
)(struct page
*);
488 pgoff_t offset
= old
->index
;
489 freepage
= mapping
->a_ops
->freepage
;
492 new->mapping
= mapping
;
495 spin_lock_irq(&mapping
->tree_lock
);
496 __delete_from_page_cache(old
, NULL
);
497 error
= radix_tree_insert(&mapping
->page_tree
, offset
, new);
500 __inc_zone_page_state(new, NR_FILE_PAGES
);
501 if (PageSwapBacked(new))
502 __inc_zone_page_state(new, NR_SHMEM
);
503 spin_unlock_irq(&mapping
->tree_lock
);
504 /* mem_cgroup codes must not be called under tree_lock */
505 mem_cgroup_replace_page_cache(old
, new);
506 radix_tree_preload_end();
509 page_cache_release(old
);
514 EXPORT_SYMBOL_GPL(replace_page_cache_page
);
516 static int page_cache_tree_insert(struct address_space
*mapping
,
517 struct page
*page
, void **shadowp
)
519 struct radix_tree_node
*node
;
523 error
= __radix_tree_create(&mapping
->page_tree
, page
->index
,
530 p
= radix_tree_deref_slot_protected(slot
, &mapping
->tree_lock
);
531 if (!radix_tree_exceptional_entry(p
))
535 mapping
->nrshadows
--;
537 workingset_node_shadows_dec(node
);
539 radix_tree_replace_slot(slot
, page
);
542 workingset_node_pages_inc(node
);
544 * Don't track node that contains actual pages.
546 * Avoid acquiring the list_lru lock if already
547 * untracked. The list_empty() test is safe as
548 * node->private_list is protected by
549 * mapping->tree_lock.
551 if (!list_empty(&node
->private_list
))
552 list_lru_del(&workingset_shadow_nodes
,
553 &node
->private_list
);
558 static int __add_to_page_cache_locked(struct page
*page
,
559 struct address_space
*mapping
,
560 pgoff_t offset
, gfp_t gfp_mask
,
565 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
566 VM_BUG_ON_PAGE(PageSwapBacked(page
), page
);
568 error
= mem_cgroup_charge_file(page
, current
->mm
,
569 gfp_mask
& GFP_RECLAIM_MASK
);
573 error
= radix_tree_maybe_preload(gfp_mask
& ~__GFP_HIGHMEM
);
575 mem_cgroup_uncharge_cache_page(page
);
579 page_cache_get(page
);
580 page
->mapping
= mapping
;
581 page
->index
= offset
;
583 spin_lock_irq(&mapping
->tree_lock
);
584 error
= page_cache_tree_insert(mapping
, page
, shadowp
);
585 radix_tree_preload_end();
588 __inc_zone_page_state(page
, NR_FILE_PAGES
);
589 spin_unlock_irq(&mapping
->tree_lock
);
590 trace_mm_filemap_add_to_page_cache(page
);
593 page
->mapping
= NULL
;
594 /* Leave page->index set: truncation relies upon it */
595 spin_unlock_irq(&mapping
->tree_lock
);
596 mem_cgroup_uncharge_cache_page(page
);
597 page_cache_release(page
);
602 * add_to_page_cache_locked - add a locked page to the pagecache
604 * @mapping: the page's address_space
605 * @offset: page index
606 * @gfp_mask: page allocation mode
608 * This function is used to add a page to the pagecache. It must be locked.
609 * This function does not add the page to the LRU. The caller must do that.
611 int add_to_page_cache_locked(struct page
*page
, struct address_space
*mapping
,
612 pgoff_t offset
, gfp_t gfp_mask
)
614 return __add_to_page_cache_locked(page
, mapping
, offset
,
617 EXPORT_SYMBOL(add_to_page_cache_locked
);
619 int add_to_page_cache_lru(struct page
*page
, struct address_space
*mapping
,
620 pgoff_t offset
, gfp_t gfp_mask
)
625 __set_page_locked(page
);
626 ret
= __add_to_page_cache_locked(page
, mapping
, offset
,
629 __clear_page_locked(page
);
632 * The page might have been evicted from cache only
633 * recently, in which case it should be activated like
634 * any other repeatedly accessed page.
636 if (shadow
&& workingset_refault(shadow
)) {
638 workingset_activation(page
);
640 ClearPageActive(page
);
645 EXPORT_SYMBOL_GPL(add_to_page_cache_lru
);
648 struct page
*__page_cache_alloc(gfp_t gfp
)
653 if (cpuset_do_page_mem_spread()) {
654 unsigned int cpuset_mems_cookie
;
656 cpuset_mems_cookie
= read_mems_allowed_begin();
657 n
= cpuset_mem_spread_node();
658 page
= alloc_pages_exact_node(n
, gfp
, 0);
659 } while (!page
&& read_mems_allowed_retry(cpuset_mems_cookie
));
663 return alloc_pages(gfp
, 0);
665 EXPORT_SYMBOL(__page_cache_alloc
);
669 * In order to wait for pages to become available there must be
670 * waitqueues associated with pages. By using a hash table of
671 * waitqueues where the bucket discipline is to maintain all
672 * waiters on the same queue and wake all when any of the pages
673 * become available, and for the woken contexts to check to be
674 * sure the appropriate page became available, this saves space
675 * at a cost of "thundering herd" phenomena during rare hash
678 static wait_queue_head_t
*page_waitqueue(struct page
*page
)
680 const struct zone
*zone
= page_zone(page
);
682 return &zone
->wait_table
[hash_ptr(page
, zone
->wait_table_bits
)];
685 static inline void wake_up_page(struct page
*page
, int bit
)
687 __wake_up_bit(page_waitqueue(page
), &page
->flags
, bit
);
690 void wait_on_page_bit(struct page
*page
, int bit_nr
)
692 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
694 if (test_bit(bit_nr
, &page
->flags
))
695 __wait_on_bit(page_waitqueue(page
), &wait
, sleep_on_page
,
696 TASK_UNINTERRUPTIBLE
);
698 EXPORT_SYMBOL(wait_on_page_bit
);
700 int wait_on_page_bit_killable(struct page
*page
, int bit_nr
)
702 DEFINE_WAIT_BIT(wait
, &page
->flags
, bit_nr
);
704 if (!test_bit(bit_nr
, &page
->flags
))
707 return __wait_on_bit(page_waitqueue(page
), &wait
,
708 sleep_on_page_killable
, TASK_KILLABLE
);
712 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
713 * @page: Page defining the wait queue of interest
714 * @waiter: Waiter to add to the queue
716 * Add an arbitrary @waiter to the wait queue for the nominated @page.
718 void add_page_wait_queue(struct page
*page
, wait_queue_t
*waiter
)
720 wait_queue_head_t
*q
= page_waitqueue(page
);
723 spin_lock_irqsave(&q
->lock
, flags
);
724 __add_wait_queue(q
, waiter
);
725 spin_unlock_irqrestore(&q
->lock
, flags
);
727 EXPORT_SYMBOL_GPL(add_page_wait_queue
);
730 * unlock_page - unlock a locked page
733 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735 * mechananism between PageLocked pages and PageWriteback pages is shared.
736 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
738 * The mb is necessary to enforce ordering between the clear_bit and the read
739 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
741 void unlock_page(struct page
*page
)
743 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
744 clear_bit_unlock(PG_locked
, &page
->flags
);
745 smp_mb__after_atomic();
746 wake_up_page(page
, PG_locked
);
748 EXPORT_SYMBOL(unlock_page
);
751 * end_page_writeback - end writeback against a page
754 void end_page_writeback(struct page
*page
)
757 * TestClearPageReclaim could be used here but it is an atomic
758 * operation and overkill in this particular case. Failing to
759 * shuffle a page marked for immediate reclaim is too mild to
760 * justify taking an atomic operation penalty at the end of
761 * ever page writeback.
763 if (PageReclaim(page
)) {
764 ClearPageReclaim(page
);
765 rotate_reclaimable_page(page
);
768 if (!test_clear_page_writeback(page
))
771 smp_mb__after_atomic();
772 wake_up_page(page
, PG_writeback
);
774 EXPORT_SYMBOL(end_page_writeback
);
777 * After completing I/O on a page, call this routine to update the page
778 * flags appropriately
780 void page_endio(struct page
*page
, int rw
, int err
)
784 SetPageUptodate(page
);
786 ClearPageUptodate(page
);
790 } else { /* rw == WRITE */
794 mapping_set_error(page
->mapping
, err
);
796 end_page_writeback(page
);
799 EXPORT_SYMBOL_GPL(page_endio
);
802 * __lock_page - get a lock on the page, assuming we need to sleep to get it
803 * @page: the page to lock
805 void __lock_page(struct page
*page
)
807 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
809 __wait_on_bit_lock(page_waitqueue(page
), &wait
, sleep_on_page
,
810 TASK_UNINTERRUPTIBLE
);
812 EXPORT_SYMBOL(__lock_page
);
814 int __lock_page_killable(struct page
*page
)
816 DEFINE_WAIT_BIT(wait
, &page
->flags
, PG_locked
);
818 return __wait_on_bit_lock(page_waitqueue(page
), &wait
,
819 sleep_on_page_killable
, TASK_KILLABLE
);
821 EXPORT_SYMBOL_GPL(__lock_page_killable
);
823 int __lock_page_or_retry(struct page
*page
, struct mm_struct
*mm
,
826 if (flags
& FAULT_FLAG_ALLOW_RETRY
) {
828 * CAUTION! In this case, mmap_sem is not released
829 * even though return 0.
831 if (flags
& FAULT_FLAG_RETRY_NOWAIT
)
834 up_read(&mm
->mmap_sem
);
835 if (flags
& FAULT_FLAG_KILLABLE
)
836 wait_on_page_locked_killable(page
);
838 wait_on_page_locked(page
);
841 if (flags
& FAULT_FLAG_KILLABLE
) {
844 ret
= __lock_page_killable(page
);
846 up_read(&mm
->mmap_sem
);
856 * page_cache_next_hole - find the next hole (not-present entry)
859 * @max_scan: maximum range to search
861 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
862 * lowest indexed hole.
864 * Returns: the index of the hole if found, otherwise returns an index
865 * outside of the set specified (in which case 'return - index >=
866 * max_scan' will be true). In rare cases of index wrap-around, 0 will
869 * page_cache_next_hole may be called under rcu_read_lock. However,
870 * like radix_tree_gang_lookup, this will not atomically search a
871 * snapshot of the tree at a single point in time. For example, if a
872 * hole is created at index 5, then subsequently a hole is created at
873 * index 10, page_cache_next_hole covering both indexes may return 10
874 * if called under rcu_read_lock.
876 pgoff_t
page_cache_next_hole(struct address_space
*mapping
,
877 pgoff_t index
, unsigned long max_scan
)
881 for (i
= 0; i
< max_scan
; i
++) {
884 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
885 if (!page
|| radix_tree_exceptional_entry(page
))
894 EXPORT_SYMBOL(page_cache_next_hole
);
897 * page_cache_prev_hole - find the prev hole (not-present entry)
900 * @max_scan: maximum range to search
902 * Search backwards in the range [max(index-max_scan+1, 0), index] for
905 * Returns: the index of the hole if found, otherwise returns an index
906 * outside of the set specified (in which case 'index - return >=
907 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
910 * page_cache_prev_hole may be called under rcu_read_lock. However,
911 * like radix_tree_gang_lookup, this will not atomically search a
912 * snapshot of the tree at a single point in time. For example, if a
913 * hole is created at index 10, then subsequently a hole is created at
914 * index 5, page_cache_prev_hole covering both indexes may return 5 if
915 * called under rcu_read_lock.
917 pgoff_t
page_cache_prev_hole(struct address_space
*mapping
,
918 pgoff_t index
, unsigned long max_scan
)
922 for (i
= 0; i
< max_scan
; i
++) {
925 page
= radix_tree_lookup(&mapping
->page_tree
, index
);
926 if (!page
|| radix_tree_exceptional_entry(page
))
929 if (index
== ULONG_MAX
)
935 EXPORT_SYMBOL(page_cache_prev_hole
);
938 * find_get_entry - find and get a page cache entry
939 * @mapping: the address_space to search
940 * @offset: the page cache index
942 * Looks up the page cache slot at @mapping & @offset. If there is a
943 * page cache page, it is returned with an increased refcount.
945 * If the slot holds a shadow entry of a previously evicted page, or a
946 * swap entry from shmem/tmpfs, it is returned.
948 * Otherwise, %NULL is returned.
950 struct page
*find_get_entry(struct address_space
*mapping
, pgoff_t offset
)
958 pagep
= radix_tree_lookup_slot(&mapping
->page_tree
, offset
);
960 page
= radix_tree_deref_slot(pagep
);
963 if (radix_tree_exception(page
)) {
964 if (radix_tree_deref_retry(page
))
967 * A shadow entry of a recently evicted page,
968 * or a swap entry from shmem/tmpfs. Return
969 * it without attempting to raise page count.
973 if (!page_cache_get_speculative(page
))
977 * Has the page moved?
978 * This is part of the lockless pagecache protocol. See
979 * include/linux/pagemap.h for details.
981 if (unlikely(page
!= *pagep
)) {
982 page_cache_release(page
);
991 EXPORT_SYMBOL(find_get_entry
);
994 * find_lock_entry - locate, pin and lock a page cache entry
995 * @mapping: the address_space to search
996 * @offset: the page cache index
998 * Looks up the page cache slot at @mapping & @offset. If there is a
999 * page cache page, it is returned locked and with an increased
1002 * If the slot holds a shadow entry of a previously evicted page, or a
1003 * swap entry from shmem/tmpfs, it is returned.
1005 * Otherwise, %NULL is returned.
1007 * find_lock_entry() may sleep.
1009 struct page
*find_lock_entry(struct address_space
*mapping
, pgoff_t offset
)
1014 page
= find_get_entry(mapping
, offset
);
1015 if (page
&& !radix_tree_exception(page
)) {
1017 /* Has the page been truncated? */
1018 if (unlikely(page
->mapping
!= mapping
)) {
1020 page_cache_release(page
);
1023 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1027 EXPORT_SYMBOL(find_lock_entry
);
1030 * pagecache_get_page - find and get a page reference
1031 * @mapping: the address_space to search
1032 * @offset: the page index
1033 * @fgp_flags: PCG flags
1034 * @gfp_mask: gfp mask to use if a page is to be allocated
1036 * Looks up the page cache slot at @mapping & @offset.
1038 * PCG flags modify how the page is returned
1040 * FGP_ACCESSED: the page will be marked accessed
1041 * FGP_LOCK: Page is return locked
1042 * FGP_CREAT: If page is not present then a new page is allocated using
1043 * @gfp_mask and added to the page cache and the VM's LRU
1044 * list. The page is returned locked and with an increased
1045 * refcount. Otherwise, %NULL is returned.
1047 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1048 * if the GFP flags specified for FGP_CREAT are atomic.
1050 * If there is a page cache page, it is returned with an increased refcount.
1052 struct page
*pagecache_get_page(struct address_space
*mapping
, pgoff_t offset
,
1053 int fgp_flags
, gfp_t cache_gfp_mask
, gfp_t radix_gfp_mask
)
1058 page
= find_get_entry(mapping
, offset
);
1059 if (radix_tree_exceptional_entry(page
))
1064 if (fgp_flags
& FGP_LOCK
) {
1065 if (fgp_flags
& FGP_NOWAIT
) {
1066 if (!trylock_page(page
)) {
1067 page_cache_release(page
);
1074 /* Has the page been truncated? */
1075 if (unlikely(page
->mapping
!= mapping
)) {
1077 page_cache_release(page
);
1080 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1083 if (page
&& (fgp_flags
& FGP_ACCESSED
))
1084 mark_page_accessed(page
);
1087 if (!page
&& (fgp_flags
& FGP_CREAT
)) {
1089 if ((fgp_flags
& FGP_WRITE
) && mapping_cap_account_dirty(mapping
))
1090 cache_gfp_mask
|= __GFP_WRITE
;
1091 if (fgp_flags
& FGP_NOFS
) {
1092 cache_gfp_mask
&= ~__GFP_FS
;
1093 radix_gfp_mask
&= ~__GFP_FS
;
1096 page
= __page_cache_alloc(cache_gfp_mask
);
1100 if (WARN_ON_ONCE(!(fgp_flags
& FGP_LOCK
)))
1101 fgp_flags
|= FGP_LOCK
;
1103 /* Init accessed so avoit atomic mark_page_accessed later */
1104 if (fgp_flags
& FGP_ACCESSED
)
1105 init_page_accessed(page
);
1107 err
= add_to_page_cache_lru(page
, mapping
, offset
, radix_gfp_mask
);
1108 if (unlikely(err
)) {
1109 page_cache_release(page
);
1118 EXPORT_SYMBOL(pagecache_get_page
);
1121 * find_get_entries - gang pagecache lookup
1122 * @mapping: The address_space to search
1123 * @start: The starting page cache index
1124 * @nr_entries: The maximum number of entries
1125 * @entries: Where the resulting entries are placed
1126 * @indices: The cache indices corresponding to the entries in @entries
1128 * find_get_entries() will search for and return a group of up to
1129 * @nr_entries entries in the mapping. The entries are placed at
1130 * @entries. find_get_entries() takes a reference against any actual
1133 * The search returns a group of mapping-contiguous page cache entries
1134 * with ascending indexes. There may be holes in the indices due to
1135 * not-present pages.
1137 * Any shadow entries of evicted pages, or swap entries from
1138 * shmem/tmpfs, are included in the returned array.
1140 * find_get_entries() returns the number of pages and shadow entries
1143 unsigned find_get_entries(struct address_space
*mapping
,
1144 pgoff_t start
, unsigned int nr_entries
,
1145 struct page
**entries
, pgoff_t
*indices
)
1148 unsigned int ret
= 0;
1149 struct radix_tree_iter iter
;
1156 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1159 page
= radix_tree_deref_slot(slot
);
1160 if (unlikely(!page
))
1162 if (radix_tree_exception(page
)) {
1163 if (radix_tree_deref_retry(page
))
1166 * A shadow entry of a recently evicted page,
1167 * or a swap entry from shmem/tmpfs. Return
1168 * it without attempting to raise page count.
1172 if (!page_cache_get_speculative(page
))
1175 /* Has the page moved? */
1176 if (unlikely(page
!= *slot
)) {
1177 page_cache_release(page
);
1181 indices
[ret
] = iter
.index
;
1182 entries
[ret
] = page
;
1183 if (++ret
== nr_entries
)
1191 * find_get_pages - gang pagecache lookup
1192 * @mapping: The address_space to search
1193 * @start: The starting page index
1194 * @nr_pages: The maximum number of pages
1195 * @pages: Where the resulting pages are placed
1197 * find_get_pages() will search for and return a group of up to
1198 * @nr_pages pages in the mapping. The pages are placed at @pages.
1199 * find_get_pages() takes a reference against the returned pages.
1201 * The search returns a group of mapping-contiguous pages with ascending
1202 * indexes. There may be holes in the indices due to not-present pages.
1204 * find_get_pages() returns the number of pages which were found.
1206 unsigned find_get_pages(struct address_space
*mapping
, pgoff_t start
,
1207 unsigned int nr_pages
, struct page
**pages
)
1209 struct radix_tree_iter iter
;
1213 if (unlikely(!nr_pages
))
1218 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, start
) {
1221 page
= radix_tree_deref_slot(slot
);
1222 if (unlikely(!page
))
1225 if (radix_tree_exception(page
)) {
1226 if (radix_tree_deref_retry(page
)) {
1228 * Transient condition which can only trigger
1229 * when entry at index 0 moves out of or back
1230 * to root: none yet gotten, safe to restart.
1232 WARN_ON(iter
.index
);
1236 * A shadow entry of a recently evicted page,
1237 * or a swap entry from shmem/tmpfs. Skip
1243 if (!page_cache_get_speculative(page
))
1246 /* Has the page moved? */
1247 if (unlikely(page
!= *slot
)) {
1248 page_cache_release(page
);
1253 if (++ret
== nr_pages
)
1262 * find_get_pages_contig - gang contiguous pagecache lookup
1263 * @mapping: The address_space to search
1264 * @index: The starting page index
1265 * @nr_pages: The maximum number of pages
1266 * @pages: Where the resulting pages are placed
1268 * find_get_pages_contig() works exactly like find_get_pages(), except
1269 * that the returned number of pages are guaranteed to be contiguous.
1271 * find_get_pages_contig() returns the number of pages which were found.
1273 unsigned find_get_pages_contig(struct address_space
*mapping
, pgoff_t index
,
1274 unsigned int nr_pages
, struct page
**pages
)
1276 struct radix_tree_iter iter
;
1278 unsigned int ret
= 0;
1280 if (unlikely(!nr_pages
))
1285 radix_tree_for_each_contig(slot
, &mapping
->page_tree
, &iter
, index
) {
1288 page
= radix_tree_deref_slot(slot
);
1289 /* The hole, there no reason to continue */
1290 if (unlikely(!page
))
1293 if (radix_tree_exception(page
)) {
1294 if (radix_tree_deref_retry(page
)) {
1296 * Transient condition which can only trigger
1297 * when entry at index 0 moves out of or back
1298 * to root: none yet gotten, safe to restart.
1303 * A shadow entry of a recently evicted page,
1304 * or a swap entry from shmem/tmpfs. Stop
1305 * looking for contiguous pages.
1310 if (!page_cache_get_speculative(page
))
1313 /* Has the page moved? */
1314 if (unlikely(page
!= *slot
)) {
1315 page_cache_release(page
);
1320 * must check mapping and index after taking the ref.
1321 * otherwise we can get both false positives and false
1322 * negatives, which is just confusing to the caller.
1324 if (page
->mapping
== NULL
|| page
->index
!= iter
.index
) {
1325 page_cache_release(page
);
1330 if (++ret
== nr_pages
)
1336 EXPORT_SYMBOL(find_get_pages_contig
);
1339 * find_get_pages_tag - find and return pages that match @tag
1340 * @mapping: the address_space to search
1341 * @index: the starting page index
1342 * @tag: the tag index
1343 * @nr_pages: the maximum number of pages
1344 * @pages: where the resulting pages are placed
1346 * Like find_get_pages, except we only return pages which are tagged with
1347 * @tag. We update @index to index the next page for the traversal.
1349 unsigned find_get_pages_tag(struct address_space
*mapping
, pgoff_t
*index
,
1350 int tag
, unsigned int nr_pages
, struct page
**pages
)
1352 struct radix_tree_iter iter
;
1356 if (unlikely(!nr_pages
))
1361 radix_tree_for_each_tagged(slot
, &mapping
->page_tree
,
1362 &iter
, *index
, tag
) {
1365 page
= radix_tree_deref_slot(slot
);
1366 if (unlikely(!page
))
1369 if (radix_tree_exception(page
)) {
1370 if (radix_tree_deref_retry(page
)) {
1372 * Transient condition which can only trigger
1373 * when entry at index 0 moves out of or back
1374 * to root: none yet gotten, safe to restart.
1379 * A shadow entry of a recently evicted page.
1381 * Those entries should never be tagged, but
1382 * this tree walk is lockless and the tags are
1383 * looked up in bulk, one radix tree node at a
1384 * time, so there is a sizable window for page
1385 * reclaim to evict a page we saw tagged.
1392 if (!page_cache_get_speculative(page
))
1395 /* Has the page moved? */
1396 if (unlikely(page
!= *slot
)) {
1397 page_cache_release(page
);
1402 if (++ret
== nr_pages
)
1409 *index
= pages
[ret
- 1]->index
+ 1;
1413 EXPORT_SYMBOL(find_get_pages_tag
);
1416 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1417 * a _large_ part of the i/o request. Imagine the worst scenario:
1419 * ---R__________________________________________B__________
1420 * ^ reading here ^ bad block(assume 4k)
1422 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1423 * => failing the whole request => read(R) => read(R+1) =>
1424 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1425 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1426 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1428 * It is going insane. Fix it by quickly scaling down the readahead size.
1430 static void shrink_readahead_size_eio(struct file
*filp
,
1431 struct file_ra_state
*ra
)
1437 * do_generic_file_read - generic file read routine
1438 * @filp: the file to read
1439 * @ppos: current file position
1440 * @iter: data destination
1441 * @written: already copied
1443 * This is a generic file read routine, and uses the
1444 * mapping->a_ops->readpage() function for the actual low-level stuff.
1446 * This is really ugly. But the goto's actually try to clarify some
1447 * of the logic when it comes to error handling etc.
1449 static ssize_t
do_generic_file_read(struct file
*filp
, loff_t
*ppos
,
1450 struct iov_iter
*iter
, ssize_t written
)
1452 struct address_space
*mapping
= filp
->f_mapping
;
1453 struct inode
*inode
= mapping
->host
;
1454 struct file_ra_state
*ra
= &filp
->f_ra
;
1458 unsigned long offset
; /* offset into pagecache page */
1459 unsigned int prev_offset
;
1462 index
= *ppos
>> PAGE_CACHE_SHIFT
;
1463 prev_index
= ra
->prev_pos
>> PAGE_CACHE_SHIFT
;
1464 prev_offset
= ra
->prev_pos
& (PAGE_CACHE_SIZE
-1);
1465 last_index
= (*ppos
+ iter
->count
+ PAGE_CACHE_SIZE
-1) >> PAGE_CACHE_SHIFT
;
1466 offset
= *ppos
& ~PAGE_CACHE_MASK
;
1472 unsigned long nr
, ret
;
1476 page
= find_get_page(mapping
, index
);
1478 page_cache_sync_readahead(mapping
,
1480 index
, last_index
- index
);
1481 page
= find_get_page(mapping
, index
);
1482 if (unlikely(page
== NULL
))
1483 goto no_cached_page
;
1485 if (PageReadahead(page
)) {
1486 page_cache_async_readahead(mapping
,
1488 index
, last_index
- index
);
1490 if (!PageUptodate(page
)) {
1491 if (inode
->i_blkbits
== PAGE_CACHE_SHIFT
||
1492 !mapping
->a_ops
->is_partially_uptodate
)
1493 goto page_not_up_to_date
;
1494 if (!trylock_page(page
))
1495 goto page_not_up_to_date
;
1496 /* Did it get truncated before we got the lock? */
1498 goto page_not_up_to_date_locked
;
1499 if (!mapping
->a_ops
->is_partially_uptodate(page
,
1500 offset
, iter
->count
))
1501 goto page_not_up_to_date_locked
;
1506 * i_size must be checked after we know the page is Uptodate.
1508 * Checking i_size after the check allows us to calculate
1509 * the correct value for "nr", which means the zero-filled
1510 * part of the page is not copied back to userspace (unless
1511 * another truncate extends the file - this is desired though).
1514 isize
= i_size_read(inode
);
1515 end_index
= (isize
- 1) >> PAGE_CACHE_SHIFT
;
1516 if (unlikely(!isize
|| index
> end_index
)) {
1517 page_cache_release(page
);
1521 /* nr is the maximum number of bytes to copy from this page */
1522 nr
= PAGE_CACHE_SIZE
;
1523 if (index
== end_index
) {
1524 nr
= ((isize
- 1) & ~PAGE_CACHE_MASK
) + 1;
1526 page_cache_release(page
);
1532 /* If users can be writing to this page using arbitrary
1533 * virtual addresses, take care about potential aliasing
1534 * before reading the page on the kernel side.
1536 if (mapping_writably_mapped(mapping
))
1537 flush_dcache_page(page
);
1540 * When a sequential read accesses a page several times,
1541 * only mark it as accessed the first time.
1543 if (prev_index
!= index
|| offset
!= prev_offset
)
1544 mark_page_accessed(page
);
1548 * Ok, we have the page, and it's up-to-date, so
1549 * now we can copy it to user space...
1552 ret
= copy_page_to_iter(page
, offset
, nr
, iter
);
1554 index
+= offset
>> PAGE_CACHE_SHIFT
;
1555 offset
&= ~PAGE_CACHE_MASK
;
1556 prev_offset
= offset
;
1558 page_cache_release(page
);
1560 if (!iov_iter_count(iter
))
1568 page_not_up_to_date
:
1569 /* Get exclusive access to the page ... */
1570 error
= lock_page_killable(page
);
1571 if (unlikely(error
))
1572 goto readpage_error
;
1574 page_not_up_to_date_locked
:
1575 /* Did it get truncated before we got the lock? */
1576 if (!page
->mapping
) {
1578 page_cache_release(page
);
1582 /* Did somebody else fill it already? */
1583 if (PageUptodate(page
)) {
1590 * A previous I/O error may have been due to temporary
1591 * failures, eg. multipath errors.
1592 * PG_error will be set again if readpage fails.
1594 ClearPageError(page
);
1595 /* Start the actual read. The read will unlock the page. */
1596 error
= mapping
->a_ops
->readpage(filp
, page
);
1598 if (unlikely(error
)) {
1599 if (error
== AOP_TRUNCATED_PAGE
) {
1600 page_cache_release(page
);
1604 goto readpage_error
;
1607 if (!PageUptodate(page
)) {
1608 error
= lock_page_killable(page
);
1609 if (unlikely(error
))
1610 goto readpage_error
;
1611 if (!PageUptodate(page
)) {
1612 if (page
->mapping
== NULL
) {
1614 * invalidate_mapping_pages got it
1617 page_cache_release(page
);
1621 shrink_readahead_size_eio(filp
, ra
);
1623 goto readpage_error
;
1631 /* UHHUH! A synchronous read error occurred. Report it */
1632 page_cache_release(page
);
1637 * Ok, it wasn't cached, so we need to create a new
1640 page
= page_cache_alloc_cold(mapping
);
1645 error
= add_to_page_cache_lru(page
, mapping
,
1648 page_cache_release(page
);
1649 if (error
== -EEXIST
) {
1659 ra
->prev_pos
= prev_index
;
1660 ra
->prev_pos
<<= PAGE_CACHE_SHIFT
;
1661 ra
->prev_pos
|= prev_offset
;
1663 *ppos
= ((loff_t
)index
<< PAGE_CACHE_SHIFT
) + offset
;
1664 file_accessed(filp
);
1665 return written
? written
: error
;
1669 * generic_file_read_iter - generic filesystem read routine
1670 * @iocb: kernel I/O control block
1671 * @iter: destination for the data read
1673 * This is the "read_iter()" routine for all filesystems
1674 * that can use the page cache directly.
1677 generic_file_read_iter(struct kiocb
*iocb
, struct iov_iter
*iter
)
1679 struct file
*file
= iocb
->ki_filp
;
1681 loff_t
*ppos
= &iocb
->ki_pos
;
1684 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1685 if (file
->f_flags
& O_DIRECT
) {
1686 struct address_space
*mapping
= file
->f_mapping
;
1687 struct inode
*inode
= mapping
->host
;
1688 size_t count
= iov_iter_count(iter
);
1692 goto out
; /* skip atime */
1693 size
= i_size_read(inode
);
1694 retval
= filemap_write_and_wait_range(mapping
, pos
,
1697 struct iov_iter data
= *iter
;
1698 retval
= mapping
->a_ops
->direct_IO(READ
, iocb
, &data
, pos
);
1702 *ppos
= pos
+ retval
;
1703 iov_iter_advance(iter
, retval
);
1707 * Btrfs can have a short DIO read if we encounter
1708 * compressed extents, so if there was an error, or if
1709 * we've already read everything we wanted to, or if
1710 * there was a short read because we hit EOF, go ahead
1711 * and return. Otherwise fallthrough to buffered io for
1712 * the rest of the read.
1714 if (retval
< 0 || !iov_iter_count(iter
) || *ppos
>= size
) {
1715 file_accessed(file
);
1720 retval
= do_generic_file_read(file
, ppos
, iter
, retval
);
1724 EXPORT_SYMBOL(generic_file_read_iter
);
1728 * page_cache_read - adds requested page to the page cache if not already there
1729 * @file: file to read
1730 * @offset: page index
1732 * This adds the requested page to the page cache if it isn't already there,
1733 * and schedules an I/O to read in its contents from disk.
1735 static int page_cache_read(struct file
*file
, pgoff_t offset
)
1737 struct address_space
*mapping
= file
->f_mapping
;
1742 page
= page_cache_alloc_cold(mapping
);
1746 ret
= add_to_page_cache_lru(page
, mapping
, offset
, GFP_KERNEL
);
1748 ret
= mapping
->a_ops
->readpage(file
, page
);
1749 else if (ret
== -EEXIST
)
1750 ret
= 0; /* losing race to add is OK */
1752 page_cache_release(page
);
1754 } while (ret
== AOP_TRUNCATED_PAGE
);
1759 #define MMAP_LOTSAMISS (100)
1762 * Synchronous readahead happens when we don't even find
1763 * a page in the page cache at all.
1765 static void do_sync_mmap_readahead(struct vm_area_struct
*vma
,
1766 struct file_ra_state
*ra
,
1770 unsigned long ra_pages
;
1771 struct address_space
*mapping
= file
->f_mapping
;
1773 /* If we don't want any read-ahead, don't bother */
1774 if (vma
->vm_flags
& VM_RAND_READ
)
1779 if (vma
->vm_flags
& VM_SEQ_READ
) {
1780 page_cache_sync_readahead(mapping
, ra
, file
, offset
,
1785 /* Avoid banging the cache line if not needed */
1786 if (ra
->mmap_miss
< MMAP_LOTSAMISS
* 10)
1790 * Do we miss much more than hit in this file? If so,
1791 * stop bothering with read-ahead. It will only hurt.
1793 if (ra
->mmap_miss
> MMAP_LOTSAMISS
)
1799 ra_pages
= max_sane_readahead(ra
->ra_pages
);
1800 ra
->start
= max_t(long, 0, offset
- ra_pages
/ 2);
1801 ra
->size
= ra_pages
;
1802 ra
->async_size
= ra_pages
/ 4;
1803 ra_submit(ra
, mapping
, file
);
1807 * Asynchronous readahead happens when we find the page and PG_readahead,
1808 * so we want to possibly extend the readahead further..
1810 static void do_async_mmap_readahead(struct vm_area_struct
*vma
,
1811 struct file_ra_state
*ra
,
1816 struct address_space
*mapping
= file
->f_mapping
;
1818 /* If we don't want any read-ahead, don't bother */
1819 if (vma
->vm_flags
& VM_RAND_READ
)
1821 if (ra
->mmap_miss
> 0)
1823 if (PageReadahead(page
))
1824 page_cache_async_readahead(mapping
, ra
, file
,
1825 page
, offset
, ra
->ra_pages
);
1829 * filemap_fault - read in file data for page fault handling
1830 * @vma: vma in which the fault was taken
1831 * @vmf: struct vm_fault containing details of the fault
1833 * filemap_fault() is invoked via the vma operations vector for a
1834 * mapped memory region to read in file data during a page fault.
1836 * The goto's are kind of ugly, but this streamlines the normal case of having
1837 * it in the page cache, and handles the special cases reasonably without
1838 * having a lot of duplicated code.
1840 int filemap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1843 struct file
*file
= vma
->vm_file
;
1844 struct address_space
*mapping
= file
->f_mapping
;
1845 struct file_ra_state
*ra
= &file
->f_ra
;
1846 struct inode
*inode
= mapping
->host
;
1847 pgoff_t offset
= vmf
->pgoff
;
1852 size
= round_up(i_size_read(inode
), PAGE_CACHE_SIZE
);
1853 if (offset
>= size
>> PAGE_CACHE_SHIFT
)
1854 return VM_FAULT_SIGBUS
;
1857 * Do we have something in the page cache already?
1859 page
= find_get_page(mapping
, offset
);
1860 if (likely(page
) && !(vmf
->flags
& FAULT_FLAG_TRIED
)) {
1862 * We found the page, so try async readahead before
1863 * waiting for the lock.
1865 do_async_mmap_readahead(vma
, ra
, file
, page
, offset
);
1867 /* No page in the page cache at all */
1868 do_sync_mmap_readahead(vma
, ra
, file
, offset
);
1869 count_vm_event(PGMAJFAULT
);
1870 mem_cgroup_count_vm_event(vma
->vm_mm
, PGMAJFAULT
);
1871 ret
= VM_FAULT_MAJOR
;
1873 page
= find_get_page(mapping
, offset
);
1875 goto no_cached_page
;
1878 if (!lock_page_or_retry(page
, vma
->vm_mm
, vmf
->flags
)) {
1879 page_cache_release(page
);
1880 return ret
| VM_FAULT_RETRY
;
1883 /* Did it get truncated? */
1884 if (unlikely(page
->mapping
!= mapping
)) {
1889 VM_BUG_ON_PAGE(page
->index
!= offset
, page
);
1892 * We have a locked page in the page cache, now we need to check
1893 * that it's up-to-date. If not, it is going to be due to an error.
1895 if (unlikely(!PageUptodate(page
)))
1896 goto page_not_uptodate
;
1899 * Found the page and have a reference on it.
1900 * We must recheck i_size under page lock.
1902 size
= round_up(i_size_read(inode
), PAGE_CACHE_SIZE
);
1903 if (unlikely(offset
>= size
>> PAGE_CACHE_SHIFT
)) {
1905 page_cache_release(page
);
1906 return VM_FAULT_SIGBUS
;
1910 return ret
| VM_FAULT_LOCKED
;
1914 * We're only likely to ever get here if MADV_RANDOM is in
1917 error
= page_cache_read(file
, offset
);
1920 * The page we want has now been added to the page cache.
1921 * In the unlikely event that someone removed it in the
1922 * meantime, we'll just come back here and read it again.
1928 * An error return from page_cache_read can result if the
1929 * system is low on memory, or a problem occurs while trying
1932 if (error
== -ENOMEM
)
1933 return VM_FAULT_OOM
;
1934 return VM_FAULT_SIGBUS
;
1938 * Umm, take care of errors if the page isn't up-to-date.
1939 * Try to re-read it _once_. We do this synchronously,
1940 * because there really aren't any performance issues here
1941 * and we need to check for errors.
1943 ClearPageError(page
);
1944 error
= mapping
->a_ops
->readpage(file
, page
);
1946 wait_on_page_locked(page
);
1947 if (!PageUptodate(page
))
1950 page_cache_release(page
);
1952 if (!error
|| error
== AOP_TRUNCATED_PAGE
)
1955 /* Things didn't work out. Return zero to tell the mm layer so. */
1956 shrink_readahead_size_eio(file
, ra
);
1957 return VM_FAULT_SIGBUS
;
1959 EXPORT_SYMBOL(filemap_fault
);
1961 void filemap_map_pages(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
1963 struct radix_tree_iter iter
;
1965 struct file
*file
= vma
->vm_file
;
1966 struct address_space
*mapping
= file
->f_mapping
;
1969 unsigned long address
= (unsigned long) vmf
->virtual_address
;
1974 radix_tree_for_each_slot(slot
, &mapping
->page_tree
, &iter
, vmf
->pgoff
) {
1975 if (iter
.index
> vmf
->max_pgoff
)
1978 page
= radix_tree_deref_slot(slot
);
1979 if (unlikely(!page
))
1981 if (radix_tree_exception(page
)) {
1982 if (radix_tree_deref_retry(page
))
1988 if (!page_cache_get_speculative(page
))
1991 /* Has the page moved? */
1992 if (unlikely(page
!= *slot
)) {
1993 page_cache_release(page
);
1997 if (!PageUptodate(page
) ||
1998 PageReadahead(page
) ||
2001 if (!trylock_page(page
))
2004 if (page
->mapping
!= mapping
|| !PageUptodate(page
))
2007 size
= round_up(i_size_read(mapping
->host
), PAGE_CACHE_SIZE
);
2008 if (page
->index
>= size
>> PAGE_CACHE_SHIFT
)
2011 pte
= vmf
->pte
+ page
->index
- vmf
->pgoff
;
2012 if (!pte_none(*pte
))
2015 if (file
->f_ra
.mmap_miss
> 0)
2016 file
->f_ra
.mmap_miss
--;
2017 addr
= address
+ (page
->index
- vmf
->pgoff
) * PAGE_SIZE
;
2018 do_set_pte(vma
, addr
, page
, pte
, false, false);
2024 page_cache_release(page
);
2026 if (iter
.index
== vmf
->max_pgoff
)
2031 EXPORT_SYMBOL(filemap_map_pages
);
2033 int filemap_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
2035 struct page
*page
= vmf
->page
;
2036 struct inode
*inode
= file_inode(vma
->vm_file
);
2037 int ret
= VM_FAULT_LOCKED
;
2039 sb_start_pagefault(inode
->i_sb
);
2040 file_update_time(vma
->vm_file
);
2042 if (page
->mapping
!= inode
->i_mapping
) {
2044 ret
= VM_FAULT_NOPAGE
;
2048 * We mark the page dirty already here so that when freeze is in
2049 * progress, we are guaranteed that writeback during freezing will
2050 * see the dirty page and writeprotect it again.
2052 set_page_dirty(page
);
2053 wait_for_stable_page(page
);
2055 sb_end_pagefault(inode
->i_sb
);
2058 EXPORT_SYMBOL(filemap_page_mkwrite
);
2060 const struct vm_operations_struct generic_file_vm_ops
= {
2061 .fault
= filemap_fault
,
2062 .map_pages
= filemap_map_pages
,
2063 .page_mkwrite
= filemap_page_mkwrite
,
2064 .remap_pages
= generic_file_remap_pages
,
2067 /* This is used for a general mmap of a disk file */
2069 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2071 struct address_space
*mapping
= file
->f_mapping
;
2073 if (!mapping
->a_ops
->readpage
)
2075 file_accessed(file
);
2076 vma
->vm_ops
= &generic_file_vm_ops
;
2081 * This is for filesystems which do not implement ->writepage.
2083 int generic_file_readonly_mmap(struct file
*file
, struct vm_area_struct
*vma
)
2085 if ((vma
->vm_flags
& VM_SHARED
) && (vma
->vm_flags
& VM_MAYWRITE
))
2087 return generic_file_mmap(file
, vma
);
2090 int generic_file_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2094 int generic_file_readonly_mmap(struct file
* file
, struct vm_area_struct
* vma
)
2098 #endif /* CONFIG_MMU */
2100 EXPORT_SYMBOL(generic_file_mmap
);
2101 EXPORT_SYMBOL(generic_file_readonly_mmap
);
2103 static struct page
*wait_on_page_read(struct page
*page
)
2105 if (!IS_ERR(page
)) {
2106 wait_on_page_locked(page
);
2107 if (!PageUptodate(page
)) {
2108 page_cache_release(page
);
2109 page
= ERR_PTR(-EIO
);
2115 static struct page
*__read_cache_page(struct address_space
*mapping
,
2117 int (*filler
)(void *, struct page
*),
2124 page
= find_get_page(mapping
, index
);
2126 page
= __page_cache_alloc(gfp
| __GFP_COLD
);
2128 return ERR_PTR(-ENOMEM
);
2129 err
= add_to_page_cache_lru(page
, mapping
, index
, gfp
);
2130 if (unlikely(err
)) {
2131 page_cache_release(page
);
2134 /* Presumably ENOMEM for radix tree node */
2135 return ERR_PTR(err
);
2137 err
= filler(data
, page
);
2139 page_cache_release(page
);
2140 page
= ERR_PTR(err
);
2142 page
= wait_on_page_read(page
);
2148 static struct page
*do_read_cache_page(struct address_space
*mapping
,
2150 int (*filler
)(void *, struct page
*),
2159 page
= __read_cache_page(mapping
, index
, filler
, data
, gfp
);
2162 if (PageUptodate(page
))
2166 if (!page
->mapping
) {
2168 page_cache_release(page
);
2171 if (PageUptodate(page
)) {
2175 err
= filler(data
, page
);
2177 page_cache_release(page
);
2178 return ERR_PTR(err
);
2180 page
= wait_on_page_read(page
);
2185 mark_page_accessed(page
);
2190 * read_cache_page - read into page cache, fill it if needed
2191 * @mapping: the page's address_space
2192 * @index: the page index
2193 * @filler: function to perform the read
2194 * @data: first arg to filler(data, page) function, often left as NULL
2196 * Read into the page cache. If a page already exists, and PageUptodate() is
2197 * not set, try to fill the page and wait for it to become unlocked.
2199 * If the page does not get brought uptodate, return -EIO.
2201 struct page
*read_cache_page(struct address_space
*mapping
,
2203 int (*filler
)(void *, struct page
*),
2206 return do_read_cache_page(mapping
, index
, filler
, data
, mapping_gfp_mask(mapping
));
2208 EXPORT_SYMBOL(read_cache_page
);
2211 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2212 * @mapping: the page's address_space
2213 * @index: the page index
2214 * @gfp: the page allocator flags to use if allocating
2216 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2217 * any new page allocations done using the specified allocation flags.
2219 * If the page does not get brought uptodate, return -EIO.
2221 struct page
*read_cache_page_gfp(struct address_space
*mapping
,
2225 filler_t
*filler
= (filler_t
*)mapping
->a_ops
->readpage
;
2227 return do_read_cache_page(mapping
, index
, filler
, NULL
, gfp
);
2229 EXPORT_SYMBOL(read_cache_page_gfp
);
2232 * Performs necessary checks before doing a write
2234 * Can adjust writing position or amount of bytes to write.
2235 * Returns appropriate error code that caller should return or
2236 * zero in case that write should be allowed.
2238 inline int generic_write_checks(struct file
*file
, loff_t
*pos
, size_t *count
, int isblk
)
2240 struct inode
*inode
= file
->f_mapping
->host
;
2241 unsigned long limit
= rlimit(RLIMIT_FSIZE
);
2243 if (unlikely(*pos
< 0))
2247 /* FIXME: this is for backwards compatibility with 2.4 */
2248 if (file
->f_flags
& O_APPEND
)
2249 *pos
= i_size_read(inode
);
2251 if (limit
!= RLIM_INFINITY
) {
2252 if (*pos
>= limit
) {
2253 send_sig(SIGXFSZ
, current
, 0);
2256 if (*count
> limit
- (typeof(limit
))*pos
) {
2257 *count
= limit
- (typeof(limit
))*pos
;
2265 if (unlikely(*pos
+ *count
> MAX_NON_LFS
&&
2266 !(file
->f_flags
& O_LARGEFILE
))) {
2267 if (*pos
>= MAX_NON_LFS
) {
2270 if (*count
> MAX_NON_LFS
- (unsigned long)*pos
) {
2271 *count
= MAX_NON_LFS
- (unsigned long)*pos
;
2276 * Are we about to exceed the fs block limit ?
2278 * If we have written data it becomes a short write. If we have
2279 * exceeded without writing data we send a signal and return EFBIG.
2280 * Linus frestrict idea will clean these up nicely..
2282 if (likely(!isblk
)) {
2283 if (unlikely(*pos
>= inode
->i_sb
->s_maxbytes
)) {
2284 if (*count
|| *pos
> inode
->i_sb
->s_maxbytes
) {
2287 /* zero-length writes at ->s_maxbytes are OK */
2290 if (unlikely(*pos
+ *count
> inode
->i_sb
->s_maxbytes
))
2291 *count
= inode
->i_sb
->s_maxbytes
- *pos
;
2295 if (bdev_read_only(I_BDEV(inode
)))
2297 isize
= i_size_read(inode
);
2298 if (*pos
>= isize
) {
2299 if (*count
|| *pos
> isize
)
2303 if (*pos
+ *count
> isize
)
2304 *count
= isize
- *pos
;
2311 EXPORT_SYMBOL(generic_write_checks
);
2313 int pagecache_write_begin(struct file
*file
, struct address_space
*mapping
,
2314 loff_t pos
, unsigned len
, unsigned flags
,
2315 struct page
**pagep
, void **fsdata
)
2317 const struct address_space_operations
*aops
= mapping
->a_ops
;
2319 return aops
->write_begin(file
, mapping
, pos
, len
, flags
,
2322 EXPORT_SYMBOL(pagecache_write_begin
);
2324 int pagecache_write_end(struct file
*file
, struct address_space
*mapping
,
2325 loff_t pos
, unsigned len
, unsigned copied
,
2326 struct page
*page
, void *fsdata
)
2328 const struct address_space_operations
*aops
= mapping
->a_ops
;
2330 return aops
->write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2332 EXPORT_SYMBOL(pagecache_write_end
);
2335 generic_file_direct_write(struct kiocb
*iocb
, struct iov_iter
*from
, loff_t pos
)
2337 struct file
*file
= iocb
->ki_filp
;
2338 struct address_space
*mapping
= file
->f_mapping
;
2339 struct inode
*inode
= mapping
->host
;
2343 struct iov_iter data
;
2345 write_len
= iov_iter_count(from
);
2346 end
= (pos
+ write_len
- 1) >> PAGE_CACHE_SHIFT
;
2348 written
= filemap_write_and_wait_range(mapping
, pos
, pos
+ write_len
- 1);
2353 * After a write we want buffered reads to be sure to go to disk to get
2354 * the new data. We invalidate clean cached page from the region we're
2355 * about to write. We do this *before* the write so that we can return
2356 * without clobbering -EIOCBQUEUED from ->direct_IO().
2358 if (mapping
->nrpages
) {
2359 written
= invalidate_inode_pages2_range(mapping
,
2360 pos
>> PAGE_CACHE_SHIFT
, end
);
2362 * If a page can not be invalidated, return 0 to fall back
2363 * to buffered write.
2366 if (written
== -EBUSY
)
2373 written
= mapping
->a_ops
->direct_IO(WRITE
, iocb
, &data
, pos
);
2376 * Finally, try again to invalidate clean pages which might have been
2377 * cached by non-direct readahead, or faulted in by get_user_pages()
2378 * if the source of the write was an mmap'ed region of the file
2379 * we're writing. Either one is a pretty crazy thing to do,
2380 * so we don't support it 100%. If this invalidation
2381 * fails, tough, the write still worked...
2383 if (mapping
->nrpages
) {
2384 invalidate_inode_pages2_range(mapping
,
2385 pos
>> PAGE_CACHE_SHIFT
, end
);
2390 iov_iter_advance(from
, written
);
2391 if (pos
> i_size_read(inode
) && !S_ISBLK(inode
->i_mode
)) {
2392 i_size_write(inode
, pos
);
2393 mark_inode_dirty(inode
);
2400 EXPORT_SYMBOL(generic_file_direct_write
);
2403 * Find or create a page at the given pagecache position. Return the locked
2404 * page. This function is specifically for buffered writes.
2406 struct page
*grab_cache_page_write_begin(struct address_space
*mapping
,
2407 pgoff_t index
, unsigned flags
)
2410 int fgp_flags
= FGP_LOCK
|FGP_ACCESSED
|FGP_WRITE
|FGP_CREAT
;
2412 if (flags
& AOP_FLAG_NOFS
)
2413 fgp_flags
|= FGP_NOFS
;
2415 page
= pagecache_get_page(mapping
, index
, fgp_flags
,
2416 mapping_gfp_mask(mapping
),
2419 wait_for_stable_page(page
);
2423 EXPORT_SYMBOL(grab_cache_page_write_begin
);
2425 ssize_t
generic_perform_write(struct file
*file
,
2426 struct iov_iter
*i
, loff_t pos
)
2428 struct address_space
*mapping
= file
->f_mapping
;
2429 const struct address_space_operations
*a_ops
= mapping
->a_ops
;
2431 ssize_t written
= 0;
2432 unsigned int flags
= 0;
2435 * Copies from kernel address space cannot fail (NFSD is a big user).
2437 if (segment_eq(get_fs(), KERNEL_DS
))
2438 flags
|= AOP_FLAG_UNINTERRUPTIBLE
;
2442 unsigned long offset
; /* Offset into pagecache page */
2443 unsigned long bytes
; /* Bytes to write to page */
2444 size_t copied
; /* Bytes copied from user */
2447 offset
= (pos
& (PAGE_CACHE_SIZE
- 1));
2448 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2453 * Bring in the user page that we will copy from _first_.
2454 * Otherwise there's a nasty deadlock on copying from the
2455 * same page as we're writing to, without it being marked
2458 * Not only is this an optimisation, but it is also required
2459 * to check that the address is actually valid, when atomic
2460 * usercopies are used, below.
2462 if (unlikely(iov_iter_fault_in_readable(i
, bytes
))) {
2467 status
= a_ops
->write_begin(file
, mapping
, pos
, bytes
, flags
,
2469 if (unlikely(status
< 0))
2472 if (mapping_writably_mapped(mapping
))
2473 flush_dcache_page(page
);
2475 copied
= iov_iter_copy_from_user_atomic(page
, i
, offset
, bytes
);
2476 flush_dcache_page(page
);
2478 status
= a_ops
->write_end(file
, mapping
, pos
, bytes
, copied
,
2480 if (unlikely(status
< 0))
2486 iov_iter_advance(i
, copied
);
2487 if (unlikely(copied
== 0)) {
2489 * If we were unable to copy any data at all, we must
2490 * fall back to a single segment length write.
2492 * If we didn't fallback here, we could livelock
2493 * because not all segments in the iov can be copied at
2494 * once without a pagefault.
2496 bytes
= min_t(unsigned long, PAGE_CACHE_SIZE
- offset
,
2497 iov_iter_single_seg_count(i
));
2503 balance_dirty_pages_ratelimited(mapping
);
2504 if (fatal_signal_pending(current
)) {
2508 } while (iov_iter_count(i
));
2510 return written
? written
: status
;
2512 EXPORT_SYMBOL(generic_perform_write
);
2515 * __generic_file_write_iter - write data to a file
2516 * @iocb: IO state structure (file, offset, etc.)
2517 * @from: iov_iter with data to write
2519 * This function does all the work needed for actually writing data to a
2520 * file. It does all basic checks, removes SUID from the file, updates
2521 * modification times and calls proper subroutines depending on whether we
2522 * do direct IO or a standard buffered write.
2524 * It expects i_mutex to be grabbed unless we work on a block device or similar
2525 * object which does not need locking at all.
2527 * This function does *not* take care of syncing data in case of O_SYNC write.
2528 * A caller has to handle it. This is mainly due to the fact that we want to
2529 * avoid syncing under i_mutex.
2531 ssize_t
__generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
2533 struct file
*file
= iocb
->ki_filp
;
2534 struct address_space
* mapping
= file
->f_mapping
;
2535 struct inode
*inode
= mapping
->host
;
2536 loff_t pos
= iocb
->ki_pos
;
2537 ssize_t written
= 0;
2540 size_t count
= iov_iter_count(from
);
2542 /* We can write back this queue in page reclaim */
2543 current
->backing_dev_info
= mapping
->backing_dev_info
;
2544 err
= generic_write_checks(file
, &pos
, &count
, S_ISBLK(inode
->i_mode
));
2551 iov_iter_truncate(from
, count
);
2553 err
= file_remove_suid(file
);
2557 err
= file_update_time(file
);
2561 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2562 if (unlikely(file
->f_flags
& O_DIRECT
)) {
2565 written
= generic_file_direct_write(iocb
, from
, pos
);
2566 if (written
< 0 || written
== count
)
2570 * direct-io write to a hole: fall through to buffered I/O
2571 * for completing the rest of the request.
2576 status
= generic_perform_write(file
, from
, pos
);
2578 * If generic_perform_write() returned a synchronous error
2579 * then we want to return the number of bytes which were
2580 * direct-written, or the error code if that was zero. Note
2581 * that this differs from normal direct-io semantics, which
2582 * will return -EFOO even if some bytes were written.
2584 if (unlikely(status
< 0) && !written
) {
2588 iocb
->ki_pos
= pos
+ status
;
2590 * We need to ensure that the page cache pages are written to
2591 * disk and invalidated to preserve the expected O_DIRECT
2594 endbyte
= pos
+ status
- 1;
2595 err
= filemap_write_and_wait_range(file
->f_mapping
, pos
, endbyte
);
2598 invalidate_mapping_pages(mapping
,
2599 pos
>> PAGE_CACHE_SHIFT
,
2600 endbyte
>> PAGE_CACHE_SHIFT
);
2603 * We don't know how much we wrote, so just return
2604 * the number of bytes which were direct-written
2608 written
= generic_perform_write(file
, from
, pos
);
2609 if (likely(written
>= 0))
2610 iocb
->ki_pos
= pos
+ written
;
2613 current
->backing_dev_info
= NULL
;
2614 return written
? written
: err
;
2616 EXPORT_SYMBOL(__generic_file_write_iter
);
2619 * generic_file_write_iter - write data to a file
2620 * @iocb: IO state structure
2621 * @from: iov_iter with data to write
2623 * This is a wrapper around __generic_file_write_iter() to be used by most
2624 * filesystems. It takes care of syncing the file in case of O_SYNC file
2625 * and acquires i_mutex as needed.
2627 ssize_t
generic_file_write_iter(struct kiocb
*iocb
, struct iov_iter
*from
)
2629 struct file
*file
= iocb
->ki_filp
;
2630 struct inode
*inode
= file
->f_mapping
->host
;
2633 mutex_lock(&inode
->i_mutex
);
2634 ret
= __generic_file_write_iter(iocb
, from
);
2635 mutex_unlock(&inode
->i_mutex
);
2640 err
= generic_write_sync(file
, iocb
->ki_pos
- ret
, ret
);
2646 EXPORT_SYMBOL(generic_file_write_iter
);
2649 * try_to_release_page() - release old fs-specific metadata on a page
2651 * @page: the page which the kernel is trying to free
2652 * @gfp_mask: memory allocation flags (and I/O mode)
2654 * The address_space is to try to release any data against the page
2655 * (presumably at page->private). If the release was successful, return `1'.
2656 * Otherwise return zero.
2658 * This may also be called if PG_fscache is set on a page, indicating that the
2659 * page is known to the local caching routines.
2661 * The @gfp_mask argument specifies whether I/O may be performed to release
2662 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2665 int try_to_release_page(struct page
*page
, gfp_t gfp_mask
)
2667 struct address_space
* const mapping
= page
->mapping
;
2669 BUG_ON(!PageLocked(page
));
2670 if (PageWriteback(page
))
2673 if (mapping
&& mapping
->a_ops
->releasepage
)
2674 return mapping
->a_ops
->releasepage(page
, gfp_mask
);
2675 return try_to_free_buffers(page
);
2678 EXPORT_SYMBOL(try_to_release_page
);