2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kasan.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/sort.h>
48 #include <linux/pfn.h>
49 #include <linux/backing-dev.h>
50 #include <linux/fault-inject.h>
51 #include <linux/page-isolation.h>
52 #include <linux/page_ext.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
71 #include <asm/sections.h>
72 #include <asm/tlbflush.h>
73 #include <asm/div64.h>
76 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
77 static DEFINE_MUTEX(pcp_batch_high_lock
);
78 #define MIN_PERCPU_PAGELIST_FRACTION (8)
80 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
81 DEFINE_PER_CPU(int, numa_node
);
82 EXPORT_PER_CPU_SYMBOL(numa_node
);
85 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key
);
87 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
89 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
90 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
91 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
92 * defined in <linux/topology.h>.
94 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
95 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
96 int _node_numa_mem_
[MAX_NUMNODES
];
99 /* work_structs for global per-cpu drains */
100 DEFINE_MUTEX(pcpu_drain_mutex
);
101 DEFINE_PER_CPU(struct work_struct
, pcpu_drain
);
103 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
104 volatile unsigned long latent_entropy __latent_entropy
;
105 EXPORT_SYMBOL(latent_entropy
);
109 * Array of node states.
111 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
112 [N_POSSIBLE
] = NODE_MASK_ALL
,
113 [N_ONLINE
] = { { [0] = 1UL } },
115 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
116 #ifdef CONFIG_HIGHMEM
117 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
119 [N_MEMORY
] = { { [0] = 1UL } },
120 [N_CPU
] = { { [0] = 1UL } },
123 EXPORT_SYMBOL(node_states
);
125 /* Protect totalram_pages and zone->managed_pages */
126 static DEFINE_SPINLOCK(managed_page_count_lock
);
128 unsigned long totalram_pages __read_mostly
;
129 unsigned long totalreserve_pages __read_mostly
;
130 unsigned long totalcma_pages __read_mostly
;
132 int percpu_pagelist_fraction
;
133 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
136 * A cached value of the page's pageblock's migratetype, used when the page is
137 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
138 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
139 * Also the migratetype set in the page does not necessarily match the pcplist
140 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
141 * other index - this ensures that it will be put on the correct CMA freelist.
143 static inline int get_pcppage_migratetype(struct page
*page
)
148 static inline void set_pcppage_migratetype(struct page
*page
, int migratetype
)
150 page
->index
= migratetype
;
153 #ifdef CONFIG_PM_SLEEP
155 * The following functions are used by the suspend/hibernate code to temporarily
156 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
157 * while devices are suspended. To avoid races with the suspend/hibernate code,
158 * they should always be called with pm_mutex held (gfp_allowed_mask also should
159 * only be modified with pm_mutex held, unless the suspend/hibernate code is
160 * guaranteed not to run in parallel with that modification).
163 static gfp_t saved_gfp_mask
;
165 void pm_restore_gfp_mask(void)
167 WARN_ON(!mutex_is_locked(&pm_mutex
));
168 if (saved_gfp_mask
) {
169 gfp_allowed_mask
= saved_gfp_mask
;
174 void pm_restrict_gfp_mask(void)
176 WARN_ON(!mutex_is_locked(&pm_mutex
));
177 WARN_ON(saved_gfp_mask
);
178 saved_gfp_mask
= gfp_allowed_mask
;
179 gfp_allowed_mask
&= ~(__GFP_IO
| __GFP_FS
);
182 bool pm_suspended_storage(void)
184 if ((gfp_allowed_mask
& (__GFP_IO
| __GFP_FS
)) == (__GFP_IO
| __GFP_FS
))
188 #endif /* CONFIG_PM_SLEEP */
190 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
191 unsigned int pageblock_order __read_mostly
;
194 static void __free_pages_ok(struct page
*page
, unsigned int order
);
197 * results with 256, 32 in the lowmem_reserve sysctl:
198 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
199 * 1G machine -> (16M dma, 784M normal, 224M high)
200 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
201 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
202 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
204 * TBD: should special case ZONE_DMA32 machines here - in those we normally
205 * don't need any ZONE_NORMAL reservation
207 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
208 #ifdef CONFIG_ZONE_DMA
211 #ifdef CONFIG_ZONE_DMA32
214 #ifdef CONFIG_HIGHMEM
220 EXPORT_SYMBOL(totalram_pages
);
222 static char * const zone_names
[MAX_NR_ZONES
] = {
223 #ifdef CONFIG_ZONE_DMA
226 #ifdef CONFIG_ZONE_DMA32
230 #ifdef CONFIG_HIGHMEM
234 #ifdef CONFIG_ZONE_DEVICE
239 char * const migratetype_names
[MIGRATE_TYPES
] = {
247 #ifdef CONFIG_MEMORY_ISOLATION
252 compound_page_dtor
* const compound_page_dtors
[] = {
255 #ifdef CONFIG_HUGETLB_PAGE
258 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
263 int min_free_kbytes
= 1024;
264 int user_min_free_kbytes
= -1;
265 int watermark_scale_factor
= 10;
267 static unsigned long __meminitdata nr_kernel_pages
;
268 static unsigned long __meminitdata nr_all_pages
;
269 static unsigned long __meminitdata dma_reserve
;
271 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
272 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
273 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
274 static unsigned long __initdata required_kernelcore
;
275 static unsigned long __initdata required_movablecore
;
276 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
277 static bool mirrored_kernelcore
;
279 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
281 EXPORT_SYMBOL(movable_zone
);
282 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
285 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
286 int nr_online_nodes __read_mostly
= 1;
287 EXPORT_SYMBOL(nr_node_ids
);
288 EXPORT_SYMBOL(nr_online_nodes
);
291 int page_group_by_mobility_disabled __read_mostly
;
293 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
296 * Determine how many pages need to be initialized during early boot
297 * (non-deferred initialization).
298 * The value of first_deferred_pfn will be set later, once non-deferred pages
299 * are initialized, but for now set it ULONG_MAX.
301 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
303 phys_addr_t start_addr
, end_addr
;
304 unsigned long max_pgcnt
;
305 unsigned long reserved
;
308 * Initialise at least 2G of a node but also take into account that
309 * two large system hashes that can take up 1GB for 0.25TB/node.
311 max_pgcnt
= max(2UL << (30 - PAGE_SHIFT
),
312 (pgdat
->node_spanned_pages
>> 8));
315 * Compensate the all the memblock reservations (e.g. crash kernel)
316 * from the initial estimation to make sure we will initialize enough
319 start_addr
= PFN_PHYS(pgdat
->node_start_pfn
);
320 end_addr
= PFN_PHYS(pgdat
->node_start_pfn
+ max_pgcnt
);
321 reserved
= memblock_reserved_memory_within(start_addr
, end_addr
);
322 max_pgcnt
+= PHYS_PFN(reserved
);
324 pgdat
->static_init_pgcnt
= min(max_pgcnt
, pgdat
->node_spanned_pages
);
325 pgdat
->first_deferred_pfn
= ULONG_MAX
;
328 /* Returns true if the struct page for the pfn is uninitialised */
329 static inline bool __meminit
early_page_uninitialised(unsigned long pfn
)
331 int nid
= early_pfn_to_nid(pfn
);
333 if (node_online(nid
) && pfn
>= NODE_DATA(nid
)->first_deferred_pfn
)
340 * Returns false when the remaining initialisation should be deferred until
341 * later in the boot cycle when it can be parallelised.
343 static inline bool update_defer_init(pg_data_t
*pgdat
,
344 unsigned long pfn
, unsigned long zone_end
,
345 unsigned long *nr_initialised
)
347 /* Always populate low zones for address-constrained allocations */
348 if (zone_end
< pgdat_end_pfn(pgdat
))
351 if ((*nr_initialised
> pgdat
->static_init_pgcnt
) &&
352 (pfn
& (PAGES_PER_SECTION
- 1)) == 0) {
353 pgdat
->first_deferred_pfn
= pfn
;
360 static inline void reset_deferred_meminit(pg_data_t
*pgdat
)
364 static inline bool early_page_uninitialised(unsigned long pfn
)
369 static inline bool update_defer_init(pg_data_t
*pgdat
,
370 unsigned long pfn
, unsigned long zone_end
,
371 unsigned long *nr_initialised
)
377 /* Return a pointer to the bitmap storing bits affecting a block of pages */
378 static inline unsigned long *get_pageblock_bitmap(struct page
*page
,
381 #ifdef CONFIG_SPARSEMEM
382 return __pfn_to_section(pfn
)->pageblock_flags
;
384 return page_zone(page
)->pageblock_flags
;
385 #endif /* CONFIG_SPARSEMEM */
388 static inline int pfn_to_bitidx(struct page
*page
, unsigned long pfn
)
390 #ifdef CONFIG_SPARSEMEM
391 pfn
&= (PAGES_PER_SECTION
-1);
392 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
394 pfn
= pfn
- round_down(page_zone(page
)->zone_start_pfn
, pageblock_nr_pages
);
395 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
396 #endif /* CONFIG_SPARSEMEM */
400 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
401 * @page: The page within the block of interest
402 * @pfn: The target page frame number
403 * @end_bitidx: The last bit of interest to retrieve
404 * @mask: mask of bits that the caller is interested in
406 * Return: pageblock_bits flags
408 static __always_inline
unsigned long __get_pfnblock_flags_mask(struct page
*page
,
410 unsigned long end_bitidx
,
413 unsigned long *bitmap
;
414 unsigned long bitidx
, word_bitidx
;
417 bitmap
= get_pageblock_bitmap(page
, pfn
);
418 bitidx
= pfn_to_bitidx(page
, pfn
);
419 word_bitidx
= bitidx
/ BITS_PER_LONG
;
420 bitidx
&= (BITS_PER_LONG
-1);
422 word
= bitmap
[word_bitidx
];
423 bitidx
+= end_bitidx
;
424 return (word
>> (BITS_PER_LONG
- bitidx
- 1)) & mask
;
427 unsigned long get_pfnblock_flags_mask(struct page
*page
, unsigned long pfn
,
428 unsigned long end_bitidx
,
431 return __get_pfnblock_flags_mask(page
, pfn
, end_bitidx
, mask
);
434 static __always_inline
int get_pfnblock_migratetype(struct page
*page
, unsigned long pfn
)
436 return __get_pfnblock_flags_mask(page
, pfn
, PB_migrate_end
, MIGRATETYPE_MASK
);
440 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
441 * @page: The page within the block of interest
442 * @flags: The flags to set
443 * @pfn: The target page frame number
444 * @end_bitidx: The last bit of interest
445 * @mask: mask of bits that the caller is interested in
447 void set_pfnblock_flags_mask(struct page
*page
, unsigned long flags
,
449 unsigned long end_bitidx
,
452 unsigned long *bitmap
;
453 unsigned long bitidx
, word_bitidx
;
454 unsigned long old_word
, word
;
456 BUILD_BUG_ON(NR_PAGEBLOCK_BITS
!= 4);
458 bitmap
= get_pageblock_bitmap(page
, pfn
);
459 bitidx
= pfn_to_bitidx(page
, pfn
);
460 word_bitidx
= bitidx
/ BITS_PER_LONG
;
461 bitidx
&= (BITS_PER_LONG
-1);
463 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page
), pfn
), page
);
465 bitidx
+= end_bitidx
;
466 mask
<<= (BITS_PER_LONG
- bitidx
- 1);
467 flags
<<= (BITS_PER_LONG
- bitidx
- 1);
469 word
= READ_ONCE(bitmap
[word_bitidx
]);
471 old_word
= cmpxchg(&bitmap
[word_bitidx
], word
, (word
& ~mask
) | flags
);
472 if (word
== old_word
)
478 void set_pageblock_migratetype(struct page
*page
, int migratetype
)
480 if (unlikely(page_group_by_mobility_disabled
&&
481 migratetype
< MIGRATE_PCPTYPES
))
482 migratetype
= MIGRATE_UNMOVABLE
;
484 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
485 PB_migrate
, PB_migrate_end
);
488 #ifdef CONFIG_DEBUG_VM
489 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
493 unsigned long pfn
= page_to_pfn(page
);
494 unsigned long sp
, start_pfn
;
497 seq
= zone_span_seqbegin(zone
);
498 start_pfn
= zone
->zone_start_pfn
;
499 sp
= zone
->spanned_pages
;
500 if (!zone_spans_pfn(zone
, pfn
))
502 } while (zone_span_seqretry(zone
, seq
));
505 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
506 pfn
, zone_to_nid(zone
), zone
->name
,
507 start_pfn
, start_pfn
+ sp
);
512 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
514 if (!pfn_valid_within(page_to_pfn(page
)))
516 if (zone
!= page_zone(page
))
522 * Temporary debugging check for pages not lying within a given zone.
524 static int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
526 if (page_outside_zone_boundaries(zone
, page
))
528 if (!page_is_consistent(zone
, page
))
534 static inline int __maybe_unused
bad_range(struct zone
*zone
, struct page
*page
)
540 static void bad_page(struct page
*page
, const char *reason
,
541 unsigned long bad_flags
)
543 static unsigned long resume
;
544 static unsigned long nr_shown
;
545 static unsigned long nr_unshown
;
548 * Allow a burst of 60 reports, then keep quiet for that minute;
549 * or allow a steady drip of one report per second.
551 if (nr_shown
== 60) {
552 if (time_before(jiffies
, resume
)) {
558 "BUG: Bad page state: %lu messages suppressed\n",
565 resume
= jiffies
+ 60 * HZ
;
567 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
568 current
->comm
, page_to_pfn(page
));
569 __dump_page(page
, reason
);
570 bad_flags
&= page
->flags
;
572 pr_alert("bad because of flags: %#lx(%pGp)\n",
573 bad_flags
, &bad_flags
);
574 dump_page_owner(page
);
579 /* Leave bad fields for debug, except PageBuddy could make trouble */
580 page_mapcount_reset(page
); /* remove PageBuddy */
581 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
585 * Higher-order pages are called "compound pages". They are structured thusly:
587 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
589 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
590 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
592 * The first tail page's ->compound_dtor holds the offset in array of compound
593 * page destructors. See compound_page_dtors.
595 * The first tail page's ->compound_order holds the order of allocation.
596 * This usage means that zero-order pages may not be compound.
599 void free_compound_page(struct page
*page
)
601 __free_pages_ok(page
, compound_order(page
));
604 void prep_compound_page(struct page
*page
, unsigned int order
)
607 int nr_pages
= 1 << order
;
609 set_compound_page_dtor(page
, COMPOUND_PAGE_DTOR
);
610 set_compound_order(page
, order
);
612 for (i
= 1; i
< nr_pages
; i
++) {
613 struct page
*p
= page
+ i
;
614 set_page_count(p
, 0);
615 p
->mapping
= TAIL_MAPPING
;
616 set_compound_head(p
, page
);
618 atomic_set(compound_mapcount_ptr(page
), -1);
621 #ifdef CONFIG_DEBUG_PAGEALLOC
622 unsigned int _debug_guardpage_minorder
;
623 bool _debug_pagealloc_enabled __read_mostly
624 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT
);
625 EXPORT_SYMBOL(_debug_pagealloc_enabled
);
626 bool _debug_guardpage_enabled __read_mostly
;
628 static int __init
early_debug_pagealloc(char *buf
)
632 return kstrtobool(buf
, &_debug_pagealloc_enabled
);
634 early_param("debug_pagealloc", early_debug_pagealloc
);
636 static bool need_debug_guardpage(void)
638 /* If we don't use debug_pagealloc, we don't need guard page */
639 if (!debug_pagealloc_enabled())
642 if (!debug_guardpage_minorder())
648 static void init_debug_guardpage(void)
650 if (!debug_pagealloc_enabled())
653 if (!debug_guardpage_minorder())
656 _debug_guardpage_enabled
= true;
659 struct page_ext_operations debug_guardpage_ops
= {
660 .need
= need_debug_guardpage
,
661 .init
= init_debug_guardpage
,
664 static int __init
debug_guardpage_minorder_setup(char *buf
)
668 if (kstrtoul(buf
, 10, &res
) < 0 || res
> MAX_ORDER
/ 2) {
669 pr_err("Bad debug_guardpage_minorder value\n");
672 _debug_guardpage_minorder
= res
;
673 pr_info("Setting debug_guardpage_minorder to %lu\n", res
);
676 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup
);
678 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
679 unsigned int order
, int migratetype
)
681 struct page_ext
*page_ext
;
683 if (!debug_guardpage_enabled())
686 if (order
>= debug_guardpage_minorder())
689 page_ext
= lookup_page_ext(page
);
690 if (unlikely(!page_ext
))
693 __set_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
695 INIT_LIST_HEAD(&page
->lru
);
696 set_page_private(page
, order
);
697 /* Guard pages are not available for any usage */
698 __mod_zone_freepage_state(zone
, -(1 << order
), migratetype
);
703 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
704 unsigned int order
, int migratetype
)
706 struct page_ext
*page_ext
;
708 if (!debug_guardpage_enabled())
711 page_ext
= lookup_page_ext(page
);
712 if (unlikely(!page_ext
))
715 __clear_bit(PAGE_EXT_DEBUG_GUARD
, &page_ext
->flags
);
717 set_page_private(page
, 0);
718 if (!is_migrate_isolate(migratetype
))
719 __mod_zone_freepage_state(zone
, (1 << order
), migratetype
);
722 struct page_ext_operations debug_guardpage_ops
;
723 static inline bool set_page_guard(struct zone
*zone
, struct page
*page
,
724 unsigned int order
, int migratetype
) { return false; }
725 static inline void clear_page_guard(struct zone
*zone
, struct page
*page
,
726 unsigned int order
, int migratetype
) {}
729 static inline void set_page_order(struct page
*page
, unsigned int order
)
731 set_page_private(page
, order
);
732 __SetPageBuddy(page
);
735 static inline void rmv_page_order(struct page
*page
)
737 __ClearPageBuddy(page
);
738 set_page_private(page
, 0);
742 * This function checks whether a page is free && is the buddy
743 * we can do coalesce a page and its buddy if
744 * (a) the buddy is not in a hole (check before calling!) &&
745 * (b) the buddy is in the buddy system &&
746 * (c) a page and its buddy have the same order &&
747 * (d) a page and its buddy are in the same zone.
749 * For recording whether a page is in the buddy system, we set ->_mapcount
750 * PAGE_BUDDY_MAPCOUNT_VALUE.
751 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
752 * serialized by zone->lock.
754 * For recording page's order, we use page_private(page).
756 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
759 if (page_is_guard(buddy
) && page_order(buddy
) == order
) {
760 if (page_zone_id(page
) != page_zone_id(buddy
))
763 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
768 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
770 * zone check is done late to avoid uselessly
771 * calculating zone/node ids for pages that could
774 if (page_zone_id(page
) != page_zone_id(buddy
))
777 VM_BUG_ON_PAGE(page_count(buddy
) != 0, buddy
);
785 * Freeing function for a buddy system allocator.
787 * The concept of a buddy system is to maintain direct-mapped table
788 * (containing bit values) for memory blocks of various "orders".
789 * The bottom level table contains the map for the smallest allocatable
790 * units of memory (here, pages), and each level above it describes
791 * pairs of units from the levels below, hence, "buddies".
792 * At a high level, all that happens here is marking the table entry
793 * at the bottom level available, and propagating the changes upward
794 * as necessary, plus some accounting needed to play nicely with other
795 * parts of the VM system.
796 * At each level, we keep a list of pages, which are heads of continuous
797 * free pages of length of (1 << order) and marked with _mapcount
798 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
800 * So when we are allocating or freeing one, we can derive the state of the
801 * other. That is, if we allocate a small block, and both were
802 * free, the remainder of the region must be split into blocks.
803 * If a block is freed, and its buddy is also free, then this
804 * triggers coalescing into a block of larger size.
809 static inline void __free_one_page(struct page
*page
,
811 struct zone
*zone
, unsigned int order
,
814 unsigned long combined_pfn
;
815 unsigned long uninitialized_var(buddy_pfn
);
817 unsigned int max_order
;
819 max_order
= min_t(unsigned int, MAX_ORDER
, pageblock_order
+ 1);
821 VM_BUG_ON(!zone_is_initialized(zone
));
822 VM_BUG_ON_PAGE(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
, page
);
824 VM_BUG_ON(migratetype
== -1);
825 if (likely(!is_migrate_isolate(migratetype
)))
826 __mod_zone_freepage_state(zone
, 1 << order
, migratetype
);
828 VM_BUG_ON_PAGE(pfn
& ((1 << order
) - 1), page
);
829 VM_BUG_ON_PAGE(bad_range(zone
, page
), page
);
832 while (order
< max_order
- 1) {
833 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
834 buddy
= page
+ (buddy_pfn
- pfn
);
836 if (!pfn_valid_within(buddy_pfn
))
838 if (!page_is_buddy(page
, buddy
, order
))
841 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
842 * merge with it and move up one order.
844 if (page_is_guard(buddy
)) {
845 clear_page_guard(zone
, buddy
, order
, migratetype
);
847 list_del(&buddy
->lru
);
848 zone
->free_area
[order
].nr_free
--;
849 rmv_page_order(buddy
);
851 combined_pfn
= buddy_pfn
& pfn
;
852 page
= page
+ (combined_pfn
- pfn
);
856 if (max_order
< MAX_ORDER
) {
857 /* If we are here, it means order is >= pageblock_order.
858 * We want to prevent merge between freepages on isolate
859 * pageblock and normal pageblock. Without this, pageblock
860 * isolation could cause incorrect freepage or CMA accounting.
862 * We don't want to hit this code for the more frequent
865 if (unlikely(has_isolate_pageblock(zone
))) {
868 buddy_pfn
= __find_buddy_pfn(pfn
, order
);
869 buddy
= page
+ (buddy_pfn
- pfn
);
870 buddy_mt
= get_pageblock_migratetype(buddy
);
872 if (migratetype
!= buddy_mt
873 && (is_migrate_isolate(migratetype
) ||
874 is_migrate_isolate(buddy_mt
)))
878 goto continue_merging
;
882 set_page_order(page
, order
);
885 * If this is not the largest possible page, check if the buddy
886 * of the next-highest order is free. If it is, it's possible
887 * that pages are being freed that will coalesce soon. In case,
888 * that is happening, add the free page to the tail of the list
889 * so it's less likely to be used soon and more likely to be merged
890 * as a higher order page
892 if ((order
< MAX_ORDER
-2) && pfn_valid_within(buddy_pfn
)) {
893 struct page
*higher_page
, *higher_buddy
;
894 combined_pfn
= buddy_pfn
& pfn
;
895 higher_page
= page
+ (combined_pfn
- pfn
);
896 buddy_pfn
= __find_buddy_pfn(combined_pfn
, order
+ 1);
897 higher_buddy
= higher_page
+ (buddy_pfn
- combined_pfn
);
898 if (pfn_valid_within(buddy_pfn
) &&
899 page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
900 list_add_tail(&page
->lru
,
901 &zone
->free_area
[order
].free_list
[migratetype
]);
906 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
908 zone
->free_area
[order
].nr_free
++;
912 * A bad page could be due to a number of fields. Instead of multiple branches,
913 * try and check multiple fields with one check. The caller must do a detailed
914 * check if necessary.
916 static inline bool page_expected_state(struct page
*page
,
917 unsigned long check_flags
)
919 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
922 if (unlikely((unsigned long)page
->mapping
|
923 page_ref_count(page
) |
925 (unsigned long)page
->mem_cgroup
|
927 (page
->flags
& check_flags
)))
933 static void free_pages_check_bad(struct page
*page
)
935 const char *bad_reason
;
936 unsigned long bad_flags
;
941 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
942 bad_reason
= "nonzero mapcount";
943 if (unlikely(page
->mapping
!= NULL
))
944 bad_reason
= "non-NULL mapping";
945 if (unlikely(page_ref_count(page
) != 0))
946 bad_reason
= "nonzero _refcount";
947 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
)) {
948 bad_reason
= "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
949 bad_flags
= PAGE_FLAGS_CHECK_AT_FREE
;
952 if (unlikely(page
->mem_cgroup
))
953 bad_reason
= "page still charged to cgroup";
955 bad_page(page
, bad_reason
, bad_flags
);
958 static inline int free_pages_check(struct page
*page
)
960 if (likely(page_expected_state(page
, PAGE_FLAGS_CHECK_AT_FREE
)))
963 /* Something has gone sideways, find it */
964 free_pages_check_bad(page
);
968 static int free_tail_pages_check(struct page
*head_page
, struct page
*page
)
973 * We rely page->lru.next never has bit 0 set, unless the page
974 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
976 BUILD_BUG_ON((unsigned long)LIST_POISON1
& 1);
978 if (!IS_ENABLED(CONFIG_DEBUG_VM
)) {
982 switch (page
- head_page
) {
984 /* the first tail page: ->mapping is compound_mapcount() */
985 if (unlikely(compound_mapcount(page
))) {
986 bad_page(page
, "nonzero compound_mapcount", 0);
992 * the second tail page: ->mapping is
993 * page_deferred_list().next -- ignore value.
997 if (page
->mapping
!= TAIL_MAPPING
) {
998 bad_page(page
, "corrupted mapping in tail page", 0);
1003 if (unlikely(!PageTail(page
))) {
1004 bad_page(page
, "PageTail not set", 0);
1007 if (unlikely(compound_head(page
) != head_page
)) {
1008 bad_page(page
, "compound_head not consistent", 0);
1013 page
->mapping
= NULL
;
1014 clear_compound_head(page
);
1018 static __always_inline
bool free_pages_prepare(struct page
*page
,
1019 unsigned int order
, bool check_free
)
1023 VM_BUG_ON_PAGE(PageTail(page
), page
);
1025 trace_mm_page_free(page
, order
);
1028 * Check tail pages before head page information is cleared to
1029 * avoid checking PageCompound for order-0 pages.
1031 if (unlikely(order
)) {
1032 bool compound
= PageCompound(page
);
1035 VM_BUG_ON_PAGE(compound
&& compound_order(page
) != order
, page
);
1038 ClearPageDoubleMap(page
);
1039 for (i
= 1; i
< (1 << order
); i
++) {
1041 bad
+= free_tail_pages_check(page
, page
+ i
);
1042 if (unlikely(free_pages_check(page
+ i
))) {
1046 (page
+ i
)->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1049 if (PageMappingFlags(page
))
1050 page
->mapping
= NULL
;
1051 if (memcg_kmem_enabled() && PageKmemcg(page
))
1052 memcg_kmem_uncharge(page
, order
);
1054 bad
+= free_pages_check(page
);
1058 page_cpupid_reset_last(page
);
1059 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
1060 reset_page_owner(page
, order
);
1062 if (!PageHighMem(page
)) {
1063 debug_check_no_locks_freed(page_address(page
),
1064 PAGE_SIZE
<< order
);
1065 debug_check_no_obj_freed(page_address(page
),
1066 PAGE_SIZE
<< order
);
1068 arch_free_page(page
, order
);
1069 kernel_poison_pages(page
, 1 << order
, 0);
1070 kernel_map_pages(page
, 1 << order
, 0);
1071 kasan_free_pages(page
, order
);
1076 #ifdef CONFIG_DEBUG_VM
1077 static inline bool free_pcp_prepare(struct page
*page
)
1079 return free_pages_prepare(page
, 0, true);
1082 static inline bool bulkfree_pcp_prepare(struct page
*page
)
1087 static bool free_pcp_prepare(struct page
*page
)
1089 return free_pages_prepare(page
, 0, false);
1092 static bool bulkfree_pcp_prepare(struct page
*page
)
1094 return free_pages_check(page
);
1096 #endif /* CONFIG_DEBUG_VM */
1099 * Frees a number of pages from the PCP lists
1100 * Assumes all pages on list are in same zone, and of same order.
1101 * count is the number of pages to free.
1103 * If the zone was previously in an "all pages pinned" state then look to
1104 * see if this freeing clears that state.
1106 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1107 * pinned" detection logic.
1109 static void free_pcppages_bulk(struct zone
*zone
, int count
,
1110 struct per_cpu_pages
*pcp
)
1112 int migratetype
= 0;
1114 bool isolated_pageblocks
;
1116 spin_lock(&zone
->lock
);
1117 isolated_pageblocks
= has_isolate_pageblock(zone
);
1121 struct list_head
*list
;
1124 * Remove pages from lists in a round-robin fashion. A
1125 * batch_free count is maintained that is incremented when an
1126 * empty list is encountered. This is so more pages are freed
1127 * off fuller lists instead of spinning excessively around empty
1132 if (++migratetype
== MIGRATE_PCPTYPES
)
1134 list
= &pcp
->lists
[migratetype
];
1135 } while (list_empty(list
));
1137 /* This is the only non-empty list. Free them all. */
1138 if (batch_free
== MIGRATE_PCPTYPES
)
1142 int mt
; /* migratetype of the to-be-freed page */
1144 page
= list_last_entry(list
, struct page
, lru
);
1145 /* must delete as __free_one_page list manipulates */
1146 list_del(&page
->lru
);
1148 mt
= get_pcppage_migratetype(page
);
1149 /* MIGRATE_ISOLATE page should not go to pcplists */
1150 VM_BUG_ON_PAGE(is_migrate_isolate(mt
), page
);
1151 /* Pageblock could have been isolated meanwhile */
1152 if (unlikely(isolated_pageblocks
))
1153 mt
= get_pageblock_migratetype(page
);
1155 if (bulkfree_pcp_prepare(page
))
1158 __free_one_page(page
, page_to_pfn(page
), zone
, 0, mt
);
1159 trace_mm_page_pcpu_drain(page
, 0, mt
);
1160 } while (--count
&& --batch_free
&& !list_empty(list
));
1162 spin_unlock(&zone
->lock
);
1165 static void free_one_page(struct zone
*zone
,
1166 struct page
*page
, unsigned long pfn
,
1170 spin_lock(&zone
->lock
);
1171 if (unlikely(has_isolate_pageblock(zone
) ||
1172 is_migrate_isolate(migratetype
))) {
1173 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1175 __free_one_page(page
, pfn
, zone
, order
, migratetype
);
1176 spin_unlock(&zone
->lock
);
1179 static void __meminit
__init_single_page(struct page
*page
, unsigned long pfn
,
1180 unsigned long zone
, int nid
, bool zero
)
1183 mm_zero_struct_page(page
);
1184 set_page_links(page
, zone
, nid
, pfn
);
1185 init_page_count(page
);
1186 page_mapcount_reset(page
);
1187 page_cpupid_reset_last(page
);
1189 INIT_LIST_HEAD(&page
->lru
);
1190 #ifdef WANT_PAGE_VIRTUAL
1191 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1192 if (!is_highmem_idx(zone
))
1193 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
1197 static void __meminit
__init_single_pfn(unsigned long pfn
, unsigned long zone
,
1200 return __init_single_page(pfn_to_page(pfn
), pfn
, zone
, nid
, zero
);
1203 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1204 static void __meminit
init_reserved_page(unsigned long pfn
)
1209 if (!early_page_uninitialised(pfn
))
1212 nid
= early_pfn_to_nid(pfn
);
1213 pgdat
= NODE_DATA(nid
);
1215 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1216 struct zone
*zone
= &pgdat
->node_zones
[zid
];
1218 if (pfn
>= zone
->zone_start_pfn
&& pfn
< zone_end_pfn(zone
))
1221 __init_single_pfn(pfn
, zid
, nid
, true);
1224 static inline void init_reserved_page(unsigned long pfn
)
1227 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1230 * Initialised pages do not have PageReserved set. This function is
1231 * called for each range allocated by the bootmem allocator and
1232 * marks the pages PageReserved. The remaining valid pages are later
1233 * sent to the buddy page allocator.
1235 void __meminit
reserve_bootmem_region(phys_addr_t start
, phys_addr_t end
)
1237 unsigned long start_pfn
= PFN_DOWN(start
);
1238 unsigned long end_pfn
= PFN_UP(end
);
1240 for (; start_pfn
< end_pfn
; start_pfn
++) {
1241 if (pfn_valid(start_pfn
)) {
1242 struct page
*page
= pfn_to_page(start_pfn
);
1244 init_reserved_page(start_pfn
);
1246 /* Avoid false-positive PageTail() */
1247 INIT_LIST_HEAD(&page
->lru
);
1249 SetPageReserved(page
);
1254 static void __free_pages_ok(struct page
*page
, unsigned int order
)
1256 unsigned long flags
;
1258 unsigned long pfn
= page_to_pfn(page
);
1260 if (!free_pages_prepare(page
, order
, true))
1263 migratetype
= get_pfnblock_migratetype(page
, pfn
);
1264 local_irq_save(flags
);
1265 __count_vm_events(PGFREE
, 1 << order
);
1266 free_one_page(page_zone(page
), page
, pfn
, order
, migratetype
);
1267 local_irq_restore(flags
);
1270 static void __init
__free_pages_boot_core(struct page
*page
, unsigned int order
)
1272 unsigned int nr_pages
= 1 << order
;
1273 struct page
*p
= page
;
1277 for (loop
= 0; loop
< (nr_pages
- 1); loop
++, p
++) {
1279 __ClearPageReserved(p
);
1280 set_page_count(p
, 0);
1282 __ClearPageReserved(p
);
1283 set_page_count(p
, 0);
1285 page_zone(page
)->managed_pages
+= nr_pages
;
1286 set_page_refcounted(page
);
1287 __free_pages(page
, order
);
1290 #if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1291 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
1293 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata
;
1295 int __meminit
early_pfn_to_nid(unsigned long pfn
)
1297 static DEFINE_SPINLOCK(early_pfn_lock
);
1300 spin_lock(&early_pfn_lock
);
1301 nid
= __early_pfn_to_nid(pfn
, &early_pfnnid_cache
);
1303 nid
= first_online_node
;
1304 spin_unlock(&early_pfn_lock
);
1310 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
1311 static inline bool __meminit __maybe_unused
1312 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1313 struct mminit_pfnnid_cache
*state
)
1317 nid
= __early_pfn_to_nid(pfn
, state
);
1318 if (nid
>= 0 && nid
!= node
)
1323 /* Only safe to use early in boot when initialisation is single-threaded */
1324 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1326 return meminit_pfn_in_nid(pfn
, node
, &early_pfnnid_cache
);
1331 static inline bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
1335 static inline bool __meminit __maybe_unused
1336 meminit_pfn_in_nid(unsigned long pfn
, int node
,
1337 struct mminit_pfnnid_cache
*state
)
1344 void __init
__free_pages_bootmem(struct page
*page
, unsigned long pfn
,
1347 if (early_page_uninitialised(pfn
))
1349 return __free_pages_boot_core(page
, order
);
1353 * Check that the whole (or subset of) a pageblock given by the interval of
1354 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1355 * with the migration of free compaction scanner. The scanners then need to
1356 * use only pfn_valid_within() check for arches that allow holes within
1359 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1361 * It's possible on some configurations to have a setup like node0 node1 node0
1362 * i.e. it's possible that all pages within a zones range of pages do not
1363 * belong to a single zone. We assume that a border between node0 and node1
1364 * can occur within a single pageblock, but not a node0 node1 node0
1365 * interleaving within a single pageblock. It is therefore sufficient to check
1366 * the first and last page of a pageblock and avoid checking each individual
1367 * page in a pageblock.
1369 struct page
*__pageblock_pfn_to_page(unsigned long start_pfn
,
1370 unsigned long end_pfn
, struct zone
*zone
)
1372 struct page
*start_page
;
1373 struct page
*end_page
;
1375 /* end_pfn is one past the range we are checking */
1378 if (!pfn_valid(start_pfn
) || !pfn_valid(end_pfn
))
1381 start_page
= pfn_to_online_page(start_pfn
);
1385 if (page_zone(start_page
) != zone
)
1388 end_page
= pfn_to_page(end_pfn
);
1390 /* This gives a shorter code than deriving page_zone(end_page) */
1391 if (page_zone_id(start_page
) != page_zone_id(end_page
))
1397 void set_zone_contiguous(struct zone
*zone
)
1399 unsigned long block_start_pfn
= zone
->zone_start_pfn
;
1400 unsigned long block_end_pfn
;
1402 block_end_pfn
= ALIGN(block_start_pfn
+ 1, pageblock_nr_pages
);
1403 for (; block_start_pfn
< zone_end_pfn(zone
);
1404 block_start_pfn
= block_end_pfn
,
1405 block_end_pfn
+= pageblock_nr_pages
) {
1407 block_end_pfn
= min(block_end_pfn
, zone_end_pfn(zone
));
1409 if (!__pageblock_pfn_to_page(block_start_pfn
,
1410 block_end_pfn
, zone
))
1414 /* We confirm that there is no hole */
1415 zone
->contiguous
= true;
1418 void clear_zone_contiguous(struct zone
*zone
)
1420 zone
->contiguous
= false;
1423 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1424 static void __init
deferred_free_range(unsigned long pfn
,
1425 unsigned long nr_pages
)
1433 page
= pfn_to_page(pfn
);
1435 /* Free a large naturally-aligned chunk if possible */
1436 if (nr_pages
== pageblock_nr_pages
&&
1437 (pfn
& (pageblock_nr_pages
- 1)) == 0) {
1438 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1439 __free_pages_boot_core(page
, pageblock_order
);
1443 for (i
= 0; i
< nr_pages
; i
++, page
++, pfn
++) {
1444 if ((pfn
& (pageblock_nr_pages
- 1)) == 0)
1445 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1446 __free_pages_boot_core(page
, 0);
1450 /* Completion tracking for deferred_init_memmap() threads */
1451 static atomic_t pgdat_init_n_undone __initdata
;
1452 static __initdata
DECLARE_COMPLETION(pgdat_init_all_done_comp
);
1454 static inline void __init
pgdat_init_report_one_done(void)
1456 if (atomic_dec_and_test(&pgdat_init_n_undone
))
1457 complete(&pgdat_init_all_done_comp
);
1461 * Returns true if page needs to be initialized or freed to buddy allocator.
1463 * First we check if pfn is valid on architectures where it is possible to have
1464 * holes within pageblock_nr_pages. On systems where it is not possible, this
1465 * function is optimized out.
1467 * Then, we check if a current large page is valid by only checking the validity
1470 * Finally, meminit_pfn_in_nid is checked on systems where pfns can interleave
1471 * within a node: a pfn is between start and end of a node, but does not belong
1472 * to this memory node.
1474 static inline bool __init
1475 deferred_pfn_valid(int nid
, unsigned long pfn
,
1476 struct mminit_pfnnid_cache
*nid_init_state
)
1478 if (!pfn_valid_within(pfn
))
1480 if (!(pfn
& (pageblock_nr_pages
- 1)) && !pfn_valid(pfn
))
1482 if (!meminit_pfn_in_nid(pfn
, nid
, nid_init_state
))
1488 * Free pages to buddy allocator. Try to free aligned pages in
1489 * pageblock_nr_pages sizes.
1491 static void __init
deferred_free_pages(int nid
, int zid
, unsigned long pfn
,
1492 unsigned long end_pfn
)
1494 struct mminit_pfnnid_cache nid_init_state
= { };
1495 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1496 unsigned long nr_free
= 0;
1498 for (; pfn
< end_pfn
; pfn
++) {
1499 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1500 deferred_free_range(pfn
- nr_free
, nr_free
);
1502 } else if (!(pfn
& nr_pgmask
)) {
1503 deferred_free_range(pfn
- nr_free
, nr_free
);
1510 /* Free the last block of pages to allocator */
1511 deferred_free_range(pfn
- nr_free
, nr_free
);
1515 * Initialize struct pages. We minimize pfn page lookups and scheduler checks
1516 * by performing it only once every pageblock_nr_pages.
1517 * Return number of pages initialized.
1519 static unsigned long __init
deferred_init_pages(int nid
, int zid
,
1521 unsigned long end_pfn
)
1523 struct mminit_pfnnid_cache nid_init_state
= { };
1524 unsigned long nr_pgmask
= pageblock_nr_pages
- 1;
1525 unsigned long nr_pages
= 0;
1526 struct page
*page
= NULL
;
1528 for (; pfn
< end_pfn
; pfn
++) {
1529 if (!deferred_pfn_valid(nid
, pfn
, &nid_init_state
)) {
1532 } else if (!page
|| !(pfn
& nr_pgmask
)) {
1533 page
= pfn_to_page(pfn
);
1538 __init_single_page(page
, pfn
, zid
, nid
, true);
1544 /* Initialise remaining memory on a node */
1545 static int __init
deferred_init_memmap(void *data
)
1547 pg_data_t
*pgdat
= data
;
1548 int nid
= pgdat
->node_id
;
1549 unsigned long start
= jiffies
;
1550 unsigned long nr_pages
= 0;
1551 unsigned long spfn
, epfn
;
1552 phys_addr_t spa
, epa
;
1555 unsigned long first_init_pfn
= pgdat
->first_deferred_pfn
;
1556 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1559 if (first_init_pfn
== ULONG_MAX
) {
1560 pgdat_init_report_one_done();
1564 /* Bind memory initialisation thread to a local node if possible */
1565 if (!cpumask_empty(cpumask
))
1566 set_cpus_allowed_ptr(current
, cpumask
);
1568 /* Sanity check boundaries */
1569 BUG_ON(pgdat
->first_deferred_pfn
< pgdat
->node_start_pfn
);
1570 BUG_ON(pgdat
->first_deferred_pfn
> pgdat_end_pfn(pgdat
));
1571 pgdat
->first_deferred_pfn
= ULONG_MAX
;
1573 /* Only the highest zone is deferred so find it */
1574 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1575 zone
= pgdat
->node_zones
+ zid
;
1576 if (first_init_pfn
< zone_end_pfn(zone
))
1579 first_init_pfn
= max(zone
->zone_start_pfn
, first_init_pfn
);
1582 * Initialize and free pages. We do it in two loops: first we initialize
1583 * struct page, than free to buddy allocator, because while we are
1584 * freeing pages we can access pages that are ahead (computing buddy
1585 * page in __free_one_page()).
1587 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1588 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1589 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1590 nr_pages
+= deferred_init_pages(nid
, zid
, spfn
, epfn
);
1592 for_each_free_mem_range(i
, nid
, MEMBLOCK_NONE
, &spa
, &epa
, NULL
) {
1593 spfn
= max_t(unsigned long, first_init_pfn
, PFN_UP(spa
));
1594 epfn
= min_t(unsigned long, zone_end_pfn(zone
), PFN_DOWN(epa
));
1595 deferred_free_pages(nid
, zid
, spfn
, epfn
);
1598 /* Sanity check that the next zone really is unpopulated */
1599 WARN_ON(++zid
< MAX_NR_ZONES
&& populated_zone(++zone
));
1601 pr_info("node %d initialised, %lu pages in %ums\n", nid
, nr_pages
,
1602 jiffies_to_msecs(jiffies
- start
));
1604 pgdat_init_report_one_done();
1607 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1609 void __init
page_alloc_init_late(void)
1613 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1616 /* There will be num_node_state(N_MEMORY) threads */
1617 atomic_set(&pgdat_init_n_undone
, num_node_state(N_MEMORY
));
1618 for_each_node_state(nid
, N_MEMORY
) {
1619 kthread_run(deferred_init_memmap
, NODE_DATA(nid
), "pgdatinit%d", nid
);
1622 /* Block until all are initialised */
1623 wait_for_completion(&pgdat_init_all_done_comp
);
1625 /* Reinit limits that are based on free pages after the kernel is up */
1626 files_maxfiles_init();
1628 #ifdef CONFIG_ARCH_DISCARD_MEMBLOCK
1629 /* Discard memblock private memory */
1633 for_each_populated_zone(zone
)
1634 set_zone_contiguous(zone
);
1638 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
1639 void __init
init_cma_reserved_pageblock(struct page
*page
)
1641 unsigned i
= pageblock_nr_pages
;
1642 struct page
*p
= page
;
1645 __ClearPageReserved(p
);
1646 set_page_count(p
, 0);
1649 set_pageblock_migratetype(page
, MIGRATE_CMA
);
1651 if (pageblock_order
>= MAX_ORDER
) {
1652 i
= pageblock_nr_pages
;
1655 set_page_refcounted(p
);
1656 __free_pages(p
, MAX_ORDER
- 1);
1657 p
+= MAX_ORDER_NR_PAGES
;
1658 } while (i
-= MAX_ORDER_NR_PAGES
);
1660 set_page_refcounted(page
);
1661 __free_pages(page
, pageblock_order
);
1664 adjust_managed_page_count(page
, pageblock_nr_pages
);
1669 * The order of subdivision here is critical for the IO subsystem.
1670 * Please do not alter this order without good reasons and regression
1671 * testing. Specifically, as large blocks of memory are subdivided,
1672 * the order in which smaller blocks are delivered depends on the order
1673 * they're subdivided in this function. This is the primary factor
1674 * influencing the order in which pages are delivered to the IO
1675 * subsystem according to empirical testing, and this is also justified
1676 * by considering the behavior of a buddy system containing a single
1677 * large block of memory acted on by a series of small allocations.
1678 * This behavior is a critical factor in sglist merging's success.
1682 static inline void expand(struct zone
*zone
, struct page
*page
,
1683 int low
, int high
, struct free_area
*area
,
1686 unsigned long size
= 1 << high
;
1688 while (high
> low
) {
1692 VM_BUG_ON_PAGE(bad_range(zone
, &page
[size
]), &page
[size
]);
1695 * Mark as guard pages (or page), that will allow to
1696 * merge back to allocator when buddy will be freed.
1697 * Corresponding page table entries will not be touched,
1698 * pages will stay not present in virtual address space
1700 if (set_page_guard(zone
, &page
[size
], high
, migratetype
))
1703 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
1705 set_page_order(&page
[size
], high
);
1709 static void check_new_page_bad(struct page
*page
)
1711 const char *bad_reason
= NULL
;
1712 unsigned long bad_flags
= 0;
1714 if (unlikely(atomic_read(&page
->_mapcount
) != -1))
1715 bad_reason
= "nonzero mapcount";
1716 if (unlikely(page
->mapping
!= NULL
))
1717 bad_reason
= "non-NULL mapping";
1718 if (unlikely(page_ref_count(page
) != 0))
1719 bad_reason
= "nonzero _count";
1720 if (unlikely(page
->flags
& __PG_HWPOISON
)) {
1721 bad_reason
= "HWPoisoned (hardware-corrupted)";
1722 bad_flags
= __PG_HWPOISON
;
1723 /* Don't complain about hwpoisoned pages */
1724 page_mapcount_reset(page
); /* remove PageBuddy */
1727 if (unlikely(page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)) {
1728 bad_reason
= "PAGE_FLAGS_CHECK_AT_PREP flag set";
1729 bad_flags
= PAGE_FLAGS_CHECK_AT_PREP
;
1732 if (unlikely(page
->mem_cgroup
))
1733 bad_reason
= "page still charged to cgroup";
1735 bad_page(page
, bad_reason
, bad_flags
);
1739 * This page is about to be returned from the page allocator
1741 static inline int check_new_page(struct page
*page
)
1743 if (likely(page_expected_state(page
,
1744 PAGE_FLAGS_CHECK_AT_PREP
|__PG_HWPOISON
)))
1747 check_new_page_bad(page
);
1751 static inline bool free_pages_prezeroed(void)
1753 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO
) &&
1754 page_poisoning_enabled();
1757 #ifdef CONFIG_DEBUG_VM
1758 static bool check_pcp_refill(struct page
*page
)
1763 static bool check_new_pcp(struct page
*page
)
1765 return check_new_page(page
);
1768 static bool check_pcp_refill(struct page
*page
)
1770 return check_new_page(page
);
1772 static bool check_new_pcp(struct page
*page
)
1776 #endif /* CONFIG_DEBUG_VM */
1778 static bool check_new_pages(struct page
*page
, unsigned int order
)
1781 for (i
= 0; i
< (1 << order
); i
++) {
1782 struct page
*p
= page
+ i
;
1784 if (unlikely(check_new_page(p
)))
1791 inline void post_alloc_hook(struct page
*page
, unsigned int order
,
1794 set_page_private(page
, 0);
1795 set_page_refcounted(page
);
1797 arch_alloc_page(page
, order
);
1798 kernel_map_pages(page
, 1 << order
, 1);
1799 kernel_poison_pages(page
, 1 << order
, 1);
1800 kasan_alloc_pages(page
, order
);
1801 set_page_owner(page
, order
, gfp_flags
);
1804 static void prep_new_page(struct page
*page
, unsigned int order
, gfp_t gfp_flags
,
1805 unsigned int alloc_flags
)
1809 post_alloc_hook(page
, order
, gfp_flags
);
1811 if (!free_pages_prezeroed() && (gfp_flags
& __GFP_ZERO
))
1812 for (i
= 0; i
< (1 << order
); i
++)
1813 clear_highpage(page
+ i
);
1815 if (order
&& (gfp_flags
& __GFP_COMP
))
1816 prep_compound_page(page
, order
);
1819 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
1820 * allocate the page. The expectation is that the caller is taking
1821 * steps that will free more memory. The caller should avoid the page
1822 * being used for !PFMEMALLOC purposes.
1824 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
1825 set_page_pfmemalloc(page
);
1827 clear_page_pfmemalloc(page
);
1831 * Go through the free lists for the given migratetype and remove
1832 * the smallest available page from the freelists
1834 static __always_inline
1835 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
1838 unsigned int current_order
;
1839 struct free_area
*area
;
1842 /* Find a page of the appropriate size in the preferred list */
1843 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
1844 area
= &(zone
->free_area
[current_order
]);
1845 page
= list_first_entry_or_null(&area
->free_list
[migratetype
],
1849 list_del(&page
->lru
);
1850 rmv_page_order(page
);
1852 expand(zone
, page
, order
, current_order
, area
, migratetype
);
1853 set_pcppage_migratetype(page
, migratetype
);
1862 * This array describes the order lists are fallen back to when
1863 * the free lists for the desirable migrate type are depleted
1865 static int fallbacks
[MIGRATE_TYPES
][4] = {
1866 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1867 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_TYPES
},
1868 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_TYPES
},
1870 [MIGRATE_CMA
] = { MIGRATE_TYPES
}, /* Never used */
1872 #ifdef CONFIG_MEMORY_ISOLATION
1873 [MIGRATE_ISOLATE
] = { MIGRATE_TYPES
}, /* Never used */
1878 static __always_inline
struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1881 return __rmqueue_smallest(zone
, order
, MIGRATE_CMA
);
1884 static inline struct page
*__rmqueue_cma_fallback(struct zone
*zone
,
1885 unsigned int order
) { return NULL
; }
1889 * Move the free pages in a range to the free lists of the requested type.
1890 * Note that start_page and end_pages are not aligned on a pageblock
1891 * boundary. If alignment is required, use move_freepages_block()
1893 static int move_freepages(struct zone
*zone
,
1894 struct page
*start_page
, struct page
*end_page
,
1895 int migratetype
, int *num_movable
)
1899 int pages_moved
= 0;
1901 #ifndef CONFIG_HOLES_IN_ZONE
1903 * page_zone is not safe to call in this context when
1904 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1905 * anyway as we check zone boundaries in move_freepages_block().
1906 * Remove at a later date when no bug reports exist related to
1907 * grouping pages by mobility
1909 VM_BUG_ON(page_zone(start_page
) != page_zone(end_page
));
1915 for (page
= start_page
; page
<= end_page
;) {
1916 if (!pfn_valid_within(page_to_pfn(page
))) {
1921 /* Make sure we are not inadvertently changing nodes */
1922 VM_BUG_ON_PAGE(page_to_nid(page
) != zone_to_nid(zone
), page
);
1924 if (!PageBuddy(page
)) {
1926 * We assume that pages that could be isolated for
1927 * migration are movable. But we don't actually try
1928 * isolating, as that would be expensive.
1931 (PageLRU(page
) || __PageMovable(page
)))
1938 order
= page_order(page
);
1939 list_move(&page
->lru
,
1940 &zone
->free_area
[order
].free_list
[migratetype
]);
1942 pages_moved
+= 1 << order
;
1948 int move_freepages_block(struct zone
*zone
, struct page
*page
,
1949 int migratetype
, int *num_movable
)
1951 unsigned long start_pfn
, end_pfn
;
1952 struct page
*start_page
, *end_page
;
1954 start_pfn
= page_to_pfn(page
);
1955 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
1956 start_page
= pfn_to_page(start_pfn
);
1957 end_page
= start_page
+ pageblock_nr_pages
- 1;
1958 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
1960 /* Do not cross zone boundaries */
1961 if (!zone_spans_pfn(zone
, start_pfn
))
1963 if (!zone_spans_pfn(zone
, end_pfn
))
1966 return move_freepages(zone
, start_page
, end_page
, migratetype
,
1970 static void change_pageblock_range(struct page
*pageblock_page
,
1971 int start_order
, int migratetype
)
1973 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
1975 while (nr_pageblocks
--) {
1976 set_pageblock_migratetype(pageblock_page
, migratetype
);
1977 pageblock_page
+= pageblock_nr_pages
;
1982 * When we are falling back to another migratetype during allocation, try to
1983 * steal extra free pages from the same pageblocks to satisfy further
1984 * allocations, instead of polluting multiple pageblocks.
1986 * If we are stealing a relatively large buddy page, it is likely there will
1987 * be more free pages in the pageblock, so try to steal them all. For
1988 * reclaimable and unmovable allocations, we steal regardless of page size,
1989 * as fragmentation caused by those allocations polluting movable pageblocks
1990 * is worse than movable allocations stealing from unmovable and reclaimable
1993 static bool can_steal_fallback(unsigned int order
, int start_mt
)
1996 * Leaving this order check is intended, although there is
1997 * relaxed order check in next check. The reason is that
1998 * we can actually steal whole pageblock if this condition met,
1999 * but, below check doesn't guarantee it and that is just heuristic
2000 * so could be changed anytime.
2002 if (order
>= pageblock_order
)
2005 if (order
>= pageblock_order
/ 2 ||
2006 start_mt
== MIGRATE_RECLAIMABLE
||
2007 start_mt
== MIGRATE_UNMOVABLE
||
2008 page_group_by_mobility_disabled
)
2015 * This function implements actual steal behaviour. If order is large enough,
2016 * we can steal whole pageblock. If not, we first move freepages in this
2017 * pageblock to our migratetype and determine how many already-allocated pages
2018 * are there in the pageblock with a compatible migratetype. If at least half
2019 * of pages are free or compatible, we can change migratetype of the pageblock
2020 * itself, so pages freed in the future will be put on the correct free list.
2022 static void steal_suitable_fallback(struct zone
*zone
, struct page
*page
,
2023 int start_type
, bool whole_block
)
2025 unsigned int current_order
= page_order(page
);
2026 struct free_area
*area
;
2027 int free_pages
, movable_pages
, alike_pages
;
2030 old_block_type
= get_pageblock_migratetype(page
);
2033 * This can happen due to races and we want to prevent broken
2034 * highatomic accounting.
2036 if (is_migrate_highatomic(old_block_type
))
2039 /* Take ownership for orders >= pageblock_order */
2040 if (current_order
>= pageblock_order
) {
2041 change_pageblock_range(page
, current_order
, start_type
);
2045 /* We are not allowed to try stealing from the whole block */
2049 free_pages
= move_freepages_block(zone
, page
, start_type
,
2052 * Determine how many pages are compatible with our allocation.
2053 * For movable allocation, it's the number of movable pages which
2054 * we just obtained. For other types it's a bit more tricky.
2056 if (start_type
== MIGRATE_MOVABLE
) {
2057 alike_pages
= movable_pages
;
2060 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2061 * to MOVABLE pageblock, consider all non-movable pages as
2062 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2063 * vice versa, be conservative since we can't distinguish the
2064 * exact migratetype of non-movable pages.
2066 if (old_block_type
== MIGRATE_MOVABLE
)
2067 alike_pages
= pageblock_nr_pages
2068 - (free_pages
+ movable_pages
);
2073 /* moving whole block can fail due to zone boundary conditions */
2078 * If a sufficient number of pages in the block are either free or of
2079 * comparable migratability as our allocation, claim the whole block.
2081 if (free_pages
+ alike_pages
>= (1 << (pageblock_order
-1)) ||
2082 page_group_by_mobility_disabled
)
2083 set_pageblock_migratetype(page
, start_type
);
2088 area
= &zone
->free_area
[current_order
];
2089 list_move(&page
->lru
, &area
->free_list
[start_type
]);
2093 * Check whether there is a suitable fallback freepage with requested order.
2094 * If only_stealable is true, this function returns fallback_mt only if
2095 * we can steal other freepages all together. This would help to reduce
2096 * fragmentation due to mixed migratetype pages in one pageblock.
2098 int find_suitable_fallback(struct free_area
*area
, unsigned int order
,
2099 int migratetype
, bool only_stealable
, bool *can_steal
)
2104 if (area
->nr_free
== 0)
2109 fallback_mt
= fallbacks
[migratetype
][i
];
2110 if (fallback_mt
== MIGRATE_TYPES
)
2113 if (list_empty(&area
->free_list
[fallback_mt
]))
2116 if (can_steal_fallback(order
, migratetype
))
2119 if (!only_stealable
)
2130 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2131 * there are no empty page blocks that contain a page with a suitable order
2133 static void reserve_highatomic_pageblock(struct page
*page
, struct zone
*zone
,
2134 unsigned int alloc_order
)
2137 unsigned long max_managed
, flags
;
2140 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2141 * Check is race-prone but harmless.
2143 max_managed
= (zone
->managed_pages
/ 100) + pageblock_nr_pages
;
2144 if (zone
->nr_reserved_highatomic
>= max_managed
)
2147 spin_lock_irqsave(&zone
->lock
, flags
);
2149 /* Recheck the nr_reserved_highatomic limit under the lock */
2150 if (zone
->nr_reserved_highatomic
>= max_managed
)
2154 mt
= get_pageblock_migratetype(page
);
2155 if (!is_migrate_highatomic(mt
) && !is_migrate_isolate(mt
)
2156 && !is_migrate_cma(mt
)) {
2157 zone
->nr_reserved_highatomic
+= pageblock_nr_pages
;
2158 set_pageblock_migratetype(page
, MIGRATE_HIGHATOMIC
);
2159 move_freepages_block(zone
, page
, MIGRATE_HIGHATOMIC
, NULL
);
2163 spin_unlock_irqrestore(&zone
->lock
, flags
);
2167 * Used when an allocation is about to fail under memory pressure. This
2168 * potentially hurts the reliability of high-order allocations when under
2169 * intense memory pressure but failed atomic allocations should be easier
2170 * to recover from than an OOM.
2172 * If @force is true, try to unreserve a pageblock even though highatomic
2173 * pageblock is exhausted.
2175 static bool unreserve_highatomic_pageblock(const struct alloc_context
*ac
,
2178 struct zonelist
*zonelist
= ac
->zonelist
;
2179 unsigned long flags
;
2186 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, ac
->high_zoneidx
,
2189 * Preserve at least one pageblock unless memory pressure
2192 if (!force
&& zone
->nr_reserved_highatomic
<=
2196 spin_lock_irqsave(&zone
->lock
, flags
);
2197 for (order
= 0; order
< MAX_ORDER
; order
++) {
2198 struct free_area
*area
= &(zone
->free_area
[order
]);
2200 page
= list_first_entry_or_null(
2201 &area
->free_list
[MIGRATE_HIGHATOMIC
],
2207 * In page freeing path, migratetype change is racy so
2208 * we can counter several free pages in a pageblock
2209 * in this loop althoug we changed the pageblock type
2210 * from highatomic to ac->migratetype. So we should
2211 * adjust the count once.
2213 if (is_migrate_highatomic_page(page
)) {
2215 * It should never happen but changes to
2216 * locking could inadvertently allow a per-cpu
2217 * drain to add pages to MIGRATE_HIGHATOMIC
2218 * while unreserving so be safe and watch for
2221 zone
->nr_reserved_highatomic
-= min(
2223 zone
->nr_reserved_highatomic
);
2227 * Convert to ac->migratetype and avoid the normal
2228 * pageblock stealing heuristics. Minimally, the caller
2229 * is doing the work and needs the pages. More
2230 * importantly, if the block was always converted to
2231 * MIGRATE_UNMOVABLE or another type then the number
2232 * of pageblocks that cannot be completely freed
2235 set_pageblock_migratetype(page
, ac
->migratetype
);
2236 ret
= move_freepages_block(zone
, page
, ac
->migratetype
,
2239 spin_unlock_irqrestore(&zone
->lock
, flags
);
2243 spin_unlock_irqrestore(&zone
->lock
, flags
);
2250 * Try finding a free buddy page on the fallback list and put it on the free
2251 * list of requested migratetype, possibly along with other pages from the same
2252 * block, depending on fragmentation avoidance heuristics. Returns true if
2253 * fallback was found so that __rmqueue_smallest() can grab it.
2255 * The use of signed ints for order and current_order is a deliberate
2256 * deviation from the rest of this file, to make the for loop
2257 * condition simpler.
2259 static __always_inline
bool
2260 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
2262 struct free_area
*area
;
2269 * Find the largest available free page in the other list. This roughly
2270 * approximates finding the pageblock with the most free pages, which
2271 * would be too costly to do exactly.
2273 for (current_order
= MAX_ORDER
- 1; current_order
>= order
;
2275 area
= &(zone
->free_area
[current_order
]);
2276 fallback_mt
= find_suitable_fallback(area
, current_order
,
2277 start_migratetype
, false, &can_steal
);
2278 if (fallback_mt
== -1)
2282 * We cannot steal all free pages from the pageblock and the
2283 * requested migratetype is movable. In that case it's better to
2284 * steal and split the smallest available page instead of the
2285 * largest available page, because even if the next movable
2286 * allocation falls back into a different pageblock than this
2287 * one, it won't cause permanent fragmentation.
2289 if (!can_steal
&& start_migratetype
== MIGRATE_MOVABLE
2290 && current_order
> order
)
2299 for (current_order
= order
; current_order
< MAX_ORDER
;
2301 area
= &(zone
->free_area
[current_order
]);
2302 fallback_mt
= find_suitable_fallback(area
, current_order
,
2303 start_migratetype
, false, &can_steal
);
2304 if (fallback_mt
!= -1)
2309 * This should not happen - we already found a suitable fallback
2310 * when looking for the largest page.
2312 VM_BUG_ON(current_order
== MAX_ORDER
);
2315 page
= list_first_entry(&area
->free_list
[fallback_mt
],
2318 steal_suitable_fallback(zone
, page
, start_migratetype
, can_steal
);
2320 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
2321 start_migratetype
, fallback_mt
);
2328 * Do the hard work of removing an element from the buddy allocator.
2329 * Call me with the zone->lock already held.
2331 static __always_inline
struct page
*
2332 __rmqueue(struct zone
*zone
, unsigned int order
, int migratetype
)
2337 page
= __rmqueue_smallest(zone
, order
, migratetype
);
2338 if (unlikely(!page
)) {
2339 if (migratetype
== MIGRATE_MOVABLE
)
2340 page
= __rmqueue_cma_fallback(zone
, order
);
2342 if (!page
&& __rmqueue_fallback(zone
, order
, migratetype
))
2346 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2351 * Obtain a specified number of elements from the buddy allocator, all under
2352 * a single hold of the lock, for efficiency. Add them to the supplied list.
2353 * Returns the number of new pages which were placed at *list.
2355 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
2356 unsigned long count
, struct list_head
*list
,
2361 spin_lock(&zone
->lock
);
2362 for (i
= 0; i
< count
; ++i
) {
2363 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
2364 if (unlikely(page
== NULL
))
2367 if (unlikely(check_pcp_refill(page
)))
2371 * Split buddy pages returned by expand() are received here in
2372 * physical page order. The page is added to the tail of
2373 * caller's list. From the callers perspective, the linked list
2374 * is ordered by page number under some conditions. This is
2375 * useful for IO devices that can forward direction from the
2376 * head, thus also in the physical page order. This is useful
2377 * for IO devices that can merge IO requests if the physical
2378 * pages are ordered properly.
2380 list_add_tail(&page
->lru
, list
);
2382 if (is_migrate_cma(get_pcppage_migratetype(page
)))
2383 __mod_zone_page_state(zone
, NR_FREE_CMA_PAGES
,
2388 * i pages were removed from the buddy list even if some leak due
2389 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2390 * on i. Do not confuse with 'alloced' which is the number of
2391 * pages added to the pcp list.
2393 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
2394 spin_unlock(&zone
->lock
);
2400 * Called from the vmstat counter updater to drain pagesets of this
2401 * currently executing processor on remote nodes after they have
2404 * Note that this function must be called with the thread pinned to
2405 * a single processor.
2407 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
2409 unsigned long flags
;
2410 int to_drain
, batch
;
2412 local_irq_save(flags
);
2413 batch
= READ_ONCE(pcp
->batch
);
2414 to_drain
= min(pcp
->count
, batch
);
2416 free_pcppages_bulk(zone
, to_drain
, pcp
);
2417 pcp
->count
-= to_drain
;
2419 local_irq_restore(flags
);
2424 * Drain pcplists of the indicated processor and zone.
2426 * The processor must either be the current processor and the
2427 * thread pinned to the current processor or a processor that
2430 static void drain_pages_zone(unsigned int cpu
, struct zone
*zone
)
2432 unsigned long flags
;
2433 struct per_cpu_pageset
*pset
;
2434 struct per_cpu_pages
*pcp
;
2436 local_irq_save(flags
);
2437 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
2441 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
2444 local_irq_restore(flags
);
2448 * Drain pcplists of all zones on the indicated processor.
2450 * The processor must either be the current processor and the
2451 * thread pinned to the current processor or a processor that
2454 static void drain_pages(unsigned int cpu
)
2458 for_each_populated_zone(zone
) {
2459 drain_pages_zone(cpu
, zone
);
2464 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
2466 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2467 * the single zone's pages.
2469 void drain_local_pages(struct zone
*zone
)
2471 int cpu
= smp_processor_id();
2474 drain_pages_zone(cpu
, zone
);
2479 static void drain_local_pages_wq(struct work_struct
*work
)
2482 * drain_all_pages doesn't use proper cpu hotplug protection so
2483 * we can race with cpu offline when the WQ can move this from
2484 * a cpu pinned worker to an unbound one. We can operate on a different
2485 * cpu which is allright but we also have to make sure to not move to
2489 drain_local_pages(NULL
);
2494 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2496 * When zone parameter is non-NULL, spill just the single zone's pages.
2498 * Note that this can be extremely slow as the draining happens in a workqueue.
2500 void drain_all_pages(struct zone
*zone
)
2505 * Allocate in the BSS so we wont require allocation in
2506 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2508 static cpumask_t cpus_with_pcps
;
2511 * Make sure nobody triggers this path before mm_percpu_wq is fully
2514 if (WARN_ON_ONCE(!mm_percpu_wq
))
2518 * Do not drain if one is already in progress unless it's specific to
2519 * a zone. Such callers are primarily CMA and memory hotplug and need
2520 * the drain to be complete when the call returns.
2522 if (unlikely(!mutex_trylock(&pcpu_drain_mutex
))) {
2525 mutex_lock(&pcpu_drain_mutex
);
2529 * We don't care about racing with CPU hotplug event
2530 * as offline notification will cause the notified
2531 * cpu to drain that CPU pcps and on_each_cpu_mask
2532 * disables preemption as part of its processing
2534 for_each_online_cpu(cpu
) {
2535 struct per_cpu_pageset
*pcp
;
2537 bool has_pcps
= false;
2540 pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
2544 for_each_populated_zone(z
) {
2545 pcp
= per_cpu_ptr(z
->pageset
, cpu
);
2546 if (pcp
->pcp
.count
) {
2554 cpumask_set_cpu(cpu
, &cpus_with_pcps
);
2556 cpumask_clear_cpu(cpu
, &cpus_with_pcps
);
2559 for_each_cpu(cpu
, &cpus_with_pcps
) {
2560 struct work_struct
*work
= per_cpu_ptr(&pcpu_drain
, cpu
);
2561 INIT_WORK(work
, drain_local_pages_wq
);
2562 queue_work_on(cpu
, mm_percpu_wq
, work
);
2564 for_each_cpu(cpu
, &cpus_with_pcps
)
2565 flush_work(per_cpu_ptr(&pcpu_drain
, cpu
));
2567 mutex_unlock(&pcpu_drain_mutex
);
2570 #ifdef CONFIG_HIBERNATION
2573 * Touch the watchdog for every WD_PAGE_COUNT pages.
2575 #define WD_PAGE_COUNT (128*1024)
2577 void mark_free_pages(struct zone
*zone
)
2579 unsigned long pfn
, max_zone_pfn
, page_count
= WD_PAGE_COUNT
;
2580 unsigned long flags
;
2581 unsigned int order
, t
;
2584 if (zone_is_empty(zone
))
2587 spin_lock_irqsave(&zone
->lock
, flags
);
2589 max_zone_pfn
= zone_end_pfn(zone
);
2590 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
2591 if (pfn_valid(pfn
)) {
2592 page
= pfn_to_page(pfn
);
2594 if (!--page_count
) {
2595 touch_nmi_watchdog();
2596 page_count
= WD_PAGE_COUNT
;
2599 if (page_zone(page
) != zone
)
2602 if (!swsusp_page_is_forbidden(page
))
2603 swsusp_unset_page_free(page
);
2606 for_each_migratetype_order(order
, t
) {
2607 list_for_each_entry(page
,
2608 &zone
->free_area
[order
].free_list
[t
], lru
) {
2611 pfn
= page_to_pfn(page
);
2612 for (i
= 0; i
< (1UL << order
); i
++) {
2613 if (!--page_count
) {
2614 touch_nmi_watchdog();
2615 page_count
= WD_PAGE_COUNT
;
2617 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
2621 spin_unlock_irqrestore(&zone
->lock
, flags
);
2623 #endif /* CONFIG_PM */
2625 static bool free_unref_page_prepare(struct page
*page
, unsigned long pfn
)
2629 if (!free_pcp_prepare(page
))
2632 migratetype
= get_pfnblock_migratetype(page
, pfn
);
2633 set_pcppage_migratetype(page
, migratetype
);
2637 static void free_unref_page_commit(struct page
*page
, unsigned long pfn
)
2639 struct zone
*zone
= page_zone(page
);
2640 struct per_cpu_pages
*pcp
;
2643 migratetype
= get_pcppage_migratetype(page
);
2644 __count_vm_event(PGFREE
);
2647 * We only track unmovable, reclaimable and movable on pcp lists.
2648 * Free ISOLATE pages back to the allocator because they are being
2649 * offlined but treat HIGHATOMIC as movable pages so we can get those
2650 * areas back if necessary. Otherwise, we may have to free
2651 * excessively into the page allocator
2653 if (migratetype
>= MIGRATE_PCPTYPES
) {
2654 if (unlikely(is_migrate_isolate(migratetype
))) {
2655 free_one_page(zone
, page
, pfn
, 0, migratetype
);
2658 migratetype
= MIGRATE_MOVABLE
;
2661 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2662 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
2664 if (pcp
->count
>= pcp
->high
) {
2665 unsigned long batch
= READ_ONCE(pcp
->batch
);
2666 free_pcppages_bulk(zone
, batch
, pcp
);
2667 pcp
->count
-= batch
;
2672 * Free a 0-order page
2674 void free_unref_page(struct page
*page
)
2676 unsigned long flags
;
2677 unsigned long pfn
= page_to_pfn(page
);
2679 if (!free_unref_page_prepare(page
, pfn
))
2682 local_irq_save(flags
);
2683 free_unref_page_commit(page
, pfn
);
2684 local_irq_restore(flags
);
2688 * Free a list of 0-order pages
2690 void free_unref_page_list(struct list_head
*list
)
2692 struct page
*page
, *next
;
2693 unsigned long flags
, pfn
;
2694 int batch_count
= 0;
2696 /* Prepare pages for freeing */
2697 list_for_each_entry_safe(page
, next
, list
, lru
) {
2698 pfn
= page_to_pfn(page
);
2699 if (!free_unref_page_prepare(page
, pfn
))
2700 list_del(&page
->lru
);
2701 set_page_private(page
, pfn
);
2704 local_irq_save(flags
);
2705 list_for_each_entry_safe(page
, next
, list
, lru
) {
2706 unsigned long pfn
= page_private(page
);
2708 set_page_private(page
, 0);
2709 trace_mm_page_free_batched(page
);
2710 free_unref_page_commit(page
, pfn
);
2713 * Guard against excessive IRQ disabled times when we get
2714 * a large list of pages to free.
2716 if (++batch_count
== SWAP_CLUSTER_MAX
) {
2717 local_irq_restore(flags
);
2719 local_irq_save(flags
);
2722 local_irq_restore(flags
);
2726 * split_page takes a non-compound higher-order page, and splits it into
2727 * n (1<<order) sub-pages: page[0..n]
2728 * Each sub-page must be freed individually.
2730 * Note: this is probably too low level an operation for use in drivers.
2731 * Please consult with lkml before using this in your driver.
2733 void split_page(struct page
*page
, unsigned int order
)
2737 VM_BUG_ON_PAGE(PageCompound(page
), page
);
2738 VM_BUG_ON_PAGE(!page_count(page
), page
);
2740 for (i
= 1; i
< (1 << order
); i
++)
2741 set_page_refcounted(page
+ i
);
2742 split_page_owner(page
, order
);
2744 EXPORT_SYMBOL_GPL(split_page
);
2746 int __isolate_free_page(struct page
*page
, unsigned int order
)
2748 unsigned long watermark
;
2752 BUG_ON(!PageBuddy(page
));
2754 zone
= page_zone(page
);
2755 mt
= get_pageblock_migratetype(page
);
2757 if (!is_migrate_isolate(mt
)) {
2759 * Obey watermarks as if the page was being allocated. We can
2760 * emulate a high-order watermark check with a raised order-0
2761 * watermark, because we already know our high-order page
2764 watermark
= min_wmark_pages(zone
) + (1UL << order
);
2765 if (!zone_watermark_ok(zone
, 0, watermark
, 0, ALLOC_CMA
))
2768 __mod_zone_freepage_state(zone
, -(1UL << order
), mt
);
2771 /* Remove page from free list */
2772 list_del(&page
->lru
);
2773 zone
->free_area
[order
].nr_free
--;
2774 rmv_page_order(page
);
2777 * Set the pageblock if the isolated page is at least half of a
2780 if (order
>= pageblock_order
- 1) {
2781 struct page
*endpage
= page
+ (1 << order
) - 1;
2782 for (; page
< endpage
; page
+= pageblock_nr_pages
) {
2783 int mt
= get_pageblock_migratetype(page
);
2784 if (!is_migrate_isolate(mt
) && !is_migrate_cma(mt
)
2785 && !is_migrate_highatomic(mt
))
2786 set_pageblock_migratetype(page
,
2792 return 1UL << order
;
2796 * Update NUMA hit/miss statistics
2798 * Must be called with interrupts disabled.
2800 static inline void zone_statistics(struct zone
*preferred_zone
, struct zone
*z
)
2803 enum numa_stat_item local_stat
= NUMA_LOCAL
;
2805 /* skip numa counters update if numa stats is disabled */
2806 if (!static_branch_likely(&vm_numa_stat_key
))
2809 if (z
->node
!= numa_node_id())
2810 local_stat
= NUMA_OTHER
;
2812 if (z
->node
== preferred_zone
->node
)
2813 __inc_numa_state(z
, NUMA_HIT
);
2815 __inc_numa_state(z
, NUMA_MISS
);
2816 __inc_numa_state(preferred_zone
, NUMA_FOREIGN
);
2818 __inc_numa_state(z
, local_stat
);
2822 /* Remove page from the per-cpu list, caller must protect the list */
2823 static struct page
*__rmqueue_pcplist(struct zone
*zone
, int migratetype
,
2824 struct per_cpu_pages
*pcp
,
2825 struct list_head
*list
)
2830 if (list_empty(list
)) {
2831 pcp
->count
+= rmqueue_bulk(zone
, 0,
2834 if (unlikely(list_empty(list
)))
2838 page
= list_first_entry(list
, struct page
, lru
);
2839 list_del(&page
->lru
);
2841 } while (check_new_pcp(page
));
2846 /* Lock and remove page from the per-cpu list */
2847 static struct page
*rmqueue_pcplist(struct zone
*preferred_zone
,
2848 struct zone
*zone
, unsigned int order
,
2849 gfp_t gfp_flags
, int migratetype
)
2851 struct per_cpu_pages
*pcp
;
2852 struct list_head
*list
;
2854 unsigned long flags
;
2856 local_irq_save(flags
);
2857 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
2858 list
= &pcp
->lists
[migratetype
];
2859 page
= __rmqueue_pcplist(zone
, migratetype
, pcp
, list
);
2861 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2862 zone_statistics(preferred_zone
, zone
);
2864 local_irq_restore(flags
);
2869 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
2872 struct page
*rmqueue(struct zone
*preferred_zone
,
2873 struct zone
*zone
, unsigned int order
,
2874 gfp_t gfp_flags
, unsigned int alloc_flags
,
2877 unsigned long flags
;
2880 if (likely(order
== 0)) {
2881 page
= rmqueue_pcplist(preferred_zone
, zone
, order
,
2882 gfp_flags
, migratetype
);
2887 * We most definitely don't want callers attempting to
2888 * allocate greater than order-1 page units with __GFP_NOFAIL.
2890 WARN_ON_ONCE((gfp_flags
& __GFP_NOFAIL
) && (order
> 1));
2891 spin_lock_irqsave(&zone
->lock
, flags
);
2895 if (alloc_flags
& ALLOC_HARDER
) {
2896 page
= __rmqueue_smallest(zone
, order
, MIGRATE_HIGHATOMIC
);
2898 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
2901 page
= __rmqueue(zone
, order
, migratetype
);
2902 } while (page
&& check_new_pages(page
, order
));
2903 spin_unlock(&zone
->lock
);
2906 __mod_zone_freepage_state(zone
, -(1 << order
),
2907 get_pcppage_migratetype(page
));
2909 __count_zid_vm_events(PGALLOC
, page_zonenum(page
), 1 << order
);
2910 zone_statistics(preferred_zone
, zone
);
2911 local_irq_restore(flags
);
2914 VM_BUG_ON_PAGE(page
&& bad_range(zone
, page
), page
);
2918 local_irq_restore(flags
);
2922 #ifdef CONFIG_FAIL_PAGE_ALLOC
2925 struct fault_attr attr
;
2927 bool ignore_gfp_highmem
;
2928 bool ignore_gfp_reclaim
;
2930 } fail_page_alloc
= {
2931 .attr
= FAULT_ATTR_INITIALIZER
,
2932 .ignore_gfp_reclaim
= true,
2933 .ignore_gfp_highmem
= true,
2937 static int __init
setup_fail_page_alloc(char *str
)
2939 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
2941 __setup("fail_page_alloc=", setup_fail_page_alloc
);
2943 static bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2945 if (order
< fail_page_alloc
.min_order
)
2947 if (gfp_mask
& __GFP_NOFAIL
)
2949 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
2951 if (fail_page_alloc
.ignore_gfp_reclaim
&&
2952 (gfp_mask
& __GFP_DIRECT_RECLAIM
))
2955 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
2958 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2960 static int __init
fail_page_alloc_debugfs(void)
2962 umode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
2965 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
2966 &fail_page_alloc
.attr
);
2968 return PTR_ERR(dir
);
2970 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
2971 &fail_page_alloc
.ignore_gfp_reclaim
))
2973 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
2974 &fail_page_alloc
.ignore_gfp_highmem
))
2976 if (!debugfs_create_u32("min-order", mode
, dir
,
2977 &fail_page_alloc
.min_order
))
2982 debugfs_remove_recursive(dir
);
2987 late_initcall(fail_page_alloc_debugfs
);
2989 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2991 #else /* CONFIG_FAIL_PAGE_ALLOC */
2993 static inline bool should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
2998 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3001 * Return true if free base pages are above 'mark'. For high-order checks it
3002 * will return true of the order-0 watermark is reached and there is at least
3003 * one free page of a suitable size. Checking now avoids taking the zone lock
3004 * to check in the allocation paths if no pages are free.
3006 bool __zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3007 int classzone_idx
, unsigned int alloc_flags
,
3012 const bool alloc_harder
= (alloc_flags
& (ALLOC_HARDER
|ALLOC_OOM
));
3014 /* free_pages may go negative - that's OK */
3015 free_pages
-= (1 << order
) - 1;
3017 if (alloc_flags
& ALLOC_HIGH
)
3021 * If the caller does not have rights to ALLOC_HARDER then subtract
3022 * the high-atomic reserves. This will over-estimate the size of the
3023 * atomic reserve but it avoids a search.
3025 if (likely(!alloc_harder
)) {
3026 free_pages
-= z
->nr_reserved_highatomic
;
3029 * OOM victims can try even harder than normal ALLOC_HARDER
3030 * users on the grounds that it's definitely going to be in
3031 * the exit path shortly and free memory. Any allocation it
3032 * makes during the free path will be small and short-lived.
3034 if (alloc_flags
& ALLOC_OOM
)
3042 /* If allocation can't use CMA areas don't use free CMA pages */
3043 if (!(alloc_flags
& ALLOC_CMA
))
3044 free_pages
-= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3048 * Check watermarks for an order-0 allocation request. If these
3049 * are not met, then a high-order request also cannot go ahead
3050 * even if a suitable page happened to be free.
3052 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
3055 /* If this is an order-0 request then the watermark is fine */
3059 /* For a high-order request, check at least one suitable page is free */
3060 for (o
= order
; o
< MAX_ORDER
; o
++) {
3061 struct free_area
*area
= &z
->free_area
[o
];
3067 for (mt
= 0; mt
< MIGRATE_PCPTYPES
; mt
++) {
3068 if (!list_empty(&area
->free_list
[mt
]))
3073 if ((alloc_flags
& ALLOC_CMA
) &&
3074 !list_empty(&area
->free_list
[MIGRATE_CMA
])) {
3079 !list_empty(&area
->free_list
[MIGRATE_HIGHATOMIC
]))
3085 bool zone_watermark_ok(struct zone
*z
, unsigned int order
, unsigned long mark
,
3086 int classzone_idx
, unsigned int alloc_flags
)
3088 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3089 zone_page_state(z
, NR_FREE_PAGES
));
3092 static inline bool zone_watermark_fast(struct zone
*z
, unsigned int order
,
3093 unsigned long mark
, int classzone_idx
, unsigned int alloc_flags
)
3095 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3099 /* If allocation can't use CMA areas don't use free CMA pages */
3100 if (!(alloc_flags
& ALLOC_CMA
))
3101 cma_pages
= zone_page_state(z
, NR_FREE_CMA_PAGES
);
3105 * Fast check for order-0 only. If this fails then the reserves
3106 * need to be calculated. There is a corner case where the check
3107 * passes but only the high-order atomic reserve are free. If
3108 * the caller is !atomic then it'll uselessly search the free
3109 * list. That corner case is then slower but it is harmless.
3111 if (!order
&& (free_pages
- cma_pages
) > mark
+ z
->lowmem_reserve
[classzone_idx
])
3114 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
3118 bool zone_watermark_ok_safe(struct zone
*z
, unsigned int order
,
3119 unsigned long mark
, int classzone_idx
)
3121 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
3123 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
3124 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
3126 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, 0,
3131 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3133 return node_distance(zone_to_nid(local_zone
), zone_to_nid(zone
)) <=
3136 #else /* CONFIG_NUMA */
3137 static bool zone_allows_reclaim(struct zone
*local_zone
, struct zone
*zone
)
3141 #endif /* CONFIG_NUMA */
3144 * get_page_from_freelist goes through the zonelist trying to allocate
3147 static struct page
*
3148 get_page_from_freelist(gfp_t gfp_mask
, unsigned int order
, int alloc_flags
,
3149 const struct alloc_context
*ac
)
3151 struct zoneref
*z
= ac
->preferred_zoneref
;
3153 struct pglist_data
*last_pgdat_dirty_limit
= NULL
;
3156 * Scan zonelist, looking for a zone with enough free.
3157 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3159 for_next_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3164 if (cpusets_enabled() &&
3165 (alloc_flags
& ALLOC_CPUSET
) &&
3166 !__cpuset_zone_allowed(zone
, gfp_mask
))
3169 * When allocating a page cache page for writing, we
3170 * want to get it from a node that is within its dirty
3171 * limit, such that no single node holds more than its
3172 * proportional share of globally allowed dirty pages.
3173 * The dirty limits take into account the node's
3174 * lowmem reserves and high watermark so that kswapd
3175 * should be able to balance it without having to
3176 * write pages from its LRU list.
3178 * XXX: For now, allow allocations to potentially
3179 * exceed the per-node dirty limit in the slowpath
3180 * (spread_dirty_pages unset) before going into reclaim,
3181 * which is important when on a NUMA setup the allowed
3182 * nodes are together not big enough to reach the
3183 * global limit. The proper fix for these situations
3184 * will require awareness of nodes in the
3185 * dirty-throttling and the flusher threads.
3187 if (ac
->spread_dirty_pages
) {
3188 if (last_pgdat_dirty_limit
== zone
->zone_pgdat
)
3191 if (!node_dirty_ok(zone
->zone_pgdat
)) {
3192 last_pgdat_dirty_limit
= zone
->zone_pgdat
;
3197 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
3198 if (!zone_watermark_fast(zone
, order
, mark
,
3199 ac_classzone_idx(ac
), alloc_flags
)) {
3202 /* Checked here to keep the fast path fast */
3203 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
3204 if (alloc_flags
& ALLOC_NO_WATERMARKS
)
3207 if (node_reclaim_mode
== 0 ||
3208 !zone_allows_reclaim(ac
->preferred_zoneref
->zone
, zone
))
3211 ret
= node_reclaim(zone
->zone_pgdat
, gfp_mask
, order
);
3213 case NODE_RECLAIM_NOSCAN
:
3216 case NODE_RECLAIM_FULL
:
3217 /* scanned but unreclaimable */
3220 /* did we reclaim enough */
3221 if (zone_watermark_ok(zone
, order
, mark
,
3222 ac_classzone_idx(ac
), alloc_flags
))
3230 page
= rmqueue(ac
->preferred_zoneref
->zone
, zone
, order
,
3231 gfp_mask
, alloc_flags
, ac
->migratetype
);
3233 prep_new_page(page
, order
, gfp_mask
, alloc_flags
);
3236 * If this is a high-order atomic allocation then check
3237 * if the pageblock should be reserved for the future
3239 if (unlikely(order
&& (alloc_flags
& ALLOC_HARDER
)))
3240 reserve_highatomic_pageblock(page
, zone
, order
);
3250 * Large machines with many possible nodes should not always dump per-node
3251 * meminfo in irq context.
3253 static inline bool should_suppress_show_mem(void)
3258 ret
= in_interrupt();
3263 static void warn_alloc_show_mem(gfp_t gfp_mask
, nodemask_t
*nodemask
)
3265 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
3266 static DEFINE_RATELIMIT_STATE(show_mem_rs
, HZ
, 1);
3268 if (should_suppress_show_mem() || !__ratelimit(&show_mem_rs
))
3272 * This documents exceptions given to allocations in certain
3273 * contexts that are allowed to allocate outside current's set
3276 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3277 if (tsk_is_oom_victim(current
) ||
3278 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
3279 filter
&= ~SHOW_MEM_FILTER_NODES
;
3280 if (in_interrupt() || !(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3281 filter
&= ~SHOW_MEM_FILTER_NODES
;
3283 show_mem(filter
, nodemask
);
3286 void warn_alloc(gfp_t gfp_mask
, nodemask_t
*nodemask
, const char *fmt
, ...)
3288 struct va_format vaf
;
3290 static DEFINE_RATELIMIT_STATE(nopage_rs
, DEFAULT_RATELIMIT_INTERVAL
,
3291 DEFAULT_RATELIMIT_BURST
);
3293 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
3296 va_start(args
, fmt
);
3299 pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl\n",
3300 current
->comm
, &vaf
, gfp_mask
, &gfp_mask
,
3301 nodemask_pr_args(nodemask
));
3304 cpuset_print_current_mems_allowed();
3307 warn_alloc_show_mem(gfp_mask
, nodemask
);
3310 static inline struct page
*
3311 __alloc_pages_cpuset_fallback(gfp_t gfp_mask
, unsigned int order
,
3312 unsigned int alloc_flags
,
3313 const struct alloc_context
*ac
)
3317 page
= get_page_from_freelist(gfp_mask
, order
,
3318 alloc_flags
|ALLOC_CPUSET
, ac
);
3320 * fallback to ignore cpuset restriction if our nodes
3324 page
= get_page_from_freelist(gfp_mask
, order
,
3330 static inline struct page
*
3331 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
3332 const struct alloc_context
*ac
, unsigned long *did_some_progress
)
3334 struct oom_control oc
= {
3335 .zonelist
= ac
->zonelist
,
3336 .nodemask
= ac
->nodemask
,
3338 .gfp_mask
= gfp_mask
,
3343 *did_some_progress
= 0;
3346 * Acquire the oom lock. If that fails, somebody else is
3347 * making progress for us.
3349 if (!mutex_trylock(&oom_lock
)) {
3350 *did_some_progress
= 1;
3351 schedule_timeout_uninterruptible(1);
3356 * Go through the zonelist yet one more time, keep very high watermark
3357 * here, this is only to catch a parallel oom killing, we must fail if
3358 * we're still under heavy pressure. But make sure that this reclaim
3359 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
3360 * allocation which will never fail due to oom_lock already held.
3362 page
= get_page_from_freelist((gfp_mask
| __GFP_HARDWALL
) &
3363 ~__GFP_DIRECT_RECLAIM
, order
,
3364 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
, ac
);
3368 /* Coredumps can quickly deplete all memory reserves */
3369 if (current
->flags
& PF_DUMPCORE
)
3371 /* The OOM killer will not help higher order allocs */
3372 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3375 * We have already exhausted all our reclaim opportunities without any
3376 * success so it is time to admit defeat. We will skip the OOM killer
3377 * because it is very likely that the caller has a more reasonable
3378 * fallback than shooting a random task.
3380 if (gfp_mask
& __GFP_RETRY_MAYFAIL
)
3382 /* The OOM killer does not needlessly kill tasks for lowmem */
3383 if (ac
->high_zoneidx
< ZONE_NORMAL
)
3385 if (pm_suspended_storage())
3388 * XXX: GFP_NOFS allocations should rather fail than rely on
3389 * other request to make a forward progress.
3390 * We are in an unfortunate situation where out_of_memory cannot
3391 * do much for this context but let's try it to at least get
3392 * access to memory reserved if the current task is killed (see
3393 * out_of_memory). Once filesystems are ready to handle allocation
3394 * failures more gracefully we should just bail out here.
3397 /* The OOM killer may not free memory on a specific node */
3398 if (gfp_mask
& __GFP_THISNODE
)
3401 /* Exhausted what can be done so it's blame time */
3402 if (out_of_memory(&oc
) || WARN_ON_ONCE(gfp_mask
& __GFP_NOFAIL
)) {
3403 *did_some_progress
= 1;
3406 * Help non-failing allocations by giving them access to memory
3409 if (gfp_mask
& __GFP_NOFAIL
)
3410 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
,
3411 ALLOC_NO_WATERMARKS
, ac
);
3414 mutex_unlock(&oom_lock
);
3419 * Maximum number of compaction retries wit a progress before OOM
3420 * killer is consider as the only way to move forward.
3422 #define MAX_COMPACT_RETRIES 16
3424 #ifdef CONFIG_COMPACTION
3425 /* Try memory compaction for high-order allocations before reclaim */
3426 static struct page
*
3427 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3428 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3429 enum compact_priority prio
, enum compact_result
*compact_result
)
3432 unsigned int noreclaim_flag
;
3437 noreclaim_flag
= memalloc_noreclaim_save();
3438 *compact_result
= try_to_compact_pages(gfp_mask
, order
, alloc_flags
, ac
,
3440 memalloc_noreclaim_restore(noreclaim_flag
);
3442 if (*compact_result
<= COMPACT_INACTIVE
)
3446 * At least in one zone compaction wasn't deferred or skipped, so let's
3447 * count a compaction stall
3449 count_vm_event(COMPACTSTALL
);
3451 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3454 struct zone
*zone
= page_zone(page
);
3456 zone
->compact_blockskip_flush
= false;
3457 compaction_defer_reset(zone
, order
, true);
3458 count_vm_event(COMPACTSUCCESS
);
3463 * It's bad if compaction run occurs and fails. The most likely reason
3464 * is that pages exist, but not enough to satisfy watermarks.
3466 count_vm_event(COMPACTFAIL
);
3474 should_compact_retry(struct alloc_context
*ac
, int order
, int alloc_flags
,
3475 enum compact_result compact_result
,
3476 enum compact_priority
*compact_priority
,
3477 int *compaction_retries
)
3479 int max_retries
= MAX_COMPACT_RETRIES
;
3482 int retries
= *compaction_retries
;
3483 enum compact_priority priority
= *compact_priority
;
3488 if (compaction_made_progress(compact_result
))
3489 (*compaction_retries
)++;
3492 * compaction considers all the zone as desperately out of memory
3493 * so it doesn't really make much sense to retry except when the
3494 * failure could be caused by insufficient priority
3496 if (compaction_failed(compact_result
))
3497 goto check_priority
;
3500 * make sure the compaction wasn't deferred or didn't bail out early
3501 * due to locks contention before we declare that we should give up.
3502 * But do not retry if the given zonelist is not suitable for
3505 if (compaction_withdrawn(compact_result
)) {
3506 ret
= compaction_zonelist_suitable(ac
, order
, alloc_flags
);
3511 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
3512 * costly ones because they are de facto nofail and invoke OOM
3513 * killer to move on while costly can fail and users are ready
3514 * to cope with that. 1/4 retries is rather arbitrary but we
3515 * would need much more detailed feedback from compaction to
3516 * make a better decision.
3518 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
3520 if (*compaction_retries
<= max_retries
) {
3526 * Make sure there are attempts at the highest priority if we exhausted
3527 * all retries or failed at the lower priorities.
3530 min_priority
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
3531 MIN_COMPACT_COSTLY_PRIORITY
: MIN_COMPACT_PRIORITY
;
3533 if (*compact_priority
> min_priority
) {
3534 (*compact_priority
)--;
3535 *compaction_retries
= 0;
3539 trace_compact_retry(order
, priority
, compact_result
, retries
, max_retries
, ret
);
3543 static inline struct page
*
3544 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
3545 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3546 enum compact_priority prio
, enum compact_result
*compact_result
)
3548 *compact_result
= COMPACT_SKIPPED
;
3553 should_compact_retry(struct alloc_context
*ac
, unsigned int order
, int alloc_flags
,
3554 enum compact_result compact_result
,
3555 enum compact_priority
*compact_priority
,
3556 int *compaction_retries
)
3561 if (!order
|| order
> PAGE_ALLOC_COSTLY_ORDER
)
3565 * There are setups with compaction disabled which would prefer to loop
3566 * inside the allocator rather than hit the oom killer prematurely.
3567 * Let's give them a good hope and keep retrying while the order-0
3568 * watermarks are OK.
3570 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3572 if (zone_watermark_ok(zone
, 0, min_wmark_pages(zone
),
3573 ac_classzone_idx(ac
), alloc_flags
))
3578 #endif /* CONFIG_COMPACTION */
3580 #ifdef CONFIG_LOCKDEP
3581 struct lockdep_map __fs_reclaim_map
=
3582 STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map
);
3584 static bool __need_fs_reclaim(gfp_t gfp_mask
)
3586 gfp_mask
= current_gfp_context(gfp_mask
);
3588 /* no reclaim without waiting on it */
3589 if (!(gfp_mask
& __GFP_DIRECT_RECLAIM
))
3592 /* this guy won't enter reclaim */
3593 if ((current
->flags
& PF_MEMALLOC
) && !(gfp_mask
& __GFP_NOMEMALLOC
))
3596 /* We're only interested __GFP_FS allocations for now */
3597 if (!(gfp_mask
& __GFP_FS
))
3600 if (gfp_mask
& __GFP_NOLOCKDEP
)
3606 void fs_reclaim_acquire(gfp_t gfp_mask
)
3608 if (__need_fs_reclaim(gfp_mask
))
3609 lock_map_acquire(&__fs_reclaim_map
);
3611 EXPORT_SYMBOL_GPL(fs_reclaim_acquire
);
3613 void fs_reclaim_release(gfp_t gfp_mask
)
3615 if (__need_fs_reclaim(gfp_mask
))
3616 lock_map_release(&__fs_reclaim_map
);
3618 EXPORT_SYMBOL_GPL(fs_reclaim_release
);
3621 /* Perform direct synchronous page reclaim */
3623 __perform_reclaim(gfp_t gfp_mask
, unsigned int order
,
3624 const struct alloc_context
*ac
)
3626 struct reclaim_state reclaim_state
;
3628 unsigned int noreclaim_flag
;
3632 /* We now go into synchronous reclaim */
3633 cpuset_memory_pressure_bump();
3634 noreclaim_flag
= memalloc_noreclaim_save();
3635 fs_reclaim_acquire(gfp_mask
);
3636 reclaim_state
.reclaimed_slab
= 0;
3637 current
->reclaim_state
= &reclaim_state
;
3639 progress
= try_to_free_pages(ac
->zonelist
, order
, gfp_mask
,
3642 current
->reclaim_state
= NULL
;
3643 fs_reclaim_release(gfp_mask
);
3644 memalloc_noreclaim_restore(noreclaim_flag
);
3651 /* The really slow allocator path where we enter direct reclaim */
3652 static inline struct page
*
3653 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
3654 unsigned int alloc_flags
, const struct alloc_context
*ac
,
3655 unsigned long *did_some_progress
)
3657 struct page
*page
= NULL
;
3658 bool drained
= false;
3660 *did_some_progress
= __perform_reclaim(gfp_mask
, order
, ac
);
3661 if (unlikely(!(*did_some_progress
)))
3665 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3668 * If an allocation failed after direct reclaim, it could be because
3669 * pages are pinned on the per-cpu lists or in high alloc reserves.
3670 * Shrink them them and try again
3672 if (!page
&& !drained
) {
3673 unreserve_highatomic_pageblock(ac
, false);
3674 drain_all_pages(NULL
);
3682 static void wake_all_kswapds(unsigned int order
, const struct alloc_context
*ac
)
3686 pg_data_t
*last_pgdat
= NULL
;
3688 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
,
3689 ac
->high_zoneidx
, ac
->nodemask
) {
3690 if (last_pgdat
!= zone
->zone_pgdat
)
3691 wakeup_kswapd(zone
, order
, ac
->high_zoneidx
);
3692 last_pgdat
= zone
->zone_pgdat
;
3696 static inline unsigned int
3697 gfp_to_alloc_flags(gfp_t gfp_mask
)
3699 unsigned int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
3701 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
3702 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
3705 * The caller may dip into page reserves a bit more if the caller
3706 * cannot run direct reclaim, or if the caller has realtime scheduling
3707 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
3708 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
3710 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
3712 if (gfp_mask
& __GFP_ATOMIC
) {
3714 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3715 * if it can't schedule.
3717 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
3718 alloc_flags
|= ALLOC_HARDER
;
3720 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
3721 * comment for __cpuset_node_allowed().
3723 alloc_flags
&= ~ALLOC_CPUSET
;
3724 } else if (unlikely(rt_task(current
)) && !in_interrupt())
3725 alloc_flags
|= ALLOC_HARDER
;
3728 if (gfpflags_to_migratetype(gfp_mask
) == MIGRATE_MOVABLE
)
3729 alloc_flags
|= ALLOC_CMA
;
3734 static bool oom_reserves_allowed(struct task_struct
*tsk
)
3736 if (!tsk_is_oom_victim(tsk
))
3740 * !MMU doesn't have oom reaper so give access to memory reserves
3741 * only to the thread with TIF_MEMDIE set
3743 if (!IS_ENABLED(CONFIG_MMU
) && !test_thread_flag(TIF_MEMDIE
))
3750 * Distinguish requests which really need access to full memory
3751 * reserves from oom victims which can live with a portion of it
3753 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask
)
3755 if (unlikely(gfp_mask
& __GFP_NOMEMALLOC
))
3757 if (gfp_mask
& __GFP_MEMALLOC
)
3758 return ALLOC_NO_WATERMARKS
;
3759 if (in_serving_softirq() && (current
->flags
& PF_MEMALLOC
))
3760 return ALLOC_NO_WATERMARKS
;
3761 if (!in_interrupt()) {
3762 if (current
->flags
& PF_MEMALLOC
)
3763 return ALLOC_NO_WATERMARKS
;
3764 else if (oom_reserves_allowed(current
))
3771 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask
)
3773 return !!__gfp_pfmemalloc_flags(gfp_mask
);
3777 * Checks whether it makes sense to retry the reclaim to make a forward progress
3778 * for the given allocation request.
3780 * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
3781 * without success, or when we couldn't even meet the watermark if we
3782 * reclaimed all remaining pages on the LRU lists.
3784 * Returns true if a retry is viable or false to enter the oom path.
3787 should_reclaim_retry(gfp_t gfp_mask
, unsigned order
,
3788 struct alloc_context
*ac
, int alloc_flags
,
3789 bool did_some_progress
, int *no_progress_loops
)
3795 * Costly allocations might have made a progress but this doesn't mean
3796 * their order will become available due to high fragmentation so
3797 * always increment the no progress counter for them
3799 if (did_some_progress
&& order
<= PAGE_ALLOC_COSTLY_ORDER
)
3800 *no_progress_loops
= 0;
3802 (*no_progress_loops
)++;
3805 * Make sure we converge to OOM if we cannot make any progress
3806 * several times in the row.
3808 if (*no_progress_loops
> MAX_RECLAIM_RETRIES
) {
3809 /* Before OOM, exhaust highatomic_reserve */
3810 return unreserve_highatomic_pageblock(ac
, true);
3814 * Keep reclaiming pages while there is a chance this will lead
3815 * somewhere. If none of the target zones can satisfy our allocation
3816 * request even if all reclaimable pages are considered then we are
3817 * screwed and have to go OOM.
3819 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
3821 unsigned long available
;
3822 unsigned long reclaimable
;
3823 unsigned long min_wmark
= min_wmark_pages(zone
);
3826 available
= reclaimable
= zone_reclaimable_pages(zone
);
3827 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
3830 * Would the allocation succeed if we reclaimed all
3831 * reclaimable pages?
3833 wmark
= __zone_watermark_ok(zone
, order
, min_wmark
,
3834 ac_classzone_idx(ac
), alloc_flags
, available
);
3835 trace_reclaim_retry_zone(z
, order
, reclaimable
,
3836 available
, min_wmark
, *no_progress_loops
, wmark
);
3839 * If we didn't make any progress and have a lot of
3840 * dirty + writeback pages then we should wait for
3841 * an IO to complete to slow down the reclaim and
3842 * prevent from pre mature OOM
3844 if (!did_some_progress
) {
3845 unsigned long write_pending
;
3847 write_pending
= zone_page_state_snapshot(zone
,
3848 NR_ZONE_WRITE_PENDING
);
3850 if (2 * write_pending
> reclaimable
) {
3851 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3857 * Memory allocation/reclaim might be called from a WQ
3858 * context and the current implementation of the WQ
3859 * concurrency control doesn't recognize that
3860 * a particular WQ is congested if the worker thread is
3861 * looping without ever sleeping. Therefore we have to
3862 * do a short sleep here rather than calling
3865 if (current
->flags
& PF_WQ_WORKER
)
3866 schedule_timeout_uninterruptible(1);
3878 check_retry_cpuset(int cpuset_mems_cookie
, struct alloc_context
*ac
)
3881 * It's possible that cpuset's mems_allowed and the nodemask from
3882 * mempolicy don't intersect. This should be normally dealt with by
3883 * policy_nodemask(), but it's possible to race with cpuset update in
3884 * such a way the check therein was true, and then it became false
3885 * before we got our cpuset_mems_cookie here.
3886 * This assumes that for all allocations, ac->nodemask can come only
3887 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
3888 * when it does not intersect with the cpuset restrictions) or the
3889 * caller can deal with a violated nodemask.
3891 if (cpusets_enabled() && ac
->nodemask
&&
3892 !cpuset_nodemask_valid_mems_allowed(ac
->nodemask
)) {
3893 ac
->nodemask
= NULL
;
3898 * When updating a task's mems_allowed or mempolicy nodemask, it is
3899 * possible to race with parallel threads in such a way that our
3900 * allocation can fail while the mask is being updated. If we are about
3901 * to fail, check if the cpuset changed during allocation and if so,
3904 if (read_mems_allowed_retry(cpuset_mems_cookie
))
3910 static inline struct page
*
3911 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
3912 struct alloc_context
*ac
)
3914 bool can_direct_reclaim
= gfp_mask
& __GFP_DIRECT_RECLAIM
;
3915 const bool costly_order
= order
> PAGE_ALLOC_COSTLY_ORDER
;
3916 struct page
*page
= NULL
;
3917 unsigned int alloc_flags
;
3918 unsigned long did_some_progress
;
3919 enum compact_priority compact_priority
;
3920 enum compact_result compact_result
;
3921 int compaction_retries
;
3922 int no_progress_loops
;
3923 unsigned int cpuset_mems_cookie
;
3927 * In the slowpath, we sanity check order to avoid ever trying to
3928 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3929 * be using allocators in order of preference for an area that is
3932 if (order
>= MAX_ORDER
) {
3933 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
3938 * We also sanity check to catch abuse of atomic reserves being used by
3939 * callers that are not in atomic context.
3941 if (WARN_ON_ONCE((gfp_mask
& (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)) ==
3942 (__GFP_ATOMIC
|__GFP_DIRECT_RECLAIM
)))
3943 gfp_mask
&= ~__GFP_ATOMIC
;
3946 compaction_retries
= 0;
3947 no_progress_loops
= 0;
3948 compact_priority
= DEF_COMPACT_PRIORITY
;
3949 cpuset_mems_cookie
= read_mems_allowed_begin();
3952 * The fast path uses conservative alloc_flags to succeed only until
3953 * kswapd needs to be woken up, and to avoid the cost of setting up
3954 * alloc_flags precisely. So we do that now.
3956 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
3959 * We need to recalculate the starting point for the zonelist iterator
3960 * because we might have used different nodemask in the fast path, or
3961 * there was a cpuset modification and we are retrying - otherwise we
3962 * could end up iterating over non-eligible zones endlessly.
3964 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
3965 ac
->high_zoneidx
, ac
->nodemask
);
3966 if (!ac
->preferred_zoneref
->zone
)
3969 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
3970 wake_all_kswapds(order
, ac
);
3973 * The adjusted alloc_flags might result in immediate success, so try
3976 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
3981 * For costly allocations, try direct compaction first, as it's likely
3982 * that we have enough base pages and don't need to reclaim. For non-
3983 * movable high-order allocations, do that as well, as compaction will
3984 * try prevent permanent fragmentation by migrating from blocks of the
3986 * Don't try this for allocations that are allowed to ignore
3987 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
3989 if (can_direct_reclaim
&&
3991 (order
> 0 && ac
->migratetype
!= MIGRATE_MOVABLE
))
3992 && !gfp_pfmemalloc_allowed(gfp_mask
)) {
3993 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
3995 INIT_COMPACT_PRIORITY
,
4001 * Checks for costly allocations with __GFP_NORETRY, which
4002 * includes THP page fault allocations
4004 if (costly_order
&& (gfp_mask
& __GFP_NORETRY
)) {
4006 * If compaction is deferred for high-order allocations,
4007 * it is because sync compaction recently failed. If
4008 * this is the case and the caller requested a THP
4009 * allocation, we do not want to heavily disrupt the
4010 * system, so we fail the allocation instead of entering
4013 if (compact_result
== COMPACT_DEFERRED
)
4017 * Looks like reclaim/compaction is worth trying, but
4018 * sync compaction could be very expensive, so keep
4019 * using async compaction.
4021 compact_priority
= INIT_COMPACT_PRIORITY
;
4026 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4027 if (gfp_mask
& __GFP_KSWAPD_RECLAIM
)
4028 wake_all_kswapds(order
, ac
);
4030 reserve_flags
= __gfp_pfmemalloc_flags(gfp_mask
);
4032 alloc_flags
= reserve_flags
;
4035 * Reset the zonelist iterators if memory policies can be ignored.
4036 * These allocations are high priority and system rather than user
4039 if (!(alloc_flags
& ALLOC_CPUSET
) || reserve_flags
) {
4040 ac
->zonelist
= node_zonelist(numa_node_id(), gfp_mask
);
4041 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4042 ac
->high_zoneidx
, ac
->nodemask
);
4045 /* Attempt with potentially adjusted zonelist and alloc_flags */
4046 page
= get_page_from_freelist(gfp_mask
, order
, alloc_flags
, ac
);
4050 /* Caller is not willing to reclaim, we can't balance anything */
4051 if (!can_direct_reclaim
)
4054 /* Avoid recursion of direct reclaim */
4055 if (current
->flags
& PF_MEMALLOC
)
4058 /* Try direct reclaim and then allocating */
4059 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
, alloc_flags
, ac
,
4060 &did_some_progress
);
4064 /* Try direct compaction and then allocating */
4065 page
= __alloc_pages_direct_compact(gfp_mask
, order
, alloc_flags
, ac
,
4066 compact_priority
, &compact_result
);
4070 /* Do not loop if specifically requested */
4071 if (gfp_mask
& __GFP_NORETRY
)
4075 * Do not retry costly high order allocations unless they are
4076 * __GFP_RETRY_MAYFAIL
4078 if (costly_order
&& !(gfp_mask
& __GFP_RETRY_MAYFAIL
))
4081 if (should_reclaim_retry(gfp_mask
, order
, ac
, alloc_flags
,
4082 did_some_progress
> 0, &no_progress_loops
))
4086 * It doesn't make any sense to retry for the compaction if the order-0
4087 * reclaim is not able to make any progress because the current
4088 * implementation of the compaction depends on the sufficient amount
4089 * of free memory (see __compaction_suitable)
4091 if (did_some_progress
> 0 &&
4092 should_compact_retry(ac
, order
, alloc_flags
,
4093 compact_result
, &compact_priority
,
4094 &compaction_retries
))
4098 /* Deal with possible cpuset update races before we start OOM killing */
4099 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4102 /* Reclaim has failed us, start killing things */
4103 page
= __alloc_pages_may_oom(gfp_mask
, order
, ac
, &did_some_progress
);
4107 /* Avoid allocations with no watermarks from looping endlessly */
4108 if (tsk_is_oom_victim(current
) &&
4109 (alloc_flags
== ALLOC_OOM
||
4110 (gfp_mask
& __GFP_NOMEMALLOC
)))
4113 /* Retry as long as the OOM killer is making progress */
4114 if (did_some_progress
) {
4115 no_progress_loops
= 0;
4120 /* Deal with possible cpuset update races before we fail */
4121 if (check_retry_cpuset(cpuset_mems_cookie
, ac
))
4125 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4128 if (gfp_mask
& __GFP_NOFAIL
) {
4130 * All existing users of the __GFP_NOFAIL are blockable, so warn
4131 * of any new users that actually require GFP_NOWAIT
4133 if (WARN_ON_ONCE(!can_direct_reclaim
))
4137 * PF_MEMALLOC request from this context is rather bizarre
4138 * because we cannot reclaim anything and only can loop waiting
4139 * for somebody to do a work for us
4141 WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
);
4144 * non failing costly orders are a hard requirement which we
4145 * are not prepared for much so let's warn about these users
4146 * so that we can identify them and convert them to something
4149 WARN_ON_ONCE(order
> PAGE_ALLOC_COSTLY_ORDER
);
4152 * Help non-failing allocations by giving them access to memory
4153 * reserves but do not use ALLOC_NO_WATERMARKS because this
4154 * could deplete whole memory reserves which would just make
4155 * the situation worse
4157 page
= __alloc_pages_cpuset_fallback(gfp_mask
, order
, ALLOC_HARDER
, ac
);
4165 warn_alloc(gfp_mask
, ac
->nodemask
,
4166 "page allocation failure: order:%u", order
);
4171 static inline bool prepare_alloc_pages(gfp_t gfp_mask
, unsigned int order
,
4172 int preferred_nid
, nodemask_t
*nodemask
,
4173 struct alloc_context
*ac
, gfp_t
*alloc_mask
,
4174 unsigned int *alloc_flags
)
4176 ac
->high_zoneidx
= gfp_zone(gfp_mask
);
4177 ac
->zonelist
= node_zonelist(preferred_nid
, gfp_mask
);
4178 ac
->nodemask
= nodemask
;
4179 ac
->migratetype
= gfpflags_to_migratetype(gfp_mask
);
4181 if (cpusets_enabled()) {
4182 *alloc_mask
|= __GFP_HARDWALL
;
4184 ac
->nodemask
= &cpuset_current_mems_allowed
;
4186 *alloc_flags
|= ALLOC_CPUSET
;
4189 fs_reclaim_acquire(gfp_mask
);
4190 fs_reclaim_release(gfp_mask
);
4192 might_sleep_if(gfp_mask
& __GFP_DIRECT_RECLAIM
);
4194 if (should_fail_alloc_page(gfp_mask
, order
))
4197 if (IS_ENABLED(CONFIG_CMA
) && ac
->migratetype
== MIGRATE_MOVABLE
)
4198 *alloc_flags
|= ALLOC_CMA
;
4203 /* Determine whether to spread dirty pages and what the first usable zone */
4204 static inline void finalise_ac(gfp_t gfp_mask
,
4205 unsigned int order
, struct alloc_context
*ac
)
4207 /* Dirty zone balancing only done in the fast path */
4208 ac
->spread_dirty_pages
= (gfp_mask
& __GFP_WRITE
);
4211 * The preferred zone is used for statistics but crucially it is
4212 * also used as the starting point for the zonelist iterator. It
4213 * may get reset for allocations that ignore memory policies.
4215 ac
->preferred_zoneref
= first_zones_zonelist(ac
->zonelist
,
4216 ac
->high_zoneidx
, ac
->nodemask
);
4220 * This is the 'heart' of the zoned buddy allocator.
4223 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
, int preferred_nid
,
4224 nodemask_t
*nodemask
)
4227 unsigned int alloc_flags
= ALLOC_WMARK_LOW
;
4228 gfp_t alloc_mask
; /* The gfp_t that was actually used for allocation */
4229 struct alloc_context ac
= { };
4231 gfp_mask
&= gfp_allowed_mask
;
4232 alloc_mask
= gfp_mask
;
4233 if (!prepare_alloc_pages(gfp_mask
, order
, preferred_nid
, nodemask
, &ac
, &alloc_mask
, &alloc_flags
))
4236 finalise_ac(gfp_mask
, order
, &ac
);
4238 /* First allocation attempt */
4239 page
= get_page_from_freelist(alloc_mask
, order
, alloc_flags
, &ac
);
4244 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
4245 * resp. GFP_NOIO which has to be inherited for all allocation requests
4246 * from a particular context which has been marked by
4247 * memalloc_no{fs,io}_{save,restore}.
4249 alloc_mask
= current_gfp_context(gfp_mask
);
4250 ac
.spread_dirty_pages
= false;
4253 * Restore the original nodemask if it was potentially replaced with
4254 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
4256 if (unlikely(ac
.nodemask
!= nodemask
))
4257 ac
.nodemask
= nodemask
;
4259 page
= __alloc_pages_slowpath(alloc_mask
, order
, &ac
);
4262 if (memcg_kmem_enabled() && (gfp_mask
& __GFP_ACCOUNT
) && page
&&
4263 unlikely(memcg_kmem_charge(page
, gfp_mask
, order
) != 0)) {
4264 __free_pages(page
, order
);
4268 trace_mm_page_alloc(page
, order
, alloc_mask
, ac
.migratetype
);
4272 EXPORT_SYMBOL(__alloc_pages_nodemask
);
4275 * Common helper functions.
4277 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
4282 * __get_free_pages() returns a virtual address, which cannot represent
4285 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
4287 page
= alloc_pages(gfp_mask
, order
);
4290 return (unsigned long) page_address(page
);
4292 EXPORT_SYMBOL(__get_free_pages
);
4294 unsigned long get_zeroed_page(gfp_t gfp_mask
)
4296 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
4298 EXPORT_SYMBOL(get_zeroed_page
);
4300 void __free_pages(struct page
*page
, unsigned int order
)
4302 if (put_page_testzero(page
)) {
4304 free_unref_page(page
);
4306 __free_pages_ok(page
, order
);
4310 EXPORT_SYMBOL(__free_pages
);
4312 void free_pages(unsigned long addr
, unsigned int order
)
4315 VM_BUG_ON(!virt_addr_valid((void *)addr
));
4316 __free_pages(virt_to_page((void *)addr
), order
);
4320 EXPORT_SYMBOL(free_pages
);
4324 * An arbitrary-length arbitrary-offset area of memory which resides
4325 * within a 0 or higher order page. Multiple fragments within that page
4326 * are individually refcounted, in the page's reference counter.
4328 * The page_frag functions below provide a simple allocation framework for
4329 * page fragments. This is used by the network stack and network device
4330 * drivers to provide a backing region of memory for use as either an
4331 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
4333 static struct page
*__page_frag_cache_refill(struct page_frag_cache
*nc
,
4336 struct page
*page
= NULL
;
4337 gfp_t gfp
= gfp_mask
;
4339 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4340 gfp_mask
|= __GFP_COMP
| __GFP_NOWARN
| __GFP_NORETRY
|
4342 page
= alloc_pages_node(NUMA_NO_NODE
, gfp_mask
,
4343 PAGE_FRAG_CACHE_MAX_ORDER
);
4344 nc
->size
= page
? PAGE_FRAG_CACHE_MAX_SIZE
: PAGE_SIZE
;
4346 if (unlikely(!page
))
4347 page
= alloc_pages_node(NUMA_NO_NODE
, gfp
, 0);
4349 nc
->va
= page
? page_address(page
) : NULL
;
4354 void __page_frag_cache_drain(struct page
*page
, unsigned int count
)
4356 VM_BUG_ON_PAGE(page_ref_count(page
) == 0, page
);
4358 if (page_ref_sub_and_test(page
, count
)) {
4359 unsigned int order
= compound_order(page
);
4362 free_unref_page(page
);
4364 __free_pages_ok(page
, order
);
4367 EXPORT_SYMBOL(__page_frag_cache_drain
);
4369 void *page_frag_alloc(struct page_frag_cache
*nc
,
4370 unsigned int fragsz
, gfp_t gfp_mask
)
4372 unsigned int size
= PAGE_SIZE
;
4376 if (unlikely(!nc
->va
)) {
4378 page
= __page_frag_cache_refill(nc
, gfp_mask
);
4382 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4383 /* if size can vary use size else just use PAGE_SIZE */
4386 /* Even if we own the page, we do not use atomic_set().
4387 * This would break get_page_unless_zero() users.
4389 page_ref_add(page
, size
- 1);
4391 /* reset page count bias and offset to start of new frag */
4392 nc
->pfmemalloc
= page_is_pfmemalloc(page
);
4393 nc
->pagecnt_bias
= size
;
4397 offset
= nc
->offset
- fragsz
;
4398 if (unlikely(offset
< 0)) {
4399 page
= virt_to_page(nc
->va
);
4401 if (!page_ref_sub_and_test(page
, nc
->pagecnt_bias
))
4404 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
4405 /* if size can vary use size else just use PAGE_SIZE */
4408 /* OK, page count is 0, we can safely set it */
4409 set_page_count(page
, size
);
4411 /* reset page count bias and offset to start of new frag */
4412 nc
->pagecnt_bias
= size
;
4413 offset
= size
- fragsz
;
4417 nc
->offset
= offset
;
4419 return nc
->va
+ offset
;
4421 EXPORT_SYMBOL(page_frag_alloc
);
4424 * Frees a page fragment allocated out of either a compound or order 0 page.
4426 void page_frag_free(void *addr
)
4428 struct page
*page
= virt_to_head_page(addr
);
4430 if (unlikely(put_page_testzero(page
)))
4431 __free_pages_ok(page
, compound_order(page
));
4433 EXPORT_SYMBOL(page_frag_free
);
4435 static void *make_alloc_exact(unsigned long addr
, unsigned int order
,
4439 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
4440 unsigned long used
= addr
+ PAGE_ALIGN(size
);
4442 split_page(virt_to_page((void *)addr
), order
);
4443 while (used
< alloc_end
) {
4448 return (void *)addr
;
4452 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
4453 * @size: the number of bytes to allocate
4454 * @gfp_mask: GFP flags for the allocation
4456 * This function is similar to alloc_pages(), except that it allocates the
4457 * minimum number of pages to satisfy the request. alloc_pages() can only
4458 * allocate memory in power-of-two pages.
4460 * This function is also limited by MAX_ORDER.
4462 * Memory allocated by this function must be released by free_pages_exact().
4464 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
4466 unsigned int order
= get_order(size
);
4469 addr
= __get_free_pages(gfp_mask
, order
);
4470 return make_alloc_exact(addr
, order
, size
);
4472 EXPORT_SYMBOL(alloc_pages_exact
);
4475 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
4477 * @nid: the preferred node ID where memory should be allocated
4478 * @size: the number of bytes to allocate
4479 * @gfp_mask: GFP flags for the allocation
4481 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
4484 void * __meminit
alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
4486 unsigned int order
= get_order(size
);
4487 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
4490 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
4494 * free_pages_exact - release memory allocated via alloc_pages_exact()
4495 * @virt: the value returned by alloc_pages_exact.
4496 * @size: size of allocation, same value as passed to alloc_pages_exact().
4498 * Release the memory allocated by a previous call to alloc_pages_exact.
4500 void free_pages_exact(void *virt
, size_t size
)
4502 unsigned long addr
= (unsigned long)virt
;
4503 unsigned long end
= addr
+ PAGE_ALIGN(size
);
4505 while (addr
< end
) {
4510 EXPORT_SYMBOL(free_pages_exact
);
4513 * nr_free_zone_pages - count number of pages beyond high watermark
4514 * @offset: The zone index of the highest zone
4516 * nr_free_zone_pages() counts the number of counts pages which are beyond the
4517 * high watermark within all zones at or below a given zone index. For each
4518 * zone, the number of pages is calculated as:
4520 * nr_free_zone_pages = managed_pages - high_pages
4522 static unsigned long nr_free_zone_pages(int offset
)
4527 /* Just pick one node, since fallback list is circular */
4528 unsigned long sum
= 0;
4530 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
4532 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
4533 unsigned long size
= zone
->managed_pages
;
4534 unsigned long high
= high_wmark_pages(zone
);
4543 * nr_free_buffer_pages - count number of pages beyond high watermark
4545 * nr_free_buffer_pages() counts the number of pages which are beyond the high
4546 * watermark within ZONE_DMA and ZONE_NORMAL.
4548 unsigned long nr_free_buffer_pages(void)
4550 return nr_free_zone_pages(gfp_zone(GFP_USER
));
4552 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
4555 * nr_free_pagecache_pages - count number of pages beyond high watermark
4557 * nr_free_pagecache_pages() counts the number of pages which are beyond the
4558 * high watermark within all zones.
4560 unsigned long nr_free_pagecache_pages(void)
4562 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
4565 static inline void show_node(struct zone
*zone
)
4567 if (IS_ENABLED(CONFIG_NUMA
))
4568 printk("Node %d ", zone_to_nid(zone
));
4571 long si_mem_available(void)
4574 unsigned long pagecache
;
4575 unsigned long wmark_low
= 0;
4576 unsigned long pages
[NR_LRU_LISTS
];
4580 for (lru
= LRU_BASE
; lru
< NR_LRU_LISTS
; lru
++)
4581 pages
[lru
] = global_node_page_state(NR_LRU_BASE
+ lru
);
4584 wmark_low
+= zone
->watermark
[WMARK_LOW
];
4587 * Estimate the amount of memory available for userspace allocations,
4588 * without causing swapping.
4590 available
= global_zone_page_state(NR_FREE_PAGES
) - totalreserve_pages
;
4593 * Not all the page cache can be freed, otherwise the system will
4594 * start swapping. Assume at least half of the page cache, or the
4595 * low watermark worth of cache, needs to stay.
4597 pagecache
= pages
[LRU_ACTIVE_FILE
] + pages
[LRU_INACTIVE_FILE
];
4598 pagecache
-= min(pagecache
/ 2, wmark_low
);
4599 available
+= pagecache
;
4602 * Part of the reclaimable slab consists of items that are in use,
4603 * and cannot be freed. Cap this estimate at the low watermark.
4605 available
+= global_node_page_state(NR_SLAB_RECLAIMABLE
) -
4606 min(global_node_page_state(NR_SLAB_RECLAIMABLE
) / 2,
4613 EXPORT_SYMBOL_GPL(si_mem_available
);
4615 void si_meminfo(struct sysinfo
*val
)
4617 val
->totalram
= totalram_pages
;
4618 val
->sharedram
= global_node_page_state(NR_SHMEM
);
4619 val
->freeram
= global_zone_page_state(NR_FREE_PAGES
);
4620 val
->bufferram
= nr_blockdev_pages();
4621 val
->totalhigh
= totalhigh_pages
;
4622 val
->freehigh
= nr_free_highpages();
4623 val
->mem_unit
= PAGE_SIZE
;
4626 EXPORT_SYMBOL(si_meminfo
);
4629 void si_meminfo_node(struct sysinfo
*val
, int nid
)
4631 int zone_type
; /* needs to be signed */
4632 unsigned long managed_pages
= 0;
4633 unsigned long managed_highpages
= 0;
4634 unsigned long free_highpages
= 0;
4635 pg_data_t
*pgdat
= NODE_DATA(nid
);
4637 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++)
4638 managed_pages
+= pgdat
->node_zones
[zone_type
].managed_pages
;
4639 val
->totalram
= managed_pages
;
4640 val
->sharedram
= node_page_state(pgdat
, NR_SHMEM
);
4641 val
->freeram
= sum_zone_node_page_state(nid
, NR_FREE_PAGES
);
4642 #ifdef CONFIG_HIGHMEM
4643 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
4644 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4646 if (is_highmem(zone
)) {
4647 managed_highpages
+= zone
->managed_pages
;
4648 free_highpages
+= zone_page_state(zone
, NR_FREE_PAGES
);
4651 val
->totalhigh
= managed_highpages
;
4652 val
->freehigh
= free_highpages
;
4654 val
->totalhigh
= managed_highpages
;
4655 val
->freehigh
= free_highpages
;
4657 val
->mem_unit
= PAGE_SIZE
;
4662 * Determine whether the node should be displayed or not, depending on whether
4663 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
4665 static bool show_mem_node_skip(unsigned int flags
, int nid
, nodemask_t
*nodemask
)
4667 if (!(flags
& SHOW_MEM_FILTER_NODES
))
4671 * no node mask - aka implicit memory numa policy. Do not bother with
4672 * the synchronization - read_mems_allowed_begin - because we do not
4673 * have to be precise here.
4676 nodemask
= &cpuset_current_mems_allowed
;
4678 return !node_isset(nid
, *nodemask
);
4681 #define K(x) ((x) << (PAGE_SHIFT-10))
4683 static void show_migration_types(unsigned char type
)
4685 static const char types
[MIGRATE_TYPES
] = {
4686 [MIGRATE_UNMOVABLE
] = 'U',
4687 [MIGRATE_MOVABLE
] = 'M',
4688 [MIGRATE_RECLAIMABLE
] = 'E',
4689 [MIGRATE_HIGHATOMIC
] = 'H',
4691 [MIGRATE_CMA
] = 'C',
4693 #ifdef CONFIG_MEMORY_ISOLATION
4694 [MIGRATE_ISOLATE
] = 'I',
4697 char tmp
[MIGRATE_TYPES
+ 1];
4701 for (i
= 0; i
< MIGRATE_TYPES
; i
++) {
4702 if (type
& (1 << i
))
4707 printk(KERN_CONT
"(%s) ", tmp
);
4711 * Show free area list (used inside shift_scroll-lock stuff)
4712 * We also calculate the percentage fragmentation. We do this by counting the
4713 * memory on each free list with the exception of the first item on the list.
4716 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4719 void show_free_areas(unsigned int filter
, nodemask_t
*nodemask
)
4721 unsigned long free_pcp
= 0;
4726 for_each_populated_zone(zone
) {
4727 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4730 for_each_online_cpu(cpu
)
4731 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4734 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4735 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
4736 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4737 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
4738 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
4739 " free:%lu free_pcp:%lu free_cma:%lu\n",
4740 global_node_page_state(NR_ACTIVE_ANON
),
4741 global_node_page_state(NR_INACTIVE_ANON
),
4742 global_node_page_state(NR_ISOLATED_ANON
),
4743 global_node_page_state(NR_ACTIVE_FILE
),
4744 global_node_page_state(NR_INACTIVE_FILE
),
4745 global_node_page_state(NR_ISOLATED_FILE
),
4746 global_node_page_state(NR_UNEVICTABLE
),
4747 global_node_page_state(NR_FILE_DIRTY
),
4748 global_node_page_state(NR_WRITEBACK
),
4749 global_node_page_state(NR_UNSTABLE_NFS
),
4750 global_node_page_state(NR_SLAB_RECLAIMABLE
),
4751 global_node_page_state(NR_SLAB_UNRECLAIMABLE
),
4752 global_node_page_state(NR_FILE_MAPPED
),
4753 global_node_page_state(NR_SHMEM
),
4754 global_zone_page_state(NR_PAGETABLE
),
4755 global_zone_page_state(NR_BOUNCE
),
4756 global_zone_page_state(NR_FREE_PAGES
),
4758 global_zone_page_state(NR_FREE_CMA_PAGES
));
4760 for_each_online_pgdat(pgdat
) {
4761 if (show_mem_node_skip(filter
, pgdat
->node_id
, nodemask
))
4765 " active_anon:%lukB"
4766 " inactive_anon:%lukB"
4767 " active_file:%lukB"
4768 " inactive_file:%lukB"
4769 " unevictable:%lukB"
4770 " isolated(anon):%lukB"
4771 " isolated(file):%lukB"
4776 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4778 " shmem_pmdmapped: %lukB"
4781 " writeback_tmp:%lukB"
4783 " all_unreclaimable? %s"
4786 K(node_page_state(pgdat
, NR_ACTIVE_ANON
)),
4787 K(node_page_state(pgdat
, NR_INACTIVE_ANON
)),
4788 K(node_page_state(pgdat
, NR_ACTIVE_FILE
)),
4789 K(node_page_state(pgdat
, NR_INACTIVE_FILE
)),
4790 K(node_page_state(pgdat
, NR_UNEVICTABLE
)),
4791 K(node_page_state(pgdat
, NR_ISOLATED_ANON
)),
4792 K(node_page_state(pgdat
, NR_ISOLATED_FILE
)),
4793 K(node_page_state(pgdat
, NR_FILE_MAPPED
)),
4794 K(node_page_state(pgdat
, NR_FILE_DIRTY
)),
4795 K(node_page_state(pgdat
, NR_WRITEBACK
)),
4796 K(node_page_state(pgdat
, NR_SHMEM
)),
4797 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
4798 K(node_page_state(pgdat
, NR_SHMEM_THPS
) * HPAGE_PMD_NR
),
4799 K(node_page_state(pgdat
, NR_SHMEM_PMDMAPPED
)
4801 K(node_page_state(pgdat
, NR_ANON_THPS
) * HPAGE_PMD_NR
),
4803 K(node_page_state(pgdat
, NR_WRITEBACK_TEMP
)),
4804 K(node_page_state(pgdat
, NR_UNSTABLE_NFS
)),
4805 pgdat
->kswapd_failures
>= MAX_RECLAIM_RETRIES
?
4809 for_each_populated_zone(zone
) {
4812 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4816 for_each_online_cpu(cpu
)
4817 free_pcp
+= per_cpu_ptr(zone
->pageset
, cpu
)->pcp
.count
;
4826 " active_anon:%lukB"
4827 " inactive_anon:%lukB"
4828 " active_file:%lukB"
4829 " inactive_file:%lukB"
4830 " unevictable:%lukB"
4831 " writepending:%lukB"
4835 " kernel_stack:%lukB"
4843 K(zone_page_state(zone
, NR_FREE_PAGES
)),
4844 K(min_wmark_pages(zone
)),
4845 K(low_wmark_pages(zone
)),
4846 K(high_wmark_pages(zone
)),
4847 K(zone_page_state(zone
, NR_ZONE_ACTIVE_ANON
)),
4848 K(zone_page_state(zone
, NR_ZONE_INACTIVE_ANON
)),
4849 K(zone_page_state(zone
, NR_ZONE_ACTIVE_FILE
)),
4850 K(zone_page_state(zone
, NR_ZONE_INACTIVE_FILE
)),
4851 K(zone_page_state(zone
, NR_ZONE_UNEVICTABLE
)),
4852 K(zone_page_state(zone
, NR_ZONE_WRITE_PENDING
)),
4853 K(zone
->present_pages
),
4854 K(zone
->managed_pages
),
4855 K(zone_page_state(zone
, NR_MLOCK
)),
4856 zone_page_state(zone
, NR_KERNEL_STACK_KB
),
4857 K(zone_page_state(zone
, NR_PAGETABLE
)),
4858 K(zone_page_state(zone
, NR_BOUNCE
)),
4860 K(this_cpu_read(zone
->pageset
->pcp
.count
)),
4861 K(zone_page_state(zone
, NR_FREE_CMA_PAGES
)));
4862 printk("lowmem_reserve[]:");
4863 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4864 printk(KERN_CONT
" %ld", zone
->lowmem_reserve
[i
]);
4865 printk(KERN_CONT
"\n");
4868 for_each_populated_zone(zone
) {
4870 unsigned long nr
[MAX_ORDER
], flags
, total
= 0;
4871 unsigned char types
[MAX_ORDER
];
4873 if (show_mem_node_skip(filter
, zone_to_nid(zone
), nodemask
))
4876 printk(KERN_CONT
"%s: ", zone
->name
);
4878 spin_lock_irqsave(&zone
->lock
, flags
);
4879 for (order
= 0; order
< MAX_ORDER
; order
++) {
4880 struct free_area
*area
= &zone
->free_area
[order
];
4883 nr
[order
] = area
->nr_free
;
4884 total
+= nr
[order
] << order
;
4887 for (type
= 0; type
< MIGRATE_TYPES
; type
++) {
4888 if (!list_empty(&area
->free_list
[type
]))
4889 types
[order
] |= 1 << type
;
4892 spin_unlock_irqrestore(&zone
->lock
, flags
);
4893 for (order
= 0; order
< MAX_ORDER
; order
++) {
4894 printk(KERN_CONT
"%lu*%lukB ",
4895 nr
[order
], K(1UL) << order
);
4897 show_migration_types(types
[order
]);
4899 printk(KERN_CONT
"= %lukB\n", K(total
));
4902 hugetlb_show_meminfo();
4904 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES
));
4906 show_swap_cache_info();
4909 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
4911 zoneref
->zone
= zone
;
4912 zoneref
->zone_idx
= zone_idx(zone
);
4916 * Builds allocation fallback zone lists.
4918 * Add all populated zones of a node to the zonelist.
4920 static int build_zonerefs_node(pg_data_t
*pgdat
, struct zoneref
*zonerefs
)
4923 enum zone_type zone_type
= MAX_NR_ZONES
;
4928 zone
= pgdat
->node_zones
+ zone_type
;
4929 if (managed_zone(zone
)) {
4930 zoneref_set_zone(zone
, &zonerefs
[nr_zones
++]);
4931 check_highest_zone(zone_type
);
4933 } while (zone_type
);
4940 static int __parse_numa_zonelist_order(char *s
)
4943 * We used to support different zonlists modes but they turned
4944 * out to be just not useful. Let's keep the warning in place
4945 * if somebody still use the cmd line parameter so that we do
4946 * not fail it silently
4948 if (!(*s
== 'd' || *s
== 'D' || *s
== 'n' || *s
== 'N')) {
4949 pr_warn("Ignoring unsupported numa_zonelist_order value: %s\n", s
);
4955 static __init
int setup_numa_zonelist_order(char *s
)
4960 return __parse_numa_zonelist_order(s
);
4962 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
4964 char numa_zonelist_order
[] = "Node";
4967 * sysctl handler for numa_zonelist_order
4969 int numa_zonelist_order_handler(struct ctl_table
*table
, int write
,
4970 void __user
*buffer
, size_t *length
,
4977 return proc_dostring(table
, write
, buffer
, length
, ppos
);
4978 str
= memdup_user_nul(buffer
, 16);
4980 return PTR_ERR(str
);
4982 ret
= __parse_numa_zonelist_order(str
);
4988 #define MAX_NODE_LOAD (nr_online_nodes)
4989 static int node_load
[MAX_NUMNODES
];
4992 * find_next_best_node - find the next node that should appear in a given node's fallback list
4993 * @node: node whose fallback list we're appending
4994 * @used_node_mask: nodemask_t of already used nodes
4996 * We use a number of factors to determine which is the next node that should
4997 * appear on a given node's fallback list. The node should not have appeared
4998 * already in @node's fallback list, and it should be the next closest node
4999 * according to the distance array (which contains arbitrary distance values
5000 * from each node to each node in the system), and should also prefer nodes
5001 * with no CPUs, since presumably they'll have very little allocation pressure
5002 * on them otherwise.
5003 * It returns -1 if no node is found.
5005 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
5008 int min_val
= INT_MAX
;
5009 int best_node
= NUMA_NO_NODE
;
5010 const struct cpumask
*tmp
= cpumask_of_node(0);
5012 /* Use the local node if we haven't already */
5013 if (!node_isset(node
, *used_node_mask
)) {
5014 node_set(node
, *used_node_mask
);
5018 for_each_node_state(n
, N_MEMORY
) {
5020 /* Don't want a node to appear more than once */
5021 if (node_isset(n
, *used_node_mask
))
5024 /* Use the distance array to find the distance */
5025 val
= node_distance(node
, n
);
5027 /* Penalize nodes under us ("prefer the next node") */
5030 /* Give preference to headless and unused nodes */
5031 tmp
= cpumask_of_node(n
);
5032 if (!cpumask_empty(tmp
))
5033 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
5035 /* Slight preference for less loaded node */
5036 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
5037 val
+= node_load
[n
];
5039 if (val
< min_val
) {
5046 node_set(best_node
, *used_node_mask
);
5053 * Build zonelists ordered by node and zones within node.
5054 * This results in maximum locality--normal zone overflows into local
5055 * DMA zone, if any--but risks exhausting DMA zone.
5057 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int *node_order
,
5060 struct zoneref
*zonerefs
;
5063 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5065 for (i
= 0; i
< nr_nodes
; i
++) {
5068 pg_data_t
*node
= NODE_DATA(node_order
[i
]);
5070 nr_zones
= build_zonerefs_node(node
, zonerefs
);
5071 zonerefs
+= nr_zones
;
5073 zonerefs
->zone
= NULL
;
5074 zonerefs
->zone_idx
= 0;
5078 * Build gfp_thisnode zonelists
5080 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
5082 struct zoneref
*zonerefs
;
5085 zonerefs
= pgdat
->node_zonelists
[ZONELIST_NOFALLBACK
]._zonerefs
;
5086 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5087 zonerefs
+= nr_zones
;
5088 zonerefs
->zone
= NULL
;
5089 zonerefs
->zone_idx
= 0;
5093 * Build zonelists ordered by zone and nodes within zones.
5094 * This results in conserving DMA zone[s] until all Normal memory is
5095 * exhausted, but results in overflowing to remote node while memory
5096 * may still exist in local DMA zone.
5099 static void build_zonelists(pg_data_t
*pgdat
)
5101 static int node_order
[MAX_NUMNODES
];
5102 int node
, load
, nr_nodes
= 0;
5103 nodemask_t used_mask
;
5104 int local_node
, prev_node
;
5106 /* NUMA-aware ordering of nodes */
5107 local_node
= pgdat
->node_id
;
5108 load
= nr_online_nodes
;
5109 prev_node
= local_node
;
5110 nodes_clear(used_mask
);
5112 memset(node_order
, 0, sizeof(node_order
));
5113 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
5115 * We don't want to pressure a particular node.
5116 * So adding penalty to the first node in same
5117 * distance group to make it round-robin.
5119 if (node_distance(local_node
, node
) !=
5120 node_distance(local_node
, prev_node
))
5121 node_load
[node
] = load
;
5123 node_order
[nr_nodes
++] = node
;
5128 build_zonelists_in_node_order(pgdat
, node_order
, nr_nodes
);
5129 build_thisnode_zonelists(pgdat
);
5132 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5134 * Return node id of node used for "local" allocations.
5135 * I.e., first node id of first zone in arg node's generic zonelist.
5136 * Used for initializing percpu 'numa_mem', which is used primarily
5137 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5139 int local_memory_node(int node
)
5143 z
= first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
5144 gfp_zone(GFP_KERNEL
),
5146 return z
->zone
->node
;
5150 static void setup_min_unmapped_ratio(void);
5151 static void setup_min_slab_ratio(void);
5152 #else /* CONFIG_NUMA */
5154 static void build_zonelists(pg_data_t
*pgdat
)
5156 int node
, local_node
;
5157 struct zoneref
*zonerefs
;
5160 local_node
= pgdat
->node_id
;
5162 zonerefs
= pgdat
->node_zonelists
[ZONELIST_FALLBACK
]._zonerefs
;
5163 nr_zones
= build_zonerefs_node(pgdat
, zonerefs
);
5164 zonerefs
+= nr_zones
;
5167 * Now we build the zonelist so that it contains the zones
5168 * of all the other nodes.
5169 * We don't want to pressure a particular node, so when
5170 * building the zones for node N, we make sure that the
5171 * zones coming right after the local ones are those from
5172 * node N+1 (modulo N)
5174 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
5175 if (!node_online(node
))
5177 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5178 zonerefs
+= nr_zones
;
5180 for (node
= 0; node
< local_node
; node
++) {
5181 if (!node_online(node
))
5183 nr_zones
= build_zonerefs_node(NODE_DATA(node
), zonerefs
);
5184 zonerefs
+= nr_zones
;
5187 zonerefs
->zone
= NULL
;
5188 zonerefs
->zone_idx
= 0;
5191 #endif /* CONFIG_NUMA */
5194 * Boot pageset table. One per cpu which is going to be used for all
5195 * zones and all nodes. The parameters will be set in such a way
5196 * that an item put on a list will immediately be handed over to
5197 * the buddy list. This is safe since pageset manipulation is done
5198 * with interrupts disabled.
5200 * The boot_pagesets must be kept even after bootup is complete for
5201 * unused processors and/or zones. They do play a role for bootstrapping
5202 * hotplugged processors.
5204 * zoneinfo_show() and maybe other functions do
5205 * not check if the processor is online before following the pageset pointer.
5206 * Other parts of the kernel may not check if the zone is available.
5208 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
5209 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
5210 static DEFINE_PER_CPU(struct per_cpu_nodestat
, boot_nodestats
);
5212 static void __build_all_zonelists(void *data
)
5215 int __maybe_unused cpu
;
5216 pg_data_t
*self
= data
;
5217 static DEFINE_SPINLOCK(lock
);
5222 memset(node_load
, 0, sizeof(node_load
));
5226 * This node is hotadded and no memory is yet present. So just
5227 * building zonelists is fine - no need to touch other nodes.
5229 if (self
&& !node_online(self
->node_id
)) {
5230 build_zonelists(self
);
5232 for_each_online_node(nid
) {
5233 pg_data_t
*pgdat
= NODE_DATA(nid
);
5235 build_zonelists(pgdat
);
5238 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5240 * We now know the "local memory node" for each node--
5241 * i.e., the node of the first zone in the generic zonelist.
5242 * Set up numa_mem percpu variable for on-line cpus. During
5243 * boot, only the boot cpu should be on-line; we'll init the
5244 * secondary cpus' numa_mem as they come on-line. During
5245 * node/memory hotplug, we'll fixup all on-line cpus.
5247 for_each_online_cpu(cpu
)
5248 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
5255 static noinline
void __init
5256 build_all_zonelists_init(void)
5260 __build_all_zonelists(NULL
);
5263 * Initialize the boot_pagesets that are going to be used
5264 * for bootstrapping processors. The real pagesets for
5265 * each zone will be allocated later when the per cpu
5266 * allocator is available.
5268 * boot_pagesets are used also for bootstrapping offline
5269 * cpus if the system is already booted because the pagesets
5270 * are needed to initialize allocators on a specific cpu too.
5271 * F.e. the percpu allocator needs the page allocator which
5272 * needs the percpu allocator in order to allocate its pagesets
5273 * (a chicken-egg dilemma).
5275 for_each_possible_cpu(cpu
)
5276 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
5278 mminit_verify_zonelist();
5279 cpuset_init_current_mems_allowed();
5283 * unless system_state == SYSTEM_BOOTING.
5285 * __ref due to call of __init annotated helper build_all_zonelists_init
5286 * [protected by SYSTEM_BOOTING].
5288 void __ref
build_all_zonelists(pg_data_t
*pgdat
)
5290 if (system_state
== SYSTEM_BOOTING
) {
5291 build_all_zonelists_init();
5293 __build_all_zonelists(pgdat
);
5294 /* cpuset refresh routine should be here */
5296 vm_total_pages
= nr_free_pagecache_pages();
5298 * Disable grouping by mobility if the number of pages in the
5299 * system is too low to allow the mechanism to work. It would be
5300 * more accurate, but expensive to check per-zone. This check is
5301 * made on memory-hotadd so a system can start with mobility
5302 * disabled and enable it later
5304 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
5305 page_group_by_mobility_disabled
= 1;
5307 page_group_by_mobility_disabled
= 0;
5309 pr_info("Built %i zonelists, mobility grouping %s. Total pages: %ld\n",
5311 page_group_by_mobility_disabled
? "off" : "on",
5314 pr_info("Policy zone: %s\n", zone_names
[policy_zone
]);
5319 * Initially all pages are reserved - free ones are freed
5320 * up by free_all_bootmem() once the early boot process is
5321 * done. Non-atomic initialization, single-pass.
5323 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
5324 unsigned long start_pfn
, enum memmap_context context
,
5325 struct vmem_altmap
*altmap
)
5327 unsigned long end_pfn
= start_pfn
+ size
;
5328 pg_data_t
*pgdat
= NODE_DATA(nid
);
5330 unsigned long nr_initialised
= 0;
5331 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5332 struct memblock_region
*r
= NULL
, *tmp
;
5335 if (highest_memmap_pfn
< end_pfn
- 1)
5336 highest_memmap_pfn
= end_pfn
- 1;
5339 * Honor reservation requested by the driver for this ZONE_DEVICE
5342 if (altmap
&& start_pfn
== altmap
->base_pfn
)
5343 start_pfn
+= altmap
->reserve
;
5345 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
5347 * There can be holes in boot-time mem_map[]s handed to this
5348 * function. They do not exist on hotplugged memory.
5350 if (context
!= MEMMAP_EARLY
)
5353 if (!early_pfn_valid(pfn
)) {
5354 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5356 * Skip to the pfn preceding the next valid one (or
5357 * end_pfn), such that we hit a valid pfn (or end_pfn)
5358 * on our next iteration of the loop.
5360 pfn
= memblock_next_valid_pfn(pfn
, end_pfn
) - 1;
5364 if (!early_pfn_in_nid(pfn
, nid
))
5366 if (!update_defer_init(pgdat
, pfn
, end_pfn
, &nr_initialised
))
5369 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5371 * Check given memblock attribute by firmware which can affect
5372 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5373 * mirrored, it's an overlapped memmap init. skip it.
5375 if (mirrored_kernelcore
&& zone
== ZONE_MOVABLE
) {
5376 if (!r
|| pfn
>= memblock_region_memory_end_pfn(r
)) {
5377 for_each_memblock(memory
, tmp
)
5378 if (pfn
< memblock_region_memory_end_pfn(tmp
))
5382 if (pfn
>= memblock_region_memory_base_pfn(r
) &&
5383 memblock_is_mirror(r
)) {
5384 /* already initialized as NORMAL */
5385 pfn
= memblock_region_memory_end_pfn(r
);
5393 * Mark the block movable so that blocks are reserved for
5394 * movable at startup. This will force kernel allocations
5395 * to reserve their blocks rather than leaking throughout
5396 * the address space during boot when many long-lived
5397 * kernel allocations are made.
5399 * bitmap is created for zone's valid pfn range. but memmap
5400 * can be created for invalid pages (for alignment)
5401 * check here not to call set_pageblock_migratetype() against
5404 * Please note that MEMMAP_HOTPLUG path doesn't clear memmap
5405 * because this is done early in sparse_add_one_section
5407 if (!(pfn
& (pageblock_nr_pages
- 1))) {
5408 struct page
*page
= pfn_to_page(pfn
);
5410 __init_single_page(page
, pfn
, zone
, nid
,
5411 context
!= MEMMAP_HOTPLUG
);
5412 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5415 __init_single_pfn(pfn
, zone
, nid
,
5416 context
!= MEMMAP_HOTPLUG
);
5421 static void __meminit
zone_init_free_lists(struct zone
*zone
)
5423 unsigned int order
, t
;
5424 for_each_migratetype_order(order
, t
) {
5425 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
5426 zone
->free_area
[order
].nr_free
= 0;
5430 #ifndef __HAVE_ARCH_MEMMAP_INIT
5431 #define memmap_init(size, nid, zone, start_pfn) \
5432 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY, NULL)
5435 static int zone_batchsize(struct zone
*zone
)
5441 * The per-cpu-pages pools are set to around 1000th of the
5442 * size of the zone. But no more than 1/2 of a meg.
5444 * OK, so we don't know how big the cache is. So guess.
5446 batch
= zone
->managed_pages
/ 1024;
5447 if (batch
* PAGE_SIZE
> 512 * 1024)
5448 batch
= (512 * 1024) / PAGE_SIZE
;
5449 batch
/= 4; /* We effectively *= 4 below */
5454 * Clamp the batch to a 2^n - 1 value. Having a power
5455 * of 2 value was found to be more likely to have
5456 * suboptimal cache aliasing properties in some cases.
5458 * For example if 2 tasks are alternately allocating
5459 * batches of pages, one task can end up with a lot
5460 * of pages of one half of the possible page colors
5461 * and the other with pages of the other colors.
5463 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
5468 /* The deferral and batching of frees should be suppressed under NOMMU
5471 * The problem is that NOMMU needs to be able to allocate large chunks
5472 * of contiguous memory as there's no hardware page translation to
5473 * assemble apparent contiguous memory from discontiguous pages.
5475 * Queueing large contiguous runs of pages for batching, however,
5476 * causes the pages to actually be freed in smaller chunks. As there
5477 * can be a significant delay between the individual batches being
5478 * recycled, this leads to the once large chunks of space being
5479 * fragmented and becoming unavailable for high-order allocations.
5486 * pcp->high and pcp->batch values are related and dependent on one another:
5487 * ->batch must never be higher then ->high.
5488 * The following function updates them in a safe manner without read side
5491 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5492 * those fields changing asynchronously (acording the the above rule).
5494 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5495 * outside of boot time (or some other assurance that no concurrent updaters
5498 static void pageset_update(struct per_cpu_pages
*pcp
, unsigned long high
,
5499 unsigned long batch
)
5501 /* start with a fail safe value for batch */
5505 /* Update high, then batch, in order */
5512 /* a companion to pageset_set_high() */
5513 static void pageset_set_batch(struct per_cpu_pageset
*p
, unsigned long batch
)
5515 pageset_update(&p
->pcp
, 6 * batch
, max(1UL, 1 * batch
));
5518 static void pageset_init(struct per_cpu_pageset
*p
)
5520 struct per_cpu_pages
*pcp
;
5523 memset(p
, 0, sizeof(*p
));
5527 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
5528 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
5531 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
5534 pageset_set_batch(p
, batch
);
5538 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
5539 * to the value high for the pageset p.
5541 static void pageset_set_high(struct per_cpu_pageset
*p
,
5544 unsigned long batch
= max(1UL, high
/ 4);
5545 if ((high
/ 4) > (PAGE_SHIFT
* 8))
5546 batch
= PAGE_SHIFT
* 8;
5548 pageset_update(&p
->pcp
, high
, batch
);
5551 static void pageset_set_high_and_batch(struct zone
*zone
,
5552 struct per_cpu_pageset
*pcp
)
5554 if (percpu_pagelist_fraction
)
5555 pageset_set_high(pcp
,
5556 (zone
->managed_pages
/
5557 percpu_pagelist_fraction
));
5559 pageset_set_batch(pcp
, zone_batchsize(zone
));
5562 static void __meminit
zone_pageset_init(struct zone
*zone
, int cpu
)
5564 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
5567 pageset_set_high_and_batch(zone
, pcp
);
5570 void __meminit
setup_zone_pageset(struct zone
*zone
)
5573 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
5574 for_each_possible_cpu(cpu
)
5575 zone_pageset_init(zone
, cpu
);
5579 * Allocate per cpu pagesets and initialize them.
5580 * Before this call only boot pagesets were available.
5582 void __init
setup_per_cpu_pageset(void)
5584 struct pglist_data
*pgdat
;
5587 for_each_populated_zone(zone
)
5588 setup_zone_pageset(zone
);
5590 for_each_online_pgdat(pgdat
)
5591 pgdat
->per_cpu_nodestats
=
5592 alloc_percpu(struct per_cpu_nodestat
);
5595 static __meminit
void zone_pcp_init(struct zone
*zone
)
5598 * per cpu subsystem is not up at this point. The following code
5599 * relies on the ability of the linker to provide the
5600 * offset of a (static) per cpu variable into the per cpu area.
5602 zone
->pageset
= &boot_pageset
;
5604 if (populated_zone(zone
))
5605 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
5606 zone
->name
, zone
->present_pages
,
5607 zone_batchsize(zone
));
5610 void __meminit
init_currently_empty_zone(struct zone
*zone
,
5611 unsigned long zone_start_pfn
,
5614 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
5616 pgdat
->nr_zones
= zone_idx(zone
) + 1;
5618 zone
->zone_start_pfn
= zone_start_pfn
;
5620 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
5621 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5623 (unsigned long)zone_idx(zone
),
5624 zone_start_pfn
, (zone_start_pfn
+ size
));
5626 zone_init_free_lists(zone
);
5627 zone
->initialized
= 1;
5630 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5631 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
5634 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
5636 int __meminit
__early_pfn_to_nid(unsigned long pfn
,
5637 struct mminit_pfnnid_cache
*state
)
5639 unsigned long start_pfn
, end_pfn
;
5642 if (state
->last_start
<= pfn
&& pfn
< state
->last_end
)
5643 return state
->last_nid
;
5645 nid
= memblock_search_pfn_nid(pfn
, &start_pfn
, &end_pfn
);
5647 state
->last_start
= start_pfn
;
5648 state
->last_end
= end_pfn
;
5649 state
->last_nid
= nid
;
5654 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5657 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
5658 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
5659 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
5661 * If an architecture guarantees that all ranges registered contain no holes
5662 * and may be freed, this this function may be used instead of calling
5663 * memblock_free_early_nid() manually.
5665 void __init
free_bootmem_with_active_regions(int nid
, unsigned long max_low_pfn
)
5667 unsigned long start_pfn
, end_pfn
;
5670 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
) {
5671 start_pfn
= min(start_pfn
, max_low_pfn
);
5672 end_pfn
= min(end_pfn
, max_low_pfn
);
5674 if (start_pfn
< end_pfn
)
5675 memblock_free_early_nid(PFN_PHYS(start_pfn
),
5676 (end_pfn
- start_pfn
) << PAGE_SHIFT
,
5682 * sparse_memory_present_with_active_regions - Call memory_present for each active range
5683 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
5685 * If an architecture guarantees that all ranges registered contain no holes and may
5686 * be freed, this function may be used instead of calling memory_present() manually.
5688 void __init
sparse_memory_present_with_active_regions(int nid
)
5690 unsigned long start_pfn
, end_pfn
;
5693 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, &this_nid
)
5694 memory_present(this_nid
, start_pfn
, end_pfn
);
5698 * get_pfn_range_for_nid - Return the start and end page frames for a node
5699 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5700 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5701 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
5703 * It returns the start and end page frame of a node based on information
5704 * provided by memblock_set_node(). If called for a node
5705 * with no available memory, a warning is printed and the start and end
5708 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
5709 unsigned long *start_pfn
, unsigned long *end_pfn
)
5711 unsigned long this_start_pfn
, this_end_pfn
;
5717 for_each_mem_pfn_range(i
, nid
, &this_start_pfn
, &this_end_pfn
, NULL
) {
5718 *start_pfn
= min(*start_pfn
, this_start_pfn
);
5719 *end_pfn
= max(*end_pfn
, this_end_pfn
);
5722 if (*start_pfn
== -1UL)
5727 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5728 * assumption is made that zones within a node are ordered in monotonic
5729 * increasing memory addresses so that the "highest" populated zone is used
5731 static void __init
find_usable_zone_for_movable(void)
5734 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
5735 if (zone_index
== ZONE_MOVABLE
)
5738 if (arch_zone_highest_possible_pfn
[zone_index
] >
5739 arch_zone_lowest_possible_pfn
[zone_index
])
5743 VM_BUG_ON(zone_index
== -1);
5744 movable_zone
= zone_index
;
5748 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
5749 * because it is sized independent of architecture. Unlike the other zones,
5750 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5751 * in each node depending on the size of each node and how evenly kernelcore
5752 * is distributed. This helper function adjusts the zone ranges
5753 * provided by the architecture for a given node by using the end of the
5754 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5755 * zones within a node are in order of monotonic increases memory addresses
5757 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
5758 unsigned long zone_type
,
5759 unsigned long node_start_pfn
,
5760 unsigned long node_end_pfn
,
5761 unsigned long *zone_start_pfn
,
5762 unsigned long *zone_end_pfn
)
5764 /* Only adjust if ZONE_MOVABLE is on this node */
5765 if (zone_movable_pfn
[nid
]) {
5766 /* Size ZONE_MOVABLE */
5767 if (zone_type
== ZONE_MOVABLE
) {
5768 *zone_start_pfn
= zone_movable_pfn
[nid
];
5769 *zone_end_pfn
= min(node_end_pfn
,
5770 arch_zone_highest_possible_pfn
[movable_zone
]);
5772 /* Adjust for ZONE_MOVABLE starting within this range */
5773 } else if (!mirrored_kernelcore
&&
5774 *zone_start_pfn
< zone_movable_pfn
[nid
] &&
5775 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
5776 *zone_end_pfn
= zone_movable_pfn
[nid
];
5778 /* Check if this whole range is within ZONE_MOVABLE */
5779 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
5780 *zone_start_pfn
= *zone_end_pfn
;
5785 * Return the number of pages a zone spans in a node, including holes
5786 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5788 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5789 unsigned long zone_type
,
5790 unsigned long node_start_pfn
,
5791 unsigned long node_end_pfn
,
5792 unsigned long *zone_start_pfn
,
5793 unsigned long *zone_end_pfn
,
5794 unsigned long *ignored
)
5796 /* When hotadd a new node from cpu_up(), the node should be empty */
5797 if (!node_start_pfn
&& !node_end_pfn
)
5800 /* Get the start and end of the zone */
5801 *zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
5802 *zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
5803 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5804 node_start_pfn
, node_end_pfn
,
5805 zone_start_pfn
, zone_end_pfn
);
5807 /* Check that this node has pages within the zone's required range */
5808 if (*zone_end_pfn
< node_start_pfn
|| *zone_start_pfn
> node_end_pfn
)
5811 /* Move the zone boundaries inside the node if necessary */
5812 *zone_end_pfn
= min(*zone_end_pfn
, node_end_pfn
);
5813 *zone_start_pfn
= max(*zone_start_pfn
, node_start_pfn
);
5815 /* Return the spanned pages */
5816 return *zone_end_pfn
- *zone_start_pfn
;
5820 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
5821 * then all holes in the requested range will be accounted for.
5823 unsigned long __meminit
__absent_pages_in_range(int nid
,
5824 unsigned long range_start_pfn
,
5825 unsigned long range_end_pfn
)
5827 unsigned long nr_absent
= range_end_pfn
- range_start_pfn
;
5828 unsigned long start_pfn
, end_pfn
;
5831 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
5832 start_pfn
= clamp(start_pfn
, range_start_pfn
, range_end_pfn
);
5833 end_pfn
= clamp(end_pfn
, range_start_pfn
, range_end_pfn
);
5834 nr_absent
-= end_pfn
- start_pfn
;
5840 * absent_pages_in_range - Return number of page frames in holes within a range
5841 * @start_pfn: The start PFN to start searching for holes
5842 * @end_pfn: The end PFN to stop searching for holes
5844 * It returns the number of pages frames in memory holes within a range.
5846 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
5847 unsigned long end_pfn
)
5849 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
5852 /* Return the number of page frames in holes in a zone on a node */
5853 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5854 unsigned long zone_type
,
5855 unsigned long node_start_pfn
,
5856 unsigned long node_end_pfn
,
5857 unsigned long *ignored
)
5859 unsigned long zone_low
= arch_zone_lowest_possible_pfn
[zone_type
];
5860 unsigned long zone_high
= arch_zone_highest_possible_pfn
[zone_type
];
5861 unsigned long zone_start_pfn
, zone_end_pfn
;
5862 unsigned long nr_absent
;
5864 /* When hotadd a new node from cpu_up(), the node should be empty */
5865 if (!node_start_pfn
&& !node_end_pfn
)
5868 zone_start_pfn
= clamp(node_start_pfn
, zone_low
, zone_high
);
5869 zone_end_pfn
= clamp(node_end_pfn
, zone_low
, zone_high
);
5871 adjust_zone_range_for_zone_movable(nid
, zone_type
,
5872 node_start_pfn
, node_end_pfn
,
5873 &zone_start_pfn
, &zone_end_pfn
);
5874 nr_absent
= __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
5877 * ZONE_MOVABLE handling.
5878 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5881 if (mirrored_kernelcore
&& zone_movable_pfn
[nid
]) {
5882 unsigned long start_pfn
, end_pfn
;
5883 struct memblock_region
*r
;
5885 for_each_memblock(memory
, r
) {
5886 start_pfn
= clamp(memblock_region_memory_base_pfn(r
),
5887 zone_start_pfn
, zone_end_pfn
);
5888 end_pfn
= clamp(memblock_region_memory_end_pfn(r
),
5889 zone_start_pfn
, zone_end_pfn
);
5891 if (zone_type
== ZONE_MOVABLE
&&
5892 memblock_is_mirror(r
))
5893 nr_absent
+= end_pfn
- start_pfn
;
5895 if (zone_type
== ZONE_NORMAL
&&
5896 !memblock_is_mirror(r
))
5897 nr_absent
+= end_pfn
- start_pfn
;
5904 #else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5905 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
5906 unsigned long zone_type
,
5907 unsigned long node_start_pfn
,
5908 unsigned long node_end_pfn
,
5909 unsigned long *zone_start_pfn
,
5910 unsigned long *zone_end_pfn
,
5911 unsigned long *zones_size
)
5915 *zone_start_pfn
= node_start_pfn
;
5916 for (zone
= 0; zone
< zone_type
; zone
++)
5917 *zone_start_pfn
+= zones_size
[zone
];
5919 *zone_end_pfn
= *zone_start_pfn
+ zones_size
[zone_type
];
5921 return zones_size
[zone_type
];
5924 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
5925 unsigned long zone_type
,
5926 unsigned long node_start_pfn
,
5927 unsigned long node_end_pfn
,
5928 unsigned long *zholes_size
)
5933 return zholes_size
[zone_type
];
5936 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
5938 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
5939 unsigned long node_start_pfn
,
5940 unsigned long node_end_pfn
,
5941 unsigned long *zones_size
,
5942 unsigned long *zholes_size
)
5944 unsigned long realtotalpages
= 0, totalpages
= 0;
5947 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5948 struct zone
*zone
= pgdat
->node_zones
+ i
;
5949 unsigned long zone_start_pfn
, zone_end_pfn
;
5950 unsigned long size
, real_size
;
5952 size
= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
5958 real_size
= size
- zone_absent_pages_in_node(pgdat
->node_id
, i
,
5959 node_start_pfn
, node_end_pfn
,
5962 zone
->zone_start_pfn
= zone_start_pfn
;
5964 zone
->zone_start_pfn
= 0;
5965 zone
->spanned_pages
= size
;
5966 zone
->present_pages
= real_size
;
5969 realtotalpages
+= real_size
;
5972 pgdat
->node_spanned_pages
= totalpages
;
5973 pgdat
->node_present_pages
= realtotalpages
;
5974 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
5978 #ifndef CONFIG_SPARSEMEM
5980 * Calculate the size of the zone->blockflags rounded to an unsigned long
5981 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5982 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
5983 * round what is now in bits to nearest long in bits, then return it in
5986 static unsigned long __init
usemap_size(unsigned long zone_start_pfn
, unsigned long zonesize
)
5988 unsigned long usemapsize
;
5990 zonesize
+= zone_start_pfn
& (pageblock_nr_pages
-1);
5991 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
5992 usemapsize
= usemapsize
>> pageblock_order
;
5993 usemapsize
*= NR_PAGEBLOCK_BITS
;
5994 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
5996 return usemapsize
/ 8;
5999 static void __init
setup_usemap(struct pglist_data
*pgdat
,
6001 unsigned long zone_start_pfn
,
6002 unsigned long zonesize
)
6004 unsigned long usemapsize
= usemap_size(zone_start_pfn
, zonesize
);
6005 zone
->pageblock_flags
= NULL
;
6007 zone
->pageblock_flags
=
6008 memblock_virt_alloc_node_nopanic(usemapsize
,
6012 static inline void setup_usemap(struct pglist_data
*pgdat
, struct zone
*zone
,
6013 unsigned long zone_start_pfn
, unsigned long zonesize
) {}
6014 #endif /* CONFIG_SPARSEMEM */
6016 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6018 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
6019 void __paginginit
set_pageblock_order(void)
6023 /* Check that pageblock_nr_pages has not already been setup */
6024 if (pageblock_order
)
6027 if (HPAGE_SHIFT
> PAGE_SHIFT
)
6028 order
= HUGETLB_PAGE_ORDER
;
6030 order
= MAX_ORDER
- 1;
6033 * Assume the largest contiguous order of interest is a huge page.
6034 * This value may be variable depending on boot parameters on IA64 and
6037 pageblock_order
= order
;
6039 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6042 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6043 * is unused as pageblock_order is set at compile-time. See
6044 * include/linux/pageblock-flags.h for the values of pageblock_order based on
6047 void __paginginit
set_pageblock_order(void)
6051 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6053 static unsigned long __paginginit
calc_memmap_size(unsigned long spanned_pages
,
6054 unsigned long present_pages
)
6056 unsigned long pages
= spanned_pages
;
6059 * Provide a more accurate estimation if there are holes within
6060 * the zone and SPARSEMEM is in use. If there are holes within the
6061 * zone, each populated memory region may cost us one or two extra
6062 * memmap pages due to alignment because memmap pages for each
6063 * populated regions may not be naturally aligned on page boundary.
6064 * So the (present_pages >> 4) heuristic is a tradeoff for that.
6066 if (spanned_pages
> present_pages
+ (present_pages
>> 4) &&
6067 IS_ENABLED(CONFIG_SPARSEMEM
))
6068 pages
= present_pages
;
6070 return PAGE_ALIGN(pages
* sizeof(struct page
)) >> PAGE_SHIFT
;
6074 * Set up the zone data structures:
6075 * - mark all pages reserved
6076 * - mark all memory queues empty
6077 * - clear the memory bitmaps
6079 * NOTE: pgdat should get zeroed by caller.
6081 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
)
6084 int nid
= pgdat
->node_id
;
6086 pgdat_resize_init(pgdat
);
6087 #ifdef CONFIG_NUMA_BALANCING
6088 spin_lock_init(&pgdat
->numabalancing_migrate_lock
);
6089 pgdat
->numabalancing_migrate_nr_pages
= 0;
6090 pgdat
->numabalancing_migrate_next_window
= jiffies
;
6092 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
6093 spin_lock_init(&pgdat
->split_queue_lock
);
6094 INIT_LIST_HEAD(&pgdat
->split_queue
);
6095 pgdat
->split_queue_len
= 0;
6097 init_waitqueue_head(&pgdat
->kswapd_wait
);
6098 init_waitqueue_head(&pgdat
->pfmemalloc_wait
);
6099 #ifdef CONFIG_COMPACTION
6100 init_waitqueue_head(&pgdat
->kcompactd_wait
);
6102 pgdat_page_ext_init(pgdat
);
6103 spin_lock_init(&pgdat
->lru_lock
);
6104 lruvec_init(node_lruvec(pgdat
));
6106 pgdat
->per_cpu_nodestats
= &boot_nodestats
;
6108 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6109 struct zone
*zone
= pgdat
->node_zones
+ j
;
6110 unsigned long size
, realsize
, freesize
, memmap_pages
;
6111 unsigned long zone_start_pfn
= zone
->zone_start_pfn
;
6113 size
= zone
->spanned_pages
;
6114 realsize
= freesize
= zone
->present_pages
;
6117 * Adjust freesize so that it accounts for how much memory
6118 * is used by this zone for memmap. This affects the watermark
6119 * and per-cpu initialisations
6121 memmap_pages
= calc_memmap_size(size
, realsize
);
6122 if (!is_highmem_idx(j
)) {
6123 if (freesize
>= memmap_pages
) {
6124 freesize
-= memmap_pages
;
6127 " %s zone: %lu pages used for memmap\n",
6128 zone_names
[j
], memmap_pages
);
6130 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
6131 zone_names
[j
], memmap_pages
, freesize
);
6134 /* Account for reserved pages */
6135 if (j
== 0 && freesize
> dma_reserve
) {
6136 freesize
-= dma_reserve
;
6137 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
6138 zone_names
[0], dma_reserve
);
6141 if (!is_highmem_idx(j
))
6142 nr_kernel_pages
+= freesize
;
6143 /* Charge for highmem memmap if there are enough kernel pages */
6144 else if (nr_kernel_pages
> memmap_pages
* 2)
6145 nr_kernel_pages
-= memmap_pages
;
6146 nr_all_pages
+= freesize
;
6149 * Set an approximate value for lowmem here, it will be adjusted
6150 * when the bootmem allocator frees pages into the buddy system.
6151 * And all highmem pages will be managed by the buddy system.
6153 zone
->managed_pages
= is_highmem_idx(j
) ? realsize
: freesize
;
6157 zone
->name
= zone_names
[j
];
6158 zone
->zone_pgdat
= pgdat
;
6159 spin_lock_init(&zone
->lock
);
6160 zone_seqlock_init(zone
);
6161 zone_pcp_init(zone
);
6166 set_pageblock_order();
6167 setup_usemap(pgdat
, zone
, zone_start_pfn
, size
);
6168 init_currently_empty_zone(zone
, zone_start_pfn
, size
);
6169 memmap_init(size
, nid
, j
, zone_start_pfn
);
6173 #ifdef CONFIG_FLAT_NODE_MEM_MAP
6174 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
)
6176 unsigned long __maybe_unused start
= 0;
6177 unsigned long __maybe_unused offset
= 0;
6179 /* Skip empty nodes */
6180 if (!pgdat
->node_spanned_pages
)
6183 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
6184 offset
= pgdat
->node_start_pfn
- start
;
6185 /* ia64 gets its own node_mem_map, before this, without bootmem */
6186 if (!pgdat
->node_mem_map
) {
6187 unsigned long size
, end
;
6191 * The zone's endpoints aren't required to be MAX_ORDER
6192 * aligned but the node_mem_map endpoints must be in order
6193 * for the buddy allocator to function correctly.
6195 end
= pgdat_end_pfn(pgdat
);
6196 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
6197 size
= (end
- start
) * sizeof(struct page
);
6198 map
= alloc_remap(pgdat
->node_id
, size
);
6200 map
= memblock_virt_alloc_node_nopanic(size
,
6202 pgdat
->node_mem_map
= map
+ offset
;
6204 pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
6205 __func__
, pgdat
->node_id
, (unsigned long)pgdat
,
6206 (unsigned long)pgdat
->node_mem_map
);
6207 #ifndef CONFIG_NEED_MULTIPLE_NODES
6209 * With no DISCONTIG, the global mem_map is just set as node 0's
6211 if (pgdat
== NODE_DATA(0)) {
6212 mem_map
= NODE_DATA(0)->node_mem_map
;
6213 #if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
6214 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
6216 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6221 static void __ref
alloc_node_mem_map(struct pglist_data
*pgdat
) { }
6222 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
6224 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
6225 unsigned long node_start_pfn
, unsigned long *zholes_size
)
6227 pg_data_t
*pgdat
= NODE_DATA(nid
);
6228 unsigned long start_pfn
= 0;
6229 unsigned long end_pfn
= 0;
6231 /* pg_data_t should be reset to zero when it's allocated */
6232 WARN_ON(pgdat
->nr_zones
|| pgdat
->kswapd_classzone_idx
);
6234 pgdat
->node_id
= nid
;
6235 pgdat
->node_start_pfn
= node_start_pfn
;
6236 pgdat
->per_cpu_nodestats
= NULL
;
6237 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6238 get_pfn_range_for_nid(nid
, &start_pfn
, &end_pfn
);
6239 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid
,
6240 (u64
)start_pfn
<< PAGE_SHIFT
,
6241 end_pfn
? ((u64
)end_pfn
<< PAGE_SHIFT
) - 1 : 0);
6243 start_pfn
= node_start_pfn
;
6245 calculate_node_totalpages(pgdat
, start_pfn
, end_pfn
,
6246 zones_size
, zholes_size
);
6248 alloc_node_mem_map(pgdat
);
6250 reset_deferred_meminit(pgdat
);
6251 free_area_init_core(pgdat
);
6254 #ifdef CONFIG_HAVE_MEMBLOCK
6256 * Only struct pages that are backed by physical memory are zeroed and
6257 * initialized by going through __init_single_page(). But, there are some
6258 * struct pages which are reserved in memblock allocator and their fields
6259 * may be accessed (for example page_to_pfn() on some configuration accesses
6260 * flags). We must explicitly zero those struct pages.
6262 void __paginginit
zero_resv_unavail(void)
6264 phys_addr_t start
, end
;
6269 * Loop through ranges that are reserved, but do not have reported
6270 * physical memory backing.
6273 for_each_resv_unavail_range(i
, &start
, &end
) {
6274 for (pfn
= PFN_DOWN(start
); pfn
< PFN_UP(end
); pfn
++) {
6275 if (!pfn_valid(ALIGN_DOWN(pfn
, pageblock_nr_pages
)))
6277 mm_zero_struct_page(pfn_to_page(pfn
));
6283 * Struct pages that do not have backing memory. This could be because
6284 * firmware is using some of this memory, or for some other reasons.
6285 * Once memblock is changed so such behaviour is not allowed: i.e.
6286 * list of "reserved" memory must be a subset of list of "memory", then
6287 * this code can be removed.
6290 pr_info("Reserved but unavailable: %lld pages", pgcnt
);
6292 #endif /* CONFIG_HAVE_MEMBLOCK */
6294 #ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
6296 #if MAX_NUMNODES > 1
6298 * Figure out the number of possible node ids.
6300 void __init
setup_nr_node_ids(void)
6302 unsigned int highest
;
6304 highest
= find_last_bit(node_possible_map
.bits
, MAX_NUMNODES
);
6305 nr_node_ids
= highest
+ 1;
6310 * node_map_pfn_alignment - determine the maximum internode alignment
6312 * This function should be called after node map is populated and sorted.
6313 * It calculates the maximum power of two alignment which can distinguish
6316 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
6317 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
6318 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
6319 * shifted, 1GiB is enough and this function will indicate so.
6321 * This is used to test whether pfn -> nid mapping of the chosen memory
6322 * model has fine enough granularity to avoid incorrect mapping for the
6323 * populated node map.
6325 * Returns the determined alignment in pfn's. 0 if there is no alignment
6326 * requirement (single node).
6328 unsigned long __init
node_map_pfn_alignment(void)
6330 unsigned long accl_mask
= 0, last_end
= 0;
6331 unsigned long start
, end
, mask
;
6335 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start
, &end
, &nid
) {
6336 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
6343 * Start with a mask granular enough to pin-point to the
6344 * start pfn and tick off bits one-by-one until it becomes
6345 * too coarse to separate the current node from the last.
6347 mask
= ~((1 << __ffs(start
)) - 1);
6348 while (mask
&& last_end
<= (start
& (mask
<< 1)))
6351 /* accumulate all internode masks */
6355 /* convert mask to number of pages */
6356 return ~accl_mask
+ 1;
6359 /* Find the lowest pfn for a node */
6360 static unsigned long __init
find_min_pfn_for_node(int nid
)
6362 unsigned long min_pfn
= ULONG_MAX
;
6363 unsigned long start_pfn
;
6366 for_each_mem_pfn_range(i
, nid
, &start_pfn
, NULL
, NULL
)
6367 min_pfn
= min(min_pfn
, start_pfn
);
6369 if (min_pfn
== ULONG_MAX
) {
6370 pr_warn("Could not find start_pfn for node %d\n", nid
);
6378 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6380 * It returns the minimum PFN based on information provided via
6381 * memblock_set_node().
6383 unsigned long __init
find_min_pfn_with_active_regions(void)
6385 return find_min_pfn_for_node(MAX_NUMNODES
);
6389 * early_calculate_totalpages()
6390 * Sum pages in active regions for movable zone.
6391 * Populate N_MEMORY for calculating usable_nodes.
6393 static unsigned long __init
early_calculate_totalpages(void)
6395 unsigned long totalpages
= 0;
6396 unsigned long start_pfn
, end_pfn
;
6399 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
) {
6400 unsigned long pages
= end_pfn
- start_pfn
;
6402 totalpages
+= pages
;
6404 node_set_state(nid
, N_MEMORY
);
6410 * Find the PFN the Movable zone begins in each node. Kernel memory
6411 * is spread evenly between nodes as long as the nodes have enough
6412 * memory. When they don't, some nodes will have more kernelcore than
6415 static void __init
find_zone_movable_pfns_for_nodes(void)
6418 unsigned long usable_startpfn
;
6419 unsigned long kernelcore_node
, kernelcore_remaining
;
6420 /* save the state before borrow the nodemask */
6421 nodemask_t saved_node_state
= node_states
[N_MEMORY
];
6422 unsigned long totalpages
= early_calculate_totalpages();
6423 int usable_nodes
= nodes_weight(node_states
[N_MEMORY
]);
6424 struct memblock_region
*r
;
6426 /* Need to find movable_zone earlier when movable_node is specified. */
6427 find_usable_zone_for_movable();
6430 * If movable_node is specified, ignore kernelcore and movablecore
6433 if (movable_node_is_enabled()) {
6434 for_each_memblock(memory
, r
) {
6435 if (!memblock_is_hotpluggable(r
))
6440 usable_startpfn
= PFN_DOWN(r
->base
);
6441 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6442 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6450 * If kernelcore=mirror is specified, ignore movablecore option
6452 if (mirrored_kernelcore
) {
6453 bool mem_below_4gb_not_mirrored
= false;
6455 for_each_memblock(memory
, r
) {
6456 if (memblock_is_mirror(r
))
6461 usable_startpfn
= memblock_region_memory_base_pfn(r
);
6463 if (usable_startpfn
< 0x100000) {
6464 mem_below_4gb_not_mirrored
= true;
6468 zone_movable_pfn
[nid
] = zone_movable_pfn
[nid
] ?
6469 min(usable_startpfn
, zone_movable_pfn
[nid
]) :
6473 if (mem_below_4gb_not_mirrored
)
6474 pr_warn("This configuration results in unmirrored kernel memory.");
6480 * If movablecore=nn[KMG] was specified, calculate what size of
6481 * kernelcore that corresponds so that memory usable for
6482 * any allocation type is evenly spread. If both kernelcore
6483 * and movablecore are specified, then the value of kernelcore
6484 * will be used for required_kernelcore if it's greater than
6485 * what movablecore would have allowed.
6487 if (required_movablecore
) {
6488 unsigned long corepages
;
6491 * Round-up so that ZONE_MOVABLE is at least as large as what
6492 * was requested by the user
6494 required_movablecore
=
6495 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
6496 required_movablecore
= min(totalpages
, required_movablecore
);
6497 corepages
= totalpages
- required_movablecore
;
6499 required_kernelcore
= max(required_kernelcore
, corepages
);
6503 * If kernelcore was not specified or kernelcore size is larger
6504 * than totalpages, there is no ZONE_MOVABLE.
6506 if (!required_kernelcore
|| required_kernelcore
>= totalpages
)
6509 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
6510 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
6513 /* Spread kernelcore memory as evenly as possible throughout nodes */
6514 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6515 for_each_node_state(nid
, N_MEMORY
) {
6516 unsigned long start_pfn
, end_pfn
;
6519 * Recalculate kernelcore_node if the division per node
6520 * now exceeds what is necessary to satisfy the requested
6521 * amount of memory for the kernel
6523 if (required_kernelcore
< kernelcore_node
)
6524 kernelcore_node
= required_kernelcore
/ usable_nodes
;
6527 * As the map is walked, we track how much memory is usable
6528 * by the kernel using kernelcore_remaining. When it is
6529 * 0, the rest of the node is usable by ZONE_MOVABLE
6531 kernelcore_remaining
= kernelcore_node
;
6533 /* Go through each range of PFNs within this node */
6534 for_each_mem_pfn_range(i
, nid
, &start_pfn
, &end_pfn
, NULL
) {
6535 unsigned long size_pages
;
6537 start_pfn
= max(start_pfn
, zone_movable_pfn
[nid
]);
6538 if (start_pfn
>= end_pfn
)
6541 /* Account for what is only usable for kernelcore */
6542 if (start_pfn
< usable_startpfn
) {
6543 unsigned long kernel_pages
;
6544 kernel_pages
= min(end_pfn
, usable_startpfn
)
6547 kernelcore_remaining
-= min(kernel_pages
,
6548 kernelcore_remaining
);
6549 required_kernelcore
-= min(kernel_pages
,
6550 required_kernelcore
);
6552 /* Continue if range is now fully accounted */
6553 if (end_pfn
<= usable_startpfn
) {
6556 * Push zone_movable_pfn to the end so
6557 * that if we have to rebalance
6558 * kernelcore across nodes, we will
6559 * not double account here
6561 zone_movable_pfn
[nid
] = end_pfn
;
6564 start_pfn
= usable_startpfn
;
6568 * The usable PFN range for ZONE_MOVABLE is from
6569 * start_pfn->end_pfn. Calculate size_pages as the
6570 * number of pages used as kernelcore
6572 size_pages
= end_pfn
- start_pfn
;
6573 if (size_pages
> kernelcore_remaining
)
6574 size_pages
= kernelcore_remaining
;
6575 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
6578 * Some kernelcore has been met, update counts and
6579 * break if the kernelcore for this node has been
6582 required_kernelcore
-= min(required_kernelcore
,
6584 kernelcore_remaining
-= size_pages
;
6585 if (!kernelcore_remaining
)
6591 * If there is still required_kernelcore, we do another pass with one
6592 * less node in the count. This will push zone_movable_pfn[nid] further
6593 * along on the nodes that still have memory until kernelcore is
6597 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
6601 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6602 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
6603 zone_movable_pfn
[nid
] =
6604 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
6607 /* restore the node_state */
6608 node_states
[N_MEMORY
] = saved_node_state
;
6611 /* Any regular or high memory on that node ? */
6612 static void check_for_memory(pg_data_t
*pgdat
, int nid
)
6614 enum zone_type zone_type
;
6616 if (N_MEMORY
== N_NORMAL_MEMORY
)
6619 for (zone_type
= 0; zone_type
<= ZONE_MOVABLE
- 1; zone_type
++) {
6620 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
6621 if (populated_zone(zone
)) {
6622 node_set_state(nid
, N_HIGH_MEMORY
);
6623 if (N_NORMAL_MEMORY
!= N_HIGH_MEMORY
&&
6624 zone_type
<= ZONE_NORMAL
)
6625 node_set_state(nid
, N_NORMAL_MEMORY
);
6632 * free_area_init_nodes - Initialise all pg_data_t and zone data
6633 * @max_zone_pfn: an array of max PFNs for each zone
6635 * This will call free_area_init_node() for each active node in the system.
6636 * Using the page ranges provided by memblock_set_node(), the size of each
6637 * zone in each node and their holes is calculated. If the maximum PFN
6638 * between two adjacent zones match, it is assumed that the zone is empty.
6639 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6640 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6641 * starts where the previous one ended. For example, ZONE_DMA32 starts
6642 * at arch_max_dma_pfn.
6644 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
6646 unsigned long start_pfn
, end_pfn
;
6649 /* Record where the zone boundaries are */
6650 memset(arch_zone_lowest_possible_pfn
, 0,
6651 sizeof(arch_zone_lowest_possible_pfn
));
6652 memset(arch_zone_highest_possible_pfn
, 0,
6653 sizeof(arch_zone_highest_possible_pfn
));
6655 start_pfn
= find_min_pfn_with_active_regions();
6657 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6658 if (i
== ZONE_MOVABLE
)
6661 end_pfn
= max(max_zone_pfn
[i
], start_pfn
);
6662 arch_zone_lowest_possible_pfn
[i
] = start_pfn
;
6663 arch_zone_highest_possible_pfn
[i
] = end_pfn
;
6665 start_pfn
= end_pfn
;
6668 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6669 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
6670 find_zone_movable_pfns_for_nodes();
6672 /* Print out the zone ranges */
6673 pr_info("Zone ranges:\n");
6674 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6675 if (i
== ZONE_MOVABLE
)
6677 pr_info(" %-8s ", zone_names
[i
]);
6678 if (arch_zone_lowest_possible_pfn
[i
] ==
6679 arch_zone_highest_possible_pfn
[i
])
6682 pr_cont("[mem %#018Lx-%#018Lx]\n",
6683 (u64
)arch_zone_lowest_possible_pfn
[i
]
6685 ((u64
)arch_zone_highest_possible_pfn
[i
]
6686 << PAGE_SHIFT
) - 1);
6689 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
6690 pr_info("Movable zone start for each node\n");
6691 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
6692 if (zone_movable_pfn
[i
])
6693 pr_info(" Node %d: %#018Lx\n", i
,
6694 (u64
)zone_movable_pfn
[i
] << PAGE_SHIFT
);
6697 /* Print out the early node map */
6698 pr_info("Early memory node ranges\n");
6699 for_each_mem_pfn_range(i
, MAX_NUMNODES
, &start_pfn
, &end_pfn
, &nid
)
6700 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid
,
6701 (u64
)start_pfn
<< PAGE_SHIFT
,
6702 ((u64
)end_pfn
<< PAGE_SHIFT
) - 1);
6704 /* Initialise every node */
6705 mminit_verify_pageflags_layout();
6706 setup_nr_node_ids();
6707 for_each_online_node(nid
) {
6708 pg_data_t
*pgdat
= NODE_DATA(nid
);
6709 free_area_init_node(nid
, NULL
,
6710 find_min_pfn_for_node(nid
), NULL
);
6712 /* Any memory on that node */
6713 if (pgdat
->node_present_pages
)
6714 node_set_state(nid
, N_MEMORY
);
6715 check_for_memory(pgdat
, nid
);
6717 zero_resv_unavail();
6720 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
6722 unsigned long long coremem
;
6726 coremem
= memparse(p
, &p
);
6727 *core
= coremem
>> PAGE_SHIFT
;
6729 /* Paranoid check that UL is enough for the coremem value */
6730 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
6736 * kernelcore=size sets the amount of memory for use for allocations that
6737 * cannot be reclaimed or migrated.
6739 static int __init
cmdline_parse_kernelcore(char *p
)
6741 /* parse kernelcore=mirror */
6742 if (parse_option_str(p
, "mirror")) {
6743 mirrored_kernelcore
= true;
6747 return cmdline_parse_core(p
, &required_kernelcore
);
6751 * movablecore=size sets the amount of memory for use for allocations that
6752 * can be reclaimed or migrated.
6754 static int __init
cmdline_parse_movablecore(char *p
)
6756 return cmdline_parse_core(p
, &required_movablecore
);
6759 early_param("kernelcore", cmdline_parse_kernelcore
);
6760 early_param("movablecore", cmdline_parse_movablecore
);
6762 #endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6764 void adjust_managed_page_count(struct page
*page
, long count
)
6766 spin_lock(&managed_page_count_lock
);
6767 page_zone(page
)->managed_pages
+= count
;
6768 totalram_pages
+= count
;
6769 #ifdef CONFIG_HIGHMEM
6770 if (PageHighMem(page
))
6771 totalhigh_pages
+= count
;
6773 spin_unlock(&managed_page_count_lock
);
6775 EXPORT_SYMBOL(adjust_managed_page_count
);
6777 unsigned long free_reserved_area(void *start
, void *end
, int poison
, char *s
)
6780 unsigned long pages
= 0;
6782 start
= (void *)PAGE_ALIGN((unsigned long)start
);
6783 end
= (void *)((unsigned long)end
& PAGE_MASK
);
6784 for (pos
= start
; pos
< end
; pos
+= PAGE_SIZE
, pages
++) {
6785 if ((unsigned int)poison
<= 0xFF)
6786 memset(pos
, poison
, PAGE_SIZE
);
6787 free_reserved_page(virt_to_page(pos
));
6791 pr_info("Freeing %s memory: %ldK\n",
6792 s
, pages
<< (PAGE_SHIFT
- 10));
6796 EXPORT_SYMBOL(free_reserved_area
);
6798 #ifdef CONFIG_HIGHMEM
6799 void free_highmem_page(struct page
*page
)
6801 __free_reserved_page(page
);
6803 page_zone(page
)->managed_pages
++;
6809 void __init
mem_init_print_info(const char *str
)
6811 unsigned long physpages
, codesize
, datasize
, rosize
, bss_size
;
6812 unsigned long init_code_size
, init_data_size
;
6814 physpages
= get_num_physpages();
6815 codesize
= _etext
- _stext
;
6816 datasize
= _edata
- _sdata
;
6817 rosize
= __end_rodata
- __start_rodata
;
6818 bss_size
= __bss_stop
- __bss_start
;
6819 init_data_size
= __init_end
- __init_begin
;
6820 init_code_size
= _einittext
- _sinittext
;
6823 * Detect special cases and adjust section sizes accordingly:
6824 * 1) .init.* may be embedded into .data sections
6825 * 2) .init.text.* may be out of [__init_begin, __init_end],
6826 * please refer to arch/tile/kernel/vmlinux.lds.S.
6827 * 3) .rodata.* may be embedded into .text or .data sections.
6829 #define adj_init_size(start, end, size, pos, adj) \
6831 if (start <= pos && pos < end && size > adj) \
6835 adj_init_size(__init_begin
, __init_end
, init_data_size
,
6836 _sinittext
, init_code_size
);
6837 adj_init_size(_stext
, _etext
, codesize
, _sinittext
, init_code_size
);
6838 adj_init_size(_sdata
, _edata
, datasize
, __init_begin
, init_data_size
);
6839 adj_init_size(_stext
, _etext
, codesize
, __start_rodata
, rosize
);
6840 adj_init_size(_sdata
, _edata
, datasize
, __start_rodata
, rosize
);
6842 #undef adj_init_size
6844 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
6845 #ifdef CONFIG_HIGHMEM
6849 nr_free_pages() << (PAGE_SHIFT
- 10),
6850 physpages
<< (PAGE_SHIFT
- 10),
6851 codesize
>> 10, datasize
>> 10, rosize
>> 10,
6852 (init_data_size
+ init_code_size
) >> 10, bss_size
>> 10,
6853 (physpages
- totalram_pages
- totalcma_pages
) << (PAGE_SHIFT
- 10),
6854 totalcma_pages
<< (PAGE_SHIFT
- 10),
6855 #ifdef CONFIG_HIGHMEM
6856 totalhigh_pages
<< (PAGE_SHIFT
- 10),
6858 str
? ", " : "", str
? str
: "");
6862 * set_dma_reserve - set the specified number of pages reserved in the first zone
6863 * @new_dma_reserve: The number of pages to mark reserved
6865 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
6866 * In the DMA zone, a significant percentage may be consumed by kernel image
6867 * and other unfreeable allocations which can skew the watermarks badly. This
6868 * function may optionally be used to account for unfreeable pages in the
6869 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6870 * smaller per-cpu batchsize.
6872 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
6874 dma_reserve
= new_dma_reserve
;
6877 void __init
free_area_init(unsigned long *zones_size
)
6879 free_area_init_node(0, zones_size
,
6880 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
6881 zero_resv_unavail();
6884 static int page_alloc_cpu_dead(unsigned int cpu
)
6887 lru_add_drain_cpu(cpu
);
6891 * Spill the event counters of the dead processor
6892 * into the current processors event counters.
6893 * This artificially elevates the count of the current
6896 vm_events_fold_cpu(cpu
);
6899 * Zero the differential counters of the dead processor
6900 * so that the vm statistics are consistent.
6902 * This is only okay since the processor is dead and cannot
6903 * race with what we are doing.
6905 cpu_vm_stats_fold(cpu
);
6909 void __init
page_alloc_init(void)
6913 ret
= cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD
,
6914 "mm/page_alloc:dead", NULL
,
6915 page_alloc_cpu_dead
);
6920 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
6921 * or min_free_kbytes changes.
6923 static void calculate_totalreserve_pages(void)
6925 struct pglist_data
*pgdat
;
6926 unsigned long reserve_pages
= 0;
6927 enum zone_type i
, j
;
6929 for_each_online_pgdat(pgdat
) {
6931 pgdat
->totalreserve_pages
= 0;
6933 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
6934 struct zone
*zone
= pgdat
->node_zones
+ i
;
6937 /* Find valid and maximum lowmem_reserve in the zone */
6938 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
6939 if (zone
->lowmem_reserve
[j
] > max
)
6940 max
= zone
->lowmem_reserve
[j
];
6943 /* we treat the high watermark as reserved pages. */
6944 max
+= high_wmark_pages(zone
);
6946 if (max
> zone
->managed_pages
)
6947 max
= zone
->managed_pages
;
6949 pgdat
->totalreserve_pages
+= max
;
6951 reserve_pages
+= max
;
6954 totalreserve_pages
= reserve_pages
;
6958 * setup_per_zone_lowmem_reserve - called whenever
6959 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
6960 * has a correct pages reserved value, so an adequate number of
6961 * pages are left in the zone after a successful __alloc_pages().
6963 static void setup_per_zone_lowmem_reserve(void)
6965 struct pglist_data
*pgdat
;
6966 enum zone_type j
, idx
;
6968 for_each_online_pgdat(pgdat
) {
6969 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
6970 struct zone
*zone
= pgdat
->node_zones
+ j
;
6971 unsigned long managed_pages
= zone
->managed_pages
;
6973 zone
->lowmem_reserve
[j
] = 0;
6977 struct zone
*lower_zone
;
6981 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
6982 sysctl_lowmem_reserve_ratio
[idx
] = 1;
6984 lower_zone
= pgdat
->node_zones
+ idx
;
6985 lower_zone
->lowmem_reserve
[j
] = managed_pages
/
6986 sysctl_lowmem_reserve_ratio
[idx
];
6987 managed_pages
+= lower_zone
->managed_pages
;
6992 /* update totalreserve_pages */
6993 calculate_totalreserve_pages();
6996 static void __setup_per_zone_wmarks(void)
6998 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
6999 unsigned long lowmem_pages
= 0;
7001 unsigned long flags
;
7003 /* Calculate total number of !ZONE_HIGHMEM pages */
7004 for_each_zone(zone
) {
7005 if (!is_highmem(zone
))
7006 lowmem_pages
+= zone
->managed_pages
;
7009 for_each_zone(zone
) {
7012 spin_lock_irqsave(&zone
->lock
, flags
);
7013 tmp
= (u64
)pages_min
* zone
->managed_pages
;
7014 do_div(tmp
, lowmem_pages
);
7015 if (is_highmem(zone
)) {
7017 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
7018 * need highmem pages, so cap pages_min to a small
7021 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
7022 * deltas control asynch page reclaim, and so should
7023 * not be capped for highmem.
7025 unsigned long min_pages
;
7027 min_pages
= zone
->managed_pages
/ 1024;
7028 min_pages
= clamp(min_pages
, SWAP_CLUSTER_MAX
, 128UL);
7029 zone
->watermark
[WMARK_MIN
] = min_pages
;
7032 * If it's a lowmem zone, reserve a number of pages
7033 * proportionate to the zone's size.
7035 zone
->watermark
[WMARK_MIN
] = tmp
;
7039 * Set the kswapd watermarks distance according to the
7040 * scale factor in proportion to available memory, but
7041 * ensure a minimum size on small systems.
7043 tmp
= max_t(u64
, tmp
>> 2,
7044 mult_frac(zone
->managed_pages
,
7045 watermark_scale_factor
, 10000));
7047 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + tmp
;
7048 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + tmp
* 2;
7050 spin_unlock_irqrestore(&zone
->lock
, flags
);
7053 /* update totalreserve_pages */
7054 calculate_totalreserve_pages();
7058 * setup_per_zone_wmarks - called when min_free_kbytes changes
7059 * or when memory is hot-{added|removed}
7061 * Ensures that the watermark[min,low,high] values for each zone are set
7062 * correctly with respect to min_free_kbytes.
7064 void setup_per_zone_wmarks(void)
7066 static DEFINE_SPINLOCK(lock
);
7069 __setup_per_zone_wmarks();
7074 * Initialise min_free_kbytes.
7076 * For small machines we want it small (128k min). For large machines
7077 * we want it large (64MB max). But it is not linear, because network
7078 * bandwidth does not increase linearly with machine size. We use
7080 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
7081 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
7097 int __meminit
init_per_zone_wmark_min(void)
7099 unsigned long lowmem_kbytes
;
7100 int new_min_free_kbytes
;
7102 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
7103 new_min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
7105 if (new_min_free_kbytes
> user_min_free_kbytes
) {
7106 min_free_kbytes
= new_min_free_kbytes
;
7107 if (min_free_kbytes
< 128)
7108 min_free_kbytes
= 128;
7109 if (min_free_kbytes
> 65536)
7110 min_free_kbytes
= 65536;
7112 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
7113 new_min_free_kbytes
, user_min_free_kbytes
);
7115 setup_per_zone_wmarks();
7116 refresh_zone_stat_thresholds();
7117 setup_per_zone_lowmem_reserve();
7120 setup_min_unmapped_ratio();
7121 setup_min_slab_ratio();
7126 core_initcall(init_per_zone_wmark_min
)
7129 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
7130 * that we can call two helper functions whenever min_free_kbytes
7133 int min_free_kbytes_sysctl_handler(struct ctl_table
*table
, int write
,
7134 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7138 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7143 user_min_free_kbytes
= min_free_kbytes
;
7144 setup_per_zone_wmarks();
7149 int watermark_scale_factor_sysctl_handler(struct ctl_table
*table
, int write
,
7150 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7154 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7159 setup_per_zone_wmarks();
7165 static void setup_min_unmapped_ratio(void)
7170 for_each_online_pgdat(pgdat
)
7171 pgdat
->min_unmapped_pages
= 0;
7174 zone
->zone_pgdat
->min_unmapped_pages
+= (zone
->managed_pages
*
7175 sysctl_min_unmapped_ratio
) / 100;
7179 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7180 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7184 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7188 setup_min_unmapped_ratio();
7193 static void setup_min_slab_ratio(void)
7198 for_each_online_pgdat(pgdat
)
7199 pgdat
->min_slab_pages
= 0;
7202 zone
->zone_pgdat
->min_slab_pages
+= (zone
->managed_pages
*
7203 sysctl_min_slab_ratio
) / 100;
7206 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7207 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7211 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7215 setup_min_slab_ratio();
7222 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
7223 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
7224 * whenever sysctl_lowmem_reserve_ratio changes.
7226 * The reserve ratio obviously has absolutely no relation with the
7227 * minimum watermarks. The lowmem reserve ratio can only make sense
7228 * if in function of the boot time zone sizes.
7230 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table
*table
, int write
,
7231 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7233 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7234 setup_per_zone_lowmem_reserve();
7239 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
7240 * cpu. It is the fraction of total pages in each zone that a hot per cpu
7241 * pagelist can have before it gets flushed back to buddy allocator.
7243 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table
*table
, int write
,
7244 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
7247 int old_percpu_pagelist_fraction
;
7250 mutex_lock(&pcp_batch_high_lock
);
7251 old_percpu_pagelist_fraction
= percpu_pagelist_fraction
;
7253 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
7254 if (!write
|| ret
< 0)
7257 /* Sanity checking to avoid pcp imbalance */
7258 if (percpu_pagelist_fraction
&&
7259 percpu_pagelist_fraction
< MIN_PERCPU_PAGELIST_FRACTION
) {
7260 percpu_pagelist_fraction
= old_percpu_pagelist_fraction
;
7266 if (percpu_pagelist_fraction
== old_percpu_pagelist_fraction
)
7269 for_each_populated_zone(zone
) {
7272 for_each_possible_cpu(cpu
)
7273 pageset_set_high_and_batch(zone
,
7274 per_cpu_ptr(zone
->pageset
, cpu
));
7277 mutex_unlock(&pcp_batch_high_lock
);
7282 int hashdist
= HASHDIST_DEFAULT
;
7284 static int __init
set_hashdist(char *str
)
7288 hashdist
= simple_strtoul(str
, &str
, 0);
7291 __setup("hashdist=", set_hashdist
);
7294 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
7296 * Returns the number of pages that arch has reserved but
7297 * is not known to alloc_large_system_hash().
7299 static unsigned long __init
arch_reserved_kernel_pages(void)
7306 * Adaptive scale is meant to reduce sizes of hash tables on large memory
7307 * machines. As memory size is increased the scale is also increased but at
7308 * slower pace. Starting from ADAPT_SCALE_BASE (64G), every time memory
7309 * quadruples the scale is increased by one, which means the size of hash table
7310 * only doubles, instead of quadrupling as well.
7311 * Because 32-bit systems cannot have large physical memory, where this scaling
7312 * makes sense, it is disabled on such platforms.
7314 #if __BITS_PER_LONG > 32
7315 #define ADAPT_SCALE_BASE (64ul << 30)
7316 #define ADAPT_SCALE_SHIFT 2
7317 #define ADAPT_SCALE_NPAGES (ADAPT_SCALE_BASE >> PAGE_SHIFT)
7321 * allocate a large system hash table from bootmem
7322 * - it is assumed that the hash table must contain an exact power-of-2
7323 * quantity of entries
7324 * - limit is the number of hash buckets, not the total allocation size
7326 void *__init
alloc_large_system_hash(const char *tablename
,
7327 unsigned long bucketsize
,
7328 unsigned long numentries
,
7331 unsigned int *_hash_shift
,
7332 unsigned int *_hash_mask
,
7333 unsigned long low_limit
,
7334 unsigned long high_limit
)
7336 unsigned long long max
= high_limit
;
7337 unsigned long log2qty
, size
;
7341 /* allow the kernel cmdline to have a say */
7343 /* round applicable memory size up to nearest megabyte */
7344 numentries
= nr_kernel_pages
;
7345 numentries
-= arch_reserved_kernel_pages();
7347 /* It isn't necessary when PAGE_SIZE >= 1MB */
7348 if (PAGE_SHIFT
< 20)
7349 numentries
= round_up(numentries
, (1<<20)/PAGE_SIZE
);
7351 #if __BITS_PER_LONG > 32
7353 unsigned long adapt
;
7355 for (adapt
= ADAPT_SCALE_NPAGES
; adapt
< numentries
;
7356 adapt
<<= ADAPT_SCALE_SHIFT
)
7361 /* limit to 1 bucket per 2^scale bytes of low memory */
7362 if (scale
> PAGE_SHIFT
)
7363 numentries
>>= (scale
- PAGE_SHIFT
);
7365 numentries
<<= (PAGE_SHIFT
- scale
);
7367 /* Make sure we've got at least a 0-order allocation.. */
7368 if (unlikely(flags
& HASH_SMALL
)) {
7369 /* Makes no sense without HASH_EARLY */
7370 WARN_ON(!(flags
& HASH_EARLY
));
7371 if (!(numentries
>> *_hash_shift
)) {
7372 numentries
= 1UL << *_hash_shift
;
7373 BUG_ON(!numentries
);
7375 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
7376 numentries
= PAGE_SIZE
/ bucketsize
;
7378 numentries
= roundup_pow_of_two(numentries
);
7380 /* limit allocation size to 1/16 total memory by default */
7382 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
7383 do_div(max
, bucketsize
);
7385 max
= min(max
, 0x80000000ULL
);
7387 if (numentries
< low_limit
)
7388 numentries
= low_limit
;
7389 if (numentries
> max
)
7392 log2qty
= ilog2(numentries
);
7394 gfp_flags
= (flags
& HASH_ZERO
) ? GFP_ATOMIC
| __GFP_ZERO
: GFP_ATOMIC
;
7396 size
= bucketsize
<< log2qty
;
7397 if (flags
& HASH_EARLY
) {
7398 if (flags
& HASH_ZERO
)
7399 table
= memblock_virt_alloc_nopanic(size
, 0);
7401 table
= memblock_virt_alloc_raw(size
, 0);
7402 } else if (hashdist
) {
7403 table
= __vmalloc(size
, gfp_flags
, PAGE_KERNEL
);
7406 * If bucketsize is not a power-of-two, we may free
7407 * some pages at the end of hash table which
7408 * alloc_pages_exact() automatically does
7410 if (get_order(size
) < MAX_ORDER
) {
7411 table
= alloc_pages_exact(size
, gfp_flags
);
7412 kmemleak_alloc(table
, size
, 1, gfp_flags
);
7415 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
7418 panic("Failed to allocate %s hash table\n", tablename
);
7420 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7421 tablename
, 1UL << log2qty
, ilog2(size
) - PAGE_SHIFT
, size
);
7424 *_hash_shift
= log2qty
;
7426 *_hash_mask
= (1 << log2qty
) - 1;
7432 * This function checks whether pageblock includes unmovable pages or not.
7433 * If @count is not zero, it is okay to include less @count unmovable pages
7435 * PageLRU check without isolation or lru_lock could race so that
7436 * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
7437 * check without lock_page also may miss some movable non-lru pages at
7438 * race condition. So you can't expect this function should be exact.
7440 bool has_unmovable_pages(struct zone
*zone
, struct page
*page
, int count
,
7442 bool skip_hwpoisoned_pages
)
7444 unsigned long pfn
, iter
, found
;
7447 * For avoiding noise data, lru_add_drain_all() should be called
7448 * If ZONE_MOVABLE, the zone never contains unmovable pages
7450 if (zone_idx(zone
) == ZONE_MOVABLE
)
7454 * CMA allocations (alloc_contig_range) really need to mark isolate
7455 * CMA pageblocks even when they are not movable in fact so consider
7456 * them movable here.
7458 if (is_migrate_cma(migratetype
) &&
7459 is_migrate_cma(get_pageblock_migratetype(page
)))
7462 pfn
= page_to_pfn(page
);
7463 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
7464 unsigned long check
= pfn
+ iter
;
7466 if (!pfn_valid_within(check
))
7469 page
= pfn_to_page(check
);
7471 if (PageReserved(page
))
7475 * Hugepages are not in LRU lists, but they're movable.
7476 * We need not scan over tail pages bacause we don't
7477 * handle each tail page individually in migration.
7479 if (PageHuge(page
)) {
7480 iter
= round_up(iter
+ 1, 1<<compound_order(page
)) - 1;
7485 * We can't use page_count without pin a page
7486 * because another CPU can free compound page.
7487 * This check already skips compound tails of THP
7488 * because their page->_refcount is zero at all time.
7490 if (!page_ref_count(page
)) {
7491 if (PageBuddy(page
))
7492 iter
+= (1 << page_order(page
)) - 1;
7497 * The HWPoisoned page may be not in buddy system, and
7498 * page_count() is not 0.
7500 if (skip_hwpoisoned_pages
&& PageHWPoison(page
))
7503 if (__PageMovable(page
))
7509 * If there are RECLAIMABLE pages, we need to check
7510 * it. But now, memory offline itself doesn't call
7511 * shrink_node_slabs() and it still to be fixed.
7514 * If the page is not RAM, page_count()should be 0.
7515 * we don't need more check. This is an _used_ not-movable page.
7517 * The problematic thing here is PG_reserved pages. PG_reserved
7518 * is set to both of a memory hole page and a _used_ kernel
7527 bool is_pageblock_removable_nolock(struct page
*page
)
7533 * We have to be careful here because we are iterating over memory
7534 * sections which are not zone aware so we might end up outside of
7535 * the zone but still within the section.
7536 * We have to take care about the node as well. If the node is offline
7537 * its NODE_DATA will be NULL - see page_zone.
7539 if (!node_online(page_to_nid(page
)))
7542 zone
= page_zone(page
);
7543 pfn
= page_to_pfn(page
);
7544 if (!zone_spans_pfn(zone
, pfn
))
7547 return !has_unmovable_pages(zone
, page
, 0, MIGRATE_MOVABLE
, true);
7550 #if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
7552 static unsigned long pfn_max_align_down(unsigned long pfn
)
7554 return pfn
& ~(max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7555 pageblock_nr_pages
) - 1);
7558 static unsigned long pfn_max_align_up(unsigned long pfn
)
7560 return ALIGN(pfn
, max_t(unsigned long, MAX_ORDER_NR_PAGES
,
7561 pageblock_nr_pages
));
7564 /* [start, end) must belong to a single zone. */
7565 static int __alloc_contig_migrate_range(struct compact_control
*cc
,
7566 unsigned long start
, unsigned long end
)
7568 /* This function is based on compact_zone() from compaction.c. */
7569 unsigned long nr_reclaimed
;
7570 unsigned long pfn
= start
;
7571 unsigned int tries
= 0;
7576 while (pfn
< end
|| !list_empty(&cc
->migratepages
)) {
7577 if (fatal_signal_pending(current
)) {
7582 if (list_empty(&cc
->migratepages
)) {
7583 cc
->nr_migratepages
= 0;
7584 pfn
= isolate_migratepages_range(cc
, pfn
, end
);
7590 } else if (++tries
== 5) {
7591 ret
= ret
< 0 ? ret
: -EBUSY
;
7595 nr_reclaimed
= reclaim_clean_pages_from_list(cc
->zone
,
7597 cc
->nr_migratepages
-= nr_reclaimed
;
7599 ret
= migrate_pages(&cc
->migratepages
, alloc_migrate_target
,
7600 NULL
, 0, cc
->mode
, MR_CMA
);
7603 putback_movable_pages(&cc
->migratepages
);
7610 * alloc_contig_range() -- tries to allocate given range of pages
7611 * @start: start PFN to allocate
7612 * @end: one-past-the-last PFN to allocate
7613 * @migratetype: migratetype of the underlaying pageblocks (either
7614 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7615 * in range must have the same migratetype and it must
7616 * be either of the two.
7617 * @gfp_mask: GFP mask to use during compaction
7619 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7620 * aligned, however it's the caller's responsibility to guarantee that
7621 * we are the only thread that changes migrate type of pageblocks the
7624 * The PFN range must belong to a single zone.
7626 * Returns zero on success or negative error code. On success all
7627 * pages which PFN is in [start, end) are allocated for the caller and
7628 * need to be freed with free_contig_range().
7630 int alloc_contig_range(unsigned long start
, unsigned long end
,
7631 unsigned migratetype
, gfp_t gfp_mask
)
7633 unsigned long outer_start
, outer_end
;
7637 struct compact_control cc
= {
7638 .nr_migratepages
= 0,
7640 .zone
= page_zone(pfn_to_page(start
)),
7641 .mode
= MIGRATE_SYNC
,
7642 .ignore_skip_hint
= true,
7643 .no_set_skip_hint
= true,
7644 .gfp_mask
= current_gfp_context(gfp_mask
),
7646 INIT_LIST_HEAD(&cc
.migratepages
);
7649 * What we do here is we mark all pageblocks in range as
7650 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7651 * have different sizes, and due to the way page allocator
7652 * work, we align the range to biggest of the two pages so
7653 * that page allocator won't try to merge buddies from
7654 * different pageblocks and change MIGRATE_ISOLATE to some
7655 * other migration type.
7657 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7658 * migrate the pages from an unaligned range (ie. pages that
7659 * we are interested in). This will put all the pages in
7660 * range back to page allocator as MIGRATE_ISOLATE.
7662 * When this is done, we take the pages in range from page
7663 * allocator removing them from the buddy system. This way
7664 * page allocator will never consider using them.
7666 * This lets us mark the pageblocks back as
7667 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7668 * aligned range but not in the unaligned, original range are
7669 * put back to page allocator so that buddy can use them.
7672 ret
= start_isolate_page_range(pfn_max_align_down(start
),
7673 pfn_max_align_up(end
), migratetype
,
7679 * In case of -EBUSY, we'd like to know which page causes problem.
7680 * So, just fall through. test_pages_isolated() has a tracepoint
7681 * which will report the busy page.
7683 * It is possible that busy pages could become available before
7684 * the call to test_pages_isolated, and the range will actually be
7685 * allocated. So, if we fall through be sure to clear ret so that
7686 * -EBUSY is not accidentally used or returned to caller.
7688 ret
= __alloc_contig_migrate_range(&cc
, start
, end
);
7689 if (ret
&& ret
!= -EBUSY
)
7694 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7695 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7696 * more, all pages in [start, end) are free in page allocator.
7697 * What we are going to do is to allocate all pages from
7698 * [start, end) (that is remove them from page allocator).
7700 * The only problem is that pages at the beginning and at the
7701 * end of interesting range may be not aligned with pages that
7702 * page allocator holds, ie. they can be part of higher order
7703 * pages. Because of this, we reserve the bigger range and
7704 * once this is done free the pages we are not interested in.
7706 * We don't have to hold zone->lock here because the pages are
7707 * isolated thus they won't get removed from buddy.
7710 lru_add_drain_all();
7711 drain_all_pages(cc
.zone
);
7714 outer_start
= start
;
7715 while (!PageBuddy(pfn_to_page(outer_start
))) {
7716 if (++order
>= MAX_ORDER
) {
7717 outer_start
= start
;
7720 outer_start
&= ~0UL << order
;
7723 if (outer_start
!= start
) {
7724 order
= page_order(pfn_to_page(outer_start
));
7727 * outer_start page could be small order buddy page and
7728 * it doesn't include start page. Adjust outer_start
7729 * in this case to report failed page properly
7730 * on tracepoint in test_pages_isolated()
7732 if (outer_start
+ (1UL << order
) <= start
)
7733 outer_start
= start
;
7736 /* Make sure the range is really isolated. */
7737 if (test_pages_isolated(outer_start
, end
, false)) {
7738 pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
7739 __func__
, outer_start
, end
);
7744 /* Grab isolated pages from freelists. */
7745 outer_end
= isolate_freepages_range(&cc
, outer_start
, end
);
7751 /* Free head and tail (if any) */
7752 if (start
!= outer_start
)
7753 free_contig_range(outer_start
, start
- outer_start
);
7754 if (end
!= outer_end
)
7755 free_contig_range(end
, outer_end
- end
);
7758 undo_isolate_page_range(pfn_max_align_down(start
),
7759 pfn_max_align_up(end
), migratetype
);
7763 void free_contig_range(unsigned long pfn
, unsigned nr_pages
)
7765 unsigned int count
= 0;
7767 for (; nr_pages
--; pfn
++) {
7768 struct page
*page
= pfn_to_page(pfn
);
7770 count
+= page_count(page
) != 1;
7773 WARN(count
!= 0, "%d pages are still in use!\n", count
);
7777 #ifdef CONFIG_MEMORY_HOTPLUG
7779 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7780 * page high values need to be recalulated.
7782 void __meminit
zone_pcp_update(struct zone
*zone
)
7785 mutex_lock(&pcp_batch_high_lock
);
7786 for_each_possible_cpu(cpu
)
7787 pageset_set_high_and_batch(zone
,
7788 per_cpu_ptr(zone
->pageset
, cpu
));
7789 mutex_unlock(&pcp_batch_high_lock
);
7793 void zone_pcp_reset(struct zone
*zone
)
7795 unsigned long flags
;
7797 struct per_cpu_pageset
*pset
;
7799 /* avoid races with drain_pages() */
7800 local_irq_save(flags
);
7801 if (zone
->pageset
!= &boot_pageset
) {
7802 for_each_online_cpu(cpu
) {
7803 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
7804 drain_zonestat(zone
, pset
);
7806 free_percpu(zone
->pageset
);
7807 zone
->pageset
= &boot_pageset
;
7809 local_irq_restore(flags
);
7812 #ifdef CONFIG_MEMORY_HOTREMOVE
7814 * All pages in the range must be in a single zone and isolated
7815 * before calling this.
7818 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
7822 unsigned int order
, i
;
7824 unsigned long flags
;
7825 /* find the first valid pfn */
7826 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
7831 offline_mem_sections(pfn
, end_pfn
);
7832 zone
= page_zone(pfn_to_page(pfn
));
7833 spin_lock_irqsave(&zone
->lock
, flags
);
7835 while (pfn
< end_pfn
) {
7836 if (!pfn_valid(pfn
)) {
7840 page
= pfn_to_page(pfn
);
7842 * The HWPoisoned page may be not in buddy system, and
7843 * page_count() is not 0.
7845 if (unlikely(!PageBuddy(page
) && PageHWPoison(page
))) {
7847 SetPageReserved(page
);
7851 BUG_ON(page_count(page
));
7852 BUG_ON(!PageBuddy(page
));
7853 order
= page_order(page
);
7854 #ifdef CONFIG_DEBUG_VM
7855 pr_info("remove from free list %lx %d %lx\n",
7856 pfn
, 1 << order
, end_pfn
);
7858 list_del(&page
->lru
);
7859 rmv_page_order(page
);
7860 zone
->free_area
[order
].nr_free
--;
7861 for (i
= 0; i
< (1 << order
); i
++)
7862 SetPageReserved((page
+i
));
7863 pfn
+= (1 << order
);
7865 spin_unlock_irqrestore(&zone
->lock
, flags
);
7869 bool is_free_buddy_page(struct page
*page
)
7871 struct zone
*zone
= page_zone(page
);
7872 unsigned long pfn
= page_to_pfn(page
);
7873 unsigned long flags
;
7876 spin_lock_irqsave(&zone
->lock
, flags
);
7877 for (order
= 0; order
< MAX_ORDER
; order
++) {
7878 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
7880 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
7883 spin_unlock_irqrestore(&zone
->lock
, flags
);
7885 return order
< MAX_ORDER
;