1 // SPDX-License-Identifier: GPL-2.0
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
39 #include <trace/events/kmem.h>
45 * 1. slab_mutex (Global Mutex)
47 * 3. slab_lock(page) (Only on some arches and for debugging)
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * Overloading of page flags that are otherwise used for LRU management.
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
119 static inline int kmem_cache_debug(struct kmem_cache
*s
)
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s
->flags
& SLAB_DEBUG_FLAGS
);
128 void *fixup_red_left(struct kmem_cache
*s
, void *p
)
130 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
)
131 p
+= s
->red_left_pad
;
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache
*s
)
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s
);
146 * Issues still to be resolved:
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 * - Variable sizing of the per node arrays
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
163 #define MIN_PARTIAL 5
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
170 #define MAX_PARTIAL 10
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
194 /* Internal SLUB flags */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
201 * Tracking user of a slab.
203 #define TRACK_ADDRS_COUNT 16
205 unsigned long addr
; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs
[TRACK_ADDRS_COUNT
]; /* Called from address */
209 int cpu
; /* Was running on cpu */
210 int pid
; /* Pid context */
211 unsigned long when
; /* When did the operation occur */
214 enum track_item
{ TRACK_ALLOC
, TRACK_FREE
};
217 static int sysfs_slab_add(struct kmem_cache
*);
218 static int sysfs_slab_alias(struct kmem_cache
*, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
);
220 static void sysfs_slab_remove(struct kmem_cache
*s
);
222 static inline int sysfs_slab_add(struct kmem_cache
*s
) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache
*s
, const char *p
)
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache
*s
) { }
226 static inline void sysfs_slab_remove(struct kmem_cache
*s
) { }
229 static inline void stat(const struct kmem_cache
*s
, enum stat_item si
)
231 #ifdef CONFIG_SLUB_STATS
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
236 raw_cpu_inc(s
->cpu_slab
->stat
[si
]);
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
249 static inline void *freelist_ptr(const struct kmem_cache
*s
, void *ptr
,
250 unsigned long ptr_addr
)
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr
^ s
->random
^ ptr_addr
);
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache
*s
,
263 return freelist_ptr(s
, (void *)*(unsigned long *)(ptr_addr
),
264 (unsigned long)ptr_addr
);
267 static inline void *get_freepointer(struct kmem_cache
*s
, void *object
)
269 return freelist_dereference(s
, object
+ s
->offset
);
272 static void prefetch_freepointer(const struct kmem_cache
*s
, void *object
)
275 prefetch(freelist_dereference(s
, object
+ s
->offset
));
278 static inline void *get_freepointer_safe(struct kmem_cache
*s
, void *object
)
280 unsigned long freepointer_addr
;
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s
, object
);
286 freepointer_addr
= (unsigned long)object
+ s
->offset
;
287 probe_kernel_read(&p
, (void **)freepointer_addr
, sizeof(p
));
288 return freelist_ptr(s
, p
, freepointer_addr
);
291 static inline void set_freepointer(struct kmem_cache
*s
, void *object
, void *fp
)
293 unsigned long freeptr_addr
= (unsigned long)object
+ s
->offset
;
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object
== fp
); /* naive detection of double free or corruption */
299 *(void **)freeptr_addr
= freelist_ptr(s
, fp
, freeptr_addr
);
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
313 /* Determine object index from a given position */
314 static inline int slab_index(void *p
, struct kmem_cache
*s
, void *addr
)
316 return (p
- addr
) / s
->size
;
319 static inline int order_objects(int order
, unsigned long size
, int reserved
)
321 return ((PAGE_SIZE
<< order
) - reserved
) / size
;
324 static inline struct kmem_cache_order_objects
oo_make(int order
,
325 unsigned long size
, int reserved
)
327 struct kmem_cache_order_objects x
= {
328 (order
<< OO_SHIFT
) + order_objects(order
, size
, reserved
)
334 static inline int oo_order(struct kmem_cache_order_objects x
)
336 return x
.x
>> OO_SHIFT
;
339 static inline int oo_objects(struct kmem_cache_order_objects x
)
341 return x
.x
& OO_MASK
;
345 * Per slab locking using the pagelock
347 static __always_inline
void slab_lock(struct page
*page
)
349 VM_BUG_ON_PAGE(PageTail(page
), page
);
350 bit_spin_lock(PG_locked
, &page
->flags
);
353 static __always_inline
void slab_unlock(struct page
*page
)
355 VM_BUG_ON_PAGE(PageTail(page
), page
);
356 __bit_spin_unlock(PG_locked
, &page
->flags
);
359 static inline void set_page_slub_counters(struct page
*page
, unsigned long counters_new
)
362 tmp
.counters
= counters_new
;
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
367 * be careful and only assign to the fields we need.
369 page
->frozen
= tmp
.frozen
;
370 page
->inuse
= tmp
.inuse
;
371 page
->objects
= tmp
.objects
;
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
376 void *freelist_old
, unsigned long counters_old
,
377 void *freelist_new
, unsigned long counters_new
,
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s
->flags
& __CMPXCHG_DOUBLE
) {
384 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
385 freelist_old
, counters_old
,
386 freelist_new
, counters_new
))
392 if (page
->freelist
== freelist_old
&&
393 page
->counters
== counters_old
) {
394 page
->freelist
= freelist_new
;
395 set_page_slub_counters(page
, counters_new
);
403 stat(s
, CMPXCHG_DOUBLE_FAIL
);
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
412 static inline bool cmpxchg_double_slab(struct kmem_cache
*s
, struct page
*page
,
413 void *freelist_old
, unsigned long counters_old
,
414 void *freelist_new
, unsigned long counters_new
,
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s
->flags
& __CMPXCHG_DOUBLE
) {
420 if (cmpxchg_double(&page
->freelist
, &page
->counters
,
421 freelist_old
, counters_old
,
422 freelist_new
, counters_new
))
429 local_irq_save(flags
);
431 if (page
->freelist
== freelist_old
&&
432 page
->counters
== counters_old
) {
433 page
->freelist
= freelist_new
;
434 set_page_slub_counters(page
, counters_new
);
436 local_irq_restore(flags
);
440 local_irq_restore(flags
);
444 stat(s
, CMPXCHG_DOUBLE_FAIL
);
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n
, s
->name
);
453 #ifdef CONFIG_SLUB_DEBUG
455 * Determine a map of object in use on a page.
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
460 static void get_map(struct kmem_cache
*s
, struct page
*page
, unsigned long *map
)
463 void *addr
= page_address(page
);
465 for (p
= page
->freelist
; p
; p
= get_freepointer(s
, p
))
466 set_bit(slab_index(p
, s
, addr
), map
);
469 static inline int size_from_object(struct kmem_cache
*s
)
471 if (s
->flags
& SLAB_RED_ZONE
)
472 return s
->size
- s
->red_left_pad
;
477 static inline void *restore_red_left(struct kmem_cache
*s
, void *p
)
479 if (s
->flags
& SLAB_RED_ZONE
)
480 p
-= s
->red_left_pad
;
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug
= DEBUG_DEFAULT_FLAGS
;
491 static slab_flags_t slub_debug
;
494 static char *slub_debug_slabs
;
495 static int disable_higher_order_debug
;
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
503 static inline void metadata_access_enable(void)
505 kasan_disable_current();
508 static inline void metadata_access_disable(void)
510 kasan_enable_current();
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache
*s
,
519 struct page
*page
, void *object
)
526 base
= page_address(page
);
527 object
= restore_red_left(s
, object
);
528 if (object
< base
|| object
>= base
+ page
->objects
* s
->size
||
529 (object
- base
) % s
->size
) {
536 static void print_section(char *level
, char *text
, u8
*addr
,
539 metadata_access_enable();
540 print_hex_dump(level
, text
, DUMP_PREFIX_ADDRESS
, 16, 1, addr
,
542 metadata_access_disable();
545 static struct track
*get_track(struct kmem_cache
*s
, void *object
,
546 enum track_item alloc
)
551 p
= object
+ s
->offset
+ sizeof(void *);
553 p
= object
+ s
->inuse
;
558 static void set_track(struct kmem_cache
*s
, void *object
,
559 enum track_item alloc
, unsigned long addr
)
561 struct track
*p
= get_track(s
, object
, alloc
);
564 #ifdef CONFIG_STACKTRACE
565 struct stack_trace trace
;
568 trace
.nr_entries
= 0;
569 trace
.max_entries
= TRACK_ADDRS_COUNT
;
570 trace
.entries
= p
->addrs
;
572 metadata_access_enable();
573 save_stack_trace(&trace
);
574 metadata_access_disable();
576 /* See rant in lockdep.c */
577 if (trace
.nr_entries
!= 0 &&
578 trace
.entries
[trace
.nr_entries
- 1] == ULONG_MAX
)
581 for (i
= trace
.nr_entries
; i
< TRACK_ADDRS_COUNT
; i
++)
585 p
->cpu
= smp_processor_id();
586 p
->pid
= current
->pid
;
589 memset(p
, 0, sizeof(struct track
));
592 static void init_tracking(struct kmem_cache
*s
, void *object
)
594 if (!(s
->flags
& SLAB_STORE_USER
))
597 set_track(s
, object
, TRACK_FREE
, 0UL);
598 set_track(s
, object
, TRACK_ALLOC
, 0UL);
601 static void print_track(const char *s
, struct track
*t
)
606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 s
, (void *)t
->addr
, jiffies
- t
->when
, t
->cpu
, t
->pid
);
608 #ifdef CONFIG_STACKTRACE
611 for (i
= 0; i
< TRACK_ADDRS_COUNT
; i
++)
613 pr_err("\t%pS\n", (void *)t
->addrs
[i
]);
620 static void print_tracking(struct kmem_cache
*s
, void *object
)
622 if (!(s
->flags
& SLAB_STORE_USER
))
625 print_track("Allocated", get_track(s
, object
, TRACK_ALLOC
));
626 print_track("Freed", get_track(s
, object
, TRACK_FREE
));
629 static void print_page_info(struct page
*page
)
631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632 page
, page
->objects
, page
->inuse
, page
->freelist
, page
->flags
);
636 static void slab_bug(struct kmem_cache
*s
, char *fmt
, ...)
638 struct va_format vaf
;
644 pr_err("=============================================================================\n");
645 pr_err("BUG %s (%s): %pV\n", s
->name
, print_tainted(), &vaf
);
646 pr_err("-----------------------------------------------------------------------------\n\n");
648 add_taint(TAINT_BAD_PAGE
, LOCKDEP_NOW_UNRELIABLE
);
652 static void slab_fix(struct kmem_cache
*s
, char *fmt
, ...)
654 struct va_format vaf
;
660 pr_err("FIX %s: %pV\n", s
->name
, &vaf
);
664 static void print_trailer(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
666 unsigned int off
; /* Offset of last byte */
667 u8
*addr
= page_address(page
);
669 print_tracking(s
, p
);
671 print_page_info(page
);
673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 p
, p
- addr
, get_freepointer(s
, p
));
676 if (s
->flags
& SLAB_RED_ZONE
)
677 print_section(KERN_ERR
, "Redzone ", p
- s
->red_left_pad
,
679 else if (p
> addr
+ 16)
680 print_section(KERN_ERR
, "Bytes b4 ", p
- 16, 16);
682 print_section(KERN_ERR
, "Object ", p
,
683 min_t(unsigned long, s
->object_size
, PAGE_SIZE
));
684 if (s
->flags
& SLAB_RED_ZONE
)
685 print_section(KERN_ERR
, "Redzone ", p
+ s
->object_size
,
686 s
->inuse
- s
->object_size
);
689 off
= s
->offset
+ sizeof(void *);
693 if (s
->flags
& SLAB_STORE_USER
)
694 off
+= 2 * sizeof(struct track
);
696 off
+= kasan_metadata_size(s
);
698 if (off
!= size_from_object(s
))
699 /* Beginning of the filler is the free pointer */
700 print_section(KERN_ERR
, "Padding ", p
+ off
,
701 size_from_object(s
) - off
);
706 void object_err(struct kmem_cache
*s
, struct page
*page
,
707 u8
*object
, char *reason
)
709 slab_bug(s
, "%s", reason
);
710 print_trailer(s
, page
, object
);
713 static void slab_err(struct kmem_cache
*s
, struct page
*page
,
714 const char *fmt
, ...)
720 vsnprintf(buf
, sizeof(buf
), fmt
, args
);
722 slab_bug(s
, "%s", buf
);
723 print_page_info(page
);
727 static void init_object(struct kmem_cache
*s
, void *object
, u8 val
)
731 if (s
->flags
& SLAB_RED_ZONE
)
732 memset(p
- s
->red_left_pad
, val
, s
->red_left_pad
);
734 if (s
->flags
& __OBJECT_POISON
) {
735 memset(p
, POISON_FREE
, s
->object_size
- 1);
736 p
[s
->object_size
- 1] = POISON_END
;
739 if (s
->flags
& SLAB_RED_ZONE
)
740 memset(p
+ s
->object_size
, val
, s
->inuse
- s
->object_size
);
743 static void restore_bytes(struct kmem_cache
*s
, char *message
, u8 data
,
744 void *from
, void *to
)
746 slab_fix(s
, "Restoring 0x%p-0x%p=0x%x\n", from
, to
- 1, data
);
747 memset(from
, data
, to
- from
);
750 static int check_bytes_and_report(struct kmem_cache
*s
, struct page
*page
,
751 u8
*object
, char *what
,
752 u8
*start
, unsigned int value
, unsigned int bytes
)
757 metadata_access_enable();
758 fault
= memchr_inv(start
, value
, bytes
);
759 metadata_access_disable();
764 while (end
> fault
&& end
[-1] == value
)
767 slab_bug(s
, "%s overwritten", what
);
768 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
769 fault
, end
- 1, fault
[0], value
);
770 print_trailer(s
, page
, object
);
772 restore_bytes(s
, what
, value
, fault
, end
);
780 * Bytes of the object to be managed.
781 * If the freepointer may overlay the object then the free
782 * pointer is the first word of the object.
784 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
787 * object + s->object_size
788 * Padding to reach word boundary. This is also used for Redzoning.
789 * Padding is extended by another word if Redzoning is enabled and
790 * object_size == inuse.
792 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
793 * 0xcc (RED_ACTIVE) for objects in use.
796 * Meta data starts here.
798 * A. Free pointer (if we cannot overwrite object on free)
799 * B. Tracking data for SLAB_STORE_USER
800 * C. Padding to reach required alignment boundary or at mininum
801 * one word if debugging is on to be able to detect writes
802 * before the word boundary.
804 * Padding is done using 0x5a (POISON_INUSE)
807 * Nothing is used beyond s->size.
809 * If slabcaches are merged then the object_size and inuse boundaries are mostly
810 * ignored. And therefore no slab options that rely on these boundaries
811 * may be used with merged slabcaches.
814 static int check_pad_bytes(struct kmem_cache
*s
, struct page
*page
, u8
*p
)
816 unsigned long off
= s
->inuse
; /* The end of info */
819 /* Freepointer is placed after the object. */
820 off
+= sizeof(void *);
822 if (s
->flags
& SLAB_STORE_USER
)
823 /* We also have user information there */
824 off
+= 2 * sizeof(struct track
);
826 off
+= kasan_metadata_size(s
);
828 if (size_from_object(s
) == off
)
831 return check_bytes_and_report(s
, page
, p
, "Object padding",
832 p
+ off
, POISON_INUSE
, size_from_object(s
) - off
);
835 /* Check the pad bytes at the end of a slab page */
836 static int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
845 if (!(s
->flags
& SLAB_POISON
))
848 start
= page_address(page
);
849 length
= (PAGE_SIZE
<< compound_order(page
)) - s
->reserved
;
850 end
= start
+ length
;
851 remainder
= length
% s
->size
;
855 pad
= end
- remainder
;
856 metadata_access_enable();
857 fault
= memchr_inv(pad
, POISON_INUSE
, remainder
);
858 metadata_access_disable();
861 while (end
> fault
&& end
[-1] == POISON_INUSE
)
864 slab_err(s
, page
, "Padding overwritten. 0x%p-0x%p", fault
, end
- 1);
865 print_section(KERN_ERR
, "Padding ", pad
, remainder
);
867 restore_bytes(s
, "slab padding", POISON_INUSE
, fault
, end
);
871 static int check_object(struct kmem_cache
*s
, struct page
*page
,
872 void *object
, u8 val
)
875 u8
*endobject
= object
+ s
->object_size
;
877 if (s
->flags
& SLAB_RED_ZONE
) {
878 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
879 object
- s
->red_left_pad
, val
, s
->red_left_pad
))
882 if (!check_bytes_and_report(s
, page
, object
, "Redzone",
883 endobject
, val
, s
->inuse
- s
->object_size
))
886 if ((s
->flags
& SLAB_POISON
) && s
->object_size
< s
->inuse
) {
887 check_bytes_and_report(s
, page
, p
, "Alignment padding",
888 endobject
, POISON_INUSE
,
889 s
->inuse
- s
->object_size
);
893 if (s
->flags
& SLAB_POISON
) {
894 if (val
!= SLUB_RED_ACTIVE
&& (s
->flags
& __OBJECT_POISON
) &&
895 (!check_bytes_and_report(s
, page
, p
, "Poison", p
,
896 POISON_FREE
, s
->object_size
- 1) ||
897 !check_bytes_and_report(s
, page
, p
, "Poison",
898 p
+ s
->object_size
- 1, POISON_END
, 1)))
901 * check_pad_bytes cleans up on its own.
903 check_pad_bytes(s
, page
, p
);
906 if (!s
->offset
&& val
== SLUB_RED_ACTIVE
)
908 * Object and freepointer overlap. Cannot check
909 * freepointer while object is allocated.
913 /* Check free pointer validity */
914 if (!check_valid_pointer(s
, page
, get_freepointer(s
, p
))) {
915 object_err(s
, page
, p
, "Freepointer corrupt");
917 * No choice but to zap it and thus lose the remainder
918 * of the free objects in this slab. May cause
919 * another error because the object count is now wrong.
921 set_freepointer(s
, p
, NULL
);
927 static int check_slab(struct kmem_cache
*s
, struct page
*page
)
931 VM_BUG_ON(!irqs_disabled());
933 if (!PageSlab(page
)) {
934 slab_err(s
, page
, "Not a valid slab page");
938 maxobj
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
939 if (page
->objects
> maxobj
) {
940 slab_err(s
, page
, "objects %u > max %u",
941 page
->objects
, maxobj
);
944 if (page
->inuse
> page
->objects
) {
945 slab_err(s
, page
, "inuse %u > max %u",
946 page
->inuse
, page
->objects
);
949 /* Slab_pad_check fixes things up after itself */
950 slab_pad_check(s
, page
);
955 * Determine if a certain object on a page is on the freelist. Must hold the
956 * slab lock to guarantee that the chains are in a consistent state.
958 static int on_freelist(struct kmem_cache
*s
, struct page
*page
, void *search
)
966 while (fp
&& nr
<= page
->objects
) {
969 if (!check_valid_pointer(s
, page
, fp
)) {
971 object_err(s
, page
, object
,
972 "Freechain corrupt");
973 set_freepointer(s
, object
, NULL
);
975 slab_err(s
, page
, "Freepointer corrupt");
976 page
->freelist
= NULL
;
977 page
->inuse
= page
->objects
;
978 slab_fix(s
, "Freelist cleared");
984 fp
= get_freepointer(s
, object
);
988 max_objects
= order_objects(compound_order(page
), s
->size
, s
->reserved
);
989 if (max_objects
> MAX_OBJS_PER_PAGE
)
990 max_objects
= MAX_OBJS_PER_PAGE
;
992 if (page
->objects
!= max_objects
) {
993 slab_err(s
, page
, "Wrong number of objects. Found %d but should be %d",
994 page
->objects
, max_objects
);
995 page
->objects
= max_objects
;
996 slab_fix(s
, "Number of objects adjusted.");
998 if (page
->inuse
!= page
->objects
- nr
) {
999 slab_err(s
, page
, "Wrong object count. Counter is %d but counted were %d",
1000 page
->inuse
, page
->objects
- nr
);
1001 page
->inuse
= page
->objects
- nr
;
1002 slab_fix(s
, "Object count adjusted.");
1004 return search
== NULL
;
1007 static void trace(struct kmem_cache
*s
, struct page
*page
, void *object
,
1010 if (s
->flags
& SLAB_TRACE
) {
1011 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1013 alloc
? "alloc" : "free",
1014 object
, page
->inuse
,
1018 print_section(KERN_INFO
, "Object ", (void *)object
,
1026 * Tracking of fully allocated slabs for debugging purposes.
1028 static void add_full(struct kmem_cache
*s
,
1029 struct kmem_cache_node
*n
, struct page
*page
)
1031 if (!(s
->flags
& SLAB_STORE_USER
))
1034 lockdep_assert_held(&n
->list_lock
);
1035 list_add(&page
->lru
, &n
->full
);
1038 static void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
, struct page
*page
)
1040 if (!(s
->flags
& SLAB_STORE_USER
))
1043 lockdep_assert_held(&n
->list_lock
);
1044 list_del(&page
->lru
);
1047 /* Tracking of the number of slabs for debugging purposes */
1048 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1050 struct kmem_cache_node
*n
= get_node(s
, node
);
1052 return atomic_long_read(&n
->nr_slabs
);
1055 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1057 return atomic_long_read(&n
->nr_slabs
);
1060 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1062 struct kmem_cache_node
*n
= get_node(s
, node
);
1065 * May be called early in order to allocate a slab for the
1066 * kmem_cache_node structure. Solve the chicken-egg
1067 * dilemma by deferring the increment of the count during
1068 * bootstrap (see early_kmem_cache_node_alloc).
1071 atomic_long_inc(&n
->nr_slabs
);
1072 atomic_long_add(objects
, &n
->total_objects
);
1075 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
, int objects
)
1077 struct kmem_cache_node
*n
= get_node(s
, node
);
1079 atomic_long_dec(&n
->nr_slabs
);
1080 atomic_long_sub(objects
, &n
->total_objects
);
1083 /* Object debug checks for alloc/free paths */
1084 static void setup_object_debug(struct kmem_cache
*s
, struct page
*page
,
1087 if (!(s
->flags
& (SLAB_STORE_USER
|SLAB_RED_ZONE
|__OBJECT_POISON
)))
1090 init_object(s
, object
, SLUB_RED_INACTIVE
);
1091 init_tracking(s
, object
);
1094 static inline int alloc_consistency_checks(struct kmem_cache
*s
,
1096 void *object
, unsigned long addr
)
1098 if (!check_slab(s
, page
))
1101 if (!check_valid_pointer(s
, page
, object
)) {
1102 object_err(s
, page
, object
, "Freelist Pointer check fails");
1106 if (!check_object(s
, page
, object
, SLUB_RED_INACTIVE
))
1112 static noinline
int alloc_debug_processing(struct kmem_cache
*s
,
1114 void *object
, unsigned long addr
)
1116 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1117 if (!alloc_consistency_checks(s
, page
, object
, addr
))
1121 /* Success perform special debug activities for allocs */
1122 if (s
->flags
& SLAB_STORE_USER
)
1123 set_track(s
, object
, TRACK_ALLOC
, addr
);
1124 trace(s
, page
, object
, 1);
1125 init_object(s
, object
, SLUB_RED_ACTIVE
);
1129 if (PageSlab(page
)) {
1131 * If this is a slab page then lets do the best we can
1132 * to avoid issues in the future. Marking all objects
1133 * as used avoids touching the remaining objects.
1135 slab_fix(s
, "Marking all objects used");
1136 page
->inuse
= page
->objects
;
1137 page
->freelist
= NULL
;
1142 static inline int free_consistency_checks(struct kmem_cache
*s
,
1143 struct page
*page
, void *object
, unsigned long addr
)
1145 if (!check_valid_pointer(s
, page
, object
)) {
1146 slab_err(s
, page
, "Invalid object pointer 0x%p", object
);
1150 if (on_freelist(s
, page
, object
)) {
1151 object_err(s
, page
, object
, "Object already free");
1155 if (!check_object(s
, page
, object
, SLUB_RED_ACTIVE
))
1158 if (unlikely(s
!= page
->slab_cache
)) {
1159 if (!PageSlab(page
)) {
1160 slab_err(s
, page
, "Attempt to free object(0x%p) outside of slab",
1162 } else if (!page
->slab_cache
) {
1163 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1167 object_err(s
, page
, object
,
1168 "page slab pointer corrupt.");
1174 /* Supports checking bulk free of a constructed freelist */
1175 static noinline
int free_debug_processing(
1176 struct kmem_cache
*s
, struct page
*page
,
1177 void *head
, void *tail
, int bulk_cnt
,
1180 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
1181 void *object
= head
;
1183 unsigned long uninitialized_var(flags
);
1186 spin_lock_irqsave(&n
->list_lock
, flags
);
1189 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1190 if (!check_slab(s
, page
))
1197 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1198 if (!free_consistency_checks(s
, page
, object
, addr
))
1202 if (s
->flags
& SLAB_STORE_USER
)
1203 set_track(s
, object
, TRACK_FREE
, addr
);
1204 trace(s
, page
, object
, 0);
1205 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1206 init_object(s
, object
, SLUB_RED_INACTIVE
);
1208 /* Reached end of constructed freelist yet? */
1209 if (object
!= tail
) {
1210 object
= get_freepointer(s
, object
);
1216 if (cnt
!= bulk_cnt
)
1217 slab_err(s
, page
, "Bulk freelist count(%d) invalid(%d)\n",
1221 spin_unlock_irqrestore(&n
->list_lock
, flags
);
1223 slab_fix(s
, "Object at 0x%p not freed", object
);
1227 static int __init
setup_slub_debug(char *str
)
1229 slub_debug
= DEBUG_DEFAULT_FLAGS
;
1230 if (*str
++ != '=' || !*str
)
1232 * No options specified. Switch on full debugging.
1238 * No options but restriction on slabs. This means full
1239 * debugging for slabs matching a pattern.
1246 * Switch off all debugging measures.
1251 * Determine which debug features should be switched on
1253 for (; *str
&& *str
!= ','; str
++) {
1254 switch (tolower(*str
)) {
1256 slub_debug
|= SLAB_CONSISTENCY_CHECKS
;
1259 slub_debug
|= SLAB_RED_ZONE
;
1262 slub_debug
|= SLAB_POISON
;
1265 slub_debug
|= SLAB_STORE_USER
;
1268 slub_debug
|= SLAB_TRACE
;
1271 slub_debug
|= SLAB_FAILSLAB
;
1275 * Avoid enabling debugging on caches if its minimum
1276 * order would increase as a result.
1278 disable_higher_order_debug
= 1;
1281 pr_err("slub_debug option '%c' unknown. skipped\n",
1288 slub_debug_slabs
= str
+ 1;
1293 __setup("slub_debug", setup_slub_debug
);
1295 slab_flags_t
kmem_cache_flags(unsigned long object_size
,
1296 slab_flags_t flags
, const char *name
,
1297 void (*ctor
)(void *))
1300 * Enable debugging if selected on the kernel commandline.
1302 if (slub_debug
&& (!slub_debug_slabs
|| (name
&&
1303 !strncmp(slub_debug_slabs
, name
, strlen(slub_debug_slabs
)))))
1304 flags
|= slub_debug
;
1308 #else /* !CONFIG_SLUB_DEBUG */
1309 static inline void setup_object_debug(struct kmem_cache
*s
,
1310 struct page
*page
, void *object
) {}
1312 static inline int alloc_debug_processing(struct kmem_cache
*s
,
1313 struct page
*page
, void *object
, unsigned long addr
) { return 0; }
1315 static inline int free_debug_processing(
1316 struct kmem_cache
*s
, struct page
*page
,
1317 void *head
, void *tail
, int bulk_cnt
,
1318 unsigned long addr
) { return 0; }
1320 static inline int slab_pad_check(struct kmem_cache
*s
, struct page
*page
)
1322 static inline int check_object(struct kmem_cache
*s
, struct page
*page
,
1323 void *object
, u8 val
) { return 1; }
1324 static inline void add_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1325 struct page
*page
) {}
1326 static inline void remove_full(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1327 struct page
*page
) {}
1328 slab_flags_t
kmem_cache_flags(unsigned long object_size
,
1329 slab_flags_t flags
, const char *name
,
1330 void (*ctor
)(void *))
1334 #define slub_debug 0
1336 #define disable_higher_order_debug 0
1338 static inline unsigned long slabs_node(struct kmem_cache
*s
, int node
)
1340 static inline unsigned long node_nr_slabs(struct kmem_cache_node
*n
)
1342 static inline void inc_slabs_node(struct kmem_cache
*s
, int node
,
1344 static inline void dec_slabs_node(struct kmem_cache
*s
, int node
,
1347 #endif /* CONFIG_SLUB_DEBUG */
1350 * Hooks for other subsystems that check memory allocations. In a typical
1351 * production configuration these hooks all should produce no code at all.
1353 static inline void kmalloc_large_node_hook(void *ptr
, size_t size
, gfp_t flags
)
1355 kmemleak_alloc(ptr
, size
, 1, flags
);
1356 kasan_kmalloc_large(ptr
, size
, flags
);
1359 static __always_inline
void kfree_hook(void *x
)
1362 kasan_kfree_large(x
, _RET_IP_
);
1365 static __always_inline
void *slab_free_hook(struct kmem_cache
*s
, void *x
)
1369 kmemleak_free_recursive(x
, s
->flags
);
1372 * Trouble is that we may no longer disable interrupts in the fast path
1373 * So in order to make the debug calls that expect irqs to be
1374 * disabled we need to disable interrupts temporarily.
1376 #ifdef CONFIG_LOCKDEP
1378 unsigned long flags
;
1380 local_irq_save(flags
);
1381 debug_check_no_locks_freed(x
, s
->object_size
);
1382 local_irq_restore(flags
);
1385 if (!(s
->flags
& SLAB_DEBUG_OBJECTS
))
1386 debug_check_no_obj_freed(x
, s
->object_size
);
1388 freeptr
= get_freepointer(s
, x
);
1390 * kasan_slab_free() may put x into memory quarantine, delaying its
1391 * reuse. In this case the object's freelist pointer is changed.
1393 kasan_slab_free(s
, x
, _RET_IP_
);
1397 static inline void slab_free_freelist_hook(struct kmem_cache
*s
,
1398 void *head
, void *tail
)
1401 * Compiler cannot detect this function can be removed if slab_free_hook()
1402 * evaluates to nothing. Thus, catch all relevant config debug options here.
1404 #if defined(CONFIG_LOCKDEP) || \
1405 defined(CONFIG_DEBUG_KMEMLEAK) || \
1406 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1407 defined(CONFIG_KASAN)
1409 void *object
= head
;
1410 void *tail_obj
= tail
? : head
;
1414 freeptr
= slab_free_hook(s
, object
);
1415 } while ((object
!= tail_obj
) && (object
= freeptr
));
1419 static void setup_object(struct kmem_cache
*s
, struct page
*page
,
1422 setup_object_debug(s
, page
, object
);
1423 kasan_init_slab_obj(s
, object
);
1424 if (unlikely(s
->ctor
)) {
1425 kasan_unpoison_object_data(s
, object
);
1427 kasan_poison_object_data(s
, object
);
1432 * Slab allocation and freeing
1434 static inline struct page
*alloc_slab_page(struct kmem_cache
*s
,
1435 gfp_t flags
, int node
, struct kmem_cache_order_objects oo
)
1438 int order
= oo_order(oo
);
1440 if (node
== NUMA_NO_NODE
)
1441 page
= alloc_pages(flags
, order
);
1443 page
= __alloc_pages_node(node
, flags
, order
);
1445 if (page
&& memcg_charge_slab(page
, flags
, order
, s
)) {
1446 __free_pages(page
, order
);
1453 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1454 /* Pre-initialize the random sequence cache */
1455 static int init_cache_random_seq(struct kmem_cache
*s
)
1458 unsigned long i
, count
= oo_objects(s
->oo
);
1460 /* Bailout if already initialised */
1464 err
= cache_random_seq_create(s
, count
, GFP_KERNEL
);
1466 pr_err("SLUB: Unable to initialize free list for %s\n",
1471 /* Transform to an offset on the set of pages */
1472 if (s
->random_seq
) {
1473 for (i
= 0; i
< count
; i
++)
1474 s
->random_seq
[i
] *= s
->size
;
1479 /* Initialize each random sequence freelist per cache */
1480 static void __init
init_freelist_randomization(void)
1482 struct kmem_cache
*s
;
1484 mutex_lock(&slab_mutex
);
1486 list_for_each_entry(s
, &slab_caches
, list
)
1487 init_cache_random_seq(s
);
1489 mutex_unlock(&slab_mutex
);
1492 /* Get the next entry on the pre-computed freelist randomized */
1493 static void *next_freelist_entry(struct kmem_cache
*s
, struct page
*page
,
1494 unsigned long *pos
, void *start
,
1495 unsigned long page_limit
,
1496 unsigned long freelist_count
)
1501 * If the target page allocation failed, the number of objects on the
1502 * page might be smaller than the usual size defined by the cache.
1505 idx
= s
->random_seq
[*pos
];
1507 if (*pos
>= freelist_count
)
1509 } while (unlikely(idx
>= page_limit
));
1511 return (char *)start
+ idx
;
1514 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1515 static bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1520 unsigned long idx
, pos
, page_limit
, freelist_count
;
1522 if (page
->objects
< 2 || !s
->random_seq
)
1525 freelist_count
= oo_objects(s
->oo
);
1526 pos
= get_random_int() % freelist_count
;
1528 page_limit
= page
->objects
* s
->size
;
1529 start
= fixup_red_left(s
, page_address(page
));
1531 /* First entry is used as the base of the freelist */
1532 cur
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1534 page
->freelist
= cur
;
1536 for (idx
= 1; idx
< page
->objects
; idx
++) {
1537 setup_object(s
, page
, cur
);
1538 next
= next_freelist_entry(s
, page
, &pos
, start
, page_limit
,
1540 set_freepointer(s
, cur
, next
);
1543 setup_object(s
, page
, cur
);
1544 set_freepointer(s
, cur
, NULL
);
1549 static inline int init_cache_random_seq(struct kmem_cache
*s
)
1553 static inline void init_freelist_randomization(void) { }
1554 static inline bool shuffle_freelist(struct kmem_cache
*s
, struct page
*page
)
1558 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1560 static struct page
*allocate_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1563 struct kmem_cache_order_objects oo
= s
->oo
;
1569 flags
&= gfp_allowed_mask
;
1571 if (gfpflags_allow_blocking(flags
))
1574 flags
|= s
->allocflags
;
1577 * Let the initial higher-order allocation fail under memory pressure
1578 * so we fall-back to the minimum order allocation.
1580 alloc_gfp
= (flags
| __GFP_NOWARN
| __GFP_NORETRY
) & ~__GFP_NOFAIL
;
1581 if ((alloc_gfp
& __GFP_DIRECT_RECLAIM
) && oo_order(oo
) > oo_order(s
->min
))
1582 alloc_gfp
= (alloc_gfp
| __GFP_NOMEMALLOC
) & ~(__GFP_RECLAIM
|__GFP_NOFAIL
);
1584 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1585 if (unlikely(!page
)) {
1589 * Allocation may have failed due to fragmentation.
1590 * Try a lower order alloc if possible
1592 page
= alloc_slab_page(s
, alloc_gfp
, node
, oo
);
1593 if (unlikely(!page
))
1595 stat(s
, ORDER_FALLBACK
);
1598 page
->objects
= oo_objects(oo
);
1600 order
= compound_order(page
);
1601 page
->slab_cache
= s
;
1602 __SetPageSlab(page
);
1603 if (page_is_pfmemalloc(page
))
1604 SetPageSlabPfmemalloc(page
);
1606 start
= page_address(page
);
1608 if (unlikely(s
->flags
& SLAB_POISON
))
1609 memset(start
, POISON_INUSE
, PAGE_SIZE
<< order
);
1611 kasan_poison_slab(page
);
1613 shuffle
= shuffle_freelist(s
, page
);
1616 for_each_object_idx(p
, idx
, s
, start
, page
->objects
) {
1617 setup_object(s
, page
, p
);
1618 if (likely(idx
< page
->objects
))
1619 set_freepointer(s
, p
, p
+ s
->size
);
1621 set_freepointer(s
, p
, NULL
);
1623 page
->freelist
= fixup_red_left(s
, start
);
1626 page
->inuse
= page
->objects
;
1630 if (gfpflags_allow_blocking(flags
))
1631 local_irq_disable();
1635 mod_lruvec_page_state(page
,
1636 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1637 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1640 inc_slabs_node(s
, page_to_nid(page
), page
->objects
);
1645 static struct page
*new_slab(struct kmem_cache
*s
, gfp_t flags
, int node
)
1647 if (unlikely(flags
& GFP_SLAB_BUG_MASK
)) {
1648 gfp_t invalid_mask
= flags
& GFP_SLAB_BUG_MASK
;
1649 flags
&= ~GFP_SLAB_BUG_MASK
;
1650 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1651 invalid_mask
, &invalid_mask
, flags
, &flags
);
1655 return allocate_slab(s
,
1656 flags
& (GFP_RECLAIM_MASK
| GFP_CONSTRAINT_MASK
), node
);
1659 static void __free_slab(struct kmem_cache
*s
, struct page
*page
)
1661 int order
= compound_order(page
);
1662 int pages
= 1 << order
;
1664 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
) {
1667 slab_pad_check(s
, page
);
1668 for_each_object(p
, s
, page_address(page
),
1670 check_object(s
, page
, p
, SLUB_RED_INACTIVE
);
1673 mod_lruvec_page_state(page
,
1674 (s
->flags
& SLAB_RECLAIM_ACCOUNT
) ?
1675 NR_SLAB_RECLAIMABLE
: NR_SLAB_UNRECLAIMABLE
,
1678 __ClearPageSlabPfmemalloc(page
);
1679 __ClearPageSlab(page
);
1681 page_mapcount_reset(page
);
1682 if (current
->reclaim_state
)
1683 current
->reclaim_state
->reclaimed_slab
+= pages
;
1684 memcg_uncharge_slab(page
, order
, s
);
1685 __free_pages(page
, order
);
1688 #define need_reserve_slab_rcu \
1689 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1691 static void rcu_free_slab(struct rcu_head
*h
)
1695 if (need_reserve_slab_rcu
)
1696 page
= virt_to_head_page(h
);
1698 page
= container_of((struct list_head
*)h
, struct page
, lru
);
1700 __free_slab(page
->slab_cache
, page
);
1703 static void free_slab(struct kmem_cache
*s
, struct page
*page
)
1705 if (unlikely(s
->flags
& SLAB_TYPESAFE_BY_RCU
)) {
1706 struct rcu_head
*head
;
1708 if (need_reserve_slab_rcu
) {
1709 int order
= compound_order(page
);
1710 int offset
= (PAGE_SIZE
<< order
) - s
->reserved
;
1712 VM_BUG_ON(s
->reserved
!= sizeof(*head
));
1713 head
= page_address(page
) + offset
;
1715 head
= &page
->rcu_head
;
1718 call_rcu(head
, rcu_free_slab
);
1720 __free_slab(s
, page
);
1723 static void discard_slab(struct kmem_cache
*s
, struct page
*page
)
1725 dec_slabs_node(s
, page_to_nid(page
), page
->objects
);
1730 * Management of partially allocated slabs.
1733 __add_partial(struct kmem_cache_node
*n
, struct page
*page
, int tail
)
1736 if (tail
== DEACTIVATE_TO_TAIL
)
1737 list_add_tail(&page
->lru
, &n
->partial
);
1739 list_add(&page
->lru
, &n
->partial
);
1742 static inline void add_partial(struct kmem_cache_node
*n
,
1743 struct page
*page
, int tail
)
1745 lockdep_assert_held(&n
->list_lock
);
1746 __add_partial(n
, page
, tail
);
1749 static inline void remove_partial(struct kmem_cache_node
*n
,
1752 lockdep_assert_held(&n
->list_lock
);
1753 list_del(&page
->lru
);
1758 * Remove slab from the partial list, freeze it and
1759 * return the pointer to the freelist.
1761 * Returns a list of objects or NULL if it fails.
1763 static inline void *acquire_slab(struct kmem_cache
*s
,
1764 struct kmem_cache_node
*n
, struct page
*page
,
1765 int mode
, int *objects
)
1768 unsigned long counters
;
1771 lockdep_assert_held(&n
->list_lock
);
1774 * Zap the freelist and set the frozen bit.
1775 * The old freelist is the list of objects for the
1776 * per cpu allocation list.
1778 freelist
= page
->freelist
;
1779 counters
= page
->counters
;
1780 new.counters
= counters
;
1781 *objects
= new.objects
- new.inuse
;
1783 new.inuse
= page
->objects
;
1784 new.freelist
= NULL
;
1786 new.freelist
= freelist
;
1789 VM_BUG_ON(new.frozen
);
1792 if (!__cmpxchg_double_slab(s
, page
,
1794 new.freelist
, new.counters
,
1798 remove_partial(n
, page
);
1803 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
);
1804 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
);
1807 * Try to allocate a partial slab from a specific node.
1809 static void *get_partial_node(struct kmem_cache
*s
, struct kmem_cache_node
*n
,
1810 struct kmem_cache_cpu
*c
, gfp_t flags
)
1812 struct page
*page
, *page2
;
1813 void *object
= NULL
;
1818 * Racy check. If we mistakenly see no partial slabs then we
1819 * just allocate an empty slab. If we mistakenly try to get a
1820 * partial slab and there is none available then get_partials()
1823 if (!n
|| !n
->nr_partial
)
1826 spin_lock(&n
->list_lock
);
1827 list_for_each_entry_safe(page
, page2
, &n
->partial
, lru
) {
1830 if (!pfmemalloc_match(page
, flags
))
1833 t
= acquire_slab(s
, n
, page
, object
== NULL
, &objects
);
1837 available
+= objects
;
1840 stat(s
, ALLOC_FROM_PARTIAL
);
1843 put_cpu_partial(s
, page
, 0);
1844 stat(s
, CPU_PARTIAL_NODE
);
1846 if (!kmem_cache_has_cpu_partial(s
)
1847 || available
> slub_cpu_partial(s
) / 2)
1851 spin_unlock(&n
->list_lock
);
1856 * Get a page from somewhere. Search in increasing NUMA distances.
1858 static void *get_any_partial(struct kmem_cache
*s
, gfp_t flags
,
1859 struct kmem_cache_cpu
*c
)
1862 struct zonelist
*zonelist
;
1865 enum zone_type high_zoneidx
= gfp_zone(flags
);
1867 unsigned int cpuset_mems_cookie
;
1870 * The defrag ratio allows a configuration of the tradeoffs between
1871 * inter node defragmentation and node local allocations. A lower
1872 * defrag_ratio increases the tendency to do local allocations
1873 * instead of attempting to obtain partial slabs from other nodes.
1875 * If the defrag_ratio is set to 0 then kmalloc() always
1876 * returns node local objects. If the ratio is higher then kmalloc()
1877 * may return off node objects because partial slabs are obtained
1878 * from other nodes and filled up.
1880 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1881 * (which makes defrag_ratio = 1000) then every (well almost)
1882 * allocation will first attempt to defrag slab caches on other nodes.
1883 * This means scanning over all nodes to look for partial slabs which
1884 * may be expensive if we do it every time we are trying to find a slab
1885 * with available objects.
1887 if (!s
->remote_node_defrag_ratio
||
1888 get_cycles() % 1024 > s
->remote_node_defrag_ratio
)
1892 cpuset_mems_cookie
= read_mems_allowed_begin();
1893 zonelist
= node_zonelist(mempolicy_slab_node(), flags
);
1894 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1895 struct kmem_cache_node
*n
;
1897 n
= get_node(s
, zone_to_nid(zone
));
1899 if (n
&& cpuset_zone_allowed(zone
, flags
) &&
1900 n
->nr_partial
> s
->min_partial
) {
1901 object
= get_partial_node(s
, n
, c
, flags
);
1904 * Don't check read_mems_allowed_retry()
1905 * here - if mems_allowed was updated in
1906 * parallel, that was a harmless race
1907 * between allocation and the cpuset
1914 } while (read_mems_allowed_retry(cpuset_mems_cookie
));
1920 * Get a partial page, lock it and return it.
1922 static void *get_partial(struct kmem_cache
*s
, gfp_t flags
, int node
,
1923 struct kmem_cache_cpu
*c
)
1926 int searchnode
= node
;
1928 if (node
== NUMA_NO_NODE
)
1929 searchnode
= numa_mem_id();
1930 else if (!node_present_pages(node
))
1931 searchnode
= node_to_mem_node(node
);
1933 object
= get_partial_node(s
, get_node(s
, searchnode
), c
, flags
);
1934 if (object
|| node
!= NUMA_NO_NODE
)
1937 return get_any_partial(s
, flags
, c
);
1940 #ifdef CONFIG_PREEMPT
1942 * Calculate the next globally unique transaction for disambiguiation
1943 * during cmpxchg. The transactions start with the cpu number and are then
1944 * incremented by CONFIG_NR_CPUS.
1946 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1949 * No preemption supported therefore also no need to check for
1955 static inline unsigned long next_tid(unsigned long tid
)
1957 return tid
+ TID_STEP
;
1960 static inline unsigned int tid_to_cpu(unsigned long tid
)
1962 return tid
% TID_STEP
;
1965 static inline unsigned long tid_to_event(unsigned long tid
)
1967 return tid
/ TID_STEP
;
1970 static inline unsigned int init_tid(int cpu
)
1975 static inline void note_cmpxchg_failure(const char *n
,
1976 const struct kmem_cache
*s
, unsigned long tid
)
1978 #ifdef SLUB_DEBUG_CMPXCHG
1979 unsigned long actual_tid
= __this_cpu_read(s
->cpu_slab
->tid
);
1981 pr_info("%s %s: cmpxchg redo ", n
, s
->name
);
1983 #ifdef CONFIG_PREEMPT
1984 if (tid_to_cpu(tid
) != tid_to_cpu(actual_tid
))
1985 pr_warn("due to cpu change %d -> %d\n",
1986 tid_to_cpu(tid
), tid_to_cpu(actual_tid
));
1989 if (tid_to_event(tid
) != tid_to_event(actual_tid
))
1990 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1991 tid_to_event(tid
), tid_to_event(actual_tid
));
1993 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1994 actual_tid
, tid
, next_tid(tid
));
1996 stat(s
, CMPXCHG_DOUBLE_CPU_FAIL
);
1999 static void init_kmem_cache_cpus(struct kmem_cache
*s
)
2003 for_each_possible_cpu(cpu
)
2004 per_cpu_ptr(s
->cpu_slab
, cpu
)->tid
= init_tid(cpu
);
2008 * Remove the cpu slab
2010 static void deactivate_slab(struct kmem_cache
*s
, struct page
*page
,
2011 void *freelist
, struct kmem_cache_cpu
*c
)
2013 enum slab_modes
{ M_NONE
, M_PARTIAL
, M_FULL
, M_FREE
};
2014 struct kmem_cache_node
*n
= get_node(s
, page_to_nid(page
));
2016 enum slab_modes l
= M_NONE
, m
= M_NONE
;
2018 int tail
= DEACTIVATE_TO_HEAD
;
2022 if (page
->freelist
) {
2023 stat(s
, DEACTIVATE_REMOTE_FREES
);
2024 tail
= DEACTIVATE_TO_TAIL
;
2028 * Stage one: Free all available per cpu objects back
2029 * to the page freelist while it is still frozen. Leave the
2032 * There is no need to take the list->lock because the page
2035 while (freelist
&& (nextfree
= get_freepointer(s
, freelist
))) {
2037 unsigned long counters
;
2040 prior
= page
->freelist
;
2041 counters
= page
->counters
;
2042 set_freepointer(s
, freelist
, prior
);
2043 new.counters
= counters
;
2045 VM_BUG_ON(!new.frozen
);
2047 } while (!__cmpxchg_double_slab(s
, page
,
2049 freelist
, new.counters
,
2050 "drain percpu freelist"));
2052 freelist
= nextfree
;
2056 * Stage two: Ensure that the page is unfrozen while the
2057 * list presence reflects the actual number of objects
2060 * We setup the list membership and then perform a cmpxchg
2061 * with the count. If there is a mismatch then the page
2062 * is not unfrozen but the page is on the wrong list.
2064 * Then we restart the process which may have to remove
2065 * the page from the list that we just put it on again
2066 * because the number of objects in the slab may have
2071 old
.freelist
= page
->freelist
;
2072 old
.counters
= page
->counters
;
2073 VM_BUG_ON(!old
.frozen
);
2075 /* Determine target state of the slab */
2076 new.counters
= old
.counters
;
2079 set_freepointer(s
, freelist
, old
.freelist
);
2080 new.freelist
= freelist
;
2082 new.freelist
= old
.freelist
;
2086 if (!new.inuse
&& n
->nr_partial
>= s
->min_partial
)
2088 else if (new.freelist
) {
2093 * Taking the spinlock removes the possiblity
2094 * that acquire_slab() will see a slab page that
2097 spin_lock(&n
->list_lock
);
2101 if (kmem_cache_debug(s
) && !lock
) {
2104 * This also ensures that the scanning of full
2105 * slabs from diagnostic functions will not see
2108 spin_lock(&n
->list_lock
);
2116 remove_partial(n
, page
);
2118 else if (l
== M_FULL
)
2120 remove_full(s
, n
, page
);
2122 if (m
== M_PARTIAL
) {
2124 add_partial(n
, page
, tail
);
2127 } else if (m
== M_FULL
) {
2129 stat(s
, DEACTIVATE_FULL
);
2130 add_full(s
, n
, page
);
2136 if (!__cmpxchg_double_slab(s
, page
,
2137 old
.freelist
, old
.counters
,
2138 new.freelist
, new.counters
,
2143 spin_unlock(&n
->list_lock
);
2146 stat(s
, DEACTIVATE_EMPTY
);
2147 discard_slab(s
, page
);
2156 * Unfreeze all the cpu partial slabs.
2158 * This function must be called with interrupts disabled
2159 * for the cpu using c (or some other guarantee must be there
2160 * to guarantee no concurrent accesses).
2162 static void unfreeze_partials(struct kmem_cache
*s
,
2163 struct kmem_cache_cpu
*c
)
2165 #ifdef CONFIG_SLUB_CPU_PARTIAL
2166 struct kmem_cache_node
*n
= NULL
, *n2
= NULL
;
2167 struct page
*page
, *discard_page
= NULL
;
2169 while ((page
= c
->partial
)) {
2173 c
->partial
= page
->next
;
2175 n2
= get_node(s
, page_to_nid(page
));
2178 spin_unlock(&n
->list_lock
);
2181 spin_lock(&n
->list_lock
);
2186 old
.freelist
= page
->freelist
;
2187 old
.counters
= page
->counters
;
2188 VM_BUG_ON(!old
.frozen
);
2190 new.counters
= old
.counters
;
2191 new.freelist
= old
.freelist
;
2195 } while (!__cmpxchg_double_slab(s
, page
,
2196 old
.freelist
, old
.counters
,
2197 new.freelist
, new.counters
,
2198 "unfreezing slab"));
2200 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
)) {
2201 page
->next
= discard_page
;
2202 discard_page
= page
;
2204 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2205 stat(s
, FREE_ADD_PARTIAL
);
2210 spin_unlock(&n
->list_lock
);
2212 while (discard_page
) {
2213 page
= discard_page
;
2214 discard_page
= discard_page
->next
;
2216 stat(s
, DEACTIVATE_EMPTY
);
2217 discard_slab(s
, page
);
2224 * Put a page that was just frozen (in __slab_free) into a partial page
2225 * slot if available.
2227 * If we did not find a slot then simply move all the partials to the
2228 * per node partial list.
2230 static void put_cpu_partial(struct kmem_cache
*s
, struct page
*page
, int drain
)
2232 #ifdef CONFIG_SLUB_CPU_PARTIAL
2233 struct page
*oldpage
;
2241 oldpage
= this_cpu_read(s
->cpu_slab
->partial
);
2244 pobjects
= oldpage
->pobjects
;
2245 pages
= oldpage
->pages
;
2246 if (drain
&& pobjects
> s
->cpu_partial
) {
2247 unsigned long flags
;
2249 * partial array is full. Move the existing
2250 * set to the per node partial list.
2252 local_irq_save(flags
);
2253 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2254 local_irq_restore(flags
);
2258 stat(s
, CPU_PARTIAL_DRAIN
);
2263 pobjects
+= page
->objects
- page
->inuse
;
2265 page
->pages
= pages
;
2266 page
->pobjects
= pobjects
;
2267 page
->next
= oldpage
;
2269 } while (this_cpu_cmpxchg(s
->cpu_slab
->partial
, oldpage
, page
)
2271 if (unlikely(!s
->cpu_partial
)) {
2272 unsigned long flags
;
2274 local_irq_save(flags
);
2275 unfreeze_partials(s
, this_cpu_ptr(s
->cpu_slab
));
2276 local_irq_restore(flags
);
2282 static inline void flush_slab(struct kmem_cache
*s
, struct kmem_cache_cpu
*c
)
2284 stat(s
, CPUSLAB_FLUSH
);
2285 deactivate_slab(s
, c
->page
, c
->freelist
, c
);
2287 c
->tid
= next_tid(c
->tid
);
2293 * Called from IPI handler with interrupts disabled.
2295 static inline void __flush_cpu_slab(struct kmem_cache
*s
, int cpu
)
2297 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2303 unfreeze_partials(s
, c
);
2307 static void flush_cpu_slab(void *d
)
2309 struct kmem_cache
*s
= d
;
2311 __flush_cpu_slab(s
, smp_processor_id());
2314 static bool has_cpu_slab(int cpu
, void *info
)
2316 struct kmem_cache
*s
= info
;
2317 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
, cpu
);
2319 return c
->page
|| slub_percpu_partial(c
);
2322 static void flush_all(struct kmem_cache
*s
)
2324 on_each_cpu_cond(has_cpu_slab
, flush_cpu_slab
, s
, 1, GFP_ATOMIC
);
2328 * Use the cpu notifier to insure that the cpu slabs are flushed when
2331 static int slub_cpu_dead(unsigned int cpu
)
2333 struct kmem_cache
*s
;
2334 unsigned long flags
;
2336 mutex_lock(&slab_mutex
);
2337 list_for_each_entry(s
, &slab_caches
, list
) {
2338 local_irq_save(flags
);
2339 __flush_cpu_slab(s
, cpu
);
2340 local_irq_restore(flags
);
2342 mutex_unlock(&slab_mutex
);
2347 * Check if the objects in a per cpu structure fit numa
2348 * locality expectations.
2350 static inline int node_match(struct page
*page
, int node
)
2353 if (!page
|| (node
!= NUMA_NO_NODE
&& page_to_nid(page
) != node
))
2359 #ifdef CONFIG_SLUB_DEBUG
2360 static int count_free(struct page
*page
)
2362 return page
->objects
- page
->inuse
;
2365 static inline unsigned long node_nr_objs(struct kmem_cache_node
*n
)
2367 return atomic_long_read(&n
->total_objects
);
2369 #endif /* CONFIG_SLUB_DEBUG */
2371 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2372 static unsigned long count_partial(struct kmem_cache_node
*n
,
2373 int (*get_count
)(struct page
*))
2375 unsigned long flags
;
2376 unsigned long x
= 0;
2379 spin_lock_irqsave(&n
->list_lock
, flags
);
2380 list_for_each_entry(page
, &n
->partial
, lru
)
2381 x
+= get_count(page
);
2382 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2385 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2387 static noinline
void
2388 slab_out_of_memory(struct kmem_cache
*s
, gfp_t gfpflags
, int nid
)
2390 #ifdef CONFIG_SLUB_DEBUG
2391 static DEFINE_RATELIMIT_STATE(slub_oom_rs
, DEFAULT_RATELIMIT_INTERVAL
,
2392 DEFAULT_RATELIMIT_BURST
);
2394 struct kmem_cache_node
*n
;
2396 if ((gfpflags
& __GFP_NOWARN
) || !__ratelimit(&slub_oom_rs
))
2399 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2400 nid
, gfpflags
, &gfpflags
);
2401 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2402 s
->name
, s
->object_size
, s
->size
, oo_order(s
->oo
),
2405 if (oo_order(s
->min
) > get_order(s
->object_size
))
2406 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2409 for_each_kmem_cache_node(s
, node
, n
) {
2410 unsigned long nr_slabs
;
2411 unsigned long nr_objs
;
2412 unsigned long nr_free
;
2414 nr_free
= count_partial(n
, count_free
);
2415 nr_slabs
= node_nr_slabs(n
);
2416 nr_objs
= node_nr_objs(n
);
2418 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2419 node
, nr_slabs
, nr_objs
, nr_free
);
2424 static inline void *new_slab_objects(struct kmem_cache
*s
, gfp_t flags
,
2425 int node
, struct kmem_cache_cpu
**pc
)
2428 struct kmem_cache_cpu
*c
= *pc
;
2431 freelist
= get_partial(s
, flags
, node
, c
);
2436 page
= new_slab(s
, flags
, node
);
2438 c
= raw_cpu_ptr(s
->cpu_slab
);
2443 * No other reference to the page yet so we can
2444 * muck around with it freely without cmpxchg
2446 freelist
= page
->freelist
;
2447 page
->freelist
= NULL
;
2449 stat(s
, ALLOC_SLAB
);
2458 static inline bool pfmemalloc_match(struct page
*page
, gfp_t gfpflags
)
2460 if (unlikely(PageSlabPfmemalloc(page
)))
2461 return gfp_pfmemalloc_allowed(gfpflags
);
2467 * Check the page->freelist of a page and either transfer the freelist to the
2468 * per cpu freelist or deactivate the page.
2470 * The page is still frozen if the return value is not NULL.
2472 * If this function returns NULL then the page has been unfrozen.
2474 * This function must be called with interrupt disabled.
2476 static inline void *get_freelist(struct kmem_cache
*s
, struct page
*page
)
2479 unsigned long counters
;
2483 freelist
= page
->freelist
;
2484 counters
= page
->counters
;
2486 new.counters
= counters
;
2487 VM_BUG_ON(!new.frozen
);
2489 new.inuse
= page
->objects
;
2490 new.frozen
= freelist
!= NULL
;
2492 } while (!__cmpxchg_double_slab(s
, page
,
2501 * Slow path. The lockless freelist is empty or we need to perform
2504 * Processing is still very fast if new objects have been freed to the
2505 * regular freelist. In that case we simply take over the regular freelist
2506 * as the lockless freelist and zap the regular freelist.
2508 * If that is not working then we fall back to the partial lists. We take the
2509 * first element of the freelist as the object to allocate now and move the
2510 * rest of the freelist to the lockless freelist.
2512 * And if we were unable to get a new slab from the partial slab lists then
2513 * we need to allocate a new slab. This is the slowest path since it involves
2514 * a call to the page allocator and the setup of a new slab.
2516 * Version of __slab_alloc to use when we know that interrupts are
2517 * already disabled (which is the case for bulk allocation).
2519 static void *___slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2520 unsigned long addr
, struct kmem_cache_cpu
*c
)
2530 if (unlikely(!node_match(page
, node
))) {
2531 int searchnode
= node
;
2533 if (node
!= NUMA_NO_NODE
&& !node_present_pages(node
))
2534 searchnode
= node_to_mem_node(node
);
2536 if (unlikely(!node_match(page
, searchnode
))) {
2537 stat(s
, ALLOC_NODE_MISMATCH
);
2538 deactivate_slab(s
, page
, c
->freelist
, c
);
2544 * By rights, we should be searching for a slab page that was
2545 * PFMEMALLOC but right now, we are losing the pfmemalloc
2546 * information when the page leaves the per-cpu allocator
2548 if (unlikely(!pfmemalloc_match(page
, gfpflags
))) {
2549 deactivate_slab(s
, page
, c
->freelist
, c
);
2553 /* must check again c->freelist in case of cpu migration or IRQ */
2554 freelist
= c
->freelist
;
2558 freelist
= get_freelist(s
, page
);
2562 stat(s
, DEACTIVATE_BYPASS
);
2566 stat(s
, ALLOC_REFILL
);
2570 * freelist is pointing to the list of objects to be used.
2571 * page is pointing to the page from which the objects are obtained.
2572 * That page must be frozen for per cpu allocations to work.
2574 VM_BUG_ON(!c
->page
->frozen
);
2575 c
->freelist
= get_freepointer(s
, freelist
);
2576 c
->tid
= next_tid(c
->tid
);
2581 if (slub_percpu_partial(c
)) {
2582 page
= c
->page
= slub_percpu_partial(c
);
2583 slub_set_percpu_partial(c
, page
);
2584 stat(s
, CPU_PARTIAL_ALLOC
);
2588 freelist
= new_slab_objects(s
, gfpflags
, node
, &c
);
2590 if (unlikely(!freelist
)) {
2591 slab_out_of_memory(s
, gfpflags
, node
);
2596 if (likely(!kmem_cache_debug(s
) && pfmemalloc_match(page
, gfpflags
)))
2599 /* Only entered in the debug case */
2600 if (kmem_cache_debug(s
) &&
2601 !alloc_debug_processing(s
, page
, freelist
, addr
))
2602 goto new_slab
; /* Slab failed checks. Next slab needed */
2604 deactivate_slab(s
, page
, get_freepointer(s
, freelist
), c
);
2609 * Another one that disabled interrupt and compensates for possible
2610 * cpu changes by refetching the per cpu area pointer.
2612 static void *__slab_alloc(struct kmem_cache
*s
, gfp_t gfpflags
, int node
,
2613 unsigned long addr
, struct kmem_cache_cpu
*c
)
2616 unsigned long flags
;
2618 local_irq_save(flags
);
2619 #ifdef CONFIG_PREEMPT
2621 * We may have been preempted and rescheduled on a different
2622 * cpu before disabling interrupts. Need to reload cpu area
2625 c
= this_cpu_ptr(s
->cpu_slab
);
2628 p
= ___slab_alloc(s
, gfpflags
, node
, addr
, c
);
2629 local_irq_restore(flags
);
2634 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2635 * have the fastpath folded into their functions. So no function call
2636 * overhead for requests that can be satisfied on the fastpath.
2638 * The fastpath works by first checking if the lockless freelist can be used.
2639 * If not then __slab_alloc is called for slow processing.
2641 * Otherwise we can simply pick the next object from the lockless free list.
2643 static __always_inline
void *slab_alloc_node(struct kmem_cache
*s
,
2644 gfp_t gfpflags
, int node
, unsigned long addr
)
2647 struct kmem_cache_cpu
*c
;
2651 s
= slab_pre_alloc_hook(s
, gfpflags
);
2656 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2657 * enabled. We may switch back and forth between cpus while
2658 * reading from one cpu area. That does not matter as long
2659 * as we end up on the original cpu again when doing the cmpxchg.
2661 * We should guarantee that tid and kmem_cache are retrieved on
2662 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2663 * to check if it is matched or not.
2666 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2667 c
= raw_cpu_ptr(s
->cpu_slab
);
2668 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2669 unlikely(tid
!= READ_ONCE(c
->tid
)));
2672 * Irqless object alloc/free algorithm used here depends on sequence
2673 * of fetching cpu_slab's data. tid should be fetched before anything
2674 * on c to guarantee that object and page associated with previous tid
2675 * won't be used with current tid. If we fetch tid first, object and
2676 * page could be one associated with next tid and our alloc/free
2677 * request will be failed. In this case, we will retry. So, no problem.
2682 * The transaction ids are globally unique per cpu and per operation on
2683 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2684 * occurs on the right processor and that there was no operation on the
2685 * linked list in between.
2688 object
= c
->freelist
;
2690 if (unlikely(!object
|| !node_match(page
, node
))) {
2691 object
= __slab_alloc(s
, gfpflags
, node
, addr
, c
);
2692 stat(s
, ALLOC_SLOWPATH
);
2694 void *next_object
= get_freepointer_safe(s
, object
);
2697 * The cmpxchg will only match if there was no additional
2698 * operation and if we are on the right processor.
2700 * The cmpxchg does the following atomically (without lock
2702 * 1. Relocate first pointer to the current per cpu area.
2703 * 2. Verify that tid and freelist have not been changed
2704 * 3. If they were not changed replace tid and freelist
2706 * Since this is without lock semantics the protection is only
2707 * against code executing on this cpu *not* from access by
2710 if (unlikely(!this_cpu_cmpxchg_double(
2711 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2713 next_object
, next_tid(tid
)))) {
2715 note_cmpxchg_failure("slab_alloc", s
, tid
);
2718 prefetch_freepointer(s
, next_object
);
2719 stat(s
, ALLOC_FASTPATH
);
2722 if (unlikely(gfpflags
& __GFP_ZERO
) && object
)
2723 memset(object
, 0, s
->object_size
);
2725 slab_post_alloc_hook(s
, gfpflags
, 1, &object
);
2730 static __always_inline
void *slab_alloc(struct kmem_cache
*s
,
2731 gfp_t gfpflags
, unsigned long addr
)
2733 return slab_alloc_node(s
, gfpflags
, NUMA_NO_NODE
, addr
);
2736 void *kmem_cache_alloc(struct kmem_cache
*s
, gfp_t gfpflags
)
2738 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2740 trace_kmem_cache_alloc(_RET_IP_
, ret
, s
->object_size
,
2745 EXPORT_SYMBOL(kmem_cache_alloc
);
2747 #ifdef CONFIG_TRACING
2748 void *kmem_cache_alloc_trace(struct kmem_cache
*s
, gfp_t gfpflags
, size_t size
)
2750 void *ret
= slab_alloc(s
, gfpflags
, _RET_IP_
);
2751 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, gfpflags
);
2752 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2755 EXPORT_SYMBOL(kmem_cache_alloc_trace
);
2759 void *kmem_cache_alloc_node(struct kmem_cache
*s
, gfp_t gfpflags
, int node
)
2761 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2763 trace_kmem_cache_alloc_node(_RET_IP_
, ret
,
2764 s
->object_size
, s
->size
, gfpflags
, node
);
2768 EXPORT_SYMBOL(kmem_cache_alloc_node
);
2770 #ifdef CONFIG_TRACING
2771 void *kmem_cache_alloc_node_trace(struct kmem_cache
*s
,
2773 int node
, size_t size
)
2775 void *ret
= slab_alloc_node(s
, gfpflags
, node
, _RET_IP_
);
2777 trace_kmalloc_node(_RET_IP_
, ret
,
2778 size
, s
->size
, gfpflags
, node
);
2780 kasan_kmalloc(s
, ret
, size
, gfpflags
);
2783 EXPORT_SYMBOL(kmem_cache_alloc_node_trace
);
2788 * Slow path handling. This may still be called frequently since objects
2789 * have a longer lifetime than the cpu slabs in most processing loads.
2791 * So we still attempt to reduce cache line usage. Just take the slab
2792 * lock and free the item. If there is no additional partial page
2793 * handling required then we can return immediately.
2795 static void __slab_free(struct kmem_cache
*s
, struct page
*page
,
2796 void *head
, void *tail
, int cnt
,
2803 unsigned long counters
;
2804 struct kmem_cache_node
*n
= NULL
;
2805 unsigned long uninitialized_var(flags
);
2807 stat(s
, FREE_SLOWPATH
);
2809 if (kmem_cache_debug(s
) &&
2810 !free_debug_processing(s
, page
, head
, tail
, cnt
, addr
))
2815 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2818 prior
= page
->freelist
;
2819 counters
= page
->counters
;
2820 set_freepointer(s
, tail
, prior
);
2821 new.counters
= counters
;
2822 was_frozen
= new.frozen
;
2824 if ((!new.inuse
|| !prior
) && !was_frozen
) {
2826 if (kmem_cache_has_cpu_partial(s
) && !prior
) {
2829 * Slab was on no list before and will be
2831 * We can defer the list move and instead
2836 } else { /* Needs to be taken off a list */
2838 n
= get_node(s
, page_to_nid(page
));
2840 * Speculatively acquire the list_lock.
2841 * If the cmpxchg does not succeed then we may
2842 * drop the list_lock without any processing.
2844 * Otherwise the list_lock will synchronize with
2845 * other processors updating the list of slabs.
2847 spin_lock_irqsave(&n
->list_lock
, flags
);
2852 } while (!cmpxchg_double_slab(s
, page
,
2860 * If we just froze the page then put it onto the
2861 * per cpu partial list.
2863 if (new.frozen
&& !was_frozen
) {
2864 put_cpu_partial(s
, page
, 1);
2865 stat(s
, CPU_PARTIAL_FREE
);
2868 * The list lock was not taken therefore no list
2869 * activity can be necessary.
2872 stat(s
, FREE_FROZEN
);
2876 if (unlikely(!new.inuse
&& n
->nr_partial
>= s
->min_partial
))
2880 * Objects left in the slab. If it was not on the partial list before
2883 if (!kmem_cache_has_cpu_partial(s
) && unlikely(!prior
)) {
2884 if (kmem_cache_debug(s
))
2885 remove_full(s
, n
, page
);
2886 add_partial(n
, page
, DEACTIVATE_TO_TAIL
);
2887 stat(s
, FREE_ADD_PARTIAL
);
2889 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2895 * Slab on the partial list.
2897 remove_partial(n
, page
);
2898 stat(s
, FREE_REMOVE_PARTIAL
);
2900 /* Slab must be on the full list */
2901 remove_full(s
, n
, page
);
2904 spin_unlock_irqrestore(&n
->list_lock
, flags
);
2906 discard_slab(s
, page
);
2910 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2911 * can perform fastpath freeing without additional function calls.
2913 * The fastpath is only possible if we are freeing to the current cpu slab
2914 * of this processor. This typically the case if we have just allocated
2917 * If fastpath is not possible then fall back to __slab_free where we deal
2918 * with all sorts of special processing.
2920 * Bulk free of a freelist with several objects (all pointing to the
2921 * same page) possible by specifying head and tail ptr, plus objects
2922 * count (cnt). Bulk free indicated by tail pointer being set.
2924 static __always_inline
void do_slab_free(struct kmem_cache
*s
,
2925 struct page
*page
, void *head
, void *tail
,
2926 int cnt
, unsigned long addr
)
2928 void *tail_obj
= tail
? : head
;
2929 struct kmem_cache_cpu
*c
;
2933 * Determine the currently cpus per cpu slab.
2934 * The cpu may change afterward. However that does not matter since
2935 * data is retrieved via this pointer. If we are on the same cpu
2936 * during the cmpxchg then the free will succeed.
2939 tid
= this_cpu_read(s
->cpu_slab
->tid
);
2940 c
= raw_cpu_ptr(s
->cpu_slab
);
2941 } while (IS_ENABLED(CONFIG_PREEMPT
) &&
2942 unlikely(tid
!= READ_ONCE(c
->tid
)));
2944 /* Same with comment on barrier() in slab_alloc_node() */
2947 if (likely(page
== c
->page
)) {
2948 set_freepointer(s
, tail_obj
, c
->freelist
);
2950 if (unlikely(!this_cpu_cmpxchg_double(
2951 s
->cpu_slab
->freelist
, s
->cpu_slab
->tid
,
2953 head
, next_tid(tid
)))) {
2955 note_cmpxchg_failure("slab_free", s
, tid
);
2958 stat(s
, FREE_FASTPATH
);
2960 __slab_free(s
, page
, head
, tail_obj
, cnt
, addr
);
2964 static __always_inline
void slab_free(struct kmem_cache
*s
, struct page
*page
,
2965 void *head
, void *tail
, int cnt
,
2968 slab_free_freelist_hook(s
, head
, tail
);
2970 * slab_free_freelist_hook() could have put the items into quarantine.
2971 * If so, no need to free them.
2973 if (s
->flags
& SLAB_KASAN
&& !(s
->flags
& SLAB_TYPESAFE_BY_RCU
))
2975 do_slab_free(s
, page
, head
, tail
, cnt
, addr
);
2979 void ___cache_free(struct kmem_cache
*cache
, void *x
, unsigned long addr
)
2981 do_slab_free(cache
, virt_to_head_page(x
), x
, NULL
, 1, addr
);
2985 void kmem_cache_free(struct kmem_cache
*s
, void *x
)
2987 s
= cache_from_obj(s
, x
);
2990 slab_free(s
, virt_to_head_page(x
), x
, NULL
, 1, _RET_IP_
);
2991 trace_kmem_cache_free(_RET_IP_
, x
);
2993 EXPORT_SYMBOL(kmem_cache_free
);
2995 struct detached_freelist
{
3000 struct kmem_cache
*s
;
3004 * This function progressively scans the array with free objects (with
3005 * a limited look ahead) and extract objects belonging to the same
3006 * page. It builds a detached freelist directly within the given
3007 * page/objects. This can happen without any need for
3008 * synchronization, because the objects are owned by running process.
3009 * The freelist is build up as a single linked list in the objects.
3010 * The idea is, that this detached freelist can then be bulk
3011 * transferred to the real freelist(s), but only requiring a single
3012 * synchronization primitive. Look ahead in the array is limited due
3013 * to performance reasons.
3016 int build_detached_freelist(struct kmem_cache
*s
, size_t size
,
3017 void **p
, struct detached_freelist
*df
)
3019 size_t first_skipped_index
= 0;
3024 /* Always re-init detached_freelist */
3029 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3030 } while (!object
&& size
);
3035 page
= virt_to_head_page(object
);
3037 /* Handle kalloc'ed objects */
3038 if (unlikely(!PageSlab(page
))) {
3039 BUG_ON(!PageCompound(page
));
3041 __free_pages(page
, compound_order(page
));
3042 p
[size
] = NULL
; /* mark object processed */
3045 /* Derive kmem_cache from object */
3046 df
->s
= page
->slab_cache
;
3048 df
->s
= cache_from_obj(s
, object
); /* Support for memcg */
3051 /* Start new detached freelist */
3053 set_freepointer(df
->s
, object
, NULL
);
3055 df
->freelist
= object
;
3056 p
[size
] = NULL
; /* mark object processed */
3062 continue; /* Skip processed objects */
3064 /* df->page is always set at this point */
3065 if (df
->page
== virt_to_head_page(object
)) {
3066 /* Opportunity build freelist */
3067 set_freepointer(df
->s
, object
, df
->freelist
);
3068 df
->freelist
= object
;
3070 p
[size
] = NULL
; /* mark object processed */
3075 /* Limit look ahead search */
3079 if (!first_skipped_index
)
3080 first_skipped_index
= size
+ 1;
3083 return first_skipped_index
;
3086 /* Note that interrupts must be enabled when calling this function. */
3087 void kmem_cache_free_bulk(struct kmem_cache
*s
, size_t size
, void **p
)
3093 struct detached_freelist df
;
3095 size
= build_detached_freelist(s
, size
, p
, &df
);
3099 slab_free(df
.s
, df
.page
, df
.freelist
, df
.tail
, df
.cnt
,_RET_IP_
);
3100 } while (likely(size
));
3102 EXPORT_SYMBOL(kmem_cache_free_bulk
);
3104 /* Note that interrupts must be enabled when calling this function. */
3105 int kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t size
,
3108 struct kmem_cache_cpu
*c
;
3111 /* memcg and kmem_cache debug support */
3112 s
= slab_pre_alloc_hook(s
, flags
);
3116 * Drain objects in the per cpu slab, while disabling local
3117 * IRQs, which protects against PREEMPT and interrupts
3118 * handlers invoking normal fastpath.
3120 local_irq_disable();
3121 c
= this_cpu_ptr(s
->cpu_slab
);
3123 for (i
= 0; i
< size
; i
++) {
3124 void *object
= c
->freelist
;
3126 if (unlikely(!object
)) {
3128 * Invoking slow path likely have side-effect
3129 * of re-populating per CPU c->freelist
3131 p
[i
] = ___slab_alloc(s
, flags
, NUMA_NO_NODE
,
3133 if (unlikely(!p
[i
]))
3136 c
= this_cpu_ptr(s
->cpu_slab
);
3137 continue; /* goto for-loop */
3139 c
->freelist
= get_freepointer(s
, object
);
3142 c
->tid
= next_tid(c
->tid
);
3145 /* Clear memory outside IRQ disabled fastpath loop */
3146 if (unlikely(flags
& __GFP_ZERO
)) {
3149 for (j
= 0; j
< i
; j
++)
3150 memset(p
[j
], 0, s
->object_size
);
3153 /* memcg and kmem_cache debug support */
3154 slab_post_alloc_hook(s
, flags
, size
, p
);
3158 slab_post_alloc_hook(s
, flags
, i
, p
);
3159 __kmem_cache_free_bulk(s
, i
, p
);
3162 EXPORT_SYMBOL(kmem_cache_alloc_bulk
);
3166 * Object placement in a slab is made very easy because we always start at
3167 * offset 0. If we tune the size of the object to the alignment then we can
3168 * get the required alignment by putting one properly sized object after
3171 * Notice that the allocation order determines the sizes of the per cpu
3172 * caches. Each processor has always one slab available for allocations.
3173 * Increasing the allocation order reduces the number of times that slabs
3174 * must be moved on and off the partial lists and is therefore a factor in
3179 * Mininum / Maximum order of slab pages. This influences locking overhead
3180 * and slab fragmentation. A higher order reduces the number of partial slabs
3181 * and increases the number of allocations possible without having to
3182 * take the list_lock.
3184 static int slub_min_order
;
3185 static int slub_max_order
= PAGE_ALLOC_COSTLY_ORDER
;
3186 static int slub_min_objects
;
3189 * Calculate the order of allocation given an slab object size.
3191 * The order of allocation has significant impact on performance and other
3192 * system components. Generally order 0 allocations should be preferred since
3193 * order 0 does not cause fragmentation in the page allocator. Larger objects
3194 * be problematic to put into order 0 slabs because there may be too much
3195 * unused space left. We go to a higher order if more than 1/16th of the slab
3198 * In order to reach satisfactory performance we must ensure that a minimum
3199 * number of objects is in one slab. Otherwise we may generate too much
3200 * activity on the partial lists which requires taking the list_lock. This is
3201 * less a concern for large slabs though which are rarely used.
3203 * slub_max_order specifies the order where we begin to stop considering the
3204 * number of objects in a slab as critical. If we reach slub_max_order then
3205 * we try to keep the page order as low as possible. So we accept more waste
3206 * of space in favor of a small page order.
3208 * Higher order allocations also allow the placement of more objects in a
3209 * slab and thereby reduce object handling overhead. If the user has
3210 * requested a higher mininum order then we start with that one instead of
3211 * the smallest order which will fit the object.
3213 static inline int slab_order(int size
, int min_objects
,
3214 int max_order
, int fract_leftover
, int reserved
)
3218 int min_order
= slub_min_order
;
3220 if (order_objects(min_order
, size
, reserved
) > MAX_OBJS_PER_PAGE
)
3221 return get_order(size
* MAX_OBJS_PER_PAGE
) - 1;
3223 for (order
= max(min_order
, get_order(min_objects
* size
+ reserved
));
3224 order
<= max_order
; order
++) {
3226 unsigned long slab_size
= PAGE_SIZE
<< order
;
3228 rem
= (slab_size
- reserved
) % size
;
3230 if (rem
<= slab_size
/ fract_leftover
)
3237 static inline int calculate_order(int size
, int reserved
)
3245 * Attempt to find best configuration for a slab. This
3246 * works by first attempting to generate a layout with
3247 * the best configuration and backing off gradually.
3249 * First we increase the acceptable waste in a slab. Then
3250 * we reduce the minimum objects required in a slab.
3252 min_objects
= slub_min_objects
;
3254 min_objects
= 4 * (fls(nr_cpu_ids
) + 1);
3255 max_objects
= order_objects(slub_max_order
, size
, reserved
);
3256 min_objects
= min(min_objects
, max_objects
);
3258 while (min_objects
> 1) {
3260 while (fraction
>= 4) {
3261 order
= slab_order(size
, min_objects
,
3262 slub_max_order
, fraction
, reserved
);
3263 if (order
<= slub_max_order
)
3271 * We were unable to place multiple objects in a slab. Now
3272 * lets see if we can place a single object there.
3274 order
= slab_order(size
, 1, slub_max_order
, 1, reserved
);
3275 if (order
<= slub_max_order
)
3279 * Doh this slab cannot be placed using slub_max_order.
3281 order
= slab_order(size
, 1, MAX_ORDER
, 1, reserved
);
3282 if (order
< MAX_ORDER
)
3288 init_kmem_cache_node(struct kmem_cache_node
*n
)
3291 spin_lock_init(&n
->list_lock
);
3292 INIT_LIST_HEAD(&n
->partial
);
3293 #ifdef CONFIG_SLUB_DEBUG
3294 atomic_long_set(&n
->nr_slabs
, 0);
3295 atomic_long_set(&n
->total_objects
, 0);
3296 INIT_LIST_HEAD(&n
->full
);
3300 static inline int alloc_kmem_cache_cpus(struct kmem_cache
*s
)
3302 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE
<
3303 KMALLOC_SHIFT_HIGH
* sizeof(struct kmem_cache_cpu
));
3306 * Must align to double word boundary for the double cmpxchg
3307 * instructions to work; see __pcpu_double_call_return_bool().
3309 s
->cpu_slab
= __alloc_percpu(sizeof(struct kmem_cache_cpu
),
3310 2 * sizeof(void *));
3315 init_kmem_cache_cpus(s
);
3320 static struct kmem_cache
*kmem_cache_node
;
3323 * No kmalloc_node yet so do it by hand. We know that this is the first
3324 * slab on the node for this slabcache. There are no concurrent accesses
3327 * Note that this function only works on the kmem_cache_node
3328 * when allocating for the kmem_cache_node. This is used for bootstrapping
3329 * memory on a fresh node that has no slab structures yet.
3331 static void early_kmem_cache_node_alloc(int node
)
3334 struct kmem_cache_node
*n
;
3336 BUG_ON(kmem_cache_node
->size
< sizeof(struct kmem_cache_node
));
3338 page
= new_slab(kmem_cache_node
, GFP_NOWAIT
, node
);
3341 if (page_to_nid(page
) != node
) {
3342 pr_err("SLUB: Unable to allocate memory from node %d\n", node
);
3343 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3348 page
->freelist
= get_freepointer(kmem_cache_node
, n
);
3351 kmem_cache_node
->node
[node
] = n
;
3352 #ifdef CONFIG_SLUB_DEBUG
3353 init_object(kmem_cache_node
, n
, SLUB_RED_ACTIVE
);
3354 init_tracking(kmem_cache_node
, n
);
3356 kasan_kmalloc(kmem_cache_node
, n
, sizeof(struct kmem_cache_node
),
3358 init_kmem_cache_node(n
);
3359 inc_slabs_node(kmem_cache_node
, node
, page
->objects
);
3362 * No locks need to be taken here as it has just been
3363 * initialized and there is no concurrent access.
3365 __add_partial(n
, page
, DEACTIVATE_TO_HEAD
);
3368 static void free_kmem_cache_nodes(struct kmem_cache
*s
)
3371 struct kmem_cache_node
*n
;
3373 for_each_kmem_cache_node(s
, node
, n
) {
3374 s
->node
[node
] = NULL
;
3375 kmem_cache_free(kmem_cache_node
, n
);
3379 void __kmem_cache_release(struct kmem_cache
*s
)
3381 cache_random_seq_destroy(s
);
3382 free_percpu(s
->cpu_slab
);
3383 free_kmem_cache_nodes(s
);
3386 static int init_kmem_cache_nodes(struct kmem_cache
*s
)
3390 for_each_node_state(node
, N_NORMAL_MEMORY
) {
3391 struct kmem_cache_node
*n
;
3393 if (slab_state
== DOWN
) {
3394 early_kmem_cache_node_alloc(node
);
3397 n
= kmem_cache_alloc_node(kmem_cache_node
,
3401 free_kmem_cache_nodes(s
);
3405 init_kmem_cache_node(n
);
3411 static void set_min_partial(struct kmem_cache
*s
, unsigned long min
)
3413 if (min
< MIN_PARTIAL
)
3415 else if (min
> MAX_PARTIAL
)
3417 s
->min_partial
= min
;
3420 static void set_cpu_partial(struct kmem_cache
*s
)
3422 #ifdef CONFIG_SLUB_CPU_PARTIAL
3424 * cpu_partial determined the maximum number of objects kept in the
3425 * per cpu partial lists of a processor.
3427 * Per cpu partial lists mainly contain slabs that just have one
3428 * object freed. If they are used for allocation then they can be
3429 * filled up again with minimal effort. The slab will never hit the
3430 * per node partial lists and therefore no locking will be required.
3432 * This setting also determines
3434 * A) The number of objects from per cpu partial slabs dumped to the
3435 * per node list when we reach the limit.
3436 * B) The number of objects in cpu partial slabs to extract from the
3437 * per node list when we run out of per cpu objects. We only fetch
3438 * 50% to keep some capacity around for frees.
3440 if (!kmem_cache_has_cpu_partial(s
))
3442 else if (s
->size
>= PAGE_SIZE
)
3444 else if (s
->size
>= 1024)
3446 else if (s
->size
>= 256)
3447 s
->cpu_partial
= 13;
3449 s
->cpu_partial
= 30;
3454 * calculate_sizes() determines the order and the distribution of data within
3457 static int calculate_sizes(struct kmem_cache
*s
, int forced_order
)
3459 slab_flags_t flags
= s
->flags
;
3460 size_t size
= s
->object_size
;
3464 * Round up object size to the next word boundary. We can only
3465 * place the free pointer at word boundaries and this determines
3466 * the possible location of the free pointer.
3468 size
= ALIGN(size
, sizeof(void *));
3470 #ifdef CONFIG_SLUB_DEBUG
3472 * Determine if we can poison the object itself. If the user of
3473 * the slab may touch the object after free or before allocation
3474 * then we should never poison the object itself.
3476 if ((flags
& SLAB_POISON
) && !(flags
& SLAB_TYPESAFE_BY_RCU
) &&
3478 s
->flags
|= __OBJECT_POISON
;
3480 s
->flags
&= ~__OBJECT_POISON
;
3484 * If we are Redzoning then check if there is some space between the
3485 * end of the object and the free pointer. If not then add an
3486 * additional word to have some bytes to store Redzone information.
3488 if ((flags
& SLAB_RED_ZONE
) && size
== s
->object_size
)
3489 size
+= sizeof(void *);
3493 * With that we have determined the number of bytes in actual use
3494 * by the object. This is the potential offset to the free pointer.
3498 if (((flags
& (SLAB_TYPESAFE_BY_RCU
| SLAB_POISON
)) ||
3501 * Relocate free pointer after the object if it is not
3502 * permitted to overwrite the first word of the object on
3505 * This is the case if we do RCU, have a constructor or
3506 * destructor or are poisoning the objects.
3509 size
+= sizeof(void *);
3512 #ifdef CONFIG_SLUB_DEBUG
3513 if (flags
& SLAB_STORE_USER
)
3515 * Need to store information about allocs and frees after
3518 size
+= 2 * sizeof(struct track
);
3521 kasan_cache_create(s
, &size
, &s
->flags
);
3522 #ifdef CONFIG_SLUB_DEBUG
3523 if (flags
& SLAB_RED_ZONE
) {
3525 * Add some empty padding so that we can catch
3526 * overwrites from earlier objects rather than let
3527 * tracking information or the free pointer be
3528 * corrupted if a user writes before the start
3531 size
+= sizeof(void *);
3533 s
->red_left_pad
= sizeof(void *);
3534 s
->red_left_pad
= ALIGN(s
->red_left_pad
, s
->align
);
3535 size
+= s
->red_left_pad
;
3540 * SLUB stores one object immediately after another beginning from
3541 * offset 0. In order to align the objects we have to simply size
3542 * each object to conform to the alignment.
3544 size
= ALIGN(size
, s
->align
);
3546 if (forced_order
>= 0)
3547 order
= forced_order
;
3549 order
= calculate_order(size
, s
->reserved
);
3556 s
->allocflags
|= __GFP_COMP
;
3558 if (s
->flags
& SLAB_CACHE_DMA
)
3559 s
->allocflags
|= GFP_DMA
;
3561 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
3562 s
->allocflags
|= __GFP_RECLAIMABLE
;
3565 * Determine the number of objects per slab
3567 s
->oo
= oo_make(order
, size
, s
->reserved
);
3568 s
->min
= oo_make(get_order(size
), size
, s
->reserved
);
3569 if (oo_objects(s
->oo
) > oo_objects(s
->max
))
3572 return !!oo_objects(s
->oo
);
3575 static int kmem_cache_open(struct kmem_cache
*s
, slab_flags_t flags
)
3577 s
->flags
= kmem_cache_flags(s
->size
, flags
, s
->name
, s
->ctor
);
3579 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3580 s
->random
= get_random_long();
3583 if (need_reserve_slab_rcu
&& (s
->flags
& SLAB_TYPESAFE_BY_RCU
))
3584 s
->reserved
= sizeof(struct rcu_head
);
3586 if (!calculate_sizes(s
, -1))
3588 if (disable_higher_order_debug
) {
3590 * Disable debugging flags that store metadata if the min slab
3593 if (get_order(s
->size
) > get_order(s
->object_size
)) {
3594 s
->flags
&= ~DEBUG_METADATA_FLAGS
;
3596 if (!calculate_sizes(s
, -1))
3601 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3602 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3603 if (system_has_cmpxchg_double() && (s
->flags
& SLAB_NO_CMPXCHG
) == 0)
3604 /* Enable fast mode */
3605 s
->flags
|= __CMPXCHG_DOUBLE
;
3609 * The larger the object size is, the more pages we want on the partial
3610 * list to avoid pounding the page allocator excessively.
3612 set_min_partial(s
, ilog2(s
->size
) / 2);
3617 s
->remote_node_defrag_ratio
= 1000;
3620 /* Initialize the pre-computed randomized freelist if slab is up */
3621 if (slab_state
>= UP
) {
3622 if (init_cache_random_seq(s
))
3626 if (!init_kmem_cache_nodes(s
))
3629 if (alloc_kmem_cache_cpus(s
))
3632 free_kmem_cache_nodes(s
);
3634 if (flags
& SLAB_PANIC
)
3635 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3636 s
->name
, (unsigned long)s
->size
, s
->size
,
3637 oo_order(s
->oo
), s
->offset
, (unsigned long)flags
);
3641 static void list_slab_objects(struct kmem_cache
*s
, struct page
*page
,
3644 #ifdef CONFIG_SLUB_DEBUG
3645 void *addr
= page_address(page
);
3647 unsigned long *map
= kzalloc(BITS_TO_LONGS(page
->objects
) *
3648 sizeof(long), GFP_ATOMIC
);
3651 slab_err(s
, page
, text
, s
->name
);
3654 get_map(s
, page
, map
);
3655 for_each_object(p
, s
, addr
, page
->objects
) {
3657 if (!test_bit(slab_index(p
, s
, addr
), map
)) {
3658 pr_err("INFO: Object 0x%p @offset=%tu\n", p
, p
- addr
);
3659 print_tracking(s
, p
);
3668 * Attempt to free all partial slabs on a node.
3669 * This is called from __kmem_cache_shutdown(). We must take list_lock
3670 * because sysfs file might still access partial list after the shutdowning.
3672 static void free_partial(struct kmem_cache
*s
, struct kmem_cache_node
*n
)
3675 struct page
*page
, *h
;
3677 BUG_ON(irqs_disabled());
3678 spin_lock_irq(&n
->list_lock
);
3679 list_for_each_entry_safe(page
, h
, &n
->partial
, lru
) {
3681 remove_partial(n
, page
);
3682 list_add(&page
->lru
, &discard
);
3684 list_slab_objects(s
, page
,
3685 "Objects remaining in %s on __kmem_cache_shutdown()");
3688 spin_unlock_irq(&n
->list_lock
);
3690 list_for_each_entry_safe(page
, h
, &discard
, lru
)
3691 discard_slab(s
, page
);
3695 * Release all resources used by a slab cache.
3697 int __kmem_cache_shutdown(struct kmem_cache
*s
)
3700 struct kmem_cache_node
*n
;
3703 /* Attempt to free all objects */
3704 for_each_kmem_cache_node(s
, node
, n
) {
3706 if (n
->nr_partial
|| slabs_node(s
, node
))
3709 sysfs_slab_remove(s
);
3713 /********************************************************************
3715 *******************************************************************/
3717 static int __init
setup_slub_min_order(char *str
)
3719 get_option(&str
, &slub_min_order
);
3724 __setup("slub_min_order=", setup_slub_min_order
);
3726 static int __init
setup_slub_max_order(char *str
)
3728 get_option(&str
, &slub_max_order
);
3729 slub_max_order
= min(slub_max_order
, MAX_ORDER
- 1);
3734 __setup("slub_max_order=", setup_slub_max_order
);
3736 static int __init
setup_slub_min_objects(char *str
)
3738 get_option(&str
, &slub_min_objects
);
3743 __setup("slub_min_objects=", setup_slub_min_objects
);
3745 void *__kmalloc(size_t size
, gfp_t flags
)
3747 struct kmem_cache
*s
;
3750 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
3751 return kmalloc_large(size
, flags
);
3753 s
= kmalloc_slab(size
, flags
);
3755 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3758 ret
= slab_alloc(s
, flags
, _RET_IP_
);
3760 trace_kmalloc(_RET_IP_
, ret
, size
, s
->size
, flags
);
3762 kasan_kmalloc(s
, ret
, size
, flags
);
3766 EXPORT_SYMBOL(__kmalloc
);
3769 static void *kmalloc_large_node(size_t size
, gfp_t flags
, int node
)
3774 flags
|= __GFP_COMP
;
3775 page
= alloc_pages_node(node
, flags
, get_order(size
));
3777 ptr
= page_address(page
);
3779 kmalloc_large_node_hook(ptr
, size
, flags
);
3783 void *__kmalloc_node(size_t size
, gfp_t flags
, int node
)
3785 struct kmem_cache
*s
;
3788 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
3789 ret
= kmalloc_large_node(size
, flags
, node
);
3791 trace_kmalloc_node(_RET_IP_
, ret
,
3792 size
, PAGE_SIZE
<< get_order(size
),
3798 s
= kmalloc_slab(size
, flags
);
3800 if (unlikely(ZERO_OR_NULL_PTR(s
)))
3803 ret
= slab_alloc_node(s
, flags
, node
, _RET_IP_
);
3805 trace_kmalloc_node(_RET_IP_
, ret
, size
, s
->size
, flags
, node
);
3807 kasan_kmalloc(s
, ret
, size
, flags
);
3811 EXPORT_SYMBOL(__kmalloc_node
);
3814 #ifdef CONFIG_HARDENED_USERCOPY
3816 * Rejects incorrectly sized objects and objects that are to be copied
3817 * to/from userspace but do not fall entirely within the containing slab
3818 * cache's usercopy region.
3820 * Returns NULL if check passes, otherwise const char * to name of cache
3821 * to indicate an error.
3823 void __check_heap_object(const void *ptr
, unsigned long n
, struct page
*page
,
3826 struct kmem_cache
*s
;
3827 unsigned long offset
;
3830 /* Find object and usable object size. */
3831 s
= page
->slab_cache
;
3833 /* Reject impossible pointers. */
3834 if (ptr
< page_address(page
))
3835 usercopy_abort("SLUB object not in SLUB page?!", NULL
,
3838 /* Find offset within object. */
3839 offset
= (ptr
- page_address(page
)) % s
->size
;
3841 /* Adjust for redzone and reject if within the redzone. */
3842 if (kmem_cache_debug(s
) && s
->flags
& SLAB_RED_ZONE
) {
3843 if (offset
< s
->red_left_pad
)
3844 usercopy_abort("SLUB object in left red zone",
3845 s
->name
, to_user
, offset
, n
);
3846 offset
-= s
->red_left_pad
;
3849 /* Allow address range falling entirely within usercopy region. */
3850 if (offset
>= s
->useroffset
&&
3851 offset
- s
->useroffset
<= s
->usersize
&&
3852 n
<= s
->useroffset
- offset
+ s
->usersize
)
3856 * If the copy is still within the allocated object, produce
3857 * a warning instead of rejecting the copy. This is intended
3858 * to be a temporary method to find any missing usercopy
3861 object_size
= slab_ksize(s
);
3862 if (usercopy_fallback
&&
3863 offset
<= object_size
&& n
<= object_size
- offset
) {
3864 usercopy_warn("SLUB object", s
->name
, to_user
, offset
, n
);
3868 usercopy_abort("SLUB object", s
->name
, to_user
, offset
, n
);
3870 #endif /* CONFIG_HARDENED_USERCOPY */
3872 static size_t __ksize(const void *object
)
3876 if (unlikely(object
== ZERO_SIZE_PTR
))
3879 page
= virt_to_head_page(object
);
3881 if (unlikely(!PageSlab(page
))) {
3882 WARN_ON(!PageCompound(page
));
3883 return PAGE_SIZE
<< compound_order(page
);
3886 return slab_ksize(page
->slab_cache
);
3889 size_t ksize(const void *object
)
3891 size_t size
= __ksize(object
);
3892 /* We assume that ksize callers could use whole allocated area,
3893 * so we need to unpoison this area.
3895 kasan_unpoison_shadow(object
, size
);
3898 EXPORT_SYMBOL(ksize
);
3900 void kfree(const void *x
)
3903 void *object
= (void *)x
;
3905 trace_kfree(_RET_IP_
, x
);
3907 if (unlikely(ZERO_OR_NULL_PTR(x
)))
3910 page
= virt_to_head_page(x
);
3911 if (unlikely(!PageSlab(page
))) {
3912 BUG_ON(!PageCompound(page
));
3914 __free_pages(page
, compound_order(page
));
3917 slab_free(page
->slab_cache
, page
, object
, NULL
, 1, _RET_IP_
);
3919 EXPORT_SYMBOL(kfree
);
3921 #define SHRINK_PROMOTE_MAX 32
3924 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3925 * up most to the head of the partial lists. New allocations will then
3926 * fill those up and thus they can be removed from the partial lists.
3928 * The slabs with the least items are placed last. This results in them
3929 * being allocated from last increasing the chance that the last objects
3930 * are freed in them.
3932 int __kmem_cache_shrink(struct kmem_cache
*s
)
3936 struct kmem_cache_node
*n
;
3939 struct list_head discard
;
3940 struct list_head promote
[SHRINK_PROMOTE_MAX
];
3941 unsigned long flags
;
3945 for_each_kmem_cache_node(s
, node
, n
) {
3946 INIT_LIST_HEAD(&discard
);
3947 for (i
= 0; i
< SHRINK_PROMOTE_MAX
; i
++)
3948 INIT_LIST_HEAD(promote
+ i
);
3950 spin_lock_irqsave(&n
->list_lock
, flags
);
3953 * Build lists of slabs to discard or promote.
3955 * Note that concurrent frees may occur while we hold the
3956 * list_lock. page->inuse here is the upper limit.
3958 list_for_each_entry_safe(page
, t
, &n
->partial
, lru
) {
3959 int free
= page
->objects
- page
->inuse
;
3961 /* Do not reread page->inuse */
3964 /* We do not keep full slabs on the list */
3967 if (free
== page
->objects
) {
3968 list_move(&page
->lru
, &discard
);
3970 } else if (free
<= SHRINK_PROMOTE_MAX
)
3971 list_move(&page
->lru
, promote
+ free
- 1);
3975 * Promote the slabs filled up most to the head of the
3978 for (i
= SHRINK_PROMOTE_MAX
- 1; i
>= 0; i
--)
3979 list_splice(promote
+ i
, &n
->partial
);
3981 spin_unlock_irqrestore(&n
->list_lock
, flags
);
3983 /* Release empty slabs */
3984 list_for_each_entry_safe(page
, t
, &discard
, lru
)
3985 discard_slab(s
, page
);
3987 if (slabs_node(s
, node
))
3995 static void kmemcg_cache_deact_after_rcu(struct kmem_cache
*s
)
3998 * Called with all the locks held after a sched RCU grace period.
3999 * Even if @s becomes empty after shrinking, we can't know that @s
4000 * doesn't have allocations already in-flight and thus can't
4001 * destroy @s until the associated memcg is released.
4003 * However, let's remove the sysfs files for empty caches here.
4004 * Each cache has a lot of interface files which aren't
4005 * particularly useful for empty draining caches; otherwise, we can
4006 * easily end up with millions of unnecessary sysfs files on
4007 * systems which have a lot of memory and transient cgroups.
4009 if (!__kmem_cache_shrink(s
))
4010 sysfs_slab_remove(s
);
4013 void __kmemcg_cache_deactivate(struct kmem_cache
*s
)
4016 * Disable empty slabs caching. Used to avoid pinning offline
4017 * memory cgroups by kmem pages that can be freed.
4019 slub_set_cpu_partial(s
, 0);
4023 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4024 * we have to make sure the change is visible before shrinking.
4026 slab_deactivate_memcg_cache_rcu_sched(s
, kmemcg_cache_deact_after_rcu
);
4030 static int slab_mem_going_offline_callback(void *arg
)
4032 struct kmem_cache
*s
;
4034 mutex_lock(&slab_mutex
);
4035 list_for_each_entry(s
, &slab_caches
, list
)
4036 __kmem_cache_shrink(s
);
4037 mutex_unlock(&slab_mutex
);
4042 static void slab_mem_offline_callback(void *arg
)
4044 struct kmem_cache_node
*n
;
4045 struct kmem_cache
*s
;
4046 struct memory_notify
*marg
= arg
;
4049 offline_node
= marg
->status_change_nid_normal
;
4052 * If the node still has available memory. we need kmem_cache_node
4055 if (offline_node
< 0)
4058 mutex_lock(&slab_mutex
);
4059 list_for_each_entry(s
, &slab_caches
, list
) {
4060 n
= get_node(s
, offline_node
);
4063 * if n->nr_slabs > 0, slabs still exist on the node
4064 * that is going down. We were unable to free them,
4065 * and offline_pages() function shouldn't call this
4066 * callback. So, we must fail.
4068 BUG_ON(slabs_node(s
, offline_node
));
4070 s
->node
[offline_node
] = NULL
;
4071 kmem_cache_free(kmem_cache_node
, n
);
4074 mutex_unlock(&slab_mutex
);
4077 static int slab_mem_going_online_callback(void *arg
)
4079 struct kmem_cache_node
*n
;
4080 struct kmem_cache
*s
;
4081 struct memory_notify
*marg
= arg
;
4082 int nid
= marg
->status_change_nid_normal
;
4086 * If the node's memory is already available, then kmem_cache_node is
4087 * already created. Nothing to do.
4093 * We are bringing a node online. No memory is available yet. We must
4094 * allocate a kmem_cache_node structure in order to bring the node
4097 mutex_lock(&slab_mutex
);
4098 list_for_each_entry(s
, &slab_caches
, list
) {
4100 * XXX: kmem_cache_alloc_node will fallback to other nodes
4101 * since memory is not yet available from the node that
4104 n
= kmem_cache_alloc(kmem_cache_node
, GFP_KERNEL
);
4109 init_kmem_cache_node(n
);
4113 mutex_unlock(&slab_mutex
);
4117 static int slab_memory_callback(struct notifier_block
*self
,
4118 unsigned long action
, void *arg
)
4123 case MEM_GOING_ONLINE
:
4124 ret
= slab_mem_going_online_callback(arg
);
4126 case MEM_GOING_OFFLINE
:
4127 ret
= slab_mem_going_offline_callback(arg
);
4130 case MEM_CANCEL_ONLINE
:
4131 slab_mem_offline_callback(arg
);
4134 case MEM_CANCEL_OFFLINE
:
4138 ret
= notifier_from_errno(ret
);
4144 static struct notifier_block slab_memory_callback_nb
= {
4145 .notifier_call
= slab_memory_callback
,
4146 .priority
= SLAB_CALLBACK_PRI
,
4149 /********************************************************************
4150 * Basic setup of slabs
4151 *******************************************************************/
4154 * Used for early kmem_cache structures that were allocated using
4155 * the page allocator. Allocate them properly then fix up the pointers
4156 * that may be pointing to the wrong kmem_cache structure.
4159 static struct kmem_cache
* __init
bootstrap(struct kmem_cache
*static_cache
)
4162 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
4163 struct kmem_cache_node
*n
;
4165 memcpy(s
, static_cache
, kmem_cache
->object_size
);
4168 * This runs very early, and only the boot processor is supposed to be
4169 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4172 __flush_cpu_slab(s
, smp_processor_id());
4173 for_each_kmem_cache_node(s
, node
, n
) {
4176 list_for_each_entry(p
, &n
->partial
, lru
)
4179 #ifdef CONFIG_SLUB_DEBUG
4180 list_for_each_entry(p
, &n
->full
, lru
)
4184 slab_init_memcg_params(s
);
4185 list_add(&s
->list
, &slab_caches
);
4186 memcg_link_cache(s
);
4190 void __init
kmem_cache_init(void)
4192 static __initdata
struct kmem_cache boot_kmem_cache
,
4193 boot_kmem_cache_node
;
4195 if (debug_guardpage_minorder())
4198 kmem_cache_node
= &boot_kmem_cache_node
;
4199 kmem_cache
= &boot_kmem_cache
;
4201 create_boot_cache(kmem_cache_node
, "kmem_cache_node",
4202 sizeof(struct kmem_cache_node
), SLAB_HWCACHE_ALIGN
, 0, 0);
4204 register_hotmemory_notifier(&slab_memory_callback_nb
);
4206 /* Able to allocate the per node structures */
4207 slab_state
= PARTIAL
;
4209 create_boot_cache(kmem_cache
, "kmem_cache",
4210 offsetof(struct kmem_cache
, node
) +
4211 nr_node_ids
* sizeof(struct kmem_cache_node
*),
4212 SLAB_HWCACHE_ALIGN
, 0, 0);
4214 kmem_cache
= bootstrap(&boot_kmem_cache
);
4217 * Allocate kmem_cache_node properly from the kmem_cache slab.
4218 * kmem_cache_node is separately allocated so no need to
4219 * update any list pointers.
4221 kmem_cache_node
= bootstrap(&boot_kmem_cache_node
);
4223 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4224 setup_kmalloc_cache_index_table();
4225 create_kmalloc_caches(0);
4227 /* Setup random freelists for each cache */
4228 init_freelist_randomization();
4230 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD
, "slub:dead", NULL
,
4233 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4235 slub_min_order
, slub_max_order
, slub_min_objects
,
4236 nr_cpu_ids
, nr_node_ids
);
4239 void __init
kmem_cache_init_late(void)
4244 __kmem_cache_alias(const char *name
, size_t size
, size_t align
,
4245 slab_flags_t flags
, void (*ctor
)(void *))
4247 struct kmem_cache
*s
, *c
;
4249 s
= find_mergeable(size
, align
, flags
, name
, ctor
);
4254 * Adjust the object sizes so that we clear
4255 * the complete object on kzalloc.
4257 s
->object_size
= max(s
->object_size
, (int)size
);
4258 s
->inuse
= max_t(int, s
->inuse
, ALIGN(size
, sizeof(void *)));
4260 for_each_memcg_cache(c
, s
) {
4261 c
->object_size
= s
->object_size
;
4262 c
->inuse
= max_t(int, c
->inuse
,
4263 ALIGN(size
, sizeof(void *)));
4266 if (sysfs_slab_alias(s
, name
)) {
4275 int __kmem_cache_create(struct kmem_cache
*s
, slab_flags_t flags
)
4279 err
= kmem_cache_open(s
, flags
);
4283 /* Mutex is not taken during early boot */
4284 if (slab_state
<= UP
)
4287 memcg_propagate_slab_attrs(s
);
4288 err
= sysfs_slab_add(s
);
4290 __kmem_cache_release(s
);
4295 void *__kmalloc_track_caller(size_t size
, gfp_t gfpflags
, unsigned long caller
)
4297 struct kmem_cache
*s
;
4300 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
))
4301 return kmalloc_large(size
, gfpflags
);
4303 s
= kmalloc_slab(size
, gfpflags
);
4305 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4308 ret
= slab_alloc(s
, gfpflags
, caller
);
4310 /* Honor the call site pointer we received. */
4311 trace_kmalloc(caller
, ret
, size
, s
->size
, gfpflags
);
4317 void *__kmalloc_node_track_caller(size_t size
, gfp_t gfpflags
,
4318 int node
, unsigned long caller
)
4320 struct kmem_cache
*s
;
4323 if (unlikely(size
> KMALLOC_MAX_CACHE_SIZE
)) {
4324 ret
= kmalloc_large_node(size
, gfpflags
, node
);
4326 trace_kmalloc_node(caller
, ret
,
4327 size
, PAGE_SIZE
<< get_order(size
),
4333 s
= kmalloc_slab(size
, gfpflags
);
4335 if (unlikely(ZERO_OR_NULL_PTR(s
)))
4338 ret
= slab_alloc_node(s
, gfpflags
, node
, caller
);
4340 /* Honor the call site pointer we received. */
4341 trace_kmalloc_node(caller
, ret
, size
, s
->size
, gfpflags
, node
);
4348 static int count_inuse(struct page
*page
)
4353 static int count_total(struct page
*page
)
4355 return page
->objects
;
4359 #ifdef CONFIG_SLUB_DEBUG
4360 static int validate_slab(struct kmem_cache
*s
, struct page
*page
,
4364 void *addr
= page_address(page
);
4366 if (!check_slab(s
, page
) ||
4367 !on_freelist(s
, page
, NULL
))
4370 /* Now we know that a valid freelist exists */
4371 bitmap_zero(map
, page
->objects
);
4373 get_map(s
, page
, map
);
4374 for_each_object(p
, s
, addr
, page
->objects
) {
4375 if (test_bit(slab_index(p
, s
, addr
), map
))
4376 if (!check_object(s
, page
, p
, SLUB_RED_INACTIVE
))
4380 for_each_object(p
, s
, addr
, page
->objects
)
4381 if (!test_bit(slab_index(p
, s
, addr
), map
))
4382 if (!check_object(s
, page
, p
, SLUB_RED_ACTIVE
))
4387 static void validate_slab_slab(struct kmem_cache
*s
, struct page
*page
,
4391 validate_slab(s
, page
, map
);
4395 static int validate_slab_node(struct kmem_cache
*s
,
4396 struct kmem_cache_node
*n
, unsigned long *map
)
4398 unsigned long count
= 0;
4400 unsigned long flags
;
4402 spin_lock_irqsave(&n
->list_lock
, flags
);
4404 list_for_each_entry(page
, &n
->partial
, lru
) {
4405 validate_slab_slab(s
, page
, map
);
4408 if (count
!= n
->nr_partial
)
4409 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4410 s
->name
, count
, n
->nr_partial
);
4412 if (!(s
->flags
& SLAB_STORE_USER
))
4415 list_for_each_entry(page
, &n
->full
, lru
) {
4416 validate_slab_slab(s
, page
, map
);
4419 if (count
!= atomic_long_read(&n
->nr_slabs
))
4420 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4421 s
->name
, count
, atomic_long_read(&n
->nr_slabs
));
4424 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4428 static long validate_slab_cache(struct kmem_cache
*s
)
4431 unsigned long count
= 0;
4432 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4433 sizeof(unsigned long), GFP_KERNEL
);
4434 struct kmem_cache_node
*n
;
4440 for_each_kmem_cache_node(s
, node
, n
)
4441 count
+= validate_slab_node(s
, n
, map
);
4446 * Generate lists of code addresses where slabcache objects are allocated
4451 unsigned long count
;
4458 DECLARE_BITMAP(cpus
, NR_CPUS
);
4464 unsigned long count
;
4465 struct location
*loc
;
4468 static void free_loc_track(struct loc_track
*t
)
4471 free_pages((unsigned long)t
->loc
,
4472 get_order(sizeof(struct location
) * t
->max
));
4475 static int alloc_loc_track(struct loc_track
*t
, unsigned long max
, gfp_t flags
)
4480 order
= get_order(sizeof(struct location
) * max
);
4482 l
= (void *)__get_free_pages(flags
, order
);
4487 memcpy(l
, t
->loc
, sizeof(struct location
) * t
->count
);
4495 static int add_location(struct loc_track
*t
, struct kmem_cache
*s
,
4496 const struct track
*track
)
4498 long start
, end
, pos
;
4500 unsigned long caddr
;
4501 unsigned long age
= jiffies
- track
->when
;
4507 pos
= start
+ (end
- start
+ 1) / 2;
4510 * There is nothing at "end". If we end up there
4511 * we need to add something to before end.
4516 caddr
= t
->loc
[pos
].addr
;
4517 if (track
->addr
== caddr
) {
4523 if (age
< l
->min_time
)
4525 if (age
> l
->max_time
)
4528 if (track
->pid
< l
->min_pid
)
4529 l
->min_pid
= track
->pid
;
4530 if (track
->pid
> l
->max_pid
)
4531 l
->max_pid
= track
->pid
;
4533 cpumask_set_cpu(track
->cpu
,
4534 to_cpumask(l
->cpus
));
4536 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4540 if (track
->addr
< caddr
)
4547 * Not found. Insert new tracking element.
4549 if (t
->count
>= t
->max
&& !alloc_loc_track(t
, 2 * t
->max
, GFP_ATOMIC
))
4555 (t
->count
- pos
) * sizeof(struct location
));
4558 l
->addr
= track
->addr
;
4562 l
->min_pid
= track
->pid
;
4563 l
->max_pid
= track
->pid
;
4564 cpumask_clear(to_cpumask(l
->cpus
));
4565 cpumask_set_cpu(track
->cpu
, to_cpumask(l
->cpus
));
4566 nodes_clear(l
->nodes
);
4567 node_set(page_to_nid(virt_to_page(track
)), l
->nodes
);
4571 static void process_slab(struct loc_track
*t
, struct kmem_cache
*s
,
4572 struct page
*page
, enum track_item alloc
,
4575 void *addr
= page_address(page
);
4578 bitmap_zero(map
, page
->objects
);
4579 get_map(s
, page
, map
);
4581 for_each_object(p
, s
, addr
, page
->objects
)
4582 if (!test_bit(slab_index(p
, s
, addr
), map
))
4583 add_location(t
, s
, get_track(s
, p
, alloc
));
4586 static int list_locations(struct kmem_cache
*s
, char *buf
,
4587 enum track_item alloc
)
4591 struct loc_track t
= { 0, 0, NULL
};
4593 unsigned long *map
= kmalloc(BITS_TO_LONGS(oo_objects(s
->max
)) *
4594 sizeof(unsigned long), GFP_KERNEL
);
4595 struct kmem_cache_node
*n
;
4597 if (!map
|| !alloc_loc_track(&t
, PAGE_SIZE
/ sizeof(struct location
),
4600 return sprintf(buf
, "Out of memory\n");
4602 /* Push back cpu slabs */
4605 for_each_kmem_cache_node(s
, node
, n
) {
4606 unsigned long flags
;
4609 if (!atomic_long_read(&n
->nr_slabs
))
4612 spin_lock_irqsave(&n
->list_lock
, flags
);
4613 list_for_each_entry(page
, &n
->partial
, lru
)
4614 process_slab(&t
, s
, page
, alloc
, map
);
4615 list_for_each_entry(page
, &n
->full
, lru
)
4616 process_slab(&t
, s
, page
, alloc
, map
);
4617 spin_unlock_irqrestore(&n
->list_lock
, flags
);
4620 for (i
= 0; i
< t
.count
; i
++) {
4621 struct location
*l
= &t
.loc
[i
];
4623 if (len
> PAGE_SIZE
- KSYM_SYMBOL_LEN
- 100)
4625 len
+= sprintf(buf
+ len
, "%7ld ", l
->count
);
4628 len
+= sprintf(buf
+ len
, "%pS", (void *)l
->addr
);
4630 len
+= sprintf(buf
+ len
, "<not-available>");
4632 if (l
->sum_time
!= l
->min_time
) {
4633 len
+= sprintf(buf
+ len
, " age=%ld/%ld/%ld",
4635 (long)div_u64(l
->sum_time
, l
->count
),
4638 len
+= sprintf(buf
+ len
, " age=%ld",
4641 if (l
->min_pid
!= l
->max_pid
)
4642 len
+= sprintf(buf
+ len
, " pid=%ld-%ld",
4643 l
->min_pid
, l
->max_pid
);
4645 len
+= sprintf(buf
+ len
, " pid=%ld",
4648 if (num_online_cpus() > 1 &&
4649 !cpumask_empty(to_cpumask(l
->cpus
)) &&
4650 len
< PAGE_SIZE
- 60)
4651 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4653 cpumask_pr_args(to_cpumask(l
->cpus
)));
4655 if (nr_online_nodes
> 1 && !nodes_empty(l
->nodes
) &&
4656 len
< PAGE_SIZE
- 60)
4657 len
+= scnprintf(buf
+ len
, PAGE_SIZE
- len
- 50,
4659 nodemask_pr_args(&l
->nodes
));
4661 len
+= sprintf(buf
+ len
, "\n");
4667 len
+= sprintf(buf
, "No data\n");
4672 #ifdef SLUB_RESILIENCY_TEST
4673 static void __init
resiliency_test(void)
4677 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 16 || KMALLOC_SHIFT_HIGH
< 10);
4679 pr_err("SLUB resiliency testing\n");
4680 pr_err("-----------------------\n");
4681 pr_err("A. Corruption after allocation\n");
4683 p
= kzalloc(16, GFP_KERNEL
);
4685 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4688 validate_slab_cache(kmalloc_caches
[4]);
4690 /* Hmmm... The next two are dangerous */
4691 p
= kzalloc(32, GFP_KERNEL
);
4692 p
[32 + sizeof(void *)] = 0x34;
4693 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4695 pr_err("If allocated object is overwritten then not detectable\n\n");
4697 validate_slab_cache(kmalloc_caches
[5]);
4698 p
= kzalloc(64, GFP_KERNEL
);
4699 p
+= 64 + (get_cycles() & 0xff) * sizeof(void *);
4701 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4703 pr_err("If allocated object is overwritten then not detectable\n\n");
4704 validate_slab_cache(kmalloc_caches
[6]);
4706 pr_err("\nB. Corruption after free\n");
4707 p
= kzalloc(128, GFP_KERNEL
);
4710 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p
);
4711 validate_slab_cache(kmalloc_caches
[7]);
4713 p
= kzalloc(256, GFP_KERNEL
);
4716 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p
);
4717 validate_slab_cache(kmalloc_caches
[8]);
4719 p
= kzalloc(512, GFP_KERNEL
);
4722 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p
);
4723 validate_slab_cache(kmalloc_caches
[9]);
4727 static void resiliency_test(void) {};
4732 enum slab_stat_type
{
4733 SL_ALL
, /* All slabs */
4734 SL_PARTIAL
, /* Only partially allocated slabs */
4735 SL_CPU
, /* Only slabs used for cpu caches */
4736 SL_OBJECTS
, /* Determine allocated objects not slabs */
4737 SL_TOTAL
/* Determine object capacity not slabs */
4740 #define SO_ALL (1 << SL_ALL)
4741 #define SO_PARTIAL (1 << SL_PARTIAL)
4742 #define SO_CPU (1 << SL_CPU)
4743 #define SO_OBJECTS (1 << SL_OBJECTS)
4744 #define SO_TOTAL (1 << SL_TOTAL)
4747 static bool memcg_sysfs_enabled
= IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON
);
4749 static int __init
setup_slub_memcg_sysfs(char *str
)
4753 if (get_option(&str
, &v
) > 0)
4754 memcg_sysfs_enabled
= v
;
4759 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs
);
4762 static ssize_t
show_slab_objects(struct kmem_cache
*s
,
4763 char *buf
, unsigned long flags
)
4765 unsigned long total
= 0;
4768 unsigned long *nodes
;
4770 nodes
= kzalloc(sizeof(unsigned long) * nr_node_ids
, GFP_KERNEL
);
4774 if (flags
& SO_CPU
) {
4777 for_each_possible_cpu(cpu
) {
4778 struct kmem_cache_cpu
*c
= per_cpu_ptr(s
->cpu_slab
,
4783 page
= READ_ONCE(c
->page
);
4787 node
= page_to_nid(page
);
4788 if (flags
& SO_TOTAL
)
4790 else if (flags
& SO_OBJECTS
)
4798 page
= slub_percpu_partial_read_once(c
);
4800 node
= page_to_nid(page
);
4801 if (flags
& SO_TOTAL
)
4803 else if (flags
& SO_OBJECTS
)
4814 #ifdef CONFIG_SLUB_DEBUG
4815 if (flags
& SO_ALL
) {
4816 struct kmem_cache_node
*n
;
4818 for_each_kmem_cache_node(s
, node
, n
) {
4820 if (flags
& SO_TOTAL
)
4821 x
= atomic_long_read(&n
->total_objects
);
4822 else if (flags
& SO_OBJECTS
)
4823 x
= atomic_long_read(&n
->total_objects
) -
4824 count_partial(n
, count_free
);
4826 x
= atomic_long_read(&n
->nr_slabs
);
4833 if (flags
& SO_PARTIAL
) {
4834 struct kmem_cache_node
*n
;
4836 for_each_kmem_cache_node(s
, node
, n
) {
4837 if (flags
& SO_TOTAL
)
4838 x
= count_partial(n
, count_total
);
4839 else if (flags
& SO_OBJECTS
)
4840 x
= count_partial(n
, count_inuse
);
4847 x
= sprintf(buf
, "%lu", total
);
4849 for (node
= 0; node
< nr_node_ids
; node
++)
4851 x
+= sprintf(buf
+ x
, " N%d=%lu",
4856 return x
+ sprintf(buf
+ x
, "\n");
4859 #ifdef CONFIG_SLUB_DEBUG
4860 static int any_slab_objects(struct kmem_cache
*s
)
4863 struct kmem_cache_node
*n
;
4865 for_each_kmem_cache_node(s
, node
, n
)
4866 if (atomic_long_read(&n
->total_objects
))
4873 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4874 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4876 struct slab_attribute
{
4877 struct attribute attr
;
4878 ssize_t (*show
)(struct kmem_cache
*s
, char *buf
);
4879 ssize_t (*store
)(struct kmem_cache
*s
, const char *x
, size_t count
);
4882 #define SLAB_ATTR_RO(_name) \
4883 static struct slab_attribute _name##_attr = \
4884 __ATTR(_name, 0400, _name##_show, NULL)
4886 #define SLAB_ATTR(_name) \
4887 static struct slab_attribute _name##_attr = \
4888 __ATTR(_name, 0600, _name##_show, _name##_store)
4890 static ssize_t
slab_size_show(struct kmem_cache
*s
, char *buf
)
4892 return sprintf(buf
, "%d\n", s
->size
);
4894 SLAB_ATTR_RO(slab_size
);
4896 static ssize_t
align_show(struct kmem_cache
*s
, char *buf
)
4898 return sprintf(buf
, "%d\n", s
->align
);
4900 SLAB_ATTR_RO(align
);
4902 static ssize_t
object_size_show(struct kmem_cache
*s
, char *buf
)
4904 return sprintf(buf
, "%d\n", s
->object_size
);
4906 SLAB_ATTR_RO(object_size
);
4908 static ssize_t
objs_per_slab_show(struct kmem_cache
*s
, char *buf
)
4910 return sprintf(buf
, "%d\n", oo_objects(s
->oo
));
4912 SLAB_ATTR_RO(objs_per_slab
);
4914 static ssize_t
order_store(struct kmem_cache
*s
,
4915 const char *buf
, size_t length
)
4917 unsigned long order
;
4920 err
= kstrtoul(buf
, 10, &order
);
4924 if (order
> slub_max_order
|| order
< slub_min_order
)
4927 calculate_sizes(s
, order
);
4931 static ssize_t
order_show(struct kmem_cache
*s
, char *buf
)
4933 return sprintf(buf
, "%d\n", oo_order(s
->oo
));
4937 static ssize_t
min_partial_show(struct kmem_cache
*s
, char *buf
)
4939 return sprintf(buf
, "%lu\n", s
->min_partial
);
4942 static ssize_t
min_partial_store(struct kmem_cache
*s
, const char *buf
,
4948 err
= kstrtoul(buf
, 10, &min
);
4952 set_min_partial(s
, min
);
4955 SLAB_ATTR(min_partial
);
4957 static ssize_t
cpu_partial_show(struct kmem_cache
*s
, char *buf
)
4959 return sprintf(buf
, "%u\n", slub_cpu_partial(s
));
4962 static ssize_t
cpu_partial_store(struct kmem_cache
*s
, const char *buf
,
4965 unsigned long objects
;
4968 err
= kstrtoul(buf
, 10, &objects
);
4971 if (objects
&& !kmem_cache_has_cpu_partial(s
))
4974 slub_set_cpu_partial(s
, objects
);
4978 SLAB_ATTR(cpu_partial
);
4980 static ssize_t
ctor_show(struct kmem_cache
*s
, char *buf
)
4984 return sprintf(buf
, "%pS\n", s
->ctor
);
4988 static ssize_t
aliases_show(struct kmem_cache
*s
, char *buf
)
4990 return sprintf(buf
, "%d\n", s
->refcount
< 0 ? 0 : s
->refcount
- 1);
4992 SLAB_ATTR_RO(aliases
);
4994 static ssize_t
partial_show(struct kmem_cache
*s
, char *buf
)
4996 return show_slab_objects(s
, buf
, SO_PARTIAL
);
4998 SLAB_ATTR_RO(partial
);
5000 static ssize_t
cpu_slabs_show(struct kmem_cache
*s
, char *buf
)
5002 return show_slab_objects(s
, buf
, SO_CPU
);
5004 SLAB_ATTR_RO(cpu_slabs
);
5006 static ssize_t
objects_show(struct kmem_cache
*s
, char *buf
)
5008 return show_slab_objects(s
, buf
, SO_ALL
|SO_OBJECTS
);
5010 SLAB_ATTR_RO(objects
);
5012 static ssize_t
objects_partial_show(struct kmem_cache
*s
, char *buf
)
5014 return show_slab_objects(s
, buf
, SO_PARTIAL
|SO_OBJECTS
);
5016 SLAB_ATTR_RO(objects_partial
);
5018 static ssize_t
slabs_cpu_partial_show(struct kmem_cache
*s
, char *buf
)
5025 for_each_online_cpu(cpu
) {
5028 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5031 pages
+= page
->pages
;
5032 objects
+= page
->pobjects
;
5036 len
= sprintf(buf
, "%d(%d)", objects
, pages
);
5039 for_each_online_cpu(cpu
) {
5042 page
= slub_percpu_partial(per_cpu_ptr(s
->cpu_slab
, cpu
));
5044 if (page
&& len
< PAGE_SIZE
- 20)
5045 len
+= sprintf(buf
+ len
, " C%d=%d(%d)", cpu
,
5046 page
->pobjects
, page
->pages
);
5049 return len
+ sprintf(buf
+ len
, "\n");
5051 SLAB_ATTR_RO(slabs_cpu_partial
);
5053 static ssize_t
reclaim_account_show(struct kmem_cache
*s
, char *buf
)
5055 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RECLAIM_ACCOUNT
));
5058 static ssize_t
reclaim_account_store(struct kmem_cache
*s
,
5059 const char *buf
, size_t length
)
5061 s
->flags
&= ~SLAB_RECLAIM_ACCOUNT
;
5063 s
->flags
|= SLAB_RECLAIM_ACCOUNT
;
5066 SLAB_ATTR(reclaim_account
);
5068 static ssize_t
hwcache_align_show(struct kmem_cache
*s
, char *buf
)
5070 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_HWCACHE_ALIGN
));
5072 SLAB_ATTR_RO(hwcache_align
);
5074 #ifdef CONFIG_ZONE_DMA
5075 static ssize_t
cache_dma_show(struct kmem_cache
*s
, char *buf
)
5077 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CACHE_DMA
));
5079 SLAB_ATTR_RO(cache_dma
);
5082 static ssize_t
usersize_show(struct kmem_cache
*s
, char *buf
)
5084 return sprintf(buf
, "%zu\n", s
->usersize
);
5086 SLAB_ATTR_RO(usersize
);
5088 static ssize_t
destroy_by_rcu_show(struct kmem_cache
*s
, char *buf
)
5090 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TYPESAFE_BY_RCU
));
5092 SLAB_ATTR_RO(destroy_by_rcu
);
5094 static ssize_t
reserved_show(struct kmem_cache
*s
, char *buf
)
5096 return sprintf(buf
, "%d\n", s
->reserved
);
5098 SLAB_ATTR_RO(reserved
);
5100 #ifdef CONFIG_SLUB_DEBUG
5101 static ssize_t
slabs_show(struct kmem_cache
*s
, char *buf
)
5103 return show_slab_objects(s
, buf
, SO_ALL
);
5105 SLAB_ATTR_RO(slabs
);
5107 static ssize_t
total_objects_show(struct kmem_cache
*s
, char *buf
)
5109 return show_slab_objects(s
, buf
, SO_ALL
|SO_TOTAL
);
5111 SLAB_ATTR_RO(total_objects
);
5113 static ssize_t
sanity_checks_show(struct kmem_cache
*s
, char *buf
)
5115 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_CONSISTENCY_CHECKS
));
5118 static ssize_t
sanity_checks_store(struct kmem_cache
*s
,
5119 const char *buf
, size_t length
)
5121 s
->flags
&= ~SLAB_CONSISTENCY_CHECKS
;
5122 if (buf
[0] == '1') {
5123 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5124 s
->flags
|= SLAB_CONSISTENCY_CHECKS
;
5128 SLAB_ATTR(sanity_checks
);
5130 static ssize_t
trace_show(struct kmem_cache
*s
, char *buf
)
5132 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_TRACE
));
5135 static ssize_t
trace_store(struct kmem_cache
*s
, const char *buf
,
5139 * Tracing a merged cache is going to give confusing results
5140 * as well as cause other issues like converting a mergeable
5141 * cache into an umergeable one.
5143 if (s
->refcount
> 1)
5146 s
->flags
&= ~SLAB_TRACE
;
5147 if (buf
[0] == '1') {
5148 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5149 s
->flags
|= SLAB_TRACE
;
5155 static ssize_t
red_zone_show(struct kmem_cache
*s
, char *buf
)
5157 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_RED_ZONE
));
5160 static ssize_t
red_zone_store(struct kmem_cache
*s
,
5161 const char *buf
, size_t length
)
5163 if (any_slab_objects(s
))
5166 s
->flags
&= ~SLAB_RED_ZONE
;
5167 if (buf
[0] == '1') {
5168 s
->flags
|= SLAB_RED_ZONE
;
5170 calculate_sizes(s
, -1);
5173 SLAB_ATTR(red_zone
);
5175 static ssize_t
poison_show(struct kmem_cache
*s
, char *buf
)
5177 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_POISON
));
5180 static ssize_t
poison_store(struct kmem_cache
*s
,
5181 const char *buf
, size_t length
)
5183 if (any_slab_objects(s
))
5186 s
->flags
&= ~SLAB_POISON
;
5187 if (buf
[0] == '1') {
5188 s
->flags
|= SLAB_POISON
;
5190 calculate_sizes(s
, -1);
5195 static ssize_t
store_user_show(struct kmem_cache
*s
, char *buf
)
5197 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_STORE_USER
));
5200 static ssize_t
store_user_store(struct kmem_cache
*s
,
5201 const char *buf
, size_t length
)
5203 if (any_slab_objects(s
))
5206 s
->flags
&= ~SLAB_STORE_USER
;
5207 if (buf
[0] == '1') {
5208 s
->flags
&= ~__CMPXCHG_DOUBLE
;
5209 s
->flags
|= SLAB_STORE_USER
;
5211 calculate_sizes(s
, -1);
5214 SLAB_ATTR(store_user
);
5216 static ssize_t
validate_show(struct kmem_cache
*s
, char *buf
)
5221 static ssize_t
validate_store(struct kmem_cache
*s
,
5222 const char *buf
, size_t length
)
5226 if (buf
[0] == '1') {
5227 ret
= validate_slab_cache(s
);
5233 SLAB_ATTR(validate
);
5235 static ssize_t
alloc_calls_show(struct kmem_cache
*s
, char *buf
)
5237 if (!(s
->flags
& SLAB_STORE_USER
))
5239 return list_locations(s
, buf
, TRACK_ALLOC
);
5241 SLAB_ATTR_RO(alloc_calls
);
5243 static ssize_t
free_calls_show(struct kmem_cache
*s
, char *buf
)
5245 if (!(s
->flags
& SLAB_STORE_USER
))
5247 return list_locations(s
, buf
, TRACK_FREE
);
5249 SLAB_ATTR_RO(free_calls
);
5250 #endif /* CONFIG_SLUB_DEBUG */
5252 #ifdef CONFIG_FAILSLAB
5253 static ssize_t
failslab_show(struct kmem_cache
*s
, char *buf
)
5255 return sprintf(buf
, "%d\n", !!(s
->flags
& SLAB_FAILSLAB
));
5258 static ssize_t
failslab_store(struct kmem_cache
*s
, const char *buf
,
5261 if (s
->refcount
> 1)
5264 s
->flags
&= ~SLAB_FAILSLAB
;
5266 s
->flags
|= SLAB_FAILSLAB
;
5269 SLAB_ATTR(failslab
);
5272 static ssize_t
shrink_show(struct kmem_cache
*s
, char *buf
)
5277 static ssize_t
shrink_store(struct kmem_cache
*s
,
5278 const char *buf
, size_t length
)
5281 kmem_cache_shrink(s
);
5289 static ssize_t
remote_node_defrag_ratio_show(struct kmem_cache
*s
, char *buf
)
5291 return sprintf(buf
, "%d\n", s
->remote_node_defrag_ratio
/ 10);
5294 static ssize_t
remote_node_defrag_ratio_store(struct kmem_cache
*s
,
5295 const char *buf
, size_t length
)
5297 unsigned long ratio
;
5300 err
= kstrtoul(buf
, 10, &ratio
);
5305 s
->remote_node_defrag_ratio
= ratio
* 10;
5309 SLAB_ATTR(remote_node_defrag_ratio
);
5312 #ifdef CONFIG_SLUB_STATS
5313 static int show_stat(struct kmem_cache
*s
, char *buf
, enum stat_item si
)
5315 unsigned long sum
= 0;
5318 int *data
= kmalloc(nr_cpu_ids
* sizeof(int), GFP_KERNEL
);
5323 for_each_online_cpu(cpu
) {
5324 unsigned x
= per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
];
5330 len
= sprintf(buf
, "%lu", sum
);
5333 for_each_online_cpu(cpu
) {
5334 if (data
[cpu
] && len
< PAGE_SIZE
- 20)
5335 len
+= sprintf(buf
+ len
, " C%d=%u", cpu
, data
[cpu
]);
5339 return len
+ sprintf(buf
+ len
, "\n");
5342 static void clear_stat(struct kmem_cache
*s
, enum stat_item si
)
5346 for_each_online_cpu(cpu
)
5347 per_cpu_ptr(s
->cpu_slab
, cpu
)->stat
[si
] = 0;
5350 #define STAT_ATTR(si, text) \
5351 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5353 return show_stat(s, buf, si); \
5355 static ssize_t text##_store(struct kmem_cache *s, \
5356 const char *buf, size_t length) \
5358 if (buf[0] != '0') \
5360 clear_stat(s, si); \
5365 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5366 STAT_ATTR(ALLOC_SLOWPATH
, alloc_slowpath
);
5367 STAT_ATTR(FREE_FASTPATH
, free_fastpath
);
5368 STAT_ATTR(FREE_SLOWPATH
, free_slowpath
);
5369 STAT_ATTR(FREE_FROZEN
, free_frozen
);
5370 STAT_ATTR(FREE_ADD_PARTIAL
, free_add_partial
);
5371 STAT_ATTR(FREE_REMOVE_PARTIAL
, free_remove_partial
);
5372 STAT_ATTR(ALLOC_FROM_PARTIAL
, alloc_from_partial
);
5373 STAT_ATTR(ALLOC_SLAB
, alloc_slab
);
5374 STAT_ATTR(ALLOC_REFILL
, alloc_refill
);
5375 STAT_ATTR(ALLOC_NODE_MISMATCH
, alloc_node_mismatch
);
5376 STAT_ATTR(FREE_SLAB
, free_slab
);
5377 STAT_ATTR(CPUSLAB_FLUSH
, cpuslab_flush
);
5378 STAT_ATTR(DEACTIVATE_FULL
, deactivate_full
);
5379 STAT_ATTR(DEACTIVATE_EMPTY
, deactivate_empty
);
5380 STAT_ATTR(DEACTIVATE_TO_HEAD
, deactivate_to_head
);
5381 STAT_ATTR(DEACTIVATE_TO_TAIL
, deactivate_to_tail
);
5382 STAT_ATTR(DEACTIVATE_REMOTE_FREES
, deactivate_remote_frees
);
5383 STAT_ATTR(DEACTIVATE_BYPASS
, deactivate_bypass
);
5384 STAT_ATTR(ORDER_FALLBACK
, order_fallback
);
5385 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL
, cmpxchg_double_cpu_fail
);
5386 STAT_ATTR(CMPXCHG_DOUBLE_FAIL
, cmpxchg_double_fail
);
5387 STAT_ATTR(CPU_PARTIAL_ALLOC
, cpu_partial_alloc
);
5388 STAT_ATTR(CPU_PARTIAL_FREE
, cpu_partial_free
);
5389 STAT_ATTR(CPU_PARTIAL_NODE
, cpu_partial_node
);
5390 STAT_ATTR(CPU_PARTIAL_DRAIN
, cpu_partial_drain
);
5393 static struct attribute
*slab_attrs
[] = {
5394 &slab_size_attr
.attr
,
5395 &object_size_attr
.attr
,
5396 &objs_per_slab_attr
.attr
,
5398 &min_partial_attr
.attr
,
5399 &cpu_partial_attr
.attr
,
5401 &objects_partial_attr
.attr
,
5403 &cpu_slabs_attr
.attr
,
5407 &hwcache_align_attr
.attr
,
5408 &reclaim_account_attr
.attr
,
5409 &destroy_by_rcu_attr
.attr
,
5411 &reserved_attr
.attr
,
5412 &slabs_cpu_partial_attr
.attr
,
5413 #ifdef CONFIG_SLUB_DEBUG
5414 &total_objects_attr
.attr
,
5416 &sanity_checks_attr
.attr
,
5418 &red_zone_attr
.attr
,
5420 &store_user_attr
.attr
,
5421 &validate_attr
.attr
,
5422 &alloc_calls_attr
.attr
,
5423 &free_calls_attr
.attr
,
5425 #ifdef CONFIG_ZONE_DMA
5426 &cache_dma_attr
.attr
,
5429 &remote_node_defrag_ratio_attr
.attr
,
5431 #ifdef CONFIG_SLUB_STATS
5432 &alloc_fastpath_attr
.attr
,
5433 &alloc_slowpath_attr
.attr
,
5434 &free_fastpath_attr
.attr
,
5435 &free_slowpath_attr
.attr
,
5436 &free_frozen_attr
.attr
,
5437 &free_add_partial_attr
.attr
,
5438 &free_remove_partial_attr
.attr
,
5439 &alloc_from_partial_attr
.attr
,
5440 &alloc_slab_attr
.attr
,
5441 &alloc_refill_attr
.attr
,
5442 &alloc_node_mismatch_attr
.attr
,
5443 &free_slab_attr
.attr
,
5444 &cpuslab_flush_attr
.attr
,
5445 &deactivate_full_attr
.attr
,
5446 &deactivate_empty_attr
.attr
,
5447 &deactivate_to_head_attr
.attr
,
5448 &deactivate_to_tail_attr
.attr
,
5449 &deactivate_remote_frees_attr
.attr
,
5450 &deactivate_bypass_attr
.attr
,
5451 &order_fallback_attr
.attr
,
5452 &cmpxchg_double_fail_attr
.attr
,
5453 &cmpxchg_double_cpu_fail_attr
.attr
,
5454 &cpu_partial_alloc_attr
.attr
,
5455 &cpu_partial_free_attr
.attr
,
5456 &cpu_partial_node_attr
.attr
,
5457 &cpu_partial_drain_attr
.attr
,
5459 #ifdef CONFIG_FAILSLAB
5460 &failslab_attr
.attr
,
5462 &usersize_attr
.attr
,
5467 static const struct attribute_group slab_attr_group
= {
5468 .attrs
= slab_attrs
,
5471 static ssize_t
slab_attr_show(struct kobject
*kobj
,
5472 struct attribute
*attr
,
5475 struct slab_attribute
*attribute
;
5476 struct kmem_cache
*s
;
5479 attribute
= to_slab_attr(attr
);
5482 if (!attribute
->show
)
5485 err
= attribute
->show(s
, buf
);
5490 static ssize_t
slab_attr_store(struct kobject
*kobj
,
5491 struct attribute
*attr
,
5492 const char *buf
, size_t len
)
5494 struct slab_attribute
*attribute
;
5495 struct kmem_cache
*s
;
5498 attribute
= to_slab_attr(attr
);
5501 if (!attribute
->store
)
5504 err
= attribute
->store(s
, buf
, len
);
5506 if (slab_state
>= FULL
&& err
>= 0 && is_root_cache(s
)) {
5507 struct kmem_cache
*c
;
5509 mutex_lock(&slab_mutex
);
5510 if (s
->max_attr_size
< len
)
5511 s
->max_attr_size
= len
;
5514 * This is a best effort propagation, so this function's return
5515 * value will be determined by the parent cache only. This is
5516 * basically because not all attributes will have a well
5517 * defined semantics for rollbacks - most of the actions will
5518 * have permanent effects.
5520 * Returning the error value of any of the children that fail
5521 * is not 100 % defined, in the sense that users seeing the
5522 * error code won't be able to know anything about the state of
5525 * Only returning the error code for the parent cache at least
5526 * has well defined semantics. The cache being written to
5527 * directly either failed or succeeded, in which case we loop
5528 * through the descendants with best-effort propagation.
5530 for_each_memcg_cache(c
, s
)
5531 attribute
->store(c
, buf
, len
);
5532 mutex_unlock(&slab_mutex
);
5538 static void memcg_propagate_slab_attrs(struct kmem_cache
*s
)
5542 char *buffer
= NULL
;
5543 struct kmem_cache
*root_cache
;
5545 if (is_root_cache(s
))
5548 root_cache
= s
->memcg_params
.root_cache
;
5551 * This mean this cache had no attribute written. Therefore, no point
5552 * in copying default values around
5554 if (!root_cache
->max_attr_size
)
5557 for (i
= 0; i
< ARRAY_SIZE(slab_attrs
); i
++) {
5560 struct slab_attribute
*attr
= to_slab_attr(slab_attrs
[i
]);
5563 if (!attr
|| !attr
->store
|| !attr
->show
)
5567 * It is really bad that we have to allocate here, so we will
5568 * do it only as a fallback. If we actually allocate, though,
5569 * we can just use the allocated buffer until the end.
5571 * Most of the slub attributes will tend to be very small in
5572 * size, but sysfs allows buffers up to a page, so they can
5573 * theoretically happen.
5577 else if (root_cache
->max_attr_size
< ARRAY_SIZE(mbuf
))
5580 buffer
= (char *) get_zeroed_page(GFP_KERNEL
);
5581 if (WARN_ON(!buffer
))
5586 len
= attr
->show(root_cache
, buf
);
5588 attr
->store(s
, buf
, len
);
5592 free_page((unsigned long)buffer
);
5596 static void kmem_cache_release(struct kobject
*k
)
5598 slab_kmem_cache_release(to_slab(k
));
5601 static const struct sysfs_ops slab_sysfs_ops
= {
5602 .show
= slab_attr_show
,
5603 .store
= slab_attr_store
,
5606 static struct kobj_type slab_ktype
= {
5607 .sysfs_ops
= &slab_sysfs_ops
,
5608 .release
= kmem_cache_release
,
5611 static int uevent_filter(struct kset
*kset
, struct kobject
*kobj
)
5613 struct kobj_type
*ktype
= get_ktype(kobj
);
5615 if (ktype
== &slab_ktype
)
5620 static const struct kset_uevent_ops slab_uevent_ops
= {
5621 .filter
= uevent_filter
,
5624 static struct kset
*slab_kset
;
5626 static inline struct kset
*cache_kset(struct kmem_cache
*s
)
5629 if (!is_root_cache(s
))
5630 return s
->memcg_params
.root_cache
->memcg_kset
;
5635 #define ID_STR_LENGTH 64
5637 /* Create a unique string id for a slab cache:
5639 * Format :[flags-]size
5641 static char *create_unique_id(struct kmem_cache
*s
)
5643 char *name
= kmalloc(ID_STR_LENGTH
, GFP_KERNEL
);
5650 * First flags affecting slabcache operations. We will only
5651 * get here for aliasable slabs so we do not need to support
5652 * too many flags. The flags here must cover all flags that
5653 * are matched during merging to guarantee that the id is
5656 if (s
->flags
& SLAB_CACHE_DMA
)
5658 if (s
->flags
& SLAB_RECLAIM_ACCOUNT
)
5660 if (s
->flags
& SLAB_CONSISTENCY_CHECKS
)
5662 if (s
->flags
& SLAB_ACCOUNT
)
5666 p
+= sprintf(p
, "%07d", s
->size
);
5668 BUG_ON(p
> name
+ ID_STR_LENGTH
- 1);
5672 static void sysfs_slab_remove_workfn(struct work_struct
*work
)
5674 struct kmem_cache
*s
=
5675 container_of(work
, struct kmem_cache
, kobj_remove_work
);
5677 if (!s
->kobj
.state_in_sysfs
)
5679 * For a memcg cache, this may be called during
5680 * deactivation and again on shutdown. Remove only once.
5681 * A cache is never shut down before deactivation is
5682 * complete, so no need to worry about synchronization.
5687 kset_unregister(s
->memcg_kset
);
5689 kobject_uevent(&s
->kobj
, KOBJ_REMOVE
);
5690 kobject_del(&s
->kobj
);
5692 kobject_put(&s
->kobj
);
5695 static int sysfs_slab_add(struct kmem_cache
*s
)
5699 struct kset
*kset
= cache_kset(s
);
5700 int unmergeable
= slab_unmergeable(s
);
5702 INIT_WORK(&s
->kobj_remove_work
, sysfs_slab_remove_workfn
);
5705 kobject_init(&s
->kobj
, &slab_ktype
);
5709 if (!unmergeable
&& disable_higher_order_debug
&&
5710 (slub_debug
& DEBUG_METADATA_FLAGS
))
5715 * Slabcache can never be merged so we can use the name proper.
5716 * This is typically the case for debug situations. In that
5717 * case we can catch duplicate names easily.
5719 sysfs_remove_link(&slab_kset
->kobj
, s
->name
);
5723 * Create a unique name for the slab as a target
5726 name
= create_unique_id(s
);
5729 s
->kobj
.kset
= kset
;
5730 err
= kobject_init_and_add(&s
->kobj
, &slab_ktype
, NULL
, "%s", name
);
5734 err
= sysfs_create_group(&s
->kobj
, &slab_attr_group
);
5739 if (is_root_cache(s
) && memcg_sysfs_enabled
) {
5740 s
->memcg_kset
= kset_create_and_add("cgroup", NULL
, &s
->kobj
);
5741 if (!s
->memcg_kset
) {
5748 kobject_uevent(&s
->kobj
, KOBJ_ADD
);
5750 /* Setup first alias */
5751 sysfs_slab_alias(s
, s
->name
);
5758 kobject_del(&s
->kobj
);
5762 static void sysfs_slab_remove(struct kmem_cache
*s
)
5764 if (slab_state
< FULL
)
5766 * Sysfs has not been setup yet so no need to remove the
5771 kobject_get(&s
->kobj
);
5772 schedule_work(&s
->kobj_remove_work
);
5775 void sysfs_slab_release(struct kmem_cache
*s
)
5777 if (slab_state
>= FULL
)
5778 kobject_put(&s
->kobj
);
5782 * Need to buffer aliases during bootup until sysfs becomes
5783 * available lest we lose that information.
5785 struct saved_alias
{
5786 struct kmem_cache
*s
;
5788 struct saved_alias
*next
;
5791 static struct saved_alias
*alias_list
;
5793 static int sysfs_slab_alias(struct kmem_cache
*s
, const char *name
)
5795 struct saved_alias
*al
;
5797 if (slab_state
== FULL
) {
5799 * If we have a leftover link then remove it.
5801 sysfs_remove_link(&slab_kset
->kobj
, name
);
5802 return sysfs_create_link(&slab_kset
->kobj
, &s
->kobj
, name
);
5805 al
= kmalloc(sizeof(struct saved_alias
), GFP_KERNEL
);
5811 al
->next
= alias_list
;
5816 static int __init
slab_sysfs_init(void)
5818 struct kmem_cache
*s
;
5821 mutex_lock(&slab_mutex
);
5823 slab_kset
= kset_create_and_add("slab", &slab_uevent_ops
, kernel_kobj
);
5825 mutex_unlock(&slab_mutex
);
5826 pr_err("Cannot register slab subsystem.\n");
5832 list_for_each_entry(s
, &slab_caches
, list
) {
5833 err
= sysfs_slab_add(s
);
5835 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5839 while (alias_list
) {
5840 struct saved_alias
*al
= alias_list
;
5842 alias_list
= alias_list
->next
;
5843 err
= sysfs_slab_alias(al
->s
, al
->name
);
5845 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5850 mutex_unlock(&slab_mutex
);
5855 __initcall(slab_sysfs_init
);
5856 #endif /* CONFIG_SYSFS */
5859 * The /proc/slabinfo ABI
5861 #ifdef CONFIG_SLUB_DEBUG
5862 void get_slabinfo(struct kmem_cache
*s
, struct slabinfo
*sinfo
)
5864 unsigned long nr_slabs
= 0;
5865 unsigned long nr_objs
= 0;
5866 unsigned long nr_free
= 0;
5868 struct kmem_cache_node
*n
;
5870 for_each_kmem_cache_node(s
, node
, n
) {
5871 nr_slabs
+= node_nr_slabs(n
);
5872 nr_objs
+= node_nr_objs(n
);
5873 nr_free
+= count_partial(n
, count_free
);
5876 sinfo
->active_objs
= nr_objs
- nr_free
;
5877 sinfo
->num_objs
= nr_objs
;
5878 sinfo
->active_slabs
= nr_slabs
;
5879 sinfo
->num_slabs
= nr_slabs
;
5880 sinfo
->objects_per_slab
= oo_objects(s
->oo
);
5881 sinfo
->cache_order
= oo_order(s
->oo
);
5884 void slabinfo_show_stats(struct seq_file
*m
, struct kmem_cache
*s
)
5888 ssize_t
slabinfo_write(struct file
*file
, const char __user
*buffer
,
5889 size_t count
, loff_t
*ppos
)
5893 #endif /* CONFIG_SLUB_DEBUG */