Merge tag 'kvm-4.16-1' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[linux/fpc-iii.git] / mm / slub.c
blobe381728a3751f0a9b09b4a8a3a15d2ab5ee90c00
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SLUB: A slab allocator that limits cache line use instead of queuing
4 * objects in per cpu and per node lists.
6 * The allocator synchronizes using per slab locks or atomic operatios
7 * and only uses a centralized lock to manage a pool of partial slabs.
9 * (C) 2007 SGI, Christoph Lameter
10 * (C) 2011 Linux Foundation, Christoph Lameter
13 #include <linux/mm.h>
14 #include <linux/swap.h> /* struct reclaim_state */
15 #include <linux/module.h>
16 #include <linux/bit_spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/bitops.h>
19 #include <linux/slab.h>
20 #include "slab.h"
21 #include <linux/proc_fs.h>
22 #include <linux/notifier.h>
23 #include <linux/seq_file.h>
24 #include <linux/kasan.h>
25 #include <linux/cpu.h>
26 #include <linux/cpuset.h>
27 #include <linux/mempolicy.h>
28 #include <linux/ctype.h>
29 #include <linux/debugobjects.h>
30 #include <linux/kallsyms.h>
31 #include <linux/memory.h>
32 #include <linux/math64.h>
33 #include <linux/fault-inject.h>
34 #include <linux/stacktrace.h>
35 #include <linux/prefetch.h>
36 #include <linux/memcontrol.h>
37 #include <linux/random.h>
39 #include <trace/events/kmem.h>
41 #include "internal.h"
44 * Lock order:
45 * 1. slab_mutex (Global Mutex)
46 * 2. node->list_lock
47 * 3. slab_lock(page) (Only on some arches and for debugging)
49 * slab_mutex
51 * The role of the slab_mutex is to protect the list of all the slabs
52 * and to synchronize major metadata changes to slab cache structures.
54 * The slab_lock is only used for debugging and on arches that do not
55 * have the ability to do a cmpxchg_double. It only protects the second
56 * double word in the page struct. Meaning
57 * A. page->freelist -> List of object free in a page
58 * B. page->counters -> Counters of objects
59 * C. page->frozen -> frozen state
61 * If a slab is frozen then it is exempt from list management. It is not
62 * on any list. The processor that froze the slab is the one who can
63 * perform list operations on the page. Other processors may put objects
64 * onto the freelist but the processor that froze the slab is the only
65 * one that can retrieve the objects from the page's freelist.
67 * The list_lock protects the partial and full list on each node and
68 * the partial slab counter. If taken then no new slabs may be added or
69 * removed from the lists nor make the number of partial slabs be modified.
70 * (Note that the total number of slabs is an atomic value that may be
71 * modified without taking the list lock).
73 * The list_lock is a centralized lock and thus we avoid taking it as
74 * much as possible. As long as SLUB does not have to handle partial
75 * slabs, operations can continue without any centralized lock. F.e.
76 * allocating a long series of objects that fill up slabs does not require
77 * the list lock.
78 * Interrupts are disabled during allocation and deallocation in order to
79 * make the slab allocator safe to use in the context of an irq. In addition
80 * interrupts are disabled to ensure that the processor does not change
81 * while handling per_cpu slabs, due to kernel preemption.
83 * SLUB assigns one slab for allocation to each processor.
84 * Allocations only occur from these slabs called cpu slabs.
86 * Slabs with free elements are kept on a partial list and during regular
87 * operations no list for full slabs is used. If an object in a full slab is
88 * freed then the slab will show up again on the partial lists.
89 * We track full slabs for debugging purposes though because otherwise we
90 * cannot scan all objects.
92 * Slabs are freed when they become empty. Teardown and setup is
93 * minimal so we rely on the page allocators per cpu caches for
94 * fast frees and allocs.
96 * Overloading of page flags that are otherwise used for LRU management.
98 * PageActive The slab is frozen and exempt from list processing.
99 * This means that the slab is dedicated to a purpose
100 * such as satisfying allocations for a specific
101 * processor. Objects may be freed in the slab while
102 * it is frozen but slab_free will then skip the usual
103 * list operations. It is up to the processor holding
104 * the slab to integrate the slab into the slab lists
105 * when the slab is no longer needed.
107 * One use of this flag is to mark slabs that are
108 * used for allocations. Then such a slab becomes a cpu
109 * slab. The cpu slab may be equipped with an additional
110 * freelist that allows lockless access to
111 * free objects in addition to the regular freelist
112 * that requires the slab lock.
114 * PageError Slab requires special handling due to debug
115 * options set. This moves slab handling out of
116 * the fast path and disables lockless freelists.
119 static inline int kmem_cache_debug(struct kmem_cache *s)
121 #ifdef CONFIG_SLUB_DEBUG
122 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
123 #else
124 return 0;
125 #endif
128 void *fixup_red_left(struct kmem_cache *s, void *p)
130 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
131 p += s->red_left_pad;
133 return p;
136 static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
138 #ifdef CONFIG_SLUB_CPU_PARTIAL
139 return !kmem_cache_debug(s);
140 #else
141 return false;
142 #endif
146 * Issues still to be resolved:
148 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
150 * - Variable sizing of the per node arrays
153 /* Enable to test recovery from slab corruption on boot */
154 #undef SLUB_RESILIENCY_TEST
156 /* Enable to log cmpxchg failures */
157 #undef SLUB_DEBUG_CMPXCHG
160 * Mininum number of partial slabs. These will be left on the partial
161 * lists even if they are empty. kmem_cache_shrink may reclaim them.
163 #define MIN_PARTIAL 5
166 * Maximum number of desirable partial slabs.
167 * The existence of more partial slabs makes kmem_cache_shrink
168 * sort the partial list by the number of objects in use.
170 #define MAX_PARTIAL 10
172 #define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
173 SLAB_POISON | SLAB_STORE_USER)
176 * These debug flags cannot use CMPXCHG because there might be consistency
177 * issues when checking or reading debug information
179 #define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
180 SLAB_TRACE)
184 * Debugging flags that require metadata to be stored in the slab. These get
185 * disabled when slub_debug=O is used and a cache's min order increases with
186 * metadata.
188 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
190 #define OO_SHIFT 16
191 #define OO_MASK ((1 << OO_SHIFT) - 1)
192 #define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
194 /* Internal SLUB flags */
195 /* Poison object */
196 #define __OBJECT_POISON ((slab_flags_t __force)0x80000000U)
197 /* Use cmpxchg_double */
198 #define __CMPXCHG_DOUBLE ((slab_flags_t __force)0x40000000U)
201 * Tracking user of a slab.
203 #define TRACK_ADDRS_COUNT 16
204 struct track {
205 unsigned long addr; /* Called from address */
206 #ifdef CONFIG_STACKTRACE
207 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
208 #endif
209 int cpu; /* Was running on cpu */
210 int pid; /* Pid context */
211 unsigned long when; /* When did the operation occur */
214 enum track_item { TRACK_ALLOC, TRACK_FREE };
216 #ifdef CONFIG_SYSFS
217 static int sysfs_slab_add(struct kmem_cache *);
218 static int sysfs_slab_alias(struct kmem_cache *, const char *);
219 static void memcg_propagate_slab_attrs(struct kmem_cache *s);
220 static void sysfs_slab_remove(struct kmem_cache *s);
221 #else
222 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
223 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
224 { return 0; }
225 static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
226 static inline void sysfs_slab_remove(struct kmem_cache *s) { }
227 #endif
229 static inline void stat(const struct kmem_cache *s, enum stat_item si)
231 #ifdef CONFIG_SLUB_STATS
233 * The rmw is racy on a preemptible kernel but this is acceptable, so
234 * avoid this_cpu_add()'s irq-disable overhead.
236 raw_cpu_inc(s->cpu_slab->stat[si]);
237 #endif
240 /********************************************************************
241 * Core slab cache functions
242 *******************************************************************/
245 * Returns freelist pointer (ptr). With hardening, this is obfuscated
246 * with an XOR of the address where the pointer is held and a per-cache
247 * random number.
249 static inline void *freelist_ptr(const struct kmem_cache *s, void *ptr,
250 unsigned long ptr_addr)
252 #ifdef CONFIG_SLAB_FREELIST_HARDENED
253 return (void *)((unsigned long)ptr ^ s->random ^ ptr_addr);
254 #else
255 return ptr;
256 #endif
259 /* Returns the freelist pointer recorded at location ptr_addr. */
260 static inline void *freelist_dereference(const struct kmem_cache *s,
261 void *ptr_addr)
263 return freelist_ptr(s, (void *)*(unsigned long *)(ptr_addr),
264 (unsigned long)ptr_addr);
267 static inline void *get_freepointer(struct kmem_cache *s, void *object)
269 return freelist_dereference(s, object + s->offset);
272 static void prefetch_freepointer(const struct kmem_cache *s, void *object)
274 if (object)
275 prefetch(freelist_dereference(s, object + s->offset));
278 static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
280 unsigned long freepointer_addr;
281 void *p;
283 if (!debug_pagealloc_enabled())
284 return get_freepointer(s, object);
286 freepointer_addr = (unsigned long)object + s->offset;
287 probe_kernel_read(&p, (void **)freepointer_addr, sizeof(p));
288 return freelist_ptr(s, p, freepointer_addr);
291 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
293 unsigned long freeptr_addr = (unsigned long)object + s->offset;
295 #ifdef CONFIG_SLAB_FREELIST_HARDENED
296 BUG_ON(object == fp); /* naive detection of double free or corruption */
297 #endif
299 *(void **)freeptr_addr = freelist_ptr(s, fp, freeptr_addr);
302 /* Loop over all objects in a slab */
303 #define for_each_object(__p, __s, __addr, __objects) \
304 for (__p = fixup_red_left(__s, __addr); \
305 __p < (__addr) + (__objects) * (__s)->size; \
306 __p += (__s)->size)
308 #define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
309 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
310 __idx <= __objects; \
311 __p += (__s)->size, __idx++)
313 /* Determine object index from a given position */
314 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
316 return (p - addr) / s->size;
319 static inline int order_objects(int order, unsigned long size, int reserved)
321 return ((PAGE_SIZE << order) - reserved) / size;
324 static inline struct kmem_cache_order_objects oo_make(int order,
325 unsigned long size, int reserved)
327 struct kmem_cache_order_objects x = {
328 (order << OO_SHIFT) + order_objects(order, size, reserved)
331 return x;
334 static inline int oo_order(struct kmem_cache_order_objects x)
336 return x.x >> OO_SHIFT;
339 static inline int oo_objects(struct kmem_cache_order_objects x)
341 return x.x & OO_MASK;
345 * Per slab locking using the pagelock
347 static __always_inline void slab_lock(struct page *page)
349 VM_BUG_ON_PAGE(PageTail(page), page);
350 bit_spin_lock(PG_locked, &page->flags);
353 static __always_inline void slab_unlock(struct page *page)
355 VM_BUG_ON_PAGE(PageTail(page), page);
356 __bit_spin_unlock(PG_locked, &page->flags);
359 static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
361 struct page tmp;
362 tmp.counters = counters_new;
364 * page->counters can cover frozen/inuse/objects as well
365 * as page->_refcount. If we assign to ->counters directly
366 * we run the risk of losing updates to page->_refcount, so
367 * be careful and only assign to the fields we need.
369 page->frozen = tmp.frozen;
370 page->inuse = tmp.inuse;
371 page->objects = tmp.objects;
374 /* Interrupts must be disabled (for the fallback code to work right) */
375 static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
376 void *freelist_old, unsigned long counters_old,
377 void *freelist_new, unsigned long counters_new,
378 const char *n)
380 VM_BUG_ON(!irqs_disabled());
381 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
382 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
383 if (s->flags & __CMPXCHG_DOUBLE) {
384 if (cmpxchg_double(&page->freelist, &page->counters,
385 freelist_old, counters_old,
386 freelist_new, counters_new))
387 return true;
388 } else
389 #endif
391 slab_lock(page);
392 if (page->freelist == freelist_old &&
393 page->counters == counters_old) {
394 page->freelist = freelist_new;
395 set_page_slub_counters(page, counters_new);
396 slab_unlock(page);
397 return true;
399 slab_unlock(page);
402 cpu_relax();
403 stat(s, CMPXCHG_DOUBLE_FAIL);
405 #ifdef SLUB_DEBUG_CMPXCHG
406 pr_info("%s %s: cmpxchg double redo ", n, s->name);
407 #endif
409 return false;
412 static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
413 void *freelist_old, unsigned long counters_old,
414 void *freelist_new, unsigned long counters_new,
415 const char *n)
417 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
418 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
419 if (s->flags & __CMPXCHG_DOUBLE) {
420 if (cmpxchg_double(&page->freelist, &page->counters,
421 freelist_old, counters_old,
422 freelist_new, counters_new))
423 return true;
424 } else
425 #endif
427 unsigned long flags;
429 local_irq_save(flags);
430 slab_lock(page);
431 if (page->freelist == freelist_old &&
432 page->counters == counters_old) {
433 page->freelist = freelist_new;
434 set_page_slub_counters(page, counters_new);
435 slab_unlock(page);
436 local_irq_restore(flags);
437 return true;
439 slab_unlock(page);
440 local_irq_restore(flags);
443 cpu_relax();
444 stat(s, CMPXCHG_DOUBLE_FAIL);
446 #ifdef SLUB_DEBUG_CMPXCHG
447 pr_info("%s %s: cmpxchg double redo ", n, s->name);
448 #endif
450 return false;
453 #ifdef CONFIG_SLUB_DEBUG
455 * Determine a map of object in use on a page.
457 * Node listlock must be held to guarantee that the page does
458 * not vanish from under us.
460 static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
462 void *p;
463 void *addr = page_address(page);
465 for (p = page->freelist; p; p = get_freepointer(s, p))
466 set_bit(slab_index(p, s, addr), map);
469 static inline int size_from_object(struct kmem_cache *s)
471 if (s->flags & SLAB_RED_ZONE)
472 return s->size - s->red_left_pad;
474 return s->size;
477 static inline void *restore_red_left(struct kmem_cache *s, void *p)
479 if (s->flags & SLAB_RED_ZONE)
480 p -= s->red_left_pad;
482 return p;
486 * Debug settings:
488 #if defined(CONFIG_SLUB_DEBUG_ON)
489 static slab_flags_t slub_debug = DEBUG_DEFAULT_FLAGS;
490 #else
491 static slab_flags_t slub_debug;
492 #endif
494 static char *slub_debug_slabs;
495 static int disable_higher_order_debug;
498 * slub is about to manipulate internal object metadata. This memory lies
499 * outside the range of the allocated object, so accessing it would normally
500 * be reported by kasan as a bounds error. metadata_access_enable() is used
501 * to tell kasan that these accesses are OK.
503 static inline void metadata_access_enable(void)
505 kasan_disable_current();
508 static inline void metadata_access_disable(void)
510 kasan_enable_current();
514 * Object debugging
517 /* Verify that a pointer has an address that is valid within a slab page */
518 static inline int check_valid_pointer(struct kmem_cache *s,
519 struct page *page, void *object)
521 void *base;
523 if (!object)
524 return 1;
526 base = page_address(page);
527 object = restore_red_left(s, object);
528 if (object < base || object >= base + page->objects * s->size ||
529 (object - base) % s->size) {
530 return 0;
533 return 1;
536 static void print_section(char *level, char *text, u8 *addr,
537 unsigned int length)
539 metadata_access_enable();
540 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
541 length, 1);
542 metadata_access_disable();
545 static struct track *get_track(struct kmem_cache *s, void *object,
546 enum track_item alloc)
548 struct track *p;
550 if (s->offset)
551 p = object + s->offset + sizeof(void *);
552 else
553 p = object + s->inuse;
555 return p + alloc;
558 static void set_track(struct kmem_cache *s, void *object,
559 enum track_item alloc, unsigned long addr)
561 struct track *p = get_track(s, object, alloc);
563 if (addr) {
564 #ifdef CONFIG_STACKTRACE
565 struct stack_trace trace;
566 int i;
568 trace.nr_entries = 0;
569 trace.max_entries = TRACK_ADDRS_COUNT;
570 trace.entries = p->addrs;
571 trace.skip = 3;
572 metadata_access_enable();
573 save_stack_trace(&trace);
574 metadata_access_disable();
576 /* See rant in lockdep.c */
577 if (trace.nr_entries != 0 &&
578 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
579 trace.nr_entries--;
581 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
582 p->addrs[i] = 0;
583 #endif
584 p->addr = addr;
585 p->cpu = smp_processor_id();
586 p->pid = current->pid;
587 p->when = jiffies;
588 } else
589 memset(p, 0, sizeof(struct track));
592 static void init_tracking(struct kmem_cache *s, void *object)
594 if (!(s->flags & SLAB_STORE_USER))
595 return;
597 set_track(s, object, TRACK_FREE, 0UL);
598 set_track(s, object, TRACK_ALLOC, 0UL);
601 static void print_track(const char *s, struct track *t)
603 if (!t->addr)
604 return;
606 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
607 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
608 #ifdef CONFIG_STACKTRACE
610 int i;
611 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
612 if (t->addrs[i])
613 pr_err("\t%pS\n", (void *)t->addrs[i]);
614 else
615 break;
617 #endif
620 static void print_tracking(struct kmem_cache *s, void *object)
622 if (!(s->flags & SLAB_STORE_USER))
623 return;
625 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
626 print_track("Freed", get_track(s, object, TRACK_FREE));
629 static void print_page_info(struct page *page)
631 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
632 page, page->objects, page->inuse, page->freelist, page->flags);
636 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
638 struct va_format vaf;
639 va_list args;
641 va_start(args, fmt);
642 vaf.fmt = fmt;
643 vaf.va = &args;
644 pr_err("=============================================================================\n");
645 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
646 pr_err("-----------------------------------------------------------------------------\n\n");
648 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
649 va_end(args);
652 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
654 struct va_format vaf;
655 va_list args;
657 va_start(args, fmt);
658 vaf.fmt = fmt;
659 vaf.va = &args;
660 pr_err("FIX %s: %pV\n", s->name, &vaf);
661 va_end(args);
664 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
666 unsigned int off; /* Offset of last byte */
667 u8 *addr = page_address(page);
669 print_tracking(s, p);
671 print_page_info(page);
673 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
674 p, p - addr, get_freepointer(s, p));
676 if (s->flags & SLAB_RED_ZONE)
677 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
678 s->red_left_pad);
679 else if (p > addr + 16)
680 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
682 print_section(KERN_ERR, "Object ", p,
683 min_t(unsigned long, s->object_size, PAGE_SIZE));
684 if (s->flags & SLAB_RED_ZONE)
685 print_section(KERN_ERR, "Redzone ", p + s->object_size,
686 s->inuse - s->object_size);
688 if (s->offset)
689 off = s->offset + sizeof(void *);
690 else
691 off = s->inuse;
693 if (s->flags & SLAB_STORE_USER)
694 off += 2 * sizeof(struct track);
696 off += kasan_metadata_size(s);
698 if (off != size_from_object(s))
699 /* Beginning of the filler is the free pointer */
700 print_section(KERN_ERR, "Padding ", p + off,
701 size_from_object(s) - off);
703 dump_stack();
706 void object_err(struct kmem_cache *s, struct page *page,
707 u8 *object, char *reason)
709 slab_bug(s, "%s", reason);
710 print_trailer(s, page, object);
713 static void slab_err(struct kmem_cache *s, struct page *page,
714 const char *fmt, ...)
716 va_list args;
717 char buf[100];
719 va_start(args, fmt);
720 vsnprintf(buf, sizeof(buf), fmt, args);
721 va_end(args);
722 slab_bug(s, "%s", buf);
723 print_page_info(page);
724 dump_stack();
727 static void init_object(struct kmem_cache *s, void *object, u8 val)
729 u8 *p = object;
731 if (s->flags & SLAB_RED_ZONE)
732 memset(p - s->red_left_pad, val, s->red_left_pad);
734 if (s->flags & __OBJECT_POISON) {
735 memset(p, POISON_FREE, s->object_size - 1);
736 p[s->object_size - 1] = POISON_END;
739 if (s->flags & SLAB_RED_ZONE)
740 memset(p + s->object_size, val, s->inuse - s->object_size);
743 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
744 void *from, void *to)
746 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
747 memset(from, data, to - from);
750 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
751 u8 *object, char *what,
752 u8 *start, unsigned int value, unsigned int bytes)
754 u8 *fault;
755 u8 *end;
757 metadata_access_enable();
758 fault = memchr_inv(start, value, bytes);
759 metadata_access_disable();
760 if (!fault)
761 return 1;
763 end = start + bytes;
764 while (end > fault && end[-1] == value)
765 end--;
767 slab_bug(s, "%s overwritten", what);
768 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
769 fault, end - 1, fault[0], value);
770 print_trailer(s, page, object);
772 restore_bytes(s, what, value, fault, end);
773 return 0;
777 * Object layout:
779 * object address
780 * Bytes of the object to be managed.
781 * If the freepointer may overlay the object then the free
782 * pointer is the first word of the object.
784 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
785 * 0xa5 (POISON_END)
787 * object + s->object_size
788 * Padding to reach word boundary. This is also used for Redzoning.
789 * Padding is extended by another word if Redzoning is enabled and
790 * object_size == inuse.
792 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
793 * 0xcc (RED_ACTIVE) for objects in use.
795 * object + s->inuse
796 * Meta data starts here.
798 * A. Free pointer (if we cannot overwrite object on free)
799 * B. Tracking data for SLAB_STORE_USER
800 * C. Padding to reach required alignment boundary or at mininum
801 * one word if debugging is on to be able to detect writes
802 * before the word boundary.
804 * Padding is done using 0x5a (POISON_INUSE)
806 * object + s->size
807 * Nothing is used beyond s->size.
809 * If slabcaches are merged then the object_size and inuse boundaries are mostly
810 * ignored. And therefore no slab options that rely on these boundaries
811 * may be used with merged slabcaches.
814 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
816 unsigned long off = s->inuse; /* The end of info */
818 if (s->offset)
819 /* Freepointer is placed after the object. */
820 off += sizeof(void *);
822 if (s->flags & SLAB_STORE_USER)
823 /* We also have user information there */
824 off += 2 * sizeof(struct track);
826 off += kasan_metadata_size(s);
828 if (size_from_object(s) == off)
829 return 1;
831 return check_bytes_and_report(s, page, p, "Object padding",
832 p + off, POISON_INUSE, size_from_object(s) - off);
835 /* Check the pad bytes at the end of a slab page */
836 static int slab_pad_check(struct kmem_cache *s, struct page *page)
838 u8 *start;
839 u8 *fault;
840 u8 *end;
841 u8 *pad;
842 int length;
843 int remainder;
845 if (!(s->flags & SLAB_POISON))
846 return 1;
848 start = page_address(page);
849 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
850 end = start + length;
851 remainder = length % s->size;
852 if (!remainder)
853 return 1;
855 pad = end - remainder;
856 metadata_access_enable();
857 fault = memchr_inv(pad, POISON_INUSE, remainder);
858 metadata_access_disable();
859 if (!fault)
860 return 1;
861 while (end > fault && end[-1] == POISON_INUSE)
862 end--;
864 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
865 print_section(KERN_ERR, "Padding ", pad, remainder);
867 restore_bytes(s, "slab padding", POISON_INUSE, fault, end);
868 return 0;
871 static int check_object(struct kmem_cache *s, struct page *page,
872 void *object, u8 val)
874 u8 *p = object;
875 u8 *endobject = object + s->object_size;
877 if (s->flags & SLAB_RED_ZONE) {
878 if (!check_bytes_and_report(s, page, object, "Redzone",
879 object - s->red_left_pad, val, s->red_left_pad))
880 return 0;
882 if (!check_bytes_and_report(s, page, object, "Redzone",
883 endobject, val, s->inuse - s->object_size))
884 return 0;
885 } else {
886 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
887 check_bytes_and_report(s, page, p, "Alignment padding",
888 endobject, POISON_INUSE,
889 s->inuse - s->object_size);
893 if (s->flags & SLAB_POISON) {
894 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
895 (!check_bytes_and_report(s, page, p, "Poison", p,
896 POISON_FREE, s->object_size - 1) ||
897 !check_bytes_and_report(s, page, p, "Poison",
898 p + s->object_size - 1, POISON_END, 1)))
899 return 0;
901 * check_pad_bytes cleans up on its own.
903 check_pad_bytes(s, page, p);
906 if (!s->offset && val == SLUB_RED_ACTIVE)
908 * Object and freepointer overlap. Cannot check
909 * freepointer while object is allocated.
911 return 1;
913 /* Check free pointer validity */
914 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
915 object_err(s, page, p, "Freepointer corrupt");
917 * No choice but to zap it and thus lose the remainder
918 * of the free objects in this slab. May cause
919 * another error because the object count is now wrong.
921 set_freepointer(s, p, NULL);
922 return 0;
924 return 1;
927 static int check_slab(struct kmem_cache *s, struct page *page)
929 int maxobj;
931 VM_BUG_ON(!irqs_disabled());
933 if (!PageSlab(page)) {
934 slab_err(s, page, "Not a valid slab page");
935 return 0;
938 maxobj = order_objects(compound_order(page), s->size, s->reserved);
939 if (page->objects > maxobj) {
940 slab_err(s, page, "objects %u > max %u",
941 page->objects, maxobj);
942 return 0;
944 if (page->inuse > page->objects) {
945 slab_err(s, page, "inuse %u > max %u",
946 page->inuse, page->objects);
947 return 0;
949 /* Slab_pad_check fixes things up after itself */
950 slab_pad_check(s, page);
951 return 1;
955 * Determine if a certain object on a page is on the freelist. Must hold the
956 * slab lock to guarantee that the chains are in a consistent state.
958 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
960 int nr = 0;
961 void *fp;
962 void *object = NULL;
963 int max_objects;
965 fp = page->freelist;
966 while (fp && nr <= page->objects) {
967 if (fp == search)
968 return 1;
969 if (!check_valid_pointer(s, page, fp)) {
970 if (object) {
971 object_err(s, page, object,
972 "Freechain corrupt");
973 set_freepointer(s, object, NULL);
974 } else {
975 slab_err(s, page, "Freepointer corrupt");
976 page->freelist = NULL;
977 page->inuse = page->objects;
978 slab_fix(s, "Freelist cleared");
979 return 0;
981 break;
983 object = fp;
984 fp = get_freepointer(s, object);
985 nr++;
988 max_objects = order_objects(compound_order(page), s->size, s->reserved);
989 if (max_objects > MAX_OBJS_PER_PAGE)
990 max_objects = MAX_OBJS_PER_PAGE;
992 if (page->objects != max_objects) {
993 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
994 page->objects, max_objects);
995 page->objects = max_objects;
996 slab_fix(s, "Number of objects adjusted.");
998 if (page->inuse != page->objects - nr) {
999 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
1000 page->inuse, page->objects - nr);
1001 page->inuse = page->objects - nr;
1002 slab_fix(s, "Object count adjusted.");
1004 return search == NULL;
1007 static void trace(struct kmem_cache *s, struct page *page, void *object,
1008 int alloc)
1010 if (s->flags & SLAB_TRACE) {
1011 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
1012 s->name,
1013 alloc ? "alloc" : "free",
1014 object, page->inuse,
1015 page->freelist);
1017 if (!alloc)
1018 print_section(KERN_INFO, "Object ", (void *)object,
1019 s->object_size);
1021 dump_stack();
1026 * Tracking of fully allocated slabs for debugging purposes.
1028 static void add_full(struct kmem_cache *s,
1029 struct kmem_cache_node *n, struct page *page)
1031 if (!(s->flags & SLAB_STORE_USER))
1032 return;
1034 lockdep_assert_held(&n->list_lock);
1035 list_add(&page->lru, &n->full);
1038 static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
1040 if (!(s->flags & SLAB_STORE_USER))
1041 return;
1043 lockdep_assert_held(&n->list_lock);
1044 list_del(&page->lru);
1047 /* Tracking of the number of slabs for debugging purposes */
1048 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1050 struct kmem_cache_node *n = get_node(s, node);
1052 return atomic_long_read(&n->nr_slabs);
1055 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1057 return atomic_long_read(&n->nr_slabs);
1060 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
1062 struct kmem_cache_node *n = get_node(s, node);
1065 * May be called early in order to allocate a slab for the
1066 * kmem_cache_node structure. Solve the chicken-egg
1067 * dilemma by deferring the increment of the count during
1068 * bootstrap (see early_kmem_cache_node_alloc).
1070 if (likely(n)) {
1071 atomic_long_inc(&n->nr_slabs);
1072 atomic_long_add(objects, &n->total_objects);
1075 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
1077 struct kmem_cache_node *n = get_node(s, node);
1079 atomic_long_dec(&n->nr_slabs);
1080 atomic_long_sub(objects, &n->total_objects);
1083 /* Object debug checks for alloc/free paths */
1084 static void setup_object_debug(struct kmem_cache *s, struct page *page,
1085 void *object)
1087 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1088 return;
1090 init_object(s, object, SLUB_RED_INACTIVE);
1091 init_tracking(s, object);
1094 static inline int alloc_consistency_checks(struct kmem_cache *s,
1095 struct page *page,
1096 void *object, unsigned long addr)
1098 if (!check_slab(s, page))
1099 return 0;
1101 if (!check_valid_pointer(s, page, object)) {
1102 object_err(s, page, object, "Freelist Pointer check fails");
1103 return 0;
1106 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
1107 return 0;
1109 return 1;
1112 static noinline int alloc_debug_processing(struct kmem_cache *s,
1113 struct page *page,
1114 void *object, unsigned long addr)
1116 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1117 if (!alloc_consistency_checks(s, page, object, addr))
1118 goto bad;
1121 /* Success perform special debug activities for allocs */
1122 if (s->flags & SLAB_STORE_USER)
1123 set_track(s, object, TRACK_ALLOC, addr);
1124 trace(s, page, object, 1);
1125 init_object(s, object, SLUB_RED_ACTIVE);
1126 return 1;
1128 bad:
1129 if (PageSlab(page)) {
1131 * If this is a slab page then lets do the best we can
1132 * to avoid issues in the future. Marking all objects
1133 * as used avoids touching the remaining objects.
1135 slab_fix(s, "Marking all objects used");
1136 page->inuse = page->objects;
1137 page->freelist = NULL;
1139 return 0;
1142 static inline int free_consistency_checks(struct kmem_cache *s,
1143 struct page *page, void *object, unsigned long addr)
1145 if (!check_valid_pointer(s, page, object)) {
1146 slab_err(s, page, "Invalid object pointer 0x%p", object);
1147 return 0;
1150 if (on_freelist(s, page, object)) {
1151 object_err(s, page, object, "Object already free");
1152 return 0;
1155 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
1156 return 0;
1158 if (unlikely(s != page->slab_cache)) {
1159 if (!PageSlab(page)) {
1160 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1161 object);
1162 } else if (!page->slab_cache) {
1163 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1164 object);
1165 dump_stack();
1166 } else
1167 object_err(s, page, object,
1168 "page slab pointer corrupt.");
1169 return 0;
1171 return 1;
1174 /* Supports checking bulk free of a constructed freelist */
1175 static noinline int free_debug_processing(
1176 struct kmem_cache *s, struct page *page,
1177 void *head, void *tail, int bulk_cnt,
1178 unsigned long addr)
1180 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1181 void *object = head;
1182 int cnt = 0;
1183 unsigned long uninitialized_var(flags);
1184 int ret = 0;
1186 spin_lock_irqsave(&n->list_lock, flags);
1187 slab_lock(page);
1189 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1190 if (!check_slab(s, page))
1191 goto out;
1194 next_object:
1195 cnt++;
1197 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1198 if (!free_consistency_checks(s, page, object, addr))
1199 goto out;
1202 if (s->flags & SLAB_STORE_USER)
1203 set_track(s, object, TRACK_FREE, addr);
1204 trace(s, page, object, 0);
1205 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
1206 init_object(s, object, SLUB_RED_INACTIVE);
1208 /* Reached end of constructed freelist yet? */
1209 if (object != tail) {
1210 object = get_freepointer(s, object);
1211 goto next_object;
1213 ret = 1;
1215 out:
1216 if (cnt != bulk_cnt)
1217 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1218 bulk_cnt, cnt);
1220 slab_unlock(page);
1221 spin_unlock_irqrestore(&n->list_lock, flags);
1222 if (!ret)
1223 slab_fix(s, "Object at 0x%p not freed", object);
1224 return ret;
1227 static int __init setup_slub_debug(char *str)
1229 slub_debug = DEBUG_DEFAULT_FLAGS;
1230 if (*str++ != '=' || !*str)
1232 * No options specified. Switch on full debugging.
1234 goto out;
1236 if (*str == ',')
1238 * No options but restriction on slabs. This means full
1239 * debugging for slabs matching a pattern.
1241 goto check_slabs;
1243 slub_debug = 0;
1244 if (*str == '-')
1246 * Switch off all debugging measures.
1248 goto out;
1251 * Determine which debug features should be switched on
1253 for (; *str && *str != ','; str++) {
1254 switch (tolower(*str)) {
1255 case 'f':
1256 slub_debug |= SLAB_CONSISTENCY_CHECKS;
1257 break;
1258 case 'z':
1259 slub_debug |= SLAB_RED_ZONE;
1260 break;
1261 case 'p':
1262 slub_debug |= SLAB_POISON;
1263 break;
1264 case 'u':
1265 slub_debug |= SLAB_STORE_USER;
1266 break;
1267 case 't':
1268 slub_debug |= SLAB_TRACE;
1269 break;
1270 case 'a':
1271 slub_debug |= SLAB_FAILSLAB;
1272 break;
1273 case 'o':
1275 * Avoid enabling debugging on caches if its minimum
1276 * order would increase as a result.
1278 disable_higher_order_debug = 1;
1279 break;
1280 default:
1281 pr_err("slub_debug option '%c' unknown. skipped\n",
1282 *str);
1286 check_slabs:
1287 if (*str == ',')
1288 slub_debug_slabs = str + 1;
1289 out:
1290 return 1;
1293 __setup("slub_debug", setup_slub_debug);
1295 slab_flags_t kmem_cache_flags(unsigned long object_size,
1296 slab_flags_t flags, const char *name,
1297 void (*ctor)(void *))
1300 * Enable debugging if selected on the kernel commandline.
1302 if (slub_debug && (!slub_debug_slabs || (name &&
1303 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
1304 flags |= slub_debug;
1306 return flags;
1308 #else /* !CONFIG_SLUB_DEBUG */
1309 static inline void setup_object_debug(struct kmem_cache *s,
1310 struct page *page, void *object) {}
1312 static inline int alloc_debug_processing(struct kmem_cache *s,
1313 struct page *page, void *object, unsigned long addr) { return 0; }
1315 static inline int free_debug_processing(
1316 struct kmem_cache *s, struct page *page,
1317 void *head, void *tail, int bulk_cnt,
1318 unsigned long addr) { return 0; }
1320 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1321 { return 1; }
1322 static inline int check_object(struct kmem_cache *s, struct page *page,
1323 void *object, u8 val) { return 1; }
1324 static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1325 struct page *page) {}
1326 static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1327 struct page *page) {}
1328 slab_flags_t kmem_cache_flags(unsigned long object_size,
1329 slab_flags_t flags, const char *name,
1330 void (*ctor)(void *))
1332 return flags;
1334 #define slub_debug 0
1336 #define disable_higher_order_debug 0
1338 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1339 { return 0; }
1340 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1341 { return 0; }
1342 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1343 int objects) {}
1344 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1345 int objects) {}
1347 #endif /* CONFIG_SLUB_DEBUG */
1350 * Hooks for other subsystems that check memory allocations. In a typical
1351 * production configuration these hooks all should produce no code at all.
1353 static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1355 kmemleak_alloc(ptr, size, 1, flags);
1356 kasan_kmalloc_large(ptr, size, flags);
1359 static __always_inline void kfree_hook(void *x)
1361 kmemleak_free(x);
1362 kasan_kfree_large(x, _RET_IP_);
1365 static __always_inline void *slab_free_hook(struct kmem_cache *s, void *x)
1367 void *freeptr;
1369 kmemleak_free_recursive(x, s->flags);
1372 * Trouble is that we may no longer disable interrupts in the fast path
1373 * So in order to make the debug calls that expect irqs to be
1374 * disabled we need to disable interrupts temporarily.
1376 #ifdef CONFIG_LOCKDEP
1378 unsigned long flags;
1380 local_irq_save(flags);
1381 debug_check_no_locks_freed(x, s->object_size);
1382 local_irq_restore(flags);
1384 #endif
1385 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1386 debug_check_no_obj_freed(x, s->object_size);
1388 freeptr = get_freepointer(s, x);
1390 * kasan_slab_free() may put x into memory quarantine, delaying its
1391 * reuse. In this case the object's freelist pointer is changed.
1393 kasan_slab_free(s, x, _RET_IP_);
1394 return freeptr;
1397 static inline void slab_free_freelist_hook(struct kmem_cache *s,
1398 void *head, void *tail)
1401 * Compiler cannot detect this function can be removed if slab_free_hook()
1402 * evaluates to nothing. Thus, catch all relevant config debug options here.
1404 #if defined(CONFIG_LOCKDEP) || \
1405 defined(CONFIG_DEBUG_KMEMLEAK) || \
1406 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1407 defined(CONFIG_KASAN)
1409 void *object = head;
1410 void *tail_obj = tail ? : head;
1411 void *freeptr;
1413 do {
1414 freeptr = slab_free_hook(s, object);
1415 } while ((object != tail_obj) && (object = freeptr));
1416 #endif
1419 static void setup_object(struct kmem_cache *s, struct page *page,
1420 void *object)
1422 setup_object_debug(s, page, object);
1423 kasan_init_slab_obj(s, object);
1424 if (unlikely(s->ctor)) {
1425 kasan_unpoison_object_data(s, object);
1426 s->ctor(object);
1427 kasan_poison_object_data(s, object);
1432 * Slab allocation and freeing
1434 static inline struct page *alloc_slab_page(struct kmem_cache *s,
1435 gfp_t flags, int node, struct kmem_cache_order_objects oo)
1437 struct page *page;
1438 int order = oo_order(oo);
1440 if (node == NUMA_NO_NODE)
1441 page = alloc_pages(flags, order);
1442 else
1443 page = __alloc_pages_node(node, flags, order);
1445 if (page && memcg_charge_slab(page, flags, order, s)) {
1446 __free_pages(page, order);
1447 page = NULL;
1450 return page;
1453 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1454 /* Pre-initialize the random sequence cache */
1455 static int init_cache_random_seq(struct kmem_cache *s)
1457 int err;
1458 unsigned long i, count = oo_objects(s->oo);
1460 /* Bailout if already initialised */
1461 if (s->random_seq)
1462 return 0;
1464 err = cache_random_seq_create(s, count, GFP_KERNEL);
1465 if (err) {
1466 pr_err("SLUB: Unable to initialize free list for %s\n",
1467 s->name);
1468 return err;
1471 /* Transform to an offset on the set of pages */
1472 if (s->random_seq) {
1473 for (i = 0; i < count; i++)
1474 s->random_seq[i] *= s->size;
1476 return 0;
1479 /* Initialize each random sequence freelist per cache */
1480 static void __init init_freelist_randomization(void)
1482 struct kmem_cache *s;
1484 mutex_lock(&slab_mutex);
1486 list_for_each_entry(s, &slab_caches, list)
1487 init_cache_random_seq(s);
1489 mutex_unlock(&slab_mutex);
1492 /* Get the next entry on the pre-computed freelist randomized */
1493 static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1494 unsigned long *pos, void *start,
1495 unsigned long page_limit,
1496 unsigned long freelist_count)
1498 unsigned int idx;
1501 * If the target page allocation failed, the number of objects on the
1502 * page might be smaller than the usual size defined by the cache.
1504 do {
1505 idx = s->random_seq[*pos];
1506 *pos += 1;
1507 if (*pos >= freelist_count)
1508 *pos = 0;
1509 } while (unlikely(idx >= page_limit));
1511 return (char *)start + idx;
1514 /* Shuffle the single linked freelist based on a random pre-computed sequence */
1515 static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1517 void *start;
1518 void *cur;
1519 void *next;
1520 unsigned long idx, pos, page_limit, freelist_count;
1522 if (page->objects < 2 || !s->random_seq)
1523 return false;
1525 freelist_count = oo_objects(s->oo);
1526 pos = get_random_int() % freelist_count;
1528 page_limit = page->objects * s->size;
1529 start = fixup_red_left(s, page_address(page));
1531 /* First entry is used as the base of the freelist */
1532 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1533 freelist_count);
1534 page->freelist = cur;
1536 for (idx = 1; idx < page->objects; idx++) {
1537 setup_object(s, page, cur);
1538 next = next_freelist_entry(s, page, &pos, start, page_limit,
1539 freelist_count);
1540 set_freepointer(s, cur, next);
1541 cur = next;
1543 setup_object(s, page, cur);
1544 set_freepointer(s, cur, NULL);
1546 return true;
1548 #else
1549 static inline int init_cache_random_seq(struct kmem_cache *s)
1551 return 0;
1553 static inline void init_freelist_randomization(void) { }
1554 static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1556 return false;
1558 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1560 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1562 struct page *page;
1563 struct kmem_cache_order_objects oo = s->oo;
1564 gfp_t alloc_gfp;
1565 void *start, *p;
1566 int idx, order;
1567 bool shuffle;
1569 flags &= gfp_allowed_mask;
1571 if (gfpflags_allow_blocking(flags))
1572 local_irq_enable();
1574 flags |= s->allocflags;
1577 * Let the initial higher-order allocation fail under memory pressure
1578 * so we fall-back to the minimum order allocation.
1580 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1581 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
1582 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
1584 page = alloc_slab_page(s, alloc_gfp, node, oo);
1585 if (unlikely(!page)) {
1586 oo = s->min;
1587 alloc_gfp = flags;
1589 * Allocation may have failed due to fragmentation.
1590 * Try a lower order alloc if possible
1592 page = alloc_slab_page(s, alloc_gfp, node, oo);
1593 if (unlikely(!page))
1594 goto out;
1595 stat(s, ORDER_FALLBACK);
1598 page->objects = oo_objects(oo);
1600 order = compound_order(page);
1601 page->slab_cache = s;
1602 __SetPageSlab(page);
1603 if (page_is_pfmemalloc(page))
1604 SetPageSlabPfmemalloc(page);
1606 start = page_address(page);
1608 if (unlikely(s->flags & SLAB_POISON))
1609 memset(start, POISON_INUSE, PAGE_SIZE << order);
1611 kasan_poison_slab(page);
1613 shuffle = shuffle_freelist(s, page);
1615 if (!shuffle) {
1616 for_each_object_idx(p, idx, s, start, page->objects) {
1617 setup_object(s, page, p);
1618 if (likely(idx < page->objects))
1619 set_freepointer(s, p, p + s->size);
1620 else
1621 set_freepointer(s, p, NULL);
1623 page->freelist = fixup_red_left(s, start);
1626 page->inuse = page->objects;
1627 page->frozen = 1;
1629 out:
1630 if (gfpflags_allow_blocking(flags))
1631 local_irq_disable();
1632 if (!page)
1633 return NULL;
1635 mod_lruvec_page_state(page,
1636 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1637 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1638 1 << oo_order(oo));
1640 inc_slabs_node(s, page_to_nid(page), page->objects);
1642 return page;
1645 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1647 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
1648 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
1649 flags &= ~GFP_SLAB_BUG_MASK;
1650 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1651 invalid_mask, &invalid_mask, flags, &flags);
1652 dump_stack();
1655 return allocate_slab(s,
1656 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1659 static void __free_slab(struct kmem_cache *s, struct page *page)
1661 int order = compound_order(page);
1662 int pages = 1 << order;
1664 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1665 void *p;
1667 slab_pad_check(s, page);
1668 for_each_object(p, s, page_address(page),
1669 page->objects)
1670 check_object(s, page, p, SLUB_RED_INACTIVE);
1673 mod_lruvec_page_state(page,
1674 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1675 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1676 -pages);
1678 __ClearPageSlabPfmemalloc(page);
1679 __ClearPageSlab(page);
1681 page_mapcount_reset(page);
1682 if (current->reclaim_state)
1683 current->reclaim_state->reclaimed_slab += pages;
1684 memcg_uncharge_slab(page, order, s);
1685 __free_pages(page, order);
1688 #define need_reserve_slab_rcu \
1689 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1691 static void rcu_free_slab(struct rcu_head *h)
1693 struct page *page;
1695 if (need_reserve_slab_rcu)
1696 page = virt_to_head_page(h);
1697 else
1698 page = container_of((struct list_head *)h, struct page, lru);
1700 __free_slab(page->slab_cache, page);
1703 static void free_slab(struct kmem_cache *s, struct page *page)
1705 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
1706 struct rcu_head *head;
1708 if (need_reserve_slab_rcu) {
1709 int order = compound_order(page);
1710 int offset = (PAGE_SIZE << order) - s->reserved;
1712 VM_BUG_ON(s->reserved != sizeof(*head));
1713 head = page_address(page) + offset;
1714 } else {
1715 head = &page->rcu_head;
1718 call_rcu(head, rcu_free_slab);
1719 } else
1720 __free_slab(s, page);
1723 static void discard_slab(struct kmem_cache *s, struct page *page)
1725 dec_slabs_node(s, page_to_nid(page), page->objects);
1726 free_slab(s, page);
1730 * Management of partially allocated slabs.
1732 static inline void
1733 __add_partial(struct kmem_cache_node *n, struct page *page, int tail)
1735 n->nr_partial++;
1736 if (tail == DEACTIVATE_TO_TAIL)
1737 list_add_tail(&page->lru, &n->partial);
1738 else
1739 list_add(&page->lru, &n->partial);
1742 static inline void add_partial(struct kmem_cache_node *n,
1743 struct page *page, int tail)
1745 lockdep_assert_held(&n->list_lock);
1746 __add_partial(n, page, tail);
1749 static inline void remove_partial(struct kmem_cache_node *n,
1750 struct page *page)
1752 lockdep_assert_held(&n->list_lock);
1753 list_del(&page->lru);
1754 n->nr_partial--;
1758 * Remove slab from the partial list, freeze it and
1759 * return the pointer to the freelist.
1761 * Returns a list of objects or NULL if it fails.
1763 static inline void *acquire_slab(struct kmem_cache *s,
1764 struct kmem_cache_node *n, struct page *page,
1765 int mode, int *objects)
1767 void *freelist;
1768 unsigned long counters;
1769 struct page new;
1771 lockdep_assert_held(&n->list_lock);
1774 * Zap the freelist and set the frozen bit.
1775 * The old freelist is the list of objects for the
1776 * per cpu allocation list.
1778 freelist = page->freelist;
1779 counters = page->counters;
1780 new.counters = counters;
1781 *objects = new.objects - new.inuse;
1782 if (mode) {
1783 new.inuse = page->objects;
1784 new.freelist = NULL;
1785 } else {
1786 new.freelist = freelist;
1789 VM_BUG_ON(new.frozen);
1790 new.frozen = 1;
1792 if (!__cmpxchg_double_slab(s, page,
1793 freelist, counters,
1794 new.freelist, new.counters,
1795 "acquire_slab"))
1796 return NULL;
1798 remove_partial(n, page);
1799 WARN_ON(!freelist);
1800 return freelist;
1803 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
1804 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
1807 * Try to allocate a partial slab from a specific node.
1809 static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1810 struct kmem_cache_cpu *c, gfp_t flags)
1812 struct page *page, *page2;
1813 void *object = NULL;
1814 int available = 0;
1815 int objects;
1818 * Racy check. If we mistakenly see no partial slabs then we
1819 * just allocate an empty slab. If we mistakenly try to get a
1820 * partial slab and there is none available then get_partials()
1821 * will return NULL.
1823 if (!n || !n->nr_partial)
1824 return NULL;
1826 spin_lock(&n->list_lock);
1827 list_for_each_entry_safe(page, page2, &n->partial, lru) {
1828 void *t;
1830 if (!pfmemalloc_match(page, flags))
1831 continue;
1833 t = acquire_slab(s, n, page, object == NULL, &objects);
1834 if (!t)
1835 break;
1837 available += objects;
1838 if (!object) {
1839 c->page = page;
1840 stat(s, ALLOC_FROM_PARTIAL);
1841 object = t;
1842 } else {
1843 put_cpu_partial(s, page, 0);
1844 stat(s, CPU_PARTIAL_NODE);
1846 if (!kmem_cache_has_cpu_partial(s)
1847 || available > slub_cpu_partial(s) / 2)
1848 break;
1851 spin_unlock(&n->list_lock);
1852 return object;
1856 * Get a page from somewhere. Search in increasing NUMA distances.
1858 static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
1859 struct kmem_cache_cpu *c)
1861 #ifdef CONFIG_NUMA
1862 struct zonelist *zonelist;
1863 struct zoneref *z;
1864 struct zone *zone;
1865 enum zone_type high_zoneidx = gfp_zone(flags);
1866 void *object;
1867 unsigned int cpuset_mems_cookie;
1870 * The defrag ratio allows a configuration of the tradeoffs between
1871 * inter node defragmentation and node local allocations. A lower
1872 * defrag_ratio increases the tendency to do local allocations
1873 * instead of attempting to obtain partial slabs from other nodes.
1875 * If the defrag_ratio is set to 0 then kmalloc() always
1876 * returns node local objects. If the ratio is higher then kmalloc()
1877 * may return off node objects because partial slabs are obtained
1878 * from other nodes and filled up.
1880 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1881 * (which makes defrag_ratio = 1000) then every (well almost)
1882 * allocation will first attempt to defrag slab caches on other nodes.
1883 * This means scanning over all nodes to look for partial slabs which
1884 * may be expensive if we do it every time we are trying to find a slab
1885 * with available objects.
1887 if (!s->remote_node_defrag_ratio ||
1888 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1889 return NULL;
1891 do {
1892 cpuset_mems_cookie = read_mems_allowed_begin();
1893 zonelist = node_zonelist(mempolicy_slab_node(), flags);
1894 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1895 struct kmem_cache_node *n;
1897 n = get_node(s, zone_to_nid(zone));
1899 if (n && cpuset_zone_allowed(zone, flags) &&
1900 n->nr_partial > s->min_partial) {
1901 object = get_partial_node(s, n, c, flags);
1902 if (object) {
1904 * Don't check read_mems_allowed_retry()
1905 * here - if mems_allowed was updated in
1906 * parallel, that was a harmless race
1907 * between allocation and the cpuset
1908 * update
1910 return object;
1914 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1915 #endif
1916 return NULL;
1920 * Get a partial page, lock it and return it.
1922 static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
1923 struct kmem_cache_cpu *c)
1925 void *object;
1926 int searchnode = node;
1928 if (node == NUMA_NO_NODE)
1929 searchnode = numa_mem_id();
1930 else if (!node_present_pages(node))
1931 searchnode = node_to_mem_node(node);
1933 object = get_partial_node(s, get_node(s, searchnode), c, flags);
1934 if (object || node != NUMA_NO_NODE)
1935 return object;
1937 return get_any_partial(s, flags, c);
1940 #ifdef CONFIG_PREEMPT
1942 * Calculate the next globally unique transaction for disambiguiation
1943 * during cmpxchg. The transactions start with the cpu number and are then
1944 * incremented by CONFIG_NR_CPUS.
1946 #define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1947 #else
1949 * No preemption supported therefore also no need to check for
1950 * different cpus.
1952 #define TID_STEP 1
1953 #endif
1955 static inline unsigned long next_tid(unsigned long tid)
1957 return tid + TID_STEP;
1960 static inline unsigned int tid_to_cpu(unsigned long tid)
1962 return tid % TID_STEP;
1965 static inline unsigned long tid_to_event(unsigned long tid)
1967 return tid / TID_STEP;
1970 static inline unsigned int init_tid(int cpu)
1972 return cpu;
1975 static inline void note_cmpxchg_failure(const char *n,
1976 const struct kmem_cache *s, unsigned long tid)
1978 #ifdef SLUB_DEBUG_CMPXCHG
1979 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1981 pr_info("%s %s: cmpxchg redo ", n, s->name);
1983 #ifdef CONFIG_PREEMPT
1984 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
1985 pr_warn("due to cpu change %d -> %d\n",
1986 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1987 else
1988 #endif
1989 if (tid_to_event(tid) != tid_to_event(actual_tid))
1990 pr_warn("due to cpu running other code. Event %ld->%ld\n",
1991 tid_to_event(tid), tid_to_event(actual_tid));
1992 else
1993 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
1994 actual_tid, tid, next_tid(tid));
1995 #endif
1996 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
1999 static void init_kmem_cache_cpus(struct kmem_cache *s)
2001 int cpu;
2003 for_each_possible_cpu(cpu)
2004 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
2008 * Remove the cpu slab
2010 static void deactivate_slab(struct kmem_cache *s, struct page *page,
2011 void *freelist, struct kmem_cache_cpu *c)
2013 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2014 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2015 int lock = 0;
2016 enum slab_modes l = M_NONE, m = M_NONE;
2017 void *nextfree;
2018 int tail = DEACTIVATE_TO_HEAD;
2019 struct page new;
2020 struct page old;
2022 if (page->freelist) {
2023 stat(s, DEACTIVATE_REMOTE_FREES);
2024 tail = DEACTIVATE_TO_TAIL;
2028 * Stage one: Free all available per cpu objects back
2029 * to the page freelist while it is still frozen. Leave the
2030 * last one.
2032 * There is no need to take the list->lock because the page
2033 * is still frozen.
2035 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2036 void *prior;
2037 unsigned long counters;
2039 do {
2040 prior = page->freelist;
2041 counters = page->counters;
2042 set_freepointer(s, freelist, prior);
2043 new.counters = counters;
2044 new.inuse--;
2045 VM_BUG_ON(!new.frozen);
2047 } while (!__cmpxchg_double_slab(s, page,
2048 prior, counters,
2049 freelist, new.counters,
2050 "drain percpu freelist"));
2052 freelist = nextfree;
2056 * Stage two: Ensure that the page is unfrozen while the
2057 * list presence reflects the actual number of objects
2058 * during unfreeze.
2060 * We setup the list membership and then perform a cmpxchg
2061 * with the count. If there is a mismatch then the page
2062 * is not unfrozen but the page is on the wrong list.
2064 * Then we restart the process which may have to remove
2065 * the page from the list that we just put it on again
2066 * because the number of objects in the slab may have
2067 * changed.
2069 redo:
2071 old.freelist = page->freelist;
2072 old.counters = page->counters;
2073 VM_BUG_ON(!old.frozen);
2075 /* Determine target state of the slab */
2076 new.counters = old.counters;
2077 if (freelist) {
2078 new.inuse--;
2079 set_freepointer(s, freelist, old.freelist);
2080 new.freelist = freelist;
2081 } else
2082 new.freelist = old.freelist;
2084 new.frozen = 0;
2086 if (!new.inuse && n->nr_partial >= s->min_partial)
2087 m = M_FREE;
2088 else if (new.freelist) {
2089 m = M_PARTIAL;
2090 if (!lock) {
2091 lock = 1;
2093 * Taking the spinlock removes the possiblity
2094 * that acquire_slab() will see a slab page that
2095 * is frozen
2097 spin_lock(&n->list_lock);
2099 } else {
2100 m = M_FULL;
2101 if (kmem_cache_debug(s) && !lock) {
2102 lock = 1;
2104 * This also ensures that the scanning of full
2105 * slabs from diagnostic functions will not see
2106 * any frozen slabs.
2108 spin_lock(&n->list_lock);
2112 if (l != m) {
2114 if (l == M_PARTIAL)
2116 remove_partial(n, page);
2118 else if (l == M_FULL)
2120 remove_full(s, n, page);
2122 if (m == M_PARTIAL) {
2124 add_partial(n, page, tail);
2125 stat(s, tail);
2127 } else if (m == M_FULL) {
2129 stat(s, DEACTIVATE_FULL);
2130 add_full(s, n, page);
2135 l = m;
2136 if (!__cmpxchg_double_slab(s, page,
2137 old.freelist, old.counters,
2138 new.freelist, new.counters,
2139 "unfreezing slab"))
2140 goto redo;
2142 if (lock)
2143 spin_unlock(&n->list_lock);
2145 if (m == M_FREE) {
2146 stat(s, DEACTIVATE_EMPTY);
2147 discard_slab(s, page);
2148 stat(s, FREE_SLAB);
2151 c->page = NULL;
2152 c->freelist = NULL;
2156 * Unfreeze all the cpu partial slabs.
2158 * This function must be called with interrupts disabled
2159 * for the cpu using c (or some other guarantee must be there
2160 * to guarantee no concurrent accesses).
2162 static void unfreeze_partials(struct kmem_cache *s,
2163 struct kmem_cache_cpu *c)
2165 #ifdef CONFIG_SLUB_CPU_PARTIAL
2166 struct kmem_cache_node *n = NULL, *n2 = NULL;
2167 struct page *page, *discard_page = NULL;
2169 while ((page = c->partial)) {
2170 struct page new;
2171 struct page old;
2173 c->partial = page->next;
2175 n2 = get_node(s, page_to_nid(page));
2176 if (n != n2) {
2177 if (n)
2178 spin_unlock(&n->list_lock);
2180 n = n2;
2181 spin_lock(&n->list_lock);
2184 do {
2186 old.freelist = page->freelist;
2187 old.counters = page->counters;
2188 VM_BUG_ON(!old.frozen);
2190 new.counters = old.counters;
2191 new.freelist = old.freelist;
2193 new.frozen = 0;
2195 } while (!__cmpxchg_double_slab(s, page,
2196 old.freelist, old.counters,
2197 new.freelist, new.counters,
2198 "unfreezing slab"));
2200 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
2201 page->next = discard_page;
2202 discard_page = page;
2203 } else {
2204 add_partial(n, page, DEACTIVATE_TO_TAIL);
2205 stat(s, FREE_ADD_PARTIAL);
2209 if (n)
2210 spin_unlock(&n->list_lock);
2212 while (discard_page) {
2213 page = discard_page;
2214 discard_page = discard_page->next;
2216 stat(s, DEACTIVATE_EMPTY);
2217 discard_slab(s, page);
2218 stat(s, FREE_SLAB);
2220 #endif
2224 * Put a page that was just frozen (in __slab_free) into a partial page
2225 * slot if available.
2227 * If we did not find a slot then simply move all the partials to the
2228 * per node partial list.
2230 static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
2232 #ifdef CONFIG_SLUB_CPU_PARTIAL
2233 struct page *oldpage;
2234 int pages;
2235 int pobjects;
2237 preempt_disable();
2238 do {
2239 pages = 0;
2240 pobjects = 0;
2241 oldpage = this_cpu_read(s->cpu_slab->partial);
2243 if (oldpage) {
2244 pobjects = oldpage->pobjects;
2245 pages = oldpage->pages;
2246 if (drain && pobjects > s->cpu_partial) {
2247 unsigned long flags;
2249 * partial array is full. Move the existing
2250 * set to the per node partial list.
2252 local_irq_save(flags);
2253 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2254 local_irq_restore(flags);
2255 oldpage = NULL;
2256 pobjects = 0;
2257 pages = 0;
2258 stat(s, CPU_PARTIAL_DRAIN);
2262 pages++;
2263 pobjects += page->objects - page->inuse;
2265 page->pages = pages;
2266 page->pobjects = pobjects;
2267 page->next = oldpage;
2269 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2270 != oldpage);
2271 if (unlikely(!s->cpu_partial)) {
2272 unsigned long flags;
2274 local_irq_save(flags);
2275 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2276 local_irq_restore(flags);
2278 preempt_enable();
2279 #endif
2282 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
2284 stat(s, CPUSLAB_FLUSH);
2285 deactivate_slab(s, c->page, c->freelist, c);
2287 c->tid = next_tid(c->tid);
2291 * Flush cpu slab.
2293 * Called from IPI handler with interrupts disabled.
2295 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
2297 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2299 if (likely(c)) {
2300 if (c->page)
2301 flush_slab(s, c);
2303 unfreeze_partials(s, c);
2307 static void flush_cpu_slab(void *d)
2309 struct kmem_cache *s = d;
2311 __flush_cpu_slab(s, smp_processor_id());
2314 static bool has_cpu_slab(int cpu, void *info)
2316 struct kmem_cache *s = info;
2317 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2319 return c->page || slub_percpu_partial(c);
2322 static void flush_all(struct kmem_cache *s)
2324 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
2328 * Use the cpu notifier to insure that the cpu slabs are flushed when
2329 * necessary.
2331 static int slub_cpu_dead(unsigned int cpu)
2333 struct kmem_cache *s;
2334 unsigned long flags;
2336 mutex_lock(&slab_mutex);
2337 list_for_each_entry(s, &slab_caches, list) {
2338 local_irq_save(flags);
2339 __flush_cpu_slab(s, cpu);
2340 local_irq_restore(flags);
2342 mutex_unlock(&slab_mutex);
2343 return 0;
2347 * Check if the objects in a per cpu structure fit numa
2348 * locality expectations.
2350 static inline int node_match(struct page *page, int node)
2352 #ifdef CONFIG_NUMA
2353 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
2354 return 0;
2355 #endif
2356 return 1;
2359 #ifdef CONFIG_SLUB_DEBUG
2360 static int count_free(struct page *page)
2362 return page->objects - page->inuse;
2365 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2367 return atomic_long_read(&n->total_objects);
2369 #endif /* CONFIG_SLUB_DEBUG */
2371 #if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
2372 static unsigned long count_partial(struct kmem_cache_node *n,
2373 int (*get_count)(struct page *))
2375 unsigned long flags;
2376 unsigned long x = 0;
2377 struct page *page;
2379 spin_lock_irqsave(&n->list_lock, flags);
2380 list_for_each_entry(page, &n->partial, lru)
2381 x += get_count(page);
2382 spin_unlock_irqrestore(&n->list_lock, flags);
2383 return x;
2385 #endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
2387 static noinline void
2388 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2390 #ifdef CONFIG_SLUB_DEBUG
2391 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2392 DEFAULT_RATELIMIT_BURST);
2393 int node;
2394 struct kmem_cache_node *n;
2396 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2397 return;
2399 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2400 nid, gfpflags, &gfpflags);
2401 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2402 s->name, s->object_size, s->size, oo_order(s->oo),
2403 oo_order(s->min));
2405 if (oo_order(s->min) > get_order(s->object_size))
2406 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2407 s->name);
2409 for_each_kmem_cache_node(s, node, n) {
2410 unsigned long nr_slabs;
2411 unsigned long nr_objs;
2412 unsigned long nr_free;
2414 nr_free = count_partial(n, count_free);
2415 nr_slabs = node_nr_slabs(n);
2416 nr_objs = node_nr_objs(n);
2418 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
2419 node, nr_slabs, nr_objs, nr_free);
2421 #endif
2424 static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2425 int node, struct kmem_cache_cpu **pc)
2427 void *freelist;
2428 struct kmem_cache_cpu *c = *pc;
2429 struct page *page;
2431 freelist = get_partial(s, flags, node, c);
2433 if (freelist)
2434 return freelist;
2436 page = new_slab(s, flags, node);
2437 if (page) {
2438 c = raw_cpu_ptr(s->cpu_slab);
2439 if (c->page)
2440 flush_slab(s, c);
2443 * No other reference to the page yet so we can
2444 * muck around with it freely without cmpxchg
2446 freelist = page->freelist;
2447 page->freelist = NULL;
2449 stat(s, ALLOC_SLAB);
2450 c->page = page;
2451 *pc = c;
2452 } else
2453 freelist = NULL;
2455 return freelist;
2458 static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2460 if (unlikely(PageSlabPfmemalloc(page)))
2461 return gfp_pfmemalloc_allowed(gfpflags);
2463 return true;
2467 * Check the page->freelist of a page and either transfer the freelist to the
2468 * per cpu freelist or deactivate the page.
2470 * The page is still frozen if the return value is not NULL.
2472 * If this function returns NULL then the page has been unfrozen.
2474 * This function must be called with interrupt disabled.
2476 static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2478 struct page new;
2479 unsigned long counters;
2480 void *freelist;
2482 do {
2483 freelist = page->freelist;
2484 counters = page->counters;
2486 new.counters = counters;
2487 VM_BUG_ON(!new.frozen);
2489 new.inuse = page->objects;
2490 new.frozen = freelist != NULL;
2492 } while (!__cmpxchg_double_slab(s, page,
2493 freelist, counters,
2494 NULL, new.counters,
2495 "get_freelist"));
2497 return freelist;
2501 * Slow path. The lockless freelist is empty or we need to perform
2502 * debugging duties.
2504 * Processing is still very fast if new objects have been freed to the
2505 * regular freelist. In that case we simply take over the regular freelist
2506 * as the lockless freelist and zap the regular freelist.
2508 * If that is not working then we fall back to the partial lists. We take the
2509 * first element of the freelist as the object to allocate now and move the
2510 * rest of the freelist to the lockless freelist.
2512 * And if we were unable to get a new slab from the partial slab lists then
2513 * we need to allocate a new slab. This is the slowest path since it involves
2514 * a call to the page allocator and the setup of a new slab.
2516 * Version of __slab_alloc to use when we know that interrupts are
2517 * already disabled (which is the case for bulk allocation).
2519 static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2520 unsigned long addr, struct kmem_cache_cpu *c)
2522 void *freelist;
2523 struct page *page;
2525 page = c->page;
2526 if (!page)
2527 goto new_slab;
2528 redo:
2530 if (unlikely(!node_match(page, node))) {
2531 int searchnode = node;
2533 if (node != NUMA_NO_NODE && !node_present_pages(node))
2534 searchnode = node_to_mem_node(node);
2536 if (unlikely(!node_match(page, searchnode))) {
2537 stat(s, ALLOC_NODE_MISMATCH);
2538 deactivate_slab(s, page, c->freelist, c);
2539 goto new_slab;
2544 * By rights, we should be searching for a slab page that was
2545 * PFMEMALLOC but right now, we are losing the pfmemalloc
2546 * information when the page leaves the per-cpu allocator
2548 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
2549 deactivate_slab(s, page, c->freelist, c);
2550 goto new_slab;
2553 /* must check again c->freelist in case of cpu migration or IRQ */
2554 freelist = c->freelist;
2555 if (freelist)
2556 goto load_freelist;
2558 freelist = get_freelist(s, page);
2560 if (!freelist) {
2561 c->page = NULL;
2562 stat(s, DEACTIVATE_BYPASS);
2563 goto new_slab;
2566 stat(s, ALLOC_REFILL);
2568 load_freelist:
2570 * freelist is pointing to the list of objects to be used.
2571 * page is pointing to the page from which the objects are obtained.
2572 * That page must be frozen for per cpu allocations to work.
2574 VM_BUG_ON(!c->page->frozen);
2575 c->freelist = get_freepointer(s, freelist);
2576 c->tid = next_tid(c->tid);
2577 return freelist;
2579 new_slab:
2581 if (slub_percpu_partial(c)) {
2582 page = c->page = slub_percpu_partial(c);
2583 slub_set_percpu_partial(c, page);
2584 stat(s, CPU_PARTIAL_ALLOC);
2585 goto redo;
2588 freelist = new_slab_objects(s, gfpflags, node, &c);
2590 if (unlikely(!freelist)) {
2591 slab_out_of_memory(s, gfpflags, node);
2592 return NULL;
2595 page = c->page;
2596 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
2597 goto load_freelist;
2599 /* Only entered in the debug case */
2600 if (kmem_cache_debug(s) &&
2601 !alloc_debug_processing(s, page, freelist, addr))
2602 goto new_slab; /* Slab failed checks. Next slab needed */
2604 deactivate_slab(s, page, get_freepointer(s, freelist), c);
2605 return freelist;
2609 * Another one that disabled interrupt and compensates for possible
2610 * cpu changes by refetching the per cpu area pointer.
2612 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2613 unsigned long addr, struct kmem_cache_cpu *c)
2615 void *p;
2616 unsigned long flags;
2618 local_irq_save(flags);
2619 #ifdef CONFIG_PREEMPT
2621 * We may have been preempted and rescheduled on a different
2622 * cpu before disabling interrupts. Need to reload cpu area
2623 * pointer.
2625 c = this_cpu_ptr(s->cpu_slab);
2626 #endif
2628 p = ___slab_alloc(s, gfpflags, node, addr, c);
2629 local_irq_restore(flags);
2630 return p;
2634 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2635 * have the fastpath folded into their functions. So no function call
2636 * overhead for requests that can be satisfied on the fastpath.
2638 * The fastpath works by first checking if the lockless freelist can be used.
2639 * If not then __slab_alloc is called for slow processing.
2641 * Otherwise we can simply pick the next object from the lockless free list.
2643 static __always_inline void *slab_alloc_node(struct kmem_cache *s,
2644 gfp_t gfpflags, int node, unsigned long addr)
2646 void *object;
2647 struct kmem_cache_cpu *c;
2648 struct page *page;
2649 unsigned long tid;
2651 s = slab_pre_alloc_hook(s, gfpflags);
2652 if (!s)
2653 return NULL;
2654 redo:
2656 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2657 * enabled. We may switch back and forth between cpus while
2658 * reading from one cpu area. That does not matter as long
2659 * as we end up on the original cpu again when doing the cmpxchg.
2661 * We should guarantee that tid and kmem_cache are retrieved on
2662 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2663 * to check if it is matched or not.
2665 do {
2666 tid = this_cpu_read(s->cpu_slab->tid);
2667 c = raw_cpu_ptr(s->cpu_slab);
2668 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2669 unlikely(tid != READ_ONCE(c->tid)));
2672 * Irqless object alloc/free algorithm used here depends on sequence
2673 * of fetching cpu_slab's data. tid should be fetched before anything
2674 * on c to guarantee that object and page associated with previous tid
2675 * won't be used with current tid. If we fetch tid first, object and
2676 * page could be one associated with next tid and our alloc/free
2677 * request will be failed. In this case, we will retry. So, no problem.
2679 barrier();
2682 * The transaction ids are globally unique per cpu and per operation on
2683 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2684 * occurs on the right processor and that there was no operation on the
2685 * linked list in between.
2688 object = c->freelist;
2689 page = c->page;
2690 if (unlikely(!object || !node_match(page, node))) {
2691 object = __slab_alloc(s, gfpflags, node, addr, c);
2692 stat(s, ALLOC_SLOWPATH);
2693 } else {
2694 void *next_object = get_freepointer_safe(s, object);
2697 * The cmpxchg will only match if there was no additional
2698 * operation and if we are on the right processor.
2700 * The cmpxchg does the following atomically (without lock
2701 * semantics!)
2702 * 1. Relocate first pointer to the current per cpu area.
2703 * 2. Verify that tid and freelist have not been changed
2704 * 3. If they were not changed replace tid and freelist
2706 * Since this is without lock semantics the protection is only
2707 * against code executing on this cpu *not* from access by
2708 * other cpus.
2710 if (unlikely(!this_cpu_cmpxchg_double(
2711 s->cpu_slab->freelist, s->cpu_slab->tid,
2712 object, tid,
2713 next_object, next_tid(tid)))) {
2715 note_cmpxchg_failure("slab_alloc", s, tid);
2716 goto redo;
2718 prefetch_freepointer(s, next_object);
2719 stat(s, ALLOC_FASTPATH);
2722 if (unlikely(gfpflags & __GFP_ZERO) && object)
2723 memset(object, 0, s->object_size);
2725 slab_post_alloc_hook(s, gfpflags, 1, &object);
2727 return object;
2730 static __always_inline void *slab_alloc(struct kmem_cache *s,
2731 gfp_t gfpflags, unsigned long addr)
2733 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2736 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2738 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2740 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2741 s->size, gfpflags);
2743 return ret;
2745 EXPORT_SYMBOL(kmem_cache_alloc);
2747 #ifdef CONFIG_TRACING
2748 void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2750 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
2751 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
2752 kasan_kmalloc(s, ret, size, gfpflags);
2753 return ret;
2755 EXPORT_SYMBOL(kmem_cache_alloc_trace);
2756 #endif
2758 #ifdef CONFIG_NUMA
2759 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2761 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2763 trace_kmem_cache_alloc_node(_RET_IP_, ret,
2764 s->object_size, s->size, gfpflags, node);
2766 return ret;
2768 EXPORT_SYMBOL(kmem_cache_alloc_node);
2770 #ifdef CONFIG_TRACING
2771 void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
2772 gfp_t gfpflags,
2773 int node, size_t size)
2775 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
2777 trace_kmalloc_node(_RET_IP_, ret,
2778 size, s->size, gfpflags, node);
2780 kasan_kmalloc(s, ret, size, gfpflags);
2781 return ret;
2783 EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
2784 #endif
2785 #endif
2788 * Slow path handling. This may still be called frequently since objects
2789 * have a longer lifetime than the cpu slabs in most processing loads.
2791 * So we still attempt to reduce cache line usage. Just take the slab
2792 * lock and free the item. If there is no additional partial page
2793 * handling required then we can return immediately.
2795 static void __slab_free(struct kmem_cache *s, struct page *page,
2796 void *head, void *tail, int cnt,
2797 unsigned long addr)
2800 void *prior;
2801 int was_frozen;
2802 struct page new;
2803 unsigned long counters;
2804 struct kmem_cache_node *n = NULL;
2805 unsigned long uninitialized_var(flags);
2807 stat(s, FREE_SLOWPATH);
2809 if (kmem_cache_debug(s) &&
2810 !free_debug_processing(s, page, head, tail, cnt, addr))
2811 return;
2813 do {
2814 if (unlikely(n)) {
2815 spin_unlock_irqrestore(&n->list_lock, flags);
2816 n = NULL;
2818 prior = page->freelist;
2819 counters = page->counters;
2820 set_freepointer(s, tail, prior);
2821 new.counters = counters;
2822 was_frozen = new.frozen;
2823 new.inuse -= cnt;
2824 if ((!new.inuse || !prior) && !was_frozen) {
2826 if (kmem_cache_has_cpu_partial(s) && !prior) {
2829 * Slab was on no list before and will be
2830 * partially empty
2831 * We can defer the list move and instead
2832 * freeze it.
2834 new.frozen = 1;
2836 } else { /* Needs to be taken off a list */
2838 n = get_node(s, page_to_nid(page));
2840 * Speculatively acquire the list_lock.
2841 * If the cmpxchg does not succeed then we may
2842 * drop the list_lock without any processing.
2844 * Otherwise the list_lock will synchronize with
2845 * other processors updating the list of slabs.
2847 spin_lock_irqsave(&n->list_lock, flags);
2852 } while (!cmpxchg_double_slab(s, page,
2853 prior, counters,
2854 head, new.counters,
2855 "__slab_free"));
2857 if (likely(!n)) {
2860 * If we just froze the page then put it onto the
2861 * per cpu partial list.
2863 if (new.frozen && !was_frozen) {
2864 put_cpu_partial(s, page, 1);
2865 stat(s, CPU_PARTIAL_FREE);
2868 * The list lock was not taken therefore no list
2869 * activity can be necessary.
2871 if (was_frozen)
2872 stat(s, FREE_FROZEN);
2873 return;
2876 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
2877 goto slab_empty;
2880 * Objects left in the slab. If it was not on the partial list before
2881 * then add it.
2883 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2884 if (kmem_cache_debug(s))
2885 remove_full(s, n, page);
2886 add_partial(n, page, DEACTIVATE_TO_TAIL);
2887 stat(s, FREE_ADD_PARTIAL);
2889 spin_unlock_irqrestore(&n->list_lock, flags);
2890 return;
2892 slab_empty:
2893 if (prior) {
2895 * Slab on the partial list.
2897 remove_partial(n, page);
2898 stat(s, FREE_REMOVE_PARTIAL);
2899 } else {
2900 /* Slab must be on the full list */
2901 remove_full(s, n, page);
2904 spin_unlock_irqrestore(&n->list_lock, flags);
2905 stat(s, FREE_SLAB);
2906 discard_slab(s, page);
2910 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2911 * can perform fastpath freeing without additional function calls.
2913 * The fastpath is only possible if we are freeing to the current cpu slab
2914 * of this processor. This typically the case if we have just allocated
2915 * the item before.
2917 * If fastpath is not possible then fall back to __slab_free where we deal
2918 * with all sorts of special processing.
2920 * Bulk free of a freelist with several objects (all pointing to the
2921 * same page) possible by specifying head and tail ptr, plus objects
2922 * count (cnt). Bulk free indicated by tail pointer being set.
2924 static __always_inline void do_slab_free(struct kmem_cache *s,
2925 struct page *page, void *head, void *tail,
2926 int cnt, unsigned long addr)
2928 void *tail_obj = tail ? : head;
2929 struct kmem_cache_cpu *c;
2930 unsigned long tid;
2931 redo:
2933 * Determine the currently cpus per cpu slab.
2934 * The cpu may change afterward. However that does not matter since
2935 * data is retrieved via this pointer. If we are on the same cpu
2936 * during the cmpxchg then the free will succeed.
2938 do {
2939 tid = this_cpu_read(s->cpu_slab->tid);
2940 c = raw_cpu_ptr(s->cpu_slab);
2941 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2942 unlikely(tid != READ_ONCE(c->tid)));
2944 /* Same with comment on barrier() in slab_alloc_node() */
2945 barrier();
2947 if (likely(page == c->page)) {
2948 set_freepointer(s, tail_obj, c->freelist);
2950 if (unlikely(!this_cpu_cmpxchg_double(
2951 s->cpu_slab->freelist, s->cpu_slab->tid,
2952 c->freelist, tid,
2953 head, next_tid(tid)))) {
2955 note_cmpxchg_failure("slab_free", s, tid);
2956 goto redo;
2958 stat(s, FREE_FASTPATH);
2959 } else
2960 __slab_free(s, page, head, tail_obj, cnt, addr);
2964 static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2965 void *head, void *tail, int cnt,
2966 unsigned long addr)
2968 slab_free_freelist_hook(s, head, tail);
2970 * slab_free_freelist_hook() could have put the items into quarantine.
2971 * If so, no need to free them.
2973 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
2974 return;
2975 do_slab_free(s, page, head, tail, cnt, addr);
2978 #ifdef CONFIG_KASAN
2979 void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2981 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2983 #endif
2985 void kmem_cache_free(struct kmem_cache *s, void *x)
2987 s = cache_from_obj(s, x);
2988 if (!s)
2989 return;
2990 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
2991 trace_kmem_cache_free(_RET_IP_, x);
2993 EXPORT_SYMBOL(kmem_cache_free);
2995 struct detached_freelist {
2996 struct page *page;
2997 void *tail;
2998 void *freelist;
2999 int cnt;
3000 struct kmem_cache *s;
3004 * This function progressively scans the array with free objects (with
3005 * a limited look ahead) and extract objects belonging to the same
3006 * page. It builds a detached freelist directly within the given
3007 * page/objects. This can happen without any need for
3008 * synchronization, because the objects are owned by running process.
3009 * The freelist is build up as a single linked list in the objects.
3010 * The idea is, that this detached freelist can then be bulk
3011 * transferred to the real freelist(s), but only requiring a single
3012 * synchronization primitive. Look ahead in the array is limited due
3013 * to performance reasons.
3015 static inline
3016 int build_detached_freelist(struct kmem_cache *s, size_t size,
3017 void **p, struct detached_freelist *df)
3019 size_t first_skipped_index = 0;
3020 int lookahead = 3;
3021 void *object;
3022 struct page *page;
3024 /* Always re-init detached_freelist */
3025 df->page = NULL;
3027 do {
3028 object = p[--size];
3029 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
3030 } while (!object && size);
3032 if (!object)
3033 return 0;
3035 page = virt_to_head_page(object);
3036 if (!s) {
3037 /* Handle kalloc'ed objects */
3038 if (unlikely(!PageSlab(page))) {
3039 BUG_ON(!PageCompound(page));
3040 kfree_hook(object);
3041 __free_pages(page, compound_order(page));
3042 p[size] = NULL; /* mark object processed */
3043 return size;
3045 /* Derive kmem_cache from object */
3046 df->s = page->slab_cache;
3047 } else {
3048 df->s = cache_from_obj(s, object); /* Support for memcg */
3051 /* Start new detached freelist */
3052 df->page = page;
3053 set_freepointer(df->s, object, NULL);
3054 df->tail = object;
3055 df->freelist = object;
3056 p[size] = NULL; /* mark object processed */
3057 df->cnt = 1;
3059 while (size) {
3060 object = p[--size];
3061 if (!object)
3062 continue; /* Skip processed objects */
3064 /* df->page is always set at this point */
3065 if (df->page == virt_to_head_page(object)) {
3066 /* Opportunity build freelist */
3067 set_freepointer(df->s, object, df->freelist);
3068 df->freelist = object;
3069 df->cnt++;
3070 p[size] = NULL; /* mark object processed */
3072 continue;
3075 /* Limit look ahead search */
3076 if (!--lookahead)
3077 break;
3079 if (!first_skipped_index)
3080 first_skipped_index = size + 1;
3083 return first_skipped_index;
3086 /* Note that interrupts must be enabled when calling this function. */
3087 void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
3089 if (WARN_ON(!size))
3090 return;
3092 do {
3093 struct detached_freelist df;
3095 size = build_detached_freelist(s, size, p, &df);
3096 if (!df.page)
3097 continue;
3099 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
3100 } while (likely(size));
3102 EXPORT_SYMBOL(kmem_cache_free_bulk);
3104 /* Note that interrupts must be enabled when calling this function. */
3105 int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3106 void **p)
3108 struct kmem_cache_cpu *c;
3109 int i;
3111 /* memcg and kmem_cache debug support */
3112 s = slab_pre_alloc_hook(s, flags);
3113 if (unlikely(!s))
3114 return false;
3116 * Drain objects in the per cpu slab, while disabling local
3117 * IRQs, which protects against PREEMPT and interrupts
3118 * handlers invoking normal fastpath.
3120 local_irq_disable();
3121 c = this_cpu_ptr(s->cpu_slab);
3123 for (i = 0; i < size; i++) {
3124 void *object = c->freelist;
3126 if (unlikely(!object)) {
3128 * Invoking slow path likely have side-effect
3129 * of re-populating per CPU c->freelist
3131 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
3132 _RET_IP_, c);
3133 if (unlikely(!p[i]))
3134 goto error;
3136 c = this_cpu_ptr(s->cpu_slab);
3137 continue; /* goto for-loop */
3139 c->freelist = get_freepointer(s, object);
3140 p[i] = object;
3142 c->tid = next_tid(c->tid);
3143 local_irq_enable();
3145 /* Clear memory outside IRQ disabled fastpath loop */
3146 if (unlikely(flags & __GFP_ZERO)) {
3147 int j;
3149 for (j = 0; j < i; j++)
3150 memset(p[j], 0, s->object_size);
3153 /* memcg and kmem_cache debug support */
3154 slab_post_alloc_hook(s, flags, size, p);
3155 return i;
3156 error:
3157 local_irq_enable();
3158 slab_post_alloc_hook(s, flags, i, p);
3159 __kmem_cache_free_bulk(s, i, p);
3160 return 0;
3162 EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3166 * Object placement in a slab is made very easy because we always start at
3167 * offset 0. If we tune the size of the object to the alignment then we can
3168 * get the required alignment by putting one properly sized object after
3169 * another.
3171 * Notice that the allocation order determines the sizes of the per cpu
3172 * caches. Each processor has always one slab available for allocations.
3173 * Increasing the allocation order reduces the number of times that slabs
3174 * must be moved on and off the partial lists and is therefore a factor in
3175 * locking overhead.
3179 * Mininum / Maximum order of slab pages. This influences locking overhead
3180 * and slab fragmentation. A higher order reduces the number of partial slabs
3181 * and increases the number of allocations possible without having to
3182 * take the list_lock.
3184 static int slub_min_order;
3185 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
3186 static int slub_min_objects;
3189 * Calculate the order of allocation given an slab object size.
3191 * The order of allocation has significant impact on performance and other
3192 * system components. Generally order 0 allocations should be preferred since
3193 * order 0 does not cause fragmentation in the page allocator. Larger objects
3194 * be problematic to put into order 0 slabs because there may be too much
3195 * unused space left. We go to a higher order if more than 1/16th of the slab
3196 * would be wasted.
3198 * In order to reach satisfactory performance we must ensure that a minimum
3199 * number of objects is in one slab. Otherwise we may generate too much
3200 * activity on the partial lists which requires taking the list_lock. This is
3201 * less a concern for large slabs though which are rarely used.
3203 * slub_max_order specifies the order where we begin to stop considering the
3204 * number of objects in a slab as critical. If we reach slub_max_order then
3205 * we try to keep the page order as low as possible. So we accept more waste
3206 * of space in favor of a small page order.
3208 * Higher order allocations also allow the placement of more objects in a
3209 * slab and thereby reduce object handling overhead. If the user has
3210 * requested a higher mininum order then we start with that one instead of
3211 * the smallest order which will fit the object.
3213 static inline int slab_order(int size, int min_objects,
3214 int max_order, int fract_leftover, int reserved)
3216 int order;
3217 int rem;
3218 int min_order = slub_min_order;
3220 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
3221 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
3223 for (order = max(min_order, get_order(min_objects * size + reserved));
3224 order <= max_order; order++) {
3226 unsigned long slab_size = PAGE_SIZE << order;
3228 rem = (slab_size - reserved) % size;
3230 if (rem <= slab_size / fract_leftover)
3231 break;
3234 return order;
3237 static inline int calculate_order(int size, int reserved)
3239 int order;
3240 int min_objects;
3241 int fraction;
3242 int max_objects;
3245 * Attempt to find best configuration for a slab. This
3246 * works by first attempting to generate a layout with
3247 * the best configuration and backing off gradually.
3249 * First we increase the acceptable waste in a slab. Then
3250 * we reduce the minimum objects required in a slab.
3252 min_objects = slub_min_objects;
3253 if (!min_objects)
3254 min_objects = 4 * (fls(nr_cpu_ids) + 1);
3255 max_objects = order_objects(slub_max_order, size, reserved);
3256 min_objects = min(min_objects, max_objects);
3258 while (min_objects > 1) {
3259 fraction = 16;
3260 while (fraction >= 4) {
3261 order = slab_order(size, min_objects,
3262 slub_max_order, fraction, reserved);
3263 if (order <= slub_max_order)
3264 return order;
3265 fraction /= 2;
3267 min_objects--;
3271 * We were unable to place multiple objects in a slab. Now
3272 * lets see if we can place a single object there.
3274 order = slab_order(size, 1, slub_max_order, 1, reserved);
3275 if (order <= slub_max_order)
3276 return order;
3279 * Doh this slab cannot be placed using slub_max_order.
3281 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
3282 if (order < MAX_ORDER)
3283 return order;
3284 return -ENOSYS;
3287 static void
3288 init_kmem_cache_node(struct kmem_cache_node *n)
3290 n->nr_partial = 0;
3291 spin_lock_init(&n->list_lock);
3292 INIT_LIST_HEAD(&n->partial);
3293 #ifdef CONFIG_SLUB_DEBUG
3294 atomic_long_set(&n->nr_slabs, 0);
3295 atomic_long_set(&n->total_objects, 0);
3296 INIT_LIST_HEAD(&n->full);
3297 #endif
3300 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
3302 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
3303 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
3306 * Must align to double word boundary for the double cmpxchg
3307 * instructions to work; see __pcpu_double_call_return_bool().
3309 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3310 2 * sizeof(void *));
3312 if (!s->cpu_slab)
3313 return 0;
3315 init_kmem_cache_cpus(s);
3317 return 1;
3320 static struct kmem_cache *kmem_cache_node;
3323 * No kmalloc_node yet so do it by hand. We know that this is the first
3324 * slab on the node for this slabcache. There are no concurrent accesses
3325 * possible.
3327 * Note that this function only works on the kmem_cache_node
3328 * when allocating for the kmem_cache_node. This is used for bootstrapping
3329 * memory on a fresh node that has no slab structures yet.
3331 static void early_kmem_cache_node_alloc(int node)
3333 struct page *page;
3334 struct kmem_cache_node *n;
3336 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
3338 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
3340 BUG_ON(!page);
3341 if (page_to_nid(page) != node) {
3342 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3343 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
3346 n = page->freelist;
3347 BUG_ON(!n);
3348 page->freelist = get_freepointer(kmem_cache_node, n);
3349 page->inuse = 1;
3350 page->frozen = 0;
3351 kmem_cache_node->node[node] = n;
3352 #ifdef CONFIG_SLUB_DEBUG
3353 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
3354 init_tracking(kmem_cache_node, n);
3355 #endif
3356 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3357 GFP_KERNEL);
3358 init_kmem_cache_node(n);
3359 inc_slabs_node(kmem_cache_node, node, page->objects);
3362 * No locks need to be taken here as it has just been
3363 * initialized and there is no concurrent access.
3365 __add_partial(n, page, DEACTIVATE_TO_HEAD);
3368 static void free_kmem_cache_nodes(struct kmem_cache *s)
3370 int node;
3371 struct kmem_cache_node *n;
3373 for_each_kmem_cache_node(s, node, n) {
3374 s->node[node] = NULL;
3375 kmem_cache_free(kmem_cache_node, n);
3379 void __kmem_cache_release(struct kmem_cache *s)
3381 cache_random_seq_destroy(s);
3382 free_percpu(s->cpu_slab);
3383 free_kmem_cache_nodes(s);
3386 static int init_kmem_cache_nodes(struct kmem_cache *s)
3388 int node;
3390 for_each_node_state(node, N_NORMAL_MEMORY) {
3391 struct kmem_cache_node *n;
3393 if (slab_state == DOWN) {
3394 early_kmem_cache_node_alloc(node);
3395 continue;
3397 n = kmem_cache_alloc_node(kmem_cache_node,
3398 GFP_KERNEL, node);
3400 if (!n) {
3401 free_kmem_cache_nodes(s);
3402 return 0;
3405 init_kmem_cache_node(n);
3406 s->node[node] = n;
3408 return 1;
3411 static void set_min_partial(struct kmem_cache *s, unsigned long min)
3413 if (min < MIN_PARTIAL)
3414 min = MIN_PARTIAL;
3415 else if (min > MAX_PARTIAL)
3416 min = MAX_PARTIAL;
3417 s->min_partial = min;
3420 static void set_cpu_partial(struct kmem_cache *s)
3422 #ifdef CONFIG_SLUB_CPU_PARTIAL
3424 * cpu_partial determined the maximum number of objects kept in the
3425 * per cpu partial lists of a processor.
3427 * Per cpu partial lists mainly contain slabs that just have one
3428 * object freed. If they are used for allocation then they can be
3429 * filled up again with minimal effort. The slab will never hit the
3430 * per node partial lists and therefore no locking will be required.
3432 * This setting also determines
3434 * A) The number of objects from per cpu partial slabs dumped to the
3435 * per node list when we reach the limit.
3436 * B) The number of objects in cpu partial slabs to extract from the
3437 * per node list when we run out of per cpu objects. We only fetch
3438 * 50% to keep some capacity around for frees.
3440 if (!kmem_cache_has_cpu_partial(s))
3441 s->cpu_partial = 0;
3442 else if (s->size >= PAGE_SIZE)
3443 s->cpu_partial = 2;
3444 else if (s->size >= 1024)
3445 s->cpu_partial = 6;
3446 else if (s->size >= 256)
3447 s->cpu_partial = 13;
3448 else
3449 s->cpu_partial = 30;
3450 #endif
3454 * calculate_sizes() determines the order and the distribution of data within
3455 * a slab object.
3457 static int calculate_sizes(struct kmem_cache *s, int forced_order)
3459 slab_flags_t flags = s->flags;
3460 size_t size = s->object_size;
3461 int order;
3464 * Round up object size to the next word boundary. We can only
3465 * place the free pointer at word boundaries and this determines
3466 * the possible location of the free pointer.
3468 size = ALIGN(size, sizeof(void *));
3470 #ifdef CONFIG_SLUB_DEBUG
3472 * Determine if we can poison the object itself. If the user of
3473 * the slab may touch the object after free or before allocation
3474 * then we should never poison the object itself.
3476 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
3477 !s->ctor)
3478 s->flags |= __OBJECT_POISON;
3479 else
3480 s->flags &= ~__OBJECT_POISON;
3484 * If we are Redzoning then check if there is some space between the
3485 * end of the object and the free pointer. If not then add an
3486 * additional word to have some bytes to store Redzone information.
3488 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
3489 size += sizeof(void *);
3490 #endif
3493 * With that we have determined the number of bytes in actual use
3494 * by the object. This is the potential offset to the free pointer.
3496 s->inuse = size;
3498 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
3499 s->ctor)) {
3501 * Relocate free pointer after the object if it is not
3502 * permitted to overwrite the first word of the object on
3503 * kmem_cache_free.
3505 * This is the case if we do RCU, have a constructor or
3506 * destructor or are poisoning the objects.
3508 s->offset = size;
3509 size += sizeof(void *);
3512 #ifdef CONFIG_SLUB_DEBUG
3513 if (flags & SLAB_STORE_USER)
3515 * Need to store information about allocs and frees after
3516 * the object.
3518 size += 2 * sizeof(struct track);
3519 #endif
3521 kasan_cache_create(s, &size, &s->flags);
3522 #ifdef CONFIG_SLUB_DEBUG
3523 if (flags & SLAB_RED_ZONE) {
3525 * Add some empty padding so that we can catch
3526 * overwrites from earlier objects rather than let
3527 * tracking information or the free pointer be
3528 * corrupted if a user writes before the start
3529 * of the object.
3531 size += sizeof(void *);
3533 s->red_left_pad = sizeof(void *);
3534 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3535 size += s->red_left_pad;
3537 #endif
3540 * SLUB stores one object immediately after another beginning from
3541 * offset 0. In order to align the objects we have to simply size
3542 * each object to conform to the alignment.
3544 size = ALIGN(size, s->align);
3545 s->size = size;
3546 if (forced_order >= 0)
3547 order = forced_order;
3548 else
3549 order = calculate_order(size, s->reserved);
3551 if (order < 0)
3552 return 0;
3554 s->allocflags = 0;
3555 if (order)
3556 s->allocflags |= __GFP_COMP;
3558 if (s->flags & SLAB_CACHE_DMA)
3559 s->allocflags |= GFP_DMA;
3561 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3562 s->allocflags |= __GFP_RECLAIMABLE;
3565 * Determine the number of objects per slab
3567 s->oo = oo_make(order, size, s->reserved);
3568 s->min = oo_make(get_order(size), size, s->reserved);
3569 if (oo_objects(s->oo) > oo_objects(s->max))
3570 s->max = s->oo;
3572 return !!oo_objects(s->oo);
3575 static int kmem_cache_open(struct kmem_cache *s, slab_flags_t flags)
3577 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
3578 s->reserved = 0;
3579 #ifdef CONFIG_SLAB_FREELIST_HARDENED
3580 s->random = get_random_long();
3581 #endif
3583 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
3584 s->reserved = sizeof(struct rcu_head);
3586 if (!calculate_sizes(s, -1))
3587 goto error;
3588 if (disable_higher_order_debug) {
3590 * Disable debugging flags that store metadata if the min slab
3591 * order increased.
3593 if (get_order(s->size) > get_order(s->object_size)) {
3594 s->flags &= ~DEBUG_METADATA_FLAGS;
3595 s->offset = 0;
3596 if (!calculate_sizes(s, -1))
3597 goto error;
3601 #if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3602 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
3603 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
3604 /* Enable fast mode */
3605 s->flags |= __CMPXCHG_DOUBLE;
3606 #endif
3609 * The larger the object size is, the more pages we want on the partial
3610 * list to avoid pounding the page allocator excessively.
3612 set_min_partial(s, ilog2(s->size) / 2);
3614 set_cpu_partial(s);
3616 #ifdef CONFIG_NUMA
3617 s->remote_node_defrag_ratio = 1000;
3618 #endif
3620 /* Initialize the pre-computed randomized freelist if slab is up */
3621 if (slab_state >= UP) {
3622 if (init_cache_random_seq(s))
3623 goto error;
3626 if (!init_kmem_cache_nodes(s))
3627 goto error;
3629 if (alloc_kmem_cache_cpus(s))
3630 return 0;
3632 free_kmem_cache_nodes(s);
3633 error:
3634 if (flags & SLAB_PANIC)
3635 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3636 s->name, (unsigned long)s->size, s->size,
3637 oo_order(s->oo), s->offset, (unsigned long)flags);
3638 return -EINVAL;
3641 static void list_slab_objects(struct kmem_cache *s, struct page *page,
3642 const char *text)
3644 #ifdef CONFIG_SLUB_DEBUG
3645 void *addr = page_address(page);
3646 void *p;
3647 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3648 sizeof(long), GFP_ATOMIC);
3649 if (!map)
3650 return;
3651 slab_err(s, page, text, s->name);
3652 slab_lock(page);
3654 get_map(s, page, map);
3655 for_each_object(p, s, addr, page->objects) {
3657 if (!test_bit(slab_index(p, s, addr), map)) {
3658 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
3659 print_tracking(s, p);
3662 slab_unlock(page);
3663 kfree(map);
3664 #endif
3668 * Attempt to free all partial slabs on a node.
3669 * This is called from __kmem_cache_shutdown(). We must take list_lock
3670 * because sysfs file might still access partial list after the shutdowning.
3672 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
3674 LIST_HEAD(discard);
3675 struct page *page, *h;
3677 BUG_ON(irqs_disabled());
3678 spin_lock_irq(&n->list_lock);
3679 list_for_each_entry_safe(page, h, &n->partial, lru) {
3680 if (!page->inuse) {
3681 remove_partial(n, page);
3682 list_add(&page->lru, &discard);
3683 } else {
3684 list_slab_objects(s, page,
3685 "Objects remaining in %s on __kmem_cache_shutdown()");
3688 spin_unlock_irq(&n->list_lock);
3690 list_for_each_entry_safe(page, h, &discard, lru)
3691 discard_slab(s, page);
3695 * Release all resources used by a slab cache.
3697 int __kmem_cache_shutdown(struct kmem_cache *s)
3699 int node;
3700 struct kmem_cache_node *n;
3702 flush_all(s);
3703 /* Attempt to free all objects */
3704 for_each_kmem_cache_node(s, node, n) {
3705 free_partial(s, n);
3706 if (n->nr_partial || slabs_node(s, node))
3707 return 1;
3709 sysfs_slab_remove(s);
3710 return 0;
3713 /********************************************************************
3714 * Kmalloc subsystem
3715 *******************************************************************/
3717 static int __init setup_slub_min_order(char *str)
3719 get_option(&str, &slub_min_order);
3721 return 1;
3724 __setup("slub_min_order=", setup_slub_min_order);
3726 static int __init setup_slub_max_order(char *str)
3728 get_option(&str, &slub_max_order);
3729 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
3731 return 1;
3734 __setup("slub_max_order=", setup_slub_max_order);
3736 static int __init setup_slub_min_objects(char *str)
3738 get_option(&str, &slub_min_objects);
3740 return 1;
3743 __setup("slub_min_objects=", setup_slub_min_objects);
3745 void *__kmalloc(size_t size, gfp_t flags)
3747 struct kmem_cache *s;
3748 void *ret;
3750 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
3751 return kmalloc_large(size, flags);
3753 s = kmalloc_slab(size, flags);
3755 if (unlikely(ZERO_OR_NULL_PTR(s)))
3756 return s;
3758 ret = slab_alloc(s, flags, _RET_IP_);
3760 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
3762 kasan_kmalloc(s, ret, size, flags);
3764 return ret;
3766 EXPORT_SYMBOL(__kmalloc);
3768 #ifdef CONFIG_NUMA
3769 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3771 struct page *page;
3772 void *ptr = NULL;
3774 flags |= __GFP_COMP;
3775 page = alloc_pages_node(node, flags, get_order(size));
3776 if (page)
3777 ptr = page_address(page);
3779 kmalloc_large_node_hook(ptr, size, flags);
3780 return ptr;
3783 void *__kmalloc_node(size_t size, gfp_t flags, int node)
3785 struct kmem_cache *s;
3786 void *ret;
3788 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
3789 ret = kmalloc_large_node(size, flags, node);
3791 trace_kmalloc_node(_RET_IP_, ret,
3792 size, PAGE_SIZE << get_order(size),
3793 flags, node);
3795 return ret;
3798 s = kmalloc_slab(size, flags);
3800 if (unlikely(ZERO_OR_NULL_PTR(s)))
3801 return s;
3803 ret = slab_alloc_node(s, flags, node, _RET_IP_);
3805 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
3807 kasan_kmalloc(s, ret, size, flags);
3809 return ret;
3811 EXPORT_SYMBOL(__kmalloc_node);
3812 #endif
3814 #ifdef CONFIG_HARDENED_USERCOPY
3816 * Rejects incorrectly sized objects and objects that are to be copied
3817 * to/from userspace but do not fall entirely within the containing slab
3818 * cache's usercopy region.
3820 * Returns NULL if check passes, otherwise const char * to name of cache
3821 * to indicate an error.
3823 void __check_heap_object(const void *ptr, unsigned long n, struct page *page,
3824 bool to_user)
3826 struct kmem_cache *s;
3827 unsigned long offset;
3828 size_t object_size;
3830 /* Find object and usable object size. */
3831 s = page->slab_cache;
3833 /* Reject impossible pointers. */
3834 if (ptr < page_address(page))
3835 usercopy_abort("SLUB object not in SLUB page?!", NULL,
3836 to_user, 0, n);
3838 /* Find offset within object. */
3839 offset = (ptr - page_address(page)) % s->size;
3841 /* Adjust for redzone and reject if within the redzone. */
3842 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3843 if (offset < s->red_left_pad)
3844 usercopy_abort("SLUB object in left red zone",
3845 s->name, to_user, offset, n);
3846 offset -= s->red_left_pad;
3849 /* Allow address range falling entirely within usercopy region. */
3850 if (offset >= s->useroffset &&
3851 offset - s->useroffset <= s->usersize &&
3852 n <= s->useroffset - offset + s->usersize)
3853 return;
3856 * If the copy is still within the allocated object, produce
3857 * a warning instead of rejecting the copy. This is intended
3858 * to be a temporary method to find any missing usercopy
3859 * whitelists.
3861 object_size = slab_ksize(s);
3862 if (usercopy_fallback &&
3863 offset <= object_size && n <= object_size - offset) {
3864 usercopy_warn("SLUB object", s->name, to_user, offset, n);
3865 return;
3868 usercopy_abort("SLUB object", s->name, to_user, offset, n);
3870 #endif /* CONFIG_HARDENED_USERCOPY */
3872 static size_t __ksize(const void *object)
3874 struct page *page;
3876 if (unlikely(object == ZERO_SIZE_PTR))
3877 return 0;
3879 page = virt_to_head_page(object);
3881 if (unlikely(!PageSlab(page))) {
3882 WARN_ON(!PageCompound(page));
3883 return PAGE_SIZE << compound_order(page);
3886 return slab_ksize(page->slab_cache);
3889 size_t ksize(const void *object)
3891 size_t size = __ksize(object);
3892 /* We assume that ksize callers could use whole allocated area,
3893 * so we need to unpoison this area.
3895 kasan_unpoison_shadow(object, size);
3896 return size;
3898 EXPORT_SYMBOL(ksize);
3900 void kfree(const void *x)
3902 struct page *page;
3903 void *object = (void *)x;
3905 trace_kfree(_RET_IP_, x);
3907 if (unlikely(ZERO_OR_NULL_PTR(x)))
3908 return;
3910 page = virt_to_head_page(x);
3911 if (unlikely(!PageSlab(page))) {
3912 BUG_ON(!PageCompound(page));
3913 kfree_hook(object);
3914 __free_pages(page, compound_order(page));
3915 return;
3917 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
3919 EXPORT_SYMBOL(kfree);
3921 #define SHRINK_PROMOTE_MAX 32
3924 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3925 * up most to the head of the partial lists. New allocations will then
3926 * fill those up and thus they can be removed from the partial lists.
3928 * The slabs with the least items are placed last. This results in them
3929 * being allocated from last increasing the chance that the last objects
3930 * are freed in them.
3932 int __kmem_cache_shrink(struct kmem_cache *s)
3934 int node;
3935 int i;
3936 struct kmem_cache_node *n;
3937 struct page *page;
3938 struct page *t;
3939 struct list_head discard;
3940 struct list_head promote[SHRINK_PROMOTE_MAX];
3941 unsigned long flags;
3942 int ret = 0;
3944 flush_all(s);
3945 for_each_kmem_cache_node(s, node, n) {
3946 INIT_LIST_HEAD(&discard);
3947 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3948 INIT_LIST_HEAD(promote + i);
3950 spin_lock_irqsave(&n->list_lock, flags);
3953 * Build lists of slabs to discard or promote.
3955 * Note that concurrent frees may occur while we hold the
3956 * list_lock. page->inuse here is the upper limit.
3958 list_for_each_entry_safe(page, t, &n->partial, lru) {
3959 int free = page->objects - page->inuse;
3961 /* Do not reread page->inuse */
3962 barrier();
3964 /* We do not keep full slabs on the list */
3965 BUG_ON(free <= 0);
3967 if (free == page->objects) {
3968 list_move(&page->lru, &discard);
3969 n->nr_partial--;
3970 } else if (free <= SHRINK_PROMOTE_MAX)
3971 list_move(&page->lru, promote + free - 1);
3975 * Promote the slabs filled up most to the head of the
3976 * partial list.
3978 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3979 list_splice(promote + i, &n->partial);
3981 spin_unlock_irqrestore(&n->list_lock, flags);
3983 /* Release empty slabs */
3984 list_for_each_entry_safe(page, t, &discard, lru)
3985 discard_slab(s, page);
3987 if (slabs_node(s, node))
3988 ret = 1;
3991 return ret;
3994 #ifdef CONFIG_MEMCG
3995 static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3998 * Called with all the locks held after a sched RCU grace period.
3999 * Even if @s becomes empty after shrinking, we can't know that @s
4000 * doesn't have allocations already in-flight and thus can't
4001 * destroy @s until the associated memcg is released.
4003 * However, let's remove the sysfs files for empty caches here.
4004 * Each cache has a lot of interface files which aren't
4005 * particularly useful for empty draining caches; otherwise, we can
4006 * easily end up with millions of unnecessary sysfs files on
4007 * systems which have a lot of memory and transient cgroups.
4009 if (!__kmem_cache_shrink(s))
4010 sysfs_slab_remove(s);
4013 void __kmemcg_cache_deactivate(struct kmem_cache *s)
4016 * Disable empty slabs caching. Used to avoid pinning offline
4017 * memory cgroups by kmem pages that can be freed.
4019 slub_set_cpu_partial(s, 0);
4020 s->min_partial = 0;
4023 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
4024 * we have to make sure the change is visible before shrinking.
4026 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
4028 #endif
4030 static int slab_mem_going_offline_callback(void *arg)
4032 struct kmem_cache *s;
4034 mutex_lock(&slab_mutex);
4035 list_for_each_entry(s, &slab_caches, list)
4036 __kmem_cache_shrink(s);
4037 mutex_unlock(&slab_mutex);
4039 return 0;
4042 static void slab_mem_offline_callback(void *arg)
4044 struct kmem_cache_node *n;
4045 struct kmem_cache *s;
4046 struct memory_notify *marg = arg;
4047 int offline_node;
4049 offline_node = marg->status_change_nid_normal;
4052 * If the node still has available memory. we need kmem_cache_node
4053 * for it yet.
4055 if (offline_node < 0)
4056 return;
4058 mutex_lock(&slab_mutex);
4059 list_for_each_entry(s, &slab_caches, list) {
4060 n = get_node(s, offline_node);
4061 if (n) {
4063 * if n->nr_slabs > 0, slabs still exist on the node
4064 * that is going down. We were unable to free them,
4065 * and offline_pages() function shouldn't call this
4066 * callback. So, we must fail.
4068 BUG_ON(slabs_node(s, offline_node));
4070 s->node[offline_node] = NULL;
4071 kmem_cache_free(kmem_cache_node, n);
4074 mutex_unlock(&slab_mutex);
4077 static int slab_mem_going_online_callback(void *arg)
4079 struct kmem_cache_node *n;
4080 struct kmem_cache *s;
4081 struct memory_notify *marg = arg;
4082 int nid = marg->status_change_nid_normal;
4083 int ret = 0;
4086 * If the node's memory is already available, then kmem_cache_node is
4087 * already created. Nothing to do.
4089 if (nid < 0)
4090 return 0;
4093 * We are bringing a node online. No memory is available yet. We must
4094 * allocate a kmem_cache_node structure in order to bring the node
4095 * online.
4097 mutex_lock(&slab_mutex);
4098 list_for_each_entry(s, &slab_caches, list) {
4100 * XXX: kmem_cache_alloc_node will fallback to other nodes
4101 * since memory is not yet available from the node that
4102 * is brought up.
4104 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
4105 if (!n) {
4106 ret = -ENOMEM;
4107 goto out;
4109 init_kmem_cache_node(n);
4110 s->node[nid] = n;
4112 out:
4113 mutex_unlock(&slab_mutex);
4114 return ret;
4117 static int slab_memory_callback(struct notifier_block *self,
4118 unsigned long action, void *arg)
4120 int ret = 0;
4122 switch (action) {
4123 case MEM_GOING_ONLINE:
4124 ret = slab_mem_going_online_callback(arg);
4125 break;
4126 case MEM_GOING_OFFLINE:
4127 ret = slab_mem_going_offline_callback(arg);
4128 break;
4129 case MEM_OFFLINE:
4130 case MEM_CANCEL_ONLINE:
4131 slab_mem_offline_callback(arg);
4132 break;
4133 case MEM_ONLINE:
4134 case MEM_CANCEL_OFFLINE:
4135 break;
4137 if (ret)
4138 ret = notifier_from_errno(ret);
4139 else
4140 ret = NOTIFY_OK;
4141 return ret;
4144 static struct notifier_block slab_memory_callback_nb = {
4145 .notifier_call = slab_memory_callback,
4146 .priority = SLAB_CALLBACK_PRI,
4149 /********************************************************************
4150 * Basic setup of slabs
4151 *******************************************************************/
4154 * Used for early kmem_cache structures that were allocated using
4155 * the page allocator. Allocate them properly then fix up the pointers
4156 * that may be pointing to the wrong kmem_cache structure.
4159 static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
4161 int node;
4162 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
4163 struct kmem_cache_node *n;
4165 memcpy(s, static_cache, kmem_cache->object_size);
4168 * This runs very early, and only the boot processor is supposed to be
4169 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4170 * IPIs around.
4172 __flush_cpu_slab(s, smp_processor_id());
4173 for_each_kmem_cache_node(s, node, n) {
4174 struct page *p;
4176 list_for_each_entry(p, &n->partial, lru)
4177 p->slab_cache = s;
4179 #ifdef CONFIG_SLUB_DEBUG
4180 list_for_each_entry(p, &n->full, lru)
4181 p->slab_cache = s;
4182 #endif
4184 slab_init_memcg_params(s);
4185 list_add(&s->list, &slab_caches);
4186 memcg_link_cache(s);
4187 return s;
4190 void __init kmem_cache_init(void)
4192 static __initdata struct kmem_cache boot_kmem_cache,
4193 boot_kmem_cache_node;
4195 if (debug_guardpage_minorder())
4196 slub_max_order = 0;
4198 kmem_cache_node = &boot_kmem_cache_node;
4199 kmem_cache = &boot_kmem_cache;
4201 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4202 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN, 0, 0);
4204 register_hotmemory_notifier(&slab_memory_callback_nb);
4206 /* Able to allocate the per node structures */
4207 slab_state = PARTIAL;
4209 create_boot_cache(kmem_cache, "kmem_cache",
4210 offsetof(struct kmem_cache, node) +
4211 nr_node_ids * sizeof(struct kmem_cache_node *),
4212 SLAB_HWCACHE_ALIGN, 0, 0);
4214 kmem_cache = bootstrap(&boot_kmem_cache);
4217 * Allocate kmem_cache_node properly from the kmem_cache slab.
4218 * kmem_cache_node is separately allocated so no need to
4219 * update any list pointers.
4221 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
4223 /* Now we can use the kmem_cache to allocate kmalloc slabs */
4224 setup_kmalloc_cache_index_table();
4225 create_kmalloc_caches(0);
4227 /* Setup random freelists for each cache */
4228 init_freelist_randomization();
4230 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4231 slub_cpu_dead);
4233 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%u, Nodes=%d\n",
4234 cache_line_size(),
4235 slub_min_order, slub_max_order, slub_min_objects,
4236 nr_cpu_ids, nr_node_ids);
4239 void __init kmem_cache_init_late(void)
4243 struct kmem_cache *
4244 __kmem_cache_alias(const char *name, size_t size, size_t align,
4245 slab_flags_t flags, void (*ctor)(void *))
4247 struct kmem_cache *s, *c;
4249 s = find_mergeable(size, align, flags, name, ctor);
4250 if (s) {
4251 s->refcount++;
4254 * Adjust the object sizes so that we clear
4255 * the complete object on kzalloc.
4257 s->object_size = max(s->object_size, (int)size);
4258 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
4260 for_each_memcg_cache(c, s) {
4261 c->object_size = s->object_size;
4262 c->inuse = max_t(int, c->inuse,
4263 ALIGN(size, sizeof(void *)));
4266 if (sysfs_slab_alias(s, name)) {
4267 s->refcount--;
4268 s = NULL;
4272 return s;
4275 int __kmem_cache_create(struct kmem_cache *s, slab_flags_t flags)
4277 int err;
4279 err = kmem_cache_open(s, flags);
4280 if (err)
4281 return err;
4283 /* Mutex is not taken during early boot */
4284 if (slab_state <= UP)
4285 return 0;
4287 memcg_propagate_slab_attrs(s);
4288 err = sysfs_slab_add(s);
4289 if (err)
4290 __kmem_cache_release(s);
4292 return err;
4295 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
4297 struct kmem_cache *s;
4298 void *ret;
4300 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
4301 return kmalloc_large(size, gfpflags);
4303 s = kmalloc_slab(size, gfpflags);
4305 if (unlikely(ZERO_OR_NULL_PTR(s)))
4306 return s;
4308 ret = slab_alloc(s, gfpflags, caller);
4310 /* Honor the call site pointer we received. */
4311 trace_kmalloc(caller, ret, size, s->size, gfpflags);
4313 return ret;
4316 #ifdef CONFIG_NUMA
4317 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
4318 int node, unsigned long caller)
4320 struct kmem_cache *s;
4321 void *ret;
4323 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
4324 ret = kmalloc_large_node(size, gfpflags, node);
4326 trace_kmalloc_node(caller, ret,
4327 size, PAGE_SIZE << get_order(size),
4328 gfpflags, node);
4330 return ret;
4333 s = kmalloc_slab(size, gfpflags);
4335 if (unlikely(ZERO_OR_NULL_PTR(s)))
4336 return s;
4338 ret = slab_alloc_node(s, gfpflags, node, caller);
4340 /* Honor the call site pointer we received. */
4341 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
4343 return ret;
4345 #endif
4347 #ifdef CONFIG_SYSFS
4348 static int count_inuse(struct page *page)
4350 return page->inuse;
4353 static int count_total(struct page *page)
4355 return page->objects;
4357 #endif
4359 #ifdef CONFIG_SLUB_DEBUG
4360 static int validate_slab(struct kmem_cache *s, struct page *page,
4361 unsigned long *map)
4363 void *p;
4364 void *addr = page_address(page);
4366 if (!check_slab(s, page) ||
4367 !on_freelist(s, page, NULL))
4368 return 0;
4370 /* Now we know that a valid freelist exists */
4371 bitmap_zero(map, page->objects);
4373 get_map(s, page, map);
4374 for_each_object(p, s, addr, page->objects) {
4375 if (test_bit(slab_index(p, s, addr), map))
4376 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4377 return 0;
4380 for_each_object(p, s, addr, page->objects)
4381 if (!test_bit(slab_index(p, s, addr), map))
4382 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
4383 return 0;
4384 return 1;
4387 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4388 unsigned long *map)
4390 slab_lock(page);
4391 validate_slab(s, page, map);
4392 slab_unlock(page);
4395 static int validate_slab_node(struct kmem_cache *s,
4396 struct kmem_cache_node *n, unsigned long *map)
4398 unsigned long count = 0;
4399 struct page *page;
4400 unsigned long flags;
4402 spin_lock_irqsave(&n->list_lock, flags);
4404 list_for_each_entry(page, &n->partial, lru) {
4405 validate_slab_slab(s, page, map);
4406 count++;
4408 if (count != n->nr_partial)
4409 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4410 s->name, count, n->nr_partial);
4412 if (!(s->flags & SLAB_STORE_USER))
4413 goto out;
4415 list_for_each_entry(page, &n->full, lru) {
4416 validate_slab_slab(s, page, map);
4417 count++;
4419 if (count != atomic_long_read(&n->nr_slabs))
4420 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4421 s->name, count, atomic_long_read(&n->nr_slabs));
4423 out:
4424 spin_unlock_irqrestore(&n->list_lock, flags);
4425 return count;
4428 static long validate_slab_cache(struct kmem_cache *s)
4430 int node;
4431 unsigned long count = 0;
4432 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4433 sizeof(unsigned long), GFP_KERNEL);
4434 struct kmem_cache_node *n;
4436 if (!map)
4437 return -ENOMEM;
4439 flush_all(s);
4440 for_each_kmem_cache_node(s, node, n)
4441 count += validate_slab_node(s, n, map);
4442 kfree(map);
4443 return count;
4446 * Generate lists of code addresses where slabcache objects are allocated
4447 * and freed.
4450 struct location {
4451 unsigned long count;
4452 unsigned long addr;
4453 long long sum_time;
4454 long min_time;
4455 long max_time;
4456 long min_pid;
4457 long max_pid;
4458 DECLARE_BITMAP(cpus, NR_CPUS);
4459 nodemask_t nodes;
4462 struct loc_track {
4463 unsigned long max;
4464 unsigned long count;
4465 struct location *loc;
4468 static void free_loc_track(struct loc_track *t)
4470 if (t->max)
4471 free_pages((unsigned long)t->loc,
4472 get_order(sizeof(struct location) * t->max));
4475 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
4477 struct location *l;
4478 int order;
4480 order = get_order(sizeof(struct location) * max);
4482 l = (void *)__get_free_pages(flags, order);
4483 if (!l)
4484 return 0;
4486 if (t->count) {
4487 memcpy(l, t->loc, sizeof(struct location) * t->count);
4488 free_loc_track(t);
4490 t->max = max;
4491 t->loc = l;
4492 return 1;
4495 static int add_location(struct loc_track *t, struct kmem_cache *s,
4496 const struct track *track)
4498 long start, end, pos;
4499 struct location *l;
4500 unsigned long caddr;
4501 unsigned long age = jiffies - track->when;
4503 start = -1;
4504 end = t->count;
4506 for ( ; ; ) {
4507 pos = start + (end - start + 1) / 2;
4510 * There is nothing at "end". If we end up there
4511 * we need to add something to before end.
4513 if (pos == end)
4514 break;
4516 caddr = t->loc[pos].addr;
4517 if (track->addr == caddr) {
4519 l = &t->loc[pos];
4520 l->count++;
4521 if (track->when) {
4522 l->sum_time += age;
4523 if (age < l->min_time)
4524 l->min_time = age;
4525 if (age > l->max_time)
4526 l->max_time = age;
4528 if (track->pid < l->min_pid)
4529 l->min_pid = track->pid;
4530 if (track->pid > l->max_pid)
4531 l->max_pid = track->pid;
4533 cpumask_set_cpu(track->cpu,
4534 to_cpumask(l->cpus));
4536 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4537 return 1;
4540 if (track->addr < caddr)
4541 end = pos;
4542 else
4543 start = pos;
4547 * Not found. Insert new tracking element.
4549 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
4550 return 0;
4552 l = t->loc + pos;
4553 if (pos < t->count)
4554 memmove(l + 1, l,
4555 (t->count - pos) * sizeof(struct location));
4556 t->count++;
4557 l->count = 1;
4558 l->addr = track->addr;
4559 l->sum_time = age;
4560 l->min_time = age;
4561 l->max_time = age;
4562 l->min_pid = track->pid;
4563 l->max_pid = track->pid;
4564 cpumask_clear(to_cpumask(l->cpus));
4565 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
4566 nodes_clear(l->nodes);
4567 node_set(page_to_nid(virt_to_page(track)), l->nodes);
4568 return 1;
4571 static void process_slab(struct loc_track *t, struct kmem_cache *s,
4572 struct page *page, enum track_item alloc,
4573 unsigned long *map)
4575 void *addr = page_address(page);
4576 void *p;
4578 bitmap_zero(map, page->objects);
4579 get_map(s, page, map);
4581 for_each_object(p, s, addr, page->objects)
4582 if (!test_bit(slab_index(p, s, addr), map))
4583 add_location(t, s, get_track(s, p, alloc));
4586 static int list_locations(struct kmem_cache *s, char *buf,
4587 enum track_item alloc)
4589 int len = 0;
4590 unsigned long i;
4591 struct loc_track t = { 0, 0, NULL };
4592 int node;
4593 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4594 sizeof(unsigned long), GFP_KERNEL);
4595 struct kmem_cache_node *n;
4597 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4598 GFP_KERNEL)) {
4599 kfree(map);
4600 return sprintf(buf, "Out of memory\n");
4602 /* Push back cpu slabs */
4603 flush_all(s);
4605 for_each_kmem_cache_node(s, node, n) {
4606 unsigned long flags;
4607 struct page *page;
4609 if (!atomic_long_read(&n->nr_slabs))
4610 continue;
4612 spin_lock_irqsave(&n->list_lock, flags);
4613 list_for_each_entry(page, &n->partial, lru)
4614 process_slab(&t, s, page, alloc, map);
4615 list_for_each_entry(page, &n->full, lru)
4616 process_slab(&t, s, page, alloc, map);
4617 spin_unlock_irqrestore(&n->list_lock, flags);
4620 for (i = 0; i < t.count; i++) {
4621 struct location *l = &t.loc[i];
4623 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
4624 break;
4625 len += sprintf(buf + len, "%7ld ", l->count);
4627 if (l->addr)
4628 len += sprintf(buf + len, "%pS", (void *)l->addr);
4629 else
4630 len += sprintf(buf + len, "<not-available>");
4632 if (l->sum_time != l->min_time) {
4633 len += sprintf(buf + len, " age=%ld/%ld/%ld",
4634 l->min_time,
4635 (long)div_u64(l->sum_time, l->count),
4636 l->max_time);
4637 } else
4638 len += sprintf(buf + len, " age=%ld",
4639 l->min_time);
4641 if (l->min_pid != l->max_pid)
4642 len += sprintf(buf + len, " pid=%ld-%ld",
4643 l->min_pid, l->max_pid);
4644 else
4645 len += sprintf(buf + len, " pid=%ld",
4646 l->min_pid);
4648 if (num_online_cpus() > 1 &&
4649 !cpumask_empty(to_cpumask(l->cpus)) &&
4650 len < PAGE_SIZE - 60)
4651 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4652 " cpus=%*pbl",
4653 cpumask_pr_args(to_cpumask(l->cpus)));
4655 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
4656 len < PAGE_SIZE - 60)
4657 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4658 " nodes=%*pbl",
4659 nodemask_pr_args(&l->nodes));
4661 len += sprintf(buf + len, "\n");
4664 free_loc_track(&t);
4665 kfree(map);
4666 if (!t.count)
4667 len += sprintf(buf, "No data\n");
4668 return len;
4670 #endif
4672 #ifdef SLUB_RESILIENCY_TEST
4673 static void __init resiliency_test(void)
4675 u8 *p;
4677 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
4679 pr_err("SLUB resiliency testing\n");
4680 pr_err("-----------------------\n");
4681 pr_err("A. Corruption after allocation\n");
4683 p = kzalloc(16, GFP_KERNEL);
4684 p[16] = 0x12;
4685 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4686 p + 16);
4688 validate_slab_cache(kmalloc_caches[4]);
4690 /* Hmmm... The next two are dangerous */
4691 p = kzalloc(32, GFP_KERNEL);
4692 p[32 + sizeof(void *)] = 0x34;
4693 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4695 pr_err("If allocated object is overwritten then not detectable\n\n");
4697 validate_slab_cache(kmalloc_caches[5]);
4698 p = kzalloc(64, GFP_KERNEL);
4699 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4700 *p = 0x56;
4701 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4703 pr_err("If allocated object is overwritten then not detectable\n\n");
4704 validate_slab_cache(kmalloc_caches[6]);
4706 pr_err("\nB. Corruption after free\n");
4707 p = kzalloc(128, GFP_KERNEL);
4708 kfree(p);
4709 *p = 0x78;
4710 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
4711 validate_slab_cache(kmalloc_caches[7]);
4713 p = kzalloc(256, GFP_KERNEL);
4714 kfree(p);
4715 p[50] = 0x9a;
4716 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
4717 validate_slab_cache(kmalloc_caches[8]);
4719 p = kzalloc(512, GFP_KERNEL);
4720 kfree(p);
4721 p[512] = 0xab;
4722 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
4723 validate_slab_cache(kmalloc_caches[9]);
4725 #else
4726 #ifdef CONFIG_SYSFS
4727 static void resiliency_test(void) {};
4728 #endif
4729 #endif
4731 #ifdef CONFIG_SYSFS
4732 enum slab_stat_type {
4733 SL_ALL, /* All slabs */
4734 SL_PARTIAL, /* Only partially allocated slabs */
4735 SL_CPU, /* Only slabs used for cpu caches */
4736 SL_OBJECTS, /* Determine allocated objects not slabs */
4737 SL_TOTAL /* Determine object capacity not slabs */
4740 #define SO_ALL (1 << SL_ALL)
4741 #define SO_PARTIAL (1 << SL_PARTIAL)
4742 #define SO_CPU (1 << SL_CPU)
4743 #define SO_OBJECTS (1 << SL_OBJECTS)
4744 #define SO_TOTAL (1 << SL_TOTAL)
4746 #ifdef CONFIG_MEMCG
4747 static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4749 static int __init setup_slub_memcg_sysfs(char *str)
4751 int v;
4753 if (get_option(&str, &v) > 0)
4754 memcg_sysfs_enabled = v;
4756 return 1;
4759 __setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4760 #endif
4762 static ssize_t show_slab_objects(struct kmem_cache *s,
4763 char *buf, unsigned long flags)
4765 unsigned long total = 0;
4766 int node;
4767 int x;
4768 unsigned long *nodes;
4770 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
4771 if (!nodes)
4772 return -ENOMEM;
4774 if (flags & SO_CPU) {
4775 int cpu;
4777 for_each_possible_cpu(cpu) {
4778 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4779 cpu);
4780 int node;
4781 struct page *page;
4783 page = READ_ONCE(c->page);
4784 if (!page)
4785 continue;
4787 node = page_to_nid(page);
4788 if (flags & SO_TOTAL)
4789 x = page->objects;
4790 else if (flags & SO_OBJECTS)
4791 x = page->inuse;
4792 else
4793 x = 1;
4795 total += x;
4796 nodes[node] += x;
4798 page = slub_percpu_partial_read_once(c);
4799 if (page) {
4800 node = page_to_nid(page);
4801 if (flags & SO_TOTAL)
4802 WARN_ON_ONCE(1);
4803 else if (flags & SO_OBJECTS)
4804 WARN_ON_ONCE(1);
4805 else
4806 x = page->pages;
4807 total += x;
4808 nodes[node] += x;
4813 get_online_mems();
4814 #ifdef CONFIG_SLUB_DEBUG
4815 if (flags & SO_ALL) {
4816 struct kmem_cache_node *n;
4818 for_each_kmem_cache_node(s, node, n) {
4820 if (flags & SO_TOTAL)
4821 x = atomic_long_read(&n->total_objects);
4822 else if (flags & SO_OBJECTS)
4823 x = atomic_long_read(&n->total_objects) -
4824 count_partial(n, count_free);
4825 else
4826 x = atomic_long_read(&n->nr_slabs);
4827 total += x;
4828 nodes[node] += x;
4831 } else
4832 #endif
4833 if (flags & SO_PARTIAL) {
4834 struct kmem_cache_node *n;
4836 for_each_kmem_cache_node(s, node, n) {
4837 if (flags & SO_TOTAL)
4838 x = count_partial(n, count_total);
4839 else if (flags & SO_OBJECTS)
4840 x = count_partial(n, count_inuse);
4841 else
4842 x = n->nr_partial;
4843 total += x;
4844 nodes[node] += x;
4847 x = sprintf(buf, "%lu", total);
4848 #ifdef CONFIG_NUMA
4849 for (node = 0; node < nr_node_ids; node++)
4850 if (nodes[node])
4851 x += sprintf(buf + x, " N%d=%lu",
4852 node, nodes[node]);
4853 #endif
4854 put_online_mems();
4855 kfree(nodes);
4856 return x + sprintf(buf + x, "\n");
4859 #ifdef CONFIG_SLUB_DEBUG
4860 static int any_slab_objects(struct kmem_cache *s)
4862 int node;
4863 struct kmem_cache_node *n;
4865 for_each_kmem_cache_node(s, node, n)
4866 if (atomic_long_read(&n->total_objects))
4867 return 1;
4869 return 0;
4871 #endif
4873 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
4874 #define to_slab(n) container_of(n, struct kmem_cache, kobj)
4876 struct slab_attribute {
4877 struct attribute attr;
4878 ssize_t (*show)(struct kmem_cache *s, char *buf);
4879 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4882 #define SLAB_ATTR_RO(_name) \
4883 static struct slab_attribute _name##_attr = \
4884 __ATTR(_name, 0400, _name##_show, NULL)
4886 #define SLAB_ATTR(_name) \
4887 static struct slab_attribute _name##_attr = \
4888 __ATTR(_name, 0600, _name##_show, _name##_store)
4890 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4892 return sprintf(buf, "%d\n", s->size);
4894 SLAB_ATTR_RO(slab_size);
4896 static ssize_t align_show(struct kmem_cache *s, char *buf)
4898 return sprintf(buf, "%d\n", s->align);
4900 SLAB_ATTR_RO(align);
4902 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4904 return sprintf(buf, "%d\n", s->object_size);
4906 SLAB_ATTR_RO(object_size);
4908 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4910 return sprintf(buf, "%d\n", oo_objects(s->oo));
4912 SLAB_ATTR_RO(objs_per_slab);
4914 static ssize_t order_store(struct kmem_cache *s,
4915 const char *buf, size_t length)
4917 unsigned long order;
4918 int err;
4920 err = kstrtoul(buf, 10, &order);
4921 if (err)
4922 return err;
4924 if (order > slub_max_order || order < slub_min_order)
4925 return -EINVAL;
4927 calculate_sizes(s, order);
4928 return length;
4931 static ssize_t order_show(struct kmem_cache *s, char *buf)
4933 return sprintf(buf, "%d\n", oo_order(s->oo));
4935 SLAB_ATTR(order);
4937 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4939 return sprintf(buf, "%lu\n", s->min_partial);
4942 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4943 size_t length)
4945 unsigned long min;
4946 int err;
4948 err = kstrtoul(buf, 10, &min);
4949 if (err)
4950 return err;
4952 set_min_partial(s, min);
4953 return length;
4955 SLAB_ATTR(min_partial);
4957 static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4959 return sprintf(buf, "%u\n", slub_cpu_partial(s));
4962 static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4963 size_t length)
4965 unsigned long objects;
4966 int err;
4968 err = kstrtoul(buf, 10, &objects);
4969 if (err)
4970 return err;
4971 if (objects && !kmem_cache_has_cpu_partial(s))
4972 return -EINVAL;
4974 slub_set_cpu_partial(s, objects);
4975 flush_all(s);
4976 return length;
4978 SLAB_ATTR(cpu_partial);
4980 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4982 if (!s->ctor)
4983 return 0;
4984 return sprintf(buf, "%pS\n", s->ctor);
4986 SLAB_ATTR_RO(ctor);
4988 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4990 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
4992 SLAB_ATTR_RO(aliases);
4994 static ssize_t partial_show(struct kmem_cache *s, char *buf)
4996 return show_slab_objects(s, buf, SO_PARTIAL);
4998 SLAB_ATTR_RO(partial);
5000 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
5002 return show_slab_objects(s, buf, SO_CPU);
5004 SLAB_ATTR_RO(cpu_slabs);
5006 static ssize_t objects_show(struct kmem_cache *s, char *buf)
5008 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
5010 SLAB_ATTR_RO(objects);
5012 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
5014 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
5016 SLAB_ATTR_RO(objects_partial);
5018 static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
5020 int objects = 0;
5021 int pages = 0;
5022 int cpu;
5023 int len;
5025 for_each_online_cpu(cpu) {
5026 struct page *page;
5028 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5030 if (page) {
5031 pages += page->pages;
5032 objects += page->pobjects;
5036 len = sprintf(buf, "%d(%d)", objects, pages);
5038 #ifdef CONFIG_SMP
5039 for_each_online_cpu(cpu) {
5040 struct page *page;
5042 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
5044 if (page && len < PAGE_SIZE - 20)
5045 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5046 page->pobjects, page->pages);
5048 #endif
5049 return len + sprintf(buf + len, "\n");
5051 SLAB_ATTR_RO(slabs_cpu_partial);
5053 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5055 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5058 static ssize_t reclaim_account_store(struct kmem_cache *s,
5059 const char *buf, size_t length)
5061 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5062 if (buf[0] == '1')
5063 s->flags |= SLAB_RECLAIM_ACCOUNT;
5064 return length;
5066 SLAB_ATTR(reclaim_account);
5068 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5070 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5072 SLAB_ATTR_RO(hwcache_align);
5074 #ifdef CONFIG_ZONE_DMA
5075 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5079 SLAB_ATTR_RO(cache_dma);
5080 #endif
5082 static ssize_t usersize_show(struct kmem_cache *s, char *buf)
5084 return sprintf(buf, "%zu\n", s->usersize);
5086 SLAB_ATTR_RO(usersize);
5088 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5090 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
5092 SLAB_ATTR_RO(destroy_by_rcu);
5094 static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5096 return sprintf(buf, "%d\n", s->reserved);
5098 SLAB_ATTR_RO(reserved);
5100 #ifdef CONFIG_SLUB_DEBUG
5101 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5103 return show_slab_objects(s, buf, SO_ALL);
5105 SLAB_ATTR_RO(slabs);
5107 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5109 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5111 SLAB_ATTR_RO(total_objects);
5113 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5115 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
5118 static ssize_t sanity_checks_store(struct kmem_cache *s,
5119 const char *buf, size_t length)
5121 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
5122 if (buf[0] == '1') {
5123 s->flags &= ~__CMPXCHG_DOUBLE;
5124 s->flags |= SLAB_CONSISTENCY_CHECKS;
5126 return length;
5128 SLAB_ATTR(sanity_checks);
5130 static ssize_t trace_show(struct kmem_cache *s, char *buf)
5132 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5135 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5136 size_t length)
5139 * Tracing a merged cache is going to give confusing results
5140 * as well as cause other issues like converting a mergeable
5141 * cache into an umergeable one.
5143 if (s->refcount > 1)
5144 return -EINVAL;
5146 s->flags &= ~SLAB_TRACE;
5147 if (buf[0] == '1') {
5148 s->flags &= ~__CMPXCHG_DOUBLE;
5149 s->flags |= SLAB_TRACE;
5151 return length;
5153 SLAB_ATTR(trace);
5155 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5157 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5160 static ssize_t red_zone_store(struct kmem_cache *s,
5161 const char *buf, size_t length)
5163 if (any_slab_objects(s))
5164 return -EBUSY;
5166 s->flags &= ~SLAB_RED_ZONE;
5167 if (buf[0] == '1') {
5168 s->flags |= SLAB_RED_ZONE;
5170 calculate_sizes(s, -1);
5171 return length;
5173 SLAB_ATTR(red_zone);
5175 static ssize_t poison_show(struct kmem_cache *s, char *buf)
5177 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5180 static ssize_t poison_store(struct kmem_cache *s,
5181 const char *buf, size_t length)
5183 if (any_slab_objects(s))
5184 return -EBUSY;
5186 s->flags &= ~SLAB_POISON;
5187 if (buf[0] == '1') {
5188 s->flags |= SLAB_POISON;
5190 calculate_sizes(s, -1);
5191 return length;
5193 SLAB_ATTR(poison);
5195 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5197 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5200 static ssize_t store_user_store(struct kmem_cache *s,
5201 const char *buf, size_t length)
5203 if (any_slab_objects(s))
5204 return -EBUSY;
5206 s->flags &= ~SLAB_STORE_USER;
5207 if (buf[0] == '1') {
5208 s->flags &= ~__CMPXCHG_DOUBLE;
5209 s->flags |= SLAB_STORE_USER;
5211 calculate_sizes(s, -1);
5212 return length;
5214 SLAB_ATTR(store_user);
5216 static ssize_t validate_show(struct kmem_cache *s, char *buf)
5218 return 0;
5221 static ssize_t validate_store(struct kmem_cache *s,
5222 const char *buf, size_t length)
5224 int ret = -EINVAL;
5226 if (buf[0] == '1') {
5227 ret = validate_slab_cache(s);
5228 if (ret >= 0)
5229 ret = length;
5231 return ret;
5233 SLAB_ATTR(validate);
5235 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5237 if (!(s->flags & SLAB_STORE_USER))
5238 return -ENOSYS;
5239 return list_locations(s, buf, TRACK_ALLOC);
5241 SLAB_ATTR_RO(alloc_calls);
5243 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5245 if (!(s->flags & SLAB_STORE_USER))
5246 return -ENOSYS;
5247 return list_locations(s, buf, TRACK_FREE);
5249 SLAB_ATTR_RO(free_calls);
5250 #endif /* CONFIG_SLUB_DEBUG */
5252 #ifdef CONFIG_FAILSLAB
5253 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5255 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5258 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5259 size_t length)
5261 if (s->refcount > 1)
5262 return -EINVAL;
5264 s->flags &= ~SLAB_FAILSLAB;
5265 if (buf[0] == '1')
5266 s->flags |= SLAB_FAILSLAB;
5267 return length;
5269 SLAB_ATTR(failslab);
5270 #endif
5272 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5274 return 0;
5277 static ssize_t shrink_store(struct kmem_cache *s,
5278 const char *buf, size_t length)
5280 if (buf[0] == '1')
5281 kmem_cache_shrink(s);
5282 else
5283 return -EINVAL;
5284 return length;
5286 SLAB_ATTR(shrink);
5288 #ifdef CONFIG_NUMA
5289 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
5291 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
5294 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
5295 const char *buf, size_t length)
5297 unsigned long ratio;
5298 int err;
5300 err = kstrtoul(buf, 10, &ratio);
5301 if (err)
5302 return err;
5304 if (ratio <= 100)
5305 s->remote_node_defrag_ratio = ratio * 10;
5307 return length;
5309 SLAB_ATTR(remote_node_defrag_ratio);
5310 #endif
5312 #ifdef CONFIG_SLUB_STATS
5313 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5315 unsigned long sum = 0;
5316 int cpu;
5317 int len;
5318 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5320 if (!data)
5321 return -ENOMEM;
5323 for_each_online_cpu(cpu) {
5324 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
5326 data[cpu] = x;
5327 sum += x;
5330 len = sprintf(buf, "%lu", sum);
5332 #ifdef CONFIG_SMP
5333 for_each_online_cpu(cpu) {
5334 if (data[cpu] && len < PAGE_SIZE - 20)
5335 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
5337 #endif
5338 kfree(data);
5339 return len + sprintf(buf + len, "\n");
5342 static void clear_stat(struct kmem_cache *s, enum stat_item si)
5344 int cpu;
5346 for_each_online_cpu(cpu)
5347 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
5350 #define STAT_ATTR(si, text) \
5351 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5353 return show_stat(s, buf, si); \
5355 static ssize_t text##_store(struct kmem_cache *s, \
5356 const char *buf, size_t length) \
5358 if (buf[0] != '0') \
5359 return -EINVAL; \
5360 clear_stat(s, si); \
5361 return length; \
5363 SLAB_ATTR(text); \
5365 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5366 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5367 STAT_ATTR(FREE_FASTPATH, free_fastpath);
5368 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5369 STAT_ATTR(FREE_FROZEN, free_frozen);
5370 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5371 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5372 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5373 STAT_ATTR(ALLOC_SLAB, alloc_slab);
5374 STAT_ATTR(ALLOC_REFILL, alloc_refill);
5375 STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
5376 STAT_ATTR(FREE_SLAB, free_slab);
5377 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5378 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5379 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5380 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5381 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5382 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
5383 STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
5384 STAT_ATTR(ORDER_FALLBACK, order_fallback);
5385 STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5386 STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
5387 STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5388 STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
5389 STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5390 STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
5391 #endif
5393 static struct attribute *slab_attrs[] = {
5394 &slab_size_attr.attr,
5395 &object_size_attr.attr,
5396 &objs_per_slab_attr.attr,
5397 &order_attr.attr,
5398 &min_partial_attr.attr,
5399 &cpu_partial_attr.attr,
5400 &objects_attr.attr,
5401 &objects_partial_attr.attr,
5402 &partial_attr.attr,
5403 &cpu_slabs_attr.attr,
5404 &ctor_attr.attr,
5405 &aliases_attr.attr,
5406 &align_attr.attr,
5407 &hwcache_align_attr.attr,
5408 &reclaim_account_attr.attr,
5409 &destroy_by_rcu_attr.attr,
5410 &shrink_attr.attr,
5411 &reserved_attr.attr,
5412 &slabs_cpu_partial_attr.attr,
5413 #ifdef CONFIG_SLUB_DEBUG
5414 &total_objects_attr.attr,
5415 &slabs_attr.attr,
5416 &sanity_checks_attr.attr,
5417 &trace_attr.attr,
5418 &red_zone_attr.attr,
5419 &poison_attr.attr,
5420 &store_user_attr.attr,
5421 &validate_attr.attr,
5422 &alloc_calls_attr.attr,
5423 &free_calls_attr.attr,
5424 #endif
5425 #ifdef CONFIG_ZONE_DMA
5426 &cache_dma_attr.attr,
5427 #endif
5428 #ifdef CONFIG_NUMA
5429 &remote_node_defrag_ratio_attr.attr,
5430 #endif
5431 #ifdef CONFIG_SLUB_STATS
5432 &alloc_fastpath_attr.attr,
5433 &alloc_slowpath_attr.attr,
5434 &free_fastpath_attr.attr,
5435 &free_slowpath_attr.attr,
5436 &free_frozen_attr.attr,
5437 &free_add_partial_attr.attr,
5438 &free_remove_partial_attr.attr,
5439 &alloc_from_partial_attr.attr,
5440 &alloc_slab_attr.attr,
5441 &alloc_refill_attr.attr,
5442 &alloc_node_mismatch_attr.attr,
5443 &free_slab_attr.attr,
5444 &cpuslab_flush_attr.attr,
5445 &deactivate_full_attr.attr,
5446 &deactivate_empty_attr.attr,
5447 &deactivate_to_head_attr.attr,
5448 &deactivate_to_tail_attr.attr,
5449 &deactivate_remote_frees_attr.attr,
5450 &deactivate_bypass_attr.attr,
5451 &order_fallback_attr.attr,
5452 &cmpxchg_double_fail_attr.attr,
5453 &cmpxchg_double_cpu_fail_attr.attr,
5454 &cpu_partial_alloc_attr.attr,
5455 &cpu_partial_free_attr.attr,
5456 &cpu_partial_node_attr.attr,
5457 &cpu_partial_drain_attr.attr,
5458 #endif
5459 #ifdef CONFIG_FAILSLAB
5460 &failslab_attr.attr,
5461 #endif
5462 &usersize_attr.attr,
5464 NULL
5467 static const struct attribute_group slab_attr_group = {
5468 .attrs = slab_attrs,
5471 static ssize_t slab_attr_show(struct kobject *kobj,
5472 struct attribute *attr,
5473 char *buf)
5475 struct slab_attribute *attribute;
5476 struct kmem_cache *s;
5477 int err;
5479 attribute = to_slab_attr(attr);
5480 s = to_slab(kobj);
5482 if (!attribute->show)
5483 return -EIO;
5485 err = attribute->show(s, buf);
5487 return err;
5490 static ssize_t slab_attr_store(struct kobject *kobj,
5491 struct attribute *attr,
5492 const char *buf, size_t len)
5494 struct slab_attribute *attribute;
5495 struct kmem_cache *s;
5496 int err;
5498 attribute = to_slab_attr(attr);
5499 s = to_slab(kobj);
5501 if (!attribute->store)
5502 return -EIO;
5504 err = attribute->store(s, buf, len);
5505 #ifdef CONFIG_MEMCG
5506 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
5507 struct kmem_cache *c;
5509 mutex_lock(&slab_mutex);
5510 if (s->max_attr_size < len)
5511 s->max_attr_size = len;
5514 * This is a best effort propagation, so this function's return
5515 * value will be determined by the parent cache only. This is
5516 * basically because not all attributes will have a well
5517 * defined semantics for rollbacks - most of the actions will
5518 * have permanent effects.
5520 * Returning the error value of any of the children that fail
5521 * is not 100 % defined, in the sense that users seeing the
5522 * error code won't be able to know anything about the state of
5523 * the cache.
5525 * Only returning the error code for the parent cache at least
5526 * has well defined semantics. The cache being written to
5527 * directly either failed or succeeded, in which case we loop
5528 * through the descendants with best-effort propagation.
5530 for_each_memcg_cache(c, s)
5531 attribute->store(c, buf, len);
5532 mutex_unlock(&slab_mutex);
5534 #endif
5535 return err;
5538 static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5540 #ifdef CONFIG_MEMCG
5541 int i;
5542 char *buffer = NULL;
5543 struct kmem_cache *root_cache;
5545 if (is_root_cache(s))
5546 return;
5548 root_cache = s->memcg_params.root_cache;
5551 * This mean this cache had no attribute written. Therefore, no point
5552 * in copying default values around
5554 if (!root_cache->max_attr_size)
5555 return;
5557 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5558 char mbuf[64];
5559 char *buf;
5560 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
5561 ssize_t len;
5563 if (!attr || !attr->store || !attr->show)
5564 continue;
5567 * It is really bad that we have to allocate here, so we will
5568 * do it only as a fallback. If we actually allocate, though,
5569 * we can just use the allocated buffer until the end.
5571 * Most of the slub attributes will tend to be very small in
5572 * size, but sysfs allows buffers up to a page, so they can
5573 * theoretically happen.
5575 if (buffer)
5576 buf = buffer;
5577 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
5578 buf = mbuf;
5579 else {
5580 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5581 if (WARN_ON(!buffer))
5582 continue;
5583 buf = buffer;
5586 len = attr->show(root_cache, buf);
5587 if (len > 0)
5588 attr->store(s, buf, len);
5591 if (buffer)
5592 free_page((unsigned long)buffer);
5593 #endif
5596 static void kmem_cache_release(struct kobject *k)
5598 slab_kmem_cache_release(to_slab(k));
5601 static const struct sysfs_ops slab_sysfs_ops = {
5602 .show = slab_attr_show,
5603 .store = slab_attr_store,
5606 static struct kobj_type slab_ktype = {
5607 .sysfs_ops = &slab_sysfs_ops,
5608 .release = kmem_cache_release,
5611 static int uevent_filter(struct kset *kset, struct kobject *kobj)
5613 struct kobj_type *ktype = get_ktype(kobj);
5615 if (ktype == &slab_ktype)
5616 return 1;
5617 return 0;
5620 static const struct kset_uevent_ops slab_uevent_ops = {
5621 .filter = uevent_filter,
5624 static struct kset *slab_kset;
5626 static inline struct kset *cache_kset(struct kmem_cache *s)
5628 #ifdef CONFIG_MEMCG
5629 if (!is_root_cache(s))
5630 return s->memcg_params.root_cache->memcg_kset;
5631 #endif
5632 return slab_kset;
5635 #define ID_STR_LENGTH 64
5637 /* Create a unique string id for a slab cache:
5639 * Format :[flags-]size
5641 static char *create_unique_id(struct kmem_cache *s)
5643 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5644 char *p = name;
5646 BUG_ON(!name);
5648 *p++ = ':';
5650 * First flags affecting slabcache operations. We will only
5651 * get here for aliasable slabs so we do not need to support
5652 * too many flags. The flags here must cover all flags that
5653 * are matched during merging to guarantee that the id is
5654 * unique.
5656 if (s->flags & SLAB_CACHE_DMA)
5657 *p++ = 'd';
5658 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5659 *p++ = 'a';
5660 if (s->flags & SLAB_CONSISTENCY_CHECKS)
5661 *p++ = 'F';
5662 if (s->flags & SLAB_ACCOUNT)
5663 *p++ = 'A';
5664 if (p != name + 1)
5665 *p++ = '-';
5666 p += sprintf(p, "%07d", s->size);
5668 BUG_ON(p > name + ID_STR_LENGTH - 1);
5669 return name;
5672 static void sysfs_slab_remove_workfn(struct work_struct *work)
5674 struct kmem_cache *s =
5675 container_of(work, struct kmem_cache, kobj_remove_work);
5677 if (!s->kobj.state_in_sysfs)
5679 * For a memcg cache, this may be called during
5680 * deactivation and again on shutdown. Remove only once.
5681 * A cache is never shut down before deactivation is
5682 * complete, so no need to worry about synchronization.
5684 goto out;
5686 #ifdef CONFIG_MEMCG
5687 kset_unregister(s->memcg_kset);
5688 #endif
5689 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5690 kobject_del(&s->kobj);
5691 out:
5692 kobject_put(&s->kobj);
5695 static int sysfs_slab_add(struct kmem_cache *s)
5697 int err;
5698 const char *name;
5699 struct kset *kset = cache_kset(s);
5700 int unmergeable = slab_unmergeable(s);
5702 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5704 if (!kset) {
5705 kobject_init(&s->kobj, &slab_ktype);
5706 return 0;
5709 if (!unmergeable && disable_higher_order_debug &&
5710 (slub_debug & DEBUG_METADATA_FLAGS))
5711 unmergeable = 1;
5713 if (unmergeable) {
5715 * Slabcache can never be merged so we can use the name proper.
5716 * This is typically the case for debug situations. In that
5717 * case we can catch duplicate names easily.
5719 sysfs_remove_link(&slab_kset->kobj, s->name);
5720 name = s->name;
5721 } else {
5723 * Create a unique name for the slab as a target
5724 * for the symlinks.
5726 name = create_unique_id(s);
5729 s->kobj.kset = kset;
5730 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
5731 if (err)
5732 goto out;
5734 err = sysfs_create_group(&s->kobj, &slab_attr_group);
5735 if (err)
5736 goto out_del_kobj;
5738 #ifdef CONFIG_MEMCG
5739 if (is_root_cache(s) && memcg_sysfs_enabled) {
5740 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5741 if (!s->memcg_kset) {
5742 err = -ENOMEM;
5743 goto out_del_kobj;
5746 #endif
5748 kobject_uevent(&s->kobj, KOBJ_ADD);
5749 if (!unmergeable) {
5750 /* Setup first alias */
5751 sysfs_slab_alias(s, s->name);
5753 out:
5754 if (!unmergeable)
5755 kfree(name);
5756 return err;
5757 out_del_kobj:
5758 kobject_del(&s->kobj);
5759 goto out;
5762 static void sysfs_slab_remove(struct kmem_cache *s)
5764 if (slab_state < FULL)
5766 * Sysfs has not been setup yet so no need to remove the
5767 * cache from sysfs.
5769 return;
5771 kobject_get(&s->kobj);
5772 schedule_work(&s->kobj_remove_work);
5775 void sysfs_slab_release(struct kmem_cache *s)
5777 if (slab_state >= FULL)
5778 kobject_put(&s->kobj);
5782 * Need to buffer aliases during bootup until sysfs becomes
5783 * available lest we lose that information.
5785 struct saved_alias {
5786 struct kmem_cache *s;
5787 const char *name;
5788 struct saved_alias *next;
5791 static struct saved_alias *alias_list;
5793 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5795 struct saved_alias *al;
5797 if (slab_state == FULL) {
5799 * If we have a leftover link then remove it.
5801 sysfs_remove_link(&slab_kset->kobj, name);
5802 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
5805 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5806 if (!al)
5807 return -ENOMEM;
5809 al->s = s;
5810 al->name = name;
5811 al->next = alias_list;
5812 alias_list = al;
5813 return 0;
5816 static int __init slab_sysfs_init(void)
5818 struct kmem_cache *s;
5819 int err;
5821 mutex_lock(&slab_mutex);
5823 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
5824 if (!slab_kset) {
5825 mutex_unlock(&slab_mutex);
5826 pr_err("Cannot register slab subsystem.\n");
5827 return -ENOSYS;
5830 slab_state = FULL;
5832 list_for_each_entry(s, &slab_caches, list) {
5833 err = sysfs_slab_add(s);
5834 if (err)
5835 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5836 s->name);
5839 while (alias_list) {
5840 struct saved_alias *al = alias_list;
5842 alias_list = alias_list->next;
5843 err = sysfs_slab_alias(al->s, al->name);
5844 if (err)
5845 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5846 al->name);
5847 kfree(al);
5850 mutex_unlock(&slab_mutex);
5851 resiliency_test();
5852 return 0;
5855 __initcall(slab_sysfs_init);
5856 #endif /* CONFIG_SYSFS */
5859 * The /proc/slabinfo ABI
5861 #ifdef CONFIG_SLUB_DEBUG
5862 void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
5864 unsigned long nr_slabs = 0;
5865 unsigned long nr_objs = 0;
5866 unsigned long nr_free = 0;
5867 int node;
5868 struct kmem_cache_node *n;
5870 for_each_kmem_cache_node(s, node, n) {
5871 nr_slabs += node_nr_slabs(n);
5872 nr_objs += node_nr_objs(n);
5873 nr_free += count_partial(n, count_free);
5876 sinfo->active_objs = nr_objs - nr_free;
5877 sinfo->num_objs = nr_objs;
5878 sinfo->active_slabs = nr_slabs;
5879 sinfo->num_slabs = nr_slabs;
5880 sinfo->objects_per_slab = oo_objects(s->oo);
5881 sinfo->cache_order = oo_order(s->oo);
5884 void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
5888 ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5889 size_t count, loff_t *ppos)
5891 return -EIO;
5893 #endif /* CONFIG_SLUB_DEBUG */