Merge 3.0-rc2 into tty-linus
[linux/fpc-iii.git] / drivers / net / skge.c
blobf4be5c78ebfd28a8b0aad41197f425ba8c5a8703
1 /*
2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
26 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
28 #include <linux/in.h>
29 #include <linux/kernel.h>
30 #include <linux/module.h>
31 #include <linux/moduleparam.h>
32 #include <linux/netdevice.h>
33 #include <linux/etherdevice.h>
34 #include <linux/ethtool.h>
35 #include <linux/pci.h>
36 #include <linux/if_vlan.h>
37 #include <linux/ip.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/debugfs.h>
42 #include <linux/sched.h>
43 #include <linux/seq_file.h>
44 #include <linux/mii.h>
45 #include <linux/slab.h>
46 #include <linux/dmi.h>
47 #include <linux/prefetch.h>
48 #include <asm/irq.h>
50 #include "skge.h"
52 #define DRV_NAME "skge"
53 #define DRV_VERSION "1.13"
55 #define DEFAULT_TX_RING_SIZE 128
56 #define DEFAULT_RX_RING_SIZE 512
57 #define MAX_TX_RING_SIZE 1024
58 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
59 #define MAX_RX_RING_SIZE 4096
60 #define RX_COPY_THRESHOLD 128
61 #define RX_BUF_SIZE 1536
62 #define PHY_RETRIES 1000
63 #define ETH_JUMBO_MTU 9000
64 #define TX_WATCHDOG (5 * HZ)
65 #define NAPI_WEIGHT 64
66 #define BLINK_MS 250
67 #define LINK_HZ HZ
69 #define SKGE_EEPROM_MAGIC 0x9933aabb
72 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
73 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
74 MODULE_LICENSE("GPL");
75 MODULE_VERSION(DRV_VERSION);
77 static const u32 default_msg = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
78 NETIF_MSG_LINK | NETIF_MSG_IFUP |
79 NETIF_MSG_IFDOWN);
81 static int debug = -1; /* defaults above */
82 module_param(debug, int, 0);
83 MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
85 static DEFINE_PCI_DEVICE_TABLE(skge_id_table) = {
86 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940) },
87 { PCI_DEVICE(PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C940B) },
88 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_GE) },
89 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT, PCI_DEVICE_ID_SYSKONNECT_YU) },
90 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, PCI_DEVICE_ID_DLINK_DGE510T) },
91 { PCI_DEVICE(PCI_VENDOR_ID_DLINK, 0x4b01) }, /* DGE-530T */
92 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x4320) },
93 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL, 0x5005) }, /* Belkin */
94 { PCI_DEVICE(PCI_VENDOR_ID_CNET, PCI_DEVICE_ID_CNET_GIGACARD) },
95 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS, PCI_DEVICE_ID_LINKSYS_EG1064) },
96 { PCI_VENDOR_ID_LINKSYS, 0x1032, PCI_ANY_ID, 0x0015 },
97 { 0 }
99 MODULE_DEVICE_TABLE(pci, skge_id_table);
101 static int skge_up(struct net_device *dev);
102 static int skge_down(struct net_device *dev);
103 static void skge_phy_reset(struct skge_port *skge);
104 static void skge_tx_clean(struct net_device *dev);
105 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
106 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val);
107 static void genesis_get_stats(struct skge_port *skge, u64 *data);
108 static void yukon_get_stats(struct skge_port *skge, u64 *data);
109 static void yukon_init(struct skge_hw *hw, int port);
110 static void genesis_mac_init(struct skge_hw *hw, int port);
111 static void genesis_link_up(struct skge_port *skge);
112 static void skge_set_multicast(struct net_device *dev);
114 /* Avoid conditionals by using array */
115 static const int txqaddr[] = { Q_XA1, Q_XA2 };
116 static const int rxqaddr[] = { Q_R1, Q_R2 };
117 static const u32 rxirqmask[] = { IS_R1_F, IS_R2_F };
118 static const u32 txirqmask[] = { IS_XA1_F, IS_XA2_F };
119 static const u32 napimask[] = { IS_R1_F|IS_XA1_F, IS_R2_F|IS_XA2_F };
120 static const u32 portmask[] = { IS_PORT_1, IS_PORT_2 };
122 static int skge_get_regs_len(struct net_device *dev)
124 return 0x4000;
128 * Returns copy of whole control register region
129 * Note: skip RAM address register because accessing it will
130 * cause bus hangs!
132 static void skge_get_regs(struct net_device *dev, struct ethtool_regs *regs,
133 void *p)
135 const struct skge_port *skge = netdev_priv(dev);
136 const void __iomem *io = skge->hw->regs;
138 regs->version = 1;
139 memset(p, 0, regs->len);
140 memcpy_fromio(p, io, B3_RAM_ADDR);
142 memcpy_fromio(p + B3_RI_WTO_R1, io + B3_RI_WTO_R1,
143 regs->len - B3_RI_WTO_R1);
146 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
147 static u32 wol_supported(const struct skge_hw *hw)
149 if (hw->chip_id == CHIP_ID_GENESIS)
150 return 0;
152 if (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
153 return 0;
155 return WAKE_MAGIC | WAKE_PHY;
158 static void skge_wol_init(struct skge_port *skge)
160 struct skge_hw *hw = skge->hw;
161 int port = skge->port;
162 u16 ctrl;
164 skge_write16(hw, B0_CTST, CS_RST_CLR);
165 skge_write16(hw, SK_REG(port, GMAC_LINK_CTRL), GMLC_RST_CLR);
167 /* Turn on Vaux */
168 skge_write8(hw, B0_POWER_CTRL,
169 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_ON | PC_VCC_OFF);
171 /* WA code for COMA mode -- clear PHY reset */
172 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
173 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
174 u32 reg = skge_read32(hw, B2_GP_IO);
175 reg |= GP_DIR_9;
176 reg &= ~GP_IO_9;
177 skge_write32(hw, B2_GP_IO, reg);
180 skge_write32(hw, SK_REG(port, GPHY_CTRL),
181 GPC_DIS_SLEEP |
182 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
183 GPC_ANEG_1 | GPC_RST_SET);
185 skge_write32(hw, SK_REG(port, GPHY_CTRL),
186 GPC_DIS_SLEEP |
187 GPC_HWCFG_M_3 | GPC_HWCFG_M_2 | GPC_HWCFG_M_1 | GPC_HWCFG_M_0 |
188 GPC_ANEG_1 | GPC_RST_CLR);
190 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_CLR);
192 /* Force to 10/100 skge_reset will re-enable on resume */
193 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV,
194 (PHY_AN_100FULL | PHY_AN_100HALF |
195 PHY_AN_10FULL | PHY_AN_10HALF | PHY_AN_CSMA));
196 /* no 1000 HD/FD */
197 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, 0);
198 gm_phy_write(hw, port, PHY_MARV_CTRL,
199 PHY_CT_RESET | PHY_CT_SPS_LSB | PHY_CT_ANE |
200 PHY_CT_RE_CFG | PHY_CT_DUP_MD);
203 /* Set GMAC to no flow control and auto update for speed/duplex */
204 gma_write16(hw, port, GM_GP_CTRL,
205 GM_GPCR_FC_TX_DIS|GM_GPCR_TX_ENA|GM_GPCR_RX_ENA|
206 GM_GPCR_DUP_FULL|GM_GPCR_FC_RX_DIS|GM_GPCR_AU_FCT_DIS);
208 /* Set WOL address */
209 memcpy_toio(hw->regs + WOL_REGS(port, WOL_MAC_ADDR),
210 skge->netdev->dev_addr, ETH_ALEN);
212 /* Turn on appropriate WOL control bits */
213 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), WOL_CTL_CLEAR_RESULT);
214 ctrl = 0;
215 if (skge->wol & WAKE_PHY)
216 ctrl |= WOL_CTL_ENA_PME_ON_LINK_CHG|WOL_CTL_ENA_LINK_CHG_UNIT;
217 else
218 ctrl |= WOL_CTL_DIS_PME_ON_LINK_CHG|WOL_CTL_DIS_LINK_CHG_UNIT;
220 if (skge->wol & WAKE_MAGIC)
221 ctrl |= WOL_CTL_ENA_PME_ON_MAGIC_PKT|WOL_CTL_ENA_MAGIC_PKT_UNIT;
222 else
223 ctrl |= WOL_CTL_DIS_PME_ON_MAGIC_PKT|WOL_CTL_DIS_MAGIC_PKT_UNIT;
225 ctrl |= WOL_CTL_DIS_PME_ON_PATTERN|WOL_CTL_DIS_PATTERN_UNIT;
226 skge_write16(hw, WOL_REGS(port, WOL_CTRL_STAT), ctrl);
228 /* block receiver */
229 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
232 static void skge_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
234 struct skge_port *skge = netdev_priv(dev);
236 wol->supported = wol_supported(skge->hw);
237 wol->wolopts = skge->wol;
240 static int skge_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
242 struct skge_port *skge = netdev_priv(dev);
243 struct skge_hw *hw = skge->hw;
245 if ((wol->wolopts & ~wol_supported(hw)) ||
246 !device_can_wakeup(&hw->pdev->dev))
247 return -EOPNOTSUPP;
249 skge->wol = wol->wolopts;
251 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
253 return 0;
256 /* Determine supported/advertised modes based on hardware.
257 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
259 static u32 skge_supported_modes(const struct skge_hw *hw)
261 u32 supported;
263 if (hw->copper) {
264 supported = (SUPPORTED_10baseT_Half |
265 SUPPORTED_10baseT_Full |
266 SUPPORTED_100baseT_Half |
267 SUPPORTED_100baseT_Full |
268 SUPPORTED_1000baseT_Half |
269 SUPPORTED_1000baseT_Full |
270 SUPPORTED_Autoneg |
271 SUPPORTED_TP);
273 if (hw->chip_id == CHIP_ID_GENESIS)
274 supported &= ~(SUPPORTED_10baseT_Half |
275 SUPPORTED_10baseT_Full |
276 SUPPORTED_100baseT_Half |
277 SUPPORTED_100baseT_Full);
279 else if (hw->chip_id == CHIP_ID_YUKON)
280 supported &= ~SUPPORTED_1000baseT_Half;
281 } else
282 supported = (SUPPORTED_1000baseT_Full |
283 SUPPORTED_1000baseT_Half |
284 SUPPORTED_FIBRE |
285 SUPPORTED_Autoneg);
287 return supported;
290 static int skge_get_settings(struct net_device *dev,
291 struct ethtool_cmd *ecmd)
293 struct skge_port *skge = netdev_priv(dev);
294 struct skge_hw *hw = skge->hw;
296 ecmd->transceiver = XCVR_INTERNAL;
297 ecmd->supported = skge_supported_modes(hw);
299 if (hw->copper) {
300 ecmd->port = PORT_TP;
301 ecmd->phy_address = hw->phy_addr;
302 } else
303 ecmd->port = PORT_FIBRE;
305 ecmd->advertising = skge->advertising;
306 ecmd->autoneg = skge->autoneg;
307 ethtool_cmd_speed_set(ecmd, skge->speed);
308 ecmd->duplex = skge->duplex;
309 return 0;
312 static int skge_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
314 struct skge_port *skge = netdev_priv(dev);
315 const struct skge_hw *hw = skge->hw;
316 u32 supported = skge_supported_modes(hw);
317 int err = 0;
319 if (ecmd->autoneg == AUTONEG_ENABLE) {
320 ecmd->advertising = supported;
321 skge->duplex = -1;
322 skge->speed = -1;
323 } else {
324 u32 setting;
325 u32 speed = ethtool_cmd_speed(ecmd);
327 switch (speed) {
328 case SPEED_1000:
329 if (ecmd->duplex == DUPLEX_FULL)
330 setting = SUPPORTED_1000baseT_Full;
331 else if (ecmd->duplex == DUPLEX_HALF)
332 setting = SUPPORTED_1000baseT_Half;
333 else
334 return -EINVAL;
335 break;
336 case SPEED_100:
337 if (ecmd->duplex == DUPLEX_FULL)
338 setting = SUPPORTED_100baseT_Full;
339 else if (ecmd->duplex == DUPLEX_HALF)
340 setting = SUPPORTED_100baseT_Half;
341 else
342 return -EINVAL;
343 break;
345 case SPEED_10:
346 if (ecmd->duplex == DUPLEX_FULL)
347 setting = SUPPORTED_10baseT_Full;
348 else if (ecmd->duplex == DUPLEX_HALF)
349 setting = SUPPORTED_10baseT_Half;
350 else
351 return -EINVAL;
352 break;
353 default:
354 return -EINVAL;
357 if ((setting & supported) == 0)
358 return -EINVAL;
360 skge->speed = speed;
361 skge->duplex = ecmd->duplex;
364 skge->autoneg = ecmd->autoneg;
365 skge->advertising = ecmd->advertising;
367 if (netif_running(dev)) {
368 skge_down(dev);
369 err = skge_up(dev);
370 if (err) {
371 dev_close(dev);
372 return err;
376 return 0;
379 static void skge_get_drvinfo(struct net_device *dev,
380 struct ethtool_drvinfo *info)
382 struct skge_port *skge = netdev_priv(dev);
384 strcpy(info->driver, DRV_NAME);
385 strcpy(info->version, DRV_VERSION);
386 strcpy(info->fw_version, "N/A");
387 strcpy(info->bus_info, pci_name(skge->hw->pdev));
390 static const struct skge_stat {
391 char name[ETH_GSTRING_LEN];
392 u16 xmac_offset;
393 u16 gma_offset;
394 } skge_stats[] = {
395 { "tx_bytes", XM_TXO_OK_HI, GM_TXO_OK_HI },
396 { "rx_bytes", XM_RXO_OK_HI, GM_RXO_OK_HI },
398 { "tx_broadcast", XM_TXF_BC_OK, GM_TXF_BC_OK },
399 { "rx_broadcast", XM_RXF_BC_OK, GM_RXF_BC_OK },
400 { "tx_multicast", XM_TXF_MC_OK, GM_TXF_MC_OK },
401 { "rx_multicast", XM_RXF_MC_OK, GM_RXF_MC_OK },
402 { "tx_unicast", XM_TXF_UC_OK, GM_TXF_UC_OK },
403 { "rx_unicast", XM_RXF_UC_OK, GM_RXF_UC_OK },
404 { "tx_mac_pause", XM_TXF_MPAUSE, GM_TXF_MPAUSE },
405 { "rx_mac_pause", XM_RXF_MPAUSE, GM_RXF_MPAUSE },
407 { "collisions", XM_TXF_SNG_COL, GM_TXF_SNG_COL },
408 { "multi_collisions", XM_TXF_MUL_COL, GM_TXF_MUL_COL },
409 { "aborted", XM_TXF_ABO_COL, GM_TXF_ABO_COL },
410 { "late_collision", XM_TXF_LAT_COL, GM_TXF_LAT_COL },
411 { "fifo_underrun", XM_TXE_FIFO_UR, GM_TXE_FIFO_UR },
412 { "fifo_overflow", XM_RXE_FIFO_OV, GM_RXE_FIFO_OV },
414 { "rx_toolong", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
415 { "rx_jabber", XM_RXF_JAB_PKT, GM_RXF_JAB_PKT },
416 { "rx_runt", XM_RXE_RUNT, GM_RXE_FRAG },
417 { "rx_too_long", XM_RXF_LNG_ERR, GM_RXF_LNG_ERR },
418 { "rx_fcs_error", XM_RXF_FCS_ERR, GM_RXF_FCS_ERR },
421 static int skge_get_sset_count(struct net_device *dev, int sset)
423 switch (sset) {
424 case ETH_SS_STATS:
425 return ARRAY_SIZE(skge_stats);
426 default:
427 return -EOPNOTSUPP;
431 static void skge_get_ethtool_stats(struct net_device *dev,
432 struct ethtool_stats *stats, u64 *data)
434 struct skge_port *skge = netdev_priv(dev);
436 if (skge->hw->chip_id == CHIP_ID_GENESIS)
437 genesis_get_stats(skge, data);
438 else
439 yukon_get_stats(skge, data);
442 /* Use hardware MIB variables for critical path statistics and
443 * transmit feedback not reported at interrupt.
444 * Other errors are accounted for in interrupt handler.
446 static struct net_device_stats *skge_get_stats(struct net_device *dev)
448 struct skge_port *skge = netdev_priv(dev);
449 u64 data[ARRAY_SIZE(skge_stats)];
451 if (skge->hw->chip_id == CHIP_ID_GENESIS)
452 genesis_get_stats(skge, data);
453 else
454 yukon_get_stats(skge, data);
456 dev->stats.tx_bytes = data[0];
457 dev->stats.rx_bytes = data[1];
458 dev->stats.tx_packets = data[2] + data[4] + data[6];
459 dev->stats.rx_packets = data[3] + data[5] + data[7];
460 dev->stats.multicast = data[3] + data[5];
461 dev->stats.collisions = data[10];
462 dev->stats.tx_aborted_errors = data[12];
464 return &dev->stats;
467 static void skge_get_strings(struct net_device *dev, u32 stringset, u8 *data)
469 int i;
471 switch (stringset) {
472 case ETH_SS_STATS:
473 for (i = 0; i < ARRAY_SIZE(skge_stats); i++)
474 memcpy(data + i * ETH_GSTRING_LEN,
475 skge_stats[i].name, ETH_GSTRING_LEN);
476 break;
480 static void skge_get_ring_param(struct net_device *dev,
481 struct ethtool_ringparam *p)
483 struct skge_port *skge = netdev_priv(dev);
485 p->rx_max_pending = MAX_RX_RING_SIZE;
486 p->tx_max_pending = MAX_TX_RING_SIZE;
487 p->rx_mini_max_pending = 0;
488 p->rx_jumbo_max_pending = 0;
490 p->rx_pending = skge->rx_ring.count;
491 p->tx_pending = skge->tx_ring.count;
492 p->rx_mini_pending = 0;
493 p->rx_jumbo_pending = 0;
496 static int skge_set_ring_param(struct net_device *dev,
497 struct ethtool_ringparam *p)
499 struct skge_port *skge = netdev_priv(dev);
500 int err = 0;
502 if (p->rx_pending == 0 || p->rx_pending > MAX_RX_RING_SIZE ||
503 p->tx_pending < TX_LOW_WATER || p->tx_pending > MAX_TX_RING_SIZE)
504 return -EINVAL;
506 skge->rx_ring.count = p->rx_pending;
507 skge->tx_ring.count = p->tx_pending;
509 if (netif_running(dev)) {
510 skge_down(dev);
511 err = skge_up(dev);
512 if (err)
513 dev_close(dev);
516 return err;
519 static u32 skge_get_msglevel(struct net_device *netdev)
521 struct skge_port *skge = netdev_priv(netdev);
522 return skge->msg_enable;
525 static void skge_set_msglevel(struct net_device *netdev, u32 value)
527 struct skge_port *skge = netdev_priv(netdev);
528 skge->msg_enable = value;
531 static int skge_nway_reset(struct net_device *dev)
533 struct skge_port *skge = netdev_priv(dev);
535 if (skge->autoneg != AUTONEG_ENABLE || !netif_running(dev))
536 return -EINVAL;
538 skge_phy_reset(skge);
539 return 0;
542 static void skge_get_pauseparam(struct net_device *dev,
543 struct ethtool_pauseparam *ecmd)
545 struct skge_port *skge = netdev_priv(dev);
547 ecmd->rx_pause = ((skge->flow_control == FLOW_MODE_SYMMETRIC) ||
548 (skge->flow_control == FLOW_MODE_SYM_OR_REM));
549 ecmd->tx_pause = (ecmd->rx_pause ||
550 (skge->flow_control == FLOW_MODE_LOC_SEND));
552 ecmd->autoneg = ecmd->rx_pause || ecmd->tx_pause;
555 static int skge_set_pauseparam(struct net_device *dev,
556 struct ethtool_pauseparam *ecmd)
558 struct skge_port *skge = netdev_priv(dev);
559 struct ethtool_pauseparam old;
560 int err = 0;
562 skge_get_pauseparam(dev, &old);
564 if (ecmd->autoneg != old.autoneg)
565 skge->flow_control = ecmd->autoneg ? FLOW_MODE_NONE : FLOW_MODE_SYMMETRIC;
566 else {
567 if (ecmd->rx_pause && ecmd->tx_pause)
568 skge->flow_control = FLOW_MODE_SYMMETRIC;
569 else if (ecmd->rx_pause && !ecmd->tx_pause)
570 skge->flow_control = FLOW_MODE_SYM_OR_REM;
571 else if (!ecmd->rx_pause && ecmd->tx_pause)
572 skge->flow_control = FLOW_MODE_LOC_SEND;
573 else
574 skge->flow_control = FLOW_MODE_NONE;
577 if (netif_running(dev)) {
578 skge_down(dev);
579 err = skge_up(dev);
580 if (err) {
581 dev_close(dev);
582 return err;
586 return 0;
589 /* Chip internal frequency for clock calculations */
590 static inline u32 hwkhz(const struct skge_hw *hw)
592 return (hw->chip_id == CHIP_ID_GENESIS) ? 53125 : 78125;
595 /* Chip HZ to microseconds */
596 static inline u32 skge_clk2usec(const struct skge_hw *hw, u32 ticks)
598 return (ticks * 1000) / hwkhz(hw);
601 /* Microseconds to chip HZ */
602 static inline u32 skge_usecs2clk(const struct skge_hw *hw, u32 usec)
604 return hwkhz(hw) * usec / 1000;
607 static int skge_get_coalesce(struct net_device *dev,
608 struct ethtool_coalesce *ecmd)
610 struct skge_port *skge = netdev_priv(dev);
611 struct skge_hw *hw = skge->hw;
612 int port = skge->port;
614 ecmd->rx_coalesce_usecs = 0;
615 ecmd->tx_coalesce_usecs = 0;
617 if (skge_read32(hw, B2_IRQM_CTRL) & TIM_START) {
618 u32 delay = skge_clk2usec(hw, skge_read32(hw, B2_IRQM_INI));
619 u32 msk = skge_read32(hw, B2_IRQM_MSK);
621 if (msk & rxirqmask[port])
622 ecmd->rx_coalesce_usecs = delay;
623 if (msk & txirqmask[port])
624 ecmd->tx_coalesce_usecs = delay;
627 return 0;
630 /* Note: interrupt timer is per board, but can turn on/off per port */
631 static int skge_set_coalesce(struct net_device *dev,
632 struct ethtool_coalesce *ecmd)
634 struct skge_port *skge = netdev_priv(dev);
635 struct skge_hw *hw = skge->hw;
636 int port = skge->port;
637 u32 msk = skge_read32(hw, B2_IRQM_MSK);
638 u32 delay = 25;
640 if (ecmd->rx_coalesce_usecs == 0)
641 msk &= ~rxirqmask[port];
642 else if (ecmd->rx_coalesce_usecs < 25 ||
643 ecmd->rx_coalesce_usecs > 33333)
644 return -EINVAL;
645 else {
646 msk |= rxirqmask[port];
647 delay = ecmd->rx_coalesce_usecs;
650 if (ecmd->tx_coalesce_usecs == 0)
651 msk &= ~txirqmask[port];
652 else if (ecmd->tx_coalesce_usecs < 25 ||
653 ecmd->tx_coalesce_usecs > 33333)
654 return -EINVAL;
655 else {
656 msk |= txirqmask[port];
657 delay = min(delay, ecmd->rx_coalesce_usecs);
660 skge_write32(hw, B2_IRQM_MSK, msk);
661 if (msk == 0)
662 skge_write32(hw, B2_IRQM_CTRL, TIM_STOP);
663 else {
664 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, delay));
665 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
667 return 0;
670 enum led_mode { LED_MODE_OFF, LED_MODE_ON, LED_MODE_TST };
671 static void skge_led(struct skge_port *skge, enum led_mode mode)
673 struct skge_hw *hw = skge->hw;
674 int port = skge->port;
676 spin_lock_bh(&hw->phy_lock);
677 if (hw->chip_id == CHIP_ID_GENESIS) {
678 switch (mode) {
679 case LED_MODE_OFF:
680 if (hw->phy_type == SK_PHY_BCOM)
681 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_OFF);
682 else {
683 skge_write32(hw, SK_REG(port, TX_LED_VAL), 0);
684 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_T_OFF);
686 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_OFF);
687 skge_write32(hw, SK_REG(port, RX_LED_VAL), 0);
688 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_T_OFF);
689 break;
691 case LED_MODE_ON:
692 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_ON);
693 skge_write8(hw, SK_REG(port, LNK_LED_REG), LINKLED_LINKSYNC_ON);
695 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
696 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
698 break;
700 case LED_MODE_TST:
701 skge_write8(hw, SK_REG(port, RX_LED_TST), LED_T_ON);
702 skge_write32(hw, SK_REG(port, RX_LED_VAL), 100);
703 skge_write8(hw, SK_REG(port, RX_LED_CTRL), LED_START);
705 if (hw->phy_type == SK_PHY_BCOM)
706 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, PHY_B_PEC_LED_ON);
707 else {
708 skge_write8(hw, SK_REG(port, TX_LED_TST), LED_T_ON);
709 skge_write32(hw, SK_REG(port, TX_LED_VAL), 100);
710 skge_write8(hw, SK_REG(port, TX_LED_CTRL), LED_START);
714 } else {
715 switch (mode) {
716 case LED_MODE_OFF:
717 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
718 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
719 PHY_M_LED_MO_DUP(MO_LED_OFF) |
720 PHY_M_LED_MO_10(MO_LED_OFF) |
721 PHY_M_LED_MO_100(MO_LED_OFF) |
722 PHY_M_LED_MO_1000(MO_LED_OFF) |
723 PHY_M_LED_MO_RX(MO_LED_OFF));
724 break;
725 case LED_MODE_ON:
726 gm_phy_write(hw, port, PHY_MARV_LED_CTRL,
727 PHY_M_LED_PULS_DUR(PULS_170MS) |
728 PHY_M_LED_BLINK_RT(BLINK_84MS) |
729 PHY_M_LEDC_TX_CTRL |
730 PHY_M_LEDC_DP_CTRL);
732 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
733 PHY_M_LED_MO_RX(MO_LED_OFF) |
734 (skge->speed == SPEED_100 ?
735 PHY_M_LED_MO_100(MO_LED_ON) : 0));
736 break;
737 case LED_MODE_TST:
738 gm_phy_write(hw, port, PHY_MARV_LED_CTRL, 0);
739 gm_phy_write(hw, port, PHY_MARV_LED_OVER,
740 PHY_M_LED_MO_DUP(MO_LED_ON) |
741 PHY_M_LED_MO_10(MO_LED_ON) |
742 PHY_M_LED_MO_100(MO_LED_ON) |
743 PHY_M_LED_MO_1000(MO_LED_ON) |
744 PHY_M_LED_MO_RX(MO_LED_ON));
747 spin_unlock_bh(&hw->phy_lock);
750 /* blink LED's for finding board */
751 static int skge_set_phys_id(struct net_device *dev,
752 enum ethtool_phys_id_state state)
754 struct skge_port *skge = netdev_priv(dev);
756 switch (state) {
757 case ETHTOOL_ID_ACTIVE:
758 return 2; /* cycle on/off twice per second */
760 case ETHTOOL_ID_ON:
761 skge_led(skge, LED_MODE_TST);
762 break;
764 case ETHTOOL_ID_OFF:
765 skge_led(skge, LED_MODE_OFF);
766 break;
768 case ETHTOOL_ID_INACTIVE:
769 /* back to regular LED state */
770 skge_led(skge, netif_running(dev) ? LED_MODE_ON : LED_MODE_OFF);
773 return 0;
776 static int skge_get_eeprom_len(struct net_device *dev)
778 struct skge_port *skge = netdev_priv(dev);
779 u32 reg2;
781 pci_read_config_dword(skge->hw->pdev, PCI_DEV_REG2, &reg2);
782 return 1 << (((reg2 & PCI_VPD_ROM_SZ) >> 14) + 8);
785 static u32 skge_vpd_read(struct pci_dev *pdev, int cap, u16 offset)
787 u32 val;
789 pci_write_config_word(pdev, cap + PCI_VPD_ADDR, offset);
791 do {
792 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
793 } while (!(offset & PCI_VPD_ADDR_F));
795 pci_read_config_dword(pdev, cap + PCI_VPD_DATA, &val);
796 return val;
799 static void skge_vpd_write(struct pci_dev *pdev, int cap, u16 offset, u32 val)
801 pci_write_config_dword(pdev, cap + PCI_VPD_DATA, val);
802 pci_write_config_word(pdev, cap + PCI_VPD_ADDR,
803 offset | PCI_VPD_ADDR_F);
805 do {
806 pci_read_config_word(pdev, cap + PCI_VPD_ADDR, &offset);
807 } while (offset & PCI_VPD_ADDR_F);
810 static int skge_get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
811 u8 *data)
813 struct skge_port *skge = netdev_priv(dev);
814 struct pci_dev *pdev = skge->hw->pdev;
815 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
816 int length = eeprom->len;
817 u16 offset = eeprom->offset;
819 if (!cap)
820 return -EINVAL;
822 eeprom->magic = SKGE_EEPROM_MAGIC;
824 while (length > 0) {
825 u32 val = skge_vpd_read(pdev, cap, offset);
826 int n = min_t(int, length, sizeof(val));
828 memcpy(data, &val, n);
829 length -= n;
830 data += n;
831 offset += n;
833 return 0;
836 static int skge_set_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom,
837 u8 *data)
839 struct skge_port *skge = netdev_priv(dev);
840 struct pci_dev *pdev = skge->hw->pdev;
841 int cap = pci_find_capability(pdev, PCI_CAP_ID_VPD);
842 int length = eeprom->len;
843 u16 offset = eeprom->offset;
845 if (!cap)
846 return -EINVAL;
848 if (eeprom->magic != SKGE_EEPROM_MAGIC)
849 return -EINVAL;
851 while (length > 0) {
852 u32 val;
853 int n = min_t(int, length, sizeof(val));
855 if (n < sizeof(val))
856 val = skge_vpd_read(pdev, cap, offset);
857 memcpy(&val, data, n);
859 skge_vpd_write(pdev, cap, offset, val);
861 length -= n;
862 data += n;
863 offset += n;
865 return 0;
868 static const struct ethtool_ops skge_ethtool_ops = {
869 .get_settings = skge_get_settings,
870 .set_settings = skge_set_settings,
871 .get_drvinfo = skge_get_drvinfo,
872 .get_regs_len = skge_get_regs_len,
873 .get_regs = skge_get_regs,
874 .get_wol = skge_get_wol,
875 .set_wol = skge_set_wol,
876 .get_msglevel = skge_get_msglevel,
877 .set_msglevel = skge_set_msglevel,
878 .nway_reset = skge_nway_reset,
879 .get_link = ethtool_op_get_link,
880 .get_eeprom_len = skge_get_eeprom_len,
881 .get_eeprom = skge_get_eeprom,
882 .set_eeprom = skge_set_eeprom,
883 .get_ringparam = skge_get_ring_param,
884 .set_ringparam = skge_set_ring_param,
885 .get_pauseparam = skge_get_pauseparam,
886 .set_pauseparam = skge_set_pauseparam,
887 .get_coalesce = skge_get_coalesce,
888 .set_coalesce = skge_set_coalesce,
889 .get_strings = skge_get_strings,
890 .set_phys_id = skge_set_phys_id,
891 .get_sset_count = skge_get_sset_count,
892 .get_ethtool_stats = skge_get_ethtool_stats,
896 * Allocate ring elements and chain them together
897 * One-to-one association of board descriptors with ring elements
899 static int skge_ring_alloc(struct skge_ring *ring, void *vaddr, u32 base)
901 struct skge_tx_desc *d;
902 struct skge_element *e;
903 int i;
905 ring->start = kcalloc(ring->count, sizeof(*e), GFP_KERNEL);
906 if (!ring->start)
907 return -ENOMEM;
909 for (i = 0, e = ring->start, d = vaddr; i < ring->count; i++, e++, d++) {
910 e->desc = d;
911 if (i == ring->count - 1) {
912 e->next = ring->start;
913 d->next_offset = base;
914 } else {
915 e->next = e + 1;
916 d->next_offset = base + (i+1) * sizeof(*d);
919 ring->to_use = ring->to_clean = ring->start;
921 return 0;
924 /* Allocate and setup a new buffer for receiving */
925 static void skge_rx_setup(struct skge_port *skge, struct skge_element *e,
926 struct sk_buff *skb, unsigned int bufsize)
928 struct skge_rx_desc *rd = e->desc;
929 u64 map;
931 map = pci_map_single(skge->hw->pdev, skb->data, bufsize,
932 PCI_DMA_FROMDEVICE);
934 rd->dma_lo = map;
935 rd->dma_hi = map >> 32;
936 e->skb = skb;
937 rd->csum1_start = ETH_HLEN;
938 rd->csum2_start = ETH_HLEN;
939 rd->csum1 = 0;
940 rd->csum2 = 0;
942 wmb();
944 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | bufsize;
945 dma_unmap_addr_set(e, mapaddr, map);
946 dma_unmap_len_set(e, maplen, bufsize);
949 /* Resume receiving using existing skb,
950 * Note: DMA address is not changed by chip.
951 * MTU not changed while receiver active.
953 static inline void skge_rx_reuse(struct skge_element *e, unsigned int size)
955 struct skge_rx_desc *rd = e->desc;
957 rd->csum2 = 0;
958 rd->csum2_start = ETH_HLEN;
960 wmb();
962 rd->control = BMU_OWN | BMU_STF | BMU_IRQ_EOF | BMU_TCP_CHECK | size;
966 /* Free all buffers in receive ring, assumes receiver stopped */
967 static void skge_rx_clean(struct skge_port *skge)
969 struct skge_hw *hw = skge->hw;
970 struct skge_ring *ring = &skge->rx_ring;
971 struct skge_element *e;
973 e = ring->start;
974 do {
975 struct skge_rx_desc *rd = e->desc;
976 rd->control = 0;
977 if (e->skb) {
978 pci_unmap_single(hw->pdev,
979 dma_unmap_addr(e, mapaddr),
980 dma_unmap_len(e, maplen),
981 PCI_DMA_FROMDEVICE);
982 dev_kfree_skb(e->skb);
983 e->skb = NULL;
985 } while ((e = e->next) != ring->start);
989 /* Allocate buffers for receive ring
990 * For receive: to_clean is next received frame.
992 static int skge_rx_fill(struct net_device *dev)
994 struct skge_port *skge = netdev_priv(dev);
995 struct skge_ring *ring = &skge->rx_ring;
996 struct skge_element *e;
998 e = ring->start;
999 do {
1000 struct sk_buff *skb;
1002 skb = __netdev_alloc_skb(dev, skge->rx_buf_size + NET_IP_ALIGN,
1003 GFP_KERNEL);
1004 if (!skb)
1005 return -ENOMEM;
1007 skb_reserve(skb, NET_IP_ALIGN);
1008 skge_rx_setup(skge, e, skb, skge->rx_buf_size);
1009 } while ((e = e->next) != ring->start);
1011 ring->to_clean = ring->start;
1012 return 0;
1015 static const char *skge_pause(enum pause_status status)
1017 switch (status) {
1018 case FLOW_STAT_NONE:
1019 return "none";
1020 case FLOW_STAT_REM_SEND:
1021 return "rx only";
1022 case FLOW_STAT_LOC_SEND:
1023 return "tx_only";
1024 case FLOW_STAT_SYMMETRIC: /* Both station may send PAUSE */
1025 return "both";
1026 default:
1027 return "indeterminated";
1032 static void skge_link_up(struct skge_port *skge)
1034 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG),
1035 LED_BLK_OFF|LED_SYNC_OFF|LED_ON);
1037 netif_carrier_on(skge->netdev);
1038 netif_wake_queue(skge->netdev);
1040 netif_info(skge, link, skge->netdev,
1041 "Link is up at %d Mbps, %s duplex, flow control %s\n",
1042 skge->speed,
1043 skge->duplex == DUPLEX_FULL ? "full" : "half",
1044 skge_pause(skge->flow_status));
1047 static void skge_link_down(struct skge_port *skge)
1049 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
1050 netif_carrier_off(skge->netdev);
1051 netif_stop_queue(skge->netdev);
1053 netif_info(skge, link, skge->netdev, "Link is down\n");
1057 static void xm_link_down(struct skge_hw *hw, int port)
1059 struct net_device *dev = hw->dev[port];
1060 struct skge_port *skge = netdev_priv(dev);
1062 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1064 if (netif_carrier_ok(dev))
1065 skge_link_down(skge);
1068 static int __xm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1070 int i;
1072 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1073 *val = xm_read16(hw, port, XM_PHY_DATA);
1075 if (hw->phy_type == SK_PHY_XMAC)
1076 goto ready;
1078 for (i = 0; i < PHY_RETRIES; i++) {
1079 if (xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_RDY)
1080 goto ready;
1081 udelay(1);
1084 return -ETIMEDOUT;
1085 ready:
1086 *val = xm_read16(hw, port, XM_PHY_DATA);
1088 return 0;
1091 static u16 xm_phy_read(struct skge_hw *hw, int port, u16 reg)
1093 u16 v = 0;
1094 if (__xm_phy_read(hw, port, reg, &v))
1095 pr_warning("%s: phy read timed out\n", hw->dev[port]->name);
1096 return v;
1099 static int xm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1101 int i;
1103 xm_write16(hw, port, XM_PHY_ADDR, reg | hw->phy_addr);
1104 for (i = 0; i < PHY_RETRIES; i++) {
1105 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1106 goto ready;
1107 udelay(1);
1109 return -EIO;
1111 ready:
1112 xm_write16(hw, port, XM_PHY_DATA, val);
1113 for (i = 0; i < PHY_RETRIES; i++) {
1114 if (!(xm_read16(hw, port, XM_MMU_CMD) & XM_MMU_PHY_BUSY))
1115 return 0;
1116 udelay(1);
1118 return -ETIMEDOUT;
1121 static void genesis_init(struct skge_hw *hw)
1123 /* set blink source counter */
1124 skge_write32(hw, B2_BSC_INI, (SK_BLK_DUR * SK_FACT_53) / 100);
1125 skge_write8(hw, B2_BSC_CTRL, BSC_START);
1127 /* configure mac arbiter */
1128 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1130 /* configure mac arbiter timeout values */
1131 skge_write8(hw, B3_MA_TOINI_RX1, SK_MAC_TO_53);
1132 skge_write8(hw, B3_MA_TOINI_RX2, SK_MAC_TO_53);
1133 skge_write8(hw, B3_MA_TOINI_TX1, SK_MAC_TO_53);
1134 skge_write8(hw, B3_MA_TOINI_TX2, SK_MAC_TO_53);
1136 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1137 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1138 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1139 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1141 /* configure packet arbiter timeout */
1142 skge_write16(hw, B3_PA_CTRL, PA_RST_CLR);
1143 skge_write16(hw, B3_PA_TOINI_RX1, SK_PKT_TO_MAX);
1144 skge_write16(hw, B3_PA_TOINI_TX1, SK_PKT_TO_MAX);
1145 skge_write16(hw, B3_PA_TOINI_RX2, SK_PKT_TO_MAX);
1146 skge_write16(hw, B3_PA_TOINI_TX2, SK_PKT_TO_MAX);
1149 static void genesis_reset(struct skge_hw *hw, int port)
1151 static const u8 zero[8] = { 0 };
1152 u32 reg;
1154 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
1156 /* reset the statistics module */
1157 xm_write32(hw, port, XM_GP_PORT, XM_GP_RES_STAT);
1158 xm_write16(hw, port, XM_IMSK, XM_IMSK_DISABLE);
1159 xm_write32(hw, port, XM_MODE, 0); /* clear Mode Reg */
1160 xm_write16(hw, port, XM_TX_CMD, 0); /* reset TX CMD Reg */
1161 xm_write16(hw, port, XM_RX_CMD, 0); /* reset RX CMD Reg */
1163 /* disable Broadcom PHY IRQ */
1164 if (hw->phy_type == SK_PHY_BCOM)
1165 xm_write16(hw, port, PHY_BCOM_INT_MASK, 0xffff);
1167 xm_outhash(hw, port, XM_HSM, zero);
1169 /* Flush TX and RX fifo */
1170 reg = xm_read32(hw, port, XM_MODE);
1171 xm_write32(hw, port, XM_MODE, reg | XM_MD_FTF);
1172 xm_write32(hw, port, XM_MODE, reg | XM_MD_FRF);
1176 /* Convert mode to MII values */
1177 static const u16 phy_pause_map[] = {
1178 [FLOW_MODE_NONE] = 0,
1179 [FLOW_MODE_LOC_SEND] = PHY_AN_PAUSE_ASYM,
1180 [FLOW_MODE_SYMMETRIC] = PHY_AN_PAUSE_CAP,
1181 [FLOW_MODE_SYM_OR_REM] = PHY_AN_PAUSE_CAP | PHY_AN_PAUSE_ASYM,
1184 /* special defines for FIBER (88E1011S only) */
1185 static const u16 fiber_pause_map[] = {
1186 [FLOW_MODE_NONE] = PHY_X_P_NO_PAUSE,
1187 [FLOW_MODE_LOC_SEND] = PHY_X_P_ASYM_MD,
1188 [FLOW_MODE_SYMMETRIC] = PHY_X_P_SYM_MD,
1189 [FLOW_MODE_SYM_OR_REM] = PHY_X_P_BOTH_MD,
1193 /* Check status of Broadcom phy link */
1194 static void bcom_check_link(struct skge_hw *hw, int port)
1196 struct net_device *dev = hw->dev[port];
1197 struct skge_port *skge = netdev_priv(dev);
1198 u16 status;
1200 /* read twice because of latch */
1201 xm_phy_read(hw, port, PHY_BCOM_STAT);
1202 status = xm_phy_read(hw, port, PHY_BCOM_STAT);
1204 if ((status & PHY_ST_LSYNC) == 0) {
1205 xm_link_down(hw, port);
1206 return;
1209 if (skge->autoneg == AUTONEG_ENABLE) {
1210 u16 lpa, aux;
1212 if (!(status & PHY_ST_AN_OVER))
1213 return;
1215 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1216 if (lpa & PHY_B_AN_RF) {
1217 netdev_notice(dev, "remote fault\n");
1218 return;
1221 aux = xm_phy_read(hw, port, PHY_BCOM_AUX_STAT);
1223 /* Check Duplex mismatch */
1224 switch (aux & PHY_B_AS_AN_RES_MSK) {
1225 case PHY_B_RES_1000FD:
1226 skge->duplex = DUPLEX_FULL;
1227 break;
1228 case PHY_B_RES_1000HD:
1229 skge->duplex = DUPLEX_HALF;
1230 break;
1231 default:
1232 netdev_notice(dev, "duplex mismatch\n");
1233 return;
1236 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1237 switch (aux & PHY_B_AS_PAUSE_MSK) {
1238 case PHY_B_AS_PAUSE_MSK:
1239 skge->flow_status = FLOW_STAT_SYMMETRIC;
1240 break;
1241 case PHY_B_AS_PRR:
1242 skge->flow_status = FLOW_STAT_REM_SEND;
1243 break;
1244 case PHY_B_AS_PRT:
1245 skge->flow_status = FLOW_STAT_LOC_SEND;
1246 break;
1247 default:
1248 skge->flow_status = FLOW_STAT_NONE;
1250 skge->speed = SPEED_1000;
1253 if (!netif_carrier_ok(dev))
1254 genesis_link_up(skge);
1257 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1258 * Phy on for 100 or 10Mbit operation
1260 static void bcom_phy_init(struct skge_port *skge)
1262 struct skge_hw *hw = skge->hw;
1263 int port = skge->port;
1264 int i;
1265 u16 id1, r, ext, ctl;
1267 /* magic workaround patterns for Broadcom */
1268 static const struct {
1269 u16 reg;
1270 u16 val;
1271 } A1hack[] = {
1272 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1273 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1274 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1275 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1276 }, C0hack[] = {
1277 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1278 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1281 /* read Id from external PHY (all have the same address) */
1282 id1 = xm_phy_read(hw, port, PHY_XMAC_ID1);
1284 /* Optimize MDIO transfer by suppressing preamble. */
1285 r = xm_read16(hw, port, XM_MMU_CMD);
1286 r |= XM_MMU_NO_PRE;
1287 xm_write16(hw, port, XM_MMU_CMD, r);
1289 switch (id1) {
1290 case PHY_BCOM_ID1_C0:
1292 * Workaround BCOM Errata for the C0 type.
1293 * Write magic patterns to reserved registers.
1295 for (i = 0; i < ARRAY_SIZE(C0hack); i++)
1296 xm_phy_write(hw, port,
1297 C0hack[i].reg, C0hack[i].val);
1299 break;
1300 case PHY_BCOM_ID1_A1:
1302 * Workaround BCOM Errata for the A1 type.
1303 * Write magic patterns to reserved registers.
1305 for (i = 0; i < ARRAY_SIZE(A1hack); i++)
1306 xm_phy_write(hw, port,
1307 A1hack[i].reg, A1hack[i].val);
1308 break;
1312 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1313 * Disable Power Management after reset.
1315 r = xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL);
1316 r |= PHY_B_AC_DIS_PM;
1317 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL, r);
1319 /* Dummy read */
1320 xm_read16(hw, port, XM_ISRC);
1322 ext = PHY_B_PEC_EN_LTR; /* enable tx led */
1323 ctl = PHY_CT_SP1000; /* always 1000mbit */
1325 if (skge->autoneg == AUTONEG_ENABLE) {
1327 * Workaround BCOM Errata #1 for the C5 type.
1328 * 1000Base-T Link Acquisition Failure in Slave Mode
1329 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1331 u16 adv = PHY_B_1000C_RD;
1332 if (skge->advertising & ADVERTISED_1000baseT_Half)
1333 adv |= PHY_B_1000C_AHD;
1334 if (skge->advertising & ADVERTISED_1000baseT_Full)
1335 adv |= PHY_B_1000C_AFD;
1336 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, adv);
1338 ctl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1339 } else {
1340 if (skge->duplex == DUPLEX_FULL)
1341 ctl |= PHY_CT_DUP_MD;
1342 /* Force to slave */
1343 xm_phy_write(hw, port, PHY_BCOM_1000T_CTRL, PHY_B_1000C_MSE);
1346 /* Set autonegotiation pause parameters */
1347 xm_phy_write(hw, port, PHY_BCOM_AUNE_ADV,
1348 phy_pause_map[skge->flow_control] | PHY_AN_CSMA);
1350 /* Handle Jumbo frames */
1351 if (hw->dev[port]->mtu > ETH_DATA_LEN) {
1352 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1353 PHY_B_AC_TX_TST | PHY_B_AC_LONG_PACK);
1355 ext |= PHY_B_PEC_HIGH_LA;
1359 xm_phy_write(hw, port, PHY_BCOM_P_EXT_CTRL, ext);
1360 xm_phy_write(hw, port, PHY_BCOM_CTRL, ctl);
1362 /* Use link status change interrupt */
1363 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1366 static void xm_phy_init(struct skge_port *skge)
1368 struct skge_hw *hw = skge->hw;
1369 int port = skge->port;
1370 u16 ctrl = 0;
1372 if (skge->autoneg == AUTONEG_ENABLE) {
1373 if (skge->advertising & ADVERTISED_1000baseT_Half)
1374 ctrl |= PHY_X_AN_HD;
1375 if (skge->advertising & ADVERTISED_1000baseT_Full)
1376 ctrl |= PHY_X_AN_FD;
1378 ctrl |= fiber_pause_map[skge->flow_control];
1380 xm_phy_write(hw, port, PHY_XMAC_AUNE_ADV, ctrl);
1382 /* Restart Auto-negotiation */
1383 ctrl = PHY_CT_ANE | PHY_CT_RE_CFG;
1384 } else {
1385 /* Set DuplexMode in Config register */
1386 if (skge->duplex == DUPLEX_FULL)
1387 ctrl |= PHY_CT_DUP_MD;
1389 * Do NOT enable Auto-negotiation here. This would hold
1390 * the link down because no IDLEs are transmitted
1394 xm_phy_write(hw, port, PHY_XMAC_CTRL, ctrl);
1396 /* Poll PHY for status changes */
1397 mod_timer(&skge->link_timer, jiffies + LINK_HZ);
1400 static int xm_check_link(struct net_device *dev)
1402 struct skge_port *skge = netdev_priv(dev);
1403 struct skge_hw *hw = skge->hw;
1404 int port = skge->port;
1405 u16 status;
1407 /* read twice because of latch */
1408 xm_phy_read(hw, port, PHY_XMAC_STAT);
1409 status = xm_phy_read(hw, port, PHY_XMAC_STAT);
1411 if ((status & PHY_ST_LSYNC) == 0) {
1412 xm_link_down(hw, port);
1413 return 0;
1416 if (skge->autoneg == AUTONEG_ENABLE) {
1417 u16 lpa, res;
1419 if (!(status & PHY_ST_AN_OVER))
1420 return 0;
1422 lpa = xm_phy_read(hw, port, PHY_XMAC_AUNE_LP);
1423 if (lpa & PHY_B_AN_RF) {
1424 netdev_notice(dev, "remote fault\n");
1425 return 0;
1428 res = xm_phy_read(hw, port, PHY_XMAC_RES_ABI);
1430 /* Check Duplex mismatch */
1431 switch (res & (PHY_X_RS_HD | PHY_X_RS_FD)) {
1432 case PHY_X_RS_FD:
1433 skge->duplex = DUPLEX_FULL;
1434 break;
1435 case PHY_X_RS_HD:
1436 skge->duplex = DUPLEX_HALF;
1437 break;
1438 default:
1439 netdev_notice(dev, "duplex mismatch\n");
1440 return 0;
1443 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1444 if ((skge->flow_control == FLOW_MODE_SYMMETRIC ||
1445 skge->flow_control == FLOW_MODE_SYM_OR_REM) &&
1446 (lpa & PHY_X_P_SYM_MD))
1447 skge->flow_status = FLOW_STAT_SYMMETRIC;
1448 else if (skge->flow_control == FLOW_MODE_SYM_OR_REM &&
1449 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_ASYM_MD)
1450 /* Enable PAUSE receive, disable PAUSE transmit */
1451 skge->flow_status = FLOW_STAT_REM_SEND;
1452 else if (skge->flow_control == FLOW_MODE_LOC_SEND &&
1453 (lpa & PHY_X_RS_PAUSE) == PHY_X_P_BOTH_MD)
1454 /* Disable PAUSE receive, enable PAUSE transmit */
1455 skge->flow_status = FLOW_STAT_LOC_SEND;
1456 else
1457 skge->flow_status = FLOW_STAT_NONE;
1459 skge->speed = SPEED_1000;
1462 if (!netif_carrier_ok(dev))
1463 genesis_link_up(skge);
1464 return 1;
1467 /* Poll to check for link coming up.
1469 * Since internal PHY is wired to a level triggered pin, can't
1470 * get an interrupt when carrier is detected, need to poll for
1471 * link coming up.
1473 static void xm_link_timer(unsigned long arg)
1475 struct skge_port *skge = (struct skge_port *) arg;
1476 struct net_device *dev = skge->netdev;
1477 struct skge_hw *hw = skge->hw;
1478 int port = skge->port;
1479 int i;
1480 unsigned long flags;
1482 if (!netif_running(dev))
1483 return;
1485 spin_lock_irqsave(&hw->phy_lock, flags);
1488 * Verify that the link by checking GPIO register three times.
1489 * This pin has the signal from the link_sync pin connected to it.
1491 for (i = 0; i < 3; i++) {
1492 if (xm_read16(hw, port, XM_GP_PORT) & XM_GP_INP_ASS)
1493 goto link_down;
1496 /* Re-enable interrupt to detect link down */
1497 if (xm_check_link(dev)) {
1498 u16 msk = xm_read16(hw, port, XM_IMSK);
1499 msk &= ~XM_IS_INP_ASS;
1500 xm_write16(hw, port, XM_IMSK, msk);
1501 xm_read16(hw, port, XM_ISRC);
1502 } else {
1503 link_down:
1504 mod_timer(&skge->link_timer,
1505 round_jiffies(jiffies + LINK_HZ));
1507 spin_unlock_irqrestore(&hw->phy_lock, flags);
1510 static void genesis_mac_init(struct skge_hw *hw, int port)
1512 struct net_device *dev = hw->dev[port];
1513 struct skge_port *skge = netdev_priv(dev);
1514 int jumbo = hw->dev[port]->mtu > ETH_DATA_LEN;
1515 int i;
1516 u32 r;
1517 static const u8 zero[6] = { 0 };
1519 for (i = 0; i < 10; i++) {
1520 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
1521 MFF_SET_MAC_RST);
1522 if (skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST)
1523 goto reset_ok;
1524 udelay(1);
1527 netdev_warn(dev, "genesis reset failed\n");
1529 reset_ok:
1530 /* Unreset the XMAC. */
1531 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1534 * Perform additional initialization for external PHYs,
1535 * namely for the 1000baseTX cards that use the XMAC's
1536 * GMII mode.
1538 if (hw->phy_type != SK_PHY_XMAC) {
1539 /* Take external Phy out of reset */
1540 r = skge_read32(hw, B2_GP_IO);
1541 if (port == 0)
1542 r |= GP_DIR_0|GP_IO_0;
1543 else
1544 r |= GP_DIR_2|GP_IO_2;
1546 skge_write32(hw, B2_GP_IO, r);
1548 /* Enable GMII interface */
1549 xm_write16(hw, port, XM_HW_CFG, XM_HW_GMII_MD);
1553 switch (hw->phy_type) {
1554 case SK_PHY_XMAC:
1555 xm_phy_init(skge);
1556 break;
1557 case SK_PHY_BCOM:
1558 bcom_phy_init(skge);
1559 bcom_check_link(hw, port);
1562 /* Set Station Address */
1563 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
1565 /* We don't use match addresses so clear */
1566 for (i = 1; i < 16; i++)
1567 xm_outaddr(hw, port, XM_EXM(i), zero);
1569 /* Clear MIB counters */
1570 xm_write16(hw, port, XM_STAT_CMD,
1571 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1572 /* Clear two times according to Errata #3 */
1573 xm_write16(hw, port, XM_STAT_CMD,
1574 XM_SC_CLR_RXC | XM_SC_CLR_TXC);
1576 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1577 xm_write16(hw, port, XM_RX_HI_WM, 1450);
1579 /* We don't need the FCS appended to the packet. */
1580 r = XM_RX_LENERR_OK | XM_RX_STRIP_FCS;
1581 if (jumbo)
1582 r |= XM_RX_BIG_PK_OK;
1584 if (skge->duplex == DUPLEX_HALF) {
1586 * If in manual half duplex mode the other side might be in
1587 * full duplex mode, so ignore if a carrier extension is not seen
1588 * on frames received
1590 r |= XM_RX_DIS_CEXT;
1592 xm_write16(hw, port, XM_RX_CMD, r);
1594 /* We want short frames padded to 60 bytes. */
1595 xm_write16(hw, port, XM_TX_CMD, XM_TX_AUTO_PAD);
1597 /* Increase threshold for jumbo frames on dual port */
1598 if (hw->ports > 1 && jumbo)
1599 xm_write16(hw, port, XM_TX_THR, 1020);
1600 else
1601 xm_write16(hw, port, XM_TX_THR, 512);
1604 * Enable the reception of all error frames. This is is
1605 * a necessary evil due to the design of the XMAC. The
1606 * XMAC's receive FIFO is only 8K in size, however jumbo
1607 * frames can be up to 9000 bytes in length. When bad
1608 * frame filtering is enabled, the XMAC's RX FIFO operates
1609 * in 'store and forward' mode. For this to work, the
1610 * entire frame has to fit into the FIFO, but that means
1611 * that jumbo frames larger than 8192 bytes will be
1612 * truncated. Disabling all bad frame filtering causes
1613 * the RX FIFO to operate in streaming mode, in which
1614 * case the XMAC will start transferring frames out of the
1615 * RX FIFO as soon as the FIFO threshold is reached.
1617 xm_write32(hw, port, XM_MODE, XM_DEF_MODE);
1621 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1622 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1623 * and 'Octets Rx OK Hi Cnt Ov'.
1625 xm_write32(hw, port, XM_RX_EV_MSK, XMR_DEF_MSK);
1628 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1629 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1630 * and 'Octets Tx OK Hi Cnt Ov'.
1632 xm_write32(hw, port, XM_TX_EV_MSK, XMT_DEF_MSK);
1634 /* Configure MAC arbiter */
1635 skge_write16(hw, B3_MA_TO_CTRL, MA_RST_CLR);
1637 /* configure timeout values */
1638 skge_write8(hw, B3_MA_TOINI_RX1, 72);
1639 skge_write8(hw, B3_MA_TOINI_RX2, 72);
1640 skge_write8(hw, B3_MA_TOINI_TX1, 72);
1641 skge_write8(hw, B3_MA_TOINI_TX2, 72);
1643 skge_write8(hw, B3_MA_RCINI_RX1, 0);
1644 skge_write8(hw, B3_MA_RCINI_RX2, 0);
1645 skge_write8(hw, B3_MA_RCINI_TX1, 0);
1646 skge_write8(hw, B3_MA_RCINI_TX2, 0);
1648 /* Configure Rx MAC FIFO */
1649 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_CLR);
1650 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_TIM_PAT);
1651 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_ENA_OP_MD);
1653 /* Configure Tx MAC FIFO */
1654 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_CLR);
1655 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_TX_CTRL_DEF);
1656 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_ENA_OP_MD);
1658 if (jumbo) {
1659 /* Enable frame flushing if jumbo frames used */
1660 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_FLUSH);
1661 } else {
1662 /* enable timeout timers if normal frames */
1663 skge_write16(hw, B3_PA_CTRL,
1664 (port == 0) ? PA_ENA_TO_TX1 : PA_ENA_TO_TX2);
1668 static void genesis_stop(struct skge_port *skge)
1670 struct skge_hw *hw = skge->hw;
1671 int port = skge->port;
1672 unsigned retries = 1000;
1673 u16 cmd;
1675 /* Disable Tx and Rx */
1676 cmd = xm_read16(hw, port, XM_MMU_CMD);
1677 cmd &= ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1678 xm_write16(hw, port, XM_MMU_CMD, cmd);
1680 genesis_reset(hw, port);
1682 /* Clear Tx packet arbiter timeout IRQ */
1683 skge_write16(hw, B3_PA_CTRL,
1684 port == 0 ? PA_CLR_TO_TX1 : PA_CLR_TO_TX2);
1686 /* Reset the MAC */
1687 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_CLR_MAC_RST);
1688 do {
1689 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1), MFF_SET_MAC_RST);
1690 if (!(skge_read16(hw, SK_REG(port, TX_MFF_CTRL1)) & MFF_SET_MAC_RST))
1691 break;
1692 } while (--retries > 0);
1694 /* For external PHYs there must be special handling */
1695 if (hw->phy_type != SK_PHY_XMAC) {
1696 u32 reg = skge_read32(hw, B2_GP_IO);
1697 if (port == 0) {
1698 reg |= GP_DIR_0;
1699 reg &= ~GP_IO_0;
1700 } else {
1701 reg |= GP_DIR_2;
1702 reg &= ~GP_IO_2;
1704 skge_write32(hw, B2_GP_IO, reg);
1705 skge_read32(hw, B2_GP_IO);
1708 xm_write16(hw, port, XM_MMU_CMD,
1709 xm_read16(hw, port, XM_MMU_CMD)
1710 & ~(XM_MMU_ENA_RX | XM_MMU_ENA_TX));
1712 xm_read16(hw, port, XM_MMU_CMD);
1716 static void genesis_get_stats(struct skge_port *skge, u64 *data)
1718 struct skge_hw *hw = skge->hw;
1719 int port = skge->port;
1720 int i;
1721 unsigned long timeout = jiffies + HZ;
1723 xm_write16(hw, port,
1724 XM_STAT_CMD, XM_SC_SNP_TXC | XM_SC_SNP_RXC);
1726 /* wait for update to complete */
1727 while (xm_read16(hw, port, XM_STAT_CMD)
1728 & (XM_SC_SNP_TXC | XM_SC_SNP_RXC)) {
1729 if (time_after(jiffies, timeout))
1730 break;
1731 udelay(10);
1734 /* special case for 64 bit octet counter */
1735 data[0] = (u64) xm_read32(hw, port, XM_TXO_OK_HI) << 32
1736 | xm_read32(hw, port, XM_TXO_OK_LO);
1737 data[1] = (u64) xm_read32(hw, port, XM_RXO_OK_HI) << 32
1738 | xm_read32(hw, port, XM_RXO_OK_LO);
1740 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
1741 data[i] = xm_read32(hw, port, skge_stats[i].xmac_offset);
1744 static void genesis_mac_intr(struct skge_hw *hw, int port)
1746 struct net_device *dev = hw->dev[port];
1747 struct skge_port *skge = netdev_priv(dev);
1748 u16 status = xm_read16(hw, port, XM_ISRC);
1750 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1751 "mac interrupt status 0x%x\n", status);
1753 if (hw->phy_type == SK_PHY_XMAC && (status & XM_IS_INP_ASS)) {
1754 xm_link_down(hw, port);
1755 mod_timer(&skge->link_timer, jiffies + 1);
1758 if (status & XM_IS_TXF_UR) {
1759 xm_write32(hw, port, XM_MODE, XM_MD_FTF);
1760 ++dev->stats.tx_fifo_errors;
1764 static void genesis_link_up(struct skge_port *skge)
1766 struct skge_hw *hw = skge->hw;
1767 int port = skge->port;
1768 u16 cmd, msk;
1769 u32 mode;
1771 cmd = xm_read16(hw, port, XM_MMU_CMD);
1774 * enabling pause frame reception is required for 1000BT
1775 * because the XMAC is not reset if the link is going down
1777 if (skge->flow_status == FLOW_STAT_NONE ||
1778 skge->flow_status == FLOW_STAT_LOC_SEND)
1779 /* Disable Pause Frame Reception */
1780 cmd |= XM_MMU_IGN_PF;
1781 else
1782 /* Enable Pause Frame Reception */
1783 cmd &= ~XM_MMU_IGN_PF;
1785 xm_write16(hw, port, XM_MMU_CMD, cmd);
1787 mode = xm_read32(hw, port, XM_MODE);
1788 if (skge->flow_status == FLOW_STAT_SYMMETRIC ||
1789 skge->flow_status == FLOW_STAT_LOC_SEND) {
1791 * Configure Pause Frame Generation
1792 * Use internal and external Pause Frame Generation.
1793 * Sending pause frames is edge triggered.
1794 * Send a Pause frame with the maximum pause time if
1795 * internal oder external FIFO full condition occurs.
1796 * Send a zero pause time frame to re-start transmission.
1798 /* XM_PAUSE_DA = '010000C28001' (default) */
1799 /* XM_MAC_PTIME = 0xffff (maximum) */
1800 /* remember this value is defined in big endian (!) */
1801 xm_write16(hw, port, XM_MAC_PTIME, 0xffff);
1803 mode |= XM_PAUSE_MODE;
1804 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_ENA_PAUSE);
1805 } else {
1807 * disable pause frame generation is required for 1000BT
1808 * because the XMAC is not reset if the link is going down
1810 /* Disable Pause Mode in Mode Register */
1811 mode &= ~XM_PAUSE_MODE;
1813 skge_write16(hw, SK_REG(port, RX_MFF_CTRL1), MFF_DIS_PAUSE);
1816 xm_write32(hw, port, XM_MODE, mode);
1818 /* Turn on detection of Tx underrun */
1819 msk = xm_read16(hw, port, XM_IMSK);
1820 msk &= ~XM_IS_TXF_UR;
1821 xm_write16(hw, port, XM_IMSK, msk);
1823 xm_read16(hw, port, XM_ISRC);
1825 /* get MMU Command Reg. */
1826 cmd = xm_read16(hw, port, XM_MMU_CMD);
1827 if (hw->phy_type != SK_PHY_XMAC && skge->duplex == DUPLEX_FULL)
1828 cmd |= XM_MMU_GMII_FD;
1831 * Workaround BCOM Errata (#10523) for all BCom Phys
1832 * Enable Power Management after link up
1834 if (hw->phy_type == SK_PHY_BCOM) {
1835 xm_phy_write(hw, port, PHY_BCOM_AUX_CTRL,
1836 xm_phy_read(hw, port, PHY_BCOM_AUX_CTRL)
1837 & ~PHY_B_AC_DIS_PM);
1838 xm_phy_write(hw, port, PHY_BCOM_INT_MASK, PHY_B_DEF_MSK);
1841 /* enable Rx/Tx */
1842 xm_write16(hw, port, XM_MMU_CMD,
1843 cmd | XM_MMU_ENA_RX | XM_MMU_ENA_TX);
1844 skge_link_up(skge);
1848 static inline void bcom_phy_intr(struct skge_port *skge)
1850 struct skge_hw *hw = skge->hw;
1851 int port = skge->port;
1852 u16 isrc;
1854 isrc = xm_phy_read(hw, port, PHY_BCOM_INT_STAT);
1855 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
1856 "phy interrupt status 0x%x\n", isrc);
1858 if (isrc & PHY_B_IS_PSE)
1859 pr_err("%s: uncorrectable pair swap error\n",
1860 hw->dev[port]->name);
1862 /* Workaround BCom Errata:
1863 * enable and disable loopback mode if "NO HCD" occurs.
1865 if (isrc & PHY_B_IS_NO_HDCL) {
1866 u16 ctrl = xm_phy_read(hw, port, PHY_BCOM_CTRL);
1867 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1868 ctrl | PHY_CT_LOOP);
1869 xm_phy_write(hw, port, PHY_BCOM_CTRL,
1870 ctrl & ~PHY_CT_LOOP);
1873 if (isrc & (PHY_B_IS_AN_PR | PHY_B_IS_LST_CHANGE))
1874 bcom_check_link(hw, port);
1878 static int gm_phy_write(struct skge_hw *hw, int port, u16 reg, u16 val)
1880 int i;
1882 gma_write16(hw, port, GM_SMI_DATA, val);
1883 gma_write16(hw, port, GM_SMI_CTRL,
1884 GM_SMI_CT_PHY_AD(hw->phy_addr) | GM_SMI_CT_REG_AD(reg));
1885 for (i = 0; i < PHY_RETRIES; i++) {
1886 udelay(1);
1888 if (!(gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_BUSY))
1889 return 0;
1892 pr_warning("%s: phy write timeout\n", hw->dev[port]->name);
1893 return -EIO;
1896 static int __gm_phy_read(struct skge_hw *hw, int port, u16 reg, u16 *val)
1898 int i;
1900 gma_write16(hw, port, GM_SMI_CTRL,
1901 GM_SMI_CT_PHY_AD(hw->phy_addr)
1902 | GM_SMI_CT_REG_AD(reg) | GM_SMI_CT_OP_RD);
1904 for (i = 0; i < PHY_RETRIES; i++) {
1905 udelay(1);
1906 if (gma_read16(hw, port, GM_SMI_CTRL) & GM_SMI_CT_RD_VAL)
1907 goto ready;
1910 return -ETIMEDOUT;
1911 ready:
1912 *val = gma_read16(hw, port, GM_SMI_DATA);
1913 return 0;
1916 static u16 gm_phy_read(struct skge_hw *hw, int port, u16 reg)
1918 u16 v = 0;
1919 if (__gm_phy_read(hw, port, reg, &v))
1920 pr_warning("%s: phy read timeout\n", hw->dev[port]->name);
1921 return v;
1924 /* Marvell Phy Initialization */
1925 static void yukon_init(struct skge_hw *hw, int port)
1927 struct skge_port *skge = netdev_priv(hw->dev[port]);
1928 u16 ctrl, ct1000, adv;
1930 if (skge->autoneg == AUTONEG_ENABLE) {
1931 u16 ectrl = gm_phy_read(hw, port, PHY_MARV_EXT_CTRL);
1933 ectrl &= ~(PHY_M_EC_M_DSC_MSK | PHY_M_EC_S_DSC_MSK |
1934 PHY_M_EC_MAC_S_MSK);
1935 ectrl |= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ);
1937 ectrl |= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1939 gm_phy_write(hw, port, PHY_MARV_EXT_CTRL, ectrl);
1942 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
1943 if (skge->autoneg == AUTONEG_DISABLE)
1944 ctrl &= ~PHY_CT_ANE;
1946 ctrl |= PHY_CT_RESET;
1947 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
1949 ctrl = 0;
1950 ct1000 = 0;
1951 adv = PHY_AN_CSMA;
1953 if (skge->autoneg == AUTONEG_ENABLE) {
1954 if (hw->copper) {
1955 if (skge->advertising & ADVERTISED_1000baseT_Full)
1956 ct1000 |= PHY_M_1000C_AFD;
1957 if (skge->advertising & ADVERTISED_1000baseT_Half)
1958 ct1000 |= PHY_M_1000C_AHD;
1959 if (skge->advertising & ADVERTISED_100baseT_Full)
1960 adv |= PHY_M_AN_100_FD;
1961 if (skge->advertising & ADVERTISED_100baseT_Half)
1962 adv |= PHY_M_AN_100_HD;
1963 if (skge->advertising & ADVERTISED_10baseT_Full)
1964 adv |= PHY_M_AN_10_FD;
1965 if (skge->advertising & ADVERTISED_10baseT_Half)
1966 adv |= PHY_M_AN_10_HD;
1968 /* Set Flow-control capabilities */
1969 adv |= phy_pause_map[skge->flow_control];
1970 } else {
1971 if (skge->advertising & ADVERTISED_1000baseT_Full)
1972 adv |= PHY_M_AN_1000X_AFD;
1973 if (skge->advertising & ADVERTISED_1000baseT_Half)
1974 adv |= PHY_M_AN_1000X_AHD;
1976 adv |= fiber_pause_map[skge->flow_control];
1979 /* Restart Auto-negotiation */
1980 ctrl |= PHY_CT_ANE | PHY_CT_RE_CFG;
1981 } else {
1982 /* forced speed/duplex settings */
1983 ct1000 = PHY_M_1000C_MSE;
1985 if (skge->duplex == DUPLEX_FULL)
1986 ctrl |= PHY_CT_DUP_MD;
1988 switch (skge->speed) {
1989 case SPEED_1000:
1990 ctrl |= PHY_CT_SP1000;
1991 break;
1992 case SPEED_100:
1993 ctrl |= PHY_CT_SP100;
1994 break;
1997 ctrl |= PHY_CT_RESET;
2000 gm_phy_write(hw, port, PHY_MARV_1000T_CTRL, ct1000);
2002 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, adv);
2003 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2005 /* Enable phy interrupt on autonegotiation complete (or link up) */
2006 if (skge->autoneg == AUTONEG_ENABLE)
2007 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_AN_MSK);
2008 else
2009 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2012 static void yukon_reset(struct skge_hw *hw, int port)
2014 gm_phy_write(hw, port, PHY_MARV_INT_MASK, 0);/* disable PHY IRQs */
2015 gma_write16(hw, port, GM_MC_ADDR_H1, 0); /* clear MC hash */
2016 gma_write16(hw, port, GM_MC_ADDR_H2, 0);
2017 gma_write16(hw, port, GM_MC_ADDR_H3, 0);
2018 gma_write16(hw, port, GM_MC_ADDR_H4, 0);
2020 gma_write16(hw, port, GM_RX_CTRL,
2021 gma_read16(hw, port, GM_RX_CTRL)
2022 | GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2025 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2026 static int is_yukon_lite_a0(struct skge_hw *hw)
2028 u32 reg;
2029 int ret;
2031 if (hw->chip_id != CHIP_ID_YUKON)
2032 return 0;
2034 reg = skge_read32(hw, B2_FAR);
2035 skge_write8(hw, B2_FAR + 3, 0xff);
2036 ret = (skge_read8(hw, B2_FAR + 3) != 0);
2037 skge_write32(hw, B2_FAR, reg);
2038 return ret;
2041 static void yukon_mac_init(struct skge_hw *hw, int port)
2043 struct skge_port *skge = netdev_priv(hw->dev[port]);
2044 int i;
2045 u32 reg;
2046 const u8 *addr = hw->dev[port]->dev_addr;
2048 /* WA code for COMA mode -- set PHY reset */
2049 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2050 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2051 reg = skge_read32(hw, B2_GP_IO);
2052 reg |= GP_DIR_9 | GP_IO_9;
2053 skge_write32(hw, B2_GP_IO, reg);
2056 /* hard reset */
2057 skge_write32(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2058 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2060 /* WA code for COMA mode -- clear PHY reset */
2061 if (hw->chip_id == CHIP_ID_YUKON_LITE &&
2062 hw->chip_rev >= CHIP_REV_YU_LITE_A3) {
2063 reg = skge_read32(hw, B2_GP_IO);
2064 reg |= GP_DIR_9;
2065 reg &= ~GP_IO_9;
2066 skge_write32(hw, B2_GP_IO, reg);
2069 /* Set hardware config mode */
2070 reg = GPC_INT_POL_HI | GPC_DIS_FC | GPC_DIS_SLEEP |
2071 GPC_ENA_XC | GPC_ANEG_ADV_ALL_M | GPC_ENA_PAUSE;
2072 reg |= hw->copper ? GPC_HWCFG_GMII_COP : GPC_HWCFG_GMII_FIB;
2074 /* Clear GMC reset */
2075 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_SET);
2076 skge_write32(hw, SK_REG(port, GPHY_CTRL), reg | GPC_RST_CLR);
2077 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON | GMC_RST_CLR);
2079 if (skge->autoneg == AUTONEG_DISABLE) {
2080 reg = GM_GPCR_AU_ALL_DIS;
2081 gma_write16(hw, port, GM_GP_CTRL,
2082 gma_read16(hw, port, GM_GP_CTRL) | reg);
2084 switch (skge->speed) {
2085 case SPEED_1000:
2086 reg &= ~GM_GPCR_SPEED_100;
2087 reg |= GM_GPCR_SPEED_1000;
2088 break;
2089 case SPEED_100:
2090 reg &= ~GM_GPCR_SPEED_1000;
2091 reg |= GM_GPCR_SPEED_100;
2092 break;
2093 case SPEED_10:
2094 reg &= ~(GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100);
2095 break;
2098 if (skge->duplex == DUPLEX_FULL)
2099 reg |= GM_GPCR_DUP_FULL;
2100 } else
2101 reg = GM_GPCR_SPEED_1000 | GM_GPCR_SPEED_100 | GM_GPCR_DUP_FULL;
2103 switch (skge->flow_control) {
2104 case FLOW_MODE_NONE:
2105 skge_write32(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2106 reg |= GM_GPCR_FC_TX_DIS | GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2107 break;
2108 case FLOW_MODE_LOC_SEND:
2109 /* disable Rx flow-control */
2110 reg |= GM_GPCR_FC_RX_DIS | GM_GPCR_AU_FCT_DIS;
2111 break;
2112 case FLOW_MODE_SYMMETRIC:
2113 case FLOW_MODE_SYM_OR_REM:
2114 /* enable Tx & Rx flow-control */
2115 break;
2118 gma_write16(hw, port, GM_GP_CTRL, reg);
2119 skge_read16(hw, SK_REG(port, GMAC_IRQ_SRC));
2121 yukon_init(hw, port);
2123 /* MIB clear */
2124 reg = gma_read16(hw, port, GM_PHY_ADDR);
2125 gma_write16(hw, port, GM_PHY_ADDR, reg | GM_PAR_MIB_CLR);
2127 for (i = 0; i < GM_MIB_CNT_SIZE; i++)
2128 gma_read16(hw, port, GM_MIB_CNT_BASE + 8*i);
2129 gma_write16(hw, port, GM_PHY_ADDR, reg);
2131 /* transmit control */
2132 gma_write16(hw, port, GM_TX_CTRL, TX_COL_THR(TX_COL_DEF));
2134 /* receive control reg: unicast + multicast + no FCS */
2135 gma_write16(hw, port, GM_RX_CTRL,
2136 GM_RXCR_UCF_ENA | GM_RXCR_CRC_DIS | GM_RXCR_MCF_ENA);
2138 /* transmit flow control */
2139 gma_write16(hw, port, GM_TX_FLOW_CTRL, 0xffff);
2141 /* transmit parameter */
2142 gma_write16(hw, port, GM_TX_PARAM,
2143 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF) |
2144 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF) |
2145 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF));
2147 /* configure the Serial Mode Register */
2148 reg = DATA_BLIND_VAL(DATA_BLIND_DEF)
2149 | GM_SMOD_VLAN_ENA
2150 | IPG_DATA_VAL(IPG_DATA_DEF);
2152 if (hw->dev[port]->mtu > ETH_DATA_LEN)
2153 reg |= GM_SMOD_JUMBO_ENA;
2155 gma_write16(hw, port, GM_SERIAL_MODE, reg);
2157 /* physical address: used for pause frames */
2158 gma_set_addr(hw, port, GM_SRC_ADDR_1L, addr);
2159 /* virtual address for data */
2160 gma_set_addr(hw, port, GM_SRC_ADDR_2L, addr);
2162 /* enable interrupt mask for counter overflows */
2163 gma_write16(hw, port, GM_TX_IRQ_MSK, 0);
2164 gma_write16(hw, port, GM_RX_IRQ_MSK, 0);
2165 gma_write16(hw, port, GM_TR_IRQ_MSK, 0);
2167 /* Initialize Mac Fifo */
2169 /* Configure Rx MAC FIFO */
2170 skge_write16(hw, SK_REG(port, RX_GMF_FL_MSK), RX_FF_FL_DEF_MSK);
2171 reg = GMF_OPER_ON | GMF_RX_F_FL_ON;
2173 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2174 if (is_yukon_lite_a0(hw))
2175 reg &= ~GMF_RX_F_FL_ON;
2177 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_CLR);
2178 skge_write16(hw, SK_REG(port, RX_GMF_CTRL_T), reg);
2180 * because Pause Packet Truncation in GMAC is not working
2181 * we have to increase the Flush Threshold to 64 bytes
2182 * in order to flush pause packets in Rx FIFO on Yukon-1
2184 skge_write16(hw, SK_REG(port, RX_GMF_FL_THR), RX_GMF_FL_THR_DEF+1);
2186 /* Configure Tx MAC FIFO */
2187 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_CLR);
2188 skge_write16(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_OPER_ON);
2191 /* Go into power down mode */
2192 static void yukon_suspend(struct skge_hw *hw, int port)
2194 u16 ctrl;
2196 ctrl = gm_phy_read(hw, port, PHY_MARV_PHY_CTRL);
2197 ctrl |= PHY_M_PC_POL_R_DIS;
2198 gm_phy_write(hw, port, PHY_MARV_PHY_CTRL, ctrl);
2200 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2201 ctrl |= PHY_CT_RESET;
2202 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2204 /* switch IEEE compatible power down mode on */
2205 ctrl = gm_phy_read(hw, port, PHY_MARV_CTRL);
2206 ctrl |= PHY_CT_PDOWN;
2207 gm_phy_write(hw, port, PHY_MARV_CTRL, ctrl);
2210 static void yukon_stop(struct skge_port *skge)
2212 struct skge_hw *hw = skge->hw;
2213 int port = skge->port;
2215 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), 0);
2216 yukon_reset(hw, port);
2218 gma_write16(hw, port, GM_GP_CTRL,
2219 gma_read16(hw, port, GM_GP_CTRL)
2220 & ~(GM_GPCR_TX_ENA|GM_GPCR_RX_ENA));
2221 gma_read16(hw, port, GM_GP_CTRL);
2223 yukon_suspend(hw, port);
2225 /* set GPHY Control reset */
2226 skge_write8(hw, SK_REG(port, GPHY_CTRL), GPC_RST_SET);
2227 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_RST_SET);
2230 static void yukon_get_stats(struct skge_port *skge, u64 *data)
2232 struct skge_hw *hw = skge->hw;
2233 int port = skge->port;
2234 int i;
2236 data[0] = (u64) gma_read32(hw, port, GM_TXO_OK_HI) << 32
2237 | gma_read32(hw, port, GM_TXO_OK_LO);
2238 data[1] = (u64) gma_read32(hw, port, GM_RXO_OK_HI) << 32
2239 | gma_read32(hw, port, GM_RXO_OK_LO);
2241 for (i = 2; i < ARRAY_SIZE(skge_stats); i++)
2242 data[i] = gma_read32(hw, port,
2243 skge_stats[i].gma_offset);
2246 static void yukon_mac_intr(struct skge_hw *hw, int port)
2248 struct net_device *dev = hw->dev[port];
2249 struct skge_port *skge = netdev_priv(dev);
2250 u8 status = skge_read8(hw, SK_REG(port, GMAC_IRQ_SRC));
2252 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2253 "mac interrupt status 0x%x\n", status);
2255 if (status & GM_IS_RX_FF_OR) {
2256 ++dev->stats.rx_fifo_errors;
2257 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_CLI_RX_FO);
2260 if (status & GM_IS_TX_FF_UR) {
2261 ++dev->stats.tx_fifo_errors;
2262 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_CLI_TX_FU);
2267 static u16 yukon_speed(const struct skge_hw *hw, u16 aux)
2269 switch (aux & PHY_M_PS_SPEED_MSK) {
2270 case PHY_M_PS_SPEED_1000:
2271 return SPEED_1000;
2272 case PHY_M_PS_SPEED_100:
2273 return SPEED_100;
2274 default:
2275 return SPEED_10;
2279 static void yukon_link_up(struct skge_port *skge)
2281 struct skge_hw *hw = skge->hw;
2282 int port = skge->port;
2283 u16 reg;
2285 /* Enable Transmit FIFO Underrun */
2286 skge_write8(hw, SK_REG(port, GMAC_IRQ_MSK), GMAC_DEF_MSK);
2288 reg = gma_read16(hw, port, GM_GP_CTRL);
2289 if (skge->duplex == DUPLEX_FULL || skge->autoneg == AUTONEG_ENABLE)
2290 reg |= GM_GPCR_DUP_FULL;
2292 /* enable Rx/Tx */
2293 reg |= GM_GPCR_RX_ENA | GM_GPCR_TX_ENA;
2294 gma_write16(hw, port, GM_GP_CTRL, reg);
2296 gm_phy_write(hw, port, PHY_MARV_INT_MASK, PHY_M_IS_DEF_MSK);
2297 skge_link_up(skge);
2300 static void yukon_link_down(struct skge_port *skge)
2302 struct skge_hw *hw = skge->hw;
2303 int port = skge->port;
2304 u16 ctrl;
2306 ctrl = gma_read16(hw, port, GM_GP_CTRL);
2307 ctrl &= ~(GM_GPCR_RX_ENA | GM_GPCR_TX_ENA);
2308 gma_write16(hw, port, GM_GP_CTRL, ctrl);
2310 if (skge->flow_status == FLOW_STAT_REM_SEND) {
2311 ctrl = gm_phy_read(hw, port, PHY_MARV_AUNE_ADV);
2312 ctrl |= PHY_M_AN_ASP;
2313 /* restore Asymmetric Pause bit */
2314 gm_phy_write(hw, port, PHY_MARV_AUNE_ADV, ctrl);
2317 skge_link_down(skge);
2319 yukon_init(hw, port);
2322 static void yukon_phy_intr(struct skge_port *skge)
2324 struct skge_hw *hw = skge->hw;
2325 int port = skge->port;
2326 const char *reason = NULL;
2327 u16 istatus, phystat;
2329 istatus = gm_phy_read(hw, port, PHY_MARV_INT_STAT);
2330 phystat = gm_phy_read(hw, port, PHY_MARV_PHY_STAT);
2332 netif_printk(skge, intr, KERN_DEBUG, skge->netdev,
2333 "phy interrupt status 0x%x 0x%x\n", istatus, phystat);
2335 if (istatus & PHY_M_IS_AN_COMPL) {
2336 if (gm_phy_read(hw, port, PHY_MARV_AUNE_LP)
2337 & PHY_M_AN_RF) {
2338 reason = "remote fault";
2339 goto failed;
2342 if (gm_phy_read(hw, port, PHY_MARV_1000T_STAT) & PHY_B_1000S_MSF) {
2343 reason = "master/slave fault";
2344 goto failed;
2347 if (!(phystat & PHY_M_PS_SPDUP_RES)) {
2348 reason = "speed/duplex";
2349 goto failed;
2352 skge->duplex = (phystat & PHY_M_PS_FULL_DUP)
2353 ? DUPLEX_FULL : DUPLEX_HALF;
2354 skge->speed = yukon_speed(hw, phystat);
2356 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2357 switch (phystat & PHY_M_PS_PAUSE_MSK) {
2358 case PHY_M_PS_PAUSE_MSK:
2359 skge->flow_status = FLOW_STAT_SYMMETRIC;
2360 break;
2361 case PHY_M_PS_RX_P_EN:
2362 skge->flow_status = FLOW_STAT_REM_SEND;
2363 break;
2364 case PHY_M_PS_TX_P_EN:
2365 skge->flow_status = FLOW_STAT_LOC_SEND;
2366 break;
2367 default:
2368 skge->flow_status = FLOW_STAT_NONE;
2371 if (skge->flow_status == FLOW_STAT_NONE ||
2372 (skge->speed < SPEED_1000 && skge->duplex == DUPLEX_HALF))
2373 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_OFF);
2374 else
2375 skge_write8(hw, SK_REG(port, GMAC_CTRL), GMC_PAUSE_ON);
2376 yukon_link_up(skge);
2377 return;
2380 if (istatus & PHY_M_IS_LSP_CHANGE)
2381 skge->speed = yukon_speed(hw, phystat);
2383 if (istatus & PHY_M_IS_DUP_CHANGE)
2384 skge->duplex = (phystat & PHY_M_PS_FULL_DUP) ? DUPLEX_FULL : DUPLEX_HALF;
2385 if (istatus & PHY_M_IS_LST_CHANGE) {
2386 if (phystat & PHY_M_PS_LINK_UP)
2387 yukon_link_up(skge);
2388 else
2389 yukon_link_down(skge);
2391 return;
2392 failed:
2393 pr_err("%s: autonegotiation failed (%s)\n", skge->netdev->name, reason);
2395 /* XXX restart autonegotiation? */
2398 static void skge_phy_reset(struct skge_port *skge)
2400 struct skge_hw *hw = skge->hw;
2401 int port = skge->port;
2402 struct net_device *dev = hw->dev[port];
2404 netif_stop_queue(skge->netdev);
2405 netif_carrier_off(skge->netdev);
2407 spin_lock_bh(&hw->phy_lock);
2408 if (hw->chip_id == CHIP_ID_GENESIS) {
2409 genesis_reset(hw, port);
2410 genesis_mac_init(hw, port);
2411 } else {
2412 yukon_reset(hw, port);
2413 yukon_init(hw, port);
2415 spin_unlock_bh(&hw->phy_lock);
2417 skge_set_multicast(dev);
2420 /* Basic MII support */
2421 static int skge_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
2423 struct mii_ioctl_data *data = if_mii(ifr);
2424 struct skge_port *skge = netdev_priv(dev);
2425 struct skge_hw *hw = skge->hw;
2426 int err = -EOPNOTSUPP;
2428 if (!netif_running(dev))
2429 return -ENODEV; /* Phy still in reset */
2431 switch (cmd) {
2432 case SIOCGMIIPHY:
2433 data->phy_id = hw->phy_addr;
2435 /* fallthru */
2436 case SIOCGMIIREG: {
2437 u16 val = 0;
2438 spin_lock_bh(&hw->phy_lock);
2439 if (hw->chip_id == CHIP_ID_GENESIS)
2440 err = __xm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2441 else
2442 err = __gm_phy_read(hw, skge->port, data->reg_num & 0x1f, &val);
2443 spin_unlock_bh(&hw->phy_lock);
2444 data->val_out = val;
2445 break;
2448 case SIOCSMIIREG:
2449 spin_lock_bh(&hw->phy_lock);
2450 if (hw->chip_id == CHIP_ID_GENESIS)
2451 err = xm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2452 data->val_in);
2453 else
2454 err = gm_phy_write(hw, skge->port, data->reg_num & 0x1f,
2455 data->val_in);
2456 spin_unlock_bh(&hw->phy_lock);
2457 break;
2459 return err;
2462 static void skge_ramset(struct skge_hw *hw, u16 q, u32 start, size_t len)
2464 u32 end;
2466 start /= 8;
2467 len /= 8;
2468 end = start + len - 1;
2470 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_RST_CLR);
2471 skge_write32(hw, RB_ADDR(q, RB_START), start);
2472 skge_write32(hw, RB_ADDR(q, RB_WP), start);
2473 skge_write32(hw, RB_ADDR(q, RB_RP), start);
2474 skge_write32(hw, RB_ADDR(q, RB_END), end);
2476 if (q == Q_R1 || q == Q_R2) {
2477 /* Set thresholds on receive queue's */
2478 skge_write32(hw, RB_ADDR(q, RB_RX_UTPP),
2479 start + (2*len)/3);
2480 skge_write32(hw, RB_ADDR(q, RB_RX_LTPP),
2481 start + (len/3));
2482 } else {
2483 /* Enable store & forward on Tx queue's because
2484 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2486 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_STFWD);
2489 skge_write8(hw, RB_ADDR(q, RB_CTRL), RB_ENA_OP_MD);
2492 /* Setup Bus Memory Interface */
2493 static void skge_qset(struct skge_port *skge, u16 q,
2494 const struct skge_element *e)
2496 struct skge_hw *hw = skge->hw;
2497 u32 watermark = 0x600;
2498 u64 base = skge->dma + (e->desc - skge->mem);
2500 /* optimization to reduce window on 32bit/33mhz */
2501 if ((skge_read16(hw, B0_CTST) & (CS_BUS_CLOCK | CS_BUS_SLOT_SZ)) == 0)
2502 watermark /= 2;
2504 skge_write32(hw, Q_ADDR(q, Q_CSR), CSR_CLR_RESET);
2505 skge_write32(hw, Q_ADDR(q, Q_F), watermark);
2506 skge_write32(hw, Q_ADDR(q, Q_DA_H), (u32)(base >> 32));
2507 skge_write32(hw, Q_ADDR(q, Q_DA_L), (u32)base);
2510 static int skge_up(struct net_device *dev)
2512 struct skge_port *skge = netdev_priv(dev);
2513 struct skge_hw *hw = skge->hw;
2514 int port = skge->port;
2515 u32 chunk, ram_addr;
2516 size_t rx_size, tx_size;
2517 int err;
2519 if (!is_valid_ether_addr(dev->dev_addr))
2520 return -EINVAL;
2522 netif_info(skge, ifup, skge->netdev, "enabling interface\n");
2524 if (dev->mtu > RX_BUF_SIZE)
2525 skge->rx_buf_size = dev->mtu + ETH_HLEN;
2526 else
2527 skge->rx_buf_size = RX_BUF_SIZE;
2530 rx_size = skge->rx_ring.count * sizeof(struct skge_rx_desc);
2531 tx_size = skge->tx_ring.count * sizeof(struct skge_tx_desc);
2532 skge->mem_size = tx_size + rx_size;
2533 skge->mem = pci_alloc_consistent(hw->pdev, skge->mem_size, &skge->dma);
2534 if (!skge->mem)
2535 return -ENOMEM;
2537 BUG_ON(skge->dma & 7);
2539 if ((u64)skge->dma >> 32 != ((u64) skge->dma + skge->mem_size) >> 32) {
2540 dev_err(&hw->pdev->dev, "pci_alloc_consistent region crosses 4G boundary\n");
2541 err = -EINVAL;
2542 goto free_pci_mem;
2545 memset(skge->mem, 0, skge->mem_size);
2547 err = skge_ring_alloc(&skge->rx_ring, skge->mem, skge->dma);
2548 if (err)
2549 goto free_pci_mem;
2551 err = skge_rx_fill(dev);
2552 if (err)
2553 goto free_rx_ring;
2555 err = skge_ring_alloc(&skge->tx_ring, skge->mem + rx_size,
2556 skge->dma + rx_size);
2557 if (err)
2558 goto free_rx_ring;
2560 /* Initialize MAC */
2561 spin_lock_bh(&hw->phy_lock);
2562 if (hw->chip_id == CHIP_ID_GENESIS)
2563 genesis_mac_init(hw, port);
2564 else
2565 yukon_mac_init(hw, port);
2566 spin_unlock_bh(&hw->phy_lock);
2568 /* Configure RAMbuffers - equally between ports and tx/rx */
2569 chunk = (hw->ram_size - hw->ram_offset) / (hw->ports * 2);
2570 ram_addr = hw->ram_offset + 2 * chunk * port;
2572 skge_ramset(hw, rxqaddr[port], ram_addr, chunk);
2573 skge_qset(skge, rxqaddr[port], skge->rx_ring.to_clean);
2575 BUG_ON(skge->tx_ring.to_use != skge->tx_ring.to_clean);
2576 skge_ramset(hw, txqaddr[port], ram_addr+chunk, chunk);
2577 skge_qset(skge, txqaddr[port], skge->tx_ring.to_use);
2579 /* Start receiver BMU */
2580 wmb();
2581 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_START | CSR_IRQ_CL_F);
2582 skge_led(skge, LED_MODE_ON);
2584 spin_lock_irq(&hw->hw_lock);
2585 hw->intr_mask |= portmask[port];
2586 skge_write32(hw, B0_IMSK, hw->intr_mask);
2587 spin_unlock_irq(&hw->hw_lock);
2589 napi_enable(&skge->napi);
2590 return 0;
2592 free_rx_ring:
2593 skge_rx_clean(skge);
2594 kfree(skge->rx_ring.start);
2595 free_pci_mem:
2596 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2597 skge->mem = NULL;
2599 return err;
2602 /* stop receiver */
2603 static void skge_rx_stop(struct skge_hw *hw, int port)
2605 skge_write8(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_STOP);
2606 skge_write32(hw, RB_ADDR(port ? Q_R2 : Q_R1, RB_CTRL),
2607 RB_RST_SET|RB_DIS_OP_MD);
2608 skge_write32(hw, Q_ADDR(rxqaddr[port], Q_CSR), CSR_SET_RESET);
2611 static int skge_down(struct net_device *dev)
2613 struct skge_port *skge = netdev_priv(dev);
2614 struct skge_hw *hw = skge->hw;
2615 int port = skge->port;
2617 if (skge->mem == NULL)
2618 return 0;
2620 netif_info(skge, ifdown, skge->netdev, "disabling interface\n");
2622 netif_tx_disable(dev);
2624 if (hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC)
2625 del_timer_sync(&skge->link_timer);
2627 napi_disable(&skge->napi);
2628 netif_carrier_off(dev);
2630 spin_lock_irq(&hw->hw_lock);
2631 hw->intr_mask &= ~portmask[port];
2632 skge_write32(hw, B0_IMSK, hw->intr_mask);
2633 spin_unlock_irq(&hw->hw_lock);
2635 skge_write8(skge->hw, SK_REG(skge->port, LNK_LED_REG), LED_OFF);
2636 if (hw->chip_id == CHIP_ID_GENESIS)
2637 genesis_stop(skge);
2638 else
2639 yukon_stop(skge);
2641 /* Stop transmitter */
2642 skge_write8(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_STOP);
2643 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL),
2644 RB_RST_SET|RB_DIS_OP_MD);
2647 /* Disable Force Sync bit and Enable Alloc bit */
2648 skge_write8(hw, SK_REG(port, TXA_CTRL),
2649 TXA_DIS_FSYNC | TXA_DIS_ALLOC | TXA_STOP_RC);
2651 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2652 skge_write32(hw, SK_REG(port, TXA_ITI_INI), 0L);
2653 skge_write32(hw, SK_REG(port, TXA_LIM_INI), 0L);
2655 /* Reset PCI FIFO */
2656 skge_write32(hw, Q_ADDR(txqaddr[port], Q_CSR), CSR_SET_RESET);
2657 skge_write32(hw, RB_ADDR(txqaddr[port], RB_CTRL), RB_RST_SET);
2659 /* Reset the RAM Buffer async Tx queue */
2660 skge_write8(hw, RB_ADDR(port == 0 ? Q_XA1 : Q_XA2, RB_CTRL), RB_RST_SET);
2662 skge_rx_stop(hw, port);
2664 if (hw->chip_id == CHIP_ID_GENESIS) {
2665 skge_write8(hw, SK_REG(port, TX_MFF_CTRL2), MFF_RST_SET);
2666 skge_write8(hw, SK_REG(port, RX_MFF_CTRL2), MFF_RST_SET);
2667 } else {
2668 skge_write8(hw, SK_REG(port, RX_GMF_CTRL_T), GMF_RST_SET);
2669 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T), GMF_RST_SET);
2672 skge_led(skge, LED_MODE_OFF);
2674 netif_tx_lock_bh(dev);
2675 skge_tx_clean(dev);
2676 netif_tx_unlock_bh(dev);
2678 skge_rx_clean(skge);
2680 kfree(skge->rx_ring.start);
2681 kfree(skge->tx_ring.start);
2682 pci_free_consistent(hw->pdev, skge->mem_size, skge->mem, skge->dma);
2683 skge->mem = NULL;
2684 return 0;
2687 static inline int skge_avail(const struct skge_ring *ring)
2689 smp_mb();
2690 return ((ring->to_clean > ring->to_use) ? 0 : ring->count)
2691 + (ring->to_clean - ring->to_use) - 1;
2694 static netdev_tx_t skge_xmit_frame(struct sk_buff *skb,
2695 struct net_device *dev)
2697 struct skge_port *skge = netdev_priv(dev);
2698 struct skge_hw *hw = skge->hw;
2699 struct skge_element *e;
2700 struct skge_tx_desc *td;
2701 int i;
2702 u32 control, len;
2703 u64 map;
2705 if (skb_padto(skb, ETH_ZLEN))
2706 return NETDEV_TX_OK;
2708 if (unlikely(skge_avail(&skge->tx_ring) < skb_shinfo(skb)->nr_frags + 1))
2709 return NETDEV_TX_BUSY;
2711 e = skge->tx_ring.to_use;
2712 td = e->desc;
2713 BUG_ON(td->control & BMU_OWN);
2714 e->skb = skb;
2715 len = skb_headlen(skb);
2716 map = pci_map_single(hw->pdev, skb->data, len, PCI_DMA_TODEVICE);
2717 dma_unmap_addr_set(e, mapaddr, map);
2718 dma_unmap_len_set(e, maplen, len);
2720 td->dma_lo = map;
2721 td->dma_hi = map >> 32;
2723 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2724 const int offset = skb_checksum_start_offset(skb);
2726 /* This seems backwards, but it is what the sk98lin
2727 * does. Looks like hardware is wrong?
2729 if (ipip_hdr(skb)->protocol == IPPROTO_UDP &&
2730 hw->chip_rev == 0 && hw->chip_id == CHIP_ID_YUKON)
2731 control = BMU_TCP_CHECK;
2732 else
2733 control = BMU_UDP_CHECK;
2735 td->csum_offs = 0;
2736 td->csum_start = offset;
2737 td->csum_write = offset + skb->csum_offset;
2738 } else
2739 control = BMU_CHECK;
2741 if (!skb_shinfo(skb)->nr_frags) /* single buffer i.e. no fragments */
2742 control |= BMU_EOF | BMU_IRQ_EOF;
2743 else {
2744 struct skge_tx_desc *tf = td;
2746 control |= BMU_STFWD;
2747 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2748 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2750 map = pci_map_page(hw->pdev, frag->page, frag->page_offset,
2751 frag->size, PCI_DMA_TODEVICE);
2753 e = e->next;
2754 e->skb = skb;
2755 tf = e->desc;
2756 BUG_ON(tf->control & BMU_OWN);
2758 tf->dma_lo = map;
2759 tf->dma_hi = (u64) map >> 32;
2760 dma_unmap_addr_set(e, mapaddr, map);
2761 dma_unmap_len_set(e, maplen, frag->size);
2763 tf->control = BMU_OWN | BMU_SW | control | frag->size;
2765 tf->control |= BMU_EOF | BMU_IRQ_EOF;
2767 /* Make sure all the descriptors written */
2768 wmb();
2769 td->control = BMU_OWN | BMU_SW | BMU_STF | control | len;
2770 wmb();
2772 skge_write8(hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_START);
2774 netif_printk(skge, tx_queued, KERN_DEBUG, skge->netdev,
2775 "tx queued, slot %td, len %d\n",
2776 e - skge->tx_ring.start, skb->len);
2778 skge->tx_ring.to_use = e->next;
2779 smp_wmb();
2781 if (skge_avail(&skge->tx_ring) <= TX_LOW_WATER) {
2782 netdev_dbg(dev, "transmit queue full\n");
2783 netif_stop_queue(dev);
2786 return NETDEV_TX_OK;
2790 /* Free resources associated with this reing element */
2791 static void skge_tx_free(struct skge_port *skge, struct skge_element *e,
2792 u32 control)
2794 struct pci_dev *pdev = skge->hw->pdev;
2796 /* skb header vs. fragment */
2797 if (control & BMU_STF)
2798 pci_unmap_single(pdev, dma_unmap_addr(e, mapaddr),
2799 dma_unmap_len(e, maplen),
2800 PCI_DMA_TODEVICE);
2801 else
2802 pci_unmap_page(pdev, dma_unmap_addr(e, mapaddr),
2803 dma_unmap_len(e, maplen),
2804 PCI_DMA_TODEVICE);
2806 if (control & BMU_EOF) {
2807 netif_printk(skge, tx_done, KERN_DEBUG, skge->netdev,
2808 "tx done slot %td\n", e - skge->tx_ring.start);
2810 dev_kfree_skb(e->skb);
2814 /* Free all buffers in transmit ring */
2815 static void skge_tx_clean(struct net_device *dev)
2817 struct skge_port *skge = netdev_priv(dev);
2818 struct skge_element *e;
2820 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
2821 struct skge_tx_desc *td = e->desc;
2822 skge_tx_free(skge, e, td->control);
2823 td->control = 0;
2826 skge->tx_ring.to_clean = e;
2829 static void skge_tx_timeout(struct net_device *dev)
2831 struct skge_port *skge = netdev_priv(dev);
2833 netif_printk(skge, timer, KERN_DEBUG, skge->netdev, "tx timeout\n");
2835 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_STOP);
2836 skge_tx_clean(dev);
2837 netif_wake_queue(dev);
2840 static int skge_change_mtu(struct net_device *dev, int new_mtu)
2842 int err;
2844 if (new_mtu < ETH_ZLEN || new_mtu > ETH_JUMBO_MTU)
2845 return -EINVAL;
2847 if (!netif_running(dev)) {
2848 dev->mtu = new_mtu;
2849 return 0;
2852 skge_down(dev);
2854 dev->mtu = new_mtu;
2856 err = skge_up(dev);
2857 if (err)
2858 dev_close(dev);
2860 return err;
2863 static const u8 pause_mc_addr[ETH_ALEN] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2865 static void genesis_add_filter(u8 filter[8], const u8 *addr)
2867 u32 crc, bit;
2869 crc = ether_crc_le(ETH_ALEN, addr);
2870 bit = ~crc & 0x3f;
2871 filter[bit/8] |= 1 << (bit%8);
2874 static void genesis_set_multicast(struct net_device *dev)
2876 struct skge_port *skge = netdev_priv(dev);
2877 struct skge_hw *hw = skge->hw;
2878 int port = skge->port;
2879 struct netdev_hw_addr *ha;
2880 u32 mode;
2881 u8 filter[8];
2883 mode = xm_read32(hw, port, XM_MODE);
2884 mode |= XM_MD_ENA_HASH;
2885 if (dev->flags & IFF_PROMISC)
2886 mode |= XM_MD_ENA_PROM;
2887 else
2888 mode &= ~XM_MD_ENA_PROM;
2890 if (dev->flags & IFF_ALLMULTI)
2891 memset(filter, 0xff, sizeof(filter));
2892 else {
2893 memset(filter, 0, sizeof(filter));
2895 if (skge->flow_status == FLOW_STAT_REM_SEND ||
2896 skge->flow_status == FLOW_STAT_SYMMETRIC)
2897 genesis_add_filter(filter, pause_mc_addr);
2899 netdev_for_each_mc_addr(ha, dev)
2900 genesis_add_filter(filter, ha->addr);
2903 xm_write32(hw, port, XM_MODE, mode);
2904 xm_outhash(hw, port, XM_HSM, filter);
2907 static void yukon_add_filter(u8 filter[8], const u8 *addr)
2909 u32 bit = ether_crc(ETH_ALEN, addr) & 0x3f;
2910 filter[bit/8] |= 1 << (bit%8);
2913 static void yukon_set_multicast(struct net_device *dev)
2915 struct skge_port *skge = netdev_priv(dev);
2916 struct skge_hw *hw = skge->hw;
2917 int port = skge->port;
2918 struct netdev_hw_addr *ha;
2919 int rx_pause = (skge->flow_status == FLOW_STAT_REM_SEND ||
2920 skge->flow_status == FLOW_STAT_SYMMETRIC);
2921 u16 reg;
2922 u8 filter[8];
2924 memset(filter, 0, sizeof(filter));
2926 reg = gma_read16(hw, port, GM_RX_CTRL);
2927 reg |= GM_RXCR_UCF_ENA;
2929 if (dev->flags & IFF_PROMISC) /* promiscuous */
2930 reg &= ~(GM_RXCR_UCF_ENA | GM_RXCR_MCF_ENA);
2931 else if (dev->flags & IFF_ALLMULTI) /* all multicast */
2932 memset(filter, 0xff, sizeof(filter));
2933 else if (netdev_mc_empty(dev) && !rx_pause)/* no multicast */
2934 reg &= ~GM_RXCR_MCF_ENA;
2935 else {
2936 reg |= GM_RXCR_MCF_ENA;
2938 if (rx_pause)
2939 yukon_add_filter(filter, pause_mc_addr);
2941 netdev_for_each_mc_addr(ha, dev)
2942 yukon_add_filter(filter, ha->addr);
2946 gma_write16(hw, port, GM_MC_ADDR_H1,
2947 (u16)filter[0] | ((u16)filter[1] << 8));
2948 gma_write16(hw, port, GM_MC_ADDR_H2,
2949 (u16)filter[2] | ((u16)filter[3] << 8));
2950 gma_write16(hw, port, GM_MC_ADDR_H3,
2951 (u16)filter[4] | ((u16)filter[5] << 8));
2952 gma_write16(hw, port, GM_MC_ADDR_H4,
2953 (u16)filter[6] | ((u16)filter[7] << 8));
2955 gma_write16(hw, port, GM_RX_CTRL, reg);
2958 static inline u16 phy_length(const struct skge_hw *hw, u32 status)
2960 if (hw->chip_id == CHIP_ID_GENESIS)
2961 return status >> XMR_FS_LEN_SHIFT;
2962 else
2963 return status >> GMR_FS_LEN_SHIFT;
2966 static inline int bad_phy_status(const struct skge_hw *hw, u32 status)
2968 if (hw->chip_id == CHIP_ID_GENESIS)
2969 return (status & (XMR_FS_ERR | XMR_FS_2L_VLAN)) != 0;
2970 else
2971 return (status & GMR_FS_ANY_ERR) ||
2972 (status & GMR_FS_RX_OK) == 0;
2975 static void skge_set_multicast(struct net_device *dev)
2977 struct skge_port *skge = netdev_priv(dev);
2978 struct skge_hw *hw = skge->hw;
2980 if (hw->chip_id == CHIP_ID_GENESIS)
2981 genesis_set_multicast(dev);
2982 else
2983 yukon_set_multicast(dev);
2988 /* Get receive buffer from descriptor.
2989 * Handles copy of small buffers and reallocation failures
2991 static struct sk_buff *skge_rx_get(struct net_device *dev,
2992 struct skge_element *e,
2993 u32 control, u32 status, u16 csum)
2995 struct skge_port *skge = netdev_priv(dev);
2996 struct sk_buff *skb;
2997 u16 len = control & BMU_BBC;
2999 netif_printk(skge, rx_status, KERN_DEBUG, skge->netdev,
3000 "rx slot %td status 0x%x len %d\n",
3001 e - skge->rx_ring.start, status, len);
3003 if (len > skge->rx_buf_size)
3004 goto error;
3006 if ((control & (BMU_EOF|BMU_STF)) != (BMU_STF|BMU_EOF))
3007 goto error;
3009 if (bad_phy_status(skge->hw, status))
3010 goto error;
3012 if (phy_length(skge->hw, status) != len)
3013 goto error;
3015 if (len < RX_COPY_THRESHOLD) {
3016 skb = netdev_alloc_skb_ip_align(dev, len);
3017 if (!skb)
3018 goto resubmit;
3020 pci_dma_sync_single_for_cpu(skge->hw->pdev,
3021 dma_unmap_addr(e, mapaddr),
3022 len, PCI_DMA_FROMDEVICE);
3023 skb_copy_from_linear_data(e->skb, skb->data, len);
3024 pci_dma_sync_single_for_device(skge->hw->pdev,
3025 dma_unmap_addr(e, mapaddr),
3026 len, PCI_DMA_FROMDEVICE);
3027 skge_rx_reuse(e, skge->rx_buf_size);
3028 } else {
3029 struct sk_buff *nskb;
3031 nskb = netdev_alloc_skb_ip_align(dev, skge->rx_buf_size);
3032 if (!nskb)
3033 goto resubmit;
3035 pci_unmap_single(skge->hw->pdev,
3036 dma_unmap_addr(e, mapaddr),
3037 dma_unmap_len(e, maplen),
3038 PCI_DMA_FROMDEVICE);
3039 skb = e->skb;
3040 prefetch(skb->data);
3041 skge_rx_setup(skge, e, nskb, skge->rx_buf_size);
3044 skb_put(skb, len);
3046 if (dev->features & NETIF_F_RXCSUM) {
3047 skb->csum = csum;
3048 skb->ip_summed = CHECKSUM_COMPLETE;
3051 skb->protocol = eth_type_trans(skb, dev);
3053 return skb;
3054 error:
3056 netif_printk(skge, rx_err, KERN_DEBUG, skge->netdev,
3057 "rx err, slot %td control 0x%x status 0x%x\n",
3058 e - skge->rx_ring.start, control, status);
3060 if (skge->hw->chip_id == CHIP_ID_GENESIS) {
3061 if (status & (XMR_FS_RUNT|XMR_FS_LNG_ERR))
3062 dev->stats.rx_length_errors++;
3063 if (status & XMR_FS_FRA_ERR)
3064 dev->stats.rx_frame_errors++;
3065 if (status & XMR_FS_FCS_ERR)
3066 dev->stats.rx_crc_errors++;
3067 } else {
3068 if (status & (GMR_FS_LONG_ERR|GMR_FS_UN_SIZE))
3069 dev->stats.rx_length_errors++;
3070 if (status & GMR_FS_FRAGMENT)
3071 dev->stats.rx_frame_errors++;
3072 if (status & GMR_FS_CRC_ERR)
3073 dev->stats.rx_crc_errors++;
3076 resubmit:
3077 skge_rx_reuse(e, skge->rx_buf_size);
3078 return NULL;
3081 /* Free all buffers in Tx ring which are no longer owned by device */
3082 static void skge_tx_done(struct net_device *dev)
3084 struct skge_port *skge = netdev_priv(dev);
3085 struct skge_ring *ring = &skge->tx_ring;
3086 struct skge_element *e;
3088 skge_write8(skge->hw, Q_ADDR(txqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3090 for (e = ring->to_clean; e != ring->to_use; e = e->next) {
3091 u32 control = ((const struct skge_tx_desc *) e->desc)->control;
3093 if (control & BMU_OWN)
3094 break;
3096 skge_tx_free(skge, e, control);
3098 skge->tx_ring.to_clean = e;
3100 /* Can run lockless until we need to synchronize to restart queue. */
3101 smp_mb();
3103 if (unlikely(netif_queue_stopped(dev) &&
3104 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3105 netif_tx_lock(dev);
3106 if (unlikely(netif_queue_stopped(dev) &&
3107 skge_avail(&skge->tx_ring) > TX_LOW_WATER)) {
3108 netif_wake_queue(dev);
3111 netif_tx_unlock(dev);
3115 static int skge_poll(struct napi_struct *napi, int to_do)
3117 struct skge_port *skge = container_of(napi, struct skge_port, napi);
3118 struct net_device *dev = skge->netdev;
3119 struct skge_hw *hw = skge->hw;
3120 struct skge_ring *ring = &skge->rx_ring;
3121 struct skge_element *e;
3122 int work_done = 0;
3124 skge_tx_done(dev);
3126 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_IRQ_CL_F);
3128 for (e = ring->to_clean; prefetch(e->next), work_done < to_do; e = e->next) {
3129 struct skge_rx_desc *rd = e->desc;
3130 struct sk_buff *skb;
3131 u32 control;
3133 rmb();
3134 control = rd->control;
3135 if (control & BMU_OWN)
3136 break;
3138 skb = skge_rx_get(dev, e, control, rd->status, rd->csum2);
3139 if (likely(skb)) {
3140 napi_gro_receive(napi, skb);
3141 ++work_done;
3144 ring->to_clean = e;
3146 /* restart receiver */
3147 wmb();
3148 skge_write8(hw, Q_ADDR(rxqaddr[skge->port], Q_CSR), CSR_START);
3150 if (work_done < to_do) {
3151 unsigned long flags;
3153 napi_gro_flush(napi);
3154 spin_lock_irqsave(&hw->hw_lock, flags);
3155 __napi_complete(napi);
3156 hw->intr_mask |= napimask[skge->port];
3157 skge_write32(hw, B0_IMSK, hw->intr_mask);
3158 skge_read32(hw, B0_IMSK);
3159 spin_unlock_irqrestore(&hw->hw_lock, flags);
3162 return work_done;
3165 /* Parity errors seem to happen when Genesis is connected to a switch
3166 * with no other ports present. Heartbeat error??
3168 static void skge_mac_parity(struct skge_hw *hw, int port)
3170 struct net_device *dev = hw->dev[port];
3172 ++dev->stats.tx_heartbeat_errors;
3174 if (hw->chip_id == CHIP_ID_GENESIS)
3175 skge_write16(hw, SK_REG(port, TX_MFF_CTRL1),
3176 MFF_CLR_PERR);
3177 else
3178 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3179 skge_write8(hw, SK_REG(port, TX_GMF_CTRL_T),
3180 (hw->chip_id == CHIP_ID_YUKON && hw->chip_rev == 0)
3181 ? GMF_CLI_TX_FC : GMF_CLI_TX_PE);
3184 static void skge_mac_intr(struct skge_hw *hw, int port)
3186 if (hw->chip_id == CHIP_ID_GENESIS)
3187 genesis_mac_intr(hw, port);
3188 else
3189 yukon_mac_intr(hw, port);
3192 /* Handle device specific framing and timeout interrupts */
3193 static void skge_error_irq(struct skge_hw *hw)
3195 struct pci_dev *pdev = hw->pdev;
3196 u32 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3198 if (hw->chip_id == CHIP_ID_GENESIS) {
3199 /* clear xmac errors */
3200 if (hwstatus & (IS_NO_STAT_M1|IS_NO_TIST_M1))
3201 skge_write16(hw, RX_MFF_CTRL1, MFF_CLR_INSTAT);
3202 if (hwstatus & (IS_NO_STAT_M2|IS_NO_TIST_M2))
3203 skge_write16(hw, RX_MFF_CTRL2, MFF_CLR_INSTAT);
3204 } else {
3205 /* Timestamp (unused) overflow */
3206 if (hwstatus & IS_IRQ_TIST_OV)
3207 skge_write8(hw, GMAC_TI_ST_CTRL, GMT_ST_CLR_IRQ);
3210 if (hwstatus & IS_RAM_RD_PAR) {
3211 dev_err(&pdev->dev, "Ram read data parity error\n");
3212 skge_write16(hw, B3_RI_CTRL, RI_CLR_RD_PERR);
3215 if (hwstatus & IS_RAM_WR_PAR) {
3216 dev_err(&pdev->dev, "Ram write data parity error\n");
3217 skge_write16(hw, B3_RI_CTRL, RI_CLR_WR_PERR);
3220 if (hwstatus & IS_M1_PAR_ERR)
3221 skge_mac_parity(hw, 0);
3223 if (hwstatus & IS_M2_PAR_ERR)
3224 skge_mac_parity(hw, 1);
3226 if (hwstatus & IS_R1_PAR_ERR) {
3227 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3228 hw->dev[0]->name);
3229 skge_write32(hw, B0_R1_CSR, CSR_IRQ_CL_P);
3232 if (hwstatus & IS_R2_PAR_ERR) {
3233 dev_err(&pdev->dev, "%s: receive queue parity error\n",
3234 hw->dev[1]->name);
3235 skge_write32(hw, B0_R2_CSR, CSR_IRQ_CL_P);
3238 if (hwstatus & (IS_IRQ_MST_ERR|IS_IRQ_STAT)) {
3239 u16 pci_status, pci_cmd;
3241 pci_read_config_word(pdev, PCI_COMMAND, &pci_cmd);
3242 pci_read_config_word(pdev, PCI_STATUS, &pci_status);
3244 dev_err(&pdev->dev, "PCI error cmd=%#x status=%#x\n",
3245 pci_cmd, pci_status);
3247 /* Write the error bits back to clear them. */
3248 pci_status &= PCI_STATUS_ERROR_BITS;
3249 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3250 pci_write_config_word(pdev, PCI_COMMAND,
3251 pci_cmd | PCI_COMMAND_SERR | PCI_COMMAND_PARITY);
3252 pci_write_config_word(pdev, PCI_STATUS, pci_status);
3253 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3255 /* if error still set then just ignore it */
3256 hwstatus = skge_read32(hw, B0_HWE_ISRC);
3257 if (hwstatus & IS_IRQ_STAT) {
3258 dev_warn(&hw->pdev->dev, "unable to clear error (so ignoring them)\n");
3259 hw->intr_mask &= ~IS_HW_ERR;
3265 * Interrupt from PHY are handled in tasklet (softirq)
3266 * because accessing phy registers requires spin wait which might
3267 * cause excess interrupt latency.
3269 static void skge_extirq(unsigned long arg)
3271 struct skge_hw *hw = (struct skge_hw *) arg;
3272 int port;
3274 for (port = 0; port < hw->ports; port++) {
3275 struct net_device *dev = hw->dev[port];
3277 if (netif_running(dev)) {
3278 struct skge_port *skge = netdev_priv(dev);
3280 spin_lock(&hw->phy_lock);
3281 if (hw->chip_id != CHIP_ID_GENESIS)
3282 yukon_phy_intr(skge);
3283 else if (hw->phy_type == SK_PHY_BCOM)
3284 bcom_phy_intr(skge);
3285 spin_unlock(&hw->phy_lock);
3289 spin_lock_irq(&hw->hw_lock);
3290 hw->intr_mask |= IS_EXT_REG;
3291 skge_write32(hw, B0_IMSK, hw->intr_mask);
3292 skge_read32(hw, B0_IMSK);
3293 spin_unlock_irq(&hw->hw_lock);
3296 static irqreturn_t skge_intr(int irq, void *dev_id)
3298 struct skge_hw *hw = dev_id;
3299 u32 status;
3300 int handled = 0;
3302 spin_lock(&hw->hw_lock);
3303 /* Reading this register masks IRQ */
3304 status = skge_read32(hw, B0_SP_ISRC);
3305 if (status == 0 || status == ~0)
3306 goto out;
3308 handled = 1;
3309 status &= hw->intr_mask;
3310 if (status & IS_EXT_REG) {
3311 hw->intr_mask &= ~IS_EXT_REG;
3312 tasklet_schedule(&hw->phy_task);
3315 if (status & (IS_XA1_F|IS_R1_F)) {
3316 struct skge_port *skge = netdev_priv(hw->dev[0]);
3317 hw->intr_mask &= ~(IS_XA1_F|IS_R1_F);
3318 napi_schedule(&skge->napi);
3321 if (status & IS_PA_TO_TX1)
3322 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX1);
3324 if (status & IS_PA_TO_RX1) {
3325 ++hw->dev[0]->stats.rx_over_errors;
3326 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX1);
3330 if (status & IS_MAC1)
3331 skge_mac_intr(hw, 0);
3333 if (hw->dev[1]) {
3334 struct skge_port *skge = netdev_priv(hw->dev[1]);
3336 if (status & (IS_XA2_F|IS_R2_F)) {
3337 hw->intr_mask &= ~(IS_XA2_F|IS_R2_F);
3338 napi_schedule(&skge->napi);
3341 if (status & IS_PA_TO_RX2) {
3342 ++hw->dev[1]->stats.rx_over_errors;
3343 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_RX2);
3346 if (status & IS_PA_TO_TX2)
3347 skge_write16(hw, B3_PA_CTRL, PA_CLR_TO_TX2);
3349 if (status & IS_MAC2)
3350 skge_mac_intr(hw, 1);
3353 if (status & IS_HW_ERR)
3354 skge_error_irq(hw);
3356 skge_write32(hw, B0_IMSK, hw->intr_mask);
3357 skge_read32(hw, B0_IMSK);
3358 out:
3359 spin_unlock(&hw->hw_lock);
3361 return IRQ_RETVAL(handled);
3364 #ifdef CONFIG_NET_POLL_CONTROLLER
3365 static void skge_netpoll(struct net_device *dev)
3367 struct skge_port *skge = netdev_priv(dev);
3369 disable_irq(dev->irq);
3370 skge_intr(dev->irq, skge->hw);
3371 enable_irq(dev->irq);
3373 #endif
3375 static int skge_set_mac_address(struct net_device *dev, void *p)
3377 struct skge_port *skge = netdev_priv(dev);
3378 struct skge_hw *hw = skge->hw;
3379 unsigned port = skge->port;
3380 const struct sockaddr *addr = p;
3381 u16 ctrl;
3383 if (!is_valid_ether_addr(addr->sa_data))
3384 return -EADDRNOTAVAIL;
3386 memcpy(dev->dev_addr, addr->sa_data, ETH_ALEN);
3388 if (!netif_running(dev)) {
3389 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3390 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3391 } else {
3392 /* disable Rx */
3393 spin_lock_bh(&hw->phy_lock);
3394 ctrl = gma_read16(hw, port, GM_GP_CTRL);
3395 gma_write16(hw, port, GM_GP_CTRL, ctrl & ~GM_GPCR_RX_ENA);
3397 memcpy_toio(hw->regs + B2_MAC_1 + port*8, dev->dev_addr, ETH_ALEN);
3398 memcpy_toio(hw->regs + B2_MAC_2 + port*8, dev->dev_addr, ETH_ALEN);
3400 if (hw->chip_id == CHIP_ID_GENESIS)
3401 xm_outaddr(hw, port, XM_SA, dev->dev_addr);
3402 else {
3403 gma_set_addr(hw, port, GM_SRC_ADDR_1L, dev->dev_addr);
3404 gma_set_addr(hw, port, GM_SRC_ADDR_2L, dev->dev_addr);
3407 gma_write16(hw, port, GM_GP_CTRL, ctrl);
3408 spin_unlock_bh(&hw->phy_lock);
3411 return 0;
3414 static const struct {
3415 u8 id;
3416 const char *name;
3417 } skge_chips[] = {
3418 { CHIP_ID_GENESIS, "Genesis" },
3419 { CHIP_ID_YUKON, "Yukon" },
3420 { CHIP_ID_YUKON_LITE, "Yukon-Lite"},
3421 { CHIP_ID_YUKON_LP, "Yukon-LP"},
3424 static const char *skge_board_name(const struct skge_hw *hw)
3426 int i;
3427 static char buf[16];
3429 for (i = 0; i < ARRAY_SIZE(skge_chips); i++)
3430 if (skge_chips[i].id == hw->chip_id)
3431 return skge_chips[i].name;
3433 snprintf(buf, sizeof buf, "chipid 0x%x", hw->chip_id);
3434 return buf;
3439 * Setup the board data structure, but don't bring up
3440 * the port(s)
3442 static int skge_reset(struct skge_hw *hw)
3444 u32 reg;
3445 u16 ctst, pci_status;
3446 u8 t8, mac_cfg, pmd_type;
3447 int i;
3449 ctst = skge_read16(hw, B0_CTST);
3451 /* do a SW reset */
3452 skge_write8(hw, B0_CTST, CS_RST_SET);
3453 skge_write8(hw, B0_CTST, CS_RST_CLR);
3455 /* clear PCI errors, if any */
3456 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3457 skge_write8(hw, B2_TST_CTRL2, 0);
3459 pci_read_config_word(hw->pdev, PCI_STATUS, &pci_status);
3460 pci_write_config_word(hw->pdev, PCI_STATUS,
3461 pci_status | PCI_STATUS_ERROR_BITS);
3462 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3463 skge_write8(hw, B0_CTST, CS_MRST_CLR);
3465 /* restore CLK_RUN bits (for Yukon-Lite) */
3466 skge_write16(hw, B0_CTST,
3467 ctst & (CS_CLK_RUN_HOT|CS_CLK_RUN_RST|CS_CLK_RUN_ENA));
3469 hw->chip_id = skge_read8(hw, B2_CHIP_ID);
3470 hw->phy_type = skge_read8(hw, B2_E_1) & 0xf;
3471 pmd_type = skge_read8(hw, B2_PMD_TYP);
3472 hw->copper = (pmd_type == 'T' || pmd_type == '1');
3474 switch (hw->chip_id) {
3475 case CHIP_ID_GENESIS:
3476 switch (hw->phy_type) {
3477 case SK_PHY_XMAC:
3478 hw->phy_addr = PHY_ADDR_XMAC;
3479 break;
3480 case SK_PHY_BCOM:
3481 hw->phy_addr = PHY_ADDR_BCOM;
3482 break;
3483 default:
3484 dev_err(&hw->pdev->dev, "unsupported phy type 0x%x\n",
3485 hw->phy_type);
3486 return -EOPNOTSUPP;
3488 break;
3490 case CHIP_ID_YUKON:
3491 case CHIP_ID_YUKON_LITE:
3492 case CHIP_ID_YUKON_LP:
3493 if (hw->phy_type < SK_PHY_MARV_COPPER && pmd_type != 'S')
3494 hw->copper = 1;
3496 hw->phy_addr = PHY_ADDR_MARV;
3497 break;
3499 default:
3500 dev_err(&hw->pdev->dev, "unsupported chip type 0x%x\n",
3501 hw->chip_id);
3502 return -EOPNOTSUPP;
3505 mac_cfg = skge_read8(hw, B2_MAC_CFG);
3506 hw->ports = (mac_cfg & CFG_SNG_MAC) ? 1 : 2;
3507 hw->chip_rev = (mac_cfg & CFG_CHIP_R_MSK) >> 4;
3509 /* read the adapters RAM size */
3510 t8 = skge_read8(hw, B2_E_0);
3511 if (hw->chip_id == CHIP_ID_GENESIS) {
3512 if (t8 == 3) {
3513 /* special case: 4 x 64k x 36, offset = 0x80000 */
3514 hw->ram_size = 0x100000;
3515 hw->ram_offset = 0x80000;
3516 } else
3517 hw->ram_size = t8 * 512;
3518 } else if (t8 == 0)
3519 hw->ram_size = 0x20000;
3520 else
3521 hw->ram_size = t8 * 4096;
3523 hw->intr_mask = IS_HW_ERR;
3525 /* Use PHY IRQ for all but fiber based Genesis board */
3526 if (!(hw->chip_id == CHIP_ID_GENESIS && hw->phy_type == SK_PHY_XMAC))
3527 hw->intr_mask |= IS_EXT_REG;
3529 if (hw->chip_id == CHIP_ID_GENESIS)
3530 genesis_init(hw);
3531 else {
3532 /* switch power to VCC (WA for VAUX problem) */
3533 skge_write8(hw, B0_POWER_CTRL,
3534 PC_VAUX_ENA | PC_VCC_ENA | PC_VAUX_OFF | PC_VCC_ON);
3536 /* avoid boards with stuck Hardware error bits */
3537 if ((skge_read32(hw, B0_ISRC) & IS_HW_ERR) &&
3538 (skge_read32(hw, B0_HWE_ISRC) & IS_IRQ_SENSOR)) {
3539 dev_warn(&hw->pdev->dev, "stuck hardware sensor bit\n");
3540 hw->intr_mask &= ~IS_HW_ERR;
3543 /* Clear PHY COMA */
3544 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_ON);
3545 pci_read_config_dword(hw->pdev, PCI_DEV_REG1, &reg);
3546 reg &= ~PCI_PHY_COMA;
3547 pci_write_config_dword(hw->pdev, PCI_DEV_REG1, reg);
3548 skge_write8(hw, B2_TST_CTRL1, TST_CFG_WRITE_OFF);
3551 for (i = 0; i < hw->ports; i++) {
3552 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_SET);
3553 skge_write16(hw, SK_REG(i, GMAC_LINK_CTRL), GMLC_RST_CLR);
3557 /* turn off hardware timer (unused) */
3558 skge_write8(hw, B2_TI_CTRL, TIM_STOP);
3559 skge_write8(hw, B2_TI_CTRL, TIM_CLR_IRQ);
3560 skge_write8(hw, B0_LED, LED_STAT_ON);
3562 /* enable the Tx Arbiters */
3563 for (i = 0; i < hw->ports; i++)
3564 skge_write8(hw, SK_REG(i, TXA_CTRL), TXA_ENA_ARB);
3566 /* Initialize ram interface */
3567 skge_write16(hw, B3_RI_CTRL, RI_RST_CLR);
3569 skge_write8(hw, B3_RI_WTO_R1, SK_RI_TO_53);
3570 skge_write8(hw, B3_RI_WTO_XA1, SK_RI_TO_53);
3571 skge_write8(hw, B3_RI_WTO_XS1, SK_RI_TO_53);
3572 skge_write8(hw, B3_RI_RTO_R1, SK_RI_TO_53);
3573 skge_write8(hw, B3_RI_RTO_XA1, SK_RI_TO_53);
3574 skge_write8(hw, B3_RI_RTO_XS1, SK_RI_TO_53);
3575 skge_write8(hw, B3_RI_WTO_R2, SK_RI_TO_53);
3576 skge_write8(hw, B3_RI_WTO_XA2, SK_RI_TO_53);
3577 skge_write8(hw, B3_RI_WTO_XS2, SK_RI_TO_53);
3578 skge_write8(hw, B3_RI_RTO_R2, SK_RI_TO_53);
3579 skge_write8(hw, B3_RI_RTO_XA2, SK_RI_TO_53);
3580 skge_write8(hw, B3_RI_RTO_XS2, SK_RI_TO_53);
3582 skge_write32(hw, B0_HWE_IMSK, IS_ERR_MSK);
3584 /* Set interrupt moderation for Transmit only
3585 * Receive interrupts avoided by NAPI
3587 skge_write32(hw, B2_IRQM_MSK, IS_XA1_F|IS_XA2_F);
3588 skge_write32(hw, B2_IRQM_INI, skge_usecs2clk(hw, 100));
3589 skge_write32(hw, B2_IRQM_CTRL, TIM_START);
3591 skge_write32(hw, B0_IMSK, hw->intr_mask);
3593 for (i = 0; i < hw->ports; i++) {
3594 if (hw->chip_id == CHIP_ID_GENESIS)
3595 genesis_reset(hw, i);
3596 else
3597 yukon_reset(hw, i);
3600 return 0;
3604 #ifdef CONFIG_SKGE_DEBUG
3606 static struct dentry *skge_debug;
3608 static int skge_debug_show(struct seq_file *seq, void *v)
3610 struct net_device *dev = seq->private;
3611 const struct skge_port *skge = netdev_priv(dev);
3612 const struct skge_hw *hw = skge->hw;
3613 const struct skge_element *e;
3615 if (!netif_running(dev))
3616 return -ENETDOWN;
3618 seq_printf(seq, "IRQ src=%x mask=%x\n", skge_read32(hw, B0_ISRC),
3619 skge_read32(hw, B0_IMSK));
3621 seq_printf(seq, "Tx Ring: (%d)\n", skge_avail(&skge->tx_ring));
3622 for (e = skge->tx_ring.to_clean; e != skge->tx_ring.to_use; e = e->next) {
3623 const struct skge_tx_desc *t = e->desc;
3624 seq_printf(seq, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3625 t->control, t->dma_hi, t->dma_lo, t->status,
3626 t->csum_offs, t->csum_write, t->csum_start);
3629 seq_printf(seq, "\nRx Ring:\n");
3630 for (e = skge->rx_ring.to_clean; ; e = e->next) {
3631 const struct skge_rx_desc *r = e->desc;
3633 if (r->control & BMU_OWN)
3634 break;
3636 seq_printf(seq, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3637 r->control, r->dma_hi, r->dma_lo, r->status,
3638 r->timestamp, r->csum1, r->csum1_start);
3641 return 0;
3644 static int skge_debug_open(struct inode *inode, struct file *file)
3646 return single_open(file, skge_debug_show, inode->i_private);
3649 static const struct file_operations skge_debug_fops = {
3650 .owner = THIS_MODULE,
3651 .open = skge_debug_open,
3652 .read = seq_read,
3653 .llseek = seq_lseek,
3654 .release = single_release,
3658 * Use network device events to create/remove/rename
3659 * debugfs file entries
3661 static int skge_device_event(struct notifier_block *unused,
3662 unsigned long event, void *ptr)
3664 struct net_device *dev = ptr;
3665 struct skge_port *skge;
3666 struct dentry *d;
3668 if (dev->netdev_ops->ndo_open != &skge_up || !skge_debug)
3669 goto done;
3671 skge = netdev_priv(dev);
3672 switch (event) {
3673 case NETDEV_CHANGENAME:
3674 if (skge->debugfs) {
3675 d = debugfs_rename(skge_debug, skge->debugfs,
3676 skge_debug, dev->name);
3677 if (d)
3678 skge->debugfs = d;
3679 else {
3680 netdev_info(dev, "rename failed\n");
3681 debugfs_remove(skge->debugfs);
3684 break;
3686 case NETDEV_GOING_DOWN:
3687 if (skge->debugfs) {
3688 debugfs_remove(skge->debugfs);
3689 skge->debugfs = NULL;
3691 break;
3693 case NETDEV_UP:
3694 d = debugfs_create_file(dev->name, S_IRUGO,
3695 skge_debug, dev,
3696 &skge_debug_fops);
3697 if (!d || IS_ERR(d))
3698 netdev_info(dev, "debugfs create failed\n");
3699 else
3700 skge->debugfs = d;
3701 break;
3704 done:
3705 return NOTIFY_DONE;
3708 static struct notifier_block skge_notifier = {
3709 .notifier_call = skge_device_event,
3713 static __init void skge_debug_init(void)
3715 struct dentry *ent;
3717 ent = debugfs_create_dir("skge", NULL);
3718 if (!ent || IS_ERR(ent)) {
3719 pr_info("debugfs create directory failed\n");
3720 return;
3723 skge_debug = ent;
3724 register_netdevice_notifier(&skge_notifier);
3727 static __exit void skge_debug_cleanup(void)
3729 if (skge_debug) {
3730 unregister_netdevice_notifier(&skge_notifier);
3731 debugfs_remove(skge_debug);
3732 skge_debug = NULL;
3736 #else
3737 #define skge_debug_init()
3738 #define skge_debug_cleanup()
3739 #endif
3741 static const struct net_device_ops skge_netdev_ops = {
3742 .ndo_open = skge_up,
3743 .ndo_stop = skge_down,
3744 .ndo_start_xmit = skge_xmit_frame,
3745 .ndo_do_ioctl = skge_ioctl,
3746 .ndo_get_stats = skge_get_stats,
3747 .ndo_tx_timeout = skge_tx_timeout,
3748 .ndo_change_mtu = skge_change_mtu,
3749 .ndo_validate_addr = eth_validate_addr,
3750 .ndo_set_multicast_list = skge_set_multicast,
3751 .ndo_set_mac_address = skge_set_mac_address,
3752 #ifdef CONFIG_NET_POLL_CONTROLLER
3753 .ndo_poll_controller = skge_netpoll,
3754 #endif
3758 /* Initialize network device */
3759 static struct net_device *skge_devinit(struct skge_hw *hw, int port,
3760 int highmem)
3762 struct skge_port *skge;
3763 struct net_device *dev = alloc_etherdev(sizeof(*skge));
3765 if (!dev) {
3766 dev_err(&hw->pdev->dev, "etherdev alloc failed\n");
3767 return NULL;
3770 SET_NETDEV_DEV(dev, &hw->pdev->dev);
3771 dev->netdev_ops = &skge_netdev_ops;
3772 dev->ethtool_ops = &skge_ethtool_ops;
3773 dev->watchdog_timeo = TX_WATCHDOG;
3774 dev->irq = hw->pdev->irq;
3776 if (highmem)
3777 dev->features |= NETIF_F_HIGHDMA;
3779 skge = netdev_priv(dev);
3780 netif_napi_add(dev, &skge->napi, skge_poll, NAPI_WEIGHT);
3781 skge->netdev = dev;
3782 skge->hw = hw;
3783 skge->msg_enable = netif_msg_init(debug, default_msg);
3785 skge->tx_ring.count = DEFAULT_TX_RING_SIZE;
3786 skge->rx_ring.count = DEFAULT_RX_RING_SIZE;
3788 /* Auto speed and flow control */
3789 skge->autoneg = AUTONEG_ENABLE;
3790 skge->flow_control = FLOW_MODE_SYM_OR_REM;
3791 skge->duplex = -1;
3792 skge->speed = -1;
3793 skge->advertising = skge_supported_modes(hw);
3795 if (device_can_wakeup(&hw->pdev->dev)) {
3796 skge->wol = wol_supported(hw) & WAKE_MAGIC;
3797 device_set_wakeup_enable(&hw->pdev->dev, skge->wol);
3800 hw->dev[port] = dev;
3802 skge->port = port;
3804 /* Only used for Genesis XMAC */
3805 setup_timer(&skge->link_timer, xm_link_timer, (unsigned long) skge);
3807 if (hw->chip_id != CHIP_ID_GENESIS) {
3808 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
3809 NETIF_F_RXCSUM;
3810 dev->features |= dev->hw_features;
3813 /* read the mac address */
3814 memcpy_fromio(dev->dev_addr, hw->regs + B2_MAC_1 + port*8, ETH_ALEN);
3815 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
3817 return dev;
3820 static void __devinit skge_show_addr(struct net_device *dev)
3822 const struct skge_port *skge = netdev_priv(dev);
3824 netif_info(skge, probe, skge->netdev, "addr %pM\n", dev->dev_addr);
3827 static int only_32bit_dma;
3829 static int __devinit skge_probe(struct pci_dev *pdev,
3830 const struct pci_device_id *ent)
3832 struct net_device *dev, *dev1;
3833 struct skge_hw *hw;
3834 int err, using_dac = 0;
3836 err = pci_enable_device(pdev);
3837 if (err) {
3838 dev_err(&pdev->dev, "cannot enable PCI device\n");
3839 goto err_out;
3842 err = pci_request_regions(pdev, DRV_NAME);
3843 if (err) {
3844 dev_err(&pdev->dev, "cannot obtain PCI resources\n");
3845 goto err_out_disable_pdev;
3848 pci_set_master(pdev);
3850 if (!only_32bit_dma && !pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
3851 using_dac = 1;
3852 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(64));
3853 } else if (!(err = pci_set_dma_mask(pdev, DMA_BIT_MASK(32)))) {
3854 using_dac = 0;
3855 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
3858 if (err) {
3859 dev_err(&pdev->dev, "no usable DMA configuration\n");
3860 goto err_out_free_regions;
3863 #ifdef __BIG_ENDIAN
3864 /* byte swap descriptors in hardware */
3866 u32 reg;
3868 pci_read_config_dword(pdev, PCI_DEV_REG2, &reg);
3869 reg |= PCI_REV_DESC;
3870 pci_write_config_dword(pdev, PCI_DEV_REG2, reg);
3872 #endif
3874 err = -ENOMEM;
3875 /* space for skge@pci:0000:04:00.0 */
3876 hw = kzalloc(sizeof(*hw) + strlen(DRV_NAME "@pci:")
3877 + strlen(pci_name(pdev)) + 1, GFP_KERNEL);
3878 if (!hw) {
3879 dev_err(&pdev->dev, "cannot allocate hardware struct\n");
3880 goto err_out_free_regions;
3882 sprintf(hw->irq_name, DRV_NAME "@pci:%s", pci_name(pdev));
3884 hw->pdev = pdev;
3885 spin_lock_init(&hw->hw_lock);
3886 spin_lock_init(&hw->phy_lock);
3887 tasklet_init(&hw->phy_task, skge_extirq, (unsigned long) hw);
3889 hw->regs = ioremap_nocache(pci_resource_start(pdev, 0), 0x4000);
3890 if (!hw->regs) {
3891 dev_err(&pdev->dev, "cannot map device registers\n");
3892 goto err_out_free_hw;
3895 err = skge_reset(hw);
3896 if (err)
3897 goto err_out_iounmap;
3899 pr_info("%s addr 0x%llx irq %d chip %s rev %d\n",
3900 DRV_VERSION,
3901 (unsigned long long)pci_resource_start(pdev, 0), pdev->irq,
3902 skge_board_name(hw), hw->chip_rev);
3904 dev = skge_devinit(hw, 0, using_dac);
3905 if (!dev)
3906 goto err_out_led_off;
3908 /* Some motherboards are broken and has zero in ROM. */
3909 if (!is_valid_ether_addr(dev->dev_addr))
3910 dev_warn(&pdev->dev, "bad (zero?) ethernet address in rom\n");
3912 err = register_netdev(dev);
3913 if (err) {
3914 dev_err(&pdev->dev, "cannot register net device\n");
3915 goto err_out_free_netdev;
3918 err = request_irq(pdev->irq, skge_intr, IRQF_SHARED, hw->irq_name, hw);
3919 if (err) {
3920 dev_err(&pdev->dev, "%s: cannot assign irq %d\n",
3921 dev->name, pdev->irq);
3922 goto err_out_unregister;
3924 skge_show_addr(dev);
3926 if (hw->ports > 1) {
3927 dev1 = skge_devinit(hw, 1, using_dac);
3928 if (dev1 && register_netdev(dev1) == 0)
3929 skge_show_addr(dev1);
3930 else {
3931 /* Failure to register second port need not be fatal */
3932 dev_warn(&pdev->dev, "register of second port failed\n");
3933 hw->dev[1] = NULL;
3934 hw->ports = 1;
3935 if (dev1)
3936 free_netdev(dev1);
3939 pci_set_drvdata(pdev, hw);
3941 return 0;
3943 err_out_unregister:
3944 unregister_netdev(dev);
3945 err_out_free_netdev:
3946 free_netdev(dev);
3947 err_out_led_off:
3948 skge_write16(hw, B0_LED, LED_STAT_OFF);
3949 err_out_iounmap:
3950 iounmap(hw->regs);
3951 err_out_free_hw:
3952 kfree(hw);
3953 err_out_free_regions:
3954 pci_release_regions(pdev);
3955 err_out_disable_pdev:
3956 pci_disable_device(pdev);
3957 pci_set_drvdata(pdev, NULL);
3958 err_out:
3959 return err;
3962 static void __devexit skge_remove(struct pci_dev *pdev)
3964 struct skge_hw *hw = pci_get_drvdata(pdev);
3965 struct net_device *dev0, *dev1;
3967 if (!hw)
3968 return;
3970 dev1 = hw->dev[1];
3971 if (dev1)
3972 unregister_netdev(dev1);
3973 dev0 = hw->dev[0];
3974 unregister_netdev(dev0);
3976 tasklet_disable(&hw->phy_task);
3978 spin_lock_irq(&hw->hw_lock);
3979 hw->intr_mask = 0;
3980 skge_write32(hw, B0_IMSK, 0);
3981 skge_read32(hw, B0_IMSK);
3982 spin_unlock_irq(&hw->hw_lock);
3984 skge_write16(hw, B0_LED, LED_STAT_OFF);
3985 skge_write8(hw, B0_CTST, CS_RST_SET);
3987 free_irq(pdev->irq, hw);
3988 pci_release_regions(pdev);
3989 pci_disable_device(pdev);
3990 if (dev1)
3991 free_netdev(dev1);
3992 free_netdev(dev0);
3994 iounmap(hw->regs);
3995 kfree(hw);
3996 pci_set_drvdata(pdev, NULL);
3999 #ifdef CONFIG_PM
4000 static int skge_suspend(struct device *dev)
4002 struct pci_dev *pdev = to_pci_dev(dev);
4003 struct skge_hw *hw = pci_get_drvdata(pdev);
4004 int i;
4006 if (!hw)
4007 return 0;
4009 for (i = 0; i < hw->ports; i++) {
4010 struct net_device *dev = hw->dev[i];
4011 struct skge_port *skge = netdev_priv(dev);
4013 if (netif_running(dev))
4014 skge_down(dev);
4016 if (skge->wol)
4017 skge_wol_init(skge);
4020 skge_write32(hw, B0_IMSK, 0);
4022 return 0;
4025 static int skge_resume(struct device *dev)
4027 struct pci_dev *pdev = to_pci_dev(dev);
4028 struct skge_hw *hw = pci_get_drvdata(pdev);
4029 int i, err;
4031 if (!hw)
4032 return 0;
4034 err = skge_reset(hw);
4035 if (err)
4036 goto out;
4038 for (i = 0; i < hw->ports; i++) {
4039 struct net_device *dev = hw->dev[i];
4041 if (netif_running(dev)) {
4042 err = skge_up(dev);
4044 if (err) {
4045 netdev_err(dev, "could not up: %d\n", err);
4046 dev_close(dev);
4047 goto out;
4051 out:
4052 return err;
4055 static SIMPLE_DEV_PM_OPS(skge_pm_ops, skge_suspend, skge_resume);
4056 #define SKGE_PM_OPS (&skge_pm_ops)
4058 #else
4060 #define SKGE_PM_OPS NULL
4061 #endif
4063 static void skge_shutdown(struct pci_dev *pdev)
4065 struct skge_hw *hw = pci_get_drvdata(pdev);
4066 int i;
4068 if (!hw)
4069 return;
4071 for (i = 0; i < hw->ports; i++) {
4072 struct net_device *dev = hw->dev[i];
4073 struct skge_port *skge = netdev_priv(dev);
4075 if (skge->wol)
4076 skge_wol_init(skge);
4079 pci_wake_from_d3(pdev, device_may_wakeup(&pdev->dev));
4080 pci_set_power_state(pdev, PCI_D3hot);
4083 static struct pci_driver skge_driver = {
4084 .name = DRV_NAME,
4085 .id_table = skge_id_table,
4086 .probe = skge_probe,
4087 .remove = __devexit_p(skge_remove),
4088 .shutdown = skge_shutdown,
4089 .driver.pm = SKGE_PM_OPS,
4092 static struct dmi_system_id skge_32bit_dma_boards[] = {
4094 .ident = "Gigabyte nForce boards",
4095 .matches = {
4096 DMI_MATCH(DMI_BOARD_VENDOR, "Gigabyte Technology Co"),
4097 DMI_MATCH(DMI_BOARD_NAME, "nForce"),
4103 static int __init skge_init_module(void)
4105 if (dmi_check_system(skge_32bit_dma_boards))
4106 only_32bit_dma = 1;
4107 skge_debug_init();
4108 return pci_register_driver(&skge_driver);
4111 static void __exit skge_cleanup_module(void)
4113 pci_unregister_driver(&skge_driver);
4114 skge_debug_cleanup();
4117 module_init(skge_init_module);
4118 module_exit(skge_cleanup_module);