ARM/fb: ep93xx: switch framebuffer to use modedb only
[linux/fpc-iii.git] / block / blk-mq.c
blobf53779692c772a1cc06ec341f9fab307b2ceef91
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/mm.h>
13 #include <linux/init.h>
14 #include <linux/slab.h>
15 #include <linux/workqueue.h>
16 #include <linux/smp.h>
17 #include <linux/llist.h>
18 #include <linux/list_sort.h>
19 #include <linux/cpu.h>
20 #include <linux/cache.h>
21 #include <linux/sched/sysctl.h>
22 #include <linux/delay.h>
23 #include <linux/crash_dump.h>
25 #include <trace/events/block.h>
27 #include <linux/blk-mq.h>
28 #include "blk.h"
29 #include "blk-mq.h"
30 #include "blk-mq-tag.h"
32 static DEFINE_MUTEX(all_q_mutex);
33 static LIST_HEAD(all_q_list);
35 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
38 * Check if any of the ctx's have pending work in this hardware queue
40 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
42 unsigned int i;
44 for (i = 0; i < hctx->ctx_map.size; i++)
45 if (hctx->ctx_map.map[i].word)
46 return true;
48 return false;
51 static inline struct blk_align_bitmap *get_bm(struct blk_mq_hw_ctx *hctx,
52 struct blk_mq_ctx *ctx)
54 return &hctx->ctx_map.map[ctx->index_hw / hctx->ctx_map.bits_per_word];
57 #define CTX_TO_BIT(hctx, ctx) \
58 ((ctx)->index_hw & ((hctx)->ctx_map.bits_per_word - 1))
61 * Mark this ctx as having pending work in this hardware queue
63 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
64 struct blk_mq_ctx *ctx)
66 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
68 if (!test_bit(CTX_TO_BIT(hctx, ctx), &bm->word))
69 set_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
72 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
73 struct blk_mq_ctx *ctx)
75 struct blk_align_bitmap *bm = get_bm(hctx, ctx);
77 clear_bit(CTX_TO_BIT(hctx, ctx), &bm->word);
80 static int blk_mq_queue_enter(struct request_queue *q, gfp_t gfp)
82 while (true) {
83 int ret;
85 if (percpu_ref_tryget_live(&q->mq_usage_counter))
86 return 0;
88 if (!(gfp & __GFP_WAIT))
89 return -EBUSY;
91 ret = wait_event_interruptible(q->mq_freeze_wq,
92 !atomic_read(&q->mq_freeze_depth) ||
93 blk_queue_dying(q));
94 if (blk_queue_dying(q))
95 return -ENODEV;
96 if (ret)
97 return ret;
101 static void blk_mq_queue_exit(struct request_queue *q)
103 percpu_ref_put(&q->mq_usage_counter);
106 static void blk_mq_usage_counter_release(struct percpu_ref *ref)
108 struct request_queue *q =
109 container_of(ref, struct request_queue, mq_usage_counter);
111 wake_up_all(&q->mq_freeze_wq);
114 void blk_mq_freeze_queue_start(struct request_queue *q)
116 int freeze_depth;
118 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
119 if (freeze_depth == 1) {
120 percpu_ref_kill(&q->mq_usage_counter);
121 blk_mq_run_hw_queues(q, false);
124 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
126 static void blk_mq_freeze_queue_wait(struct request_queue *q)
128 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->mq_usage_counter));
132 * Guarantee no request is in use, so we can change any data structure of
133 * the queue afterward.
135 void blk_mq_freeze_queue(struct request_queue *q)
137 blk_mq_freeze_queue_start(q);
138 blk_mq_freeze_queue_wait(q);
140 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
142 void blk_mq_unfreeze_queue(struct request_queue *q)
144 int freeze_depth;
146 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
147 WARN_ON_ONCE(freeze_depth < 0);
148 if (!freeze_depth) {
149 percpu_ref_reinit(&q->mq_usage_counter);
150 wake_up_all(&q->mq_freeze_wq);
153 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
155 void blk_mq_wake_waiters(struct request_queue *q)
157 struct blk_mq_hw_ctx *hctx;
158 unsigned int i;
160 queue_for_each_hw_ctx(q, hctx, i)
161 if (blk_mq_hw_queue_mapped(hctx))
162 blk_mq_tag_wakeup_all(hctx->tags, true);
165 * If we are called because the queue has now been marked as
166 * dying, we need to ensure that processes currently waiting on
167 * the queue are notified as well.
169 wake_up_all(&q->mq_freeze_wq);
172 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
174 return blk_mq_has_free_tags(hctx->tags);
176 EXPORT_SYMBOL(blk_mq_can_queue);
178 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
179 struct request *rq, unsigned int rw_flags)
181 if (blk_queue_io_stat(q))
182 rw_flags |= REQ_IO_STAT;
184 INIT_LIST_HEAD(&rq->queuelist);
185 /* csd/requeue_work/fifo_time is initialized before use */
186 rq->q = q;
187 rq->mq_ctx = ctx;
188 rq->cmd_flags |= rw_flags;
189 /* do not touch atomic flags, it needs atomic ops against the timer */
190 rq->cpu = -1;
191 INIT_HLIST_NODE(&rq->hash);
192 RB_CLEAR_NODE(&rq->rb_node);
193 rq->rq_disk = NULL;
194 rq->part = NULL;
195 rq->start_time = jiffies;
196 #ifdef CONFIG_BLK_CGROUP
197 rq->rl = NULL;
198 set_start_time_ns(rq);
199 rq->io_start_time_ns = 0;
200 #endif
201 rq->nr_phys_segments = 0;
202 #if defined(CONFIG_BLK_DEV_INTEGRITY)
203 rq->nr_integrity_segments = 0;
204 #endif
205 rq->special = NULL;
206 /* tag was already set */
207 rq->errors = 0;
209 rq->cmd = rq->__cmd;
211 rq->extra_len = 0;
212 rq->sense_len = 0;
213 rq->resid_len = 0;
214 rq->sense = NULL;
216 INIT_LIST_HEAD(&rq->timeout_list);
217 rq->timeout = 0;
219 rq->end_io = NULL;
220 rq->end_io_data = NULL;
221 rq->next_rq = NULL;
223 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
226 static struct request *
227 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, int rw)
229 struct request *rq;
230 unsigned int tag;
232 tag = blk_mq_get_tag(data);
233 if (tag != BLK_MQ_TAG_FAIL) {
234 rq = data->hctx->tags->rqs[tag];
236 if (blk_mq_tag_busy(data->hctx)) {
237 rq->cmd_flags = REQ_MQ_INFLIGHT;
238 atomic_inc(&data->hctx->nr_active);
241 rq->tag = tag;
242 blk_mq_rq_ctx_init(data->q, data->ctx, rq, rw);
243 return rq;
246 return NULL;
249 struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp,
250 bool reserved)
252 struct blk_mq_ctx *ctx;
253 struct blk_mq_hw_ctx *hctx;
254 struct request *rq;
255 struct blk_mq_alloc_data alloc_data;
256 int ret;
258 ret = blk_mq_queue_enter(q, gfp);
259 if (ret)
260 return ERR_PTR(ret);
262 ctx = blk_mq_get_ctx(q);
263 hctx = q->mq_ops->map_queue(q, ctx->cpu);
264 blk_mq_set_alloc_data(&alloc_data, q, gfp & ~__GFP_WAIT,
265 reserved, ctx, hctx);
267 rq = __blk_mq_alloc_request(&alloc_data, rw);
268 if (!rq && (gfp & __GFP_WAIT)) {
269 __blk_mq_run_hw_queue(hctx);
270 blk_mq_put_ctx(ctx);
272 ctx = blk_mq_get_ctx(q);
273 hctx = q->mq_ops->map_queue(q, ctx->cpu);
274 blk_mq_set_alloc_data(&alloc_data, q, gfp, reserved, ctx,
275 hctx);
276 rq = __blk_mq_alloc_request(&alloc_data, rw);
277 ctx = alloc_data.ctx;
279 blk_mq_put_ctx(ctx);
280 if (!rq) {
281 blk_mq_queue_exit(q);
282 return ERR_PTR(-EWOULDBLOCK);
284 return rq;
286 EXPORT_SYMBOL(blk_mq_alloc_request);
288 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
289 struct blk_mq_ctx *ctx, struct request *rq)
291 const int tag = rq->tag;
292 struct request_queue *q = rq->q;
294 if (rq->cmd_flags & REQ_MQ_INFLIGHT)
295 atomic_dec(&hctx->nr_active);
296 rq->cmd_flags = 0;
298 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
299 blk_mq_put_tag(hctx, tag, &ctx->last_tag);
300 blk_mq_queue_exit(q);
303 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
305 struct blk_mq_ctx *ctx = rq->mq_ctx;
307 ctx->rq_completed[rq_is_sync(rq)]++;
308 __blk_mq_free_request(hctx, ctx, rq);
311 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
313 void blk_mq_free_request(struct request *rq)
315 struct blk_mq_hw_ctx *hctx;
316 struct request_queue *q = rq->q;
318 hctx = q->mq_ops->map_queue(q, rq->mq_ctx->cpu);
319 blk_mq_free_hctx_request(hctx, rq);
321 EXPORT_SYMBOL_GPL(blk_mq_free_request);
323 inline void __blk_mq_end_request(struct request *rq, int error)
325 blk_account_io_done(rq);
327 if (rq->end_io) {
328 rq->end_io(rq, error);
329 } else {
330 if (unlikely(blk_bidi_rq(rq)))
331 blk_mq_free_request(rq->next_rq);
332 blk_mq_free_request(rq);
335 EXPORT_SYMBOL(__blk_mq_end_request);
337 void blk_mq_end_request(struct request *rq, int error)
339 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
340 BUG();
341 __blk_mq_end_request(rq, error);
343 EXPORT_SYMBOL(blk_mq_end_request);
345 static void __blk_mq_complete_request_remote(void *data)
347 struct request *rq = data;
349 rq->q->softirq_done_fn(rq);
352 static void blk_mq_ipi_complete_request(struct request *rq)
354 struct blk_mq_ctx *ctx = rq->mq_ctx;
355 bool shared = false;
356 int cpu;
358 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
359 rq->q->softirq_done_fn(rq);
360 return;
363 cpu = get_cpu();
364 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
365 shared = cpus_share_cache(cpu, ctx->cpu);
367 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
368 rq->csd.func = __blk_mq_complete_request_remote;
369 rq->csd.info = rq;
370 rq->csd.flags = 0;
371 smp_call_function_single_async(ctx->cpu, &rq->csd);
372 } else {
373 rq->q->softirq_done_fn(rq);
375 put_cpu();
378 void __blk_mq_complete_request(struct request *rq)
380 struct request_queue *q = rq->q;
382 if (!q->softirq_done_fn)
383 blk_mq_end_request(rq, rq->errors);
384 else
385 blk_mq_ipi_complete_request(rq);
389 * blk_mq_complete_request - end I/O on a request
390 * @rq: the request being processed
392 * Description:
393 * Ends all I/O on a request. It does not handle partial completions.
394 * The actual completion happens out-of-order, through a IPI handler.
396 void blk_mq_complete_request(struct request *rq)
398 struct request_queue *q = rq->q;
400 if (unlikely(blk_should_fake_timeout(q)))
401 return;
402 if (!blk_mark_rq_complete(rq))
403 __blk_mq_complete_request(rq);
405 EXPORT_SYMBOL(blk_mq_complete_request);
407 int blk_mq_request_started(struct request *rq)
409 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
411 EXPORT_SYMBOL_GPL(blk_mq_request_started);
413 void blk_mq_start_request(struct request *rq)
415 struct request_queue *q = rq->q;
417 trace_block_rq_issue(q, rq);
419 rq->resid_len = blk_rq_bytes(rq);
420 if (unlikely(blk_bidi_rq(rq)))
421 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
423 blk_add_timer(rq);
426 * Ensure that ->deadline is visible before set the started
427 * flag and clear the completed flag.
429 smp_mb__before_atomic();
432 * Mark us as started and clear complete. Complete might have been
433 * set if requeue raced with timeout, which then marked it as
434 * complete. So be sure to clear complete again when we start
435 * the request, otherwise we'll ignore the completion event.
437 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
438 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
439 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
440 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
442 if (q->dma_drain_size && blk_rq_bytes(rq)) {
444 * Make sure space for the drain appears. We know we can do
445 * this because max_hw_segments has been adjusted to be one
446 * fewer than the device can handle.
448 rq->nr_phys_segments++;
451 EXPORT_SYMBOL(blk_mq_start_request);
453 static void __blk_mq_requeue_request(struct request *rq)
455 struct request_queue *q = rq->q;
457 trace_block_rq_requeue(q, rq);
459 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
460 if (q->dma_drain_size && blk_rq_bytes(rq))
461 rq->nr_phys_segments--;
465 void blk_mq_requeue_request(struct request *rq)
467 __blk_mq_requeue_request(rq);
469 BUG_ON(blk_queued_rq(rq));
470 blk_mq_add_to_requeue_list(rq, true);
472 EXPORT_SYMBOL(blk_mq_requeue_request);
474 static void blk_mq_requeue_work(struct work_struct *work)
476 struct request_queue *q =
477 container_of(work, struct request_queue, requeue_work);
478 LIST_HEAD(rq_list);
479 struct request *rq, *next;
480 unsigned long flags;
482 spin_lock_irqsave(&q->requeue_lock, flags);
483 list_splice_init(&q->requeue_list, &rq_list);
484 spin_unlock_irqrestore(&q->requeue_lock, flags);
486 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
487 if (!(rq->cmd_flags & REQ_SOFTBARRIER))
488 continue;
490 rq->cmd_flags &= ~REQ_SOFTBARRIER;
491 list_del_init(&rq->queuelist);
492 blk_mq_insert_request(rq, true, false, false);
495 while (!list_empty(&rq_list)) {
496 rq = list_entry(rq_list.next, struct request, queuelist);
497 list_del_init(&rq->queuelist);
498 blk_mq_insert_request(rq, false, false, false);
502 * Use the start variant of queue running here, so that running
503 * the requeue work will kick stopped queues.
505 blk_mq_start_hw_queues(q);
508 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head)
510 struct request_queue *q = rq->q;
511 unsigned long flags;
514 * We abuse this flag that is otherwise used by the I/O scheduler to
515 * request head insertation from the workqueue.
517 BUG_ON(rq->cmd_flags & REQ_SOFTBARRIER);
519 spin_lock_irqsave(&q->requeue_lock, flags);
520 if (at_head) {
521 rq->cmd_flags |= REQ_SOFTBARRIER;
522 list_add(&rq->queuelist, &q->requeue_list);
523 } else {
524 list_add_tail(&rq->queuelist, &q->requeue_list);
526 spin_unlock_irqrestore(&q->requeue_lock, flags);
528 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
530 void blk_mq_cancel_requeue_work(struct request_queue *q)
532 cancel_work_sync(&q->requeue_work);
534 EXPORT_SYMBOL_GPL(blk_mq_cancel_requeue_work);
536 void blk_mq_kick_requeue_list(struct request_queue *q)
538 kblockd_schedule_work(&q->requeue_work);
540 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
542 void blk_mq_abort_requeue_list(struct request_queue *q)
544 unsigned long flags;
545 LIST_HEAD(rq_list);
547 spin_lock_irqsave(&q->requeue_lock, flags);
548 list_splice_init(&q->requeue_list, &rq_list);
549 spin_unlock_irqrestore(&q->requeue_lock, flags);
551 while (!list_empty(&rq_list)) {
552 struct request *rq;
554 rq = list_first_entry(&rq_list, struct request, queuelist);
555 list_del_init(&rq->queuelist);
556 rq->errors = -EIO;
557 blk_mq_end_request(rq, rq->errors);
560 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
562 static inline bool is_flush_request(struct request *rq,
563 struct blk_flush_queue *fq, unsigned int tag)
565 return ((rq->cmd_flags & REQ_FLUSH_SEQ) &&
566 fq->flush_rq->tag == tag);
569 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
571 struct request *rq = tags->rqs[tag];
572 /* mq_ctx of flush rq is always cloned from the corresponding req */
573 struct blk_flush_queue *fq = blk_get_flush_queue(rq->q, rq->mq_ctx);
575 if (!is_flush_request(rq, fq, tag))
576 return rq;
578 return fq->flush_rq;
580 EXPORT_SYMBOL(blk_mq_tag_to_rq);
582 struct blk_mq_timeout_data {
583 unsigned long next;
584 unsigned int next_set;
587 void blk_mq_rq_timed_out(struct request *req, bool reserved)
589 struct blk_mq_ops *ops = req->q->mq_ops;
590 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
593 * We know that complete is set at this point. If STARTED isn't set
594 * anymore, then the request isn't active and the "timeout" should
595 * just be ignored. This can happen due to the bitflag ordering.
596 * Timeout first checks if STARTED is set, and if it is, assumes
597 * the request is active. But if we race with completion, then
598 * we both flags will get cleared. So check here again, and ignore
599 * a timeout event with a request that isn't active.
601 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
602 return;
604 if (ops->timeout)
605 ret = ops->timeout(req, reserved);
607 switch (ret) {
608 case BLK_EH_HANDLED:
609 __blk_mq_complete_request(req);
610 break;
611 case BLK_EH_RESET_TIMER:
612 blk_add_timer(req);
613 blk_clear_rq_complete(req);
614 break;
615 case BLK_EH_NOT_HANDLED:
616 break;
617 default:
618 printk(KERN_ERR "block: bad eh return: %d\n", ret);
619 break;
623 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
624 struct request *rq, void *priv, bool reserved)
626 struct blk_mq_timeout_data *data = priv;
628 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
630 * If a request wasn't started before the queue was
631 * marked dying, kill it here or it'll go unnoticed.
633 if (unlikely(blk_queue_dying(rq->q))) {
634 rq->errors = -EIO;
635 blk_mq_complete_request(rq);
637 return;
639 if (rq->cmd_flags & REQ_NO_TIMEOUT)
640 return;
642 if (time_after_eq(jiffies, rq->deadline)) {
643 if (!blk_mark_rq_complete(rq))
644 blk_mq_rq_timed_out(rq, reserved);
645 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
646 data->next = rq->deadline;
647 data->next_set = 1;
651 static void blk_mq_rq_timer(unsigned long priv)
653 struct request_queue *q = (struct request_queue *)priv;
654 struct blk_mq_timeout_data data = {
655 .next = 0,
656 .next_set = 0,
658 struct blk_mq_hw_ctx *hctx;
659 int i;
661 queue_for_each_hw_ctx(q, hctx, i) {
663 * If not software queues are currently mapped to this
664 * hardware queue, there's nothing to check
666 if (!blk_mq_hw_queue_mapped(hctx))
667 continue;
669 blk_mq_tag_busy_iter(hctx, blk_mq_check_expired, &data);
672 if (data.next_set) {
673 data.next = blk_rq_timeout(round_jiffies_up(data.next));
674 mod_timer(&q->timeout, data.next);
675 } else {
676 queue_for_each_hw_ctx(q, hctx, i) {
677 /* the hctx may be unmapped, so check it here */
678 if (blk_mq_hw_queue_mapped(hctx))
679 blk_mq_tag_idle(hctx);
685 * Reverse check our software queue for entries that we could potentially
686 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
687 * too much time checking for merges.
689 static bool blk_mq_attempt_merge(struct request_queue *q,
690 struct blk_mq_ctx *ctx, struct bio *bio)
692 struct request *rq;
693 int checked = 8;
695 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
696 int el_ret;
698 if (!checked--)
699 break;
701 if (!blk_rq_merge_ok(rq, bio))
702 continue;
704 el_ret = blk_try_merge(rq, bio);
705 if (el_ret == ELEVATOR_BACK_MERGE) {
706 if (bio_attempt_back_merge(q, rq, bio)) {
707 ctx->rq_merged++;
708 return true;
710 break;
711 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
712 if (bio_attempt_front_merge(q, rq, bio)) {
713 ctx->rq_merged++;
714 return true;
716 break;
720 return false;
724 * Process software queues that have been marked busy, splicing them
725 * to the for-dispatch
727 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
729 struct blk_mq_ctx *ctx;
730 int i;
732 for (i = 0; i < hctx->ctx_map.size; i++) {
733 struct blk_align_bitmap *bm = &hctx->ctx_map.map[i];
734 unsigned int off, bit;
736 if (!bm->word)
737 continue;
739 bit = 0;
740 off = i * hctx->ctx_map.bits_per_word;
741 do {
742 bit = find_next_bit(&bm->word, bm->depth, bit);
743 if (bit >= bm->depth)
744 break;
746 ctx = hctx->ctxs[bit + off];
747 clear_bit(bit, &bm->word);
748 spin_lock(&ctx->lock);
749 list_splice_tail_init(&ctx->rq_list, list);
750 spin_unlock(&ctx->lock);
752 bit++;
753 } while (1);
758 * Run this hardware queue, pulling any software queues mapped to it in.
759 * Note that this function currently has various problems around ordering
760 * of IO. In particular, we'd like FIFO behaviour on handling existing
761 * items on the hctx->dispatch list. Ignore that for now.
763 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
765 struct request_queue *q = hctx->queue;
766 struct request *rq;
767 LIST_HEAD(rq_list);
768 LIST_HEAD(driver_list);
769 struct list_head *dptr;
770 int queued;
772 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask));
774 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
775 return;
777 hctx->run++;
780 * Touch any software queue that has pending entries.
782 flush_busy_ctxs(hctx, &rq_list);
785 * If we have previous entries on our dispatch list, grab them
786 * and stuff them at the front for more fair dispatch.
788 if (!list_empty_careful(&hctx->dispatch)) {
789 spin_lock(&hctx->lock);
790 if (!list_empty(&hctx->dispatch))
791 list_splice_init(&hctx->dispatch, &rq_list);
792 spin_unlock(&hctx->lock);
796 * Start off with dptr being NULL, so we start the first request
797 * immediately, even if we have more pending.
799 dptr = NULL;
802 * Now process all the entries, sending them to the driver.
804 queued = 0;
805 while (!list_empty(&rq_list)) {
806 struct blk_mq_queue_data bd;
807 int ret;
809 rq = list_first_entry(&rq_list, struct request, queuelist);
810 list_del_init(&rq->queuelist);
812 bd.rq = rq;
813 bd.list = dptr;
814 bd.last = list_empty(&rq_list);
816 ret = q->mq_ops->queue_rq(hctx, &bd);
817 switch (ret) {
818 case BLK_MQ_RQ_QUEUE_OK:
819 queued++;
820 continue;
821 case BLK_MQ_RQ_QUEUE_BUSY:
822 list_add(&rq->queuelist, &rq_list);
823 __blk_mq_requeue_request(rq);
824 break;
825 default:
826 pr_err("blk-mq: bad return on queue: %d\n", ret);
827 case BLK_MQ_RQ_QUEUE_ERROR:
828 rq->errors = -EIO;
829 blk_mq_end_request(rq, rq->errors);
830 break;
833 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
834 break;
837 * We've done the first request. If we have more than 1
838 * left in the list, set dptr to defer issue.
840 if (!dptr && rq_list.next != rq_list.prev)
841 dptr = &driver_list;
844 if (!queued)
845 hctx->dispatched[0]++;
846 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
847 hctx->dispatched[ilog2(queued) + 1]++;
850 * Any items that need requeuing? Stuff them into hctx->dispatch,
851 * that is where we will continue on next queue run.
853 if (!list_empty(&rq_list)) {
854 spin_lock(&hctx->lock);
855 list_splice(&rq_list, &hctx->dispatch);
856 spin_unlock(&hctx->lock);
858 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
859 * it's possible the queue is stopped and restarted again
860 * before this. Queue restart will dispatch requests. And since
861 * requests in rq_list aren't added into hctx->dispatch yet,
862 * the requests in rq_list might get lost.
864 * blk_mq_run_hw_queue() already checks the STOPPED bit
866 blk_mq_run_hw_queue(hctx, true);
871 * It'd be great if the workqueue API had a way to pass
872 * in a mask and had some smarts for more clever placement.
873 * For now we just round-robin here, switching for every
874 * BLK_MQ_CPU_WORK_BATCH queued items.
876 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
878 if (hctx->queue->nr_hw_queues == 1)
879 return WORK_CPU_UNBOUND;
881 if (--hctx->next_cpu_batch <= 0) {
882 int cpu = hctx->next_cpu, next_cpu;
884 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
885 if (next_cpu >= nr_cpu_ids)
886 next_cpu = cpumask_first(hctx->cpumask);
888 hctx->next_cpu = next_cpu;
889 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
891 return cpu;
894 return hctx->next_cpu;
897 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
899 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state) ||
900 !blk_mq_hw_queue_mapped(hctx)))
901 return;
903 if (!async) {
904 int cpu = get_cpu();
905 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
906 __blk_mq_run_hw_queue(hctx);
907 put_cpu();
908 return;
911 put_cpu();
914 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
915 &hctx->run_work, 0);
918 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
920 struct blk_mq_hw_ctx *hctx;
921 int i;
923 queue_for_each_hw_ctx(q, hctx, i) {
924 if ((!blk_mq_hctx_has_pending(hctx) &&
925 list_empty_careful(&hctx->dispatch)) ||
926 test_bit(BLK_MQ_S_STOPPED, &hctx->state))
927 continue;
929 blk_mq_run_hw_queue(hctx, async);
932 EXPORT_SYMBOL(blk_mq_run_hw_queues);
934 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
936 cancel_delayed_work(&hctx->run_work);
937 cancel_delayed_work(&hctx->delay_work);
938 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
940 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
942 void blk_mq_stop_hw_queues(struct request_queue *q)
944 struct blk_mq_hw_ctx *hctx;
945 int i;
947 queue_for_each_hw_ctx(q, hctx, i)
948 blk_mq_stop_hw_queue(hctx);
950 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
952 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
954 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
956 blk_mq_run_hw_queue(hctx, false);
958 EXPORT_SYMBOL(blk_mq_start_hw_queue);
960 void blk_mq_start_hw_queues(struct request_queue *q)
962 struct blk_mq_hw_ctx *hctx;
963 int i;
965 queue_for_each_hw_ctx(q, hctx, i)
966 blk_mq_start_hw_queue(hctx);
968 EXPORT_SYMBOL(blk_mq_start_hw_queues);
970 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
972 struct blk_mq_hw_ctx *hctx;
973 int i;
975 queue_for_each_hw_ctx(q, hctx, i) {
976 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
977 continue;
979 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
980 blk_mq_run_hw_queue(hctx, async);
983 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
985 static void blk_mq_run_work_fn(struct work_struct *work)
987 struct blk_mq_hw_ctx *hctx;
989 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
991 __blk_mq_run_hw_queue(hctx);
994 static void blk_mq_delay_work_fn(struct work_struct *work)
996 struct blk_mq_hw_ctx *hctx;
998 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1000 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1001 __blk_mq_run_hw_queue(hctx);
1004 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1006 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1007 return;
1009 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1010 &hctx->delay_work, msecs_to_jiffies(msecs));
1012 EXPORT_SYMBOL(blk_mq_delay_queue);
1014 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1015 struct request *rq, bool at_head)
1017 struct blk_mq_ctx *ctx = rq->mq_ctx;
1019 trace_block_rq_insert(hctx->queue, rq);
1021 if (at_head)
1022 list_add(&rq->queuelist, &ctx->rq_list);
1023 else
1024 list_add_tail(&rq->queuelist, &ctx->rq_list);
1026 blk_mq_hctx_mark_pending(hctx, ctx);
1029 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1030 bool async)
1032 struct request_queue *q = rq->q;
1033 struct blk_mq_hw_ctx *hctx;
1034 struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
1036 current_ctx = blk_mq_get_ctx(q);
1037 if (!cpu_online(ctx->cpu))
1038 rq->mq_ctx = ctx = current_ctx;
1040 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1042 spin_lock(&ctx->lock);
1043 __blk_mq_insert_request(hctx, rq, at_head);
1044 spin_unlock(&ctx->lock);
1046 if (run_queue)
1047 blk_mq_run_hw_queue(hctx, async);
1049 blk_mq_put_ctx(current_ctx);
1052 static void blk_mq_insert_requests(struct request_queue *q,
1053 struct blk_mq_ctx *ctx,
1054 struct list_head *list,
1055 int depth,
1056 bool from_schedule)
1059 struct blk_mq_hw_ctx *hctx;
1060 struct blk_mq_ctx *current_ctx;
1062 trace_block_unplug(q, depth, !from_schedule);
1064 current_ctx = blk_mq_get_ctx(q);
1066 if (!cpu_online(ctx->cpu))
1067 ctx = current_ctx;
1068 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1071 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1072 * offline now
1074 spin_lock(&ctx->lock);
1075 while (!list_empty(list)) {
1076 struct request *rq;
1078 rq = list_first_entry(list, struct request, queuelist);
1079 list_del_init(&rq->queuelist);
1080 rq->mq_ctx = ctx;
1081 __blk_mq_insert_request(hctx, rq, false);
1083 spin_unlock(&ctx->lock);
1085 blk_mq_run_hw_queue(hctx, from_schedule);
1086 blk_mq_put_ctx(current_ctx);
1089 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1091 struct request *rqa = container_of(a, struct request, queuelist);
1092 struct request *rqb = container_of(b, struct request, queuelist);
1094 return !(rqa->mq_ctx < rqb->mq_ctx ||
1095 (rqa->mq_ctx == rqb->mq_ctx &&
1096 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1099 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1101 struct blk_mq_ctx *this_ctx;
1102 struct request_queue *this_q;
1103 struct request *rq;
1104 LIST_HEAD(list);
1105 LIST_HEAD(ctx_list);
1106 unsigned int depth;
1108 list_splice_init(&plug->mq_list, &list);
1110 list_sort(NULL, &list, plug_ctx_cmp);
1112 this_q = NULL;
1113 this_ctx = NULL;
1114 depth = 0;
1116 while (!list_empty(&list)) {
1117 rq = list_entry_rq(list.next);
1118 list_del_init(&rq->queuelist);
1119 BUG_ON(!rq->q);
1120 if (rq->mq_ctx != this_ctx) {
1121 if (this_ctx) {
1122 blk_mq_insert_requests(this_q, this_ctx,
1123 &ctx_list, depth,
1124 from_schedule);
1127 this_ctx = rq->mq_ctx;
1128 this_q = rq->q;
1129 depth = 0;
1132 depth++;
1133 list_add_tail(&rq->queuelist, &ctx_list);
1137 * If 'this_ctx' is set, we know we have entries to complete
1138 * on 'ctx_list'. Do those.
1140 if (this_ctx) {
1141 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1142 from_schedule);
1146 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1148 init_request_from_bio(rq, bio);
1150 if (blk_do_io_stat(rq))
1151 blk_account_io_start(rq, 1);
1154 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1156 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1157 !blk_queue_nomerges(hctx->queue);
1160 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1161 struct blk_mq_ctx *ctx,
1162 struct request *rq, struct bio *bio)
1164 if (!hctx_allow_merges(hctx)) {
1165 blk_mq_bio_to_request(rq, bio);
1166 spin_lock(&ctx->lock);
1167 insert_rq:
1168 __blk_mq_insert_request(hctx, rq, false);
1169 spin_unlock(&ctx->lock);
1170 return false;
1171 } else {
1172 struct request_queue *q = hctx->queue;
1174 spin_lock(&ctx->lock);
1175 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1176 blk_mq_bio_to_request(rq, bio);
1177 goto insert_rq;
1180 spin_unlock(&ctx->lock);
1181 __blk_mq_free_request(hctx, ctx, rq);
1182 return true;
1186 struct blk_map_ctx {
1187 struct blk_mq_hw_ctx *hctx;
1188 struct blk_mq_ctx *ctx;
1191 static struct request *blk_mq_map_request(struct request_queue *q,
1192 struct bio *bio,
1193 struct blk_map_ctx *data)
1195 struct blk_mq_hw_ctx *hctx;
1196 struct blk_mq_ctx *ctx;
1197 struct request *rq;
1198 int rw = bio_data_dir(bio);
1199 struct blk_mq_alloc_data alloc_data;
1201 if (unlikely(blk_mq_queue_enter(q, GFP_KERNEL))) {
1202 bio_endio(bio, -EIO);
1203 return NULL;
1206 ctx = blk_mq_get_ctx(q);
1207 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1209 if (rw_is_sync(bio->bi_rw))
1210 rw |= REQ_SYNC;
1212 trace_block_getrq(q, bio, rw);
1213 blk_mq_set_alloc_data(&alloc_data, q, GFP_ATOMIC, false, ctx,
1214 hctx);
1215 rq = __blk_mq_alloc_request(&alloc_data, rw);
1216 if (unlikely(!rq)) {
1217 __blk_mq_run_hw_queue(hctx);
1218 blk_mq_put_ctx(ctx);
1219 trace_block_sleeprq(q, bio, rw);
1221 ctx = blk_mq_get_ctx(q);
1222 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1223 blk_mq_set_alloc_data(&alloc_data, q,
1224 __GFP_WAIT|GFP_ATOMIC, false, ctx, hctx);
1225 rq = __blk_mq_alloc_request(&alloc_data, rw);
1226 ctx = alloc_data.ctx;
1227 hctx = alloc_data.hctx;
1230 hctx->queued++;
1231 data->hctx = hctx;
1232 data->ctx = ctx;
1233 return rq;
1236 static int blk_mq_direct_issue_request(struct request *rq)
1238 int ret;
1239 struct request_queue *q = rq->q;
1240 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q,
1241 rq->mq_ctx->cpu);
1242 struct blk_mq_queue_data bd = {
1243 .rq = rq,
1244 .list = NULL,
1245 .last = 1
1249 * For OK queue, we are done. For error, kill it. Any other
1250 * error (busy), just add it to our list as we previously
1251 * would have done
1253 ret = q->mq_ops->queue_rq(hctx, &bd);
1254 if (ret == BLK_MQ_RQ_QUEUE_OK)
1255 return 0;
1256 else {
1257 __blk_mq_requeue_request(rq);
1259 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1260 rq->errors = -EIO;
1261 blk_mq_end_request(rq, rq->errors);
1262 return 0;
1264 return -1;
1269 * Multiple hardware queue variant. This will not use per-process plugs,
1270 * but will attempt to bypass the hctx queueing if we can go straight to
1271 * hardware for SYNC IO.
1273 static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
1275 const int is_sync = rw_is_sync(bio->bi_rw);
1276 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1277 struct blk_map_ctx data;
1278 struct request *rq;
1279 unsigned int request_count = 0;
1280 struct blk_plug *plug;
1281 struct request *same_queue_rq = NULL;
1283 blk_queue_bounce(q, &bio);
1285 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1286 bio_endio(bio, -EIO);
1287 return;
1290 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1291 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1292 return;
1294 rq = blk_mq_map_request(q, bio, &data);
1295 if (unlikely(!rq))
1296 return;
1298 if (unlikely(is_flush_fua)) {
1299 blk_mq_bio_to_request(rq, bio);
1300 blk_insert_flush(rq);
1301 goto run_queue;
1304 plug = current->plug;
1306 * If the driver supports defer issued based on 'last', then
1307 * queue it up like normal since we can potentially save some
1308 * CPU this way.
1310 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1311 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1312 struct request *old_rq = NULL;
1314 blk_mq_bio_to_request(rq, bio);
1317 * we do limited pluging. If bio can be merged, do merge.
1318 * Otherwise the existing request in the plug list will be
1319 * issued. So the plug list will have one request at most
1321 if (plug) {
1323 * The plug list might get flushed before this. If that
1324 * happens, same_queue_rq is invalid and plug list is empty
1326 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1327 old_rq = same_queue_rq;
1328 list_del_init(&old_rq->queuelist);
1330 list_add_tail(&rq->queuelist, &plug->mq_list);
1331 } else /* is_sync */
1332 old_rq = rq;
1333 blk_mq_put_ctx(data.ctx);
1334 if (!old_rq)
1335 return;
1336 if (!blk_mq_direct_issue_request(old_rq))
1337 return;
1338 blk_mq_insert_request(old_rq, false, true, true);
1339 return;
1342 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1344 * For a SYNC request, send it to the hardware immediately. For
1345 * an ASYNC request, just ensure that we run it later on. The
1346 * latter allows for merging opportunities and more efficient
1347 * dispatching.
1349 run_queue:
1350 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1352 blk_mq_put_ctx(data.ctx);
1356 * Single hardware queue variant. This will attempt to use any per-process
1357 * plug for merging and IO deferral.
1359 static void blk_sq_make_request(struct request_queue *q, struct bio *bio)
1361 const int is_sync = rw_is_sync(bio->bi_rw);
1362 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
1363 struct blk_plug *plug;
1364 unsigned int request_count = 0;
1365 struct blk_map_ctx data;
1366 struct request *rq;
1368 blk_queue_bounce(q, &bio);
1370 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1371 bio_endio(bio, -EIO);
1372 return;
1375 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1376 blk_attempt_plug_merge(q, bio, &request_count, NULL))
1377 return;
1379 rq = blk_mq_map_request(q, bio, &data);
1380 if (unlikely(!rq))
1381 return;
1383 if (unlikely(is_flush_fua)) {
1384 blk_mq_bio_to_request(rq, bio);
1385 blk_insert_flush(rq);
1386 goto run_queue;
1390 * A task plug currently exists. Since this is completely lockless,
1391 * utilize that to temporarily store requests until the task is
1392 * either done or scheduled away.
1394 plug = current->plug;
1395 if (plug) {
1396 blk_mq_bio_to_request(rq, bio);
1397 if (list_empty(&plug->mq_list))
1398 trace_block_plug(q);
1399 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
1400 blk_flush_plug_list(plug, false);
1401 trace_block_plug(q);
1403 list_add_tail(&rq->queuelist, &plug->mq_list);
1404 blk_mq_put_ctx(data.ctx);
1405 return;
1408 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1410 * For a SYNC request, send it to the hardware immediately. For
1411 * an ASYNC request, just ensure that we run it later on. The
1412 * latter allows for merging opportunities and more efficient
1413 * dispatching.
1415 run_queue:
1416 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1419 blk_mq_put_ctx(data.ctx);
1423 * Default mapping to a software queue, since we use one per CPU.
1425 struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1427 return q->queue_hw_ctx[q->mq_map[cpu]];
1429 EXPORT_SYMBOL(blk_mq_map_queue);
1431 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1432 struct blk_mq_tags *tags, unsigned int hctx_idx)
1434 struct page *page;
1436 if (tags->rqs && set->ops->exit_request) {
1437 int i;
1439 for (i = 0; i < tags->nr_tags; i++) {
1440 if (!tags->rqs[i])
1441 continue;
1442 set->ops->exit_request(set->driver_data, tags->rqs[i],
1443 hctx_idx, i);
1444 tags->rqs[i] = NULL;
1448 while (!list_empty(&tags->page_list)) {
1449 page = list_first_entry(&tags->page_list, struct page, lru);
1450 list_del_init(&page->lru);
1451 __free_pages(page, page->private);
1454 kfree(tags->rqs);
1456 blk_mq_free_tags(tags);
1459 static size_t order_to_size(unsigned int order)
1461 return (size_t)PAGE_SIZE << order;
1464 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1465 unsigned int hctx_idx)
1467 struct blk_mq_tags *tags;
1468 unsigned int i, j, entries_per_page, max_order = 4;
1469 size_t rq_size, left;
1471 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1472 set->numa_node,
1473 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1474 if (!tags)
1475 return NULL;
1477 INIT_LIST_HEAD(&tags->page_list);
1479 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1480 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY,
1481 set->numa_node);
1482 if (!tags->rqs) {
1483 blk_mq_free_tags(tags);
1484 return NULL;
1488 * rq_size is the size of the request plus driver payload, rounded
1489 * to the cacheline size
1491 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1492 cache_line_size());
1493 left = rq_size * set->queue_depth;
1495 for (i = 0; i < set->queue_depth; ) {
1496 int this_order = max_order;
1497 struct page *page;
1498 int to_do;
1499 void *p;
1501 while (left < order_to_size(this_order - 1) && this_order)
1502 this_order--;
1504 do {
1505 page = alloc_pages_node(set->numa_node,
1506 GFP_KERNEL | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1507 this_order);
1508 if (page)
1509 break;
1510 if (!this_order--)
1511 break;
1512 if (order_to_size(this_order) < rq_size)
1513 break;
1514 } while (1);
1516 if (!page)
1517 goto fail;
1519 page->private = this_order;
1520 list_add_tail(&page->lru, &tags->page_list);
1522 p = page_address(page);
1523 entries_per_page = order_to_size(this_order) / rq_size;
1524 to_do = min(entries_per_page, set->queue_depth - i);
1525 left -= to_do * rq_size;
1526 for (j = 0; j < to_do; j++) {
1527 tags->rqs[i] = p;
1528 if (set->ops->init_request) {
1529 if (set->ops->init_request(set->driver_data,
1530 tags->rqs[i], hctx_idx, i,
1531 set->numa_node)) {
1532 tags->rqs[i] = NULL;
1533 goto fail;
1537 p += rq_size;
1538 i++;
1541 return tags;
1543 fail:
1544 blk_mq_free_rq_map(set, tags, hctx_idx);
1545 return NULL;
1548 static void blk_mq_free_bitmap(struct blk_mq_ctxmap *bitmap)
1550 kfree(bitmap->map);
1553 static int blk_mq_alloc_bitmap(struct blk_mq_ctxmap *bitmap, int node)
1555 unsigned int bpw = 8, total, num_maps, i;
1557 bitmap->bits_per_word = bpw;
1559 num_maps = ALIGN(nr_cpu_ids, bpw) / bpw;
1560 bitmap->map = kzalloc_node(num_maps * sizeof(struct blk_align_bitmap),
1561 GFP_KERNEL, node);
1562 if (!bitmap->map)
1563 return -ENOMEM;
1565 total = nr_cpu_ids;
1566 for (i = 0; i < num_maps; i++) {
1567 bitmap->map[i].depth = min(total, bitmap->bits_per_word);
1568 total -= bitmap->map[i].depth;
1571 return 0;
1574 static int blk_mq_hctx_cpu_offline(struct blk_mq_hw_ctx *hctx, int cpu)
1576 struct request_queue *q = hctx->queue;
1577 struct blk_mq_ctx *ctx;
1578 LIST_HEAD(tmp);
1581 * Move ctx entries to new CPU, if this one is going away.
1583 ctx = __blk_mq_get_ctx(q, cpu);
1585 spin_lock(&ctx->lock);
1586 if (!list_empty(&ctx->rq_list)) {
1587 list_splice_init(&ctx->rq_list, &tmp);
1588 blk_mq_hctx_clear_pending(hctx, ctx);
1590 spin_unlock(&ctx->lock);
1592 if (list_empty(&tmp))
1593 return NOTIFY_OK;
1595 ctx = blk_mq_get_ctx(q);
1596 spin_lock(&ctx->lock);
1598 while (!list_empty(&tmp)) {
1599 struct request *rq;
1601 rq = list_first_entry(&tmp, struct request, queuelist);
1602 rq->mq_ctx = ctx;
1603 list_move_tail(&rq->queuelist, &ctx->rq_list);
1606 hctx = q->mq_ops->map_queue(q, ctx->cpu);
1607 blk_mq_hctx_mark_pending(hctx, ctx);
1609 spin_unlock(&ctx->lock);
1611 blk_mq_run_hw_queue(hctx, true);
1612 blk_mq_put_ctx(ctx);
1613 return NOTIFY_OK;
1616 static int blk_mq_hctx_notify(void *data, unsigned long action,
1617 unsigned int cpu)
1619 struct blk_mq_hw_ctx *hctx = data;
1621 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
1622 return blk_mq_hctx_cpu_offline(hctx, cpu);
1625 * In case of CPU online, tags may be reallocated
1626 * in blk_mq_map_swqueue() after mapping is updated.
1629 return NOTIFY_OK;
1632 /* hctx->ctxs will be freed in queue's release handler */
1633 static void blk_mq_exit_hctx(struct request_queue *q,
1634 struct blk_mq_tag_set *set,
1635 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1637 unsigned flush_start_tag = set->queue_depth;
1639 blk_mq_tag_idle(hctx);
1641 if (set->ops->exit_request)
1642 set->ops->exit_request(set->driver_data,
1643 hctx->fq->flush_rq, hctx_idx,
1644 flush_start_tag + hctx_idx);
1646 if (set->ops->exit_hctx)
1647 set->ops->exit_hctx(hctx, hctx_idx);
1649 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1650 blk_free_flush_queue(hctx->fq);
1651 blk_mq_free_bitmap(&hctx->ctx_map);
1654 static void blk_mq_exit_hw_queues(struct request_queue *q,
1655 struct blk_mq_tag_set *set, int nr_queue)
1657 struct blk_mq_hw_ctx *hctx;
1658 unsigned int i;
1660 queue_for_each_hw_ctx(q, hctx, i) {
1661 if (i == nr_queue)
1662 break;
1663 blk_mq_exit_hctx(q, set, hctx, i);
1667 static void blk_mq_free_hw_queues(struct request_queue *q,
1668 struct blk_mq_tag_set *set)
1670 struct blk_mq_hw_ctx *hctx;
1671 unsigned int i;
1673 queue_for_each_hw_ctx(q, hctx, i)
1674 free_cpumask_var(hctx->cpumask);
1677 static int blk_mq_init_hctx(struct request_queue *q,
1678 struct blk_mq_tag_set *set,
1679 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1681 int node;
1682 unsigned flush_start_tag = set->queue_depth;
1684 node = hctx->numa_node;
1685 if (node == NUMA_NO_NODE)
1686 node = hctx->numa_node = set->numa_node;
1688 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
1689 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1690 spin_lock_init(&hctx->lock);
1691 INIT_LIST_HEAD(&hctx->dispatch);
1692 hctx->queue = q;
1693 hctx->queue_num = hctx_idx;
1694 hctx->flags = set->flags;
1696 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1697 blk_mq_hctx_notify, hctx);
1698 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1700 hctx->tags = set->tags[hctx_idx];
1703 * Allocate space for all possible cpus to avoid allocation at
1704 * runtime
1706 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1707 GFP_KERNEL, node);
1708 if (!hctx->ctxs)
1709 goto unregister_cpu_notifier;
1711 if (blk_mq_alloc_bitmap(&hctx->ctx_map, node))
1712 goto free_ctxs;
1714 hctx->nr_ctx = 0;
1716 if (set->ops->init_hctx &&
1717 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1718 goto free_bitmap;
1720 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1721 if (!hctx->fq)
1722 goto exit_hctx;
1724 if (set->ops->init_request &&
1725 set->ops->init_request(set->driver_data,
1726 hctx->fq->flush_rq, hctx_idx,
1727 flush_start_tag + hctx_idx, node))
1728 goto free_fq;
1730 return 0;
1732 free_fq:
1733 kfree(hctx->fq);
1734 exit_hctx:
1735 if (set->ops->exit_hctx)
1736 set->ops->exit_hctx(hctx, hctx_idx);
1737 free_bitmap:
1738 blk_mq_free_bitmap(&hctx->ctx_map);
1739 free_ctxs:
1740 kfree(hctx->ctxs);
1741 unregister_cpu_notifier:
1742 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1744 return -1;
1747 static int blk_mq_init_hw_queues(struct request_queue *q,
1748 struct blk_mq_tag_set *set)
1750 struct blk_mq_hw_ctx *hctx;
1751 unsigned int i;
1754 * Initialize hardware queues
1756 queue_for_each_hw_ctx(q, hctx, i) {
1757 if (blk_mq_init_hctx(q, set, hctx, i))
1758 break;
1761 if (i == q->nr_hw_queues)
1762 return 0;
1765 * Init failed
1767 blk_mq_exit_hw_queues(q, set, i);
1769 return 1;
1772 static void blk_mq_init_cpu_queues(struct request_queue *q,
1773 unsigned int nr_hw_queues)
1775 unsigned int i;
1777 for_each_possible_cpu(i) {
1778 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1779 struct blk_mq_hw_ctx *hctx;
1781 memset(__ctx, 0, sizeof(*__ctx));
1782 __ctx->cpu = i;
1783 spin_lock_init(&__ctx->lock);
1784 INIT_LIST_HEAD(&__ctx->rq_list);
1785 __ctx->queue = q;
1787 /* If the cpu isn't online, the cpu is mapped to first hctx */
1788 if (!cpu_online(i))
1789 continue;
1791 hctx = q->mq_ops->map_queue(q, i);
1794 * Set local node, IFF we have more than one hw queue. If
1795 * not, we remain on the home node of the device
1797 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1798 hctx->numa_node = cpu_to_node(i);
1802 static void blk_mq_map_swqueue(struct request_queue *q)
1804 unsigned int i;
1805 struct blk_mq_hw_ctx *hctx;
1806 struct blk_mq_ctx *ctx;
1807 struct blk_mq_tag_set *set = q->tag_set;
1809 queue_for_each_hw_ctx(q, hctx, i) {
1810 cpumask_clear(hctx->cpumask);
1811 hctx->nr_ctx = 0;
1815 * Map software to hardware queues
1817 queue_for_each_ctx(q, ctx, i) {
1818 /* If the cpu isn't online, the cpu is mapped to first hctx */
1819 if (!cpu_online(i))
1820 continue;
1822 hctx = q->mq_ops->map_queue(q, i);
1823 cpumask_set_cpu(i, hctx->cpumask);
1824 cpumask_set_cpu(i, hctx->tags->cpumask);
1825 ctx->index_hw = hctx->nr_ctx;
1826 hctx->ctxs[hctx->nr_ctx++] = ctx;
1829 queue_for_each_hw_ctx(q, hctx, i) {
1830 struct blk_mq_ctxmap *map = &hctx->ctx_map;
1833 * If no software queues are mapped to this hardware queue,
1834 * disable it and free the request entries.
1836 if (!hctx->nr_ctx) {
1837 if (set->tags[i]) {
1838 blk_mq_free_rq_map(set, set->tags[i], i);
1839 set->tags[i] = NULL;
1841 hctx->tags = NULL;
1842 continue;
1845 /* unmapped hw queue can be remapped after CPU topo changed */
1846 if (!set->tags[i])
1847 set->tags[i] = blk_mq_init_rq_map(set, i);
1848 hctx->tags = set->tags[i];
1849 WARN_ON(!hctx->tags);
1852 * Set the map size to the number of mapped software queues.
1853 * This is more accurate and more efficient than looping
1854 * over all possibly mapped software queues.
1856 map->size = DIV_ROUND_UP(hctx->nr_ctx, map->bits_per_word);
1859 * Initialize batch roundrobin counts
1861 hctx->next_cpu = cpumask_first(hctx->cpumask);
1862 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1866 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set)
1868 struct blk_mq_hw_ctx *hctx;
1869 struct request_queue *q;
1870 bool shared;
1871 int i;
1873 if (set->tag_list.next == set->tag_list.prev)
1874 shared = false;
1875 else
1876 shared = true;
1878 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1879 blk_mq_freeze_queue(q);
1881 queue_for_each_hw_ctx(q, hctx, i) {
1882 if (shared)
1883 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1884 else
1885 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1887 blk_mq_unfreeze_queue(q);
1891 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1893 struct blk_mq_tag_set *set = q->tag_set;
1895 mutex_lock(&set->tag_list_lock);
1896 list_del_init(&q->tag_set_list);
1897 blk_mq_update_tag_set_depth(set);
1898 mutex_unlock(&set->tag_list_lock);
1901 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1902 struct request_queue *q)
1904 q->tag_set = set;
1906 mutex_lock(&set->tag_list_lock);
1907 list_add_tail(&q->tag_set_list, &set->tag_list);
1908 blk_mq_update_tag_set_depth(set);
1909 mutex_unlock(&set->tag_list_lock);
1913 * It is the actual release handler for mq, but we do it from
1914 * request queue's release handler for avoiding use-after-free
1915 * and headache because q->mq_kobj shouldn't have been introduced,
1916 * but we can't group ctx/kctx kobj without it.
1918 void blk_mq_release(struct request_queue *q)
1920 struct blk_mq_hw_ctx *hctx;
1921 unsigned int i;
1923 /* hctx kobj stays in hctx */
1924 queue_for_each_hw_ctx(q, hctx, i) {
1925 if (!hctx)
1926 continue;
1927 kfree(hctx->ctxs);
1928 kfree(hctx);
1931 kfree(q->queue_hw_ctx);
1933 /* ctx kobj stays in queue_ctx */
1934 free_percpu(q->queue_ctx);
1937 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
1939 struct request_queue *uninit_q, *q;
1941 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
1942 if (!uninit_q)
1943 return ERR_PTR(-ENOMEM);
1945 q = blk_mq_init_allocated_queue(set, uninit_q);
1946 if (IS_ERR(q))
1947 blk_cleanup_queue(uninit_q);
1949 return q;
1951 EXPORT_SYMBOL(blk_mq_init_queue);
1953 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
1954 struct request_queue *q)
1956 struct blk_mq_hw_ctx **hctxs;
1957 struct blk_mq_ctx __percpu *ctx;
1958 unsigned int *map;
1959 int i;
1961 ctx = alloc_percpu(struct blk_mq_ctx);
1962 if (!ctx)
1963 return ERR_PTR(-ENOMEM);
1965 hctxs = kmalloc_node(set->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1966 set->numa_node);
1968 if (!hctxs)
1969 goto err_percpu;
1971 map = blk_mq_make_queue_map(set);
1972 if (!map)
1973 goto err_map;
1975 for (i = 0; i < set->nr_hw_queues; i++) {
1976 int node = blk_mq_hw_queue_to_node(map, i);
1978 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
1979 GFP_KERNEL, node);
1980 if (!hctxs[i])
1981 goto err_hctxs;
1983 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
1984 node))
1985 goto err_hctxs;
1987 atomic_set(&hctxs[i]->nr_active, 0);
1988 hctxs[i]->numa_node = node;
1989 hctxs[i]->queue_num = i;
1993 * Init percpu_ref in atomic mode so that it's faster to shutdown.
1994 * See blk_register_queue() for details.
1996 if (percpu_ref_init(&q->mq_usage_counter, blk_mq_usage_counter_release,
1997 PERCPU_REF_INIT_ATOMIC, GFP_KERNEL))
1998 goto err_hctxs;
2000 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
2001 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30000);
2003 q->nr_queues = nr_cpu_ids;
2004 q->nr_hw_queues = set->nr_hw_queues;
2005 q->mq_map = map;
2007 q->queue_ctx = ctx;
2008 q->queue_hw_ctx = hctxs;
2010 q->mq_ops = set->ops;
2011 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2013 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2014 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2016 q->sg_reserved_size = INT_MAX;
2018 INIT_WORK(&q->requeue_work, blk_mq_requeue_work);
2019 INIT_LIST_HEAD(&q->requeue_list);
2020 spin_lock_init(&q->requeue_lock);
2022 if (q->nr_hw_queues > 1)
2023 blk_queue_make_request(q, blk_mq_make_request);
2024 else
2025 blk_queue_make_request(q, blk_sq_make_request);
2028 * Do this after blk_queue_make_request() overrides it...
2030 q->nr_requests = set->queue_depth;
2032 if (set->ops->complete)
2033 blk_queue_softirq_done(q, set->ops->complete);
2035 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2037 if (blk_mq_init_hw_queues(q, set))
2038 goto err_hctxs;
2040 mutex_lock(&all_q_mutex);
2041 list_add_tail(&q->all_q_node, &all_q_list);
2042 mutex_unlock(&all_q_mutex);
2044 blk_mq_add_queue_tag_set(set, q);
2046 blk_mq_map_swqueue(q);
2048 return q;
2050 err_hctxs:
2051 kfree(map);
2052 for (i = 0; i < set->nr_hw_queues; i++) {
2053 if (!hctxs[i])
2054 break;
2055 free_cpumask_var(hctxs[i]->cpumask);
2056 kfree(hctxs[i]);
2058 err_map:
2059 kfree(hctxs);
2060 err_percpu:
2061 free_percpu(ctx);
2062 return ERR_PTR(-ENOMEM);
2064 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2066 void blk_mq_free_queue(struct request_queue *q)
2068 struct blk_mq_tag_set *set = q->tag_set;
2070 blk_mq_del_queue_tag_set(q);
2072 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2073 blk_mq_free_hw_queues(q, set);
2075 percpu_ref_exit(&q->mq_usage_counter);
2077 kfree(q->mq_map);
2079 q->mq_map = NULL;
2081 mutex_lock(&all_q_mutex);
2082 list_del_init(&q->all_q_node);
2083 mutex_unlock(&all_q_mutex);
2086 /* Basically redo blk_mq_init_queue with queue frozen */
2087 static void blk_mq_queue_reinit(struct request_queue *q)
2089 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2091 blk_mq_sysfs_unregister(q);
2093 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
2096 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2097 * we should change hctx numa_node according to new topology (this
2098 * involves free and re-allocate memory, worthy doing?)
2101 blk_mq_map_swqueue(q);
2103 blk_mq_sysfs_register(q);
2106 static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
2107 unsigned long action, void *hcpu)
2109 struct request_queue *q;
2112 * Before new mappings are established, hotadded cpu might already
2113 * start handling requests. This doesn't break anything as we map
2114 * offline CPUs to first hardware queue. We will re-init the queue
2115 * below to get optimal settings.
2117 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
2118 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
2119 return NOTIFY_OK;
2121 mutex_lock(&all_q_mutex);
2124 * We need to freeze and reinit all existing queues. Freezing
2125 * involves synchronous wait for an RCU grace period and doing it
2126 * one by one may take a long time. Start freezing all queues in
2127 * one swoop and then wait for the completions so that freezing can
2128 * take place in parallel.
2130 list_for_each_entry(q, &all_q_list, all_q_node)
2131 blk_mq_freeze_queue_start(q);
2132 list_for_each_entry(q, &all_q_list, all_q_node) {
2133 blk_mq_freeze_queue_wait(q);
2136 * timeout handler can't touch hw queue during the
2137 * reinitialization
2139 del_timer_sync(&q->timeout);
2142 list_for_each_entry(q, &all_q_list, all_q_node)
2143 blk_mq_queue_reinit(q);
2145 list_for_each_entry(q, &all_q_list, all_q_node)
2146 blk_mq_unfreeze_queue(q);
2148 mutex_unlock(&all_q_mutex);
2149 return NOTIFY_OK;
2152 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2154 int i;
2156 for (i = 0; i < set->nr_hw_queues; i++) {
2157 set->tags[i] = blk_mq_init_rq_map(set, i);
2158 if (!set->tags[i])
2159 goto out_unwind;
2162 return 0;
2164 out_unwind:
2165 while (--i >= 0)
2166 blk_mq_free_rq_map(set, set->tags[i], i);
2168 return -ENOMEM;
2172 * Allocate the request maps associated with this tag_set. Note that this
2173 * may reduce the depth asked for, if memory is tight. set->queue_depth
2174 * will be updated to reflect the allocated depth.
2176 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2178 unsigned int depth;
2179 int err;
2181 depth = set->queue_depth;
2182 do {
2183 err = __blk_mq_alloc_rq_maps(set);
2184 if (!err)
2185 break;
2187 set->queue_depth >>= 1;
2188 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2189 err = -ENOMEM;
2190 break;
2192 } while (set->queue_depth);
2194 if (!set->queue_depth || err) {
2195 pr_err("blk-mq: failed to allocate request map\n");
2196 return -ENOMEM;
2199 if (depth != set->queue_depth)
2200 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2201 depth, set->queue_depth);
2203 return 0;
2206 struct cpumask *blk_mq_tags_cpumask(struct blk_mq_tags *tags)
2208 return tags->cpumask;
2210 EXPORT_SYMBOL_GPL(blk_mq_tags_cpumask);
2213 * Alloc a tag set to be associated with one or more request queues.
2214 * May fail with EINVAL for various error conditions. May adjust the
2215 * requested depth down, if if it too large. In that case, the set
2216 * value will be stored in set->queue_depth.
2218 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2220 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2222 if (!set->nr_hw_queues)
2223 return -EINVAL;
2224 if (!set->queue_depth)
2225 return -EINVAL;
2226 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2227 return -EINVAL;
2229 if (!set->ops->queue_rq || !set->ops->map_queue)
2230 return -EINVAL;
2232 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2233 pr_info("blk-mq: reduced tag depth to %u\n",
2234 BLK_MQ_MAX_DEPTH);
2235 set->queue_depth = BLK_MQ_MAX_DEPTH;
2239 * If a crashdump is active, then we are potentially in a very
2240 * memory constrained environment. Limit us to 1 queue and
2241 * 64 tags to prevent using too much memory.
2243 if (is_kdump_kernel()) {
2244 set->nr_hw_queues = 1;
2245 set->queue_depth = min(64U, set->queue_depth);
2248 set->tags = kmalloc_node(set->nr_hw_queues *
2249 sizeof(struct blk_mq_tags *),
2250 GFP_KERNEL, set->numa_node);
2251 if (!set->tags)
2252 return -ENOMEM;
2254 if (blk_mq_alloc_rq_maps(set))
2255 goto enomem;
2257 mutex_init(&set->tag_list_lock);
2258 INIT_LIST_HEAD(&set->tag_list);
2260 return 0;
2261 enomem:
2262 kfree(set->tags);
2263 set->tags = NULL;
2264 return -ENOMEM;
2266 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2268 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2270 int i;
2272 for (i = 0; i < set->nr_hw_queues; i++) {
2273 if (set->tags[i]) {
2274 blk_mq_free_rq_map(set, set->tags[i], i);
2275 free_cpumask_var(set->tags[i]->cpumask);
2279 kfree(set->tags);
2280 set->tags = NULL;
2282 EXPORT_SYMBOL(blk_mq_free_tag_set);
2284 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2286 struct blk_mq_tag_set *set = q->tag_set;
2287 struct blk_mq_hw_ctx *hctx;
2288 int i, ret;
2290 if (!set || nr > set->queue_depth)
2291 return -EINVAL;
2293 ret = 0;
2294 queue_for_each_hw_ctx(q, hctx, i) {
2295 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2296 if (ret)
2297 break;
2300 if (!ret)
2301 q->nr_requests = nr;
2303 return ret;
2306 void blk_mq_disable_hotplug(void)
2308 mutex_lock(&all_q_mutex);
2311 void blk_mq_enable_hotplug(void)
2313 mutex_unlock(&all_q_mutex);
2316 static int __init blk_mq_init(void)
2318 blk_mq_cpu_init();
2320 hotcpu_notifier(blk_mq_queue_reinit_notify, 0);
2322 return 0;
2324 subsys_initcall(blk_mq_init);