2 * super.c - NTFS kernel super block handling. Part of the Linux-NTFS project.
4 * Copyright (c) 2001-2006 Anton Altaparmakov
5 * Copyright (c) 2001,2002 Richard Russon
7 * This program/include file is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License as published
9 * by the Free Software Foundation; either version 2 of the License, or
10 * (at your option) any later version.
12 * This program/include file is distributed in the hope that it will be
13 * useful, but WITHOUT ANY WARRANTY; without even the implied warranty
14 * of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program (in the main directory of the Linux-NTFS
19 * distribution in the file COPYING); if not, write to the Free Software
20 * Foundation,Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <linux/stddef.h>
24 #include <linux/init.h>
25 #include <linux/slab.h>
26 #include <linux/string.h>
27 #include <linux/spinlock.h>
28 #include <linux/blkdev.h> /* For bdev_hardsect_size(). */
29 #include <linux/backing-dev.h>
30 #include <linux/buffer_head.h>
31 #include <linux/vfs.h>
32 #include <linux/moduleparam.h>
33 #include <linux/smp_lock.h>
47 /* Number of mounted filesystems which have compression enabled. */
48 static unsigned long ntfs_nr_compression_users
;
50 /* A global default upcase table and a corresponding reference count. */
51 static ntfschar
*default_upcase
= NULL
;
52 static unsigned long ntfs_nr_upcase_users
= 0;
54 /* Error constants/strings used in inode.c::ntfs_show_options(). */
56 /* One of these must be present, default is ON_ERRORS_CONTINUE. */
57 ON_ERRORS_PANIC
= 0x01,
58 ON_ERRORS_REMOUNT_RO
= 0x02,
59 ON_ERRORS_CONTINUE
= 0x04,
60 /* Optional, can be combined with any of the above. */
61 ON_ERRORS_RECOVER
= 0x10,
64 const option_t on_errors_arr
[] = {
65 { ON_ERRORS_PANIC
, "panic" },
66 { ON_ERRORS_REMOUNT_RO
, "remount-ro", },
67 { ON_ERRORS_CONTINUE
, "continue", },
68 { ON_ERRORS_RECOVER
, "recover" },
75 * Copied from old ntfs driver (which copied from vfat driver).
77 static int simple_getbool(char *s
, BOOL
*setval
)
80 if (!strcmp(s
, "1") || !strcmp(s
, "yes") || !strcmp(s
, "true"))
82 else if (!strcmp(s
, "0") || !strcmp(s
, "no") ||
93 * parse_options - parse the (re)mount options
95 * @opt: string containing the (re)mount options
97 * Parse the recognized options in @opt for the ntfs volume described by @vol.
99 static BOOL
parse_options(ntfs_volume
*vol
, char *opt
)
102 static char *utf8
= "utf8";
103 int errors
= 0, sloppy
= 0;
104 uid_t uid
= (uid_t
)-1;
105 gid_t gid
= (gid_t
)-1;
106 mode_t fmask
= (mode_t
)-1, dmask
= (mode_t
)-1;
107 int mft_zone_multiplier
= -1, on_errors
= -1;
108 int show_sys_files
= -1, case_sensitive
= -1, disable_sparse
= -1;
109 struct nls_table
*nls_map
= NULL
, *old_nls
;
111 /* I am lazy... (-8 */
112 #define NTFS_GETOPT_WITH_DEFAULT(option, variable, default_value) \
113 if (!strcmp(p, option)) { \
115 variable = default_value; \
117 variable = simple_strtoul(ov = v, &v, 0); \
122 #define NTFS_GETOPT(option, variable) \
123 if (!strcmp(p, option)) { \
126 variable = simple_strtoul(ov = v, &v, 0); \
130 #define NTFS_GETOPT_OCTAL(option, variable) \
131 if (!strcmp(p, option)) { \
134 variable = simple_strtoul(ov = v, &v, 8); \
138 #define NTFS_GETOPT_BOOL(option, variable) \
139 if (!strcmp(p, option)) { \
141 if (!simple_getbool(v, &val)) \
145 #define NTFS_GETOPT_OPTIONS_ARRAY(option, variable, opt_array) \
146 if (!strcmp(p, option)) { \
151 if (variable == -1) \
153 for (_i = 0; opt_array[_i].str && *opt_array[_i].str; _i++) \
154 if (!strcmp(opt_array[_i].str, v)) { \
155 variable |= opt_array[_i].val; \
158 if (!opt_array[_i].str || !*opt_array[_i].str) \
162 goto no_mount_options
;
163 ntfs_debug("Entering with mount options string: %s", opt
);
164 while ((p
= strsep(&opt
, ","))) {
165 if ((v
= strchr(p
, '=')))
167 NTFS_GETOPT("uid", uid
)
168 else NTFS_GETOPT("gid", gid
)
169 else NTFS_GETOPT_OCTAL("umask", fmask
= dmask
)
170 else NTFS_GETOPT_OCTAL("fmask", fmask
)
171 else NTFS_GETOPT_OCTAL("dmask", dmask
)
172 else NTFS_GETOPT("mft_zone_multiplier", mft_zone_multiplier
)
173 else NTFS_GETOPT_WITH_DEFAULT("sloppy", sloppy
, TRUE
)
174 else NTFS_GETOPT_BOOL("show_sys_files", show_sys_files
)
175 else NTFS_GETOPT_BOOL("case_sensitive", case_sensitive
)
176 else NTFS_GETOPT_BOOL("disable_sparse", disable_sparse
)
177 else NTFS_GETOPT_OPTIONS_ARRAY("errors", on_errors
,
179 else if (!strcmp(p
, "posix") || !strcmp(p
, "show_inodes"))
180 ntfs_warning(vol
->sb
, "Ignoring obsolete option %s.",
182 else if (!strcmp(p
, "nls") || !strcmp(p
, "iocharset")) {
183 if (!strcmp(p
, "iocharset"))
184 ntfs_warning(vol
->sb
, "Option iocharset is "
185 "deprecated. Please use "
186 "option nls=<charsetname> in "
192 nls_map
= load_nls(v
);
195 ntfs_error(vol
->sb
, "NLS character set "
199 ntfs_error(vol
->sb
, "NLS character set %s not "
200 "found. Using previous one %s.",
201 v
, old_nls
->charset
);
203 } else /* nls_map */ {
207 } else if (!strcmp(p
, "utf8")) {
209 ntfs_warning(vol
->sb
, "Option utf8 is no longer "
210 "supported, using option nls=utf8. Please "
211 "use option nls=utf8 in the future and "
212 "make sure utf8 is compiled either as a "
213 "module or into the kernel.");
216 else if (!simple_getbool(v
, &val
))
223 ntfs_error(vol
->sb
, "Unrecognized mount option %s.", p
);
224 if (errors
< INT_MAX
)
227 #undef NTFS_GETOPT_OPTIONS_ARRAY
228 #undef NTFS_GETOPT_BOOL
230 #undef NTFS_GETOPT_WITH_DEFAULT
233 if (errors
&& !sloppy
)
236 ntfs_warning(vol
->sb
, "Sloppy option given. Ignoring "
237 "unrecognized mount option(s) and continuing.");
238 /* Keep this first! */
239 if (on_errors
!= -1) {
241 ntfs_error(vol
->sb
, "Invalid errors option argument "
242 "or bug in options parser.");
247 if (vol
->nls_map
&& vol
->nls_map
!= nls_map
) {
248 ntfs_error(vol
->sb
, "Cannot change NLS character set "
251 } /* else (!vol->nls_map) */
252 ntfs_debug("Using NLS character set %s.", nls_map
->charset
);
253 vol
->nls_map
= nls_map
;
254 } else /* (!nls_map) */ {
256 vol
->nls_map
= load_nls_default();
258 ntfs_error(vol
->sb
, "Failed to load default "
259 "NLS character set.");
262 ntfs_debug("Using default NLS character set (%s).",
263 vol
->nls_map
->charset
);
266 if (mft_zone_multiplier
!= -1) {
267 if (vol
->mft_zone_multiplier
&& vol
->mft_zone_multiplier
!=
268 mft_zone_multiplier
) {
269 ntfs_error(vol
->sb
, "Cannot change mft_zone_multiplier "
273 if (mft_zone_multiplier
< 1 || mft_zone_multiplier
> 4) {
274 ntfs_error(vol
->sb
, "Invalid mft_zone_multiplier. "
275 "Using default value, i.e. 1.");
276 mft_zone_multiplier
= 1;
278 vol
->mft_zone_multiplier
= mft_zone_multiplier
;
280 if (!vol
->mft_zone_multiplier
)
281 vol
->mft_zone_multiplier
= 1;
283 vol
->on_errors
= on_errors
;
284 if (!vol
->on_errors
|| vol
->on_errors
== ON_ERRORS_RECOVER
)
285 vol
->on_errors
|= ON_ERRORS_CONTINUE
;
286 if (uid
!= (uid_t
)-1)
288 if (gid
!= (gid_t
)-1)
290 if (fmask
!= (mode_t
)-1)
292 if (dmask
!= (mode_t
)-1)
294 if (show_sys_files
!= -1) {
296 NVolSetShowSystemFiles(vol
);
298 NVolClearShowSystemFiles(vol
);
300 if (case_sensitive
!= -1) {
302 NVolSetCaseSensitive(vol
);
304 NVolClearCaseSensitive(vol
);
306 if (disable_sparse
!= -1) {
308 NVolClearSparseEnabled(vol
);
310 if (!NVolSparseEnabled(vol
) &&
311 vol
->major_ver
&& vol
->major_ver
< 3)
312 ntfs_warning(vol
->sb
, "Not enabling sparse "
313 "support due to NTFS volume "
314 "version %i.%i (need at least "
315 "version 3.0).", vol
->major_ver
,
318 NVolSetSparseEnabled(vol
);
323 ntfs_error(vol
->sb
, "The %s option requires an argument.", p
);
326 ntfs_error(vol
->sb
, "The %s option requires a boolean argument.", p
);
329 ntfs_error(vol
->sb
, "Invalid %s option argument: %s", p
, ov
);
336 * ntfs_write_volume_flags - write new flags to the volume information flags
337 * @vol: ntfs volume on which to modify the flags
338 * @flags: new flags value for the volume information flags
340 * Internal function. You probably want to use ntfs_{set,clear}_volume_flags()
341 * instead (see below).
343 * Replace the volume information flags on the volume @vol with the value
344 * supplied in @flags. Note, this overwrites the volume information flags, so
345 * make sure to combine the flags you want to modify with the old flags and use
346 * the result when calling ntfs_write_volume_flags().
348 * Return 0 on success and -errno on error.
350 static int ntfs_write_volume_flags(ntfs_volume
*vol
, const VOLUME_FLAGS flags
)
352 ntfs_inode
*ni
= NTFS_I(vol
->vol_ino
);
354 VOLUME_INFORMATION
*vi
;
355 ntfs_attr_search_ctx
*ctx
;
358 ntfs_debug("Entering, old flags = 0x%x, new flags = 0x%x.",
359 le16_to_cpu(vol
->vol_flags
), le16_to_cpu(flags
));
360 if (vol
->vol_flags
== flags
)
363 m
= map_mft_record(ni
);
368 ctx
= ntfs_attr_get_search_ctx(ni
, m
);
371 goto put_unm_err_out
;
373 err
= ntfs_attr_lookup(AT_VOLUME_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
376 goto put_unm_err_out
;
377 vi
= (VOLUME_INFORMATION
*)((u8
*)ctx
->attr
+
378 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
379 vol
->vol_flags
= vi
->flags
= flags
;
380 flush_dcache_mft_record_page(ctx
->ntfs_ino
);
381 mark_mft_record_dirty(ctx
->ntfs_ino
);
382 ntfs_attr_put_search_ctx(ctx
);
383 unmap_mft_record(ni
);
389 ntfs_attr_put_search_ctx(ctx
);
390 unmap_mft_record(ni
);
392 ntfs_error(vol
->sb
, "Failed with error code %i.", -err
);
397 * ntfs_set_volume_flags - set bits in the volume information flags
398 * @vol: ntfs volume on which to modify the flags
399 * @flags: flags to set on the volume
401 * Set the bits in @flags in the volume information flags on the volume @vol.
403 * Return 0 on success and -errno on error.
405 static inline int ntfs_set_volume_flags(ntfs_volume
*vol
, VOLUME_FLAGS flags
)
407 flags
&= VOLUME_FLAGS_MASK
;
408 return ntfs_write_volume_flags(vol
, vol
->vol_flags
| flags
);
412 * ntfs_clear_volume_flags - clear bits in the volume information flags
413 * @vol: ntfs volume on which to modify the flags
414 * @flags: flags to clear on the volume
416 * Clear the bits in @flags in the volume information flags on the volume @vol.
418 * Return 0 on success and -errno on error.
420 static inline int ntfs_clear_volume_flags(ntfs_volume
*vol
, VOLUME_FLAGS flags
)
422 flags
&= VOLUME_FLAGS_MASK
;
423 flags
= vol
->vol_flags
& cpu_to_le16(~le16_to_cpu(flags
));
424 return ntfs_write_volume_flags(vol
, flags
);
430 * ntfs_remount - change the mount options of a mounted ntfs filesystem
431 * @sb: superblock of mounted ntfs filesystem
432 * @flags: remount flags
433 * @opt: remount options string
435 * Change the mount options of an already mounted ntfs filesystem.
437 * NOTE: The VFS sets the @sb->s_flags remount flags to @flags after
438 * ntfs_remount() returns successfully (i.e. returns 0). Otherwise,
439 * @sb->s_flags are not changed.
441 static int ntfs_remount(struct super_block
*sb
, int *flags
, char *opt
)
443 ntfs_volume
*vol
= NTFS_SB(sb
);
445 ntfs_debug("Entering with remount options string: %s", opt
);
447 /* For read-only compiled driver, enforce read-only flag. */
451 * For the read-write compiled driver, if we are remounting read-write,
452 * make sure there are no volume errors and that no unsupported volume
453 * flags are set. Also, empty the logfile journal as it would become
454 * stale as soon as something is written to the volume and mark the
455 * volume dirty so that chkdsk is run if the volume is not umounted
456 * cleanly. Finally, mark the quotas out of date so Windows rescans
457 * the volume on boot and updates them.
459 * When remounting read-only, mark the volume clean if no volume errors
462 if ((sb
->s_flags
& MS_RDONLY
) && !(*flags
& MS_RDONLY
)) {
463 static const char *es
= ". Cannot remount read-write.";
465 /* Remounting read-write. */
466 if (NVolErrors(vol
)) {
467 ntfs_error(sb
, "Volume has errors and is read-only%s",
471 if (vol
->vol_flags
& VOLUME_IS_DIRTY
) {
472 ntfs_error(sb
, "Volume is dirty and read-only%s", es
);
475 if (vol
->vol_flags
& VOLUME_MODIFIED_BY_CHKDSK
) {
476 ntfs_error(sb
, "Volume has been modified by chkdsk "
477 "and is read-only%s", es
);
480 if (vol
->vol_flags
& VOLUME_MUST_MOUNT_RO_MASK
) {
481 ntfs_error(sb
, "Volume has unsupported flags set "
482 "(0x%x) and is read-only%s",
483 (unsigned)le16_to_cpu(vol
->vol_flags
),
487 if (ntfs_set_volume_flags(vol
, VOLUME_IS_DIRTY
)) {
488 ntfs_error(sb
, "Failed to set dirty bit in volume "
489 "information flags%s", es
);
493 // TODO: Enable this code once we start modifying anything that
494 // is different between NTFS 1.2 and 3.x...
495 /* Set NT4 compatibility flag on newer NTFS version volumes. */
496 if ((vol
->major_ver
> 1)) {
497 if (ntfs_set_volume_flags(vol
, VOLUME_MOUNTED_ON_NT4
)) {
498 ntfs_error(sb
, "Failed to set NT4 "
499 "compatibility flag%s", es
);
505 if (!ntfs_empty_logfile(vol
->logfile_ino
)) {
506 ntfs_error(sb
, "Failed to empty journal $LogFile%s",
511 if (!ntfs_mark_quotas_out_of_date(vol
)) {
512 ntfs_error(sb
, "Failed to mark quotas out of date%s",
517 if (!ntfs_stamp_usnjrnl(vol
)) {
518 ntfs_error(sb
, "Failed to stamp transation log "
523 } else if (!(sb
->s_flags
& MS_RDONLY
) && (*flags
& MS_RDONLY
)) {
524 /* Remounting read-only. */
525 if (!NVolErrors(vol
)) {
526 if (ntfs_clear_volume_flags(vol
, VOLUME_IS_DIRTY
))
527 ntfs_warning(sb
, "Failed to clear dirty bit "
528 "in volume information "
529 "flags. Run chkdsk.");
534 // TODO: Deal with *flags.
536 if (!parse_options(vol
, opt
))
543 * is_boot_sector_ntfs - check whether a boot sector is a valid NTFS boot sector
544 * @sb: Super block of the device to which @b belongs.
545 * @b: Boot sector of device @sb to check.
546 * @silent: If TRUE, all output will be silenced.
548 * is_boot_sector_ntfs() checks whether the boot sector @b is a valid NTFS boot
549 * sector. Returns TRUE if it is valid and FALSE if not.
551 * @sb is only needed for warning/error output, i.e. it can be NULL when silent
554 static BOOL
is_boot_sector_ntfs(const struct super_block
*sb
,
555 const NTFS_BOOT_SECTOR
*b
, const BOOL silent
)
558 * Check that checksum == sum of u32 values from b to the checksum
559 * field. If checksum is zero, no checking is done. We will work when
560 * the checksum test fails, since some utilities update the boot sector
561 * ignoring the checksum which leaves the checksum out-of-date. We
562 * report a warning if this is the case.
564 if ((void*)b
< (void*)&b
->checksum
&& b
->checksum
&& !silent
) {
568 for (i
= 0, u
= (le32
*)b
; u
< (le32
*)(&b
->checksum
); ++u
)
569 i
+= le32_to_cpup(u
);
570 if (le32_to_cpu(b
->checksum
) != i
)
571 ntfs_warning(sb
, "Invalid boot sector checksum.");
573 /* Check OEMidentifier is "NTFS " */
574 if (b
->oem_id
!= magicNTFS
)
576 /* Check bytes per sector value is between 256 and 4096. */
577 if (le16_to_cpu(b
->bpb
.bytes_per_sector
) < 0x100 ||
578 le16_to_cpu(b
->bpb
.bytes_per_sector
) > 0x1000)
580 /* Check sectors per cluster value is valid. */
581 switch (b
->bpb
.sectors_per_cluster
) {
582 case 1: case 2: case 4: case 8: case 16: case 32: case 64: case 128:
587 /* Check the cluster size is not above the maximum (64kiB). */
588 if ((u32
)le16_to_cpu(b
->bpb
.bytes_per_sector
) *
589 b
->bpb
.sectors_per_cluster
> NTFS_MAX_CLUSTER_SIZE
)
591 /* Check reserved/unused fields are really zero. */
592 if (le16_to_cpu(b
->bpb
.reserved_sectors
) ||
593 le16_to_cpu(b
->bpb
.root_entries
) ||
594 le16_to_cpu(b
->bpb
.sectors
) ||
595 le16_to_cpu(b
->bpb
.sectors_per_fat
) ||
596 le32_to_cpu(b
->bpb
.large_sectors
) || b
->bpb
.fats
)
598 /* Check clusters per file mft record value is valid. */
599 if ((u8
)b
->clusters_per_mft_record
< 0xe1 ||
600 (u8
)b
->clusters_per_mft_record
> 0xf7)
601 switch (b
->clusters_per_mft_record
) {
602 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
607 /* Check clusters per index block value is valid. */
608 if ((u8
)b
->clusters_per_index_record
< 0xe1 ||
609 (u8
)b
->clusters_per_index_record
> 0xf7)
610 switch (b
->clusters_per_index_record
) {
611 case 1: case 2: case 4: case 8: case 16: case 32: case 64:
617 * Check for valid end of sector marker. We will work without it, but
618 * many BIOSes will refuse to boot from a bootsector if the magic is
619 * incorrect, so we emit a warning.
621 if (!silent
&& b
->end_of_sector_marker
!= const_cpu_to_le16(0xaa55))
622 ntfs_warning(sb
, "Invalid end of sector marker.");
629 * read_ntfs_boot_sector - read the NTFS boot sector of a device
630 * @sb: super block of device to read the boot sector from
631 * @silent: if true, suppress all output
633 * Reads the boot sector from the device and validates it. If that fails, tries
634 * to read the backup boot sector, first from the end of the device a-la NT4 and
635 * later and then from the middle of the device a-la NT3.51 and before.
637 * If a valid boot sector is found but it is not the primary boot sector, we
638 * repair the primary boot sector silently (unless the device is read-only or
639 * the primary boot sector is not accessible).
641 * NOTE: To call this function, @sb must have the fields s_dev, the ntfs super
642 * block (u.ntfs_sb), nr_blocks and the device flags (s_flags) initialized
643 * to their respective values.
645 * Return the unlocked buffer head containing the boot sector or NULL on error.
647 static struct buffer_head
*read_ntfs_boot_sector(struct super_block
*sb
,
650 const char *read_err_str
= "Unable to read %s boot sector.";
651 struct buffer_head
*bh_primary
, *bh_backup
;
652 sector_t nr_blocks
= NTFS_SB(sb
)->nr_blocks
;
654 /* Try to read primary boot sector. */
655 if ((bh_primary
= sb_bread(sb
, 0))) {
656 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
657 bh_primary
->b_data
, silent
))
660 ntfs_error(sb
, "Primary boot sector is invalid.");
662 ntfs_error(sb
, read_err_str
, "primary");
663 if (!(NTFS_SB(sb
)->on_errors
& ON_ERRORS_RECOVER
)) {
667 ntfs_error(sb
, "Mount option errors=recover not used. "
668 "Aborting without trying to recover.");
671 /* Try to read NT4+ backup boot sector. */
672 if ((bh_backup
= sb_bread(sb
, nr_blocks
- 1))) {
673 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
674 bh_backup
->b_data
, silent
))
675 goto hotfix_primary_boot_sector
;
678 ntfs_error(sb
, read_err_str
, "backup");
679 /* Try to read NT3.51- backup boot sector. */
680 if ((bh_backup
= sb_bread(sb
, nr_blocks
>> 1))) {
681 if (is_boot_sector_ntfs(sb
, (NTFS_BOOT_SECTOR
*)
682 bh_backup
->b_data
, silent
))
683 goto hotfix_primary_boot_sector
;
685 ntfs_error(sb
, "Could not find a valid backup boot "
689 ntfs_error(sb
, read_err_str
, "backup");
690 /* We failed. Cleanup and return. */
694 hotfix_primary_boot_sector
:
697 * If we managed to read sector zero and the volume is not
698 * read-only, copy the found, valid backup boot sector to the
699 * primary boot sector. Note we only copy the actual boot
700 * sector structure, not the actual whole device sector as that
701 * may be bigger and would potentially damage the $Boot system
702 * file (FIXME: Would be nice to know if the backup boot sector
703 * on a large sector device contains the whole boot loader or
704 * just the first 512 bytes).
706 if (!(sb
->s_flags
& MS_RDONLY
)) {
707 ntfs_warning(sb
, "Hot-fix: Recovering invalid primary "
708 "boot sector from backup copy.");
709 memcpy(bh_primary
->b_data
, bh_backup
->b_data
,
711 mark_buffer_dirty(bh_primary
);
712 sync_dirty_buffer(bh_primary
);
713 if (buffer_uptodate(bh_primary
)) {
717 ntfs_error(sb
, "Hot-fix: Device write error while "
718 "recovering primary boot sector.");
720 ntfs_warning(sb
, "Hot-fix: Recovery of primary boot "
721 "sector failed: Read-only mount.");
725 ntfs_warning(sb
, "Using backup boot sector.");
730 * parse_ntfs_boot_sector - parse the boot sector and store the data in @vol
731 * @vol: volume structure to initialise with data from boot sector
732 * @b: boot sector to parse
734 * Parse the ntfs boot sector @b and store all imporant information therein in
735 * the ntfs super block @vol. Return TRUE on success and FALSE on error.
737 static BOOL
parse_ntfs_boot_sector(ntfs_volume
*vol
, const NTFS_BOOT_SECTOR
*b
)
739 unsigned int sectors_per_cluster_bits
, nr_hidden_sects
;
740 int clusters_per_mft_record
, clusters_per_index_record
;
743 vol
->sector_size
= le16_to_cpu(b
->bpb
.bytes_per_sector
);
744 vol
->sector_size_bits
= ffs(vol
->sector_size
) - 1;
745 ntfs_debug("vol->sector_size = %i (0x%x)", vol
->sector_size
,
747 ntfs_debug("vol->sector_size_bits = %i (0x%x)", vol
->sector_size_bits
,
748 vol
->sector_size_bits
);
749 if (vol
->sector_size
< vol
->sb
->s_blocksize
) {
750 ntfs_error(vol
->sb
, "Sector size (%i) is smaller than the "
751 "device block size (%lu). This is not "
752 "supported. Sorry.", vol
->sector_size
,
753 vol
->sb
->s_blocksize
);
756 ntfs_debug("sectors_per_cluster = 0x%x", b
->bpb
.sectors_per_cluster
);
757 sectors_per_cluster_bits
= ffs(b
->bpb
.sectors_per_cluster
) - 1;
758 ntfs_debug("sectors_per_cluster_bits = 0x%x",
759 sectors_per_cluster_bits
);
760 nr_hidden_sects
= le32_to_cpu(b
->bpb
.hidden_sectors
);
761 ntfs_debug("number of hidden sectors = 0x%x", nr_hidden_sects
);
762 vol
->cluster_size
= vol
->sector_size
<< sectors_per_cluster_bits
;
763 vol
->cluster_size_mask
= vol
->cluster_size
- 1;
764 vol
->cluster_size_bits
= ffs(vol
->cluster_size
) - 1;
765 ntfs_debug("vol->cluster_size = %i (0x%x)", vol
->cluster_size
,
767 ntfs_debug("vol->cluster_size_mask = 0x%x", vol
->cluster_size_mask
);
768 ntfs_debug("vol->cluster_size_bits = %i", vol
->cluster_size_bits
);
769 if (vol
->cluster_size
< vol
->sector_size
) {
770 ntfs_error(vol
->sb
, "Cluster size (%i) is smaller than the "
771 "sector size (%i). This is not supported. "
772 "Sorry.", vol
->cluster_size
, vol
->sector_size
);
775 clusters_per_mft_record
= b
->clusters_per_mft_record
;
776 ntfs_debug("clusters_per_mft_record = %i (0x%x)",
777 clusters_per_mft_record
, clusters_per_mft_record
);
778 if (clusters_per_mft_record
> 0)
779 vol
->mft_record_size
= vol
->cluster_size
<<
780 (ffs(clusters_per_mft_record
) - 1);
783 * When mft_record_size < cluster_size, clusters_per_mft_record
784 * = -log2(mft_record_size) bytes. mft_record_size normaly is
785 * 1024 bytes, which is encoded as 0xF6 (-10 in decimal).
787 vol
->mft_record_size
= 1 << -clusters_per_mft_record
;
788 vol
->mft_record_size_mask
= vol
->mft_record_size
- 1;
789 vol
->mft_record_size_bits
= ffs(vol
->mft_record_size
) - 1;
790 ntfs_debug("vol->mft_record_size = %i (0x%x)", vol
->mft_record_size
,
791 vol
->mft_record_size
);
792 ntfs_debug("vol->mft_record_size_mask = 0x%x",
793 vol
->mft_record_size_mask
);
794 ntfs_debug("vol->mft_record_size_bits = %i (0x%x)",
795 vol
->mft_record_size_bits
, vol
->mft_record_size_bits
);
797 * We cannot support mft record sizes above the PAGE_CACHE_SIZE since
798 * we store $MFT/$DATA, the table of mft records in the page cache.
800 if (vol
->mft_record_size
> PAGE_CACHE_SIZE
) {
801 ntfs_error(vol
->sb
, "Mft record size (%i) exceeds the "
802 "PAGE_CACHE_SIZE on your system (%lu). "
803 "This is not supported. Sorry.",
804 vol
->mft_record_size
, PAGE_CACHE_SIZE
);
807 /* We cannot support mft record sizes below the sector size. */
808 if (vol
->mft_record_size
< vol
->sector_size
) {
809 ntfs_error(vol
->sb
, "Mft record size (%i) is smaller than the "
810 "sector size (%i). This is not supported. "
811 "Sorry.", vol
->mft_record_size
,
815 clusters_per_index_record
= b
->clusters_per_index_record
;
816 ntfs_debug("clusters_per_index_record = %i (0x%x)",
817 clusters_per_index_record
, clusters_per_index_record
);
818 if (clusters_per_index_record
> 0)
819 vol
->index_record_size
= vol
->cluster_size
<<
820 (ffs(clusters_per_index_record
) - 1);
823 * When index_record_size < cluster_size,
824 * clusters_per_index_record = -log2(index_record_size) bytes.
825 * index_record_size normaly equals 4096 bytes, which is
826 * encoded as 0xF4 (-12 in decimal).
828 vol
->index_record_size
= 1 << -clusters_per_index_record
;
829 vol
->index_record_size_mask
= vol
->index_record_size
- 1;
830 vol
->index_record_size_bits
= ffs(vol
->index_record_size
) - 1;
831 ntfs_debug("vol->index_record_size = %i (0x%x)",
832 vol
->index_record_size
, vol
->index_record_size
);
833 ntfs_debug("vol->index_record_size_mask = 0x%x",
834 vol
->index_record_size_mask
);
835 ntfs_debug("vol->index_record_size_bits = %i (0x%x)",
836 vol
->index_record_size_bits
,
837 vol
->index_record_size_bits
);
838 /* We cannot support index record sizes below the sector size. */
839 if (vol
->index_record_size
< vol
->sector_size
) {
840 ntfs_error(vol
->sb
, "Index record size (%i) is smaller than "
841 "the sector size (%i). This is not "
842 "supported. Sorry.", vol
->index_record_size
,
847 * Get the size of the volume in clusters and check for 64-bit-ness.
848 * Windows currently only uses 32 bits to save the clusters so we do
849 * the same as it is much faster on 32-bit CPUs.
851 ll
= sle64_to_cpu(b
->number_of_sectors
) >> sectors_per_cluster_bits
;
852 if ((u64
)ll
>= 1ULL << 32) {
853 ntfs_error(vol
->sb
, "Cannot handle 64-bit clusters. Sorry.");
856 vol
->nr_clusters
= ll
;
857 ntfs_debug("vol->nr_clusters = 0x%llx", (long long)vol
->nr_clusters
);
859 * On an architecture where unsigned long is 32-bits, we restrict the
860 * volume size to 2TiB (2^41). On a 64-bit architecture, the compiler
861 * will hopefully optimize the whole check away.
863 if (sizeof(unsigned long) < 8) {
864 if ((ll
<< vol
->cluster_size_bits
) >= (1ULL << 41)) {
865 ntfs_error(vol
->sb
, "Volume size (%lluTiB) is too "
866 "large for this architecture. "
867 "Maximum supported is 2TiB. Sorry.",
868 (unsigned long long)ll
>> (40 -
869 vol
->cluster_size_bits
));
873 ll
= sle64_to_cpu(b
->mft_lcn
);
874 if (ll
>= vol
->nr_clusters
) {
875 ntfs_error(vol
->sb
, "MFT LCN (%lli, 0x%llx) is beyond end of "
876 "volume. Weird.", (unsigned long long)ll
,
877 (unsigned long long)ll
);
881 ntfs_debug("vol->mft_lcn = 0x%llx", (long long)vol
->mft_lcn
);
882 ll
= sle64_to_cpu(b
->mftmirr_lcn
);
883 if (ll
>= vol
->nr_clusters
) {
884 ntfs_error(vol
->sb
, "MFTMirr LCN (%lli, 0x%llx) is beyond end "
885 "of volume. Weird.", (unsigned long long)ll
,
886 (unsigned long long)ll
);
889 vol
->mftmirr_lcn
= ll
;
890 ntfs_debug("vol->mftmirr_lcn = 0x%llx", (long long)vol
->mftmirr_lcn
);
893 * Work out the size of the mft mirror in number of mft records. If the
894 * cluster size is less than or equal to the size taken by four mft
895 * records, the mft mirror stores the first four mft records. If the
896 * cluster size is bigger than the size taken by four mft records, the
897 * mft mirror contains as many mft records as will fit into one
900 if (vol
->cluster_size
<= (4 << vol
->mft_record_size_bits
))
901 vol
->mftmirr_size
= 4;
903 vol
->mftmirr_size
= vol
->cluster_size
>>
904 vol
->mft_record_size_bits
;
905 ntfs_debug("vol->mftmirr_size = %i", vol
->mftmirr_size
);
907 vol
->serial_no
= le64_to_cpu(b
->volume_serial_number
);
908 ntfs_debug("vol->serial_no = 0x%llx",
909 (unsigned long long)vol
->serial_no
);
914 * ntfs_setup_allocators - initialize the cluster and mft allocators
915 * @vol: volume structure for which to setup the allocators
917 * Setup the cluster (lcn) and mft allocators to the starting values.
919 static void ntfs_setup_allocators(ntfs_volume
*vol
)
922 LCN mft_zone_size
, mft_lcn
;
925 ntfs_debug("vol->mft_zone_multiplier = 0x%x",
926 vol
->mft_zone_multiplier
);
928 /* Determine the size of the MFT zone. */
929 mft_zone_size
= vol
->nr_clusters
;
930 switch (vol
->mft_zone_multiplier
) { /* % of volume size in clusters */
932 mft_zone_size
>>= 1; /* 50% */
935 mft_zone_size
= (mft_zone_size
+
936 (mft_zone_size
>> 1)) >> 2; /* 37.5% */
939 mft_zone_size
>>= 2; /* 25% */
943 mft_zone_size
>>= 3; /* 12.5% */
946 /* Setup the mft zone. */
947 vol
->mft_zone_start
= vol
->mft_zone_pos
= vol
->mft_lcn
;
948 ntfs_debug("vol->mft_zone_pos = 0x%llx",
949 (unsigned long long)vol
->mft_zone_pos
);
951 * Calculate the mft_lcn for an unmodified NTFS volume (see mkntfs
952 * source) and if the actual mft_lcn is in the expected place or even
953 * further to the front of the volume, extend the mft_zone to cover the
954 * beginning of the volume as well. This is in order to protect the
955 * area reserved for the mft bitmap as well within the mft_zone itself.
956 * On non-standard volumes we do not protect it as the overhead would
957 * be higher than the speed increase we would get by doing it.
959 mft_lcn
= (8192 + 2 * vol
->cluster_size
- 1) / vol
->cluster_size
;
960 if (mft_lcn
* vol
->cluster_size
< 16 * 1024)
961 mft_lcn
= (16 * 1024 + vol
->cluster_size
- 1) /
963 if (vol
->mft_zone_start
<= mft_lcn
)
964 vol
->mft_zone_start
= 0;
965 ntfs_debug("vol->mft_zone_start = 0x%llx",
966 (unsigned long long)vol
->mft_zone_start
);
968 * Need to cap the mft zone on non-standard volumes so that it does
969 * not point outside the boundaries of the volume. We do this by
970 * halving the zone size until we are inside the volume.
972 vol
->mft_zone_end
= vol
->mft_lcn
+ mft_zone_size
;
973 while (vol
->mft_zone_end
>= vol
->nr_clusters
) {
975 vol
->mft_zone_end
= vol
->mft_lcn
+ mft_zone_size
;
977 ntfs_debug("vol->mft_zone_end = 0x%llx",
978 (unsigned long long)vol
->mft_zone_end
);
980 * Set the current position within each data zone to the start of the
983 vol
->data1_zone_pos
= vol
->mft_zone_end
;
984 ntfs_debug("vol->data1_zone_pos = 0x%llx",
985 (unsigned long long)vol
->data1_zone_pos
);
986 vol
->data2_zone_pos
= 0;
987 ntfs_debug("vol->data2_zone_pos = 0x%llx",
988 (unsigned long long)vol
->data2_zone_pos
);
990 /* Set the mft data allocation position to mft record 24. */
991 vol
->mft_data_pos
= 24;
992 ntfs_debug("vol->mft_data_pos = 0x%llx",
993 (unsigned long long)vol
->mft_data_pos
);
1000 * load_and_init_mft_mirror - load and setup the mft mirror inode for a volume
1001 * @vol: ntfs super block describing device whose mft mirror to load
1003 * Return TRUE on success or FALSE on error.
1005 static BOOL
load_and_init_mft_mirror(ntfs_volume
*vol
)
1007 struct inode
*tmp_ino
;
1010 ntfs_debug("Entering.");
1011 /* Get mft mirror inode. */
1012 tmp_ino
= ntfs_iget(vol
->sb
, FILE_MFTMirr
);
1013 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1014 if (!IS_ERR(tmp_ino
))
1016 /* Caller will display error message. */
1020 * Re-initialize some specifics about $MFTMirr's inode as
1021 * ntfs_read_inode() will have set up the default ones.
1023 /* Set uid and gid to root. */
1024 tmp_ino
->i_uid
= tmp_ino
->i_gid
= 0;
1025 /* Regular file. No access for anyone. */
1026 tmp_ino
->i_mode
= S_IFREG
;
1027 /* No VFS initiated operations allowed for $MFTMirr. */
1028 tmp_ino
->i_op
= &ntfs_empty_inode_ops
;
1029 tmp_ino
->i_fop
= &ntfs_empty_file_ops
;
1030 /* Put in our special address space operations. */
1031 tmp_ino
->i_mapping
->a_ops
= &ntfs_mst_aops
;
1032 tmp_ni
= NTFS_I(tmp_ino
);
1033 /* The $MFTMirr, like the $MFT is multi sector transfer protected. */
1034 NInoSetMstProtected(tmp_ni
);
1035 NInoSetSparseDisabled(tmp_ni
);
1037 * Set up our little cheat allowing us to reuse the async read io
1038 * completion handler for directories.
1040 tmp_ni
->itype
.index
.block_size
= vol
->mft_record_size
;
1041 tmp_ni
->itype
.index
.block_size_bits
= vol
->mft_record_size_bits
;
1042 vol
->mftmirr_ino
= tmp_ino
;
1043 ntfs_debug("Done.");
1048 * check_mft_mirror - compare contents of the mft mirror with the mft
1049 * @vol: ntfs super block describing device whose mft mirror to check
1051 * Return TRUE on success or FALSE on error.
1053 * Note, this function also results in the mft mirror runlist being completely
1054 * mapped into memory. The mft mirror write code requires this and will BUG()
1055 * should it find an unmapped runlist element.
1057 static BOOL
check_mft_mirror(ntfs_volume
*vol
)
1059 struct super_block
*sb
= vol
->sb
;
1060 ntfs_inode
*mirr_ni
;
1061 struct page
*mft_page
, *mirr_page
;
1063 runlist_element
*rl
, rl2
[2];
1065 int mrecs_per_page
, i
;
1067 ntfs_debug("Entering.");
1068 /* Compare contents of $MFT and $MFTMirr. */
1069 mrecs_per_page
= PAGE_CACHE_SIZE
/ vol
->mft_record_size
;
1070 BUG_ON(!mrecs_per_page
);
1071 BUG_ON(!vol
->mftmirr_size
);
1072 mft_page
= mirr_page
= NULL
;
1073 kmft
= kmirr
= NULL
;
1078 /* Switch pages if necessary. */
1079 if (!(i
% mrecs_per_page
)) {
1081 ntfs_unmap_page(mft_page
);
1082 ntfs_unmap_page(mirr_page
);
1084 /* Get the $MFT page. */
1085 mft_page
= ntfs_map_page(vol
->mft_ino
->i_mapping
,
1087 if (IS_ERR(mft_page
)) {
1088 ntfs_error(sb
, "Failed to read $MFT.");
1091 kmft
= page_address(mft_page
);
1092 /* Get the $MFTMirr page. */
1093 mirr_page
= ntfs_map_page(vol
->mftmirr_ino
->i_mapping
,
1095 if (IS_ERR(mirr_page
)) {
1096 ntfs_error(sb
, "Failed to read $MFTMirr.");
1099 kmirr
= page_address(mirr_page
);
1102 /* Make sure the record is ok. */
1103 if (ntfs_is_baad_recordp((le32
*)kmft
)) {
1104 ntfs_error(sb
, "Incomplete multi sector transfer "
1105 "detected in mft record %i.", i
);
1107 ntfs_unmap_page(mirr_page
);
1109 ntfs_unmap_page(mft_page
);
1112 if (ntfs_is_baad_recordp((le32
*)kmirr
)) {
1113 ntfs_error(sb
, "Incomplete multi sector transfer "
1114 "detected in mft mirror record %i.", i
);
1117 /* Get the amount of data in the current record. */
1118 bytes
= le32_to_cpu(((MFT_RECORD
*)kmft
)->bytes_in_use
);
1119 if (!bytes
|| bytes
> vol
->mft_record_size
) {
1120 bytes
= le32_to_cpu(((MFT_RECORD
*)kmirr
)->bytes_in_use
);
1121 if (!bytes
|| bytes
> vol
->mft_record_size
)
1122 bytes
= vol
->mft_record_size
;
1124 /* Compare the two records. */
1125 if (memcmp(kmft
, kmirr
, bytes
)) {
1126 ntfs_error(sb
, "$MFT and $MFTMirr (record %i) do not "
1127 "match. Run ntfsfix or chkdsk.", i
);
1130 kmft
+= vol
->mft_record_size
;
1131 kmirr
+= vol
->mft_record_size
;
1132 } while (++i
< vol
->mftmirr_size
);
1133 /* Release the last pages. */
1134 ntfs_unmap_page(mft_page
);
1135 ntfs_unmap_page(mirr_page
);
1137 /* Construct the mft mirror runlist by hand. */
1139 rl2
[0].lcn
= vol
->mftmirr_lcn
;
1140 rl2
[0].length
= (vol
->mftmirr_size
* vol
->mft_record_size
+
1141 vol
->cluster_size
- 1) / vol
->cluster_size
;
1142 rl2
[1].vcn
= rl2
[0].length
;
1143 rl2
[1].lcn
= LCN_ENOENT
;
1146 * Because we have just read all of the mft mirror, we know we have
1147 * mapped the full runlist for it.
1149 mirr_ni
= NTFS_I(vol
->mftmirr_ino
);
1150 down_read(&mirr_ni
->runlist
.lock
);
1151 rl
= mirr_ni
->runlist
.rl
;
1152 /* Compare the two runlists. They must be identical. */
1155 if (rl2
[i
].vcn
!= rl
[i
].vcn
|| rl2
[i
].lcn
!= rl
[i
].lcn
||
1156 rl2
[i
].length
!= rl
[i
].length
) {
1157 ntfs_error(sb
, "$MFTMirr location mismatch. "
1159 up_read(&mirr_ni
->runlist
.lock
);
1162 } while (rl2
[i
++].length
);
1163 up_read(&mirr_ni
->runlist
.lock
);
1164 ntfs_debug("Done.");
1169 * load_and_check_logfile - load and check the logfile inode for a volume
1170 * @vol: ntfs super block describing device whose logfile to load
1172 * Return TRUE on success or FALSE on error.
1174 static BOOL
load_and_check_logfile(ntfs_volume
*vol
,
1175 RESTART_PAGE_HEADER
**rp
)
1177 struct inode
*tmp_ino
;
1179 ntfs_debug("Entering.");
1180 tmp_ino
= ntfs_iget(vol
->sb
, FILE_LogFile
);
1181 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1182 if (!IS_ERR(tmp_ino
))
1184 /* Caller will display error message. */
1187 if (!ntfs_check_logfile(tmp_ino
, rp
)) {
1189 /* ntfs_check_logfile() will have displayed error output. */
1192 NInoSetSparseDisabled(NTFS_I(tmp_ino
));
1193 vol
->logfile_ino
= tmp_ino
;
1194 ntfs_debug("Done.");
1198 #define NTFS_HIBERFIL_HEADER_SIZE 4096
1201 * check_windows_hibernation_status - check if Windows is suspended on a volume
1202 * @vol: ntfs super block of device to check
1204 * Check if Windows is hibernated on the ntfs volume @vol. This is done by
1205 * looking for the file hiberfil.sys in the root directory of the volume. If
1206 * the file is not present Windows is definitely not suspended.
1208 * If hiberfil.sys exists and is less than 4kiB in size it means Windows is
1209 * definitely suspended (this volume is not the system volume). Caveat: on a
1210 * system with many volumes it is possible that the < 4kiB check is bogus but
1211 * for now this should do fine.
1213 * If hiberfil.sys exists and is larger than 4kiB in size, we need to read the
1214 * hiberfil header (which is the first 4kiB). If this begins with "hibr",
1215 * Windows is definitely suspended. If it is completely full of zeroes,
1216 * Windows is definitely not hibernated. Any other case is treated as if
1217 * Windows is suspended. This caters for the above mentioned caveat of a
1218 * system with many volumes where no "hibr" magic would be present and there is
1221 * Return 0 if Windows is not hibernated on the volume, >0 if Windows is
1222 * hibernated on the volume, and -errno on error.
1224 static int check_windows_hibernation_status(ntfs_volume
*vol
)
1231 ntfs_name
*name
= NULL
;
1233 static const ntfschar hiberfil
[13] = { const_cpu_to_le16('h'),
1234 const_cpu_to_le16('i'), const_cpu_to_le16('b'),
1235 const_cpu_to_le16('e'), const_cpu_to_le16('r'),
1236 const_cpu_to_le16('f'), const_cpu_to_le16('i'),
1237 const_cpu_to_le16('l'), const_cpu_to_le16('.'),
1238 const_cpu_to_le16('s'), const_cpu_to_le16('y'),
1239 const_cpu_to_le16('s'), 0 };
1241 ntfs_debug("Entering.");
1243 * Find the inode number for the hibernation file by looking up the
1244 * filename hiberfil.sys in the root directory.
1246 mutex_lock(&vol
->root_ino
->i_mutex
);
1247 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->root_ino
), hiberfil
, 12,
1249 mutex_unlock(&vol
->root_ino
->i_mutex
);
1250 if (IS_ERR_MREF(mref
)) {
1251 ret
= MREF_ERR(mref
);
1252 /* If the file does not exist, Windows is not hibernated. */
1253 if (ret
== -ENOENT
) {
1254 ntfs_debug("hiberfil.sys not present. Windows is not "
1255 "hibernated on the volume.");
1258 /* A real error occured. */
1259 ntfs_error(vol
->sb
, "Failed to find inode number for "
1263 /* We do not care for the type of match that was found. */
1265 /* Get the inode. */
1266 vi
= ntfs_iget(vol
->sb
, MREF(mref
));
1267 if (IS_ERR(vi
) || is_bad_inode(vi
)) {
1270 ntfs_error(vol
->sb
, "Failed to load hiberfil.sys.");
1271 return IS_ERR(vi
) ? PTR_ERR(vi
) : -EIO
;
1273 if (unlikely(i_size_read(vi
) < NTFS_HIBERFIL_HEADER_SIZE
)) {
1274 ntfs_debug("hiberfil.sys is smaller than 4kiB (0x%llx). "
1275 "Windows is hibernated on the volume. This "
1276 "is not the system volume.", i_size_read(vi
));
1280 page
= ntfs_map_page(vi
->i_mapping
, 0);
1282 ntfs_error(vol
->sb
, "Failed to read from hiberfil.sys.");
1283 ret
= PTR_ERR(page
);
1286 kaddr
= (u32
*)page_address(page
);
1287 if (*(le32
*)kaddr
== const_cpu_to_le32(0x72626968)/*'hibr'*/) {
1288 ntfs_debug("Magic \"hibr\" found in hiberfil.sys. Windows is "
1289 "hibernated on the volume. This is the "
1293 kend
= kaddr
+ NTFS_HIBERFIL_HEADER_SIZE
/sizeof(*kaddr
);
1295 if (unlikely(*kaddr
)) {
1296 ntfs_debug("hiberfil.sys is larger than 4kiB "
1297 "(0x%llx), does not contain the "
1298 "\"hibr\" magic, and does not have a "
1299 "zero header. Windows is hibernated "
1300 "on the volume. This is not the "
1301 "system volume.", i_size_read(vi
));
1304 } while (++kaddr
< kend
);
1305 ntfs_debug("hiberfil.sys contains a zero header. Windows is not "
1306 "hibernated on the volume. This is the system "
1310 ntfs_unmap_page(page
);
1317 * load_and_init_quota - load and setup the quota file for a volume if present
1318 * @vol: ntfs super block describing device whose quota file to load
1320 * Return TRUE on success or FALSE on error. If $Quota is not present, we
1321 * leave vol->quota_ino as NULL and return success.
1323 static BOOL
load_and_init_quota(ntfs_volume
*vol
)
1326 struct inode
*tmp_ino
;
1327 ntfs_name
*name
= NULL
;
1328 static const ntfschar Quota
[7] = { const_cpu_to_le16('$'),
1329 const_cpu_to_le16('Q'), const_cpu_to_le16('u'),
1330 const_cpu_to_le16('o'), const_cpu_to_le16('t'),
1331 const_cpu_to_le16('a'), 0 };
1332 static ntfschar Q
[3] = { const_cpu_to_le16('$'),
1333 const_cpu_to_le16('Q'), 0 };
1335 ntfs_debug("Entering.");
1337 * Find the inode number for the quota file by looking up the filename
1338 * $Quota in the extended system files directory $Extend.
1340 mutex_lock(&vol
->extend_ino
->i_mutex
);
1341 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->extend_ino
), Quota
, 6,
1343 mutex_unlock(&vol
->extend_ino
->i_mutex
);
1344 if (IS_ERR_MREF(mref
)) {
1346 * If the file does not exist, quotas are disabled and have
1347 * never been enabled on this volume, just return success.
1349 if (MREF_ERR(mref
) == -ENOENT
) {
1350 ntfs_debug("$Quota not present. Volume does not have "
1353 * No need to try to set quotas out of date if they are
1356 NVolSetQuotaOutOfDate(vol
);
1359 /* A real error occured. */
1360 ntfs_error(vol
->sb
, "Failed to find inode number for $Quota.");
1363 /* We do not care for the type of match that was found. */
1365 /* Get the inode. */
1366 tmp_ino
= ntfs_iget(vol
->sb
, MREF(mref
));
1367 if (IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
)) {
1368 if (!IS_ERR(tmp_ino
))
1370 ntfs_error(vol
->sb
, "Failed to load $Quota.");
1373 vol
->quota_ino
= tmp_ino
;
1374 /* Get the $Q index allocation attribute. */
1375 tmp_ino
= ntfs_index_iget(vol
->quota_ino
, Q
, 2);
1376 if (IS_ERR(tmp_ino
)) {
1377 ntfs_error(vol
->sb
, "Failed to load $Quota/$Q index.");
1380 vol
->quota_q_ino
= tmp_ino
;
1381 ntfs_debug("Done.");
1386 * load_and_init_usnjrnl - load and setup the transaction log if present
1387 * @vol: ntfs super block describing device whose usnjrnl file to load
1389 * Return TRUE on success or FALSE on error.
1391 * If $UsnJrnl is not present or in the process of being disabled, we set
1392 * NVolUsnJrnlStamped() and return success.
1394 * If the $UsnJrnl $DATA/$J attribute has a size equal to the lowest valid usn,
1395 * i.e. transaction logging has only just been enabled or the journal has been
1396 * stamped and nothing has been logged since, we also set NVolUsnJrnlStamped()
1397 * and return success.
1399 static BOOL
load_and_init_usnjrnl(ntfs_volume
*vol
)
1402 struct inode
*tmp_ino
;
1405 ntfs_name
*name
= NULL
;
1407 static const ntfschar UsnJrnl
[9] = { const_cpu_to_le16('$'),
1408 const_cpu_to_le16('U'), const_cpu_to_le16('s'),
1409 const_cpu_to_le16('n'), const_cpu_to_le16('J'),
1410 const_cpu_to_le16('r'), const_cpu_to_le16('n'),
1411 const_cpu_to_le16('l'), 0 };
1412 static ntfschar Max
[5] = { const_cpu_to_le16('$'),
1413 const_cpu_to_le16('M'), const_cpu_to_le16('a'),
1414 const_cpu_to_le16('x'), 0 };
1415 static ntfschar J
[3] = { const_cpu_to_le16('$'),
1416 const_cpu_to_le16('J'), 0 };
1418 ntfs_debug("Entering.");
1420 * Find the inode number for the transaction log file by looking up the
1421 * filename $UsnJrnl in the extended system files directory $Extend.
1423 mutex_lock(&vol
->extend_ino
->i_mutex
);
1424 mref
= ntfs_lookup_inode_by_name(NTFS_I(vol
->extend_ino
), UsnJrnl
, 8,
1426 mutex_unlock(&vol
->extend_ino
->i_mutex
);
1427 if (IS_ERR_MREF(mref
)) {
1429 * If the file does not exist, transaction logging is disabled,
1430 * just return success.
1432 if (MREF_ERR(mref
) == -ENOENT
) {
1433 ntfs_debug("$UsnJrnl not present. Volume does not "
1434 "have transaction logging enabled.");
1437 * No need to try to stamp the transaction log if
1438 * transaction logging is not enabled.
1440 NVolSetUsnJrnlStamped(vol
);
1443 /* A real error occured. */
1444 ntfs_error(vol
->sb
, "Failed to find inode number for "
1448 /* We do not care for the type of match that was found. */
1450 /* Get the inode. */
1451 tmp_ino
= ntfs_iget(vol
->sb
, MREF(mref
));
1452 if (unlikely(IS_ERR(tmp_ino
) || is_bad_inode(tmp_ino
))) {
1453 if (!IS_ERR(tmp_ino
))
1455 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl.");
1458 vol
->usnjrnl_ino
= tmp_ino
;
1460 * If the transaction log is in the process of being deleted, we can
1463 if (unlikely(vol
->vol_flags
& VOLUME_DELETE_USN_UNDERWAY
)) {
1464 ntfs_debug("$UsnJrnl in the process of being disabled. "
1465 "Volume does not have transaction logging "
1469 /* Get the $DATA/$Max attribute. */
1470 tmp_ino
= ntfs_attr_iget(vol
->usnjrnl_ino
, AT_DATA
, Max
, 4);
1471 if (IS_ERR(tmp_ino
)) {
1472 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl/$DATA/$Max "
1476 vol
->usnjrnl_max_ino
= tmp_ino
;
1477 if (unlikely(i_size_read(tmp_ino
) < sizeof(USN_HEADER
))) {
1478 ntfs_error(vol
->sb
, "Found corrupt $UsnJrnl/$DATA/$Max "
1479 "attribute (size is 0x%llx but should be at "
1480 "least 0x%zx bytes).", i_size_read(tmp_ino
),
1481 sizeof(USN_HEADER
));
1484 /* Get the $DATA/$J attribute. */
1485 tmp_ino
= ntfs_attr_iget(vol
->usnjrnl_ino
, AT_DATA
, J
, 2);
1486 if (IS_ERR(tmp_ino
)) {
1487 ntfs_error(vol
->sb
, "Failed to load $UsnJrnl/$DATA/$J "
1491 vol
->usnjrnl_j_ino
= tmp_ino
;
1492 /* Verify $J is non-resident and sparse. */
1493 tmp_ni
= NTFS_I(vol
->usnjrnl_j_ino
);
1494 if (unlikely(!NInoNonResident(tmp_ni
) || !NInoSparse(tmp_ni
))) {
1495 ntfs_error(vol
->sb
, "$UsnJrnl/$DATA/$J attribute is resident "
1496 "and/or not sparse.");
1499 /* Read the USN_HEADER from $DATA/$Max. */
1500 page
= ntfs_map_page(vol
->usnjrnl_max_ino
->i_mapping
, 0);
1502 ntfs_error(vol
->sb
, "Failed to read from $UsnJrnl/$DATA/$Max "
1506 uh
= (USN_HEADER
*)page_address(page
);
1507 /* Sanity check the $Max. */
1508 if (unlikely(sle64_to_cpu(uh
->allocation_delta
) >
1509 sle64_to_cpu(uh
->maximum_size
))) {
1510 ntfs_error(vol
->sb
, "Allocation delta (0x%llx) exceeds "
1511 "maximum size (0x%llx). $UsnJrnl is corrupt.",
1512 (long long)sle64_to_cpu(uh
->allocation_delta
),
1513 (long long)sle64_to_cpu(uh
->maximum_size
));
1514 ntfs_unmap_page(page
);
1518 * If the transaction log has been stamped and nothing has been written
1519 * to it since, we do not need to stamp it.
1521 if (unlikely(sle64_to_cpu(uh
->lowest_valid_usn
) >=
1522 i_size_read(vol
->usnjrnl_j_ino
))) {
1523 if (likely(sle64_to_cpu(uh
->lowest_valid_usn
) ==
1524 i_size_read(vol
->usnjrnl_j_ino
))) {
1525 ntfs_unmap_page(page
);
1526 ntfs_debug("$UsnJrnl is enabled but nothing has been "
1527 "logged since it was last stamped. "
1528 "Treating this as if the volume does "
1529 "not have transaction logging "
1533 ntfs_error(vol
->sb
, "$UsnJrnl has lowest valid usn (0x%llx) "
1534 "which is out of bounds (0x%llx). $UsnJrnl "
1536 (long long)sle64_to_cpu(uh
->lowest_valid_usn
),
1537 i_size_read(vol
->usnjrnl_j_ino
));
1538 ntfs_unmap_page(page
);
1541 ntfs_unmap_page(page
);
1542 ntfs_debug("Done.");
1547 * load_and_init_attrdef - load the attribute definitions table for a volume
1548 * @vol: ntfs super block describing device whose attrdef to load
1550 * Return TRUE on success or FALSE on error.
1552 static BOOL
load_and_init_attrdef(ntfs_volume
*vol
)
1555 struct super_block
*sb
= vol
->sb
;
1558 pgoff_t index
, max_index
;
1561 ntfs_debug("Entering.");
1562 /* Read attrdef table and setup vol->attrdef and vol->attrdef_size. */
1563 ino
= ntfs_iget(sb
, FILE_AttrDef
);
1564 if (IS_ERR(ino
) || is_bad_inode(ino
)) {
1569 NInoSetSparseDisabled(NTFS_I(ino
));
1570 /* The size of FILE_AttrDef must be above 0 and fit inside 31 bits. */
1571 i_size
= i_size_read(ino
);
1572 if (i_size
<= 0 || i_size
> 0x7fffffff)
1574 vol
->attrdef
= (ATTR_DEF
*)ntfs_malloc_nofs(i_size
);
1578 max_index
= i_size
>> PAGE_CACHE_SHIFT
;
1579 size
= PAGE_CACHE_SIZE
;
1580 while (index
< max_index
) {
1581 /* Read the attrdef table and copy it into the linear buffer. */
1582 read_partial_attrdef_page
:
1583 page
= ntfs_map_page(ino
->i_mapping
, index
);
1585 goto free_iput_failed
;
1586 memcpy((u8
*)vol
->attrdef
+ (index
++ << PAGE_CACHE_SHIFT
),
1587 page_address(page
), size
);
1588 ntfs_unmap_page(page
);
1590 if (size
== PAGE_CACHE_SIZE
) {
1591 size
= i_size
& ~PAGE_CACHE_MASK
;
1593 goto read_partial_attrdef_page
;
1595 vol
->attrdef_size
= i_size
;
1596 ntfs_debug("Read %llu bytes from $AttrDef.", i_size
);
1600 ntfs_free(vol
->attrdef
);
1601 vol
->attrdef
= NULL
;
1605 ntfs_error(sb
, "Failed to initialize attribute definition table.");
1609 #endif /* NTFS_RW */
1612 * load_and_init_upcase - load the upcase table for an ntfs volume
1613 * @vol: ntfs super block describing device whose upcase to load
1615 * Return TRUE on success or FALSE on error.
1617 static BOOL
load_and_init_upcase(ntfs_volume
*vol
)
1620 struct super_block
*sb
= vol
->sb
;
1623 pgoff_t index
, max_index
;
1627 ntfs_debug("Entering.");
1628 /* Read upcase table and setup vol->upcase and vol->upcase_len. */
1629 ino
= ntfs_iget(sb
, FILE_UpCase
);
1630 if (IS_ERR(ino
) || is_bad_inode(ino
)) {
1636 * The upcase size must not be above 64k Unicode characters, must not
1637 * be zero and must be a multiple of sizeof(ntfschar).
1639 i_size
= i_size_read(ino
);
1640 if (!i_size
|| i_size
& (sizeof(ntfschar
) - 1) ||
1641 i_size
> 64ULL * 1024 * sizeof(ntfschar
))
1642 goto iput_upcase_failed
;
1643 vol
->upcase
= (ntfschar
*)ntfs_malloc_nofs(i_size
);
1645 goto iput_upcase_failed
;
1647 max_index
= i_size
>> PAGE_CACHE_SHIFT
;
1648 size
= PAGE_CACHE_SIZE
;
1649 while (index
< max_index
) {
1650 /* Read the upcase table and copy it into the linear buffer. */
1651 read_partial_upcase_page
:
1652 page
= ntfs_map_page(ino
->i_mapping
, index
);
1654 goto iput_upcase_failed
;
1655 memcpy((char*)vol
->upcase
+ (index
++ << PAGE_CACHE_SHIFT
),
1656 page_address(page
), size
);
1657 ntfs_unmap_page(page
);
1659 if (size
== PAGE_CACHE_SIZE
) {
1660 size
= i_size
& ~PAGE_CACHE_MASK
;
1662 goto read_partial_upcase_page
;
1664 vol
->upcase_len
= i_size
>> UCHAR_T_SIZE_BITS
;
1665 ntfs_debug("Read %llu bytes from $UpCase (expected %zu bytes).",
1666 i_size
, 64 * 1024 * sizeof(ntfschar
));
1669 if (!default_upcase
) {
1670 ntfs_debug("Using volume specified $UpCase since default is "
1675 max
= default_upcase_len
;
1676 if (max
> vol
->upcase_len
)
1677 max
= vol
->upcase_len
;
1678 for (i
= 0; i
< max
; i
++)
1679 if (vol
->upcase
[i
] != default_upcase
[i
])
1682 ntfs_free(vol
->upcase
);
1683 vol
->upcase
= default_upcase
;
1684 vol
->upcase_len
= max
;
1685 ntfs_nr_upcase_users
++;
1687 ntfs_debug("Volume specified $UpCase matches default. Using "
1692 ntfs_debug("Using volume specified $UpCase since it does not match "
1697 ntfs_free(vol
->upcase
);
1701 if (default_upcase
) {
1702 vol
->upcase
= default_upcase
;
1703 vol
->upcase_len
= default_upcase_len
;
1704 ntfs_nr_upcase_users
++;
1706 ntfs_error(sb
, "Failed to load $UpCase from the volume. Using "
1711 ntfs_error(sb
, "Failed to initialize upcase table.");
1716 * load_system_files - open the system files using normal functions
1717 * @vol: ntfs super block describing device whose system files to load
1719 * Open the system files with normal access functions and complete setting up
1720 * the ntfs super block @vol.
1722 * Return TRUE on success or FALSE on error.
1724 static BOOL
load_system_files(ntfs_volume
*vol
)
1726 struct super_block
*sb
= vol
->sb
;
1728 VOLUME_INFORMATION
*vi
;
1729 ntfs_attr_search_ctx
*ctx
;
1731 RESTART_PAGE_HEADER
*rp
;
1733 #endif /* NTFS_RW */
1735 ntfs_debug("Entering.");
1737 /* Get mft mirror inode compare the contents of $MFT and $MFTMirr. */
1738 if (!load_and_init_mft_mirror(vol
) || !check_mft_mirror(vol
)) {
1739 static const char *es1
= "Failed to load $MFTMirr";
1740 static const char *es2
= "$MFTMirr does not match $MFT";
1741 static const char *es3
= ". Run ntfsfix and/or chkdsk.";
1743 /* If a read-write mount, convert it to a read-only mount. */
1744 if (!(sb
->s_flags
& MS_RDONLY
)) {
1745 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1746 ON_ERRORS_CONTINUE
))) {
1747 ntfs_error(sb
, "%s and neither on_errors="
1748 "continue nor on_errors="
1749 "remount-ro was specified%s",
1750 !vol
->mftmirr_ino
? es1
: es2
,
1752 goto iput_mirr_err_out
;
1754 sb
->s_flags
|= MS_RDONLY
;
1755 ntfs_error(sb
, "%s. Mounting read-only%s",
1756 !vol
->mftmirr_ino
? es1
: es2
, es3
);
1758 ntfs_warning(sb
, "%s. Will not be able to remount "
1760 !vol
->mftmirr_ino
? es1
: es2
, es3
);
1761 /* This will prevent a read-write remount. */
1764 #endif /* NTFS_RW */
1765 /* Get mft bitmap attribute inode. */
1766 vol
->mftbmp_ino
= ntfs_attr_iget(vol
->mft_ino
, AT_BITMAP
, NULL
, 0);
1767 if (IS_ERR(vol
->mftbmp_ino
)) {
1768 ntfs_error(sb
, "Failed to load $MFT/$BITMAP attribute.");
1769 goto iput_mirr_err_out
;
1771 /* Read upcase table and setup @vol->upcase and @vol->upcase_len. */
1772 if (!load_and_init_upcase(vol
))
1773 goto iput_mftbmp_err_out
;
1776 * Read attribute definitions table and setup @vol->attrdef and
1777 * @vol->attrdef_size.
1779 if (!load_and_init_attrdef(vol
))
1780 goto iput_upcase_err_out
;
1781 #endif /* NTFS_RW */
1783 * Get the cluster allocation bitmap inode and verify the size, no
1784 * need for any locking at this stage as we are already running
1785 * exclusively as we are mount in progress task.
1787 vol
->lcnbmp_ino
= ntfs_iget(sb
, FILE_Bitmap
);
1788 if (IS_ERR(vol
->lcnbmp_ino
) || is_bad_inode(vol
->lcnbmp_ino
)) {
1789 if (!IS_ERR(vol
->lcnbmp_ino
))
1790 iput(vol
->lcnbmp_ino
);
1793 NInoSetSparseDisabled(NTFS_I(vol
->lcnbmp_ino
));
1794 if ((vol
->nr_clusters
+ 7) >> 3 > i_size_read(vol
->lcnbmp_ino
)) {
1795 iput(vol
->lcnbmp_ino
);
1797 ntfs_error(sb
, "Failed to load $Bitmap.");
1798 goto iput_attrdef_err_out
;
1801 * Get the volume inode and setup our cache of the volume flags and
1804 vol
->vol_ino
= ntfs_iget(sb
, FILE_Volume
);
1805 if (IS_ERR(vol
->vol_ino
) || is_bad_inode(vol
->vol_ino
)) {
1806 if (!IS_ERR(vol
->vol_ino
))
1809 ntfs_error(sb
, "Failed to load $Volume.");
1810 goto iput_lcnbmp_err_out
;
1812 m
= map_mft_record(NTFS_I(vol
->vol_ino
));
1818 if (!(ctx
= ntfs_attr_get_search_ctx(NTFS_I(vol
->vol_ino
), m
))) {
1819 ntfs_error(sb
, "Failed to get attribute search context.");
1820 goto get_ctx_vol_failed
;
1822 if (ntfs_attr_lookup(AT_VOLUME_INFORMATION
, NULL
, 0, 0, 0, NULL
, 0,
1823 ctx
) || ctx
->attr
->non_resident
|| ctx
->attr
->flags
) {
1825 ntfs_attr_put_search_ctx(ctx
);
1827 unmap_mft_record(NTFS_I(vol
->vol_ino
));
1828 goto iput_volume_failed
;
1830 vi
= (VOLUME_INFORMATION
*)((char*)ctx
->attr
+
1831 le16_to_cpu(ctx
->attr
->data
.resident
.value_offset
));
1832 /* Some bounds checks. */
1833 if ((u8
*)vi
< (u8
*)ctx
->attr
|| (u8
*)vi
+
1834 le32_to_cpu(ctx
->attr
->data
.resident
.value_length
) >
1835 (u8
*)ctx
->attr
+ le32_to_cpu(ctx
->attr
->length
))
1837 /* Copy the volume flags and version to the ntfs_volume structure. */
1838 vol
->vol_flags
= vi
->flags
;
1839 vol
->major_ver
= vi
->major_ver
;
1840 vol
->minor_ver
= vi
->minor_ver
;
1841 ntfs_attr_put_search_ctx(ctx
);
1842 unmap_mft_record(NTFS_I(vol
->vol_ino
));
1843 printk(KERN_INFO
"NTFS volume version %i.%i.\n", vol
->major_ver
,
1845 if (vol
->major_ver
< 3 && NVolSparseEnabled(vol
)) {
1846 ntfs_warning(vol
->sb
, "Disabling sparse support due to NTFS "
1847 "volume version %i.%i (need at least version "
1848 "3.0).", vol
->major_ver
, vol
->minor_ver
);
1849 NVolClearSparseEnabled(vol
);
1852 /* Make sure that no unsupported volume flags are set. */
1853 if (vol
->vol_flags
& VOLUME_MUST_MOUNT_RO_MASK
) {
1854 static const char *es1a
= "Volume is dirty";
1855 static const char *es1b
= "Volume has been modified by chkdsk";
1856 static const char *es1c
= "Volume has unsupported flags set";
1857 static const char *es2a
= ". Run chkdsk and mount in Windows.";
1858 static const char *es2b
= ". Mount in Windows.";
1859 const char *es1
, *es2
;
1862 if (vol
->vol_flags
& VOLUME_IS_DIRTY
)
1864 else if (vol
->vol_flags
& VOLUME_MODIFIED_BY_CHKDSK
) {
1869 ntfs_warning(sb
, "Unsupported volume flags 0x%x "
1871 (unsigned)le16_to_cpu(vol
->vol_flags
));
1873 /* If a read-write mount, convert it to a read-only mount. */
1874 if (!(sb
->s_flags
& MS_RDONLY
)) {
1875 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1876 ON_ERRORS_CONTINUE
))) {
1877 ntfs_error(sb
, "%s and neither on_errors="
1878 "continue nor on_errors="
1879 "remount-ro was specified%s",
1881 goto iput_vol_err_out
;
1883 sb
->s_flags
|= MS_RDONLY
;
1884 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1886 ntfs_warning(sb
, "%s. Will not be able to remount "
1887 "read-write%s", es1
, es2
);
1889 * Do not set NVolErrors() because ntfs_remount() re-checks the
1890 * flags which we need to do in case any flags have changed.
1894 * Get the inode for the logfile, check it and determine if the volume
1895 * was shutdown cleanly.
1898 if (!load_and_check_logfile(vol
, &rp
) ||
1899 !ntfs_is_logfile_clean(vol
->logfile_ino
, rp
)) {
1900 static const char *es1a
= "Failed to load $LogFile";
1901 static const char *es1b
= "$LogFile is not clean";
1902 static const char *es2
= ". Mount in Windows.";
1905 es1
= !vol
->logfile_ino
? es1a
: es1b
;
1906 /* If a read-write mount, convert it to a read-only mount. */
1907 if (!(sb
->s_flags
& MS_RDONLY
)) {
1908 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1909 ON_ERRORS_CONTINUE
))) {
1910 ntfs_error(sb
, "%s and neither on_errors="
1911 "continue nor on_errors="
1912 "remount-ro was specified%s",
1914 if (vol
->logfile_ino
) {
1918 goto iput_logfile_err_out
;
1920 sb
->s_flags
|= MS_RDONLY
;
1921 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1923 ntfs_warning(sb
, "%s. Will not be able to remount "
1924 "read-write%s", es1
, es2
);
1925 /* This will prevent a read-write remount. */
1929 #endif /* NTFS_RW */
1930 /* Get the root directory inode so we can do path lookups. */
1931 vol
->root_ino
= ntfs_iget(sb
, FILE_root
);
1932 if (IS_ERR(vol
->root_ino
) || is_bad_inode(vol
->root_ino
)) {
1933 if (!IS_ERR(vol
->root_ino
))
1934 iput(vol
->root_ino
);
1935 ntfs_error(sb
, "Failed to load root directory.");
1936 goto iput_logfile_err_out
;
1940 * Check if Windows is suspended to disk on the target volume. If it
1941 * is hibernated, we must not write *anything* to the disk so set
1942 * NVolErrors() without setting the dirty volume flag and mount
1943 * read-only. This will prevent read-write remounting and it will also
1944 * prevent all writes.
1946 err
= check_windows_hibernation_status(vol
);
1947 if (unlikely(err
)) {
1948 static const char *es1a
= "Failed to determine if Windows is "
1950 static const char *es1b
= "Windows is hibernated";
1951 static const char *es2
= ". Run chkdsk.";
1954 es1
= err
< 0 ? es1a
: es1b
;
1955 /* If a read-write mount, convert it to a read-only mount. */
1956 if (!(sb
->s_flags
& MS_RDONLY
)) {
1957 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1958 ON_ERRORS_CONTINUE
))) {
1959 ntfs_error(sb
, "%s and neither on_errors="
1960 "continue nor on_errors="
1961 "remount-ro was specified%s",
1963 goto iput_root_err_out
;
1965 sb
->s_flags
|= MS_RDONLY
;
1966 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1968 ntfs_warning(sb
, "%s. Will not be able to remount "
1969 "read-write%s", es1
, es2
);
1970 /* This will prevent a read-write remount. */
1973 /* If (still) a read-write mount, mark the volume dirty. */
1974 if (!(sb
->s_flags
& MS_RDONLY
) &&
1975 ntfs_set_volume_flags(vol
, VOLUME_IS_DIRTY
)) {
1976 static const char *es1
= "Failed to set dirty bit in volume "
1977 "information flags";
1978 static const char *es2
= ". Run chkdsk.";
1980 /* Convert to a read-only mount. */
1981 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
1982 ON_ERRORS_CONTINUE
))) {
1983 ntfs_error(sb
, "%s and neither on_errors=continue nor "
1984 "on_errors=remount-ro was specified%s",
1986 goto iput_root_err_out
;
1988 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
1989 sb
->s_flags
|= MS_RDONLY
;
1991 * Do not set NVolErrors() because ntfs_remount() might manage
1992 * to set the dirty flag in which case all would be well.
1996 // TODO: Enable this code once we start modifying anything that is
1997 // different between NTFS 1.2 and 3.x...
1999 * If (still) a read-write mount, set the NT4 compatibility flag on
2000 * newer NTFS version volumes.
2002 if (!(sb
->s_flags
& MS_RDONLY
) && (vol
->major_ver
> 1) &&
2003 ntfs_set_volume_flags(vol
, VOLUME_MOUNTED_ON_NT4
)) {
2004 static const char *es1
= "Failed to set NT4 compatibility flag";
2005 static const char *es2
= ". Run chkdsk.";
2007 /* Convert to a read-only mount. */
2008 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2009 ON_ERRORS_CONTINUE
))) {
2010 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2011 "on_errors=remount-ro was specified%s",
2013 goto iput_root_err_out
;
2015 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2016 sb
->s_flags
|= MS_RDONLY
;
2020 /* If (still) a read-write mount, empty the logfile. */
2021 if (!(sb
->s_flags
& MS_RDONLY
) &&
2022 !ntfs_empty_logfile(vol
->logfile_ino
)) {
2023 static const char *es1
= "Failed to empty $LogFile";
2024 static const char *es2
= ". Mount in Windows.";
2026 /* Convert to a read-only mount. */
2027 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2028 ON_ERRORS_CONTINUE
))) {
2029 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2030 "on_errors=remount-ro was specified%s",
2032 goto iput_root_err_out
;
2034 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2035 sb
->s_flags
|= MS_RDONLY
;
2038 #endif /* NTFS_RW */
2039 /* If on NTFS versions before 3.0, we are done. */
2040 if (unlikely(vol
->major_ver
< 3))
2042 /* NTFS 3.0+ specific initialization. */
2043 /* Get the security descriptors inode. */
2044 vol
->secure_ino
= ntfs_iget(sb
, FILE_Secure
);
2045 if (IS_ERR(vol
->secure_ino
) || is_bad_inode(vol
->secure_ino
)) {
2046 if (!IS_ERR(vol
->secure_ino
))
2047 iput(vol
->secure_ino
);
2048 ntfs_error(sb
, "Failed to load $Secure.");
2049 goto iput_root_err_out
;
2051 // TODO: Initialize security.
2052 /* Get the extended system files' directory inode. */
2053 vol
->extend_ino
= ntfs_iget(sb
, FILE_Extend
);
2054 if (IS_ERR(vol
->extend_ino
) || is_bad_inode(vol
->extend_ino
)) {
2055 if (!IS_ERR(vol
->extend_ino
))
2056 iput(vol
->extend_ino
);
2057 ntfs_error(sb
, "Failed to load $Extend.");
2058 goto iput_sec_err_out
;
2061 /* Find the quota file, load it if present, and set it up. */
2062 if (!load_and_init_quota(vol
)) {
2063 static const char *es1
= "Failed to load $Quota";
2064 static const char *es2
= ". Run chkdsk.";
2066 /* If a read-write mount, convert it to a read-only mount. */
2067 if (!(sb
->s_flags
& MS_RDONLY
)) {
2068 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2069 ON_ERRORS_CONTINUE
))) {
2070 ntfs_error(sb
, "%s and neither on_errors="
2071 "continue nor on_errors="
2072 "remount-ro was specified%s",
2074 goto iput_quota_err_out
;
2076 sb
->s_flags
|= MS_RDONLY
;
2077 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2079 ntfs_warning(sb
, "%s. Will not be able to remount "
2080 "read-write%s", es1
, es2
);
2081 /* This will prevent a read-write remount. */
2084 /* If (still) a read-write mount, mark the quotas out of date. */
2085 if (!(sb
->s_flags
& MS_RDONLY
) &&
2086 !ntfs_mark_quotas_out_of_date(vol
)) {
2087 static const char *es1
= "Failed to mark quotas out of date";
2088 static const char *es2
= ". Run chkdsk.";
2090 /* Convert to a read-only mount. */
2091 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2092 ON_ERRORS_CONTINUE
))) {
2093 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2094 "on_errors=remount-ro was specified%s",
2096 goto iput_quota_err_out
;
2098 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2099 sb
->s_flags
|= MS_RDONLY
;
2103 * Find the transaction log file ($UsnJrnl), load it if present, check
2104 * it, and set it up.
2106 if (!load_and_init_usnjrnl(vol
)) {
2107 static const char *es1
= "Failed to load $UsnJrnl";
2108 static const char *es2
= ". Run chkdsk.";
2110 /* If a read-write mount, convert it to a read-only mount. */
2111 if (!(sb
->s_flags
& MS_RDONLY
)) {
2112 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2113 ON_ERRORS_CONTINUE
))) {
2114 ntfs_error(sb
, "%s and neither on_errors="
2115 "continue nor on_errors="
2116 "remount-ro was specified%s",
2118 goto iput_usnjrnl_err_out
;
2120 sb
->s_flags
|= MS_RDONLY
;
2121 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2123 ntfs_warning(sb
, "%s. Will not be able to remount "
2124 "read-write%s", es1
, es2
);
2125 /* This will prevent a read-write remount. */
2128 /* If (still) a read-write mount, stamp the transaction log. */
2129 if (!(sb
->s_flags
& MS_RDONLY
) && !ntfs_stamp_usnjrnl(vol
)) {
2130 static const char *es1
= "Failed to stamp transaction log "
2132 static const char *es2
= ". Run chkdsk.";
2134 /* Convert to a read-only mount. */
2135 if (!(vol
->on_errors
& (ON_ERRORS_REMOUNT_RO
|
2136 ON_ERRORS_CONTINUE
))) {
2137 ntfs_error(sb
, "%s and neither on_errors=continue nor "
2138 "on_errors=remount-ro was specified%s",
2140 goto iput_usnjrnl_err_out
;
2142 ntfs_error(sb
, "%s. Mounting read-only%s", es1
, es2
);
2143 sb
->s_flags
|= MS_RDONLY
;
2146 #endif /* NTFS_RW */
2149 iput_usnjrnl_err_out
:
2150 if (vol
->usnjrnl_j_ino
)
2151 iput(vol
->usnjrnl_j_ino
);
2152 if (vol
->usnjrnl_max_ino
)
2153 iput(vol
->usnjrnl_max_ino
);
2154 if (vol
->usnjrnl_ino
)
2155 iput(vol
->usnjrnl_ino
);
2157 if (vol
->quota_q_ino
)
2158 iput(vol
->quota_q_ino
);
2160 iput(vol
->quota_ino
);
2161 iput(vol
->extend_ino
);
2162 #endif /* NTFS_RW */
2164 iput(vol
->secure_ino
);
2166 iput(vol
->root_ino
);
2167 iput_logfile_err_out
:
2169 if (vol
->logfile_ino
)
2170 iput(vol
->logfile_ino
);
2172 #endif /* NTFS_RW */
2174 iput_lcnbmp_err_out
:
2175 iput(vol
->lcnbmp_ino
);
2176 iput_attrdef_err_out
:
2177 vol
->attrdef_size
= 0;
2179 ntfs_free(vol
->attrdef
);
2180 vol
->attrdef
= NULL
;
2183 iput_upcase_err_out
:
2184 #endif /* NTFS_RW */
2185 vol
->upcase_len
= 0;
2187 if (vol
->upcase
== default_upcase
) {
2188 ntfs_nr_upcase_users
--;
2193 ntfs_free(vol
->upcase
);
2196 iput_mftbmp_err_out
:
2197 iput(vol
->mftbmp_ino
);
2200 if (vol
->mftmirr_ino
)
2201 iput(vol
->mftmirr_ino
);
2202 #endif /* NTFS_RW */
2207 * ntfs_put_super - called by the vfs to unmount a volume
2208 * @sb: vfs superblock of volume to unmount
2210 * ntfs_put_super() is called by the VFS (from fs/super.c::do_umount()) when
2211 * the volume is being unmounted (umount system call has been invoked) and it
2212 * releases all inodes and memory belonging to the NTFS specific part of the
2215 static void ntfs_put_super(struct super_block
*sb
)
2217 ntfs_volume
*vol
= NTFS_SB(sb
);
2219 ntfs_debug("Entering.");
2222 * Commit all inodes while they are still open in case some of them
2223 * cause others to be dirtied.
2225 ntfs_commit_inode(vol
->vol_ino
);
2227 /* NTFS 3.0+ specific. */
2228 if (vol
->major_ver
>= 3) {
2229 if (vol
->usnjrnl_j_ino
)
2230 ntfs_commit_inode(vol
->usnjrnl_j_ino
);
2231 if (vol
->usnjrnl_max_ino
)
2232 ntfs_commit_inode(vol
->usnjrnl_max_ino
);
2233 if (vol
->usnjrnl_ino
)
2234 ntfs_commit_inode(vol
->usnjrnl_ino
);
2235 if (vol
->quota_q_ino
)
2236 ntfs_commit_inode(vol
->quota_q_ino
);
2238 ntfs_commit_inode(vol
->quota_ino
);
2239 if (vol
->extend_ino
)
2240 ntfs_commit_inode(vol
->extend_ino
);
2241 if (vol
->secure_ino
)
2242 ntfs_commit_inode(vol
->secure_ino
);
2245 ntfs_commit_inode(vol
->root_ino
);
2247 down_write(&vol
->lcnbmp_lock
);
2248 ntfs_commit_inode(vol
->lcnbmp_ino
);
2249 up_write(&vol
->lcnbmp_lock
);
2251 down_write(&vol
->mftbmp_lock
);
2252 ntfs_commit_inode(vol
->mftbmp_ino
);
2253 up_write(&vol
->mftbmp_lock
);
2255 if (vol
->logfile_ino
)
2256 ntfs_commit_inode(vol
->logfile_ino
);
2258 if (vol
->mftmirr_ino
)
2259 ntfs_commit_inode(vol
->mftmirr_ino
);
2260 ntfs_commit_inode(vol
->mft_ino
);
2263 * If a read-write mount and no volume errors have occured, mark the
2264 * volume clean. Also, re-commit all affected inodes.
2266 if (!(sb
->s_flags
& MS_RDONLY
)) {
2267 if (!NVolErrors(vol
)) {
2268 if (ntfs_clear_volume_flags(vol
, VOLUME_IS_DIRTY
))
2269 ntfs_warning(sb
, "Failed to clear dirty bit "
2270 "in volume information "
2271 "flags. Run chkdsk.");
2272 ntfs_commit_inode(vol
->vol_ino
);
2273 ntfs_commit_inode(vol
->root_ino
);
2274 if (vol
->mftmirr_ino
)
2275 ntfs_commit_inode(vol
->mftmirr_ino
);
2276 ntfs_commit_inode(vol
->mft_ino
);
2278 ntfs_warning(sb
, "Volume has errors. Leaving volume "
2279 "marked dirty. Run chkdsk.");
2282 #endif /* NTFS_RW */
2285 vol
->vol_ino
= NULL
;
2287 /* NTFS 3.0+ specific clean up. */
2288 if (vol
->major_ver
>= 3) {
2290 if (vol
->usnjrnl_j_ino
) {
2291 iput(vol
->usnjrnl_j_ino
);
2292 vol
->usnjrnl_j_ino
= NULL
;
2294 if (vol
->usnjrnl_max_ino
) {
2295 iput(vol
->usnjrnl_max_ino
);
2296 vol
->usnjrnl_max_ino
= NULL
;
2298 if (vol
->usnjrnl_ino
) {
2299 iput(vol
->usnjrnl_ino
);
2300 vol
->usnjrnl_ino
= NULL
;
2302 if (vol
->quota_q_ino
) {
2303 iput(vol
->quota_q_ino
);
2304 vol
->quota_q_ino
= NULL
;
2306 if (vol
->quota_ino
) {
2307 iput(vol
->quota_ino
);
2308 vol
->quota_ino
= NULL
;
2310 #endif /* NTFS_RW */
2311 if (vol
->extend_ino
) {
2312 iput(vol
->extend_ino
);
2313 vol
->extend_ino
= NULL
;
2315 if (vol
->secure_ino
) {
2316 iput(vol
->secure_ino
);
2317 vol
->secure_ino
= NULL
;
2321 iput(vol
->root_ino
);
2322 vol
->root_ino
= NULL
;
2324 down_write(&vol
->lcnbmp_lock
);
2325 iput(vol
->lcnbmp_ino
);
2326 vol
->lcnbmp_ino
= NULL
;
2327 up_write(&vol
->lcnbmp_lock
);
2329 down_write(&vol
->mftbmp_lock
);
2330 iput(vol
->mftbmp_ino
);
2331 vol
->mftbmp_ino
= NULL
;
2332 up_write(&vol
->mftbmp_lock
);
2335 if (vol
->logfile_ino
) {
2336 iput(vol
->logfile_ino
);
2337 vol
->logfile_ino
= NULL
;
2339 if (vol
->mftmirr_ino
) {
2340 /* Re-commit the mft mirror and mft just in case. */
2341 ntfs_commit_inode(vol
->mftmirr_ino
);
2342 ntfs_commit_inode(vol
->mft_ino
);
2343 iput(vol
->mftmirr_ino
);
2344 vol
->mftmirr_ino
= NULL
;
2347 * If any dirty inodes are left, throw away all mft data page cache
2348 * pages to allow a clean umount. This should never happen any more
2349 * due to mft.c::ntfs_mft_writepage() cleaning all the dirty pages as
2350 * the underlying mft records are written out and cleaned. If it does,
2351 * happen anyway, we want to know...
2353 ntfs_commit_inode(vol
->mft_ino
);
2354 write_inode_now(vol
->mft_ino
, 1);
2355 if (!list_empty(&sb
->s_dirty
)) {
2356 const char *s1
, *s2
;
2358 mutex_lock(&vol
->mft_ino
->i_mutex
);
2359 truncate_inode_pages(vol
->mft_ino
->i_mapping
, 0);
2360 mutex_unlock(&vol
->mft_ino
->i_mutex
);
2361 write_inode_now(vol
->mft_ino
, 1);
2362 if (!list_empty(&sb
->s_dirty
)) {
2363 static const char *_s1
= "inodes";
2364 static const char *_s2
= "";
2368 static const char *_s1
= "mft pages";
2369 static const char *_s2
= "They have been thrown "
2374 ntfs_error(sb
, "Dirty %s found at umount time. %sYou should "
2375 "run chkdsk. Please email "
2376 "linux-ntfs-dev@lists.sourceforge.net and say "
2377 "that you saw this message. Thank you.", s1
,
2380 #endif /* NTFS_RW */
2383 vol
->mft_ino
= NULL
;
2385 /* Throw away the table of attribute definitions. */
2386 vol
->attrdef_size
= 0;
2388 ntfs_free(vol
->attrdef
);
2389 vol
->attrdef
= NULL
;
2391 vol
->upcase_len
= 0;
2393 * Destroy the global default upcase table if necessary. Also decrease
2394 * the number of upcase users if we are a user.
2397 if (vol
->upcase
== default_upcase
) {
2398 ntfs_nr_upcase_users
--;
2401 if (!ntfs_nr_upcase_users
&& default_upcase
) {
2402 ntfs_free(default_upcase
);
2403 default_upcase
= NULL
;
2405 if (vol
->cluster_size
<= 4096 && !--ntfs_nr_compression_users
)
2406 free_compression_buffers();
2409 ntfs_free(vol
->upcase
);
2413 unload_nls(vol
->nls_map
);
2414 vol
->nls_map
= NULL
;
2416 sb
->s_fs_info
= NULL
;
2422 * get_nr_free_clusters - return the number of free clusters on a volume
2423 * @vol: ntfs volume for which to obtain free cluster count
2425 * Calculate the number of free clusters on the mounted NTFS volume @vol. We
2426 * actually calculate the number of clusters in use instead because this
2427 * allows us to not care about partial pages as these will be just zero filled
2428 * and hence not be counted as allocated clusters.
2430 * The only particularity is that clusters beyond the end of the logical ntfs
2431 * volume will be marked as allocated to prevent errors which means we have to
2432 * discount those at the end. This is important as the cluster bitmap always
2433 * has a size in multiples of 8 bytes, i.e. up to 63 clusters could be outside
2434 * the logical volume and marked in use when they are not as they do not exist.
2436 * If any pages cannot be read we assume all clusters in the erroring pages are
2437 * in use. This means we return an underestimate on errors which is better than
2440 static s64
get_nr_free_clusters(ntfs_volume
*vol
)
2442 s64 nr_free
= vol
->nr_clusters
;
2444 struct address_space
*mapping
= vol
->lcnbmp_ino
->i_mapping
;
2445 filler_t
*readpage
= (filler_t
*)mapping
->a_ops
->readpage
;
2447 pgoff_t index
, max_index
;
2449 ntfs_debug("Entering.");
2450 /* Serialize accesses to the cluster bitmap. */
2451 down_read(&vol
->lcnbmp_lock
);
2453 * Convert the number of bits into bytes rounded up, then convert into
2454 * multiples of PAGE_CACHE_SIZE, rounding up so that if we have one
2455 * full and one partial page max_index = 2.
2457 max_index
= (((vol
->nr_clusters
+ 7) >> 3) + PAGE_CACHE_SIZE
- 1) >>
2459 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2460 ntfs_debug("Reading $Bitmap, max_index = 0x%lx, max_size = 0x%lx.",
2461 max_index
, PAGE_CACHE_SIZE
/ 4);
2462 for (index
= 0; index
< max_index
; index
++) {
2465 * Read the page from page cache, getting it from backing store
2466 * if necessary, and increment the use count.
2468 page
= read_cache_page(mapping
, index
, (filler_t
*)readpage
,
2470 /* Ignore pages which errored synchronously. */
2472 ntfs_debug("Sync read_cache_page() error. Skipping "
2473 "page (index 0x%lx).", index
);
2474 nr_free
-= PAGE_CACHE_SIZE
* 8;
2477 wait_on_page_locked(page
);
2478 /* Ignore pages which errored asynchronously. */
2479 if (!PageUptodate(page
)) {
2480 ntfs_debug("Async read_cache_page() error. Skipping "
2481 "page (index 0x%lx).", index
);
2482 page_cache_release(page
);
2483 nr_free
-= PAGE_CACHE_SIZE
* 8;
2486 kaddr
= (u32
*)kmap_atomic(page
, KM_USER0
);
2488 * For each 4 bytes, subtract the number of set bits. If this
2489 * is the last page and it is partial we don't really care as
2490 * it just means we do a little extra work but it won't affect
2491 * the result as all out of range bytes are set to zero by
2494 for (i
= 0; i
< PAGE_CACHE_SIZE
/ 4; i
++)
2495 nr_free
-= (s64
)hweight32(kaddr
[i
]);
2496 kunmap_atomic(kaddr
, KM_USER0
);
2497 page_cache_release(page
);
2499 ntfs_debug("Finished reading $Bitmap, last index = 0x%lx.", index
- 1);
2501 * Fixup for eventual bits outside logical ntfs volume (see function
2502 * description above).
2504 if (vol
->nr_clusters
& 63)
2505 nr_free
+= 64 - (vol
->nr_clusters
& 63);
2506 up_read(&vol
->lcnbmp_lock
);
2507 /* If errors occured we may well have gone below zero, fix this. */
2510 ntfs_debug("Exiting.");
2515 * __get_nr_free_mft_records - return the number of free inodes on a volume
2516 * @vol: ntfs volume for which to obtain free inode count
2517 * @nr_free: number of mft records in filesystem
2518 * @max_index: maximum number of pages containing set bits
2520 * Calculate the number of free mft records (inodes) on the mounted NTFS
2521 * volume @vol. We actually calculate the number of mft records in use instead
2522 * because this allows us to not care about partial pages as these will be just
2523 * zero filled and hence not be counted as allocated mft record.
2525 * If any pages cannot be read we assume all mft records in the erroring pages
2526 * are in use. This means we return an underestimate on errors which is better
2527 * than an overestimate.
2529 * NOTE: Caller must hold mftbmp_lock rw_semaphore for reading or writing.
2531 static unsigned long __get_nr_free_mft_records(ntfs_volume
*vol
,
2532 s64 nr_free
, const pgoff_t max_index
)
2535 struct address_space
*mapping
= vol
->mftbmp_ino
->i_mapping
;
2536 filler_t
*readpage
= (filler_t
*)mapping
->a_ops
->readpage
;
2540 ntfs_debug("Entering.");
2541 /* Use multiples of 4 bytes, thus max_size is PAGE_CACHE_SIZE / 4. */
2542 ntfs_debug("Reading $MFT/$BITMAP, max_index = 0x%lx, max_size = "
2543 "0x%lx.", max_index
, PAGE_CACHE_SIZE
/ 4);
2544 for (index
= 0; index
< max_index
; index
++) {
2547 * Read the page from page cache, getting it from backing store
2548 * if necessary, and increment the use count.
2550 page
= read_cache_page(mapping
, index
, (filler_t
*)readpage
,
2552 /* Ignore pages which errored synchronously. */
2554 ntfs_debug("Sync read_cache_page() error. Skipping "
2555 "page (index 0x%lx).", index
);
2556 nr_free
-= PAGE_CACHE_SIZE
* 8;
2559 wait_on_page_locked(page
);
2560 /* Ignore pages which errored asynchronously. */
2561 if (!PageUptodate(page
)) {
2562 ntfs_debug("Async read_cache_page() error. Skipping "
2563 "page (index 0x%lx).", index
);
2564 page_cache_release(page
);
2565 nr_free
-= PAGE_CACHE_SIZE
* 8;
2568 kaddr
= (u32
*)kmap_atomic(page
, KM_USER0
);
2570 * For each 4 bytes, subtract the number of set bits. If this
2571 * is the last page and it is partial we don't really care as
2572 * it just means we do a little extra work but it won't affect
2573 * the result as all out of range bytes are set to zero by
2576 for (i
= 0; i
< PAGE_CACHE_SIZE
/ 4; i
++)
2577 nr_free
-= (s64
)hweight32(kaddr
[i
]);
2578 kunmap_atomic(kaddr
, KM_USER0
);
2579 page_cache_release(page
);
2581 ntfs_debug("Finished reading $MFT/$BITMAP, last index = 0x%lx.",
2583 /* If errors occured we may well have gone below zero, fix this. */
2586 ntfs_debug("Exiting.");
2591 * ntfs_statfs - return information about mounted NTFS volume
2592 * @sb: super block of mounted volume
2593 * @sfs: statfs structure in which to return the information
2595 * Return information about the mounted NTFS volume @sb in the statfs structure
2596 * pointed to by @sfs (this is initialized with zeros before ntfs_statfs is
2597 * called). We interpret the values to be correct of the moment in time at
2598 * which we are called. Most values are variable otherwise and this isn't just
2599 * the free values but the totals as well. For example we can increase the
2600 * total number of file nodes if we run out and we can keep doing this until
2601 * there is no more space on the volume left at all.
2603 * Called from vfs_statfs which is used to handle the statfs, fstatfs, and
2604 * ustat system calls.
2606 * Return 0 on success or -errno on error.
2608 static int ntfs_statfs(struct super_block
*sb
, struct kstatfs
*sfs
)
2611 ntfs_volume
*vol
= NTFS_SB(sb
);
2612 ntfs_inode
*mft_ni
= NTFS_I(vol
->mft_ino
);
2614 unsigned long flags
;
2616 ntfs_debug("Entering.");
2617 /* Type of filesystem. */
2618 sfs
->f_type
= NTFS_SB_MAGIC
;
2619 /* Optimal transfer block size. */
2620 sfs
->f_bsize
= PAGE_CACHE_SIZE
;
2622 * Total data blocks in filesystem in units of f_bsize and since
2623 * inodes are also stored in data blocs ($MFT is a file) this is just
2624 * the total clusters.
2626 sfs
->f_blocks
= vol
->nr_clusters
<< vol
->cluster_size_bits
>>
2628 /* Free data blocks in filesystem in units of f_bsize. */
2629 size
= get_nr_free_clusters(vol
) << vol
->cluster_size_bits
>>
2633 /* Free blocks avail to non-superuser, same as above on NTFS. */
2634 sfs
->f_bavail
= sfs
->f_bfree
= size
;
2635 /* Serialize accesses to the inode bitmap. */
2636 down_read(&vol
->mftbmp_lock
);
2637 read_lock_irqsave(&mft_ni
->size_lock
, flags
);
2638 size
= i_size_read(vol
->mft_ino
) >> vol
->mft_record_size_bits
;
2640 * Convert the maximum number of set bits into bytes rounded up, then
2641 * convert into multiples of PAGE_CACHE_SIZE, rounding up so that if we
2642 * have one full and one partial page max_index = 2.
2644 max_index
= ((((mft_ni
->initialized_size
>> vol
->mft_record_size_bits
)
2645 + 7) >> 3) + PAGE_CACHE_SIZE
- 1) >> PAGE_CACHE_SHIFT
;
2646 read_unlock_irqrestore(&mft_ni
->size_lock
, flags
);
2647 /* Number of inodes in filesystem (at this point in time). */
2648 sfs
->f_files
= size
;
2649 /* Free inodes in fs (based on current total count). */
2650 sfs
->f_ffree
= __get_nr_free_mft_records(vol
, size
, max_index
);
2651 up_read(&vol
->mftbmp_lock
);
2653 * File system id. This is extremely *nix flavour dependent and even
2654 * within Linux itself all fs do their own thing. I interpret this to
2655 * mean a unique id associated with the mounted fs and not the id
2656 * associated with the filesystem driver, the latter is already given
2657 * by the filesystem type in sfs->f_type. Thus we use the 64-bit
2658 * volume serial number splitting it into two 32-bit parts. We enter
2659 * the least significant 32-bits in f_fsid[0] and the most significant
2660 * 32-bits in f_fsid[1].
2662 sfs
->f_fsid
.val
[0] = vol
->serial_no
& 0xffffffff;
2663 sfs
->f_fsid
.val
[1] = (vol
->serial_no
>> 32) & 0xffffffff;
2664 /* Maximum length of filenames. */
2665 sfs
->f_namelen
= NTFS_MAX_NAME_LEN
;
2670 * The complete super operations.
2672 static struct super_operations ntfs_sops
= {
2673 .alloc_inode
= ntfs_alloc_big_inode
, /* VFS: Allocate new inode. */
2674 .destroy_inode
= ntfs_destroy_big_inode
, /* VFS: Deallocate inode. */
2675 .put_inode
= ntfs_put_inode
, /* VFS: Called just before
2676 the inode reference count
2679 //.dirty_inode = NULL, /* VFS: Called from
2680 // __mark_inode_dirty(). */
2681 .write_inode
= ntfs_write_inode
, /* VFS: Write dirty inode to
2683 //.drop_inode = NULL, /* VFS: Called just after the
2684 // inode reference count has
2685 // been decreased to zero.
2686 // NOTE: The inode lock is
2687 // held. See fs/inode.c::
2688 // generic_drop_inode(). */
2689 //.delete_inode = NULL, /* VFS: Delete inode from disk.
2690 // Called when i_count becomes
2691 // 0 and i_nlink is also 0. */
2692 //.write_super = NULL, /* Flush dirty super block to
2694 //.sync_fs = NULL, /* ? */
2695 //.write_super_lockfs = NULL, /* ? */
2696 //.unlockfs = NULL, /* ? */
2697 #endif /* NTFS_RW */
2698 .put_super
= ntfs_put_super
, /* Syscall: umount. */
2699 .statfs
= ntfs_statfs
, /* Syscall: statfs */
2700 .remount_fs
= ntfs_remount
, /* Syscall: mount -o remount. */
2701 .clear_inode
= ntfs_clear_big_inode
, /* VFS: Called when an inode is
2702 removed from memory. */
2703 //.umount_begin = NULL, /* Forced umount. */
2704 .show_options
= ntfs_show_options
, /* Show mount options in
2709 * ntfs_fill_super - mount an ntfs filesystem
2710 * @sb: super block of ntfs filesystem to mount
2711 * @opt: string containing the mount options
2712 * @silent: silence error output
2714 * ntfs_fill_super() is called by the VFS to mount the device described by @sb
2715 * with the mount otions in @data with the NTFS filesystem.
2717 * If @silent is true, remain silent even if errors are detected. This is used
2718 * during bootup, when the kernel tries to mount the root filesystem with all
2719 * registered filesystems one after the other until one succeeds. This implies
2720 * that all filesystems except the correct one will quite correctly and
2721 * expectedly return an error, but nobody wants to see error messages when in
2722 * fact this is what is supposed to happen.
2724 * NOTE: @sb->s_flags contains the mount options flags.
2726 static int ntfs_fill_super(struct super_block
*sb
, void *opt
, const int silent
)
2729 struct buffer_head
*bh
;
2730 struct inode
*tmp_ino
;
2731 int blocksize
, result
;
2733 ntfs_debug("Entering.");
2735 sb
->s_flags
|= MS_RDONLY
;
2736 #endif /* ! NTFS_RW */
2737 /* Allocate a new ntfs_volume and place it in sb->s_fs_info. */
2738 sb
->s_fs_info
= kmalloc(sizeof(ntfs_volume
), GFP_NOFS
);
2742 ntfs_error(sb
, "Allocation of NTFS volume structure "
2743 "failed. Aborting mount...");
2746 /* Initialize ntfs_volume structure. */
2747 *vol
= (ntfs_volume
) {
2750 * Default is group and other don't have any access to files or
2751 * directories while owner has full access. Further, files by
2752 * default are not executable but directories are of course
2758 init_rwsem(&vol
->mftbmp_lock
);
2759 init_rwsem(&vol
->lcnbmp_lock
);
2763 /* By default, enable sparse support. */
2764 NVolSetSparseEnabled(vol
);
2766 /* Important to get the mount options dealt with now. */
2767 if (!parse_options(vol
, (char*)opt
))
2770 /* We support sector sizes up to the PAGE_CACHE_SIZE. */
2771 if (bdev_hardsect_size(sb
->s_bdev
) > PAGE_CACHE_SIZE
) {
2773 ntfs_error(sb
, "Device has unsupported sector size "
2774 "(%i). The maximum supported sector "
2775 "size on this architecture is %lu "
2777 bdev_hardsect_size(sb
->s_bdev
),
2782 * Setup the device access block size to NTFS_BLOCK_SIZE or the hard
2783 * sector size, whichever is bigger.
2785 blocksize
= sb_min_blocksize(sb
, NTFS_BLOCK_SIZE
);
2786 if (blocksize
< NTFS_BLOCK_SIZE
) {
2788 ntfs_error(sb
, "Unable to set device block size.");
2791 BUG_ON(blocksize
!= sb
->s_blocksize
);
2792 ntfs_debug("Set device block size to %i bytes (block size bits %i).",
2793 blocksize
, sb
->s_blocksize_bits
);
2794 /* Determine the size of the device in units of block_size bytes. */
2795 if (!i_size_read(sb
->s_bdev
->bd_inode
)) {
2797 ntfs_error(sb
, "Unable to determine device size.");
2800 vol
->nr_blocks
= i_size_read(sb
->s_bdev
->bd_inode
) >>
2801 sb
->s_blocksize_bits
;
2802 /* Read the boot sector and return unlocked buffer head to it. */
2803 if (!(bh
= read_ntfs_boot_sector(sb
, silent
))) {
2805 ntfs_error(sb
, "Not an NTFS volume.");
2809 * Extract the data from the boot sector and setup the ntfs volume
2812 result
= parse_ntfs_boot_sector(vol
, (NTFS_BOOT_SECTOR
*)bh
->b_data
);
2816 ntfs_error(sb
, "Unsupported NTFS filesystem.");
2820 * If the boot sector indicates a sector size bigger than the current
2821 * device block size, switch the device block size to the sector size.
2822 * TODO: It may be possible to support this case even when the set
2823 * below fails, we would just be breaking up the i/o for each sector
2824 * into multiple blocks for i/o purposes but otherwise it should just
2825 * work. However it is safer to leave disabled until someone hits this
2826 * error message and then we can get them to try it without the setting
2827 * so we know for sure that it works.
2829 if (vol
->sector_size
> blocksize
) {
2830 blocksize
= sb_set_blocksize(sb
, vol
->sector_size
);
2831 if (blocksize
!= vol
->sector_size
) {
2833 ntfs_error(sb
, "Unable to set device block "
2834 "size to sector size (%i).",
2838 BUG_ON(blocksize
!= sb
->s_blocksize
);
2839 vol
->nr_blocks
= i_size_read(sb
->s_bdev
->bd_inode
) >>
2840 sb
->s_blocksize_bits
;
2841 ntfs_debug("Changed device block size to %i bytes (block size "
2842 "bits %i) to match volume sector size.",
2843 blocksize
, sb
->s_blocksize_bits
);
2845 /* Initialize the cluster and mft allocators. */
2846 ntfs_setup_allocators(vol
);
2847 /* Setup remaining fields in the super block. */
2848 sb
->s_magic
= NTFS_SB_MAGIC
;
2850 * Ntfs allows 63 bits for the file size, i.e. correct would be:
2851 * sb->s_maxbytes = ~0ULL >> 1;
2852 * But the kernel uses a long as the page cache page index which on
2853 * 32-bit architectures is only 32-bits. MAX_LFS_FILESIZE is kernel
2854 * defined to the maximum the page cache page index can cope with
2855 * without overflowing the index or to 2^63 - 1, whichever is smaller.
2857 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
2858 /* Ntfs measures time in 100ns intervals. */
2859 sb
->s_time_gran
= 100;
2861 * Now load the metadata required for the page cache and our address
2862 * space operations to function. We do this by setting up a specialised
2863 * read_inode method and then just calling the normal iget() to obtain
2864 * the inode for $MFT which is sufficient to allow our normal inode
2865 * operations and associated address space operations to function.
2867 sb
->s_op
= &ntfs_sops
;
2868 tmp_ino
= new_inode(sb
);
2871 ntfs_error(sb
, "Failed to load essential metadata.");
2874 tmp_ino
->i_ino
= FILE_MFT
;
2875 insert_inode_hash(tmp_ino
);
2876 if (ntfs_read_inode_mount(tmp_ino
) < 0) {
2878 ntfs_error(sb
, "Failed to load essential metadata.");
2879 goto iput_tmp_ino_err_out_now
;
2883 * The current mount is a compression user if the cluster size is
2884 * less than or equal 4kiB.
2886 if (vol
->cluster_size
<= 4096 && !ntfs_nr_compression_users
++) {
2887 result
= allocate_compression_buffers();
2889 ntfs_error(NULL
, "Failed to allocate buffers "
2890 "for compression engine.");
2891 ntfs_nr_compression_users
--;
2893 goto iput_tmp_ino_err_out_now
;
2897 * Generate the global default upcase table if necessary. Also
2898 * temporarily increment the number of upcase users to avoid race
2899 * conditions with concurrent (u)mounts.
2901 if (!default_upcase
)
2902 default_upcase
= generate_default_upcase();
2903 ntfs_nr_upcase_users
++;
2906 * From now on, ignore @silent parameter. If we fail below this line,
2907 * it will be due to a corrupt fs or a system error, so we report it.
2910 * Open the system files with normal access functions and complete
2911 * setting up the ntfs super block.
2913 if (!load_system_files(vol
)) {
2914 ntfs_error(sb
, "Failed to load system files.");
2915 goto unl_upcase_iput_tmp_ino_err_out_now
;
2917 if ((sb
->s_root
= d_alloc_root(vol
->root_ino
))) {
2918 /* We increment i_count simulating an ntfs_iget(). */
2919 atomic_inc(&vol
->root_ino
->i_count
);
2920 ntfs_debug("Exiting, status successful.");
2921 /* Release the default upcase if it has no users. */
2923 if (!--ntfs_nr_upcase_users
&& default_upcase
) {
2924 ntfs_free(default_upcase
);
2925 default_upcase
= NULL
;
2928 sb
->s_export_op
= &ntfs_export_ops
;
2932 ntfs_error(sb
, "Failed to allocate root directory.");
2933 /* Clean up after the successful load_system_files() call from above. */
2934 // TODO: Use ntfs_put_super() instead of repeating all this code...
2935 // FIXME: Should mark the volume clean as the error is most likely
2938 vol
->vol_ino
= NULL
;
2939 /* NTFS 3.0+ specific clean up. */
2940 if (vol
->major_ver
>= 3) {
2942 if (vol
->usnjrnl_j_ino
) {
2943 iput(vol
->usnjrnl_j_ino
);
2944 vol
->usnjrnl_j_ino
= NULL
;
2946 if (vol
->usnjrnl_max_ino
) {
2947 iput(vol
->usnjrnl_max_ino
);
2948 vol
->usnjrnl_max_ino
= NULL
;
2950 if (vol
->usnjrnl_ino
) {
2951 iput(vol
->usnjrnl_ino
);
2952 vol
->usnjrnl_ino
= NULL
;
2954 if (vol
->quota_q_ino
) {
2955 iput(vol
->quota_q_ino
);
2956 vol
->quota_q_ino
= NULL
;
2958 if (vol
->quota_ino
) {
2959 iput(vol
->quota_ino
);
2960 vol
->quota_ino
= NULL
;
2962 #endif /* NTFS_RW */
2963 if (vol
->extend_ino
) {
2964 iput(vol
->extend_ino
);
2965 vol
->extend_ino
= NULL
;
2967 if (vol
->secure_ino
) {
2968 iput(vol
->secure_ino
);
2969 vol
->secure_ino
= NULL
;
2972 iput(vol
->root_ino
);
2973 vol
->root_ino
= NULL
;
2974 iput(vol
->lcnbmp_ino
);
2975 vol
->lcnbmp_ino
= NULL
;
2976 iput(vol
->mftbmp_ino
);
2977 vol
->mftbmp_ino
= NULL
;
2979 if (vol
->logfile_ino
) {
2980 iput(vol
->logfile_ino
);
2981 vol
->logfile_ino
= NULL
;
2983 if (vol
->mftmirr_ino
) {
2984 iput(vol
->mftmirr_ino
);
2985 vol
->mftmirr_ino
= NULL
;
2987 #endif /* NTFS_RW */
2988 /* Throw away the table of attribute definitions. */
2989 vol
->attrdef_size
= 0;
2991 ntfs_free(vol
->attrdef
);
2992 vol
->attrdef
= NULL
;
2994 vol
->upcase_len
= 0;
2996 if (vol
->upcase
== default_upcase
) {
2997 ntfs_nr_upcase_users
--;
3002 ntfs_free(vol
->upcase
);
3006 unload_nls(vol
->nls_map
);
3007 vol
->nls_map
= NULL
;
3009 /* Error exit code path. */
3010 unl_upcase_iput_tmp_ino_err_out_now
:
3012 * Decrease the number of upcase users and destroy the global default
3013 * upcase table if necessary.
3016 if (!--ntfs_nr_upcase_users
&& default_upcase
) {
3017 ntfs_free(default_upcase
);
3018 default_upcase
= NULL
;
3020 if (vol
->cluster_size
<= 4096 && !--ntfs_nr_compression_users
)
3021 free_compression_buffers();
3023 iput_tmp_ino_err_out_now
:
3025 if (vol
->mft_ino
&& vol
->mft_ino
!= tmp_ino
)
3027 vol
->mft_ino
= NULL
;
3029 * This is needed to get ntfs_clear_extent_inode() called for each
3030 * inode we have ever called ntfs_iget()/iput() on, otherwise we A)
3031 * leak resources and B) a subsequent mount fails automatically due to
3032 * ntfs_iget() never calling down into our ntfs_read_locked_inode()
3033 * method again... FIXME: Do we need to do this twice now because of
3034 * attribute inodes? I think not, so leave as is for now... (AIA)
3036 if (invalidate_inodes(sb
)) {
3037 ntfs_error(sb
, "Busy inodes left. This is most likely a NTFS "
3039 /* Copied from fs/super.c. I just love this message. (-; */
3040 printk("NTFS: Busy inodes after umount. Self-destruct in 5 "
3041 "seconds. Have a nice day...\n");
3043 /* Errors at this stage are irrelevant. */
3046 sb
->s_fs_info
= NULL
;
3048 ntfs_debug("Failed, returning -EINVAL.");
3053 * This is a slab cache to optimize allocations and deallocations of Unicode
3054 * strings of the maximum length allowed by NTFS, which is NTFS_MAX_NAME_LEN
3055 * (255) Unicode characters + a terminating NULL Unicode character.
3057 struct kmem_cache
*ntfs_name_cache
;
3059 /* Slab caches for efficient allocation/deallocation of inodes. */
3060 struct kmem_cache
*ntfs_inode_cache
;
3061 struct kmem_cache
*ntfs_big_inode_cache
;
3063 /* Init once constructor for the inode slab cache. */
3064 static void ntfs_big_inode_init_once(void *foo
, struct kmem_cache
*cachep
,
3065 unsigned long flags
)
3067 ntfs_inode
*ni
= (ntfs_inode
*)foo
;
3069 if ((flags
& (SLAB_CTOR_VERIFY
|SLAB_CTOR_CONSTRUCTOR
)) ==
3070 SLAB_CTOR_CONSTRUCTOR
)
3071 inode_init_once(VFS_I(ni
));
3075 * Slab caches to optimize allocations and deallocations of attribute search
3076 * contexts and index contexts, respectively.
3078 struct kmem_cache
*ntfs_attr_ctx_cache
;
3079 struct kmem_cache
*ntfs_index_ctx_cache
;
3081 /* Driver wide semaphore. */
3082 DECLARE_MUTEX(ntfs_lock
);
3084 static struct super_block
*ntfs_get_sb(struct file_system_type
*fs_type
,
3085 int flags
, const char *dev_name
, void *data
)
3087 return get_sb_bdev(fs_type
, flags
, dev_name
, data
, ntfs_fill_super
);
3090 static struct file_system_type ntfs_fs_type
= {
3091 .owner
= THIS_MODULE
,
3093 .get_sb
= ntfs_get_sb
,
3094 .kill_sb
= kill_block_super
,
3095 .fs_flags
= FS_REQUIRES_DEV
,
3098 /* Stable names for the slab caches. */
3099 static const char ntfs_index_ctx_cache_name
[] = "ntfs_index_ctx_cache";
3100 static const char ntfs_attr_ctx_cache_name
[] = "ntfs_attr_ctx_cache";
3101 static const char ntfs_name_cache_name
[] = "ntfs_name_cache";
3102 static const char ntfs_inode_cache_name
[] = "ntfs_inode_cache";
3103 static const char ntfs_big_inode_cache_name
[] = "ntfs_big_inode_cache";
3105 static int __init
init_ntfs_fs(void)
3109 /* This may be ugly but it results in pretty output so who cares. (-8 */
3110 printk(KERN_INFO
"NTFS driver " NTFS_VERSION
" [Flags: R/"
3124 ntfs_debug("Debug messages are enabled.");
3126 ntfs_index_ctx_cache
= kmem_cache_create(ntfs_index_ctx_cache_name
,
3127 sizeof(ntfs_index_context
), 0 /* offset */,
3128 SLAB_HWCACHE_ALIGN
, NULL
/* ctor */, NULL
/* dtor */);
3129 if (!ntfs_index_ctx_cache
) {
3130 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3131 ntfs_index_ctx_cache_name
);
3134 ntfs_attr_ctx_cache
= kmem_cache_create(ntfs_attr_ctx_cache_name
,
3135 sizeof(ntfs_attr_search_ctx
), 0 /* offset */,
3136 SLAB_HWCACHE_ALIGN
, NULL
/* ctor */, NULL
/* dtor */);
3137 if (!ntfs_attr_ctx_cache
) {
3138 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3139 ntfs_attr_ctx_cache_name
);
3143 ntfs_name_cache
= kmem_cache_create(ntfs_name_cache_name
,
3144 (NTFS_MAX_NAME_LEN
+1) * sizeof(ntfschar
), 0,
3145 SLAB_HWCACHE_ALIGN
, NULL
, NULL
);
3146 if (!ntfs_name_cache
) {
3147 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3148 ntfs_name_cache_name
);
3152 ntfs_inode_cache
= kmem_cache_create(ntfs_inode_cache_name
,
3153 sizeof(ntfs_inode
), 0,
3154 SLAB_RECLAIM_ACCOUNT
, NULL
, NULL
);
3155 if (!ntfs_inode_cache
) {
3156 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3157 ntfs_inode_cache_name
);
3161 ntfs_big_inode_cache
= kmem_cache_create(ntfs_big_inode_cache_name
,
3162 sizeof(big_ntfs_inode
), 0,
3163 SLAB_HWCACHE_ALIGN
|SLAB_RECLAIM_ACCOUNT
,
3164 ntfs_big_inode_init_once
, NULL
);
3165 if (!ntfs_big_inode_cache
) {
3166 printk(KERN_CRIT
"NTFS: Failed to create %s!\n",
3167 ntfs_big_inode_cache_name
);
3168 goto big_inode_err_out
;
3171 /* Register the ntfs sysctls. */
3172 err
= ntfs_sysctl(1);
3174 printk(KERN_CRIT
"NTFS: Failed to register NTFS sysctls!\n");
3175 goto sysctl_err_out
;
3178 err
= register_filesystem(&ntfs_fs_type
);
3180 ntfs_debug("NTFS driver registered successfully.");
3181 return 0; /* Success! */
3183 printk(KERN_CRIT
"NTFS: Failed to register NTFS filesystem driver!\n");
3186 kmem_cache_destroy(ntfs_big_inode_cache
);
3188 kmem_cache_destroy(ntfs_inode_cache
);
3190 kmem_cache_destroy(ntfs_name_cache
);
3192 kmem_cache_destroy(ntfs_attr_ctx_cache
);
3194 kmem_cache_destroy(ntfs_index_ctx_cache
);
3197 printk(KERN_CRIT
"NTFS: Aborting NTFS filesystem driver "
3198 "registration...\n");
3204 static void __exit
exit_ntfs_fs(void)
3208 ntfs_debug("Unregistering NTFS driver.");
3210 unregister_filesystem(&ntfs_fs_type
);
3212 if (kmem_cache_destroy(ntfs_big_inode_cache
) && (err
= 1))
3213 printk(KERN_CRIT
"NTFS: Failed to destory %s.\n",
3214 ntfs_big_inode_cache_name
);
3215 if (kmem_cache_destroy(ntfs_inode_cache
) && (err
= 1))
3216 printk(KERN_CRIT
"NTFS: Failed to destory %s.\n",
3217 ntfs_inode_cache_name
);
3218 if (kmem_cache_destroy(ntfs_name_cache
) && (err
= 1))
3219 printk(KERN_CRIT
"NTFS: Failed to destory %s.\n",
3220 ntfs_name_cache_name
);
3221 if (kmem_cache_destroy(ntfs_attr_ctx_cache
) && (err
= 1))
3222 printk(KERN_CRIT
"NTFS: Failed to destory %s.\n",
3223 ntfs_attr_ctx_cache_name
);
3224 if (kmem_cache_destroy(ntfs_index_ctx_cache
) && (err
= 1))
3225 printk(KERN_CRIT
"NTFS: Failed to destory %s.\n",
3226 ntfs_index_ctx_cache_name
);
3228 printk(KERN_CRIT
"NTFS: This causes memory to leak! There is "
3229 "probably a BUG in the driver! Please report "
3230 "you saw this message to "
3231 "linux-ntfs-dev@lists.sourceforge.net\n");
3232 /* Unregister the ntfs sysctls. */
3236 MODULE_AUTHOR("Anton Altaparmakov <aia21@cantab.net>");
3237 MODULE_DESCRIPTION("NTFS 1.2/3.x driver - Copyright (c) 2001-2005 Anton Altaparmakov");
3238 MODULE_VERSION(NTFS_VERSION
);
3239 MODULE_LICENSE("GPL");
3241 module_param(debug_msgs
, bool, 0);
3242 MODULE_PARM_DESC(debug_msgs
, "Enable debug messages.");
3245 module_init(init_ntfs_fs
)
3246 module_exit(exit_ntfs_fs
)