2 * linux/drivers/mmc/core/core.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * SD support Copyright (C) 2004 Ian Molton, All Rights Reserved.
6 * Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
7 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/interrupt.h>
16 #include <linux/completion.h>
17 #include <linux/device.h>
18 #include <linux/delay.h>
19 #include <linux/pagemap.h>
20 #include <linux/err.h>
21 #include <linux/leds.h>
22 #include <linux/scatterlist.h>
23 #include <linux/log2.h>
24 #include <linux/regulator/consumer.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/pm_wakeup.h>
27 #include <linux/suspend.h>
28 #include <linux/fault-inject.h>
29 #include <linux/random.h>
30 #include <linux/slab.h>
33 #include <linux/mmc/card.h>
34 #include <linux/mmc/host.h>
35 #include <linux/mmc/mmc.h>
36 #include <linux/mmc/sd.h>
37 #include <linux/mmc/slot-gpio.h>
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/mmc.h>
53 /* The max erase timeout, used when host->max_busy_timeout isn't specified */
54 #define MMC_ERASE_TIMEOUT_MS (60 * 1000) /* 60 s */
56 static const unsigned freqs
[] = { 400000, 300000, 200000, 100000 };
59 * Enabling software CRCs on the data blocks can be a significant (30%)
60 * performance cost, and for other reasons may not always be desired.
61 * So we allow it it to be disabled.
64 module_param(use_spi_crc
, bool, 0);
66 static int mmc_schedule_delayed_work(struct delayed_work
*work
,
70 * We use the system_freezable_wq, because of two reasons.
71 * First, it allows several works (not the same work item) to be
72 * executed simultaneously. Second, the queue becomes frozen when
73 * userspace becomes frozen during system PM.
75 return queue_delayed_work(system_freezable_wq
, work
, delay
);
78 #ifdef CONFIG_FAIL_MMC_REQUEST
81 * Internal function. Inject random data errors.
82 * If mmc_data is NULL no errors are injected.
84 static void mmc_should_fail_request(struct mmc_host
*host
,
85 struct mmc_request
*mrq
)
87 struct mmc_command
*cmd
= mrq
->cmd
;
88 struct mmc_data
*data
= mrq
->data
;
89 static const int data_errors
[] = {
98 if (cmd
->error
|| data
->error
||
99 !should_fail(&host
->fail_mmc_request
, data
->blksz
* data
->blocks
))
102 data
->error
= data_errors
[prandom_u32() % ARRAY_SIZE(data_errors
)];
103 data
->bytes_xfered
= (prandom_u32() % (data
->bytes_xfered
>> 9)) << 9;
106 #else /* CONFIG_FAIL_MMC_REQUEST */
108 static inline void mmc_should_fail_request(struct mmc_host
*host
,
109 struct mmc_request
*mrq
)
113 #endif /* CONFIG_FAIL_MMC_REQUEST */
115 static inline void mmc_complete_cmd(struct mmc_request
*mrq
)
117 if (mrq
->cap_cmd_during_tfr
&& !completion_done(&mrq
->cmd_completion
))
118 complete_all(&mrq
->cmd_completion
);
121 void mmc_command_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
123 if (!mrq
->cap_cmd_during_tfr
)
126 mmc_complete_cmd(mrq
);
128 pr_debug("%s: cmd done, tfr ongoing (CMD%u)\n",
129 mmc_hostname(host
), mrq
->cmd
->opcode
);
131 EXPORT_SYMBOL(mmc_command_done
);
134 * mmc_request_done - finish processing an MMC request
135 * @host: MMC host which completed request
136 * @mrq: MMC request which request
138 * MMC drivers should call this function when they have completed
139 * their processing of a request.
141 void mmc_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
143 struct mmc_command
*cmd
= mrq
->cmd
;
144 int err
= cmd
->error
;
146 /* Flag re-tuning needed on CRC errors */
147 if ((cmd
->opcode
!= MMC_SEND_TUNING_BLOCK
&&
148 cmd
->opcode
!= MMC_SEND_TUNING_BLOCK_HS200
) &&
149 (err
== -EILSEQ
|| (mrq
->sbc
&& mrq
->sbc
->error
== -EILSEQ
) ||
150 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
) ||
151 (mrq
->stop
&& mrq
->stop
->error
== -EILSEQ
)))
152 mmc_retune_needed(host
);
154 if (err
&& cmd
->retries
&& mmc_host_is_spi(host
)) {
155 if (cmd
->resp
[0] & R1_SPI_ILLEGAL_COMMAND
)
159 if (host
->ongoing_mrq
== mrq
)
160 host
->ongoing_mrq
= NULL
;
162 mmc_complete_cmd(mrq
);
164 trace_mmc_request_done(host
, mrq
);
167 * We list various conditions for the command to be considered
170 * - There was no error, OK fine then
171 * - We are not doing some kind of retry
172 * - The card was removed (...so just complete everything no matter
173 * if there are errors or retries)
175 if (!err
|| !cmd
->retries
|| mmc_card_removed(host
->card
)) {
176 mmc_should_fail_request(host
, mrq
);
178 if (!host
->ongoing_mrq
)
179 led_trigger_event(host
->led
, LED_OFF
);
182 pr_debug("%s: req done <CMD%u>: %d: %08x %08x %08x %08x\n",
183 mmc_hostname(host
), mrq
->sbc
->opcode
,
185 mrq
->sbc
->resp
[0], mrq
->sbc
->resp
[1],
186 mrq
->sbc
->resp
[2], mrq
->sbc
->resp
[3]);
189 pr_debug("%s: req done (CMD%u): %d: %08x %08x %08x %08x\n",
190 mmc_hostname(host
), cmd
->opcode
, err
,
191 cmd
->resp
[0], cmd
->resp
[1],
192 cmd
->resp
[2], cmd
->resp
[3]);
195 pr_debug("%s: %d bytes transferred: %d\n",
197 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
201 pr_debug("%s: (CMD%u): %d: %08x %08x %08x %08x\n",
202 mmc_hostname(host
), mrq
->stop
->opcode
,
204 mrq
->stop
->resp
[0], mrq
->stop
->resp
[1],
205 mrq
->stop
->resp
[2], mrq
->stop
->resp
[3]);
209 * Request starter must handle retries - see
210 * mmc_wait_for_req_done().
216 EXPORT_SYMBOL(mmc_request_done
);
218 static void __mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
222 /* Assumes host controller has been runtime resumed by mmc_claim_host */
223 err
= mmc_retune(host
);
225 mrq
->cmd
->error
= err
;
226 mmc_request_done(host
, mrq
);
231 * For sdio rw commands we must wait for card busy otherwise some
232 * sdio devices won't work properly.
233 * And bypass I/O abort, reset and bus suspend operations.
235 if (sdio_is_io_busy(mrq
->cmd
->opcode
, mrq
->cmd
->arg
) &&
236 host
->ops
->card_busy
) {
237 int tries
= 500; /* Wait aprox 500ms at maximum */
239 while (host
->ops
->card_busy(host
) && --tries
)
243 mrq
->cmd
->error
= -EBUSY
;
244 mmc_request_done(host
, mrq
);
249 if (mrq
->cap_cmd_during_tfr
) {
250 host
->ongoing_mrq
= mrq
;
252 * Retry path could come through here without having waiting on
253 * cmd_completion, so ensure it is reinitialised.
255 reinit_completion(&mrq
->cmd_completion
);
258 trace_mmc_request_start(host
, mrq
);
261 host
->cqe_ops
->cqe_off(host
);
263 host
->ops
->request(host
, mrq
);
266 static void mmc_mrq_pr_debug(struct mmc_host
*host
, struct mmc_request
*mrq
,
270 pr_debug("<%s: starting CMD%u arg %08x flags %08x>\n",
271 mmc_hostname(host
), mrq
->sbc
->opcode
,
272 mrq
->sbc
->arg
, mrq
->sbc
->flags
);
276 pr_debug("%s: starting %sCMD%u arg %08x flags %08x\n",
277 mmc_hostname(host
), cqe
? "CQE direct " : "",
278 mrq
->cmd
->opcode
, mrq
->cmd
->arg
, mrq
->cmd
->flags
);
280 pr_debug("%s: starting CQE transfer for tag %d blkaddr %u\n",
281 mmc_hostname(host
), mrq
->tag
, mrq
->data
->blk_addr
);
285 pr_debug("%s: blksz %d blocks %d flags %08x "
286 "tsac %d ms nsac %d\n",
287 mmc_hostname(host
), mrq
->data
->blksz
,
288 mrq
->data
->blocks
, mrq
->data
->flags
,
289 mrq
->data
->timeout_ns
/ 1000000,
290 mrq
->data
->timeout_clks
);
294 pr_debug("%s: CMD%u arg %08x flags %08x\n",
295 mmc_hostname(host
), mrq
->stop
->opcode
,
296 mrq
->stop
->arg
, mrq
->stop
->flags
);
300 static int mmc_mrq_prep(struct mmc_host
*host
, struct mmc_request
*mrq
)
302 unsigned int i
, sz
= 0;
303 struct scatterlist
*sg
;
308 mrq
->cmd
->data
= mrq
->data
;
315 if (mrq
->data
->blksz
> host
->max_blk_size
||
316 mrq
->data
->blocks
> host
->max_blk_count
||
317 mrq
->data
->blocks
* mrq
->data
->blksz
> host
->max_req_size
)
320 for_each_sg(mrq
->data
->sg
, sg
, mrq
->data
->sg_len
, i
)
322 if (sz
!= mrq
->data
->blocks
* mrq
->data
->blksz
)
325 mrq
->data
->error
= 0;
326 mrq
->data
->mrq
= mrq
;
328 mrq
->data
->stop
= mrq
->stop
;
329 mrq
->stop
->error
= 0;
330 mrq
->stop
->mrq
= mrq
;
337 int mmc_start_request(struct mmc_host
*host
, struct mmc_request
*mrq
)
341 init_completion(&mrq
->cmd_completion
);
343 mmc_retune_hold(host
);
345 if (mmc_card_removed(host
->card
))
348 mmc_mrq_pr_debug(host
, mrq
, false);
350 WARN_ON(!host
->claimed
);
352 err
= mmc_mrq_prep(host
, mrq
);
356 led_trigger_event(host
->led
, LED_FULL
);
357 __mmc_start_request(host
, mrq
);
361 EXPORT_SYMBOL(mmc_start_request
);
363 static void mmc_wait_done(struct mmc_request
*mrq
)
365 complete(&mrq
->completion
);
368 static inline void mmc_wait_ongoing_tfr_cmd(struct mmc_host
*host
)
370 struct mmc_request
*ongoing_mrq
= READ_ONCE(host
->ongoing_mrq
);
373 * If there is an ongoing transfer, wait for the command line to become
376 if (ongoing_mrq
&& !completion_done(&ongoing_mrq
->cmd_completion
))
377 wait_for_completion(&ongoing_mrq
->cmd_completion
);
380 static int __mmc_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
384 mmc_wait_ongoing_tfr_cmd(host
);
386 init_completion(&mrq
->completion
);
387 mrq
->done
= mmc_wait_done
;
389 err
= mmc_start_request(host
, mrq
);
391 mrq
->cmd
->error
= err
;
392 mmc_complete_cmd(mrq
);
393 complete(&mrq
->completion
);
399 void mmc_wait_for_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
401 struct mmc_command
*cmd
;
404 wait_for_completion(&mrq
->completion
);
409 * If host has timed out waiting for the sanitize
410 * to complete, card might be still in programming state
411 * so let's try to bring the card out of programming
414 if (cmd
->sanitize_busy
&& cmd
->error
== -ETIMEDOUT
) {
415 if (!mmc_interrupt_hpi(host
->card
)) {
416 pr_warn("%s: %s: Interrupted sanitize\n",
417 mmc_hostname(host
), __func__
);
421 pr_err("%s: %s: Failed to interrupt sanitize\n",
422 mmc_hostname(host
), __func__
);
425 if (!cmd
->error
|| !cmd
->retries
||
426 mmc_card_removed(host
->card
))
429 mmc_retune_recheck(host
);
431 pr_debug("%s: req failed (CMD%u): %d, retrying...\n",
432 mmc_hostname(host
), cmd
->opcode
, cmd
->error
);
435 __mmc_start_request(host
, mrq
);
438 mmc_retune_release(host
);
440 EXPORT_SYMBOL(mmc_wait_for_req_done
);
443 * mmc_cqe_start_req - Start a CQE request.
444 * @host: MMC host to start the request
445 * @mrq: request to start
447 * Start the request, re-tuning if needed and it is possible. Returns an error
448 * code if the request fails to start or -EBUSY if CQE is busy.
450 int mmc_cqe_start_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
455 * CQE cannot process re-tuning commands. Caller must hold retuning
456 * while CQE is in use. Re-tuning can happen here only when CQE has no
457 * active requests i.e. this is the first. Note, re-tuning will call
460 err
= mmc_retune(host
);
466 mmc_mrq_pr_debug(host
, mrq
, true);
468 err
= mmc_mrq_prep(host
, mrq
);
472 err
= host
->cqe_ops
->cqe_request(host
, mrq
);
476 trace_mmc_request_start(host
, mrq
);
482 pr_debug("%s: failed to start CQE direct CMD%u, error %d\n",
483 mmc_hostname(host
), mrq
->cmd
->opcode
, err
);
485 pr_debug("%s: failed to start CQE transfer for tag %d, error %d\n",
486 mmc_hostname(host
), mrq
->tag
, err
);
490 EXPORT_SYMBOL(mmc_cqe_start_req
);
493 * mmc_cqe_request_done - CQE has finished processing an MMC request
494 * @host: MMC host which completed request
495 * @mrq: MMC request which completed
497 * CQE drivers should call this function when they have completed
498 * their processing of a request.
500 void mmc_cqe_request_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
502 mmc_should_fail_request(host
, mrq
);
504 /* Flag re-tuning needed on CRC errors */
505 if ((mrq
->cmd
&& mrq
->cmd
->error
== -EILSEQ
) ||
506 (mrq
->data
&& mrq
->data
->error
== -EILSEQ
))
507 mmc_retune_needed(host
);
509 trace_mmc_request_done(host
, mrq
);
512 pr_debug("%s: CQE req done (direct CMD%u): %d\n",
513 mmc_hostname(host
), mrq
->cmd
->opcode
, mrq
->cmd
->error
);
515 pr_debug("%s: CQE transfer done tag %d\n",
516 mmc_hostname(host
), mrq
->tag
);
520 pr_debug("%s: %d bytes transferred: %d\n",
522 mrq
->data
->bytes_xfered
, mrq
->data
->error
);
527 EXPORT_SYMBOL(mmc_cqe_request_done
);
530 * mmc_cqe_post_req - CQE post process of a completed MMC request
532 * @mrq: MMC request to be processed
534 void mmc_cqe_post_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
536 if (host
->cqe_ops
->cqe_post_req
)
537 host
->cqe_ops
->cqe_post_req(host
, mrq
);
539 EXPORT_SYMBOL(mmc_cqe_post_req
);
541 /* Arbitrary 1 second timeout */
542 #define MMC_CQE_RECOVERY_TIMEOUT 1000
545 * mmc_cqe_recovery - Recover from CQE errors.
546 * @host: MMC host to recover
548 * Recovery consists of stopping CQE, stopping eMMC, discarding the queue in
549 * in eMMC, and discarding the queue in CQE. CQE must call
550 * mmc_cqe_request_done() on all requests. An error is returned if the eMMC
551 * fails to discard its queue.
553 int mmc_cqe_recovery(struct mmc_host
*host
)
555 struct mmc_command cmd
;
558 mmc_retune_hold_now(host
);
561 * Recovery is expected seldom, if at all, but it reduces performance,
562 * so make sure it is not completely silent.
564 pr_warn("%s: running CQE recovery\n", mmc_hostname(host
));
566 host
->cqe_ops
->cqe_recovery_start(host
);
568 memset(&cmd
, 0, sizeof(cmd
));
569 cmd
.opcode
= MMC_STOP_TRANSMISSION
,
570 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
,
571 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
572 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
573 mmc_wait_for_cmd(host
, &cmd
, 0);
575 memset(&cmd
, 0, sizeof(cmd
));
576 cmd
.opcode
= MMC_CMDQ_TASK_MGMT
;
577 cmd
.arg
= 1; /* Discard entire queue */
578 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
579 cmd
.flags
&= ~MMC_RSP_CRC
; /* Ignore CRC */
580 cmd
.busy_timeout
= MMC_CQE_RECOVERY_TIMEOUT
,
581 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
583 host
->cqe_ops
->cqe_recovery_finish(host
);
585 mmc_retune_release(host
);
589 EXPORT_SYMBOL(mmc_cqe_recovery
);
592 * mmc_is_req_done - Determine if a 'cap_cmd_during_tfr' request is done
596 * mmc_is_req_done() is used with requests that have
597 * mrq->cap_cmd_during_tfr = true. mmc_is_req_done() must be called after
598 * starting a request and before waiting for it to complete. That is,
599 * either in between calls to mmc_start_req(), or after mmc_wait_for_req()
600 * and before mmc_wait_for_req_done(). If it is called at other times the
601 * result is not meaningful.
603 bool mmc_is_req_done(struct mmc_host
*host
, struct mmc_request
*mrq
)
605 return completion_done(&mrq
->completion
);
607 EXPORT_SYMBOL(mmc_is_req_done
);
610 * mmc_wait_for_req - start a request and wait for completion
611 * @host: MMC host to start command
612 * @mrq: MMC request to start
614 * Start a new MMC custom command request for a host, and wait
615 * for the command to complete. In the case of 'cap_cmd_during_tfr'
616 * requests, the transfer is ongoing and the caller can issue further
617 * commands that do not use the data lines, and then wait by calling
618 * mmc_wait_for_req_done().
619 * Does not attempt to parse the response.
621 void mmc_wait_for_req(struct mmc_host
*host
, struct mmc_request
*mrq
)
623 __mmc_start_req(host
, mrq
);
625 if (!mrq
->cap_cmd_during_tfr
)
626 mmc_wait_for_req_done(host
, mrq
);
628 EXPORT_SYMBOL(mmc_wait_for_req
);
631 * mmc_wait_for_cmd - start a command and wait for completion
632 * @host: MMC host to start command
633 * @cmd: MMC command to start
634 * @retries: maximum number of retries
636 * Start a new MMC command for a host, and wait for the command
637 * to complete. Return any error that occurred while the command
638 * was executing. Do not attempt to parse the response.
640 int mmc_wait_for_cmd(struct mmc_host
*host
, struct mmc_command
*cmd
, int retries
)
642 struct mmc_request mrq
= {};
644 WARN_ON(!host
->claimed
);
646 memset(cmd
->resp
, 0, sizeof(cmd
->resp
));
647 cmd
->retries
= retries
;
652 mmc_wait_for_req(host
, &mrq
);
657 EXPORT_SYMBOL(mmc_wait_for_cmd
);
660 * mmc_set_data_timeout - set the timeout for a data command
661 * @data: data phase for command
662 * @card: the MMC card associated with the data transfer
664 * Computes the data timeout parameters according to the
665 * correct algorithm given the card type.
667 void mmc_set_data_timeout(struct mmc_data
*data
, const struct mmc_card
*card
)
672 * SDIO cards only define an upper 1 s limit on access.
674 if (mmc_card_sdio(card
)) {
675 data
->timeout_ns
= 1000000000;
676 data
->timeout_clks
= 0;
681 * SD cards use a 100 multiplier rather than 10
683 mult
= mmc_card_sd(card
) ? 100 : 10;
686 * Scale up the multiplier (and therefore the timeout) by
687 * the r2w factor for writes.
689 if (data
->flags
& MMC_DATA_WRITE
)
690 mult
<<= card
->csd
.r2w_factor
;
692 data
->timeout_ns
= card
->csd
.taac_ns
* mult
;
693 data
->timeout_clks
= card
->csd
.taac_clks
* mult
;
696 * SD cards also have an upper limit on the timeout.
698 if (mmc_card_sd(card
)) {
699 unsigned int timeout_us
, limit_us
;
701 timeout_us
= data
->timeout_ns
/ 1000;
702 if (card
->host
->ios
.clock
)
703 timeout_us
+= data
->timeout_clks
* 1000 /
704 (card
->host
->ios
.clock
/ 1000);
706 if (data
->flags
& MMC_DATA_WRITE
)
708 * The MMC spec "It is strongly recommended
709 * for hosts to implement more than 500ms
710 * timeout value even if the card indicates
711 * the 250ms maximum busy length." Even the
712 * previous value of 300ms is known to be
713 * insufficient for some cards.
720 * SDHC cards always use these fixed values.
722 if (timeout_us
> limit_us
) {
723 data
->timeout_ns
= limit_us
* 1000;
724 data
->timeout_clks
= 0;
727 /* assign limit value if invalid */
729 data
->timeout_ns
= limit_us
* 1000;
733 * Some cards require longer data read timeout than indicated in CSD.
734 * Address this by setting the read timeout to a "reasonably high"
735 * value. For the cards tested, 600ms has proven enough. If necessary,
736 * this value can be increased if other problematic cards require this.
738 if (mmc_card_long_read_time(card
) && data
->flags
& MMC_DATA_READ
) {
739 data
->timeout_ns
= 600000000;
740 data
->timeout_clks
= 0;
744 * Some cards need very high timeouts if driven in SPI mode.
745 * The worst observed timeout was 900ms after writing a
746 * continuous stream of data until the internal logic
749 if (mmc_host_is_spi(card
->host
)) {
750 if (data
->flags
& MMC_DATA_WRITE
) {
751 if (data
->timeout_ns
< 1000000000)
752 data
->timeout_ns
= 1000000000; /* 1s */
754 if (data
->timeout_ns
< 100000000)
755 data
->timeout_ns
= 100000000; /* 100ms */
759 EXPORT_SYMBOL(mmc_set_data_timeout
);
762 * mmc_align_data_size - pads a transfer size to a more optimal value
763 * @card: the MMC card associated with the data transfer
764 * @sz: original transfer size
766 * Pads the original data size with a number of extra bytes in
767 * order to avoid controller bugs and/or performance hits
768 * (e.g. some controllers revert to PIO for certain sizes).
770 * Returns the improved size, which might be unmodified.
772 * Note that this function is only relevant when issuing a
773 * single scatter gather entry.
775 unsigned int mmc_align_data_size(struct mmc_card
*card
, unsigned int sz
)
778 * FIXME: We don't have a system for the controller to tell
779 * the core about its problems yet, so for now we just 32-bit
782 sz
= ((sz
+ 3) / 4) * 4;
786 EXPORT_SYMBOL(mmc_align_data_size
);
789 * Allow claiming an already claimed host if the context is the same or there is
790 * no context but the task is the same.
792 static inline bool mmc_ctx_matches(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
793 struct task_struct
*task
)
795 return host
->claimer
== ctx
||
796 (!ctx
&& task
&& host
->claimer
->task
== task
);
799 static inline void mmc_ctx_set_claimer(struct mmc_host
*host
,
801 struct task_struct
*task
)
803 if (!host
->claimer
) {
807 host
->claimer
= &host
->default_ctx
;
810 host
->claimer
->task
= task
;
814 * __mmc_claim_host - exclusively claim a host
815 * @host: mmc host to claim
816 * @ctx: context that claims the host or NULL in which case the default
817 * context will be used
818 * @abort: whether or not the operation should be aborted
820 * Claim a host for a set of operations. If @abort is non null and
821 * dereference a non-zero value then this will return prematurely with
822 * that non-zero value without acquiring the lock. Returns zero
823 * with the lock held otherwise.
825 int __mmc_claim_host(struct mmc_host
*host
, struct mmc_ctx
*ctx
,
828 struct task_struct
*task
= ctx
? NULL
: current
;
829 DECLARE_WAITQUEUE(wait
, current
);
836 add_wait_queue(&host
->wq
, &wait
);
837 spin_lock_irqsave(&host
->lock
, flags
);
839 set_current_state(TASK_UNINTERRUPTIBLE
);
840 stop
= abort
? atomic_read(abort
) : 0;
841 if (stop
|| !host
->claimed
|| mmc_ctx_matches(host
, ctx
, task
))
843 spin_unlock_irqrestore(&host
->lock
, flags
);
845 spin_lock_irqsave(&host
->lock
, flags
);
847 set_current_state(TASK_RUNNING
);
850 mmc_ctx_set_claimer(host
, ctx
, task
);
851 host
->claim_cnt
+= 1;
852 if (host
->claim_cnt
== 1)
856 spin_unlock_irqrestore(&host
->lock
, flags
);
857 remove_wait_queue(&host
->wq
, &wait
);
860 pm_runtime_get_sync(mmc_dev(host
));
864 EXPORT_SYMBOL(__mmc_claim_host
);
867 * mmc_release_host - release a host
868 * @host: mmc host to release
870 * Release a MMC host, allowing others to claim the host
871 * for their operations.
873 void mmc_release_host(struct mmc_host
*host
)
877 WARN_ON(!host
->claimed
);
879 spin_lock_irqsave(&host
->lock
, flags
);
880 if (--host
->claim_cnt
) {
881 /* Release for nested claim */
882 spin_unlock_irqrestore(&host
->lock
, flags
);
885 host
->claimer
->task
= NULL
;
886 host
->claimer
= NULL
;
887 spin_unlock_irqrestore(&host
->lock
, flags
);
889 pm_runtime_mark_last_busy(mmc_dev(host
));
890 pm_runtime_put_autosuspend(mmc_dev(host
));
893 EXPORT_SYMBOL(mmc_release_host
);
896 * This is a helper function, which fetches a runtime pm reference for the
897 * card device and also claims the host.
899 void mmc_get_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
901 pm_runtime_get_sync(&card
->dev
);
902 __mmc_claim_host(card
->host
, ctx
, NULL
);
904 EXPORT_SYMBOL(mmc_get_card
);
907 * This is a helper function, which releases the host and drops the runtime
908 * pm reference for the card device.
910 void mmc_put_card(struct mmc_card
*card
, struct mmc_ctx
*ctx
)
912 struct mmc_host
*host
= card
->host
;
914 WARN_ON(ctx
&& host
->claimer
!= ctx
);
916 mmc_release_host(host
);
917 pm_runtime_mark_last_busy(&card
->dev
);
918 pm_runtime_put_autosuspend(&card
->dev
);
920 EXPORT_SYMBOL(mmc_put_card
);
923 * Internal function that does the actual ios call to the host driver,
924 * optionally printing some debug output.
926 static inline void mmc_set_ios(struct mmc_host
*host
)
928 struct mmc_ios
*ios
= &host
->ios
;
930 pr_debug("%s: clock %uHz busmode %u powermode %u cs %u Vdd %u "
931 "width %u timing %u\n",
932 mmc_hostname(host
), ios
->clock
, ios
->bus_mode
,
933 ios
->power_mode
, ios
->chip_select
, ios
->vdd
,
934 1 << ios
->bus_width
, ios
->timing
);
936 host
->ops
->set_ios(host
, ios
);
940 * Control chip select pin on a host.
942 void mmc_set_chip_select(struct mmc_host
*host
, int mode
)
944 host
->ios
.chip_select
= mode
;
949 * Sets the host clock to the highest possible frequency that
952 void mmc_set_clock(struct mmc_host
*host
, unsigned int hz
)
954 WARN_ON(hz
&& hz
< host
->f_min
);
956 if (hz
> host
->f_max
)
959 host
->ios
.clock
= hz
;
963 int mmc_execute_tuning(struct mmc_card
*card
)
965 struct mmc_host
*host
= card
->host
;
969 if (!host
->ops
->execute_tuning
)
973 host
->cqe_ops
->cqe_off(host
);
975 if (mmc_card_mmc(card
))
976 opcode
= MMC_SEND_TUNING_BLOCK_HS200
;
978 opcode
= MMC_SEND_TUNING_BLOCK
;
980 err
= host
->ops
->execute_tuning(host
, opcode
);
983 pr_err("%s: tuning execution failed: %d\n",
984 mmc_hostname(host
), err
);
986 mmc_retune_enable(host
);
992 * Change the bus mode (open drain/push-pull) of a host.
994 void mmc_set_bus_mode(struct mmc_host
*host
, unsigned int mode
)
996 host
->ios
.bus_mode
= mode
;
1001 * Change data bus width of a host.
1003 void mmc_set_bus_width(struct mmc_host
*host
, unsigned int width
)
1005 host
->ios
.bus_width
= width
;
1010 * Set initial state after a power cycle or a hw_reset.
1012 void mmc_set_initial_state(struct mmc_host
*host
)
1015 host
->cqe_ops
->cqe_off(host
);
1017 mmc_retune_disable(host
);
1019 if (mmc_host_is_spi(host
))
1020 host
->ios
.chip_select
= MMC_CS_HIGH
;
1022 host
->ios
.chip_select
= MMC_CS_DONTCARE
;
1023 host
->ios
.bus_mode
= MMC_BUSMODE_PUSHPULL
;
1024 host
->ios
.bus_width
= MMC_BUS_WIDTH_1
;
1025 host
->ios
.timing
= MMC_TIMING_LEGACY
;
1026 host
->ios
.drv_type
= 0;
1027 host
->ios
.enhanced_strobe
= false;
1030 * Make sure we are in non-enhanced strobe mode before we
1031 * actually enable it in ext_csd.
1033 if ((host
->caps2
& MMC_CAP2_HS400_ES
) &&
1034 host
->ops
->hs400_enhanced_strobe
)
1035 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1041 * mmc_vdd_to_ocrbitnum - Convert a voltage to the OCR bit number
1042 * @vdd: voltage (mV)
1043 * @low_bits: prefer low bits in boundary cases
1045 * This function returns the OCR bit number according to the provided @vdd
1046 * value. If conversion is not possible a negative errno value returned.
1048 * Depending on the @low_bits flag the function prefers low or high OCR bits
1049 * on boundary voltages. For example,
1050 * with @low_bits = true, 3300 mV translates to ilog2(MMC_VDD_32_33);
1051 * with @low_bits = false, 3300 mV translates to ilog2(MMC_VDD_33_34);
1053 * Any value in the [1951:1999] range translates to the ilog2(MMC_VDD_20_21).
1055 static int mmc_vdd_to_ocrbitnum(int vdd
, bool low_bits
)
1057 const int max_bit
= ilog2(MMC_VDD_35_36
);
1060 if (vdd
< 1650 || vdd
> 3600)
1063 if (vdd
>= 1650 && vdd
<= 1950)
1064 return ilog2(MMC_VDD_165_195
);
1069 /* Base 2000 mV, step 100 mV, bit's base 8. */
1070 bit
= (vdd
- 2000) / 100 + 8;
1077 * mmc_vddrange_to_ocrmask - Convert a voltage range to the OCR mask
1078 * @vdd_min: minimum voltage value (mV)
1079 * @vdd_max: maximum voltage value (mV)
1081 * This function returns the OCR mask bits according to the provided @vdd_min
1082 * and @vdd_max values. If conversion is not possible the function returns 0.
1084 * Notes wrt boundary cases:
1085 * This function sets the OCR bits for all boundary voltages, for example
1086 * [3300:3400] range is translated to MMC_VDD_32_33 | MMC_VDD_33_34 |
1087 * MMC_VDD_34_35 mask.
1089 u32
mmc_vddrange_to_ocrmask(int vdd_min
, int vdd_max
)
1093 if (vdd_max
< vdd_min
)
1096 /* Prefer high bits for the boundary vdd_max values. */
1097 vdd_max
= mmc_vdd_to_ocrbitnum(vdd_max
, false);
1101 /* Prefer low bits for the boundary vdd_min values. */
1102 vdd_min
= mmc_vdd_to_ocrbitnum(vdd_min
, true);
1106 /* Fill the mask, from max bit to min bit. */
1107 while (vdd_max
>= vdd_min
)
1108 mask
|= 1 << vdd_max
--;
1112 EXPORT_SYMBOL(mmc_vddrange_to_ocrmask
);
1117 * mmc_of_parse_voltage - return mask of supported voltages
1118 * @np: The device node need to be parsed.
1119 * @mask: mask of voltages available for MMC/SD/SDIO
1121 * Parse the "voltage-ranges" DT property, returning zero if it is not
1122 * found, negative errno if the voltage-range specification is invalid,
1123 * or one if the voltage-range is specified and successfully parsed.
1125 int mmc_of_parse_voltage(struct device_node
*np
, u32
*mask
)
1127 const u32
*voltage_ranges
;
1130 voltage_ranges
= of_get_property(np
, "voltage-ranges", &num_ranges
);
1131 num_ranges
= num_ranges
/ sizeof(*voltage_ranges
) / 2;
1132 if (!voltage_ranges
) {
1133 pr_debug("%pOF: voltage-ranges unspecified\n", np
);
1137 pr_err("%pOF: voltage-ranges empty\n", np
);
1141 for (i
= 0; i
< num_ranges
; i
++) {
1142 const int j
= i
* 2;
1145 ocr_mask
= mmc_vddrange_to_ocrmask(
1146 be32_to_cpu(voltage_ranges
[j
]),
1147 be32_to_cpu(voltage_ranges
[j
+ 1]));
1149 pr_err("%pOF: voltage-range #%d is invalid\n",
1158 EXPORT_SYMBOL(mmc_of_parse_voltage
);
1160 #endif /* CONFIG_OF */
1162 static int mmc_of_get_func_num(struct device_node
*node
)
1167 ret
= of_property_read_u32(node
, "reg", ®
);
1174 struct device_node
*mmc_of_find_child_device(struct mmc_host
*host
,
1177 struct device_node
*node
;
1179 if (!host
->parent
|| !host
->parent
->of_node
)
1182 for_each_child_of_node(host
->parent
->of_node
, node
) {
1183 if (mmc_of_get_func_num(node
) == func_num
)
1190 #ifdef CONFIG_REGULATOR
1193 * mmc_ocrbitnum_to_vdd - Convert a OCR bit number to its voltage
1194 * @vdd_bit: OCR bit number
1195 * @min_uV: minimum voltage value (mV)
1196 * @max_uV: maximum voltage value (mV)
1198 * This function returns the voltage range according to the provided OCR
1199 * bit number. If conversion is not possible a negative errno value returned.
1201 static int mmc_ocrbitnum_to_vdd(int vdd_bit
, int *min_uV
, int *max_uV
)
1209 * REVISIT mmc_vddrange_to_ocrmask() may have set some
1210 * bits this regulator doesn't quite support ... don't
1211 * be too picky, most cards and regulators are OK with
1212 * a 0.1V range goof (it's a small error percentage).
1214 tmp
= vdd_bit
- ilog2(MMC_VDD_165_195
);
1216 *min_uV
= 1650 * 1000;
1217 *max_uV
= 1950 * 1000;
1219 *min_uV
= 1900 * 1000 + tmp
* 100 * 1000;
1220 *max_uV
= *min_uV
+ 100 * 1000;
1227 * mmc_regulator_get_ocrmask - return mask of supported voltages
1228 * @supply: regulator to use
1230 * This returns either a negative errno, or a mask of voltages that
1231 * can be provided to MMC/SD/SDIO devices using the specified voltage
1232 * regulator. This would normally be called before registering the
1235 int mmc_regulator_get_ocrmask(struct regulator
*supply
)
1243 count
= regulator_count_voltages(supply
);
1247 for (i
= 0; i
< count
; i
++) {
1248 vdd_uV
= regulator_list_voltage(supply
, i
);
1252 vdd_mV
= vdd_uV
/ 1000;
1253 result
|= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1257 vdd_uV
= regulator_get_voltage(supply
);
1261 vdd_mV
= vdd_uV
/ 1000;
1262 result
= mmc_vddrange_to_ocrmask(vdd_mV
, vdd_mV
);
1267 EXPORT_SYMBOL_GPL(mmc_regulator_get_ocrmask
);
1270 * mmc_regulator_set_ocr - set regulator to match host->ios voltage
1271 * @mmc: the host to regulate
1272 * @supply: regulator to use
1273 * @vdd_bit: zero for power off, else a bit number (host->ios.vdd)
1275 * Returns zero on success, else negative errno.
1277 * MMC host drivers may use this to enable or disable a regulator using
1278 * a particular supply voltage. This would normally be called from the
1281 int mmc_regulator_set_ocr(struct mmc_host
*mmc
,
1282 struct regulator
*supply
,
1283 unsigned short vdd_bit
)
1289 mmc_ocrbitnum_to_vdd(vdd_bit
, &min_uV
, &max_uV
);
1291 result
= regulator_set_voltage(supply
, min_uV
, max_uV
);
1292 if (result
== 0 && !mmc
->regulator_enabled
) {
1293 result
= regulator_enable(supply
);
1295 mmc
->regulator_enabled
= true;
1297 } else if (mmc
->regulator_enabled
) {
1298 result
= regulator_disable(supply
);
1300 mmc
->regulator_enabled
= false;
1304 dev_err(mmc_dev(mmc
),
1305 "could not set regulator OCR (%d)\n", result
);
1308 EXPORT_SYMBOL_GPL(mmc_regulator_set_ocr
);
1310 static int mmc_regulator_set_voltage_if_supported(struct regulator
*regulator
,
1311 int min_uV
, int target_uV
,
1315 * Check if supported first to avoid errors since we may try several
1316 * signal levels during power up and don't want to show errors.
1318 if (!regulator_is_supported_voltage(regulator
, min_uV
, max_uV
))
1321 return regulator_set_voltage_triplet(regulator
, min_uV
, target_uV
,
1326 * mmc_regulator_set_vqmmc - Set VQMMC as per the ios
1328 * For 3.3V signaling, we try to match VQMMC to VMMC as closely as possible.
1329 * That will match the behavior of old boards where VQMMC and VMMC were supplied
1330 * by the same supply. The Bus Operating conditions for 3.3V signaling in the
1331 * SD card spec also define VQMMC in terms of VMMC.
1332 * If this is not possible we'll try the full 2.7-3.6V of the spec.
1334 * For 1.2V and 1.8V signaling we'll try to get as close as possible to the
1335 * requested voltage. This is definitely a good idea for UHS where there's a
1336 * separate regulator on the card that's trying to make 1.8V and it's best if
1339 * This function is expected to be used by a controller's
1340 * start_signal_voltage_switch() function.
1342 int mmc_regulator_set_vqmmc(struct mmc_host
*mmc
, struct mmc_ios
*ios
)
1344 struct device
*dev
= mmc_dev(mmc
);
1345 int ret
, volt
, min_uV
, max_uV
;
1347 /* If no vqmmc supply then we can't change the voltage */
1348 if (IS_ERR(mmc
->supply
.vqmmc
))
1351 switch (ios
->signal_voltage
) {
1352 case MMC_SIGNAL_VOLTAGE_120
:
1353 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1354 1100000, 1200000, 1300000);
1355 case MMC_SIGNAL_VOLTAGE_180
:
1356 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1357 1700000, 1800000, 1950000);
1358 case MMC_SIGNAL_VOLTAGE_330
:
1359 ret
= mmc_ocrbitnum_to_vdd(mmc
->ios
.vdd
, &volt
, &max_uV
);
1363 dev_dbg(dev
, "%s: found vmmc voltage range of %d-%duV\n",
1364 __func__
, volt
, max_uV
);
1366 min_uV
= max(volt
- 300000, 2700000);
1367 max_uV
= min(max_uV
+ 200000, 3600000);
1370 * Due to a limitation in the current implementation of
1371 * regulator_set_voltage_triplet() which is taking the lowest
1372 * voltage possible if below the target, search for a suitable
1373 * voltage in two steps and try to stay close to vmmc
1374 * with a 0.3V tolerance at first.
1376 if (!mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1377 min_uV
, volt
, max_uV
))
1380 return mmc_regulator_set_voltage_if_supported(mmc
->supply
.vqmmc
,
1381 2700000, volt
, 3600000);
1386 EXPORT_SYMBOL_GPL(mmc_regulator_set_vqmmc
);
1388 #endif /* CONFIG_REGULATOR */
1391 * mmc_regulator_get_supply - try to get VMMC and VQMMC regulators for a host
1392 * @mmc: the host to regulate
1394 * Returns 0 or errno. errno should be handled, it is either a critical error
1395 * or -EPROBE_DEFER. 0 means no critical error but it does not mean all
1396 * regulators have been found because they all are optional. If you require
1397 * certain regulators, you need to check separately in your driver if they got
1398 * populated after calling this function.
1400 int mmc_regulator_get_supply(struct mmc_host
*mmc
)
1402 struct device
*dev
= mmc_dev(mmc
);
1405 mmc
->supply
.vmmc
= devm_regulator_get_optional(dev
, "vmmc");
1406 mmc
->supply
.vqmmc
= devm_regulator_get_optional(dev
, "vqmmc");
1408 if (IS_ERR(mmc
->supply
.vmmc
)) {
1409 if (PTR_ERR(mmc
->supply
.vmmc
) == -EPROBE_DEFER
)
1410 return -EPROBE_DEFER
;
1411 dev_dbg(dev
, "No vmmc regulator found\n");
1413 ret
= mmc_regulator_get_ocrmask(mmc
->supply
.vmmc
);
1415 mmc
->ocr_avail
= ret
;
1417 dev_warn(dev
, "Failed getting OCR mask: %d\n", ret
);
1420 if (IS_ERR(mmc
->supply
.vqmmc
)) {
1421 if (PTR_ERR(mmc
->supply
.vqmmc
) == -EPROBE_DEFER
)
1422 return -EPROBE_DEFER
;
1423 dev_dbg(dev
, "No vqmmc regulator found\n");
1428 EXPORT_SYMBOL_GPL(mmc_regulator_get_supply
);
1431 * Mask off any voltages we don't support and select
1432 * the lowest voltage
1434 u32
mmc_select_voltage(struct mmc_host
*host
, u32 ocr
)
1439 * Sanity check the voltages that the card claims to
1443 dev_warn(mmc_dev(host
),
1444 "card claims to support voltages below defined range\n");
1448 ocr
&= host
->ocr_avail
;
1450 dev_warn(mmc_dev(host
), "no support for card's volts\n");
1454 if (host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) {
1457 mmc_power_cycle(host
, ocr
);
1461 if (bit
!= host
->ios
.vdd
)
1462 dev_warn(mmc_dev(host
), "exceeding card's volts\n");
1468 int mmc_set_signal_voltage(struct mmc_host
*host
, int signal_voltage
)
1471 int old_signal_voltage
= host
->ios
.signal_voltage
;
1473 host
->ios
.signal_voltage
= signal_voltage
;
1474 if (host
->ops
->start_signal_voltage_switch
)
1475 err
= host
->ops
->start_signal_voltage_switch(host
, &host
->ios
);
1478 host
->ios
.signal_voltage
= old_signal_voltage
;
1484 void mmc_set_initial_signal_voltage(struct mmc_host
*host
)
1486 /* Try to set signal voltage to 3.3V but fall back to 1.8v or 1.2v */
1487 if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
))
1488 dev_dbg(mmc_dev(host
), "Initial signal voltage of 3.3v\n");
1489 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1490 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.8v\n");
1491 else if (!mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
))
1492 dev_dbg(mmc_dev(host
), "Initial signal voltage of 1.2v\n");
1495 int mmc_host_set_uhs_voltage(struct mmc_host
*host
)
1500 * During a signal voltage level switch, the clock must be gated
1501 * for 5 ms according to the SD spec
1503 clock
= host
->ios
.clock
;
1504 host
->ios
.clock
= 0;
1507 if (mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
))
1510 /* Keep clock gated for at least 10 ms, though spec only says 5 ms */
1512 host
->ios
.clock
= clock
;
1518 int mmc_set_uhs_voltage(struct mmc_host
*host
, u32 ocr
)
1520 struct mmc_command cmd
= {};
1524 * If we cannot switch voltages, return failure so the caller
1525 * can continue without UHS mode
1527 if (!host
->ops
->start_signal_voltage_switch
)
1529 if (!host
->ops
->card_busy
)
1530 pr_warn("%s: cannot verify signal voltage switch\n",
1531 mmc_hostname(host
));
1533 cmd
.opcode
= SD_SWITCH_VOLTAGE
;
1535 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1537 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1541 if (!mmc_host_is_spi(host
) && (cmd
.resp
[0] & R1_ERROR
))
1545 * The card should drive cmd and dat[0:3] low immediately
1546 * after the response of cmd11, but wait 1 ms to be sure
1549 if (host
->ops
->card_busy
&& !host
->ops
->card_busy(host
)) {
1554 if (mmc_host_set_uhs_voltage(host
)) {
1556 * Voltages may not have been switched, but we've already
1557 * sent CMD11, so a power cycle is required anyway
1563 /* Wait for at least 1 ms according to spec */
1567 * Failure to switch is indicated by the card holding
1570 if (host
->ops
->card_busy
&& host
->ops
->card_busy(host
))
1575 pr_debug("%s: Signal voltage switch failed, "
1576 "power cycling card\n", mmc_hostname(host
));
1577 mmc_power_cycle(host
, ocr
);
1584 * Select timing parameters for host.
1586 void mmc_set_timing(struct mmc_host
*host
, unsigned int timing
)
1588 host
->ios
.timing
= timing
;
1593 * Select appropriate driver type for host.
1595 void mmc_set_driver_type(struct mmc_host
*host
, unsigned int drv_type
)
1597 host
->ios
.drv_type
= drv_type
;
1601 int mmc_select_drive_strength(struct mmc_card
*card
, unsigned int max_dtr
,
1602 int card_drv_type
, int *drv_type
)
1604 struct mmc_host
*host
= card
->host
;
1605 int host_drv_type
= SD_DRIVER_TYPE_B
;
1609 if (!host
->ops
->select_drive_strength
)
1612 /* Use SD definition of driver strength for hosts */
1613 if (host
->caps
& MMC_CAP_DRIVER_TYPE_A
)
1614 host_drv_type
|= SD_DRIVER_TYPE_A
;
1616 if (host
->caps
& MMC_CAP_DRIVER_TYPE_C
)
1617 host_drv_type
|= SD_DRIVER_TYPE_C
;
1619 if (host
->caps
& MMC_CAP_DRIVER_TYPE_D
)
1620 host_drv_type
|= SD_DRIVER_TYPE_D
;
1623 * The drive strength that the hardware can support
1624 * depends on the board design. Pass the appropriate
1625 * information and let the hardware specific code
1626 * return what is possible given the options
1628 return host
->ops
->select_drive_strength(card
, max_dtr
,
1635 * Apply power to the MMC stack. This is a two-stage process.
1636 * First, we enable power to the card without the clock running.
1637 * We then wait a bit for the power to stabilise. Finally,
1638 * enable the bus drivers and clock to the card.
1640 * We must _NOT_ enable the clock prior to power stablising.
1642 * If a host does all the power sequencing itself, ignore the
1643 * initial MMC_POWER_UP stage.
1645 void mmc_power_up(struct mmc_host
*host
, u32 ocr
)
1647 if (host
->ios
.power_mode
== MMC_POWER_ON
)
1650 mmc_pwrseq_pre_power_on(host
);
1652 host
->ios
.vdd
= fls(ocr
) - 1;
1653 host
->ios
.power_mode
= MMC_POWER_UP
;
1654 /* Set initial state and call mmc_set_ios */
1655 mmc_set_initial_state(host
);
1657 mmc_set_initial_signal_voltage(host
);
1660 * This delay should be sufficient to allow the power supply
1661 * to reach the minimum voltage.
1663 mmc_delay(host
->ios
.power_delay_ms
);
1665 mmc_pwrseq_post_power_on(host
);
1667 host
->ios
.clock
= host
->f_init
;
1669 host
->ios
.power_mode
= MMC_POWER_ON
;
1673 * This delay must be at least 74 clock sizes, or 1 ms, or the
1674 * time required to reach a stable voltage.
1676 mmc_delay(host
->ios
.power_delay_ms
);
1679 void mmc_power_off(struct mmc_host
*host
)
1681 if (host
->ios
.power_mode
== MMC_POWER_OFF
)
1684 mmc_pwrseq_power_off(host
);
1686 host
->ios
.clock
= 0;
1689 host
->ios
.power_mode
= MMC_POWER_OFF
;
1690 /* Set initial state and call mmc_set_ios */
1691 mmc_set_initial_state(host
);
1694 * Some configurations, such as the 802.11 SDIO card in the OLPC
1695 * XO-1.5, require a short delay after poweroff before the card
1696 * can be successfully turned on again.
1701 void mmc_power_cycle(struct mmc_host
*host
, u32 ocr
)
1703 mmc_power_off(host
);
1704 /* Wait at least 1 ms according to SD spec */
1706 mmc_power_up(host
, ocr
);
1710 * Cleanup when the last reference to the bus operator is dropped.
1712 static void __mmc_release_bus(struct mmc_host
*host
)
1714 WARN_ON(!host
->bus_dead
);
1716 host
->bus_ops
= NULL
;
1720 * Increase reference count of bus operator
1722 static inline void mmc_bus_get(struct mmc_host
*host
)
1724 unsigned long flags
;
1726 spin_lock_irqsave(&host
->lock
, flags
);
1728 spin_unlock_irqrestore(&host
->lock
, flags
);
1732 * Decrease reference count of bus operator and free it if
1733 * it is the last reference.
1735 static inline void mmc_bus_put(struct mmc_host
*host
)
1737 unsigned long flags
;
1739 spin_lock_irqsave(&host
->lock
, flags
);
1741 if ((host
->bus_refs
== 0) && host
->bus_ops
)
1742 __mmc_release_bus(host
);
1743 spin_unlock_irqrestore(&host
->lock
, flags
);
1747 * Assign a mmc bus handler to a host. Only one bus handler may control a
1748 * host at any given time.
1750 void mmc_attach_bus(struct mmc_host
*host
, const struct mmc_bus_ops
*ops
)
1752 unsigned long flags
;
1754 WARN_ON(!host
->claimed
);
1756 spin_lock_irqsave(&host
->lock
, flags
);
1758 WARN_ON(host
->bus_ops
);
1759 WARN_ON(host
->bus_refs
);
1761 host
->bus_ops
= ops
;
1765 spin_unlock_irqrestore(&host
->lock
, flags
);
1769 * Remove the current bus handler from a host.
1771 void mmc_detach_bus(struct mmc_host
*host
)
1773 unsigned long flags
;
1775 WARN_ON(!host
->claimed
);
1776 WARN_ON(!host
->bus_ops
);
1778 spin_lock_irqsave(&host
->lock
, flags
);
1782 spin_unlock_irqrestore(&host
->lock
, flags
);
1787 static void _mmc_detect_change(struct mmc_host
*host
, unsigned long delay
,
1791 * If the device is configured as wakeup, we prevent a new sleep for
1792 * 5 s to give provision for user space to consume the event.
1794 if (cd_irq
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
) &&
1795 device_can_wakeup(mmc_dev(host
)))
1796 pm_wakeup_event(mmc_dev(host
), 5000);
1798 host
->detect_change
= 1;
1799 mmc_schedule_delayed_work(&host
->detect
, delay
);
1803 * mmc_detect_change - process change of state on a MMC socket
1804 * @host: host which changed state.
1805 * @delay: optional delay to wait before detection (jiffies)
1807 * MMC drivers should call this when they detect a card has been
1808 * inserted or removed. The MMC layer will confirm that any
1809 * present card is still functional, and initialize any newly
1812 void mmc_detect_change(struct mmc_host
*host
, unsigned long delay
)
1814 _mmc_detect_change(host
, delay
, true);
1816 EXPORT_SYMBOL(mmc_detect_change
);
1818 void mmc_init_erase(struct mmc_card
*card
)
1822 if (is_power_of_2(card
->erase_size
))
1823 card
->erase_shift
= ffs(card
->erase_size
) - 1;
1825 card
->erase_shift
= 0;
1828 * It is possible to erase an arbitrarily large area of an SD or MMC
1829 * card. That is not desirable because it can take a long time
1830 * (minutes) potentially delaying more important I/O, and also the
1831 * timeout calculations become increasingly hugely over-estimated.
1832 * Consequently, 'pref_erase' is defined as a guide to limit erases
1833 * to that size and alignment.
1835 * For SD cards that define Allocation Unit size, limit erases to one
1836 * Allocation Unit at a time.
1837 * For MMC, have a stab at ai good value and for modern cards it will
1838 * end up being 4MiB. Note that if the value is too small, it can end
1839 * up taking longer to erase. Also note, erase_size is already set to
1840 * High Capacity Erase Size if available when this function is called.
1842 if (mmc_card_sd(card
) && card
->ssr
.au
) {
1843 card
->pref_erase
= card
->ssr
.au
;
1844 card
->erase_shift
= ffs(card
->ssr
.au
) - 1;
1845 } else if (card
->erase_size
) {
1846 sz
= (card
->csd
.capacity
<< (card
->csd
.read_blkbits
- 9)) >> 11;
1848 card
->pref_erase
= 512 * 1024 / 512;
1850 card
->pref_erase
= 1024 * 1024 / 512;
1852 card
->pref_erase
= 2 * 1024 * 1024 / 512;
1854 card
->pref_erase
= 4 * 1024 * 1024 / 512;
1855 if (card
->pref_erase
< card
->erase_size
)
1856 card
->pref_erase
= card
->erase_size
;
1858 sz
= card
->pref_erase
% card
->erase_size
;
1860 card
->pref_erase
+= card
->erase_size
- sz
;
1863 card
->pref_erase
= 0;
1866 static unsigned int mmc_mmc_erase_timeout(struct mmc_card
*card
,
1867 unsigned int arg
, unsigned int qty
)
1869 unsigned int erase_timeout
;
1871 if (arg
== MMC_DISCARD_ARG
||
1872 (arg
== MMC_TRIM_ARG
&& card
->ext_csd
.rev
>= 6)) {
1873 erase_timeout
= card
->ext_csd
.trim_timeout
;
1874 } else if (card
->ext_csd
.erase_group_def
& 1) {
1875 /* High Capacity Erase Group Size uses HC timeouts */
1876 if (arg
== MMC_TRIM_ARG
)
1877 erase_timeout
= card
->ext_csd
.trim_timeout
;
1879 erase_timeout
= card
->ext_csd
.hc_erase_timeout
;
1881 /* CSD Erase Group Size uses write timeout */
1882 unsigned int mult
= (10 << card
->csd
.r2w_factor
);
1883 unsigned int timeout_clks
= card
->csd
.taac_clks
* mult
;
1884 unsigned int timeout_us
;
1886 /* Avoid overflow: e.g. taac_ns=80000000 mult=1280 */
1887 if (card
->csd
.taac_ns
< 1000000)
1888 timeout_us
= (card
->csd
.taac_ns
* mult
) / 1000;
1890 timeout_us
= (card
->csd
.taac_ns
/ 1000) * mult
;
1893 * ios.clock is only a target. The real clock rate might be
1894 * less but not that much less, so fudge it by multiplying by 2.
1897 timeout_us
+= (timeout_clks
* 1000) /
1898 (card
->host
->ios
.clock
/ 1000);
1900 erase_timeout
= timeout_us
/ 1000;
1903 * Theoretically, the calculation could underflow so round up
1904 * to 1ms in that case.
1910 /* Multiplier for secure operations */
1911 if (arg
& MMC_SECURE_ARGS
) {
1912 if (arg
== MMC_SECURE_ERASE_ARG
)
1913 erase_timeout
*= card
->ext_csd
.sec_erase_mult
;
1915 erase_timeout
*= card
->ext_csd
.sec_trim_mult
;
1918 erase_timeout
*= qty
;
1921 * Ensure at least a 1 second timeout for SPI as per
1922 * 'mmc_set_data_timeout()'
1924 if (mmc_host_is_spi(card
->host
) && erase_timeout
< 1000)
1925 erase_timeout
= 1000;
1927 return erase_timeout
;
1930 static unsigned int mmc_sd_erase_timeout(struct mmc_card
*card
,
1934 unsigned int erase_timeout
;
1936 if (card
->ssr
.erase_timeout
) {
1937 /* Erase timeout specified in SD Status Register (SSR) */
1938 erase_timeout
= card
->ssr
.erase_timeout
* qty
+
1939 card
->ssr
.erase_offset
;
1942 * Erase timeout not specified in SD Status Register (SSR) so
1943 * use 250ms per write block.
1945 erase_timeout
= 250 * qty
;
1948 /* Must not be less than 1 second */
1949 if (erase_timeout
< 1000)
1950 erase_timeout
= 1000;
1952 return erase_timeout
;
1955 static unsigned int mmc_erase_timeout(struct mmc_card
*card
,
1959 if (mmc_card_sd(card
))
1960 return mmc_sd_erase_timeout(card
, arg
, qty
);
1962 return mmc_mmc_erase_timeout(card
, arg
, qty
);
1965 static int mmc_do_erase(struct mmc_card
*card
, unsigned int from
,
1966 unsigned int to
, unsigned int arg
)
1968 struct mmc_command cmd
= {};
1969 unsigned int qty
= 0, busy_timeout
= 0;
1970 bool use_r1b_resp
= false;
1971 unsigned long timeout
;
1972 int loop_udelay
=64, udelay_max
=32768;
1975 mmc_retune_hold(card
->host
);
1978 * qty is used to calculate the erase timeout which depends on how many
1979 * erase groups (or allocation units in SD terminology) are affected.
1980 * We count erasing part of an erase group as one erase group.
1981 * For SD, the allocation units are always a power of 2. For MMC, the
1982 * erase group size is almost certainly also power of 2, but it does not
1983 * seem to insist on that in the JEDEC standard, so we fall back to
1984 * division in that case. SD may not specify an allocation unit size,
1985 * in which case the timeout is based on the number of write blocks.
1987 * Note that the timeout for secure trim 2 will only be correct if the
1988 * number of erase groups specified is the same as the total of all
1989 * preceding secure trim 1 commands. Since the power may have been
1990 * lost since the secure trim 1 commands occurred, it is generally
1991 * impossible to calculate the secure trim 2 timeout correctly.
1993 if (card
->erase_shift
)
1994 qty
+= ((to
>> card
->erase_shift
) -
1995 (from
>> card
->erase_shift
)) + 1;
1996 else if (mmc_card_sd(card
))
1997 qty
+= to
- from
+ 1;
1999 qty
+= ((to
/ card
->erase_size
) -
2000 (from
/ card
->erase_size
)) + 1;
2002 if (!mmc_card_blockaddr(card
)) {
2007 if (mmc_card_sd(card
))
2008 cmd
.opcode
= SD_ERASE_WR_BLK_START
;
2010 cmd
.opcode
= MMC_ERASE_GROUP_START
;
2012 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2013 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2015 pr_err("mmc_erase: group start error %d, "
2016 "status %#x\n", err
, cmd
.resp
[0]);
2021 memset(&cmd
, 0, sizeof(struct mmc_command
));
2022 if (mmc_card_sd(card
))
2023 cmd
.opcode
= SD_ERASE_WR_BLK_END
;
2025 cmd
.opcode
= MMC_ERASE_GROUP_END
;
2027 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2028 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2030 pr_err("mmc_erase: group end error %d, status %#x\n",
2036 memset(&cmd
, 0, sizeof(struct mmc_command
));
2037 cmd
.opcode
= MMC_ERASE
;
2039 busy_timeout
= mmc_erase_timeout(card
, arg
, qty
);
2041 * If the host controller supports busy signalling and the timeout for
2042 * the erase operation does not exceed the max_busy_timeout, we should
2043 * use R1B response. Or we need to prevent the host from doing hw busy
2044 * detection, which is done by converting to a R1 response instead.
2046 if (card
->host
->max_busy_timeout
&&
2047 busy_timeout
> card
->host
->max_busy_timeout
) {
2048 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2050 cmd
.flags
= MMC_RSP_SPI_R1B
| MMC_RSP_R1B
| MMC_CMD_AC
;
2051 cmd
.busy_timeout
= busy_timeout
;
2052 use_r1b_resp
= true;
2055 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2057 pr_err("mmc_erase: erase error %d, status %#x\n",
2063 if (mmc_host_is_spi(card
->host
))
2067 * In case of when R1B + MMC_CAP_WAIT_WHILE_BUSY is used, the polling
2070 if ((card
->host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
) && use_r1b_resp
)
2073 timeout
= jiffies
+ msecs_to_jiffies(busy_timeout
);
2075 memset(&cmd
, 0, sizeof(struct mmc_command
));
2076 cmd
.opcode
= MMC_SEND_STATUS
;
2077 cmd
.arg
= card
->rca
<< 16;
2078 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
2079 /* Do not retry else we can't see errors */
2080 err
= mmc_wait_for_cmd(card
->host
, &cmd
, 0);
2081 if (err
|| (cmd
.resp
[0] & 0xFDF92000)) {
2082 pr_err("error %d requesting status %#x\n",
2088 /* Timeout if the device never becomes ready for data and
2089 * never leaves the program state.
2091 if (time_after(jiffies
, timeout
)) {
2092 pr_err("%s: Card stuck in programming state! %s\n",
2093 mmc_hostname(card
->host
), __func__
);
2097 if ((cmd
.resp
[0] & R1_READY_FOR_DATA
) &&
2098 R1_CURRENT_STATE(cmd
.resp
[0]) != R1_STATE_PRG
)
2101 usleep_range(loop_udelay
, loop_udelay
*2);
2102 if (loop_udelay
< udelay_max
)
2107 mmc_retune_release(card
->host
);
2111 static unsigned int mmc_align_erase_size(struct mmc_card
*card
,
2116 unsigned int from_new
= *from
, nr_new
= nr
, rem
;
2119 * When the 'card->erase_size' is power of 2, we can use round_up/down()
2120 * to align the erase size efficiently.
2122 if (is_power_of_2(card
->erase_size
)) {
2123 unsigned int temp
= from_new
;
2125 from_new
= round_up(temp
, card
->erase_size
);
2126 rem
= from_new
- temp
;
2133 nr_new
= round_down(nr_new
, card
->erase_size
);
2135 rem
= from_new
% card
->erase_size
;
2137 rem
= card
->erase_size
- rem
;
2145 rem
= nr_new
% card
->erase_size
;
2153 *to
= from_new
+ nr_new
;
2160 * mmc_erase - erase sectors.
2161 * @card: card to erase
2162 * @from: first sector to erase
2163 * @nr: number of sectors to erase
2164 * @arg: erase command argument (SD supports only %MMC_ERASE_ARG)
2166 * Caller must claim host before calling this function.
2168 int mmc_erase(struct mmc_card
*card
, unsigned int from
, unsigned int nr
,
2171 unsigned int rem
, to
= from
+ nr
;
2174 if (!(card
->host
->caps
& MMC_CAP_ERASE
) ||
2175 !(card
->csd
.cmdclass
& CCC_ERASE
))
2178 if (!card
->erase_size
)
2181 if (mmc_card_sd(card
) && arg
!= MMC_ERASE_ARG
)
2184 if ((arg
& MMC_SECURE_ARGS
) &&
2185 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
))
2188 if ((arg
& MMC_TRIM_ARGS
) &&
2189 !(card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
))
2192 if (arg
== MMC_SECURE_ERASE_ARG
) {
2193 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2197 if (arg
== MMC_ERASE_ARG
)
2198 nr
= mmc_align_erase_size(card
, &from
, &to
, nr
);
2206 /* 'from' and 'to' are inclusive */
2210 * Special case where only one erase-group fits in the timeout budget:
2211 * If the region crosses an erase-group boundary on this particular
2212 * case, we will be trimming more than one erase-group which, does not
2213 * fit in the timeout budget of the controller, so we need to split it
2214 * and call mmc_do_erase() twice if necessary. This special case is
2215 * identified by the card->eg_boundary flag.
2217 rem
= card
->erase_size
- (from
% card
->erase_size
);
2218 if ((arg
& MMC_TRIM_ARGS
) && (card
->eg_boundary
) && (nr
> rem
)) {
2219 err
= mmc_do_erase(card
, from
, from
+ rem
- 1, arg
);
2221 if ((err
) || (to
<= from
))
2225 return mmc_do_erase(card
, from
, to
, arg
);
2227 EXPORT_SYMBOL(mmc_erase
);
2229 int mmc_can_erase(struct mmc_card
*card
)
2231 if ((card
->host
->caps
& MMC_CAP_ERASE
) &&
2232 (card
->csd
.cmdclass
& CCC_ERASE
) && card
->erase_size
)
2236 EXPORT_SYMBOL(mmc_can_erase
);
2238 int mmc_can_trim(struct mmc_card
*card
)
2240 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_GB_CL_EN
) &&
2241 (!(card
->quirks
& MMC_QUIRK_TRIM_BROKEN
)))
2245 EXPORT_SYMBOL(mmc_can_trim
);
2247 int mmc_can_discard(struct mmc_card
*card
)
2250 * As there's no way to detect the discard support bit at v4.5
2251 * use the s/w feature support filed.
2253 if (card
->ext_csd
.feature_support
& MMC_DISCARD_FEATURE
)
2257 EXPORT_SYMBOL(mmc_can_discard
);
2259 int mmc_can_sanitize(struct mmc_card
*card
)
2261 if (!mmc_can_trim(card
) && !mmc_can_erase(card
))
2263 if (card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_SANITIZE
)
2267 EXPORT_SYMBOL(mmc_can_sanitize
);
2269 int mmc_can_secure_erase_trim(struct mmc_card
*card
)
2271 if ((card
->ext_csd
.sec_feature_support
& EXT_CSD_SEC_ER_EN
) &&
2272 !(card
->quirks
& MMC_QUIRK_SEC_ERASE_TRIM_BROKEN
))
2276 EXPORT_SYMBOL(mmc_can_secure_erase_trim
);
2278 int mmc_erase_group_aligned(struct mmc_card
*card
, unsigned int from
,
2281 if (!card
->erase_size
)
2283 if (from
% card
->erase_size
|| nr
% card
->erase_size
)
2287 EXPORT_SYMBOL(mmc_erase_group_aligned
);
2289 static unsigned int mmc_do_calc_max_discard(struct mmc_card
*card
,
2292 struct mmc_host
*host
= card
->host
;
2293 unsigned int max_discard
, x
, y
, qty
= 0, max_qty
, min_qty
, timeout
;
2294 unsigned int last_timeout
= 0;
2295 unsigned int max_busy_timeout
= host
->max_busy_timeout
?
2296 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
;
2298 if (card
->erase_shift
) {
2299 max_qty
= UINT_MAX
>> card
->erase_shift
;
2300 min_qty
= card
->pref_erase
>> card
->erase_shift
;
2301 } else if (mmc_card_sd(card
)) {
2303 min_qty
= card
->pref_erase
;
2305 max_qty
= UINT_MAX
/ card
->erase_size
;
2306 min_qty
= card
->pref_erase
/ card
->erase_size
;
2310 * We should not only use 'host->max_busy_timeout' as the limitation
2311 * when deciding the max discard sectors. We should set a balance value
2312 * to improve the erase speed, and it can not get too long timeout at
2315 * Here we set 'card->pref_erase' as the minimal discard sectors no
2316 * matter what size of 'host->max_busy_timeout', but if the
2317 * 'host->max_busy_timeout' is large enough for more discard sectors,
2318 * then we can continue to increase the max discard sectors until we
2319 * get a balance value. In cases when the 'host->max_busy_timeout'
2320 * isn't specified, use the default max erase timeout.
2324 for (x
= 1; x
&& x
<= max_qty
&& max_qty
- x
>= qty
; x
<<= 1) {
2325 timeout
= mmc_erase_timeout(card
, arg
, qty
+ x
);
2327 if (qty
+ x
> min_qty
&& timeout
> max_busy_timeout
)
2330 if (timeout
< last_timeout
)
2332 last_timeout
= timeout
;
2342 * When specifying a sector range to trim, chances are we might cross
2343 * an erase-group boundary even if the amount of sectors is less than
2345 * If we can only fit one erase-group in the controller timeout budget,
2346 * we have to care that erase-group boundaries are not crossed by a
2347 * single trim operation. We flag that special case with "eg_boundary".
2348 * In all other cases we can just decrement qty and pretend that we
2349 * always touch (qty + 1) erase-groups as a simple optimization.
2352 card
->eg_boundary
= 1;
2356 /* Convert qty to sectors */
2357 if (card
->erase_shift
)
2358 max_discard
= qty
<< card
->erase_shift
;
2359 else if (mmc_card_sd(card
))
2360 max_discard
= qty
+ 1;
2362 max_discard
= qty
* card
->erase_size
;
2367 unsigned int mmc_calc_max_discard(struct mmc_card
*card
)
2369 struct mmc_host
*host
= card
->host
;
2370 unsigned int max_discard
, max_trim
;
2373 * Without erase_group_def set, MMC erase timeout depends on clock
2374 * frequence which can change. In that case, the best choice is
2375 * just the preferred erase size.
2377 if (mmc_card_mmc(card
) && !(card
->ext_csd
.erase_group_def
& 1))
2378 return card
->pref_erase
;
2380 max_discard
= mmc_do_calc_max_discard(card
, MMC_ERASE_ARG
);
2381 if (max_discard
&& mmc_can_trim(card
)) {
2382 max_trim
= mmc_do_calc_max_discard(card
, MMC_TRIM_ARG
);
2383 if (max_trim
< max_discard
)
2384 max_discard
= max_trim
;
2385 } else if (max_discard
< card
->erase_size
) {
2388 pr_debug("%s: calculated max. discard sectors %u for timeout %u ms\n",
2389 mmc_hostname(host
), max_discard
, host
->max_busy_timeout
?
2390 host
->max_busy_timeout
: MMC_ERASE_TIMEOUT_MS
);
2393 EXPORT_SYMBOL(mmc_calc_max_discard
);
2395 bool mmc_card_is_blockaddr(struct mmc_card
*card
)
2397 return card
? mmc_card_blockaddr(card
) : false;
2399 EXPORT_SYMBOL(mmc_card_is_blockaddr
);
2401 int mmc_set_blocklen(struct mmc_card
*card
, unsigned int blocklen
)
2403 struct mmc_command cmd
= {};
2405 if (mmc_card_blockaddr(card
) || mmc_card_ddr52(card
) ||
2406 mmc_card_hs400(card
) || mmc_card_hs400es(card
))
2409 cmd
.opcode
= MMC_SET_BLOCKLEN
;
2411 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2412 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2414 EXPORT_SYMBOL(mmc_set_blocklen
);
2416 int mmc_set_blockcount(struct mmc_card
*card
, unsigned int blockcount
,
2419 struct mmc_command cmd
= {};
2421 cmd
.opcode
= MMC_SET_BLOCK_COUNT
;
2422 cmd
.arg
= blockcount
& 0x0000FFFF;
2425 cmd
.flags
= MMC_RSP_SPI_R1
| MMC_RSP_R1
| MMC_CMD_AC
;
2426 return mmc_wait_for_cmd(card
->host
, &cmd
, 5);
2428 EXPORT_SYMBOL(mmc_set_blockcount
);
2430 static void mmc_hw_reset_for_init(struct mmc_host
*host
)
2432 mmc_pwrseq_reset(host
);
2434 if (!(host
->caps
& MMC_CAP_HW_RESET
) || !host
->ops
->hw_reset
)
2436 host
->ops
->hw_reset(host
);
2439 int mmc_hw_reset(struct mmc_host
*host
)
2447 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->hw_reset
) {
2452 ret
= host
->bus_ops
->hw_reset(host
);
2456 pr_warn("%s: tried to HW reset card, got error %d\n",
2457 mmc_hostname(host
), ret
);
2461 EXPORT_SYMBOL(mmc_hw_reset
);
2463 int mmc_sw_reset(struct mmc_host
*host
)
2471 if (!host
->bus_ops
|| host
->bus_dead
|| !host
->bus_ops
->sw_reset
) {
2476 ret
= host
->bus_ops
->sw_reset(host
);
2480 pr_warn("%s: tried to SW reset card, got error %d\n",
2481 mmc_hostname(host
), ret
);
2485 EXPORT_SYMBOL(mmc_sw_reset
);
2487 static int mmc_rescan_try_freq(struct mmc_host
*host
, unsigned freq
)
2489 host
->f_init
= freq
;
2491 pr_debug("%s: %s: trying to init card at %u Hz\n",
2492 mmc_hostname(host
), __func__
, host
->f_init
);
2494 mmc_power_up(host
, host
->ocr_avail
);
2497 * Some eMMCs (with VCCQ always on) may not be reset after power up, so
2498 * do a hardware reset if possible.
2500 mmc_hw_reset_for_init(host
);
2503 * sdio_reset sends CMD52 to reset card. Since we do not know
2504 * if the card is being re-initialized, just send it. CMD52
2505 * should be ignored by SD/eMMC cards.
2506 * Skip it if we already know that we do not support SDIO commands
2508 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2513 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2514 mmc_send_if_cond(host
, host
->ocr_avail
);
2516 /* Order's important: probe SDIO, then SD, then MMC */
2517 if (!(host
->caps2
& MMC_CAP2_NO_SDIO
))
2518 if (!mmc_attach_sdio(host
))
2521 if (!(host
->caps2
& MMC_CAP2_NO_SD
))
2522 if (!mmc_attach_sd(host
))
2525 if (!(host
->caps2
& MMC_CAP2_NO_MMC
))
2526 if (!mmc_attach_mmc(host
))
2529 mmc_power_off(host
);
2533 int _mmc_detect_card_removed(struct mmc_host
*host
)
2537 if (!host
->card
|| mmc_card_removed(host
->card
))
2540 ret
= host
->bus_ops
->alive(host
);
2543 * Card detect status and alive check may be out of sync if card is
2544 * removed slowly, when card detect switch changes while card/slot
2545 * pads are still contacted in hardware (refer to "SD Card Mechanical
2546 * Addendum, Appendix C: Card Detection Switch"). So reschedule a
2547 * detect work 200ms later for this case.
2549 if (!ret
&& host
->ops
->get_cd
&& !host
->ops
->get_cd(host
)) {
2550 mmc_detect_change(host
, msecs_to_jiffies(200));
2551 pr_debug("%s: card removed too slowly\n", mmc_hostname(host
));
2555 mmc_card_set_removed(host
->card
);
2556 pr_debug("%s: card remove detected\n", mmc_hostname(host
));
2562 int mmc_detect_card_removed(struct mmc_host
*host
)
2564 struct mmc_card
*card
= host
->card
;
2567 WARN_ON(!host
->claimed
);
2572 if (!mmc_card_is_removable(host
))
2575 ret
= mmc_card_removed(card
);
2577 * The card will be considered unchanged unless we have been asked to
2578 * detect a change or host requires polling to provide card detection.
2580 if (!host
->detect_change
&& !(host
->caps
& MMC_CAP_NEEDS_POLL
))
2583 host
->detect_change
= 0;
2585 ret
= _mmc_detect_card_removed(host
);
2586 if (ret
&& (host
->caps
& MMC_CAP_NEEDS_POLL
)) {
2588 * Schedule a detect work as soon as possible to let a
2589 * rescan handle the card removal.
2591 cancel_delayed_work(&host
->detect
);
2592 _mmc_detect_change(host
, 0, false);
2598 EXPORT_SYMBOL(mmc_detect_card_removed
);
2600 void mmc_rescan(struct work_struct
*work
)
2602 struct mmc_host
*host
=
2603 container_of(work
, struct mmc_host
, detect
.work
);
2606 if (host
->rescan_disable
)
2609 /* If there is a non-removable card registered, only scan once */
2610 if (!mmc_card_is_removable(host
) && host
->rescan_entered
)
2612 host
->rescan_entered
= 1;
2614 if (host
->trigger_card_event
&& host
->ops
->card_event
) {
2615 mmc_claim_host(host
);
2616 host
->ops
->card_event(host
);
2617 mmc_release_host(host
);
2618 host
->trigger_card_event
= false;
2624 * if there is a _removable_ card registered, check whether it is
2627 if (host
->bus_ops
&& !host
->bus_dead
&& mmc_card_is_removable(host
))
2628 host
->bus_ops
->detect(host
);
2630 host
->detect_change
= 0;
2633 * Let mmc_bus_put() free the bus/bus_ops if we've found that
2634 * the card is no longer present.
2639 /* if there still is a card present, stop here */
2640 if (host
->bus_ops
!= NULL
) {
2646 * Only we can add a new handler, so it's safe to
2647 * release the lock here.
2651 mmc_claim_host(host
);
2652 if (mmc_card_is_removable(host
) && host
->ops
->get_cd
&&
2653 host
->ops
->get_cd(host
) == 0) {
2654 mmc_power_off(host
);
2655 mmc_release_host(host
);
2659 for (i
= 0; i
< ARRAY_SIZE(freqs
); i
++) {
2660 if (!mmc_rescan_try_freq(host
, max(freqs
[i
], host
->f_min
)))
2662 if (freqs
[i
] <= host
->f_min
)
2665 mmc_release_host(host
);
2668 if (host
->caps
& MMC_CAP_NEEDS_POLL
)
2669 mmc_schedule_delayed_work(&host
->detect
, HZ
);
2672 void mmc_start_host(struct mmc_host
*host
)
2674 host
->f_init
= max(freqs
[0], host
->f_min
);
2675 host
->rescan_disable
= 0;
2676 host
->ios
.power_mode
= MMC_POWER_UNDEFINED
;
2678 if (!(host
->caps2
& MMC_CAP2_NO_PRESCAN_POWERUP
)) {
2679 mmc_claim_host(host
);
2680 mmc_power_up(host
, host
->ocr_avail
);
2681 mmc_release_host(host
);
2684 mmc_gpiod_request_cd_irq(host
);
2685 _mmc_detect_change(host
, 0, false);
2688 void mmc_stop_host(struct mmc_host
*host
)
2690 if (host
->slot
.cd_irq
>= 0) {
2691 mmc_gpio_set_cd_wake(host
, false);
2692 disable_irq(host
->slot
.cd_irq
);
2695 host
->rescan_disable
= 1;
2696 cancel_delayed_work_sync(&host
->detect
);
2698 /* clear pm flags now and let card drivers set them as needed */
2702 if (host
->bus_ops
&& !host
->bus_dead
) {
2703 /* Calling bus_ops->remove() with a claimed host can deadlock */
2704 host
->bus_ops
->remove(host
);
2705 mmc_claim_host(host
);
2706 mmc_detach_bus(host
);
2707 mmc_power_off(host
);
2708 mmc_release_host(host
);
2714 mmc_claim_host(host
);
2715 mmc_power_off(host
);
2716 mmc_release_host(host
);
2719 int mmc_power_save_host(struct mmc_host
*host
)
2723 pr_debug("%s: %s: powering down\n", mmc_hostname(host
), __func__
);
2727 if (!host
->bus_ops
|| host
->bus_dead
) {
2732 if (host
->bus_ops
->power_save
)
2733 ret
= host
->bus_ops
->power_save(host
);
2737 mmc_power_off(host
);
2741 EXPORT_SYMBOL(mmc_power_save_host
);
2743 int mmc_power_restore_host(struct mmc_host
*host
)
2747 pr_debug("%s: %s: powering up\n", mmc_hostname(host
), __func__
);
2751 if (!host
->bus_ops
|| host
->bus_dead
) {
2756 mmc_power_up(host
, host
->card
->ocr
);
2757 ret
= host
->bus_ops
->power_restore(host
);
2763 EXPORT_SYMBOL(mmc_power_restore_host
);
2765 #ifdef CONFIG_PM_SLEEP
2766 /* Do the card removal on suspend if card is assumed removeable
2767 * Do that in pm notifier while userspace isn't yet frozen, so we will be able
2770 static int mmc_pm_notify(struct notifier_block
*notify_block
,
2771 unsigned long mode
, void *unused
)
2773 struct mmc_host
*host
= container_of(
2774 notify_block
, struct mmc_host
, pm_notify
);
2775 unsigned long flags
;
2779 case PM_HIBERNATION_PREPARE
:
2780 case PM_SUSPEND_PREPARE
:
2781 case PM_RESTORE_PREPARE
:
2782 spin_lock_irqsave(&host
->lock
, flags
);
2783 host
->rescan_disable
= 1;
2784 spin_unlock_irqrestore(&host
->lock
, flags
);
2785 cancel_delayed_work_sync(&host
->detect
);
2790 /* Validate prerequisites for suspend */
2791 if (host
->bus_ops
->pre_suspend
)
2792 err
= host
->bus_ops
->pre_suspend(host
);
2796 if (!mmc_card_is_removable(host
)) {
2797 dev_warn(mmc_dev(host
),
2798 "pre_suspend failed for non-removable host: "
2800 /* Avoid removing non-removable hosts */
2804 /* Calling bus_ops->remove() with a claimed host can deadlock */
2805 host
->bus_ops
->remove(host
);
2806 mmc_claim_host(host
);
2807 mmc_detach_bus(host
);
2808 mmc_power_off(host
);
2809 mmc_release_host(host
);
2813 case PM_POST_SUSPEND
:
2814 case PM_POST_HIBERNATION
:
2815 case PM_POST_RESTORE
:
2817 spin_lock_irqsave(&host
->lock
, flags
);
2818 host
->rescan_disable
= 0;
2819 spin_unlock_irqrestore(&host
->lock
, flags
);
2820 _mmc_detect_change(host
, 0, false);
2827 void mmc_register_pm_notifier(struct mmc_host
*host
)
2829 host
->pm_notify
.notifier_call
= mmc_pm_notify
;
2830 register_pm_notifier(&host
->pm_notify
);
2833 void mmc_unregister_pm_notifier(struct mmc_host
*host
)
2835 unregister_pm_notifier(&host
->pm_notify
);
2839 static int __init
mmc_init(void)
2843 ret
= mmc_register_bus();
2847 ret
= mmc_register_host_class();
2849 goto unregister_bus
;
2851 ret
= sdio_register_bus();
2853 goto unregister_host_class
;
2857 unregister_host_class
:
2858 mmc_unregister_host_class();
2860 mmc_unregister_bus();
2864 static void __exit
mmc_exit(void)
2866 sdio_unregister_bus();
2867 mmc_unregister_host_class();
2868 mmc_unregister_bus();
2871 subsys_initcall(mmc_init
);
2872 module_exit(mmc_exit
);
2874 MODULE_LICENSE("GPL");