2 * linux/drivers/mmc/core/mmc.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/err.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
32 #define DEFAULT_CMD6_TIMEOUT_MS 500
34 static const unsigned int tran_exp
[] = {
35 10000, 100000, 1000000, 10000000,
39 static const unsigned char tran_mant
[] = {
40 0, 10, 12, 13, 15, 20, 25, 30,
41 35, 40, 45, 50, 55, 60, 70, 80,
44 static const unsigned int taac_exp
[] = {
45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
48 static const unsigned int taac_mant
[] = {
49 0, 10, 12, 13, 15, 20, 25, 30,
50 35, 40, 45, 50, 55, 60, 70, 80,
53 #define UNSTUFF_BITS(resp,start,size) \
55 const int __size = size; \
56 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
57 const int __off = 3 - ((start) / 32); \
58 const int __shft = (start) & 31; \
61 __res = resp[__off] >> __shft; \
62 if (__size + __shft > 32) \
63 __res |= resp[__off-1] << ((32 - __shft) % 32); \
68 * Given the decoded CSD structure, decode the raw CID to our CID structure.
70 static int mmc_decode_cid(struct mmc_card
*card
)
72 u32
*resp
= card
->raw_cid
;
75 * The selection of the format here is based upon published
76 * specs from sandisk and from what people have reported.
78 switch (card
->csd
.mmca_vsn
) {
79 case 0: /* MMC v1.0 - v1.2 */
80 case 1: /* MMC v1.4 */
81 card
->cid
.manfid
= UNSTUFF_BITS(resp
, 104, 24);
82 card
->cid
.prod_name
[0] = UNSTUFF_BITS(resp
, 96, 8);
83 card
->cid
.prod_name
[1] = UNSTUFF_BITS(resp
, 88, 8);
84 card
->cid
.prod_name
[2] = UNSTUFF_BITS(resp
, 80, 8);
85 card
->cid
.prod_name
[3] = UNSTUFF_BITS(resp
, 72, 8);
86 card
->cid
.prod_name
[4] = UNSTUFF_BITS(resp
, 64, 8);
87 card
->cid
.prod_name
[5] = UNSTUFF_BITS(resp
, 56, 8);
88 card
->cid
.prod_name
[6] = UNSTUFF_BITS(resp
, 48, 8);
89 card
->cid
.hwrev
= UNSTUFF_BITS(resp
, 44, 4);
90 card
->cid
.fwrev
= UNSTUFF_BITS(resp
, 40, 4);
91 card
->cid
.serial
= UNSTUFF_BITS(resp
, 16, 24);
92 card
->cid
.month
= UNSTUFF_BITS(resp
, 12, 4);
93 card
->cid
.year
= UNSTUFF_BITS(resp
, 8, 4) + 1997;
96 case 2: /* MMC v2.0 - v2.2 */
97 case 3: /* MMC v3.1 - v3.3 */
99 card
->cid
.manfid
= UNSTUFF_BITS(resp
, 120, 8);
100 card
->cid
.oemid
= UNSTUFF_BITS(resp
, 104, 16);
101 card
->cid
.prod_name
[0] = UNSTUFF_BITS(resp
, 96, 8);
102 card
->cid
.prod_name
[1] = UNSTUFF_BITS(resp
, 88, 8);
103 card
->cid
.prod_name
[2] = UNSTUFF_BITS(resp
, 80, 8);
104 card
->cid
.prod_name
[3] = UNSTUFF_BITS(resp
, 72, 8);
105 card
->cid
.prod_name
[4] = UNSTUFF_BITS(resp
, 64, 8);
106 card
->cid
.prod_name
[5] = UNSTUFF_BITS(resp
, 56, 8);
107 card
->cid
.prv
= UNSTUFF_BITS(resp
, 48, 8);
108 card
->cid
.serial
= UNSTUFF_BITS(resp
, 16, 32);
109 card
->cid
.month
= UNSTUFF_BITS(resp
, 12, 4);
110 card
->cid
.year
= UNSTUFF_BITS(resp
, 8, 4) + 1997;
114 pr_err("%s: card has unknown MMCA version %d\n",
115 mmc_hostname(card
->host
), card
->csd
.mmca_vsn
);
122 static void mmc_set_erase_size(struct mmc_card
*card
)
124 if (card
->ext_csd
.erase_group_def
& 1)
125 card
->erase_size
= card
->ext_csd
.hc_erase_size
;
127 card
->erase_size
= card
->csd
.erase_size
;
129 mmc_init_erase(card
);
133 * Given a 128-bit response, decode to our card CSD structure.
135 static int mmc_decode_csd(struct mmc_card
*card
)
137 struct mmc_csd
*csd
= &card
->csd
;
138 unsigned int e
, m
, a
, b
;
139 u32
*resp
= card
->raw_csd
;
142 * We only understand CSD structure v1.1 and v1.2.
143 * v1.2 has extra information in bits 15, 11 and 10.
144 * We also support eMMC v4.4 & v4.41.
146 csd
->structure
= UNSTUFF_BITS(resp
, 126, 2);
147 if (csd
->structure
== 0) {
148 pr_err("%s: unrecognised CSD structure version %d\n",
149 mmc_hostname(card
->host
), csd
->structure
);
153 csd
->mmca_vsn
= UNSTUFF_BITS(resp
, 122, 4);
154 m
= UNSTUFF_BITS(resp
, 115, 4);
155 e
= UNSTUFF_BITS(resp
, 112, 3);
156 csd
->taac_ns
= (taac_exp
[e
] * taac_mant
[m
] + 9) / 10;
157 csd
->taac_clks
= UNSTUFF_BITS(resp
, 104, 8) * 100;
159 m
= UNSTUFF_BITS(resp
, 99, 4);
160 e
= UNSTUFF_BITS(resp
, 96, 3);
161 csd
->max_dtr
= tran_exp
[e
] * tran_mant
[m
];
162 csd
->cmdclass
= UNSTUFF_BITS(resp
, 84, 12);
164 e
= UNSTUFF_BITS(resp
, 47, 3);
165 m
= UNSTUFF_BITS(resp
, 62, 12);
166 csd
->capacity
= (1 + m
) << (e
+ 2);
168 csd
->read_blkbits
= UNSTUFF_BITS(resp
, 80, 4);
169 csd
->read_partial
= UNSTUFF_BITS(resp
, 79, 1);
170 csd
->write_misalign
= UNSTUFF_BITS(resp
, 78, 1);
171 csd
->read_misalign
= UNSTUFF_BITS(resp
, 77, 1);
172 csd
->dsr_imp
= UNSTUFF_BITS(resp
, 76, 1);
173 csd
->r2w_factor
= UNSTUFF_BITS(resp
, 26, 3);
174 csd
->write_blkbits
= UNSTUFF_BITS(resp
, 22, 4);
175 csd
->write_partial
= UNSTUFF_BITS(resp
, 21, 1);
177 if (csd
->write_blkbits
>= 9) {
178 a
= UNSTUFF_BITS(resp
, 42, 5);
179 b
= UNSTUFF_BITS(resp
, 37, 5);
180 csd
->erase_size
= (a
+ 1) * (b
+ 1);
181 csd
->erase_size
<<= csd
->write_blkbits
- 9;
187 static void mmc_select_card_type(struct mmc_card
*card
)
189 struct mmc_host
*host
= card
->host
;
190 u8 card_type
= card
->ext_csd
.raw_card_type
;
191 u32 caps
= host
->caps
, caps2
= host
->caps2
;
192 unsigned int hs_max_dtr
= 0, hs200_max_dtr
= 0;
193 unsigned int avail_type
= 0;
195 if (caps
& MMC_CAP_MMC_HIGHSPEED
&&
196 card_type
& EXT_CSD_CARD_TYPE_HS_26
) {
197 hs_max_dtr
= MMC_HIGH_26_MAX_DTR
;
198 avail_type
|= EXT_CSD_CARD_TYPE_HS_26
;
201 if (caps
& MMC_CAP_MMC_HIGHSPEED
&&
202 card_type
& EXT_CSD_CARD_TYPE_HS_52
) {
203 hs_max_dtr
= MMC_HIGH_52_MAX_DTR
;
204 avail_type
|= EXT_CSD_CARD_TYPE_HS_52
;
207 if (caps
& (MMC_CAP_1_8V_DDR
| MMC_CAP_3_3V_DDR
) &&
208 card_type
& EXT_CSD_CARD_TYPE_DDR_1_8V
) {
209 hs_max_dtr
= MMC_HIGH_DDR_MAX_DTR
;
210 avail_type
|= EXT_CSD_CARD_TYPE_DDR_1_8V
;
213 if (caps
& MMC_CAP_1_2V_DDR
&&
214 card_type
& EXT_CSD_CARD_TYPE_DDR_1_2V
) {
215 hs_max_dtr
= MMC_HIGH_DDR_MAX_DTR
;
216 avail_type
|= EXT_CSD_CARD_TYPE_DDR_1_2V
;
219 if (caps2
& MMC_CAP2_HS200_1_8V_SDR
&&
220 card_type
& EXT_CSD_CARD_TYPE_HS200_1_8V
) {
221 hs200_max_dtr
= MMC_HS200_MAX_DTR
;
222 avail_type
|= EXT_CSD_CARD_TYPE_HS200_1_8V
;
225 if (caps2
& MMC_CAP2_HS200_1_2V_SDR
&&
226 card_type
& EXT_CSD_CARD_TYPE_HS200_1_2V
) {
227 hs200_max_dtr
= MMC_HS200_MAX_DTR
;
228 avail_type
|= EXT_CSD_CARD_TYPE_HS200_1_2V
;
231 if (caps2
& MMC_CAP2_HS400_1_8V
&&
232 card_type
& EXT_CSD_CARD_TYPE_HS400_1_8V
) {
233 hs200_max_dtr
= MMC_HS200_MAX_DTR
;
234 avail_type
|= EXT_CSD_CARD_TYPE_HS400_1_8V
;
237 if (caps2
& MMC_CAP2_HS400_1_2V
&&
238 card_type
& EXT_CSD_CARD_TYPE_HS400_1_2V
) {
239 hs200_max_dtr
= MMC_HS200_MAX_DTR
;
240 avail_type
|= EXT_CSD_CARD_TYPE_HS400_1_2V
;
243 if ((caps2
& MMC_CAP2_HS400_ES
) &&
244 card
->ext_csd
.strobe_support
&&
245 (avail_type
& EXT_CSD_CARD_TYPE_HS400
))
246 avail_type
|= EXT_CSD_CARD_TYPE_HS400ES
;
248 card
->ext_csd
.hs_max_dtr
= hs_max_dtr
;
249 card
->ext_csd
.hs200_max_dtr
= hs200_max_dtr
;
250 card
->mmc_avail_type
= avail_type
;
253 static void mmc_manage_enhanced_area(struct mmc_card
*card
, u8
*ext_csd
)
255 u8 hc_erase_grp_sz
, hc_wp_grp_sz
;
258 * Disable these attributes by default
260 card
->ext_csd
.enhanced_area_offset
= -EINVAL
;
261 card
->ext_csd
.enhanced_area_size
= -EINVAL
;
264 * Enhanced area feature support -- check whether the eMMC
265 * card has the Enhanced area enabled. If so, export enhanced
266 * area offset and size to user by adding sysfs interface.
268 if ((ext_csd
[EXT_CSD_PARTITION_SUPPORT
] & 0x2) &&
269 (ext_csd
[EXT_CSD_PARTITION_ATTRIBUTE
] & 0x1)) {
270 if (card
->ext_csd
.partition_setting_completed
) {
272 ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
];
274 ext_csd
[EXT_CSD_HC_WP_GRP_SIZE
];
277 * calculate the enhanced data area offset, in bytes
279 card
->ext_csd
.enhanced_area_offset
=
280 (((unsigned long long)ext_csd
[139]) << 24) +
281 (((unsigned long long)ext_csd
[138]) << 16) +
282 (((unsigned long long)ext_csd
[137]) << 8) +
283 (((unsigned long long)ext_csd
[136]));
284 if (mmc_card_blockaddr(card
))
285 card
->ext_csd
.enhanced_area_offset
<<= 9;
287 * calculate the enhanced data area size, in kilobytes
289 card
->ext_csd
.enhanced_area_size
=
290 (ext_csd
[142] << 16) + (ext_csd
[141] << 8) +
292 card
->ext_csd
.enhanced_area_size
*=
293 (size_t)(hc_erase_grp_sz
* hc_wp_grp_sz
);
294 card
->ext_csd
.enhanced_area_size
<<= 9;
296 pr_warn("%s: defines enhanced area without partition setting complete\n",
297 mmc_hostname(card
->host
));
302 static void mmc_part_add(struct mmc_card
*card
, unsigned int size
,
303 unsigned int part_cfg
, char *name
, int idx
, bool ro
,
306 card
->part
[card
->nr_parts
].size
= size
;
307 card
->part
[card
->nr_parts
].part_cfg
= part_cfg
;
308 sprintf(card
->part
[card
->nr_parts
].name
, name
, idx
);
309 card
->part
[card
->nr_parts
].force_ro
= ro
;
310 card
->part
[card
->nr_parts
].area_type
= area_type
;
314 static void mmc_manage_gp_partitions(struct mmc_card
*card
, u8
*ext_csd
)
317 u8 hc_erase_grp_sz
, hc_wp_grp_sz
;
318 unsigned int part_size
;
321 * General purpose partition feature support --
322 * If ext_csd has the size of general purpose partitions,
323 * set size, part_cfg, partition name in mmc_part.
325 if (ext_csd
[EXT_CSD_PARTITION_SUPPORT
] &
326 EXT_CSD_PART_SUPPORT_PART_EN
) {
328 ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
];
330 ext_csd
[EXT_CSD_HC_WP_GRP_SIZE
];
332 for (idx
= 0; idx
< MMC_NUM_GP_PARTITION
; idx
++) {
333 if (!ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3] &&
334 !ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3 + 1] &&
335 !ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3 + 2])
337 if (card
->ext_csd
.partition_setting_completed
== 0) {
338 pr_warn("%s: has partition size defined without partition complete\n",
339 mmc_hostname(card
->host
));
343 (ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3 + 2]
345 (ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3 + 1]
347 ext_csd
[EXT_CSD_GP_SIZE_MULT
+ idx
* 3];
348 part_size
*= (size_t)(hc_erase_grp_sz
*
350 mmc_part_add(card
, part_size
<< 19,
351 EXT_CSD_PART_CONFIG_ACC_GP0
+ idx
,
353 MMC_BLK_DATA_AREA_GP
);
358 /* Minimum partition switch timeout in milliseconds */
359 #define MMC_MIN_PART_SWITCH_TIME 300
362 * Decode extended CSD.
364 static int mmc_decode_ext_csd(struct mmc_card
*card
, u8
*ext_csd
)
367 unsigned int part_size
;
368 struct device_node
*np
;
369 bool broken_hpi
= false;
371 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
372 card
->ext_csd
.raw_ext_csd_structure
= ext_csd
[EXT_CSD_STRUCTURE
];
373 if (card
->csd
.structure
== 3) {
374 if (card
->ext_csd
.raw_ext_csd_structure
> 2) {
375 pr_err("%s: unrecognised EXT_CSD structure "
376 "version %d\n", mmc_hostname(card
->host
),
377 card
->ext_csd
.raw_ext_csd_structure
);
383 np
= mmc_of_find_child_device(card
->host
, 0);
384 if (np
&& of_device_is_compatible(np
, "mmc-card"))
385 broken_hpi
= of_property_read_bool(np
, "broken-hpi");
389 * The EXT_CSD format is meant to be forward compatible. As long
390 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
391 * are authorized, see JEDEC JESD84-B50 section B.8.
393 card
->ext_csd
.rev
= ext_csd
[EXT_CSD_REV
];
395 /* fixup device after ext_csd revision field is updated */
396 mmc_fixup_device(card
, mmc_ext_csd_fixups
);
398 card
->ext_csd
.raw_sectors
[0] = ext_csd
[EXT_CSD_SEC_CNT
+ 0];
399 card
->ext_csd
.raw_sectors
[1] = ext_csd
[EXT_CSD_SEC_CNT
+ 1];
400 card
->ext_csd
.raw_sectors
[2] = ext_csd
[EXT_CSD_SEC_CNT
+ 2];
401 card
->ext_csd
.raw_sectors
[3] = ext_csd
[EXT_CSD_SEC_CNT
+ 3];
402 if (card
->ext_csd
.rev
>= 2) {
403 card
->ext_csd
.sectors
=
404 ext_csd
[EXT_CSD_SEC_CNT
+ 0] << 0 |
405 ext_csd
[EXT_CSD_SEC_CNT
+ 1] << 8 |
406 ext_csd
[EXT_CSD_SEC_CNT
+ 2] << 16 |
407 ext_csd
[EXT_CSD_SEC_CNT
+ 3] << 24;
409 /* Cards with density > 2GiB are sector addressed */
410 if (card
->ext_csd
.sectors
> (2u * 1024 * 1024 * 1024) / 512)
411 mmc_card_set_blockaddr(card
);
414 card
->ext_csd
.strobe_support
= ext_csd
[EXT_CSD_STROBE_SUPPORT
];
415 card
->ext_csd
.raw_card_type
= ext_csd
[EXT_CSD_CARD_TYPE
];
416 mmc_select_card_type(card
);
418 card
->ext_csd
.raw_s_a_timeout
= ext_csd
[EXT_CSD_S_A_TIMEOUT
];
419 card
->ext_csd
.raw_erase_timeout_mult
=
420 ext_csd
[EXT_CSD_ERASE_TIMEOUT_MULT
];
421 card
->ext_csd
.raw_hc_erase_grp_size
=
422 ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
];
423 if (card
->ext_csd
.rev
>= 3) {
424 u8 sa_shift
= ext_csd
[EXT_CSD_S_A_TIMEOUT
];
425 card
->ext_csd
.part_config
= ext_csd
[EXT_CSD_PART_CONFIG
];
427 /* EXT_CSD value is in units of 10ms, but we store in ms */
428 card
->ext_csd
.part_time
= 10 * ext_csd
[EXT_CSD_PART_SWITCH_TIME
];
429 /* Some eMMC set the value too low so set a minimum */
430 if (card
->ext_csd
.part_time
&&
431 card
->ext_csd
.part_time
< MMC_MIN_PART_SWITCH_TIME
)
432 card
->ext_csd
.part_time
= MMC_MIN_PART_SWITCH_TIME
;
434 /* Sleep / awake timeout in 100ns units */
435 if (sa_shift
> 0 && sa_shift
<= 0x17)
436 card
->ext_csd
.sa_timeout
=
437 1 << ext_csd
[EXT_CSD_S_A_TIMEOUT
];
438 card
->ext_csd
.erase_group_def
=
439 ext_csd
[EXT_CSD_ERASE_GROUP_DEF
];
440 card
->ext_csd
.hc_erase_timeout
= 300 *
441 ext_csd
[EXT_CSD_ERASE_TIMEOUT_MULT
];
442 card
->ext_csd
.hc_erase_size
=
443 ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
] << 10;
445 card
->ext_csd
.rel_sectors
= ext_csd
[EXT_CSD_REL_WR_SEC_C
];
448 * There are two boot regions of equal size, defined in
451 if (ext_csd
[EXT_CSD_BOOT_MULT
] && mmc_boot_partition_access(card
->host
)) {
452 for (idx
= 0; idx
< MMC_NUM_BOOT_PARTITION
; idx
++) {
453 part_size
= ext_csd
[EXT_CSD_BOOT_MULT
] << 17;
454 mmc_part_add(card
, part_size
,
455 EXT_CSD_PART_CONFIG_ACC_BOOT0
+ idx
,
457 MMC_BLK_DATA_AREA_BOOT
);
462 card
->ext_csd
.raw_hc_erase_gap_size
=
463 ext_csd
[EXT_CSD_HC_WP_GRP_SIZE
];
464 card
->ext_csd
.raw_sec_trim_mult
=
465 ext_csd
[EXT_CSD_SEC_TRIM_MULT
];
466 card
->ext_csd
.raw_sec_erase_mult
=
467 ext_csd
[EXT_CSD_SEC_ERASE_MULT
];
468 card
->ext_csd
.raw_sec_feature_support
=
469 ext_csd
[EXT_CSD_SEC_FEATURE_SUPPORT
];
470 card
->ext_csd
.raw_trim_mult
=
471 ext_csd
[EXT_CSD_TRIM_MULT
];
472 card
->ext_csd
.raw_partition_support
= ext_csd
[EXT_CSD_PARTITION_SUPPORT
];
473 card
->ext_csd
.raw_driver_strength
= ext_csd
[EXT_CSD_DRIVER_STRENGTH
];
474 if (card
->ext_csd
.rev
>= 4) {
475 if (ext_csd
[EXT_CSD_PARTITION_SETTING_COMPLETED
] &
476 EXT_CSD_PART_SETTING_COMPLETED
)
477 card
->ext_csd
.partition_setting_completed
= 1;
479 card
->ext_csd
.partition_setting_completed
= 0;
481 mmc_manage_enhanced_area(card
, ext_csd
);
483 mmc_manage_gp_partitions(card
, ext_csd
);
485 card
->ext_csd
.sec_trim_mult
=
486 ext_csd
[EXT_CSD_SEC_TRIM_MULT
];
487 card
->ext_csd
.sec_erase_mult
=
488 ext_csd
[EXT_CSD_SEC_ERASE_MULT
];
489 card
->ext_csd
.sec_feature_support
=
490 ext_csd
[EXT_CSD_SEC_FEATURE_SUPPORT
];
491 card
->ext_csd
.trim_timeout
= 300 *
492 ext_csd
[EXT_CSD_TRIM_MULT
];
495 * Note that the call to mmc_part_add above defaults to read
496 * only. If this default assumption is changed, the call must
497 * take into account the value of boot_locked below.
499 card
->ext_csd
.boot_ro_lock
= ext_csd
[EXT_CSD_BOOT_WP
];
500 card
->ext_csd
.boot_ro_lockable
= true;
502 /* Save power class values */
503 card
->ext_csd
.raw_pwr_cl_52_195
=
504 ext_csd
[EXT_CSD_PWR_CL_52_195
];
505 card
->ext_csd
.raw_pwr_cl_26_195
=
506 ext_csd
[EXT_CSD_PWR_CL_26_195
];
507 card
->ext_csd
.raw_pwr_cl_52_360
=
508 ext_csd
[EXT_CSD_PWR_CL_52_360
];
509 card
->ext_csd
.raw_pwr_cl_26_360
=
510 ext_csd
[EXT_CSD_PWR_CL_26_360
];
511 card
->ext_csd
.raw_pwr_cl_200_195
=
512 ext_csd
[EXT_CSD_PWR_CL_200_195
];
513 card
->ext_csd
.raw_pwr_cl_200_360
=
514 ext_csd
[EXT_CSD_PWR_CL_200_360
];
515 card
->ext_csd
.raw_pwr_cl_ddr_52_195
=
516 ext_csd
[EXT_CSD_PWR_CL_DDR_52_195
];
517 card
->ext_csd
.raw_pwr_cl_ddr_52_360
=
518 ext_csd
[EXT_CSD_PWR_CL_DDR_52_360
];
519 card
->ext_csd
.raw_pwr_cl_ddr_200_360
=
520 ext_csd
[EXT_CSD_PWR_CL_DDR_200_360
];
523 if (card
->ext_csd
.rev
>= 5) {
524 /* Adjust production date as per JEDEC JESD84-B451 */
525 if (card
->cid
.year
< 2010)
526 card
->cid
.year
+= 16;
528 /* check whether the eMMC card supports BKOPS */
529 if (!mmc_card_broken_hpi(card
) &&
530 ext_csd
[EXT_CSD_BKOPS_SUPPORT
] & 0x1) {
531 card
->ext_csd
.bkops
= 1;
532 card
->ext_csd
.man_bkops_en
=
533 (ext_csd
[EXT_CSD_BKOPS_EN
] &
534 EXT_CSD_MANUAL_BKOPS_MASK
);
535 card
->ext_csd
.raw_bkops_status
=
536 ext_csd
[EXT_CSD_BKOPS_STATUS
];
537 if (card
->ext_csd
.man_bkops_en
)
538 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 mmc_hostname(card
->host
));
540 card
->ext_csd
.auto_bkops_en
=
541 (ext_csd
[EXT_CSD_BKOPS_EN
] &
542 EXT_CSD_AUTO_BKOPS_MASK
);
543 if (card
->ext_csd
.auto_bkops_en
)
544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 mmc_hostname(card
->host
));
548 /* check whether the eMMC card supports HPI */
549 if (!mmc_card_broken_hpi(card
) &&
550 !broken_hpi
&& (ext_csd
[EXT_CSD_HPI_FEATURES
] & 0x1)) {
551 card
->ext_csd
.hpi
= 1;
552 if (ext_csd
[EXT_CSD_HPI_FEATURES
] & 0x2)
553 card
->ext_csd
.hpi_cmd
= MMC_STOP_TRANSMISSION
;
555 card
->ext_csd
.hpi_cmd
= MMC_SEND_STATUS
;
557 * Indicate the maximum timeout to close
558 * a command interrupted by HPI
560 card
->ext_csd
.out_of_int_time
=
561 ext_csd
[EXT_CSD_OUT_OF_INTERRUPT_TIME
] * 10;
564 card
->ext_csd
.rel_param
= ext_csd
[EXT_CSD_WR_REL_PARAM
];
565 card
->ext_csd
.rst_n_function
= ext_csd
[EXT_CSD_RST_N_FUNCTION
];
568 * RPMB regions are defined in multiples of 128K.
570 card
->ext_csd
.raw_rpmb_size_mult
= ext_csd
[EXT_CSD_RPMB_MULT
];
571 if (ext_csd
[EXT_CSD_RPMB_MULT
] && mmc_host_cmd23(card
->host
)) {
572 mmc_part_add(card
, ext_csd
[EXT_CSD_RPMB_MULT
] << 17,
573 EXT_CSD_PART_CONFIG_ACC_RPMB
,
575 MMC_BLK_DATA_AREA_RPMB
);
579 card
->ext_csd
.raw_erased_mem_count
= ext_csd
[EXT_CSD_ERASED_MEM_CONT
];
580 if (ext_csd
[EXT_CSD_ERASED_MEM_CONT
])
581 card
->erased_byte
= 0xFF;
583 card
->erased_byte
= 0x0;
585 /* eMMC v4.5 or later */
586 card
->ext_csd
.generic_cmd6_time
= DEFAULT_CMD6_TIMEOUT_MS
;
587 if (card
->ext_csd
.rev
>= 6) {
588 card
->ext_csd
.feature_support
|= MMC_DISCARD_FEATURE
;
590 card
->ext_csd
.generic_cmd6_time
= 10 *
591 ext_csd
[EXT_CSD_GENERIC_CMD6_TIME
];
592 card
->ext_csd
.power_off_longtime
= 10 *
593 ext_csd
[EXT_CSD_POWER_OFF_LONG_TIME
];
595 card
->ext_csd
.cache_size
=
596 ext_csd
[EXT_CSD_CACHE_SIZE
+ 0] << 0 |
597 ext_csd
[EXT_CSD_CACHE_SIZE
+ 1] << 8 |
598 ext_csd
[EXT_CSD_CACHE_SIZE
+ 2] << 16 |
599 ext_csd
[EXT_CSD_CACHE_SIZE
+ 3] << 24;
601 if (ext_csd
[EXT_CSD_DATA_SECTOR_SIZE
] == 1)
602 card
->ext_csd
.data_sector_size
= 4096;
604 card
->ext_csd
.data_sector_size
= 512;
606 if ((ext_csd
[EXT_CSD_DATA_TAG_SUPPORT
] & 1) &&
607 (ext_csd
[EXT_CSD_TAG_UNIT_SIZE
] <= 8)) {
608 card
->ext_csd
.data_tag_unit_size
=
609 ((unsigned int) 1 << ext_csd
[EXT_CSD_TAG_UNIT_SIZE
]) *
610 (card
->ext_csd
.data_sector_size
);
612 card
->ext_csd
.data_tag_unit_size
= 0;
615 card
->ext_csd
.max_packed_writes
=
616 ext_csd
[EXT_CSD_MAX_PACKED_WRITES
];
617 card
->ext_csd
.max_packed_reads
=
618 ext_csd
[EXT_CSD_MAX_PACKED_READS
];
620 card
->ext_csd
.data_sector_size
= 512;
623 /* eMMC v5 or later */
624 if (card
->ext_csd
.rev
>= 7) {
625 memcpy(card
->ext_csd
.fwrev
, &ext_csd
[EXT_CSD_FIRMWARE_VERSION
],
627 card
->ext_csd
.ffu_capable
=
628 (ext_csd
[EXT_CSD_SUPPORTED_MODE
] & 0x1) &&
629 !(ext_csd
[EXT_CSD_FW_CONFIG
] & 0x1);
631 card
->ext_csd
.pre_eol_info
= ext_csd
[EXT_CSD_PRE_EOL_INFO
];
632 card
->ext_csd
.device_life_time_est_typ_a
=
633 ext_csd
[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A
];
634 card
->ext_csd
.device_life_time_est_typ_b
=
635 ext_csd
[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B
];
638 /* eMMC v5.1 or later */
639 if (card
->ext_csd
.rev
>= 8) {
640 card
->ext_csd
.cmdq_support
= ext_csd
[EXT_CSD_CMDQ_SUPPORT
] &
641 EXT_CSD_CMDQ_SUPPORTED
;
642 card
->ext_csd
.cmdq_depth
= (ext_csd
[EXT_CSD_CMDQ_DEPTH
] &
643 EXT_CSD_CMDQ_DEPTH_MASK
) + 1;
644 /* Exclude inefficiently small queue depths */
645 if (card
->ext_csd
.cmdq_depth
<= 2) {
646 card
->ext_csd
.cmdq_support
= false;
647 card
->ext_csd
.cmdq_depth
= 0;
649 if (card
->ext_csd
.cmdq_support
) {
650 pr_debug("%s: Command Queue supported depth %u\n",
651 mmc_hostname(card
->host
),
652 card
->ext_csd
.cmdq_depth
);
659 static int mmc_read_ext_csd(struct mmc_card
*card
)
664 if (!mmc_can_ext_csd(card
))
667 err
= mmc_get_ext_csd(card
, &ext_csd
);
669 /* If the host or the card can't do the switch,
670 * fail more gracefully. */
677 * High capacity cards should have this "magic" size
678 * stored in their CSD.
680 if (card
->csd
.capacity
== (4096 * 512)) {
681 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
682 mmc_hostname(card
->host
));
684 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
685 mmc_hostname(card
->host
));
692 err
= mmc_decode_ext_csd(card
, ext_csd
);
697 static int mmc_compare_ext_csds(struct mmc_card
*card
, unsigned bus_width
)
702 if (bus_width
== MMC_BUS_WIDTH_1
)
705 err
= mmc_get_ext_csd(card
, &bw_ext_csd
);
709 /* only compare read only fields */
710 err
= !((card
->ext_csd
.raw_partition_support
==
711 bw_ext_csd
[EXT_CSD_PARTITION_SUPPORT
]) &&
712 (card
->ext_csd
.raw_erased_mem_count
==
713 bw_ext_csd
[EXT_CSD_ERASED_MEM_CONT
]) &&
714 (card
->ext_csd
.rev
==
715 bw_ext_csd
[EXT_CSD_REV
]) &&
716 (card
->ext_csd
.raw_ext_csd_structure
==
717 bw_ext_csd
[EXT_CSD_STRUCTURE
]) &&
718 (card
->ext_csd
.raw_card_type
==
719 bw_ext_csd
[EXT_CSD_CARD_TYPE
]) &&
720 (card
->ext_csd
.raw_s_a_timeout
==
721 bw_ext_csd
[EXT_CSD_S_A_TIMEOUT
]) &&
722 (card
->ext_csd
.raw_hc_erase_gap_size
==
723 bw_ext_csd
[EXT_CSD_HC_WP_GRP_SIZE
]) &&
724 (card
->ext_csd
.raw_erase_timeout_mult
==
725 bw_ext_csd
[EXT_CSD_ERASE_TIMEOUT_MULT
]) &&
726 (card
->ext_csd
.raw_hc_erase_grp_size
==
727 bw_ext_csd
[EXT_CSD_HC_ERASE_GRP_SIZE
]) &&
728 (card
->ext_csd
.raw_sec_trim_mult
==
729 bw_ext_csd
[EXT_CSD_SEC_TRIM_MULT
]) &&
730 (card
->ext_csd
.raw_sec_erase_mult
==
731 bw_ext_csd
[EXT_CSD_SEC_ERASE_MULT
]) &&
732 (card
->ext_csd
.raw_sec_feature_support
==
733 bw_ext_csd
[EXT_CSD_SEC_FEATURE_SUPPORT
]) &&
734 (card
->ext_csd
.raw_trim_mult
==
735 bw_ext_csd
[EXT_CSD_TRIM_MULT
]) &&
736 (card
->ext_csd
.raw_sectors
[0] ==
737 bw_ext_csd
[EXT_CSD_SEC_CNT
+ 0]) &&
738 (card
->ext_csd
.raw_sectors
[1] ==
739 bw_ext_csd
[EXT_CSD_SEC_CNT
+ 1]) &&
740 (card
->ext_csd
.raw_sectors
[2] ==
741 bw_ext_csd
[EXT_CSD_SEC_CNT
+ 2]) &&
742 (card
->ext_csd
.raw_sectors
[3] ==
743 bw_ext_csd
[EXT_CSD_SEC_CNT
+ 3]) &&
744 (card
->ext_csd
.raw_pwr_cl_52_195
==
745 bw_ext_csd
[EXT_CSD_PWR_CL_52_195
]) &&
746 (card
->ext_csd
.raw_pwr_cl_26_195
==
747 bw_ext_csd
[EXT_CSD_PWR_CL_26_195
]) &&
748 (card
->ext_csd
.raw_pwr_cl_52_360
==
749 bw_ext_csd
[EXT_CSD_PWR_CL_52_360
]) &&
750 (card
->ext_csd
.raw_pwr_cl_26_360
==
751 bw_ext_csd
[EXT_CSD_PWR_CL_26_360
]) &&
752 (card
->ext_csd
.raw_pwr_cl_200_195
==
753 bw_ext_csd
[EXT_CSD_PWR_CL_200_195
]) &&
754 (card
->ext_csd
.raw_pwr_cl_200_360
==
755 bw_ext_csd
[EXT_CSD_PWR_CL_200_360
]) &&
756 (card
->ext_csd
.raw_pwr_cl_ddr_52_195
==
757 bw_ext_csd
[EXT_CSD_PWR_CL_DDR_52_195
]) &&
758 (card
->ext_csd
.raw_pwr_cl_ddr_52_360
==
759 bw_ext_csd
[EXT_CSD_PWR_CL_DDR_52_360
]) &&
760 (card
->ext_csd
.raw_pwr_cl_ddr_200_360
==
761 bw_ext_csd
[EXT_CSD_PWR_CL_DDR_200_360
]));
770 MMC_DEV_ATTR(cid
, "%08x%08x%08x%08x\n", card
->raw_cid
[0], card
->raw_cid
[1],
771 card
->raw_cid
[2], card
->raw_cid
[3]);
772 MMC_DEV_ATTR(csd
, "%08x%08x%08x%08x\n", card
->raw_csd
[0], card
->raw_csd
[1],
773 card
->raw_csd
[2], card
->raw_csd
[3]);
774 MMC_DEV_ATTR(date
, "%02d/%04d\n", card
->cid
.month
, card
->cid
.year
);
775 MMC_DEV_ATTR(erase_size
, "%u\n", card
->erase_size
<< 9);
776 MMC_DEV_ATTR(preferred_erase_size
, "%u\n", card
->pref_erase
<< 9);
777 MMC_DEV_ATTR(ffu_capable
, "%d\n", card
->ext_csd
.ffu_capable
);
778 MMC_DEV_ATTR(hwrev
, "0x%x\n", card
->cid
.hwrev
);
779 MMC_DEV_ATTR(manfid
, "0x%06x\n", card
->cid
.manfid
);
780 MMC_DEV_ATTR(name
, "%s\n", card
->cid
.prod_name
);
781 MMC_DEV_ATTR(oemid
, "0x%04x\n", card
->cid
.oemid
);
782 MMC_DEV_ATTR(prv
, "0x%x\n", card
->cid
.prv
);
783 MMC_DEV_ATTR(rev
, "0x%x\n", card
->ext_csd
.rev
);
784 MMC_DEV_ATTR(pre_eol_info
, "0x%02x\n", card
->ext_csd
.pre_eol_info
);
785 MMC_DEV_ATTR(life_time
, "0x%02x 0x%02x\n",
786 card
->ext_csd
.device_life_time_est_typ_a
,
787 card
->ext_csd
.device_life_time_est_typ_b
);
788 MMC_DEV_ATTR(serial
, "0x%08x\n", card
->cid
.serial
);
789 MMC_DEV_ATTR(enhanced_area_offset
, "%llu\n",
790 card
->ext_csd
.enhanced_area_offset
);
791 MMC_DEV_ATTR(enhanced_area_size
, "%u\n", card
->ext_csd
.enhanced_area_size
);
792 MMC_DEV_ATTR(raw_rpmb_size_mult
, "%#x\n", card
->ext_csd
.raw_rpmb_size_mult
);
793 MMC_DEV_ATTR(rel_sectors
, "%#x\n", card
->ext_csd
.rel_sectors
);
794 MMC_DEV_ATTR(ocr
, "0x%08x\n", card
->ocr
);
795 MMC_DEV_ATTR(rca
, "0x%04x\n", card
->rca
);
796 MMC_DEV_ATTR(cmdq_en
, "%d\n", card
->ext_csd
.cmdq_en
);
798 static ssize_t
mmc_fwrev_show(struct device
*dev
,
799 struct device_attribute
*attr
,
802 struct mmc_card
*card
= mmc_dev_to_card(dev
);
804 if (card
->ext_csd
.rev
< 7) {
805 return sprintf(buf
, "0x%x\n", card
->cid
.fwrev
);
807 return sprintf(buf
, "0x%*phN\n", MMC_FIRMWARE_LEN
,
808 card
->ext_csd
.fwrev
);
812 static DEVICE_ATTR(fwrev
, S_IRUGO
, mmc_fwrev_show
, NULL
);
814 static ssize_t
mmc_dsr_show(struct device
*dev
,
815 struct device_attribute
*attr
,
818 struct mmc_card
*card
= mmc_dev_to_card(dev
);
819 struct mmc_host
*host
= card
->host
;
821 if (card
->csd
.dsr_imp
&& host
->dsr_req
)
822 return sprintf(buf
, "0x%x\n", host
->dsr
);
824 /* return default DSR value */
825 return sprintf(buf
, "0x%x\n", 0x404);
828 static DEVICE_ATTR(dsr
, S_IRUGO
, mmc_dsr_show
, NULL
);
830 static struct attribute
*mmc_std_attrs
[] = {
834 &dev_attr_erase_size
.attr
,
835 &dev_attr_preferred_erase_size
.attr
,
836 &dev_attr_fwrev
.attr
,
837 &dev_attr_ffu_capable
.attr
,
838 &dev_attr_hwrev
.attr
,
839 &dev_attr_manfid
.attr
,
841 &dev_attr_oemid
.attr
,
844 &dev_attr_pre_eol_info
.attr
,
845 &dev_attr_life_time
.attr
,
846 &dev_attr_serial
.attr
,
847 &dev_attr_enhanced_area_offset
.attr
,
848 &dev_attr_enhanced_area_size
.attr
,
849 &dev_attr_raw_rpmb_size_mult
.attr
,
850 &dev_attr_rel_sectors
.attr
,
854 &dev_attr_cmdq_en
.attr
,
857 ATTRIBUTE_GROUPS(mmc_std
);
859 static struct device_type mmc_type
= {
860 .groups
= mmc_std_groups
,
864 * Select the PowerClass for the current bus width
865 * If power class is defined for 4/8 bit bus in the
866 * extended CSD register, select it by executing the
867 * mmc_switch command.
869 static int __mmc_select_powerclass(struct mmc_card
*card
,
870 unsigned int bus_width
)
872 struct mmc_host
*host
= card
->host
;
873 struct mmc_ext_csd
*ext_csd
= &card
->ext_csd
;
874 unsigned int pwrclass_val
= 0;
877 switch (1 << host
->ios
.vdd
) {
878 case MMC_VDD_165_195
:
879 if (host
->ios
.clock
<= MMC_HIGH_26_MAX_DTR
)
880 pwrclass_val
= ext_csd
->raw_pwr_cl_26_195
;
881 else if (host
->ios
.clock
<= MMC_HIGH_52_MAX_DTR
)
882 pwrclass_val
= (bus_width
<= EXT_CSD_BUS_WIDTH_8
) ?
883 ext_csd
->raw_pwr_cl_52_195
:
884 ext_csd
->raw_pwr_cl_ddr_52_195
;
885 else if (host
->ios
.clock
<= MMC_HS200_MAX_DTR
)
886 pwrclass_val
= ext_csd
->raw_pwr_cl_200_195
;
897 if (host
->ios
.clock
<= MMC_HIGH_26_MAX_DTR
)
898 pwrclass_val
= ext_csd
->raw_pwr_cl_26_360
;
899 else if (host
->ios
.clock
<= MMC_HIGH_52_MAX_DTR
)
900 pwrclass_val
= (bus_width
<= EXT_CSD_BUS_WIDTH_8
) ?
901 ext_csd
->raw_pwr_cl_52_360
:
902 ext_csd
->raw_pwr_cl_ddr_52_360
;
903 else if (host
->ios
.clock
<= MMC_HS200_MAX_DTR
)
904 pwrclass_val
= (bus_width
== EXT_CSD_DDR_BUS_WIDTH_8
) ?
905 ext_csd
->raw_pwr_cl_ddr_200_360
:
906 ext_csd
->raw_pwr_cl_200_360
;
909 pr_warn("%s: Voltage range not supported for power class\n",
914 if (bus_width
& (EXT_CSD_BUS_WIDTH_8
| EXT_CSD_DDR_BUS_WIDTH_8
))
915 pwrclass_val
= (pwrclass_val
& EXT_CSD_PWR_CL_8BIT_MASK
) >>
916 EXT_CSD_PWR_CL_8BIT_SHIFT
;
918 pwrclass_val
= (pwrclass_val
& EXT_CSD_PWR_CL_4BIT_MASK
) >>
919 EXT_CSD_PWR_CL_4BIT_SHIFT
;
921 /* If the power class is different from the default value */
922 if (pwrclass_val
> 0) {
923 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
926 card
->ext_csd
.generic_cmd6_time
);
932 static int mmc_select_powerclass(struct mmc_card
*card
)
934 struct mmc_host
*host
= card
->host
;
935 u32 bus_width
, ext_csd_bits
;
938 /* Power class selection is supported for versions >= 4.0 */
939 if (!mmc_can_ext_csd(card
))
942 bus_width
= host
->ios
.bus_width
;
943 /* Power class values are defined only for 4/8 bit bus */
944 if (bus_width
== MMC_BUS_WIDTH_1
)
947 ddr
= card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_DDR_52
;
949 ext_csd_bits
= (bus_width
== MMC_BUS_WIDTH_8
) ?
950 EXT_CSD_DDR_BUS_WIDTH_8
: EXT_CSD_DDR_BUS_WIDTH_4
;
952 ext_csd_bits
= (bus_width
== MMC_BUS_WIDTH_8
) ?
953 EXT_CSD_BUS_WIDTH_8
: EXT_CSD_BUS_WIDTH_4
;
955 err
= __mmc_select_powerclass(card
, ext_csd_bits
);
957 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
958 mmc_hostname(host
), 1 << bus_width
, ddr
);
964 * Set the bus speed for the selected speed mode.
966 static void mmc_set_bus_speed(struct mmc_card
*card
)
968 unsigned int max_dtr
= (unsigned int)-1;
970 if ((mmc_card_hs200(card
) || mmc_card_hs400(card
)) &&
971 max_dtr
> card
->ext_csd
.hs200_max_dtr
)
972 max_dtr
= card
->ext_csd
.hs200_max_dtr
;
973 else if (mmc_card_hs(card
) && max_dtr
> card
->ext_csd
.hs_max_dtr
)
974 max_dtr
= card
->ext_csd
.hs_max_dtr
;
975 else if (max_dtr
> card
->csd
.max_dtr
)
976 max_dtr
= card
->csd
.max_dtr
;
978 mmc_set_clock(card
->host
, max_dtr
);
982 * Select the bus width amoung 4-bit and 8-bit(SDR).
983 * If the bus width is changed successfully, return the selected width value.
984 * Zero is returned instead of error value if the wide width is not supported.
986 static int mmc_select_bus_width(struct mmc_card
*card
)
988 static unsigned ext_csd_bits
[] = {
992 static unsigned bus_widths
[] = {
996 struct mmc_host
*host
= card
->host
;
997 unsigned idx
, bus_width
= 0;
1000 if (!mmc_can_ext_csd(card
) ||
1001 !(host
->caps
& (MMC_CAP_4_BIT_DATA
| MMC_CAP_8_BIT_DATA
)))
1004 idx
= (host
->caps
& MMC_CAP_8_BIT_DATA
) ? 0 : 1;
1007 * Unlike SD, MMC cards dont have a configuration register to notify
1008 * supported bus width. So bus test command should be run to identify
1009 * the supported bus width or compare the ext csd values of current
1010 * bus width and ext csd values of 1 bit mode read earlier.
1012 for (; idx
< ARRAY_SIZE(bus_widths
); idx
++) {
1014 * Host is capable of 8bit transfer, then switch
1015 * the device to work in 8bit transfer mode. If the
1016 * mmc switch command returns error then switch to
1017 * 4bit transfer mode. On success set the corresponding
1018 * bus width on the host.
1020 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1023 card
->ext_csd
.generic_cmd6_time
);
1027 bus_width
= bus_widths
[idx
];
1028 mmc_set_bus_width(host
, bus_width
);
1031 * If controller can't handle bus width test,
1032 * compare ext_csd previously read in 1 bit mode
1033 * against ext_csd at new bus width
1035 if (!(host
->caps
& MMC_CAP_BUS_WIDTH_TEST
))
1036 err
= mmc_compare_ext_csds(card
, bus_width
);
1038 err
= mmc_bus_test(card
, bus_width
);
1044 pr_warn("%s: switch to bus width %d failed\n",
1045 mmc_hostname(host
), 1 << bus_width
);
1053 * Switch to the high-speed mode
1055 static int mmc_select_hs(struct mmc_card
*card
)
1059 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1060 EXT_CSD_HS_TIMING
, EXT_CSD_TIMING_HS
,
1061 card
->ext_csd
.generic_cmd6_time
, MMC_TIMING_MMC_HS
,
1064 pr_warn("%s: switch to high-speed failed, err:%d\n",
1065 mmc_hostname(card
->host
), err
);
1071 * Activate wide bus and DDR if supported.
1073 static int mmc_select_hs_ddr(struct mmc_card
*card
)
1075 struct mmc_host
*host
= card
->host
;
1076 u32 bus_width
, ext_csd_bits
;
1079 if (!(card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_DDR_52
))
1082 bus_width
= host
->ios
.bus_width
;
1083 if (bus_width
== MMC_BUS_WIDTH_1
)
1086 ext_csd_bits
= (bus_width
== MMC_BUS_WIDTH_8
) ?
1087 EXT_CSD_DDR_BUS_WIDTH_8
: EXT_CSD_DDR_BUS_WIDTH_4
;
1089 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1092 card
->ext_csd
.generic_cmd6_time
,
1093 MMC_TIMING_MMC_DDR52
,
1096 pr_err("%s: switch to bus width %d ddr failed\n",
1097 mmc_hostname(host
), 1 << bus_width
);
1102 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1105 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1107 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1108 * in the JEDEC spec for DDR.
1110 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1111 * host controller can support this, like some of the SDHCI
1112 * controller which connect to an eMMC device. Some of these
1113 * host controller still needs to use 1.8v vccq for supporting
1116 * So the sequence will be:
1117 * if (host and device can both support 1.2v IO)
1119 * else if (host and device can both support 1.8v IO)
1121 * so if host and device can only support 3.3v IO, this is the
1124 * WARNING: eMMC rules are NOT the same as SD DDR
1126 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_DDR_1_2V
) {
1127 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
);
1132 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_DDR_1_8V
&&
1133 host
->caps
& MMC_CAP_1_8V_DDR
)
1134 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
);
1136 /* make sure vccq is 3.3v after switching disaster */
1138 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_330
);
1143 static int mmc_select_hs400(struct mmc_card
*card
)
1145 struct mmc_host
*host
= card
->host
;
1146 unsigned int max_dtr
;
1151 * HS400 mode requires 8-bit bus width
1153 if (!(card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400
&&
1154 host
->ios
.bus_width
== MMC_BUS_WIDTH_8
))
1157 /* Switch card to HS mode */
1158 val
= EXT_CSD_TIMING_HS
;
1159 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1160 EXT_CSD_HS_TIMING
, val
,
1161 card
->ext_csd
.generic_cmd6_time
, 0,
1164 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1165 mmc_hostname(host
), err
);
1169 /* Set host controller to HS timing */
1170 mmc_set_timing(card
->host
, MMC_TIMING_MMC_HS
);
1172 /* Reduce frequency to HS frequency */
1173 max_dtr
= card
->ext_csd
.hs_max_dtr
;
1174 mmc_set_clock(host
, max_dtr
);
1176 err
= mmc_switch_status(card
);
1180 /* Switch card to DDR */
1181 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1183 EXT_CSD_DDR_BUS_WIDTH_8
,
1184 card
->ext_csd
.generic_cmd6_time
);
1186 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1187 mmc_hostname(host
), err
);
1191 /* Switch card to HS400 */
1192 val
= EXT_CSD_TIMING_HS400
|
1193 card
->drive_strength
<< EXT_CSD_DRV_STR_SHIFT
;
1194 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1195 EXT_CSD_HS_TIMING
, val
,
1196 card
->ext_csd
.generic_cmd6_time
, 0,
1199 pr_err("%s: switch to hs400 failed, err:%d\n",
1200 mmc_hostname(host
), err
);
1204 /* Set host controller to HS400 timing and frequency */
1205 mmc_set_timing(host
, MMC_TIMING_MMC_HS400
);
1206 mmc_set_bus_speed(card
);
1208 err
= mmc_switch_status(card
);
1215 pr_err("%s: %s failed, error %d\n", mmc_hostname(card
->host
),
1220 int mmc_hs200_to_hs400(struct mmc_card
*card
)
1222 return mmc_select_hs400(card
);
1225 int mmc_hs400_to_hs200(struct mmc_card
*card
)
1227 struct mmc_host
*host
= card
->host
;
1228 unsigned int max_dtr
;
1232 /* Reduce frequency to HS */
1233 max_dtr
= card
->ext_csd
.hs_max_dtr
;
1234 mmc_set_clock(host
, max_dtr
);
1236 /* Switch HS400 to HS DDR */
1237 val
= EXT_CSD_TIMING_HS
;
1238 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_HS_TIMING
,
1239 val
, card
->ext_csd
.generic_cmd6_time
, 0,
1244 mmc_set_timing(host
, MMC_TIMING_MMC_DDR52
);
1246 err
= mmc_switch_status(card
);
1250 /* Switch HS DDR to HS */
1251 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_BUS_WIDTH
,
1252 EXT_CSD_BUS_WIDTH_8
, card
->ext_csd
.generic_cmd6_time
,
1253 0, true, false, true);
1257 mmc_set_timing(host
, MMC_TIMING_MMC_HS
);
1259 err
= mmc_switch_status(card
);
1263 /* Switch HS to HS200 */
1264 val
= EXT_CSD_TIMING_HS200
|
1265 card
->drive_strength
<< EXT_CSD_DRV_STR_SHIFT
;
1266 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_HS_TIMING
,
1267 val
, card
->ext_csd
.generic_cmd6_time
, 0,
1272 mmc_set_timing(host
, MMC_TIMING_MMC_HS200
);
1275 * For HS200, CRC errors are not a reliable way to know the switch
1276 * failed. If there really is a problem, we would expect tuning will
1277 * fail and the result ends up the same.
1279 err
= __mmc_switch_status(card
, false);
1283 mmc_set_bus_speed(card
);
1285 /* Prepare tuning for HS400 mode. */
1286 if (host
->ops
->prepare_hs400_tuning
)
1287 host
->ops
->prepare_hs400_tuning(host
, &host
->ios
);
1292 pr_err("%s: %s failed, error %d\n", mmc_hostname(card
->host
),
1297 static void mmc_select_driver_type(struct mmc_card
*card
)
1299 int card_drv_type
, drive_strength
, drv_type
= 0;
1300 int fixed_drv_type
= card
->host
->fixed_drv_type
;
1302 card_drv_type
= card
->ext_csd
.raw_driver_strength
|
1303 mmc_driver_type_mask(0);
1305 if (fixed_drv_type
>= 0)
1306 drive_strength
= card_drv_type
& mmc_driver_type_mask(fixed_drv_type
)
1307 ? fixed_drv_type
: 0;
1309 drive_strength
= mmc_select_drive_strength(card
,
1310 card
->ext_csd
.hs200_max_dtr
,
1311 card_drv_type
, &drv_type
);
1313 card
->drive_strength
= drive_strength
;
1316 mmc_set_driver_type(card
->host
, drv_type
);
1319 static int mmc_select_hs400es(struct mmc_card
*card
)
1321 struct mmc_host
*host
= card
->host
;
1325 if (!(host
->caps
& MMC_CAP_8_BIT_DATA
)) {
1330 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400_1_2V
)
1331 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
);
1333 if (err
&& card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400_1_8V
)
1334 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
);
1336 /* If fails try again during next card power cycle */
1340 err
= mmc_select_bus_width(card
);
1344 /* Switch card to HS mode */
1345 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1346 EXT_CSD_HS_TIMING
, EXT_CSD_TIMING_HS
,
1347 card
->ext_csd
.generic_cmd6_time
, 0,
1350 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1351 mmc_hostname(host
), err
);
1355 mmc_set_timing(host
, MMC_TIMING_MMC_HS
);
1356 err
= mmc_switch_status(card
);
1360 mmc_set_clock(host
, card
->ext_csd
.hs_max_dtr
);
1362 /* Switch card to DDR with strobe bit */
1363 val
= EXT_CSD_DDR_BUS_WIDTH_8
| EXT_CSD_BUS_WIDTH_STROBE
;
1364 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1367 card
->ext_csd
.generic_cmd6_time
);
1369 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1370 mmc_hostname(host
), err
);
1374 mmc_select_driver_type(card
);
1376 /* Switch card to HS400 */
1377 val
= EXT_CSD_TIMING_HS400
|
1378 card
->drive_strength
<< EXT_CSD_DRV_STR_SHIFT
;
1379 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1380 EXT_CSD_HS_TIMING
, val
,
1381 card
->ext_csd
.generic_cmd6_time
, 0,
1384 pr_err("%s: switch to hs400es failed, err:%d\n",
1385 mmc_hostname(host
), err
);
1389 /* Set host controller to HS400 timing and frequency */
1390 mmc_set_timing(host
, MMC_TIMING_MMC_HS400
);
1392 /* Controller enable enhanced strobe function */
1393 host
->ios
.enhanced_strobe
= true;
1394 if (host
->ops
->hs400_enhanced_strobe
)
1395 host
->ops
->hs400_enhanced_strobe(host
, &host
->ios
);
1397 err
= mmc_switch_status(card
);
1404 pr_err("%s: %s failed, error %d\n", mmc_hostname(card
->host
),
1410 * For device supporting HS200 mode, the following sequence
1411 * should be done before executing the tuning process.
1412 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1413 * 2. switch to HS200 mode
1414 * 3. set the clock to > 52Mhz and <=200MHz
1416 static int mmc_select_hs200(struct mmc_card
*card
)
1418 struct mmc_host
*host
= card
->host
;
1419 unsigned int old_timing
, old_signal_voltage
;
1423 old_signal_voltage
= host
->ios
.signal_voltage
;
1424 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS200_1_2V
)
1425 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_120
);
1427 if (err
&& card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS200_1_8V
)
1428 err
= mmc_set_signal_voltage(host
, MMC_SIGNAL_VOLTAGE_180
);
1430 /* If fails try again during next card power cycle */
1434 mmc_select_driver_type(card
);
1437 * Set the bus width(4 or 8) with host's support and
1438 * switch to HS200 mode if bus width is set successfully.
1440 err
= mmc_select_bus_width(card
);
1442 val
= EXT_CSD_TIMING_HS200
|
1443 card
->drive_strength
<< EXT_CSD_DRV_STR_SHIFT
;
1444 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1445 EXT_CSD_HS_TIMING
, val
,
1446 card
->ext_csd
.generic_cmd6_time
, 0,
1450 old_timing
= host
->ios
.timing
;
1451 mmc_set_timing(host
, MMC_TIMING_MMC_HS200
);
1454 * For HS200, CRC errors are not a reliable way to know the
1455 * switch failed. If there really is a problem, we would expect
1456 * tuning will fail and the result ends up the same.
1458 err
= __mmc_switch_status(card
, false);
1461 * mmc_select_timing() assumes timing has not changed if
1462 * it is a switch error.
1464 if (err
== -EBADMSG
)
1465 mmc_set_timing(host
, old_timing
);
1469 /* fall back to the old signal voltage, if fails report error */
1470 if (mmc_set_signal_voltage(host
, old_signal_voltage
))
1473 pr_err("%s: %s failed, error %d\n", mmc_hostname(card
->host
),
1480 * Activate High Speed, HS200 or HS400ES mode if supported.
1482 static int mmc_select_timing(struct mmc_card
*card
)
1486 if (!mmc_can_ext_csd(card
))
1489 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400ES
)
1490 err
= mmc_select_hs400es(card
);
1491 else if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS200
)
1492 err
= mmc_select_hs200(card
);
1493 else if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS
)
1494 err
= mmc_select_hs(card
);
1496 if (err
&& err
!= -EBADMSG
)
1501 * Set the bus speed to the selected bus timing.
1502 * If timing is not selected, backward compatible is the default.
1504 mmc_set_bus_speed(card
);
1509 * Execute tuning sequence to seek the proper bus operating
1510 * conditions for HS200 and HS400, which sends CMD21 to the device.
1512 static int mmc_hs200_tuning(struct mmc_card
*card
)
1514 struct mmc_host
*host
= card
->host
;
1517 * Timing should be adjusted to the HS400 target
1518 * operation frequency for tuning process
1520 if (card
->mmc_avail_type
& EXT_CSD_CARD_TYPE_HS400
&&
1521 host
->ios
.bus_width
== MMC_BUS_WIDTH_8
)
1522 if (host
->ops
->prepare_hs400_tuning
)
1523 host
->ops
->prepare_hs400_tuning(host
, &host
->ios
);
1525 return mmc_execute_tuning(card
);
1529 * Handle the detection and initialisation of a card.
1531 * In the case of a resume, "oldcard" will contain the card
1532 * we're trying to reinitialise.
1534 static int mmc_init_card(struct mmc_host
*host
, u32 ocr
,
1535 struct mmc_card
*oldcard
)
1537 struct mmc_card
*card
;
1542 WARN_ON(!host
->claimed
);
1544 /* Set correct bus mode for MMC before attempting init */
1545 if (!mmc_host_is_spi(host
))
1546 mmc_set_bus_mode(host
, MMC_BUSMODE_OPENDRAIN
);
1549 * Since we're changing the OCR value, we seem to
1550 * need to tell some cards to go back to the idle
1551 * state. We wait 1ms to give cards time to
1553 * mmc_go_idle is needed for eMMC that are asleep
1557 /* The extra bit indicates that we support high capacity */
1558 err
= mmc_send_op_cond(host
, ocr
| (1 << 30), &rocr
);
1563 * For SPI, enable CRC as appropriate.
1565 if (mmc_host_is_spi(host
)) {
1566 err
= mmc_spi_set_crc(host
, use_spi_crc
);
1572 * Fetch CID from card.
1574 err
= mmc_send_cid(host
, cid
);
1579 if (memcmp(cid
, oldcard
->raw_cid
, sizeof(cid
)) != 0) {
1587 * Allocate card structure.
1589 card
= mmc_alloc_card(host
, &mmc_type
);
1591 err
= PTR_ERR(card
);
1596 card
->type
= MMC_TYPE_MMC
;
1598 memcpy(card
->raw_cid
, cid
, sizeof(card
->raw_cid
));
1602 * Call the optional HC's init_card function to handle quirks.
1604 if (host
->ops
->init_card
)
1605 host
->ops
->init_card(host
, card
);
1608 * For native busses: set card RCA and quit open drain mode.
1610 if (!mmc_host_is_spi(host
)) {
1611 err
= mmc_set_relative_addr(card
);
1615 mmc_set_bus_mode(host
, MMC_BUSMODE_PUSHPULL
);
1620 * Fetch CSD from card.
1622 err
= mmc_send_csd(card
, card
->raw_csd
);
1626 err
= mmc_decode_csd(card
);
1629 err
= mmc_decode_cid(card
);
1635 * handling only for cards supporting DSR and hosts requesting
1638 if (card
->csd
.dsr_imp
&& host
->dsr_req
)
1642 * Select card, as all following commands rely on that.
1644 if (!mmc_host_is_spi(host
)) {
1645 err
= mmc_select_card(card
);
1651 /* Read extended CSD. */
1652 err
= mmc_read_ext_csd(card
);
1657 * If doing byte addressing, check if required to do sector
1658 * addressing. Handle the case of <2GB cards needing sector
1659 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1660 * ocr register has bit 30 set for sector addressing.
1663 mmc_card_set_blockaddr(card
);
1665 /* Erase size depends on CSD and Extended CSD */
1666 mmc_set_erase_size(card
);
1669 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1670 if (card
->ext_csd
.rev
>= 3) {
1671 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1672 EXT_CSD_ERASE_GROUP_DEF
, 1,
1673 card
->ext_csd
.generic_cmd6_time
);
1675 if (err
&& err
!= -EBADMSG
)
1681 * Just disable enhanced area off & sz
1682 * will try to enable ERASE_GROUP_DEF
1683 * during next time reinit
1685 card
->ext_csd
.enhanced_area_offset
= -EINVAL
;
1686 card
->ext_csd
.enhanced_area_size
= -EINVAL
;
1688 card
->ext_csd
.erase_group_def
= 1;
1690 * enable ERASE_GRP_DEF successfully.
1691 * This will affect the erase size, so
1692 * here need to reset erase size
1694 mmc_set_erase_size(card
);
1699 * Ensure eMMC user default partition is enabled
1701 if (card
->ext_csd
.part_config
& EXT_CSD_PART_CONFIG_ACC_MASK
) {
1702 card
->ext_csd
.part_config
&= ~EXT_CSD_PART_CONFIG_ACC_MASK
;
1703 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
, EXT_CSD_PART_CONFIG
,
1704 card
->ext_csd
.part_config
,
1705 card
->ext_csd
.part_time
);
1706 if (err
&& err
!= -EBADMSG
)
1711 * Enable power_off_notification byte in the ext_csd register
1713 if (card
->ext_csd
.rev
>= 6) {
1714 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1715 EXT_CSD_POWER_OFF_NOTIFICATION
,
1717 card
->ext_csd
.generic_cmd6_time
);
1718 if (err
&& err
!= -EBADMSG
)
1722 * The err can be -EBADMSG or 0,
1723 * so check for success and update the flag
1726 card
->ext_csd
.power_off_notification
= EXT_CSD_POWER_ON
;
1730 * Select timing interface
1732 err
= mmc_select_timing(card
);
1736 if (mmc_card_hs200(card
)) {
1737 err
= mmc_hs200_tuning(card
);
1741 err
= mmc_select_hs400(card
);
1744 } else if (!mmc_card_hs400es(card
)) {
1745 /* Select the desired bus width optionally */
1746 err
= mmc_select_bus_width(card
);
1747 if (err
> 0 && mmc_card_hs(card
)) {
1748 err
= mmc_select_hs_ddr(card
);
1755 * Choose the power class with selected bus interface
1757 mmc_select_powerclass(card
);
1760 * Enable HPI feature (if supported)
1762 if (card
->ext_csd
.hpi
) {
1763 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1764 EXT_CSD_HPI_MGMT
, 1,
1765 card
->ext_csd
.generic_cmd6_time
);
1766 if (err
&& err
!= -EBADMSG
)
1769 pr_warn("%s: Enabling HPI failed\n",
1770 mmc_hostname(card
->host
));
1773 card
->ext_csd
.hpi_en
= 1;
1777 * If cache size is higher than 0, this indicates
1778 * the existence of cache and it can be turned on.
1780 if (!mmc_card_broken_hpi(card
) &&
1781 card
->ext_csd
.cache_size
> 0) {
1782 err
= mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1783 EXT_CSD_CACHE_CTRL
, 1,
1784 card
->ext_csd
.generic_cmd6_time
);
1785 if (err
&& err
!= -EBADMSG
)
1789 * Only if no error, cache is turned on successfully.
1792 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1793 mmc_hostname(card
->host
), err
);
1794 card
->ext_csd
.cache_ctrl
= 0;
1797 card
->ext_csd
.cache_ctrl
= 1;
1802 * Enable Command Queue if supported. Note that Packed Commands cannot
1803 * be used with Command Queue.
1805 card
->ext_csd
.cmdq_en
= false;
1806 if (card
->ext_csd
.cmdq_support
&& host
->caps2
& MMC_CAP2_CQE
) {
1807 err
= mmc_cmdq_enable(card
);
1808 if (err
&& err
!= -EBADMSG
)
1811 pr_warn("%s: Enabling CMDQ failed\n",
1812 mmc_hostname(card
->host
));
1813 card
->ext_csd
.cmdq_support
= false;
1814 card
->ext_csd
.cmdq_depth
= 0;
1819 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1820 * disabled for a time, so a flag is needed to indicate to re-enable the
1823 card
->reenable_cmdq
= card
->ext_csd
.cmdq_en
;
1825 if (card
->ext_csd
.cmdq_en
&& !host
->cqe_enabled
) {
1826 err
= host
->cqe_ops
->cqe_enable(host
, card
);
1828 pr_err("%s: Failed to enable CQE, error %d\n",
1829 mmc_hostname(host
), err
);
1831 host
->cqe_enabled
= true;
1832 pr_info("%s: Command Queue Engine enabled\n",
1833 mmc_hostname(host
));
1837 if (host
->caps2
& MMC_CAP2_AVOID_3_3V
&&
1838 host
->ios
.signal_voltage
== MMC_SIGNAL_VOLTAGE_330
) {
1839 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1840 mmc_hostname(host
));
1852 mmc_remove_card(card
);
1857 static int mmc_can_sleep(struct mmc_card
*card
)
1859 return (card
&& card
->ext_csd
.rev
>= 3);
1862 static int mmc_sleep(struct mmc_host
*host
)
1864 struct mmc_command cmd
= {};
1865 struct mmc_card
*card
= host
->card
;
1866 unsigned int timeout_ms
= DIV_ROUND_UP(card
->ext_csd
.sa_timeout
, 10000);
1869 /* Re-tuning can't be done once the card is deselected */
1870 mmc_retune_hold(host
);
1872 err
= mmc_deselect_cards(host
);
1876 cmd
.opcode
= MMC_SLEEP_AWAKE
;
1877 cmd
.arg
= card
->rca
<< 16;
1881 * If the max_busy_timeout of the host is specified, validate it against
1882 * the sleep cmd timeout. A failure means we need to prevent the host
1883 * from doing hw busy detection, which is done by converting to a R1
1884 * response instead of a R1B.
1886 if (host
->max_busy_timeout
&& (timeout_ms
> host
->max_busy_timeout
)) {
1887 cmd
.flags
= MMC_RSP_R1
| MMC_CMD_AC
;
1889 cmd
.flags
= MMC_RSP_R1B
| MMC_CMD_AC
;
1890 cmd
.busy_timeout
= timeout_ms
;
1893 err
= mmc_wait_for_cmd(host
, &cmd
, 0);
1898 * If the host does not wait while the card signals busy, then we will
1899 * will have to wait the sleep/awake timeout. Note, we cannot use the
1900 * SEND_STATUS command to poll the status because that command (and most
1901 * others) is invalid while the card sleeps.
1903 if (!cmd
.busy_timeout
|| !(host
->caps
& MMC_CAP_WAIT_WHILE_BUSY
))
1904 mmc_delay(timeout_ms
);
1907 mmc_retune_release(host
);
1911 static int mmc_can_poweroff_notify(const struct mmc_card
*card
)
1914 mmc_card_mmc(card
) &&
1915 (card
->ext_csd
.power_off_notification
== EXT_CSD_POWER_ON
);
1918 static int mmc_poweroff_notify(struct mmc_card
*card
, unsigned int notify_type
)
1920 unsigned int timeout
= card
->ext_csd
.generic_cmd6_time
;
1923 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1924 if (notify_type
== EXT_CSD_POWER_OFF_LONG
)
1925 timeout
= card
->ext_csd
.power_off_longtime
;
1927 err
= __mmc_switch(card
, EXT_CSD_CMD_SET_NORMAL
,
1928 EXT_CSD_POWER_OFF_NOTIFICATION
,
1929 notify_type
, timeout
, 0, true, false, false);
1931 pr_err("%s: Power Off Notification timed out, %u\n",
1932 mmc_hostname(card
->host
), timeout
);
1934 /* Disable the power off notification after the switch operation. */
1935 card
->ext_csd
.power_off_notification
= EXT_CSD_NO_POWER_NOTIFICATION
;
1941 * Host is being removed. Free up the current card.
1943 static void mmc_remove(struct mmc_host
*host
)
1945 mmc_remove_card(host
->card
);
1950 * Card detection - card is alive.
1952 static int mmc_alive(struct mmc_host
*host
)
1954 return mmc_send_status(host
->card
, NULL
);
1958 * Card detection callback from host.
1960 static void mmc_detect(struct mmc_host
*host
)
1964 mmc_get_card(host
->card
, NULL
);
1967 * Just check if our card has been removed.
1969 err
= _mmc_detect_card_removed(host
);
1971 mmc_put_card(host
->card
, NULL
);
1976 mmc_claim_host(host
);
1977 mmc_detach_bus(host
);
1978 mmc_power_off(host
);
1979 mmc_release_host(host
);
1983 static int _mmc_suspend(struct mmc_host
*host
, bool is_suspend
)
1986 unsigned int notify_type
= is_suspend
? EXT_CSD_POWER_OFF_SHORT
:
1987 EXT_CSD_POWER_OFF_LONG
;
1989 mmc_claim_host(host
);
1991 if (mmc_card_suspended(host
->card
))
1994 if (mmc_card_doing_bkops(host
->card
)) {
1995 err
= mmc_stop_bkops(host
->card
);
2000 err
= mmc_flush_cache(host
->card
);
2004 if (mmc_can_poweroff_notify(host
->card
) &&
2005 ((host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
) || !is_suspend
))
2006 err
= mmc_poweroff_notify(host
->card
, notify_type
);
2007 else if (mmc_can_sleep(host
->card
))
2008 err
= mmc_sleep(host
);
2009 else if (!mmc_host_is_spi(host
))
2010 err
= mmc_deselect_cards(host
);
2013 mmc_power_off(host
);
2014 mmc_card_set_suspended(host
->card
);
2017 mmc_release_host(host
);
2024 static int mmc_suspend(struct mmc_host
*host
)
2028 err
= _mmc_suspend(host
, true);
2030 pm_runtime_disable(&host
->card
->dev
);
2031 pm_runtime_set_suspended(&host
->card
->dev
);
2038 * This function tries to determine if the same card is still present
2039 * and, if so, restore all state to it.
2041 static int _mmc_resume(struct mmc_host
*host
)
2045 mmc_claim_host(host
);
2047 if (!mmc_card_suspended(host
->card
))
2050 mmc_power_up(host
, host
->card
->ocr
);
2051 err
= mmc_init_card(host
, host
->card
->ocr
, host
->card
);
2052 mmc_card_clr_suspended(host
->card
);
2055 mmc_release_host(host
);
2062 static int mmc_shutdown(struct mmc_host
*host
)
2067 * In a specific case for poweroff notify, we need to resume the card
2068 * before we can shutdown it properly.
2070 if (mmc_can_poweroff_notify(host
->card
) &&
2071 !(host
->caps2
& MMC_CAP2_FULL_PWR_CYCLE
))
2072 err
= _mmc_resume(host
);
2075 err
= _mmc_suspend(host
, false);
2081 * Callback for resume.
2083 static int mmc_resume(struct mmc_host
*host
)
2085 pm_runtime_enable(&host
->card
->dev
);
2090 * Callback for runtime_suspend.
2092 static int mmc_runtime_suspend(struct mmc_host
*host
)
2096 if (!(host
->caps
& MMC_CAP_AGGRESSIVE_PM
))
2099 err
= _mmc_suspend(host
, true);
2101 pr_err("%s: error %d doing aggressive suspend\n",
2102 mmc_hostname(host
), err
);
2108 * Callback for runtime_resume.
2110 static int mmc_runtime_resume(struct mmc_host
*host
)
2114 err
= _mmc_resume(host
);
2115 if (err
&& err
!= -ENOMEDIUM
)
2116 pr_err("%s: error %d doing runtime resume\n",
2117 mmc_hostname(host
), err
);
2122 static int mmc_can_reset(struct mmc_card
*card
)
2126 rst_n_function
= card
->ext_csd
.rst_n_function
;
2127 if ((rst_n_function
& EXT_CSD_RST_N_EN_MASK
) != EXT_CSD_RST_N_ENABLED
)
2132 static int _mmc_hw_reset(struct mmc_host
*host
)
2134 struct mmc_card
*card
= host
->card
;
2137 * In the case of recovery, we can't expect flushing the cache to work
2138 * always, but we have a go and ignore errors.
2140 mmc_flush_cache(host
->card
);
2142 if ((host
->caps
& MMC_CAP_HW_RESET
) && host
->ops
->hw_reset
&&
2143 mmc_can_reset(card
)) {
2144 /* If the card accept RST_n signal, send it. */
2145 mmc_set_clock(host
, host
->f_init
);
2146 host
->ops
->hw_reset(host
);
2147 /* Set initial state and call mmc_set_ios */
2148 mmc_set_initial_state(host
);
2150 /* Do a brute force power cycle */
2151 mmc_power_cycle(host
, card
->ocr
);
2152 mmc_pwrseq_reset(host
);
2154 return mmc_init_card(host
, card
->ocr
, card
);
2157 static const struct mmc_bus_ops mmc_ops
= {
2158 .remove
= mmc_remove
,
2159 .detect
= mmc_detect
,
2160 .suspend
= mmc_suspend
,
2161 .resume
= mmc_resume
,
2162 .runtime_suspend
= mmc_runtime_suspend
,
2163 .runtime_resume
= mmc_runtime_resume
,
2165 .shutdown
= mmc_shutdown
,
2166 .hw_reset
= _mmc_hw_reset
,
2170 * Starting point for MMC card init.
2172 int mmc_attach_mmc(struct mmc_host
*host
)
2177 WARN_ON(!host
->claimed
);
2179 /* Set correct bus mode for MMC before attempting attach */
2180 if (!mmc_host_is_spi(host
))
2181 mmc_set_bus_mode(host
, MMC_BUSMODE_OPENDRAIN
);
2183 err
= mmc_send_op_cond(host
, 0, &ocr
);
2187 mmc_attach_bus(host
, &mmc_ops
);
2188 if (host
->ocr_avail_mmc
)
2189 host
->ocr_avail
= host
->ocr_avail_mmc
;
2192 * We need to get OCR a different way for SPI.
2194 if (mmc_host_is_spi(host
)) {
2195 err
= mmc_spi_read_ocr(host
, 1, &ocr
);
2200 rocr
= mmc_select_voltage(host
, ocr
);
2203 * Can we support the voltage of the card?
2211 * Detect and init the card.
2213 err
= mmc_init_card(host
, rocr
, NULL
);
2217 mmc_release_host(host
);
2218 err
= mmc_add_card(host
->card
);
2222 mmc_claim_host(host
);
2226 mmc_remove_card(host
->card
);
2227 mmc_claim_host(host
);
2230 mmc_detach_bus(host
);
2232 pr_err("%s: error %d whilst initialising MMC card\n",
2233 mmc_hostname(host
), err
);