i2c: gpio: fault-injector: refactor incomplete transfer
[linux/fpc-iii.git] / drivers / mmc / core / mmc.c
blob4466f5de54d44fcabed3d43537b15f41e44af8d6
1 /*
2 * linux/drivers/mmc/core/mmc.c
4 * Copyright (C) 2003-2004 Russell King, All Rights Reserved.
5 * Copyright (C) 2005-2007 Pierre Ossman, All Rights Reserved.
6 * MMCv4 support Copyright (C) 2006 Philip Langdale, All Rights Reserved.
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License version 2 as
10 * published by the Free Software Foundation.
13 #include <linux/err.h>
14 #include <linux/of.h>
15 #include <linux/slab.h>
16 #include <linux/stat.h>
17 #include <linux/pm_runtime.h>
19 #include <linux/mmc/host.h>
20 #include <linux/mmc/card.h>
21 #include <linux/mmc/mmc.h>
23 #include "core.h"
24 #include "card.h"
25 #include "host.h"
26 #include "bus.h"
27 #include "mmc_ops.h"
28 #include "quirks.h"
29 #include "sd_ops.h"
30 #include "pwrseq.h"
32 #define DEFAULT_CMD6_TIMEOUT_MS 500
34 static const unsigned int tran_exp[] = {
35 10000, 100000, 1000000, 10000000,
36 0, 0, 0, 0
39 static const unsigned char tran_mant[] = {
40 0, 10, 12, 13, 15, 20, 25, 30,
41 35, 40, 45, 50, 55, 60, 70, 80,
44 static const unsigned int taac_exp[] = {
45 1, 10, 100, 1000, 10000, 100000, 1000000, 10000000,
48 static const unsigned int taac_mant[] = {
49 0, 10, 12, 13, 15, 20, 25, 30,
50 35, 40, 45, 50, 55, 60, 70, 80,
53 #define UNSTUFF_BITS(resp,start,size) \
54 ({ \
55 const int __size = size; \
56 const u32 __mask = (__size < 32 ? 1 << __size : 0) - 1; \
57 const int __off = 3 - ((start) / 32); \
58 const int __shft = (start) & 31; \
59 u32 __res; \
61 __res = resp[__off] >> __shft; \
62 if (__size + __shft > 32) \
63 __res |= resp[__off-1] << ((32 - __shft) % 32); \
64 __res & __mask; \
68 * Given the decoded CSD structure, decode the raw CID to our CID structure.
70 static int mmc_decode_cid(struct mmc_card *card)
72 u32 *resp = card->raw_cid;
75 * The selection of the format here is based upon published
76 * specs from sandisk and from what people have reported.
78 switch (card->csd.mmca_vsn) {
79 case 0: /* MMC v1.0 - v1.2 */
80 case 1: /* MMC v1.4 */
81 card->cid.manfid = UNSTUFF_BITS(resp, 104, 24);
82 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
83 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
84 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
85 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
86 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
87 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
88 card->cid.prod_name[6] = UNSTUFF_BITS(resp, 48, 8);
89 card->cid.hwrev = UNSTUFF_BITS(resp, 44, 4);
90 card->cid.fwrev = UNSTUFF_BITS(resp, 40, 4);
91 card->cid.serial = UNSTUFF_BITS(resp, 16, 24);
92 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
93 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
94 break;
96 case 2: /* MMC v2.0 - v2.2 */
97 case 3: /* MMC v3.1 - v3.3 */
98 case 4: /* MMC v4 */
99 card->cid.manfid = UNSTUFF_BITS(resp, 120, 8);
100 card->cid.oemid = UNSTUFF_BITS(resp, 104, 16);
101 card->cid.prod_name[0] = UNSTUFF_BITS(resp, 96, 8);
102 card->cid.prod_name[1] = UNSTUFF_BITS(resp, 88, 8);
103 card->cid.prod_name[2] = UNSTUFF_BITS(resp, 80, 8);
104 card->cid.prod_name[3] = UNSTUFF_BITS(resp, 72, 8);
105 card->cid.prod_name[4] = UNSTUFF_BITS(resp, 64, 8);
106 card->cid.prod_name[5] = UNSTUFF_BITS(resp, 56, 8);
107 card->cid.prv = UNSTUFF_BITS(resp, 48, 8);
108 card->cid.serial = UNSTUFF_BITS(resp, 16, 32);
109 card->cid.month = UNSTUFF_BITS(resp, 12, 4);
110 card->cid.year = UNSTUFF_BITS(resp, 8, 4) + 1997;
111 break;
113 default:
114 pr_err("%s: card has unknown MMCA version %d\n",
115 mmc_hostname(card->host), card->csd.mmca_vsn);
116 return -EINVAL;
119 return 0;
122 static void mmc_set_erase_size(struct mmc_card *card)
124 if (card->ext_csd.erase_group_def & 1)
125 card->erase_size = card->ext_csd.hc_erase_size;
126 else
127 card->erase_size = card->csd.erase_size;
129 mmc_init_erase(card);
133 * Given a 128-bit response, decode to our card CSD structure.
135 static int mmc_decode_csd(struct mmc_card *card)
137 struct mmc_csd *csd = &card->csd;
138 unsigned int e, m, a, b;
139 u32 *resp = card->raw_csd;
142 * We only understand CSD structure v1.1 and v1.2.
143 * v1.2 has extra information in bits 15, 11 and 10.
144 * We also support eMMC v4.4 & v4.41.
146 csd->structure = UNSTUFF_BITS(resp, 126, 2);
147 if (csd->structure == 0) {
148 pr_err("%s: unrecognised CSD structure version %d\n",
149 mmc_hostname(card->host), csd->structure);
150 return -EINVAL;
153 csd->mmca_vsn = UNSTUFF_BITS(resp, 122, 4);
154 m = UNSTUFF_BITS(resp, 115, 4);
155 e = UNSTUFF_BITS(resp, 112, 3);
156 csd->taac_ns = (taac_exp[e] * taac_mant[m] + 9) / 10;
157 csd->taac_clks = UNSTUFF_BITS(resp, 104, 8) * 100;
159 m = UNSTUFF_BITS(resp, 99, 4);
160 e = UNSTUFF_BITS(resp, 96, 3);
161 csd->max_dtr = tran_exp[e] * tran_mant[m];
162 csd->cmdclass = UNSTUFF_BITS(resp, 84, 12);
164 e = UNSTUFF_BITS(resp, 47, 3);
165 m = UNSTUFF_BITS(resp, 62, 12);
166 csd->capacity = (1 + m) << (e + 2);
168 csd->read_blkbits = UNSTUFF_BITS(resp, 80, 4);
169 csd->read_partial = UNSTUFF_BITS(resp, 79, 1);
170 csd->write_misalign = UNSTUFF_BITS(resp, 78, 1);
171 csd->read_misalign = UNSTUFF_BITS(resp, 77, 1);
172 csd->dsr_imp = UNSTUFF_BITS(resp, 76, 1);
173 csd->r2w_factor = UNSTUFF_BITS(resp, 26, 3);
174 csd->write_blkbits = UNSTUFF_BITS(resp, 22, 4);
175 csd->write_partial = UNSTUFF_BITS(resp, 21, 1);
177 if (csd->write_blkbits >= 9) {
178 a = UNSTUFF_BITS(resp, 42, 5);
179 b = UNSTUFF_BITS(resp, 37, 5);
180 csd->erase_size = (a + 1) * (b + 1);
181 csd->erase_size <<= csd->write_blkbits - 9;
184 return 0;
187 static void mmc_select_card_type(struct mmc_card *card)
189 struct mmc_host *host = card->host;
190 u8 card_type = card->ext_csd.raw_card_type;
191 u32 caps = host->caps, caps2 = host->caps2;
192 unsigned int hs_max_dtr = 0, hs200_max_dtr = 0;
193 unsigned int avail_type = 0;
195 if (caps & MMC_CAP_MMC_HIGHSPEED &&
196 card_type & EXT_CSD_CARD_TYPE_HS_26) {
197 hs_max_dtr = MMC_HIGH_26_MAX_DTR;
198 avail_type |= EXT_CSD_CARD_TYPE_HS_26;
201 if (caps & MMC_CAP_MMC_HIGHSPEED &&
202 card_type & EXT_CSD_CARD_TYPE_HS_52) {
203 hs_max_dtr = MMC_HIGH_52_MAX_DTR;
204 avail_type |= EXT_CSD_CARD_TYPE_HS_52;
207 if (caps & (MMC_CAP_1_8V_DDR | MMC_CAP_3_3V_DDR) &&
208 card_type & EXT_CSD_CARD_TYPE_DDR_1_8V) {
209 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
210 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_8V;
213 if (caps & MMC_CAP_1_2V_DDR &&
214 card_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
215 hs_max_dtr = MMC_HIGH_DDR_MAX_DTR;
216 avail_type |= EXT_CSD_CARD_TYPE_DDR_1_2V;
219 if (caps2 & MMC_CAP2_HS200_1_8V_SDR &&
220 card_type & EXT_CSD_CARD_TYPE_HS200_1_8V) {
221 hs200_max_dtr = MMC_HS200_MAX_DTR;
222 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_8V;
225 if (caps2 & MMC_CAP2_HS200_1_2V_SDR &&
226 card_type & EXT_CSD_CARD_TYPE_HS200_1_2V) {
227 hs200_max_dtr = MMC_HS200_MAX_DTR;
228 avail_type |= EXT_CSD_CARD_TYPE_HS200_1_2V;
231 if (caps2 & MMC_CAP2_HS400_1_8V &&
232 card_type & EXT_CSD_CARD_TYPE_HS400_1_8V) {
233 hs200_max_dtr = MMC_HS200_MAX_DTR;
234 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_8V;
237 if (caps2 & MMC_CAP2_HS400_1_2V &&
238 card_type & EXT_CSD_CARD_TYPE_HS400_1_2V) {
239 hs200_max_dtr = MMC_HS200_MAX_DTR;
240 avail_type |= EXT_CSD_CARD_TYPE_HS400_1_2V;
243 if ((caps2 & MMC_CAP2_HS400_ES) &&
244 card->ext_csd.strobe_support &&
245 (avail_type & EXT_CSD_CARD_TYPE_HS400))
246 avail_type |= EXT_CSD_CARD_TYPE_HS400ES;
248 card->ext_csd.hs_max_dtr = hs_max_dtr;
249 card->ext_csd.hs200_max_dtr = hs200_max_dtr;
250 card->mmc_avail_type = avail_type;
253 static void mmc_manage_enhanced_area(struct mmc_card *card, u8 *ext_csd)
255 u8 hc_erase_grp_sz, hc_wp_grp_sz;
258 * Disable these attributes by default
260 card->ext_csd.enhanced_area_offset = -EINVAL;
261 card->ext_csd.enhanced_area_size = -EINVAL;
264 * Enhanced area feature support -- check whether the eMMC
265 * card has the Enhanced area enabled. If so, export enhanced
266 * area offset and size to user by adding sysfs interface.
268 if ((ext_csd[EXT_CSD_PARTITION_SUPPORT] & 0x2) &&
269 (ext_csd[EXT_CSD_PARTITION_ATTRIBUTE] & 0x1)) {
270 if (card->ext_csd.partition_setting_completed) {
271 hc_erase_grp_sz =
272 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
273 hc_wp_grp_sz =
274 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
277 * calculate the enhanced data area offset, in bytes
279 card->ext_csd.enhanced_area_offset =
280 (((unsigned long long)ext_csd[139]) << 24) +
281 (((unsigned long long)ext_csd[138]) << 16) +
282 (((unsigned long long)ext_csd[137]) << 8) +
283 (((unsigned long long)ext_csd[136]));
284 if (mmc_card_blockaddr(card))
285 card->ext_csd.enhanced_area_offset <<= 9;
287 * calculate the enhanced data area size, in kilobytes
289 card->ext_csd.enhanced_area_size =
290 (ext_csd[142] << 16) + (ext_csd[141] << 8) +
291 ext_csd[140];
292 card->ext_csd.enhanced_area_size *=
293 (size_t)(hc_erase_grp_sz * hc_wp_grp_sz);
294 card->ext_csd.enhanced_area_size <<= 9;
295 } else {
296 pr_warn("%s: defines enhanced area without partition setting complete\n",
297 mmc_hostname(card->host));
302 static void mmc_part_add(struct mmc_card *card, unsigned int size,
303 unsigned int part_cfg, char *name, int idx, bool ro,
304 int area_type)
306 card->part[card->nr_parts].size = size;
307 card->part[card->nr_parts].part_cfg = part_cfg;
308 sprintf(card->part[card->nr_parts].name, name, idx);
309 card->part[card->nr_parts].force_ro = ro;
310 card->part[card->nr_parts].area_type = area_type;
311 card->nr_parts++;
314 static void mmc_manage_gp_partitions(struct mmc_card *card, u8 *ext_csd)
316 int idx;
317 u8 hc_erase_grp_sz, hc_wp_grp_sz;
318 unsigned int part_size;
321 * General purpose partition feature support --
322 * If ext_csd has the size of general purpose partitions,
323 * set size, part_cfg, partition name in mmc_part.
325 if (ext_csd[EXT_CSD_PARTITION_SUPPORT] &
326 EXT_CSD_PART_SUPPORT_PART_EN) {
327 hc_erase_grp_sz =
328 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
329 hc_wp_grp_sz =
330 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
332 for (idx = 0; idx < MMC_NUM_GP_PARTITION; idx++) {
333 if (!ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3] &&
334 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1] &&
335 !ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2])
336 continue;
337 if (card->ext_csd.partition_setting_completed == 0) {
338 pr_warn("%s: has partition size defined without partition complete\n",
339 mmc_hostname(card->host));
340 break;
342 part_size =
343 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 2]
344 << 16) +
345 (ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3 + 1]
346 << 8) +
347 ext_csd[EXT_CSD_GP_SIZE_MULT + idx * 3];
348 part_size *= (size_t)(hc_erase_grp_sz *
349 hc_wp_grp_sz);
350 mmc_part_add(card, part_size << 19,
351 EXT_CSD_PART_CONFIG_ACC_GP0 + idx,
352 "gp%d", idx, false,
353 MMC_BLK_DATA_AREA_GP);
358 /* Minimum partition switch timeout in milliseconds */
359 #define MMC_MIN_PART_SWITCH_TIME 300
362 * Decode extended CSD.
364 static int mmc_decode_ext_csd(struct mmc_card *card, u8 *ext_csd)
366 int err = 0, idx;
367 unsigned int part_size;
368 struct device_node *np;
369 bool broken_hpi = false;
371 /* Version is coded in the CSD_STRUCTURE byte in the EXT_CSD register */
372 card->ext_csd.raw_ext_csd_structure = ext_csd[EXT_CSD_STRUCTURE];
373 if (card->csd.structure == 3) {
374 if (card->ext_csd.raw_ext_csd_structure > 2) {
375 pr_err("%s: unrecognised EXT_CSD structure "
376 "version %d\n", mmc_hostname(card->host),
377 card->ext_csd.raw_ext_csd_structure);
378 err = -EINVAL;
379 goto out;
383 np = mmc_of_find_child_device(card->host, 0);
384 if (np && of_device_is_compatible(np, "mmc-card"))
385 broken_hpi = of_property_read_bool(np, "broken-hpi");
386 of_node_put(np);
389 * The EXT_CSD format is meant to be forward compatible. As long
390 * as CSD_STRUCTURE does not change, all values for EXT_CSD_REV
391 * are authorized, see JEDEC JESD84-B50 section B.8.
393 card->ext_csd.rev = ext_csd[EXT_CSD_REV];
395 /* fixup device after ext_csd revision field is updated */
396 mmc_fixup_device(card, mmc_ext_csd_fixups);
398 card->ext_csd.raw_sectors[0] = ext_csd[EXT_CSD_SEC_CNT + 0];
399 card->ext_csd.raw_sectors[1] = ext_csd[EXT_CSD_SEC_CNT + 1];
400 card->ext_csd.raw_sectors[2] = ext_csd[EXT_CSD_SEC_CNT + 2];
401 card->ext_csd.raw_sectors[3] = ext_csd[EXT_CSD_SEC_CNT + 3];
402 if (card->ext_csd.rev >= 2) {
403 card->ext_csd.sectors =
404 ext_csd[EXT_CSD_SEC_CNT + 0] << 0 |
405 ext_csd[EXT_CSD_SEC_CNT + 1] << 8 |
406 ext_csd[EXT_CSD_SEC_CNT + 2] << 16 |
407 ext_csd[EXT_CSD_SEC_CNT + 3] << 24;
409 /* Cards with density > 2GiB are sector addressed */
410 if (card->ext_csd.sectors > (2u * 1024 * 1024 * 1024) / 512)
411 mmc_card_set_blockaddr(card);
414 card->ext_csd.strobe_support = ext_csd[EXT_CSD_STROBE_SUPPORT];
415 card->ext_csd.raw_card_type = ext_csd[EXT_CSD_CARD_TYPE];
416 mmc_select_card_type(card);
418 card->ext_csd.raw_s_a_timeout = ext_csd[EXT_CSD_S_A_TIMEOUT];
419 card->ext_csd.raw_erase_timeout_mult =
420 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
421 card->ext_csd.raw_hc_erase_grp_size =
422 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE];
423 if (card->ext_csd.rev >= 3) {
424 u8 sa_shift = ext_csd[EXT_CSD_S_A_TIMEOUT];
425 card->ext_csd.part_config = ext_csd[EXT_CSD_PART_CONFIG];
427 /* EXT_CSD value is in units of 10ms, but we store in ms */
428 card->ext_csd.part_time = 10 * ext_csd[EXT_CSD_PART_SWITCH_TIME];
429 /* Some eMMC set the value too low so set a minimum */
430 if (card->ext_csd.part_time &&
431 card->ext_csd.part_time < MMC_MIN_PART_SWITCH_TIME)
432 card->ext_csd.part_time = MMC_MIN_PART_SWITCH_TIME;
434 /* Sleep / awake timeout in 100ns units */
435 if (sa_shift > 0 && sa_shift <= 0x17)
436 card->ext_csd.sa_timeout =
437 1 << ext_csd[EXT_CSD_S_A_TIMEOUT];
438 card->ext_csd.erase_group_def =
439 ext_csd[EXT_CSD_ERASE_GROUP_DEF];
440 card->ext_csd.hc_erase_timeout = 300 *
441 ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT];
442 card->ext_csd.hc_erase_size =
443 ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE] << 10;
445 card->ext_csd.rel_sectors = ext_csd[EXT_CSD_REL_WR_SEC_C];
448 * There are two boot regions of equal size, defined in
449 * multiples of 128K.
451 if (ext_csd[EXT_CSD_BOOT_MULT] && mmc_boot_partition_access(card->host)) {
452 for (idx = 0; idx < MMC_NUM_BOOT_PARTITION; idx++) {
453 part_size = ext_csd[EXT_CSD_BOOT_MULT] << 17;
454 mmc_part_add(card, part_size,
455 EXT_CSD_PART_CONFIG_ACC_BOOT0 + idx,
456 "boot%d", idx, true,
457 MMC_BLK_DATA_AREA_BOOT);
462 card->ext_csd.raw_hc_erase_gap_size =
463 ext_csd[EXT_CSD_HC_WP_GRP_SIZE];
464 card->ext_csd.raw_sec_trim_mult =
465 ext_csd[EXT_CSD_SEC_TRIM_MULT];
466 card->ext_csd.raw_sec_erase_mult =
467 ext_csd[EXT_CSD_SEC_ERASE_MULT];
468 card->ext_csd.raw_sec_feature_support =
469 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
470 card->ext_csd.raw_trim_mult =
471 ext_csd[EXT_CSD_TRIM_MULT];
472 card->ext_csd.raw_partition_support = ext_csd[EXT_CSD_PARTITION_SUPPORT];
473 card->ext_csd.raw_driver_strength = ext_csd[EXT_CSD_DRIVER_STRENGTH];
474 if (card->ext_csd.rev >= 4) {
475 if (ext_csd[EXT_CSD_PARTITION_SETTING_COMPLETED] &
476 EXT_CSD_PART_SETTING_COMPLETED)
477 card->ext_csd.partition_setting_completed = 1;
478 else
479 card->ext_csd.partition_setting_completed = 0;
481 mmc_manage_enhanced_area(card, ext_csd);
483 mmc_manage_gp_partitions(card, ext_csd);
485 card->ext_csd.sec_trim_mult =
486 ext_csd[EXT_CSD_SEC_TRIM_MULT];
487 card->ext_csd.sec_erase_mult =
488 ext_csd[EXT_CSD_SEC_ERASE_MULT];
489 card->ext_csd.sec_feature_support =
490 ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT];
491 card->ext_csd.trim_timeout = 300 *
492 ext_csd[EXT_CSD_TRIM_MULT];
495 * Note that the call to mmc_part_add above defaults to read
496 * only. If this default assumption is changed, the call must
497 * take into account the value of boot_locked below.
499 card->ext_csd.boot_ro_lock = ext_csd[EXT_CSD_BOOT_WP];
500 card->ext_csd.boot_ro_lockable = true;
502 /* Save power class values */
503 card->ext_csd.raw_pwr_cl_52_195 =
504 ext_csd[EXT_CSD_PWR_CL_52_195];
505 card->ext_csd.raw_pwr_cl_26_195 =
506 ext_csd[EXT_CSD_PWR_CL_26_195];
507 card->ext_csd.raw_pwr_cl_52_360 =
508 ext_csd[EXT_CSD_PWR_CL_52_360];
509 card->ext_csd.raw_pwr_cl_26_360 =
510 ext_csd[EXT_CSD_PWR_CL_26_360];
511 card->ext_csd.raw_pwr_cl_200_195 =
512 ext_csd[EXT_CSD_PWR_CL_200_195];
513 card->ext_csd.raw_pwr_cl_200_360 =
514 ext_csd[EXT_CSD_PWR_CL_200_360];
515 card->ext_csd.raw_pwr_cl_ddr_52_195 =
516 ext_csd[EXT_CSD_PWR_CL_DDR_52_195];
517 card->ext_csd.raw_pwr_cl_ddr_52_360 =
518 ext_csd[EXT_CSD_PWR_CL_DDR_52_360];
519 card->ext_csd.raw_pwr_cl_ddr_200_360 =
520 ext_csd[EXT_CSD_PWR_CL_DDR_200_360];
523 if (card->ext_csd.rev >= 5) {
524 /* Adjust production date as per JEDEC JESD84-B451 */
525 if (card->cid.year < 2010)
526 card->cid.year += 16;
528 /* check whether the eMMC card supports BKOPS */
529 if (!mmc_card_broken_hpi(card) &&
530 ext_csd[EXT_CSD_BKOPS_SUPPORT] & 0x1) {
531 card->ext_csd.bkops = 1;
532 card->ext_csd.man_bkops_en =
533 (ext_csd[EXT_CSD_BKOPS_EN] &
534 EXT_CSD_MANUAL_BKOPS_MASK);
535 card->ext_csd.raw_bkops_status =
536 ext_csd[EXT_CSD_BKOPS_STATUS];
537 if (card->ext_csd.man_bkops_en)
538 pr_debug("%s: MAN_BKOPS_EN bit is set\n",
539 mmc_hostname(card->host));
540 card->ext_csd.auto_bkops_en =
541 (ext_csd[EXT_CSD_BKOPS_EN] &
542 EXT_CSD_AUTO_BKOPS_MASK);
543 if (card->ext_csd.auto_bkops_en)
544 pr_debug("%s: AUTO_BKOPS_EN bit is set\n",
545 mmc_hostname(card->host));
548 /* check whether the eMMC card supports HPI */
549 if (!mmc_card_broken_hpi(card) &&
550 !broken_hpi && (ext_csd[EXT_CSD_HPI_FEATURES] & 0x1)) {
551 card->ext_csd.hpi = 1;
552 if (ext_csd[EXT_CSD_HPI_FEATURES] & 0x2)
553 card->ext_csd.hpi_cmd = MMC_STOP_TRANSMISSION;
554 else
555 card->ext_csd.hpi_cmd = MMC_SEND_STATUS;
557 * Indicate the maximum timeout to close
558 * a command interrupted by HPI
560 card->ext_csd.out_of_int_time =
561 ext_csd[EXT_CSD_OUT_OF_INTERRUPT_TIME] * 10;
564 card->ext_csd.rel_param = ext_csd[EXT_CSD_WR_REL_PARAM];
565 card->ext_csd.rst_n_function = ext_csd[EXT_CSD_RST_N_FUNCTION];
568 * RPMB regions are defined in multiples of 128K.
570 card->ext_csd.raw_rpmb_size_mult = ext_csd[EXT_CSD_RPMB_MULT];
571 if (ext_csd[EXT_CSD_RPMB_MULT] && mmc_host_cmd23(card->host)) {
572 mmc_part_add(card, ext_csd[EXT_CSD_RPMB_MULT] << 17,
573 EXT_CSD_PART_CONFIG_ACC_RPMB,
574 "rpmb", 0, false,
575 MMC_BLK_DATA_AREA_RPMB);
579 card->ext_csd.raw_erased_mem_count = ext_csd[EXT_CSD_ERASED_MEM_CONT];
580 if (ext_csd[EXT_CSD_ERASED_MEM_CONT])
581 card->erased_byte = 0xFF;
582 else
583 card->erased_byte = 0x0;
585 /* eMMC v4.5 or later */
586 card->ext_csd.generic_cmd6_time = DEFAULT_CMD6_TIMEOUT_MS;
587 if (card->ext_csd.rev >= 6) {
588 card->ext_csd.feature_support |= MMC_DISCARD_FEATURE;
590 card->ext_csd.generic_cmd6_time = 10 *
591 ext_csd[EXT_CSD_GENERIC_CMD6_TIME];
592 card->ext_csd.power_off_longtime = 10 *
593 ext_csd[EXT_CSD_POWER_OFF_LONG_TIME];
595 card->ext_csd.cache_size =
596 ext_csd[EXT_CSD_CACHE_SIZE + 0] << 0 |
597 ext_csd[EXT_CSD_CACHE_SIZE + 1] << 8 |
598 ext_csd[EXT_CSD_CACHE_SIZE + 2] << 16 |
599 ext_csd[EXT_CSD_CACHE_SIZE + 3] << 24;
601 if (ext_csd[EXT_CSD_DATA_SECTOR_SIZE] == 1)
602 card->ext_csd.data_sector_size = 4096;
603 else
604 card->ext_csd.data_sector_size = 512;
606 if ((ext_csd[EXT_CSD_DATA_TAG_SUPPORT] & 1) &&
607 (ext_csd[EXT_CSD_TAG_UNIT_SIZE] <= 8)) {
608 card->ext_csd.data_tag_unit_size =
609 ((unsigned int) 1 << ext_csd[EXT_CSD_TAG_UNIT_SIZE]) *
610 (card->ext_csd.data_sector_size);
611 } else {
612 card->ext_csd.data_tag_unit_size = 0;
615 card->ext_csd.max_packed_writes =
616 ext_csd[EXT_CSD_MAX_PACKED_WRITES];
617 card->ext_csd.max_packed_reads =
618 ext_csd[EXT_CSD_MAX_PACKED_READS];
619 } else {
620 card->ext_csd.data_sector_size = 512;
623 /* eMMC v5 or later */
624 if (card->ext_csd.rev >= 7) {
625 memcpy(card->ext_csd.fwrev, &ext_csd[EXT_CSD_FIRMWARE_VERSION],
626 MMC_FIRMWARE_LEN);
627 card->ext_csd.ffu_capable =
628 (ext_csd[EXT_CSD_SUPPORTED_MODE] & 0x1) &&
629 !(ext_csd[EXT_CSD_FW_CONFIG] & 0x1);
631 card->ext_csd.pre_eol_info = ext_csd[EXT_CSD_PRE_EOL_INFO];
632 card->ext_csd.device_life_time_est_typ_a =
633 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_A];
634 card->ext_csd.device_life_time_est_typ_b =
635 ext_csd[EXT_CSD_DEVICE_LIFE_TIME_EST_TYP_B];
638 /* eMMC v5.1 or later */
639 if (card->ext_csd.rev >= 8) {
640 card->ext_csd.cmdq_support = ext_csd[EXT_CSD_CMDQ_SUPPORT] &
641 EXT_CSD_CMDQ_SUPPORTED;
642 card->ext_csd.cmdq_depth = (ext_csd[EXT_CSD_CMDQ_DEPTH] &
643 EXT_CSD_CMDQ_DEPTH_MASK) + 1;
644 /* Exclude inefficiently small queue depths */
645 if (card->ext_csd.cmdq_depth <= 2) {
646 card->ext_csd.cmdq_support = false;
647 card->ext_csd.cmdq_depth = 0;
649 if (card->ext_csd.cmdq_support) {
650 pr_debug("%s: Command Queue supported depth %u\n",
651 mmc_hostname(card->host),
652 card->ext_csd.cmdq_depth);
655 out:
656 return err;
659 static int mmc_read_ext_csd(struct mmc_card *card)
661 u8 *ext_csd;
662 int err;
664 if (!mmc_can_ext_csd(card))
665 return 0;
667 err = mmc_get_ext_csd(card, &ext_csd);
668 if (err) {
669 /* If the host or the card can't do the switch,
670 * fail more gracefully. */
671 if ((err != -EINVAL)
672 && (err != -ENOSYS)
673 && (err != -EFAULT))
674 return err;
677 * High capacity cards should have this "magic" size
678 * stored in their CSD.
680 if (card->csd.capacity == (4096 * 512)) {
681 pr_err("%s: unable to read EXT_CSD on a possible high capacity card. Card will be ignored.\n",
682 mmc_hostname(card->host));
683 } else {
684 pr_warn("%s: unable to read EXT_CSD, performance might suffer\n",
685 mmc_hostname(card->host));
686 err = 0;
689 return err;
692 err = mmc_decode_ext_csd(card, ext_csd);
693 kfree(ext_csd);
694 return err;
697 static int mmc_compare_ext_csds(struct mmc_card *card, unsigned bus_width)
699 u8 *bw_ext_csd;
700 int err;
702 if (bus_width == MMC_BUS_WIDTH_1)
703 return 0;
705 err = mmc_get_ext_csd(card, &bw_ext_csd);
706 if (err)
707 return err;
709 /* only compare read only fields */
710 err = !((card->ext_csd.raw_partition_support ==
711 bw_ext_csd[EXT_CSD_PARTITION_SUPPORT]) &&
712 (card->ext_csd.raw_erased_mem_count ==
713 bw_ext_csd[EXT_CSD_ERASED_MEM_CONT]) &&
714 (card->ext_csd.rev ==
715 bw_ext_csd[EXT_CSD_REV]) &&
716 (card->ext_csd.raw_ext_csd_structure ==
717 bw_ext_csd[EXT_CSD_STRUCTURE]) &&
718 (card->ext_csd.raw_card_type ==
719 bw_ext_csd[EXT_CSD_CARD_TYPE]) &&
720 (card->ext_csd.raw_s_a_timeout ==
721 bw_ext_csd[EXT_CSD_S_A_TIMEOUT]) &&
722 (card->ext_csd.raw_hc_erase_gap_size ==
723 bw_ext_csd[EXT_CSD_HC_WP_GRP_SIZE]) &&
724 (card->ext_csd.raw_erase_timeout_mult ==
725 bw_ext_csd[EXT_CSD_ERASE_TIMEOUT_MULT]) &&
726 (card->ext_csd.raw_hc_erase_grp_size ==
727 bw_ext_csd[EXT_CSD_HC_ERASE_GRP_SIZE]) &&
728 (card->ext_csd.raw_sec_trim_mult ==
729 bw_ext_csd[EXT_CSD_SEC_TRIM_MULT]) &&
730 (card->ext_csd.raw_sec_erase_mult ==
731 bw_ext_csd[EXT_CSD_SEC_ERASE_MULT]) &&
732 (card->ext_csd.raw_sec_feature_support ==
733 bw_ext_csd[EXT_CSD_SEC_FEATURE_SUPPORT]) &&
734 (card->ext_csd.raw_trim_mult ==
735 bw_ext_csd[EXT_CSD_TRIM_MULT]) &&
736 (card->ext_csd.raw_sectors[0] ==
737 bw_ext_csd[EXT_CSD_SEC_CNT + 0]) &&
738 (card->ext_csd.raw_sectors[1] ==
739 bw_ext_csd[EXT_CSD_SEC_CNT + 1]) &&
740 (card->ext_csd.raw_sectors[2] ==
741 bw_ext_csd[EXT_CSD_SEC_CNT + 2]) &&
742 (card->ext_csd.raw_sectors[3] ==
743 bw_ext_csd[EXT_CSD_SEC_CNT + 3]) &&
744 (card->ext_csd.raw_pwr_cl_52_195 ==
745 bw_ext_csd[EXT_CSD_PWR_CL_52_195]) &&
746 (card->ext_csd.raw_pwr_cl_26_195 ==
747 bw_ext_csd[EXT_CSD_PWR_CL_26_195]) &&
748 (card->ext_csd.raw_pwr_cl_52_360 ==
749 bw_ext_csd[EXT_CSD_PWR_CL_52_360]) &&
750 (card->ext_csd.raw_pwr_cl_26_360 ==
751 bw_ext_csd[EXT_CSD_PWR_CL_26_360]) &&
752 (card->ext_csd.raw_pwr_cl_200_195 ==
753 bw_ext_csd[EXT_CSD_PWR_CL_200_195]) &&
754 (card->ext_csd.raw_pwr_cl_200_360 ==
755 bw_ext_csd[EXT_CSD_PWR_CL_200_360]) &&
756 (card->ext_csd.raw_pwr_cl_ddr_52_195 ==
757 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_195]) &&
758 (card->ext_csd.raw_pwr_cl_ddr_52_360 ==
759 bw_ext_csd[EXT_CSD_PWR_CL_DDR_52_360]) &&
760 (card->ext_csd.raw_pwr_cl_ddr_200_360 ==
761 bw_ext_csd[EXT_CSD_PWR_CL_DDR_200_360]));
763 if (err)
764 err = -EINVAL;
766 kfree(bw_ext_csd);
767 return err;
770 MMC_DEV_ATTR(cid, "%08x%08x%08x%08x\n", card->raw_cid[0], card->raw_cid[1],
771 card->raw_cid[2], card->raw_cid[3]);
772 MMC_DEV_ATTR(csd, "%08x%08x%08x%08x\n", card->raw_csd[0], card->raw_csd[1],
773 card->raw_csd[2], card->raw_csd[3]);
774 MMC_DEV_ATTR(date, "%02d/%04d\n", card->cid.month, card->cid.year);
775 MMC_DEV_ATTR(erase_size, "%u\n", card->erase_size << 9);
776 MMC_DEV_ATTR(preferred_erase_size, "%u\n", card->pref_erase << 9);
777 MMC_DEV_ATTR(ffu_capable, "%d\n", card->ext_csd.ffu_capable);
778 MMC_DEV_ATTR(hwrev, "0x%x\n", card->cid.hwrev);
779 MMC_DEV_ATTR(manfid, "0x%06x\n", card->cid.manfid);
780 MMC_DEV_ATTR(name, "%s\n", card->cid.prod_name);
781 MMC_DEV_ATTR(oemid, "0x%04x\n", card->cid.oemid);
782 MMC_DEV_ATTR(prv, "0x%x\n", card->cid.prv);
783 MMC_DEV_ATTR(rev, "0x%x\n", card->ext_csd.rev);
784 MMC_DEV_ATTR(pre_eol_info, "0x%02x\n", card->ext_csd.pre_eol_info);
785 MMC_DEV_ATTR(life_time, "0x%02x 0x%02x\n",
786 card->ext_csd.device_life_time_est_typ_a,
787 card->ext_csd.device_life_time_est_typ_b);
788 MMC_DEV_ATTR(serial, "0x%08x\n", card->cid.serial);
789 MMC_DEV_ATTR(enhanced_area_offset, "%llu\n",
790 card->ext_csd.enhanced_area_offset);
791 MMC_DEV_ATTR(enhanced_area_size, "%u\n", card->ext_csd.enhanced_area_size);
792 MMC_DEV_ATTR(raw_rpmb_size_mult, "%#x\n", card->ext_csd.raw_rpmb_size_mult);
793 MMC_DEV_ATTR(rel_sectors, "%#x\n", card->ext_csd.rel_sectors);
794 MMC_DEV_ATTR(ocr, "0x%08x\n", card->ocr);
795 MMC_DEV_ATTR(rca, "0x%04x\n", card->rca);
796 MMC_DEV_ATTR(cmdq_en, "%d\n", card->ext_csd.cmdq_en);
798 static ssize_t mmc_fwrev_show(struct device *dev,
799 struct device_attribute *attr,
800 char *buf)
802 struct mmc_card *card = mmc_dev_to_card(dev);
804 if (card->ext_csd.rev < 7) {
805 return sprintf(buf, "0x%x\n", card->cid.fwrev);
806 } else {
807 return sprintf(buf, "0x%*phN\n", MMC_FIRMWARE_LEN,
808 card->ext_csd.fwrev);
812 static DEVICE_ATTR(fwrev, S_IRUGO, mmc_fwrev_show, NULL);
814 static ssize_t mmc_dsr_show(struct device *dev,
815 struct device_attribute *attr,
816 char *buf)
818 struct mmc_card *card = mmc_dev_to_card(dev);
819 struct mmc_host *host = card->host;
821 if (card->csd.dsr_imp && host->dsr_req)
822 return sprintf(buf, "0x%x\n", host->dsr);
823 else
824 /* return default DSR value */
825 return sprintf(buf, "0x%x\n", 0x404);
828 static DEVICE_ATTR(dsr, S_IRUGO, mmc_dsr_show, NULL);
830 static struct attribute *mmc_std_attrs[] = {
831 &dev_attr_cid.attr,
832 &dev_attr_csd.attr,
833 &dev_attr_date.attr,
834 &dev_attr_erase_size.attr,
835 &dev_attr_preferred_erase_size.attr,
836 &dev_attr_fwrev.attr,
837 &dev_attr_ffu_capable.attr,
838 &dev_attr_hwrev.attr,
839 &dev_attr_manfid.attr,
840 &dev_attr_name.attr,
841 &dev_attr_oemid.attr,
842 &dev_attr_prv.attr,
843 &dev_attr_rev.attr,
844 &dev_attr_pre_eol_info.attr,
845 &dev_attr_life_time.attr,
846 &dev_attr_serial.attr,
847 &dev_attr_enhanced_area_offset.attr,
848 &dev_attr_enhanced_area_size.attr,
849 &dev_attr_raw_rpmb_size_mult.attr,
850 &dev_attr_rel_sectors.attr,
851 &dev_attr_ocr.attr,
852 &dev_attr_rca.attr,
853 &dev_attr_dsr.attr,
854 &dev_attr_cmdq_en.attr,
855 NULL,
857 ATTRIBUTE_GROUPS(mmc_std);
859 static struct device_type mmc_type = {
860 .groups = mmc_std_groups,
864 * Select the PowerClass for the current bus width
865 * If power class is defined for 4/8 bit bus in the
866 * extended CSD register, select it by executing the
867 * mmc_switch command.
869 static int __mmc_select_powerclass(struct mmc_card *card,
870 unsigned int bus_width)
872 struct mmc_host *host = card->host;
873 struct mmc_ext_csd *ext_csd = &card->ext_csd;
874 unsigned int pwrclass_val = 0;
875 int err = 0;
877 switch (1 << host->ios.vdd) {
878 case MMC_VDD_165_195:
879 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
880 pwrclass_val = ext_csd->raw_pwr_cl_26_195;
881 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
882 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
883 ext_csd->raw_pwr_cl_52_195 :
884 ext_csd->raw_pwr_cl_ddr_52_195;
885 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
886 pwrclass_val = ext_csd->raw_pwr_cl_200_195;
887 break;
888 case MMC_VDD_27_28:
889 case MMC_VDD_28_29:
890 case MMC_VDD_29_30:
891 case MMC_VDD_30_31:
892 case MMC_VDD_31_32:
893 case MMC_VDD_32_33:
894 case MMC_VDD_33_34:
895 case MMC_VDD_34_35:
896 case MMC_VDD_35_36:
897 if (host->ios.clock <= MMC_HIGH_26_MAX_DTR)
898 pwrclass_val = ext_csd->raw_pwr_cl_26_360;
899 else if (host->ios.clock <= MMC_HIGH_52_MAX_DTR)
900 pwrclass_val = (bus_width <= EXT_CSD_BUS_WIDTH_8) ?
901 ext_csd->raw_pwr_cl_52_360 :
902 ext_csd->raw_pwr_cl_ddr_52_360;
903 else if (host->ios.clock <= MMC_HS200_MAX_DTR)
904 pwrclass_val = (bus_width == EXT_CSD_DDR_BUS_WIDTH_8) ?
905 ext_csd->raw_pwr_cl_ddr_200_360 :
906 ext_csd->raw_pwr_cl_200_360;
907 break;
908 default:
909 pr_warn("%s: Voltage range not supported for power class\n",
910 mmc_hostname(host));
911 return -EINVAL;
914 if (bus_width & (EXT_CSD_BUS_WIDTH_8 | EXT_CSD_DDR_BUS_WIDTH_8))
915 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_8BIT_MASK) >>
916 EXT_CSD_PWR_CL_8BIT_SHIFT;
917 else
918 pwrclass_val = (pwrclass_val & EXT_CSD_PWR_CL_4BIT_MASK) >>
919 EXT_CSD_PWR_CL_4BIT_SHIFT;
921 /* If the power class is different from the default value */
922 if (pwrclass_val > 0) {
923 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
924 EXT_CSD_POWER_CLASS,
925 pwrclass_val,
926 card->ext_csd.generic_cmd6_time);
929 return err;
932 static int mmc_select_powerclass(struct mmc_card *card)
934 struct mmc_host *host = card->host;
935 u32 bus_width, ext_csd_bits;
936 int err, ddr;
938 /* Power class selection is supported for versions >= 4.0 */
939 if (!mmc_can_ext_csd(card))
940 return 0;
942 bus_width = host->ios.bus_width;
943 /* Power class values are defined only for 4/8 bit bus */
944 if (bus_width == MMC_BUS_WIDTH_1)
945 return 0;
947 ddr = card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52;
948 if (ddr)
949 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
950 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
951 else
952 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
953 EXT_CSD_BUS_WIDTH_8 : EXT_CSD_BUS_WIDTH_4;
955 err = __mmc_select_powerclass(card, ext_csd_bits);
956 if (err)
957 pr_warn("%s: power class selection to bus width %d ddr %d failed\n",
958 mmc_hostname(host), 1 << bus_width, ddr);
960 return err;
964 * Set the bus speed for the selected speed mode.
966 static void mmc_set_bus_speed(struct mmc_card *card)
968 unsigned int max_dtr = (unsigned int)-1;
970 if ((mmc_card_hs200(card) || mmc_card_hs400(card)) &&
971 max_dtr > card->ext_csd.hs200_max_dtr)
972 max_dtr = card->ext_csd.hs200_max_dtr;
973 else if (mmc_card_hs(card) && max_dtr > card->ext_csd.hs_max_dtr)
974 max_dtr = card->ext_csd.hs_max_dtr;
975 else if (max_dtr > card->csd.max_dtr)
976 max_dtr = card->csd.max_dtr;
978 mmc_set_clock(card->host, max_dtr);
982 * Select the bus width amoung 4-bit and 8-bit(SDR).
983 * If the bus width is changed successfully, return the selected width value.
984 * Zero is returned instead of error value if the wide width is not supported.
986 static int mmc_select_bus_width(struct mmc_card *card)
988 static unsigned ext_csd_bits[] = {
989 EXT_CSD_BUS_WIDTH_8,
990 EXT_CSD_BUS_WIDTH_4,
992 static unsigned bus_widths[] = {
993 MMC_BUS_WIDTH_8,
994 MMC_BUS_WIDTH_4,
996 struct mmc_host *host = card->host;
997 unsigned idx, bus_width = 0;
998 int err = 0;
1000 if (!mmc_can_ext_csd(card) ||
1001 !(host->caps & (MMC_CAP_4_BIT_DATA | MMC_CAP_8_BIT_DATA)))
1002 return 0;
1004 idx = (host->caps & MMC_CAP_8_BIT_DATA) ? 0 : 1;
1007 * Unlike SD, MMC cards dont have a configuration register to notify
1008 * supported bus width. So bus test command should be run to identify
1009 * the supported bus width or compare the ext csd values of current
1010 * bus width and ext csd values of 1 bit mode read earlier.
1012 for (; idx < ARRAY_SIZE(bus_widths); idx++) {
1014 * Host is capable of 8bit transfer, then switch
1015 * the device to work in 8bit transfer mode. If the
1016 * mmc switch command returns error then switch to
1017 * 4bit transfer mode. On success set the corresponding
1018 * bus width on the host.
1020 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1021 EXT_CSD_BUS_WIDTH,
1022 ext_csd_bits[idx],
1023 card->ext_csd.generic_cmd6_time);
1024 if (err)
1025 continue;
1027 bus_width = bus_widths[idx];
1028 mmc_set_bus_width(host, bus_width);
1031 * If controller can't handle bus width test,
1032 * compare ext_csd previously read in 1 bit mode
1033 * against ext_csd at new bus width
1035 if (!(host->caps & MMC_CAP_BUS_WIDTH_TEST))
1036 err = mmc_compare_ext_csds(card, bus_width);
1037 else
1038 err = mmc_bus_test(card, bus_width);
1040 if (!err) {
1041 err = bus_width;
1042 break;
1043 } else {
1044 pr_warn("%s: switch to bus width %d failed\n",
1045 mmc_hostname(host), 1 << bus_width);
1049 return err;
1053 * Switch to the high-speed mode
1055 static int mmc_select_hs(struct mmc_card *card)
1057 int err;
1059 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1060 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1061 card->ext_csd.generic_cmd6_time, MMC_TIMING_MMC_HS,
1062 true, true, true);
1063 if (err)
1064 pr_warn("%s: switch to high-speed failed, err:%d\n",
1065 mmc_hostname(card->host), err);
1067 return err;
1071 * Activate wide bus and DDR if supported.
1073 static int mmc_select_hs_ddr(struct mmc_card *card)
1075 struct mmc_host *host = card->host;
1076 u32 bus_width, ext_csd_bits;
1077 int err = 0;
1079 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_52))
1080 return 0;
1082 bus_width = host->ios.bus_width;
1083 if (bus_width == MMC_BUS_WIDTH_1)
1084 return 0;
1086 ext_csd_bits = (bus_width == MMC_BUS_WIDTH_8) ?
1087 EXT_CSD_DDR_BUS_WIDTH_8 : EXT_CSD_DDR_BUS_WIDTH_4;
1089 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1090 EXT_CSD_BUS_WIDTH,
1091 ext_csd_bits,
1092 card->ext_csd.generic_cmd6_time,
1093 MMC_TIMING_MMC_DDR52,
1094 true, true, true);
1095 if (err) {
1096 pr_err("%s: switch to bus width %d ddr failed\n",
1097 mmc_hostname(host), 1 << bus_width);
1098 return err;
1102 * eMMC cards can support 3.3V to 1.2V i/o (vccq)
1103 * signaling.
1105 * EXT_CSD_CARD_TYPE_DDR_1_8V means 3.3V or 1.8V vccq.
1107 * 1.8V vccq at 3.3V core voltage (vcc) is not required
1108 * in the JEDEC spec for DDR.
1110 * Even (e)MMC card can support 3.3v to 1.2v vccq, but not all
1111 * host controller can support this, like some of the SDHCI
1112 * controller which connect to an eMMC device. Some of these
1113 * host controller still needs to use 1.8v vccq for supporting
1114 * DDR mode.
1116 * So the sequence will be:
1117 * if (host and device can both support 1.2v IO)
1118 * use 1.2v IO;
1119 * else if (host and device can both support 1.8v IO)
1120 * use 1.8v IO;
1121 * so if host and device can only support 3.3v IO, this is the
1122 * last choice.
1124 * WARNING: eMMC rules are NOT the same as SD DDR
1126 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_2V) {
1127 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1128 if (!err)
1129 return 0;
1132 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_DDR_1_8V &&
1133 host->caps & MMC_CAP_1_8V_DDR)
1134 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1136 /* make sure vccq is 3.3v after switching disaster */
1137 if (err)
1138 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_330);
1140 return err;
1143 static int mmc_select_hs400(struct mmc_card *card)
1145 struct mmc_host *host = card->host;
1146 unsigned int max_dtr;
1147 int err = 0;
1148 u8 val;
1151 * HS400 mode requires 8-bit bus width
1153 if (!(card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1154 host->ios.bus_width == MMC_BUS_WIDTH_8))
1155 return 0;
1157 /* Switch card to HS mode */
1158 val = EXT_CSD_TIMING_HS;
1159 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1160 EXT_CSD_HS_TIMING, val,
1161 card->ext_csd.generic_cmd6_time, 0,
1162 true, false, true);
1163 if (err) {
1164 pr_err("%s: switch to high-speed from hs200 failed, err:%d\n",
1165 mmc_hostname(host), err);
1166 return err;
1169 /* Set host controller to HS timing */
1170 mmc_set_timing(card->host, MMC_TIMING_MMC_HS);
1172 /* Reduce frequency to HS frequency */
1173 max_dtr = card->ext_csd.hs_max_dtr;
1174 mmc_set_clock(host, max_dtr);
1176 err = mmc_switch_status(card);
1177 if (err)
1178 goto out_err;
1180 /* Switch card to DDR */
1181 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1182 EXT_CSD_BUS_WIDTH,
1183 EXT_CSD_DDR_BUS_WIDTH_8,
1184 card->ext_csd.generic_cmd6_time);
1185 if (err) {
1186 pr_err("%s: switch to bus width for hs400 failed, err:%d\n",
1187 mmc_hostname(host), err);
1188 return err;
1191 /* Switch card to HS400 */
1192 val = EXT_CSD_TIMING_HS400 |
1193 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1194 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1195 EXT_CSD_HS_TIMING, val,
1196 card->ext_csd.generic_cmd6_time, 0,
1197 true, false, true);
1198 if (err) {
1199 pr_err("%s: switch to hs400 failed, err:%d\n",
1200 mmc_hostname(host), err);
1201 return err;
1204 /* Set host controller to HS400 timing and frequency */
1205 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1206 mmc_set_bus_speed(card);
1208 err = mmc_switch_status(card);
1209 if (err)
1210 goto out_err;
1212 return 0;
1214 out_err:
1215 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1216 __func__, err);
1217 return err;
1220 int mmc_hs200_to_hs400(struct mmc_card *card)
1222 return mmc_select_hs400(card);
1225 int mmc_hs400_to_hs200(struct mmc_card *card)
1227 struct mmc_host *host = card->host;
1228 unsigned int max_dtr;
1229 int err;
1230 u8 val;
1232 /* Reduce frequency to HS */
1233 max_dtr = card->ext_csd.hs_max_dtr;
1234 mmc_set_clock(host, max_dtr);
1236 /* Switch HS400 to HS DDR */
1237 val = EXT_CSD_TIMING_HS;
1238 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1239 val, card->ext_csd.generic_cmd6_time, 0,
1240 true, false, true);
1241 if (err)
1242 goto out_err;
1244 mmc_set_timing(host, MMC_TIMING_MMC_DDR52);
1246 err = mmc_switch_status(card);
1247 if (err)
1248 goto out_err;
1250 /* Switch HS DDR to HS */
1251 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_BUS_WIDTH,
1252 EXT_CSD_BUS_WIDTH_8, card->ext_csd.generic_cmd6_time,
1253 0, true, false, true);
1254 if (err)
1255 goto out_err;
1257 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1259 err = mmc_switch_status(card);
1260 if (err)
1261 goto out_err;
1263 /* Switch HS to HS200 */
1264 val = EXT_CSD_TIMING_HS200 |
1265 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1266 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_HS_TIMING,
1267 val, card->ext_csd.generic_cmd6_time, 0,
1268 true, false, true);
1269 if (err)
1270 goto out_err;
1272 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1275 * For HS200, CRC errors are not a reliable way to know the switch
1276 * failed. If there really is a problem, we would expect tuning will
1277 * fail and the result ends up the same.
1279 err = __mmc_switch_status(card, false);
1280 if (err)
1281 goto out_err;
1283 mmc_set_bus_speed(card);
1285 /* Prepare tuning for HS400 mode. */
1286 if (host->ops->prepare_hs400_tuning)
1287 host->ops->prepare_hs400_tuning(host, &host->ios);
1289 return 0;
1291 out_err:
1292 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1293 __func__, err);
1294 return err;
1297 static void mmc_select_driver_type(struct mmc_card *card)
1299 int card_drv_type, drive_strength, drv_type = 0;
1300 int fixed_drv_type = card->host->fixed_drv_type;
1302 card_drv_type = card->ext_csd.raw_driver_strength |
1303 mmc_driver_type_mask(0);
1305 if (fixed_drv_type >= 0)
1306 drive_strength = card_drv_type & mmc_driver_type_mask(fixed_drv_type)
1307 ? fixed_drv_type : 0;
1308 else
1309 drive_strength = mmc_select_drive_strength(card,
1310 card->ext_csd.hs200_max_dtr,
1311 card_drv_type, &drv_type);
1313 card->drive_strength = drive_strength;
1315 if (drv_type)
1316 mmc_set_driver_type(card->host, drv_type);
1319 static int mmc_select_hs400es(struct mmc_card *card)
1321 struct mmc_host *host = card->host;
1322 int err = -EINVAL;
1323 u8 val;
1325 if (!(host->caps & MMC_CAP_8_BIT_DATA)) {
1326 err = -ENOTSUPP;
1327 goto out_err;
1330 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_2V)
1331 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1333 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400_1_8V)
1334 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1336 /* If fails try again during next card power cycle */
1337 if (err)
1338 goto out_err;
1340 err = mmc_select_bus_width(card);
1341 if (err < 0)
1342 goto out_err;
1344 /* Switch card to HS mode */
1345 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1346 EXT_CSD_HS_TIMING, EXT_CSD_TIMING_HS,
1347 card->ext_csd.generic_cmd6_time, 0,
1348 true, false, true);
1349 if (err) {
1350 pr_err("%s: switch to hs for hs400es failed, err:%d\n",
1351 mmc_hostname(host), err);
1352 goto out_err;
1355 mmc_set_timing(host, MMC_TIMING_MMC_HS);
1356 err = mmc_switch_status(card);
1357 if (err)
1358 goto out_err;
1360 mmc_set_clock(host, card->ext_csd.hs_max_dtr);
1362 /* Switch card to DDR with strobe bit */
1363 val = EXT_CSD_DDR_BUS_WIDTH_8 | EXT_CSD_BUS_WIDTH_STROBE;
1364 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1365 EXT_CSD_BUS_WIDTH,
1366 val,
1367 card->ext_csd.generic_cmd6_time);
1368 if (err) {
1369 pr_err("%s: switch to bus width for hs400es failed, err:%d\n",
1370 mmc_hostname(host), err);
1371 goto out_err;
1374 mmc_select_driver_type(card);
1376 /* Switch card to HS400 */
1377 val = EXT_CSD_TIMING_HS400 |
1378 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1379 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1380 EXT_CSD_HS_TIMING, val,
1381 card->ext_csd.generic_cmd6_time, 0,
1382 true, false, true);
1383 if (err) {
1384 pr_err("%s: switch to hs400es failed, err:%d\n",
1385 mmc_hostname(host), err);
1386 goto out_err;
1389 /* Set host controller to HS400 timing and frequency */
1390 mmc_set_timing(host, MMC_TIMING_MMC_HS400);
1392 /* Controller enable enhanced strobe function */
1393 host->ios.enhanced_strobe = true;
1394 if (host->ops->hs400_enhanced_strobe)
1395 host->ops->hs400_enhanced_strobe(host, &host->ios);
1397 err = mmc_switch_status(card);
1398 if (err)
1399 goto out_err;
1401 return 0;
1403 out_err:
1404 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1405 __func__, err);
1406 return err;
1410 * For device supporting HS200 mode, the following sequence
1411 * should be done before executing the tuning process.
1412 * 1. set the desired bus width(4-bit or 8-bit, 1-bit is not supported)
1413 * 2. switch to HS200 mode
1414 * 3. set the clock to > 52Mhz and <=200MHz
1416 static int mmc_select_hs200(struct mmc_card *card)
1418 struct mmc_host *host = card->host;
1419 unsigned int old_timing, old_signal_voltage;
1420 int err = -EINVAL;
1421 u8 val;
1423 old_signal_voltage = host->ios.signal_voltage;
1424 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_2V)
1425 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_120);
1427 if (err && card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200_1_8V)
1428 err = mmc_set_signal_voltage(host, MMC_SIGNAL_VOLTAGE_180);
1430 /* If fails try again during next card power cycle */
1431 if (err)
1432 return err;
1434 mmc_select_driver_type(card);
1437 * Set the bus width(4 or 8) with host's support and
1438 * switch to HS200 mode if bus width is set successfully.
1440 err = mmc_select_bus_width(card);
1441 if (err > 0) {
1442 val = EXT_CSD_TIMING_HS200 |
1443 card->drive_strength << EXT_CSD_DRV_STR_SHIFT;
1444 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1445 EXT_CSD_HS_TIMING, val,
1446 card->ext_csd.generic_cmd6_time, 0,
1447 true, false, true);
1448 if (err)
1449 goto err;
1450 old_timing = host->ios.timing;
1451 mmc_set_timing(host, MMC_TIMING_MMC_HS200);
1454 * For HS200, CRC errors are not a reliable way to know the
1455 * switch failed. If there really is a problem, we would expect
1456 * tuning will fail and the result ends up the same.
1458 err = __mmc_switch_status(card, false);
1461 * mmc_select_timing() assumes timing has not changed if
1462 * it is a switch error.
1464 if (err == -EBADMSG)
1465 mmc_set_timing(host, old_timing);
1467 err:
1468 if (err) {
1469 /* fall back to the old signal voltage, if fails report error */
1470 if (mmc_set_signal_voltage(host, old_signal_voltage))
1471 err = -EIO;
1473 pr_err("%s: %s failed, error %d\n", mmc_hostname(card->host),
1474 __func__, err);
1476 return err;
1480 * Activate High Speed, HS200 or HS400ES mode if supported.
1482 static int mmc_select_timing(struct mmc_card *card)
1484 int err = 0;
1486 if (!mmc_can_ext_csd(card))
1487 goto bus_speed;
1489 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400ES)
1490 err = mmc_select_hs400es(card);
1491 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS200)
1492 err = mmc_select_hs200(card);
1493 else if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS)
1494 err = mmc_select_hs(card);
1496 if (err && err != -EBADMSG)
1497 return err;
1499 bus_speed:
1501 * Set the bus speed to the selected bus timing.
1502 * If timing is not selected, backward compatible is the default.
1504 mmc_set_bus_speed(card);
1505 return 0;
1509 * Execute tuning sequence to seek the proper bus operating
1510 * conditions for HS200 and HS400, which sends CMD21 to the device.
1512 static int mmc_hs200_tuning(struct mmc_card *card)
1514 struct mmc_host *host = card->host;
1517 * Timing should be adjusted to the HS400 target
1518 * operation frequency for tuning process
1520 if (card->mmc_avail_type & EXT_CSD_CARD_TYPE_HS400 &&
1521 host->ios.bus_width == MMC_BUS_WIDTH_8)
1522 if (host->ops->prepare_hs400_tuning)
1523 host->ops->prepare_hs400_tuning(host, &host->ios);
1525 return mmc_execute_tuning(card);
1529 * Handle the detection and initialisation of a card.
1531 * In the case of a resume, "oldcard" will contain the card
1532 * we're trying to reinitialise.
1534 static int mmc_init_card(struct mmc_host *host, u32 ocr,
1535 struct mmc_card *oldcard)
1537 struct mmc_card *card;
1538 int err;
1539 u32 cid[4];
1540 u32 rocr;
1542 WARN_ON(!host->claimed);
1544 /* Set correct bus mode for MMC before attempting init */
1545 if (!mmc_host_is_spi(host))
1546 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
1549 * Since we're changing the OCR value, we seem to
1550 * need to tell some cards to go back to the idle
1551 * state. We wait 1ms to give cards time to
1552 * respond.
1553 * mmc_go_idle is needed for eMMC that are asleep
1555 mmc_go_idle(host);
1557 /* The extra bit indicates that we support high capacity */
1558 err = mmc_send_op_cond(host, ocr | (1 << 30), &rocr);
1559 if (err)
1560 goto err;
1563 * For SPI, enable CRC as appropriate.
1565 if (mmc_host_is_spi(host)) {
1566 err = mmc_spi_set_crc(host, use_spi_crc);
1567 if (err)
1568 goto err;
1572 * Fetch CID from card.
1574 err = mmc_send_cid(host, cid);
1575 if (err)
1576 goto err;
1578 if (oldcard) {
1579 if (memcmp(cid, oldcard->raw_cid, sizeof(cid)) != 0) {
1580 err = -ENOENT;
1581 goto err;
1584 card = oldcard;
1585 } else {
1587 * Allocate card structure.
1589 card = mmc_alloc_card(host, &mmc_type);
1590 if (IS_ERR(card)) {
1591 err = PTR_ERR(card);
1592 goto err;
1595 card->ocr = ocr;
1596 card->type = MMC_TYPE_MMC;
1597 card->rca = 1;
1598 memcpy(card->raw_cid, cid, sizeof(card->raw_cid));
1602 * Call the optional HC's init_card function to handle quirks.
1604 if (host->ops->init_card)
1605 host->ops->init_card(host, card);
1608 * For native busses: set card RCA and quit open drain mode.
1610 if (!mmc_host_is_spi(host)) {
1611 err = mmc_set_relative_addr(card);
1612 if (err)
1613 goto free_card;
1615 mmc_set_bus_mode(host, MMC_BUSMODE_PUSHPULL);
1618 if (!oldcard) {
1620 * Fetch CSD from card.
1622 err = mmc_send_csd(card, card->raw_csd);
1623 if (err)
1624 goto free_card;
1626 err = mmc_decode_csd(card);
1627 if (err)
1628 goto free_card;
1629 err = mmc_decode_cid(card);
1630 if (err)
1631 goto free_card;
1635 * handling only for cards supporting DSR and hosts requesting
1636 * DSR configuration
1638 if (card->csd.dsr_imp && host->dsr_req)
1639 mmc_set_dsr(host);
1642 * Select card, as all following commands rely on that.
1644 if (!mmc_host_is_spi(host)) {
1645 err = mmc_select_card(card);
1646 if (err)
1647 goto free_card;
1650 if (!oldcard) {
1651 /* Read extended CSD. */
1652 err = mmc_read_ext_csd(card);
1653 if (err)
1654 goto free_card;
1657 * If doing byte addressing, check if required to do sector
1658 * addressing. Handle the case of <2GB cards needing sector
1659 * addressing. See section 8.1 JEDEC Standard JED84-A441;
1660 * ocr register has bit 30 set for sector addressing.
1662 if (rocr & BIT(30))
1663 mmc_card_set_blockaddr(card);
1665 /* Erase size depends on CSD and Extended CSD */
1666 mmc_set_erase_size(card);
1669 /* Enable ERASE_GRP_DEF. This bit is lost after a reset or power off. */
1670 if (card->ext_csd.rev >= 3) {
1671 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1672 EXT_CSD_ERASE_GROUP_DEF, 1,
1673 card->ext_csd.generic_cmd6_time);
1675 if (err && err != -EBADMSG)
1676 goto free_card;
1678 if (err) {
1679 err = 0;
1681 * Just disable enhanced area off & sz
1682 * will try to enable ERASE_GROUP_DEF
1683 * during next time reinit
1685 card->ext_csd.enhanced_area_offset = -EINVAL;
1686 card->ext_csd.enhanced_area_size = -EINVAL;
1687 } else {
1688 card->ext_csd.erase_group_def = 1;
1690 * enable ERASE_GRP_DEF successfully.
1691 * This will affect the erase size, so
1692 * here need to reset erase size
1694 mmc_set_erase_size(card);
1699 * Ensure eMMC user default partition is enabled
1701 if (card->ext_csd.part_config & EXT_CSD_PART_CONFIG_ACC_MASK) {
1702 card->ext_csd.part_config &= ~EXT_CSD_PART_CONFIG_ACC_MASK;
1703 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL, EXT_CSD_PART_CONFIG,
1704 card->ext_csd.part_config,
1705 card->ext_csd.part_time);
1706 if (err && err != -EBADMSG)
1707 goto free_card;
1711 * Enable power_off_notification byte in the ext_csd register
1713 if (card->ext_csd.rev >= 6) {
1714 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1715 EXT_CSD_POWER_OFF_NOTIFICATION,
1716 EXT_CSD_POWER_ON,
1717 card->ext_csd.generic_cmd6_time);
1718 if (err && err != -EBADMSG)
1719 goto free_card;
1722 * The err can be -EBADMSG or 0,
1723 * so check for success and update the flag
1725 if (!err)
1726 card->ext_csd.power_off_notification = EXT_CSD_POWER_ON;
1730 * Select timing interface
1732 err = mmc_select_timing(card);
1733 if (err)
1734 goto free_card;
1736 if (mmc_card_hs200(card)) {
1737 err = mmc_hs200_tuning(card);
1738 if (err)
1739 goto free_card;
1741 err = mmc_select_hs400(card);
1742 if (err)
1743 goto free_card;
1744 } else if (!mmc_card_hs400es(card)) {
1745 /* Select the desired bus width optionally */
1746 err = mmc_select_bus_width(card);
1747 if (err > 0 && mmc_card_hs(card)) {
1748 err = mmc_select_hs_ddr(card);
1749 if (err)
1750 goto free_card;
1755 * Choose the power class with selected bus interface
1757 mmc_select_powerclass(card);
1760 * Enable HPI feature (if supported)
1762 if (card->ext_csd.hpi) {
1763 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1764 EXT_CSD_HPI_MGMT, 1,
1765 card->ext_csd.generic_cmd6_time);
1766 if (err && err != -EBADMSG)
1767 goto free_card;
1768 if (err) {
1769 pr_warn("%s: Enabling HPI failed\n",
1770 mmc_hostname(card->host));
1771 err = 0;
1772 } else
1773 card->ext_csd.hpi_en = 1;
1777 * If cache size is higher than 0, this indicates
1778 * the existence of cache and it can be turned on.
1780 if (!mmc_card_broken_hpi(card) &&
1781 card->ext_csd.cache_size > 0) {
1782 err = mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1783 EXT_CSD_CACHE_CTRL, 1,
1784 card->ext_csd.generic_cmd6_time);
1785 if (err && err != -EBADMSG)
1786 goto free_card;
1789 * Only if no error, cache is turned on successfully.
1791 if (err) {
1792 pr_warn("%s: Cache is supported, but failed to turn on (%d)\n",
1793 mmc_hostname(card->host), err);
1794 card->ext_csd.cache_ctrl = 0;
1795 err = 0;
1796 } else {
1797 card->ext_csd.cache_ctrl = 1;
1802 * Enable Command Queue if supported. Note that Packed Commands cannot
1803 * be used with Command Queue.
1805 card->ext_csd.cmdq_en = false;
1806 if (card->ext_csd.cmdq_support && host->caps2 & MMC_CAP2_CQE) {
1807 err = mmc_cmdq_enable(card);
1808 if (err && err != -EBADMSG)
1809 goto free_card;
1810 if (err) {
1811 pr_warn("%s: Enabling CMDQ failed\n",
1812 mmc_hostname(card->host));
1813 card->ext_csd.cmdq_support = false;
1814 card->ext_csd.cmdq_depth = 0;
1815 err = 0;
1819 * In some cases (e.g. RPMB or mmc_test), the Command Queue must be
1820 * disabled for a time, so a flag is needed to indicate to re-enable the
1821 * Command Queue.
1823 card->reenable_cmdq = card->ext_csd.cmdq_en;
1825 if (card->ext_csd.cmdq_en && !host->cqe_enabled) {
1826 err = host->cqe_ops->cqe_enable(host, card);
1827 if (err) {
1828 pr_err("%s: Failed to enable CQE, error %d\n",
1829 mmc_hostname(host), err);
1830 } else {
1831 host->cqe_enabled = true;
1832 pr_info("%s: Command Queue Engine enabled\n",
1833 mmc_hostname(host));
1837 if (host->caps2 & MMC_CAP2_AVOID_3_3V &&
1838 host->ios.signal_voltage == MMC_SIGNAL_VOLTAGE_330) {
1839 pr_err("%s: Host failed to negotiate down from 3.3V\n",
1840 mmc_hostname(host));
1841 err = -EINVAL;
1842 goto free_card;
1845 if (!oldcard)
1846 host->card = card;
1848 return 0;
1850 free_card:
1851 if (!oldcard)
1852 mmc_remove_card(card);
1853 err:
1854 return err;
1857 static int mmc_can_sleep(struct mmc_card *card)
1859 return (card && card->ext_csd.rev >= 3);
1862 static int mmc_sleep(struct mmc_host *host)
1864 struct mmc_command cmd = {};
1865 struct mmc_card *card = host->card;
1866 unsigned int timeout_ms = DIV_ROUND_UP(card->ext_csd.sa_timeout, 10000);
1867 int err;
1869 /* Re-tuning can't be done once the card is deselected */
1870 mmc_retune_hold(host);
1872 err = mmc_deselect_cards(host);
1873 if (err)
1874 goto out_release;
1876 cmd.opcode = MMC_SLEEP_AWAKE;
1877 cmd.arg = card->rca << 16;
1878 cmd.arg |= 1 << 15;
1881 * If the max_busy_timeout of the host is specified, validate it against
1882 * the sleep cmd timeout. A failure means we need to prevent the host
1883 * from doing hw busy detection, which is done by converting to a R1
1884 * response instead of a R1B.
1886 if (host->max_busy_timeout && (timeout_ms > host->max_busy_timeout)) {
1887 cmd.flags = MMC_RSP_R1 | MMC_CMD_AC;
1888 } else {
1889 cmd.flags = MMC_RSP_R1B | MMC_CMD_AC;
1890 cmd.busy_timeout = timeout_ms;
1893 err = mmc_wait_for_cmd(host, &cmd, 0);
1894 if (err)
1895 goto out_release;
1898 * If the host does not wait while the card signals busy, then we will
1899 * will have to wait the sleep/awake timeout. Note, we cannot use the
1900 * SEND_STATUS command to poll the status because that command (and most
1901 * others) is invalid while the card sleeps.
1903 if (!cmd.busy_timeout || !(host->caps & MMC_CAP_WAIT_WHILE_BUSY))
1904 mmc_delay(timeout_ms);
1906 out_release:
1907 mmc_retune_release(host);
1908 return err;
1911 static int mmc_can_poweroff_notify(const struct mmc_card *card)
1913 return card &&
1914 mmc_card_mmc(card) &&
1915 (card->ext_csd.power_off_notification == EXT_CSD_POWER_ON);
1918 static int mmc_poweroff_notify(struct mmc_card *card, unsigned int notify_type)
1920 unsigned int timeout = card->ext_csd.generic_cmd6_time;
1921 int err;
1923 /* Use EXT_CSD_POWER_OFF_SHORT as default notification type. */
1924 if (notify_type == EXT_CSD_POWER_OFF_LONG)
1925 timeout = card->ext_csd.power_off_longtime;
1927 err = __mmc_switch(card, EXT_CSD_CMD_SET_NORMAL,
1928 EXT_CSD_POWER_OFF_NOTIFICATION,
1929 notify_type, timeout, 0, true, false, false);
1930 if (err)
1931 pr_err("%s: Power Off Notification timed out, %u\n",
1932 mmc_hostname(card->host), timeout);
1934 /* Disable the power off notification after the switch operation. */
1935 card->ext_csd.power_off_notification = EXT_CSD_NO_POWER_NOTIFICATION;
1937 return err;
1941 * Host is being removed. Free up the current card.
1943 static void mmc_remove(struct mmc_host *host)
1945 mmc_remove_card(host->card);
1946 host->card = NULL;
1950 * Card detection - card is alive.
1952 static int mmc_alive(struct mmc_host *host)
1954 return mmc_send_status(host->card, NULL);
1958 * Card detection callback from host.
1960 static void mmc_detect(struct mmc_host *host)
1962 int err;
1964 mmc_get_card(host->card, NULL);
1967 * Just check if our card has been removed.
1969 err = _mmc_detect_card_removed(host);
1971 mmc_put_card(host->card, NULL);
1973 if (err) {
1974 mmc_remove(host);
1976 mmc_claim_host(host);
1977 mmc_detach_bus(host);
1978 mmc_power_off(host);
1979 mmc_release_host(host);
1983 static int _mmc_suspend(struct mmc_host *host, bool is_suspend)
1985 int err = 0;
1986 unsigned int notify_type = is_suspend ? EXT_CSD_POWER_OFF_SHORT :
1987 EXT_CSD_POWER_OFF_LONG;
1989 mmc_claim_host(host);
1991 if (mmc_card_suspended(host->card))
1992 goto out;
1994 if (mmc_card_doing_bkops(host->card)) {
1995 err = mmc_stop_bkops(host->card);
1996 if (err)
1997 goto out;
2000 err = mmc_flush_cache(host->card);
2001 if (err)
2002 goto out;
2004 if (mmc_can_poweroff_notify(host->card) &&
2005 ((host->caps2 & MMC_CAP2_FULL_PWR_CYCLE) || !is_suspend))
2006 err = mmc_poweroff_notify(host->card, notify_type);
2007 else if (mmc_can_sleep(host->card))
2008 err = mmc_sleep(host);
2009 else if (!mmc_host_is_spi(host))
2010 err = mmc_deselect_cards(host);
2012 if (!err) {
2013 mmc_power_off(host);
2014 mmc_card_set_suspended(host->card);
2016 out:
2017 mmc_release_host(host);
2018 return err;
2022 * Suspend callback
2024 static int mmc_suspend(struct mmc_host *host)
2026 int err;
2028 err = _mmc_suspend(host, true);
2029 if (!err) {
2030 pm_runtime_disable(&host->card->dev);
2031 pm_runtime_set_suspended(&host->card->dev);
2034 return err;
2038 * This function tries to determine if the same card is still present
2039 * and, if so, restore all state to it.
2041 static int _mmc_resume(struct mmc_host *host)
2043 int err = 0;
2045 mmc_claim_host(host);
2047 if (!mmc_card_suspended(host->card))
2048 goto out;
2050 mmc_power_up(host, host->card->ocr);
2051 err = mmc_init_card(host, host->card->ocr, host->card);
2052 mmc_card_clr_suspended(host->card);
2054 out:
2055 mmc_release_host(host);
2056 return err;
2060 * Shutdown callback
2062 static int mmc_shutdown(struct mmc_host *host)
2064 int err = 0;
2067 * In a specific case for poweroff notify, we need to resume the card
2068 * before we can shutdown it properly.
2070 if (mmc_can_poweroff_notify(host->card) &&
2071 !(host->caps2 & MMC_CAP2_FULL_PWR_CYCLE))
2072 err = _mmc_resume(host);
2074 if (!err)
2075 err = _mmc_suspend(host, false);
2077 return err;
2081 * Callback for resume.
2083 static int mmc_resume(struct mmc_host *host)
2085 pm_runtime_enable(&host->card->dev);
2086 return 0;
2090 * Callback for runtime_suspend.
2092 static int mmc_runtime_suspend(struct mmc_host *host)
2094 int err;
2096 if (!(host->caps & MMC_CAP_AGGRESSIVE_PM))
2097 return 0;
2099 err = _mmc_suspend(host, true);
2100 if (err)
2101 pr_err("%s: error %d doing aggressive suspend\n",
2102 mmc_hostname(host), err);
2104 return err;
2108 * Callback for runtime_resume.
2110 static int mmc_runtime_resume(struct mmc_host *host)
2112 int err;
2114 err = _mmc_resume(host);
2115 if (err && err != -ENOMEDIUM)
2116 pr_err("%s: error %d doing runtime resume\n",
2117 mmc_hostname(host), err);
2119 return 0;
2122 static int mmc_can_reset(struct mmc_card *card)
2124 u8 rst_n_function;
2126 rst_n_function = card->ext_csd.rst_n_function;
2127 if ((rst_n_function & EXT_CSD_RST_N_EN_MASK) != EXT_CSD_RST_N_ENABLED)
2128 return 0;
2129 return 1;
2132 static int _mmc_hw_reset(struct mmc_host *host)
2134 struct mmc_card *card = host->card;
2137 * In the case of recovery, we can't expect flushing the cache to work
2138 * always, but we have a go and ignore errors.
2140 mmc_flush_cache(host->card);
2142 if ((host->caps & MMC_CAP_HW_RESET) && host->ops->hw_reset &&
2143 mmc_can_reset(card)) {
2144 /* If the card accept RST_n signal, send it. */
2145 mmc_set_clock(host, host->f_init);
2146 host->ops->hw_reset(host);
2147 /* Set initial state and call mmc_set_ios */
2148 mmc_set_initial_state(host);
2149 } else {
2150 /* Do a brute force power cycle */
2151 mmc_power_cycle(host, card->ocr);
2152 mmc_pwrseq_reset(host);
2154 return mmc_init_card(host, card->ocr, card);
2157 static const struct mmc_bus_ops mmc_ops = {
2158 .remove = mmc_remove,
2159 .detect = mmc_detect,
2160 .suspend = mmc_suspend,
2161 .resume = mmc_resume,
2162 .runtime_suspend = mmc_runtime_suspend,
2163 .runtime_resume = mmc_runtime_resume,
2164 .alive = mmc_alive,
2165 .shutdown = mmc_shutdown,
2166 .hw_reset = _mmc_hw_reset,
2170 * Starting point for MMC card init.
2172 int mmc_attach_mmc(struct mmc_host *host)
2174 int err;
2175 u32 ocr, rocr;
2177 WARN_ON(!host->claimed);
2179 /* Set correct bus mode for MMC before attempting attach */
2180 if (!mmc_host_is_spi(host))
2181 mmc_set_bus_mode(host, MMC_BUSMODE_OPENDRAIN);
2183 err = mmc_send_op_cond(host, 0, &ocr);
2184 if (err)
2185 return err;
2187 mmc_attach_bus(host, &mmc_ops);
2188 if (host->ocr_avail_mmc)
2189 host->ocr_avail = host->ocr_avail_mmc;
2192 * We need to get OCR a different way for SPI.
2194 if (mmc_host_is_spi(host)) {
2195 err = mmc_spi_read_ocr(host, 1, &ocr);
2196 if (err)
2197 goto err;
2200 rocr = mmc_select_voltage(host, ocr);
2203 * Can we support the voltage of the card?
2205 if (!rocr) {
2206 err = -EINVAL;
2207 goto err;
2211 * Detect and init the card.
2213 err = mmc_init_card(host, rocr, NULL);
2214 if (err)
2215 goto err;
2217 mmc_release_host(host);
2218 err = mmc_add_card(host->card);
2219 if (err)
2220 goto remove_card;
2222 mmc_claim_host(host);
2223 return 0;
2225 remove_card:
2226 mmc_remove_card(host->card);
2227 mmc_claim_host(host);
2228 host->card = NULL;
2229 err:
2230 mmc_detach_bus(host);
2232 pr_err("%s: error %d whilst initialising MMC card\n",
2233 mmc_hostname(host), err);
2235 return err;