1 /******************************************************************************
3 Copyright(c) 2003 - 2005 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
22 Intel Linux Wireless <ilw@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 ******************************************************************************/
26 #include <linux/compiler.h>
27 #include <linux/errno.h>
28 #include <linux/if_arp.h>
29 #include <linux/in6.h>
32 #include <linux/kernel.h>
33 #include <linux/module.h>
34 #include <linux/netdevice.h>
35 #include <linux/proc_fs.h>
36 #include <linux/skbuff.h>
37 #include <linux/slab.h>
38 #include <linux/tcp.h>
39 #include <linux/types.h>
40 #include <linux/wireless.h>
41 #include <linux/etherdevice.h>
42 #include <linux/uaccess.h>
50 ,-------------------------------------------------------------------.
51 Bytes | 2 | 2 | 6 | 6 | 6 | 2 | 0..2312 | 4 |
52 |------|------|---------|---------|---------|------|---------|------|
53 Desc. | ctrl | dura | DA/RA | TA | SA | Sequ | Frame | fcs |
54 | | tion | (BSSID) | | | ence | data | |
55 `--------------------------------------------------| |------'
56 Total: 28 non-data bytes `----.----'
58 .- 'Frame data' expands, if WEP enabled, to <----------'
61 ,-----------------------.
62 Bytes | 4 | 0-2296 | 4 |
63 |-----|-----------|-----|
64 Desc. | IV | Encrypted | ICV |
69 .- 'Encrypted Packet' expands to
72 ,---------------------------------------------------.
73 Bytes | 1 | 1 | 1 | 3 | 2 | 0-2304 |
74 |------|------|---------|----------|------|---------|
75 Desc. | SNAP | SNAP | Control |Eth Tunnel| Type | IP |
76 | DSAP | SSAP | | | | Packet |
77 | 0xAA | 0xAA |0x03 (UI)|0x00-00-F8| | |
78 `----------------------------------------------------
79 Total: 8 non-data bytes
81 802.3 Ethernet Data Frame
83 ,-----------------------------------------.
84 Bytes | 6 | 6 | 2 | Variable | 4 |
85 |-------|-------|------|-----------|------|
86 Desc. | Dest. | Source| Type | IP Packet | fcs |
88 `-----------------------------------------'
89 Total: 18 non-data bytes
91 In the event that fragmentation is required, the incoming payload is split into
92 N parts of size ieee->fts. The first fragment contains the SNAP header and the
93 remaining packets are just data.
95 If encryption is enabled, each fragment payload size is reduced by enough space
96 to add the prefix and postfix (IV and ICV totalling 8 bytes in the case of WEP)
97 So if you have 1500 bytes of payload with ieee->fts set to 500 without
98 encryption it will take 3 frames. With WEP it will take 4 frames as the
99 payload of each frame is reduced to 492 bytes.
105 * | ETHERNET HEADER ,-<-- PAYLOAD
106 * | | 14 bytes from skb->data
107 * | 2 bytes for Type --> ,T. | (sizeof ethhdr)
109 * |,-Dest.--. ,--Src.---. | | |
110 * | 6 bytes| | 6 bytes | | | |
113 * 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5
116 * | | | | `T' <---- 2 bytes for Type
118 * | | '---SNAP--' <-------- 6 bytes for SNAP
120 * `-IV--' <-------------------- 4 bytes for IV (WEP)
126 static u8 P802_1H_OUI
[P80211_OUI_LEN
] = { 0x00, 0x00, 0xf8 };
127 static u8 RFC1042_OUI
[P80211_OUI_LEN
] = { 0x00, 0x00, 0x00 };
129 static int libipw_copy_snap(u8
* data
, __be16 h_proto
)
131 struct libipw_snap_hdr
*snap
;
134 snap
= (struct libipw_snap_hdr
*)data
;
139 if (h_proto
== htons(ETH_P_AARP
) || h_proto
== htons(ETH_P_IPX
))
143 snap
->oui
[0] = oui
[0];
144 snap
->oui
[1] = oui
[1];
145 snap
->oui
[2] = oui
[2];
147 memcpy(data
+ SNAP_SIZE
, &h_proto
, sizeof(u16
));
149 return SNAP_SIZE
+ sizeof(u16
);
152 static int libipw_encrypt_fragment(struct libipw_device
*ieee
,
153 struct sk_buff
*frag
, int hdr_len
)
155 struct lib80211_crypt_data
*crypt
=
156 ieee
->crypt_info
.crypt
[ieee
->crypt_info
.tx_keyidx
];
162 /* To encrypt, frame format is:
163 * IV (4 bytes), clear payload (including SNAP), ICV (4 bytes) */
164 atomic_inc(&crypt
->refcnt
);
166 if (crypt
->ops
&& crypt
->ops
->encrypt_mpdu
)
167 res
= crypt
->ops
->encrypt_mpdu(frag
, hdr_len
, crypt
->priv
);
169 atomic_dec(&crypt
->refcnt
);
171 printk(KERN_INFO
"%s: Encryption failed: len=%d.\n",
172 ieee
->dev
->name
, frag
->len
);
173 ieee
->ieee_stats
.tx_discards
++;
180 void libipw_txb_free(struct libipw_txb
*txb
)
185 for (i
= 0; i
< txb
->nr_frags
; i
++)
186 if (txb
->fragments
[i
])
187 dev_kfree_skb_any(txb
->fragments
[i
]);
191 static struct libipw_txb
*libipw_alloc_txb(int nr_frags
, int txb_size
,
192 int headroom
, gfp_t gfp_mask
)
194 struct libipw_txb
*txb
;
196 txb
= kmalloc(sizeof(struct libipw_txb
) + (sizeof(u8
*) * nr_frags
),
201 memset(txb
, 0, sizeof(struct libipw_txb
));
202 txb
->nr_frags
= nr_frags
;
203 txb
->frag_size
= txb_size
;
205 for (i
= 0; i
< nr_frags
; i
++) {
206 txb
->fragments
[i
] = __dev_alloc_skb(txb_size
+ headroom
,
208 if (unlikely(!txb
->fragments
[i
])) {
212 skb_reserve(txb
->fragments
[i
], headroom
);
214 if (unlikely(i
!= nr_frags
)) {
216 dev_kfree_skb_any(txb
->fragments
[i
--]);
223 static int libipw_classify(struct sk_buff
*skb
)
228 eth
= (struct ethhdr
*)skb
->data
;
229 if (eth
->h_proto
!= htons(ETH_P_IP
))
233 switch (ip
->tos
& 0xfc) {
253 /* Incoming skb is converted to a txb which consists of
254 * a block of 802.11 fragment packets (stored as skbs) */
255 netdev_tx_t
libipw_xmit(struct sk_buff
*skb
, struct net_device
*dev
)
257 struct libipw_device
*ieee
= netdev_priv(dev
);
258 struct libipw_txb
*txb
= NULL
;
259 struct libipw_hdr_3addrqos
*frag_hdr
;
260 int i
, bytes_per_frag
, nr_frags
, bytes_last_frag
, frag_size
,
263 int encrypt
, host_encrypt
, host_encrypt_msdu
;
265 int bytes
, fc
, hdr_len
;
266 struct sk_buff
*skb_frag
;
267 struct libipw_hdr_3addrqos header
= {/* Ensure zero initialized */
272 u8 dest
[ETH_ALEN
], src
[ETH_ALEN
];
273 struct lib80211_crypt_data
*crypt
;
274 int priority
= skb
->priority
;
277 if (ieee
->is_queue_full
&& (*ieee
->is_queue_full
) (dev
, priority
))
278 return NETDEV_TX_BUSY
;
280 spin_lock_irqsave(&ieee
->lock
, flags
);
282 /* If there is no driver handler to take the TXB, dont' bother
284 if (!ieee
->hard_start_xmit
) {
285 printk(KERN_WARNING
"%s: No xmit handler.\n", ieee
->dev
->name
);
289 if (unlikely(skb
->len
< SNAP_SIZE
+ sizeof(u16
))) {
290 printk(KERN_WARNING
"%s: skb too small (%d).\n",
291 ieee
->dev
->name
, skb
->len
);
295 ether_type
= ((struct ethhdr
*)skb
->data
)->h_proto
;
297 crypt
= ieee
->crypt_info
.crypt
[ieee
->crypt_info
.tx_keyidx
];
299 encrypt
= !(ether_type
== htons(ETH_P_PAE
) && ieee
->ieee802_1x
) &&
302 host_encrypt
= ieee
->host_encrypt
&& encrypt
&& crypt
;
303 host_encrypt_msdu
= ieee
->host_encrypt_msdu
&& encrypt
&& crypt
;
305 if (!encrypt
&& ieee
->ieee802_1x
&&
306 ieee
->drop_unencrypted
&& ether_type
!= htons(ETH_P_PAE
)) {
307 dev
->stats
.tx_dropped
++;
311 /* Save source and destination addresses */
312 skb_copy_from_linear_data(skb
, dest
, ETH_ALEN
);
313 skb_copy_from_linear_data_offset(skb
, ETH_ALEN
, src
, ETH_ALEN
);
316 fc
= IEEE80211_FTYPE_DATA
| IEEE80211_STYPE_DATA
|
317 IEEE80211_FCTL_PROTECTED
;
319 fc
= IEEE80211_FTYPE_DATA
| IEEE80211_STYPE_DATA
;
321 if (ieee
->iw_mode
== IW_MODE_INFRA
) {
322 fc
|= IEEE80211_FCTL_TODS
;
323 /* To DS: Addr1 = BSSID, Addr2 = SA, Addr3 = DA */
324 memcpy(header
.addr1
, ieee
->bssid
, ETH_ALEN
);
325 memcpy(header
.addr2
, src
, ETH_ALEN
);
326 memcpy(header
.addr3
, dest
, ETH_ALEN
);
327 } else if (ieee
->iw_mode
== IW_MODE_ADHOC
) {
328 /* not From/To DS: Addr1 = DA, Addr2 = SA, Addr3 = BSSID */
329 memcpy(header
.addr1
, dest
, ETH_ALEN
);
330 memcpy(header
.addr2
, src
, ETH_ALEN
);
331 memcpy(header
.addr3
, ieee
->bssid
, ETH_ALEN
);
333 hdr_len
= LIBIPW_3ADDR_LEN
;
335 if (ieee
->is_qos_active
&& ieee
->is_qos_active(dev
, skb
)) {
336 fc
|= IEEE80211_STYPE_QOS_DATA
;
339 skb
->priority
= libipw_classify(skb
);
340 header
.qos_ctl
|= cpu_to_le16(skb
->priority
& LIBIPW_QCTL_TID
);
342 header
.frame_ctl
= cpu_to_le16(fc
);
344 /* Advance the SKB to the start of the payload */
345 skb_pull(skb
, sizeof(struct ethhdr
));
347 /* Determine total amount of storage required for TXB packets */
348 bytes
= skb
->len
+ SNAP_SIZE
+ sizeof(u16
);
350 /* Encrypt msdu first on the whole data packet. */
351 if ((host_encrypt
|| host_encrypt_msdu
) &&
352 crypt
&& crypt
->ops
&& crypt
->ops
->encrypt_msdu
) {
354 int len
= bytes
+ hdr_len
+ crypt
->ops
->extra_msdu_prefix_len
+
355 crypt
->ops
->extra_msdu_postfix_len
;
356 struct sk_buff
*skb_new
= dev_alloc_skb(len
);
358 if (unlikely(!skb_new
))
361 skb_reserve(skb_new
, crypt
->ops
->extra_msdu_prefix_len
);
362 skb_put_data(skb_new
, &header
, hdr_len
);
364 libipw_copy_snap(skb_put(skb_new
, SNAP_SIZE
+ sizeof(u16
)),
366 skb_copy_from_linear_data(skb
, skb_put(skb_new
, skb
->len
), skb
->len
);
367 res
= crypt
->ops
->encrypt_msdu(skb_new
, hdr_len
, crypt
->priv
);
369 LIBIPW_ERROR("msdu encryption failed\n");
370 dev_kfree_skb_any(skb_new
);
373 dev_kfree_skb_any(skb
);
375 bytes
+= crypt
->ops
->extra_msdu_prefix_len
+
376 crypt
->ops
->extra_msdu_postfix_len
;
377 skb_pull(skb
, hdr_len
);
380 if (host_encrypt
|| ieee
->host_open_frag
) {
381 /* Determine fragmentation size based on destination (multicast
382 * and broadcast are not fragmented) */
383 if (is_multicast_ether_addr(dest
) ||
384 is_broadcast_ether_addr(dest
))
385 frag_size
= MAX_FRAG_THRESHOLD
;
387 frag_size
= ieee
->fts
;
389 /* Determine amount of payload per fragment. Regardless of if
390 * this stack is providing the full 802.11 header, one will
391 * eventually be affixed to this fragment -- so we must account
392 * for it when determining the amount of payload space. */
393 bytes_per_frag
= frag_size
- hdr_len
;
395 (CFG_LIBIPW_COMPUTE_FCS
| CFG_LIBIPW_RESERVE_FCS
))
396 bytes_per_frag
-= LIBIPW_FCS_LEN
;
398 /* Each fragment may need to have room for encryption
401 bytes_per_frag
-= crypt
->ops
->extra_mpdu_prefix_len
+
402 crypt
->ops
->extra_mpdu_postfix_len
;
404 /* Number of fragments is the total
405 * bytes_per_frag / payload_per_fragment */
406 nr_frags
= bytes
/ bytes_per_frag
;
407 bytes_last_frag
= bytes
% bytes_per_frag
;
411 bytes_last_frag
= bytes_per_frag
;
414 bytes_per_frag
= bytes_last_frag
= bytes
;
415 frag_size
= bytes
+ hdr_len
;
418 rts_required
= (frag_size
> ieee
->rts
419 && ieee
->config
& CFG_LIBIPW_RTS
);
423 /* When we allocate the TXB we allocate enough space for the reserve
424 * and full fragment bytes (bytes_per_frag doesn't include prefix,
425 * postfix, header, FCS, etc.) */
426 txb
= libipw_alloc_txb(nr_frags
, frag_size
,
427 ieee
->tx_headroom
, GFP_ATOMIC
);
428 if (unlikely(!txb
)) {
429 printk(KERN_WARNING
"%s: Could not allocate TXB\n",
433 txb
->encrypted
= encrypt
;
435 txb
->payload_size
= frag_size
* (nr_frags
- 1) +
438 txb
->payload_size
= bytes
;
441 skb_frag
= txb
->fragments
[0];
442 frag_hdr
= skb_put(skb_frag
, hdr_len
);
445 * Set header frame_ctl to the RTS.
448 cpu_to_le16(IEEE80211_FTYPE_CTL
| IEEE80211_STYPE_RTS
);
449 memcpy(frag_hdr
, &header
, hdr_len
);
452 * Restore header frame_ctl to the original data setting.
454 header
.frame_ctl
= cpu_to_le16(fc
);
457 (CFG_LIBIPW_COMPUTE_FCS
| CFG_LIBIPW_RESERVE_FCS
))
458 skb_put(skb_frag
, 4);
460 txb
->rts_included
= 1;
465 for (; i
< nr_frags
; i
++) {
466 skb_frag
= txb
->fragments
[i
];
469 skb_reserve(skb_frag
,
470 crypt
->ops
->extra_mpdu_prefix_len
);
472 frag_hdr
= skb_put_data(skb_frag
, &header
, hdr_len
);
474 /* If this is not the last fragment, then add the MOREFRAGS
475 * bit to the frame control */
476 if (i
!= nr_frags
- 1) {
477 frag_hdr
->frame_ctl
=
478 cpu_to_le16(fc
| IEEE80211_FCTL_MOREFRAGS
);
479 bytes
= bytes_per_frag
;
481 /* The last fragment takes the remaining length */
482 bytes
= bytes_last_frag
;
485 if (i
== 0 && !snapped
) {
486 libipw_copy_snap(skb_put
487 (skb_frag
, SNAP_SIZE
+ sizeof(u16
)),
489 bytes
-= SNAP_SIZE
+ sizeof(u16
);
492 skb_copy_from_linear_data(skb
, skb_put(skb_frag
, bytes
), bytes
);
494 /* Advance the SKB... */
495 skb_pull(skb
, bytes
);
497 /* Encryption routine will move the header forward in order
498 * to insert the IV between the header and the payload */
500 libipw_encrypt_fragment(ieee
, skb_frag
, hdr_len
);
503 (CFG_LIBIPW_COMPUTE_FCS
| CFG_LIBIPW_RESERVE_FCS
))
504 skb_put(skb_frag
, 4);
508 spin_unlock_irqrestore(&ieee
->lock
, flags
);
510 dev_kfree_skb_any(skb
);
513 netdev_tx_t ret
= (*ieee
->hard_start_xmit
)(txb
, dev
, priority
);
514 if (ret
== NETDEV_TX_OK
) {
515 dev
->stats
.tx_packets
++;
516 dev
->stats
.tx_bytes
+= txb
->payload_size
;
520 libipw_txb_free(txb
);
526 spin_unlock_irqrestore(&ieee
->lock
, flags
);
527 netif_stop_queue(dev
);
528 dev
->stats
.tx_errors
++;
529 return NETDEV_TX_BUSY
;
531 EXPORT_SYMBOL(libipw_xmit
);
533 EXPORT_SYMBOL(libipw_txb_free
);