1 /******************************************************************************
3 * This file is provided under a dual BSD/GPLv2 license. When using or
4 * redistributing this file, you may do so under either license.
8 * Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of version 2 of the GNU General Public License as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope that it will be useful, but
15 * WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * General Public License for more details.
19 * You should have received a copy of the GNU General Public License
20 * along with this program; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
24 * The full GNU General Public License is included in this distribution
25 * in the file called LICENSE.GPL.
27 * Contact Information:
28 * Intel Linux Wireless <ilw@linux.intel.com>
29 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
33 * Copyright(c) 2005 - 2011 Intel Corporation. All rights reserved.
34 * All rights reserved.
36 * Redistribution and use in source and binary forms, with or without
37 * modification, are permitted provided that the following conditions
40 * * Redistributions of source code must retain the above copyright
41 * notice, this list of conditions and the following disclaimer.
42 * * Redistributions in binary form must reproduce the above copyright
43 * notice, this list of conditions and the following disclaimer in
44 * the documentation and/or other materials provided with the
46 * * Neither the name Intel Corporation nor the names of its
47 * contributors may be used to endorse or promote products derived
48 * from this software without specific prior written permission.
50 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
51 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
52 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
53 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
54 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
55 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
56 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
57 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
58 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
59 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
60 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
61 *****************************************************************************/
63 #include <linux/slab.h>
64 #include <net/mac80211.h>
69 /*****************************************************************************
70 * INIT calibrations framework
71 *****************************************************************************/
73 struct stats_general_data
{
74 u32 beacon_silence_rssi_a
;
75 u32 beacon_silence_rssi_b
;
76 u32 beacon_silence_rssi_c
;
82 /*****************************************************************************
83 * RUNTIME calibrations framework
84 *****************************************************************************/
86 /* "false alarms" are signals that our DSP tries to lock onto,
87 * but then determines that they are either noise, or transmissions
88 * from a distant wireless network (also "noise", really) that get
89 * "stepped on" by stronger transmissions within our own network.
90 * This algorithm attempts to set a sensitivity level that is high
91 * enough to receive all of our own network traffic, but not so
92 * high that our DSP gets too busy trying to lock onto non-network
95 il4965_sens_energy_cck(struct il_priv
*il
, u32 norm_fa
, u32 rx_enable_time
,
96 struct stats_general_data
*rx_info
)
100 u8 max_silence_rssi
= 0;
102 u8 silence_rssi_a
= 0;
103 u8 silence_rssi_b
= 0;
104 u8 silence_rssi_c
= 0;
107 /* "false_alarms" values below are cross-multiplications to assess the
108 * numbers of false alarms within the measured period of actual Rx
109 * (Rx is off when we're txing), vs the min/max expected false alarms
110 * (some should be expected if rx is sensitive enough) in a
111 * hypothetical listening period of 200 time units (TU), 204.8 msec:
113 * MIN_FA/fixed-time < false_alarms/actual-rx-time < MAX_FA/beacon-time
116 u32 false_alarms
= norm_fa
* 200 * 1024;
117 u32 max_false_alarms
= MAX_FA_CCK
* rx_enable_time
;
118 u32 min_false_alarms
= MIN_FA_CCK
* rx_enable_time
;
119 struct il_sensitivity_data
*data
= NULL
;
120 const struct il_sensitivity_ranges
*ranges
= il
->hw_params
.sens
;
122 data
= &(il
->sensitivity_data
);
124 data
->nrg_auto_corr_silence_diff
= 0;
126 /* Find max silence rssi among all 3 receivers.
127 * This is background noise, which may include transmissions from other
128 * networks, measured during silence before our network's beacon */
130 (u8
) ((rx_info
->beacon_silence_rssi_a
& ALL_BAND_FILTER
) >> 8);
132 (u8
) ((rx_info
->beacon_silence_rssi_b
& ALL_BAND_FILTER
) >> 8);
134 (u8
) ((rx_info
->beacon_silence_rssi_c
& ALL_BAND_FILTER
) >> 8);
136 val
= max(silence_rssi_b
, silence_rssi_c
);
137 max_silence_rssi
= max(silence_rssi_a
, (u8
) val
);
139 /* Store silence rssi in 20-beacon history table */
140 data
->nrg_silence_rssi
[data
->nrg_silence_idx
] = max_silence_rssi
;
141 data
->nrg_silence_idx
++;
142 if (data
->nrg_silence_idx
>= NRG_NUM_PREV_STAT_L
)
143 data
->nrg_silence_idx
= 0;
145 /* Find max silence rssi across 20 beacon history */
146 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++) {
147 val
= data
->nrg_silence_rssi
[i
];
148 silence_ref
= max(silence_ref
, val
);
150 D_CALIB("silence a %u, b %u, c %u, 20-bcn max %u\n", silence_rssi_a
,
151 silence_rssi_b
, silence_rssi_c
, silence_ref
);
153 /* Find max rx energy (min value!) among all 3 receivers,
154 * measured during beacon frame.
155 * Save it in 10-beacon history table. */
156 i
= data
->nrg_energy_idx
;
157 val
= min(rx_info
->beacon_energy_b
, rx_info
->beacon_energy_c
);
158 data
->nrg_value
[i
] = min(rx_info
->beacon_energy_a
, val
);
160 data
->nrg_energy_idx
++;
161 if (data
->nrg_energy_idx
>= 10)
162 data
->nrg_energy_idx
= 0;
164 /* Find min rx energy (max value) across 10 beacon history.
165 * This is the minimum signal level that we want to receive well.
166 * Add backoff (margin so we don't miss slightly lower energy frames).
167 * This establishes an upper bound (min value) for energy threshold. */
168 max_nrg_cck
= data
->nrg_value
[0];
169 for (i
= 1; i
< 10; i
++)
170 max_nrg_cck
= (u32
) max(max_nrg_cck
, (data
->nrg_value
[i
]));
173 D_CALIB("rx energy a %u, b %u, c %u, 10-bcn max/min %u\n",
174 rx_info
->beacon_energy_a
, rx_info
->beacon_energy_b
,
175 rx_info
->beacon_energy_c
, max_nrg_cck
- 6);
177 /* Count number of consecutive beacons with fewer-than-desired
179 if (false_alarms
< min_false_alarms
)
180 data
->num_in_cck_no_fa
++;
182 data
->num_in_cck_no_fa
= 0;
183 D_CALIB("consecutive bcns with few false alarms = %u\n",
184 data
->num_in_cck_no_fa
);
186 /* If we got too many false alarms this time, reduce sensitivity */
187 if (false_alarms
> max_false_alarms
&&
188 data
->auto_corr_cck
> AUTO_CORR_MAX_TH_CCK
) {
189 D_CALIB("norm FA %u > max FA %u\n", false_alarms
,
191 D_CALIB("... reducing sensitivity\n");
192 data
->nrg_curr_state
= IL_FA_TOO_MANY
;
193 /* Store for "fewer than desired" on later beacon */
194 data
->nrg_silence_ref
= silence_ref
;
196 /* increase energy threshold (reduce nrg value)
197 * to decrease sensitivity */
198 data
->nrg_th_cck
= data
->nrg_th_cck
- NRG_STEP_CCK
;
199 /* Else if we got fewer than desired, increase sensitivity */
200 } else if (false_alarms
< min_false_alarms
) {
201 data
->nrg_curr_state
= IL_FA_TOO_FEW
;
203 /* Compare silence level with silence level for most recent
204 * healthy number or too many false alarms */
205 data
->nrg_auto_corr_silence_diff
=
206 (s32
) data
->nrg_silence_ref
- (s32
) silence_ref
;
208 D_CALIB("norm FA %u < min FA %u, silence diff %d\n",
209 false_alarms
, min_false_alarms
,
210 data
->nrg_auto_corr_silence_diff
);
212 /* Increase value to increase sensitivity, but only if:
213 * 1a) previous beacon did *not* have *too many* false alarms
214 * 1b) AND there's a significant difference in Rx levels
215 * from a previous beacon with too many, or healthy # FAs
216 * OR 2) We've seen a lot of beacons (100) with too few
218 if (data
->nrg_prev_state
!= IL_FA_TOO_MANY
&&
219 (data
->nrg_auto_corr_silence_diff
> NRG_DIFF
||
220 data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
)) {
222 D_CALIB("... increasing sensitivity\n");
223 /* Increase nrg value to increase sensitivity */
224 val
= data
->nrg_th_cck
+ NRG_STEP_CCK
;
225 data
->nrg_th_cck
= min((u32
) ranges
->min_nrg_cck
, val
);
227 D_CALIB("... but not changing sensitivity\n");
230 /* Else we got a healthy number of false alarms, keep status quo */
232 D_CALIB(" FA in safe zone\n");
233 data
->nrg_curr_state
= IL_FA_GOOD_RANGE
;
235 /* Store for use in "fewer than desired" with later beacon */
236 data
->nrg_silence_ref
= silence_ref
;
238 /* If previous beacon had too many false alarms,
239 * give it some extra margin by reducing sensitivity again
240 * (but don't go below measured energy of desired Rx) */
241 if (IL_FA_TOO_MANY
== data
->nrg_prev_state
) {
242 D_CALIB("... increasing margin\n");
243 if (data
->nrg_th_cck
> (max_nrg_cck
+ NRG_MARGIN
))
244 data
->nrg_th_cck
-= NRG_MARGIN
;
246 data
->nrg_th_cck
= max_nrg_cck
;
250 /* Make sure the energy threshold does not go above the measured
251 * energy of the desired Rx signals (reduced by backoff margin),
252 * or else we might start missing Rx frames.
253 * Lower value is higher energy, so we use max()!
255 data
->nrg_th_cck
= max(max_nrg_cck
, data
->nrg_th_cck
);
256 D_CALIB("new nrg_th_cck %u\n", data
->nrg_th_cck
);
258 data
->nrg_prev_state
= data
->nrg_curr_state
;
260 /* Auto-correlation CCK algorithm */
261 if (false_alarms
> min_false_alarms
) {
263 /* increase auto_corr values to decrease sensitivity
264 * so the DSP won't be disturbed by the noise
266 if (data
->auto_corr_cck
< AUTO_CORR_MAX_TH_CCK
)
267 data
->auto_corr_cck
= AUTO_CORR_MAX_TH_CCK
+ 1;
269 val
= data
->auto_corr_cck
+ AUTO_CORR_STEP_CCK
;
270 data
->auto_corr_cck
=
271 min((u32
) ranges
->auto_corr_max_cck
, val
);
273 val
= data
->auto_corr_cck_mrc
+ AUTO_CORR_STEP_CCK
;
274 data
->auto_corr_cck_mrc
=
275 min((u32
) ranges
->auto_corr_max_cck_mrc
, val
);
276 } else if (false_alarms
< min_false_alarms
&&
277 (data
->nrg_auto_corr_silence_diff
> NRG_DIFF
||
278 data
->num_in_cck_no_fa
> MAX_NUMBER_CCK_NO_FA
)) {
280 /* Decrease auto_corr values to increase sensitivity */
281 val
= data
->auto_corr_cck
- AUTO_CORR_STEP_CCK
;
282 data
->auto_corr_cck
= max((u32
) ranges
->auto_corr_min_cck
, val
);
283 val
= data
->auto_corr_cck_mrc
- AUTO_CORR_STEP_CCK
;
284 data
->auto_corr_cck_mrc
=
285 max((u32
) ranges
->auto_corr_min_cck_mrc
, val
);
292 il4965_sens_auto_corr_ofdm(struct il_priv
*il
, u32 norm_fa
, u32 rx_enable_time
)
295 u32 false_alarms
= norm_fa
* 200 * 1024;
296 u32 max_false_alarms
= MAX_FA_OFDM
* rx_enable_time
;
297 u32 min_false_alarms
= MIN_FA_OFDM
* rx_enable_time
;
298 struct il_sensitivity_data
*data
= NULL
;
299 const struct il_sensitivity_ranges
*ranges
= il
->hw_params
.sens
;
301 data
= &(il
->sensitivity_data
);
303 /* If we got too many false alarms this time, reduce sensitivity */
304 if (false_alarms
> max_false_alarms
) {
306 D_CALIB("norm FA %u > max FA %u)\n", false_alarms
,
309 val
= data
->auto_corr_ofdm
+ AUTO_CORR_STEP_OFDM
;
310 data
->auto_corr_ofdm
=
311 min((u32
) ranges
->auto_corr_max_ofdm
, val
);
313 val
= data
->auto_corr_ofdm_mrc
+ AUTO_CORR_STEP_OFDM
;
314 data
->auto_corr_ofdm_mrc
=
315 min((u32
) ranges
->auto_corr_max_ofdm_mrc
, val
);
317 val
= data
->auto_corr_ofdm_x1
+ AUTO_CORR_STEP_OFDM
;
318 data
->auto_corr_ofdm_x1
=
319 min((u32
) ranges
->auto_corr_max_ofdm_x1
, val
);
321 val
= data
->auto_corr_ofdm_mrc_x1
+ AUTO_CORR_STEP_OFDM
;
322 data
->auto_corr_ofdm_mrc_x1
=
323 min((u32
) ranges
->auto_corr_max_ofdm_mrc_x1
, val
);
326 /* Else if we got fewer than desired, increase sensitivity */
327 else if (false_alarms
< min_false_alarms
) {
329 D_CALIB("norm FA %u < min FA %u\n", false_alarms
,
332 val
= data
->auto_corr_ofdm
- AUTO_CORR_STEP_OFDM
;
333 data
->auto_corr_ofdm
=
334 max((u32
) ranges
->auto_corr_min_ofdm
, val
);
336 val
= data
->auto_corr_ofdm_mrc
- AUTO_CORR_STEP_OFDM
;
337 data
->auto_corr_ofdm_mrc
=
338 max((u32
) ranges
->auto_corr_min_ofdm_mrc
, val
);
340 val
= data
->auto_corr_ofdm_x1
- AUTO_CORR_STEP_OFDM
;
341 data
->auto_corr_ofdm_x1
=
342 max((u32
) ranges
->auto_corr_min_ofdm_x1
, val
);
344 val
= data
->auto_corr_ofdm_mrc_x1
- AUTO_CORR_STEP_OFDM
;
345 data
->auto_corr_ofdm_mrc_x1
=
346 max((u32
) ranges
->auto_corr_min_ofdm_mrc_x1
, val
);
348 D_CALIB("min FA %u < norm FA %u < max FA %u OK\n",
349 min_false_alarms
, false_alarms
, max_false_alarms
);
355 il4965_prepare_legacy_sensitivity_tbl(struct il_priv
*il
,
356 struct il_sensitivity_data
*data
,
359 tbl
[HD_AUTO_CORR32_X4_TH_ADD_MIN_IDX
] =
360 cpu_to_le16((u16
) data
->auto_corr_ofdm
);
361 tbl
[HD_AUTO_CORR32_X4_TH_ADD_MIN_MRC_IDX
] =
362 cpu_to_le16((u16
) data
->auto_corr_ofdm_mrc
);
363 tbl
[HD_AUTO_CORR32_X1_TH_ADD_MIN_IDX
] =
364 cpu_to_le16((u16
) data
->auto_corr_ofdm_x1
);
365 tbl
[HD_AUTO_CORR32_X1_TH_ADD_MIN_MRC_IDX
] =
366 cpu_to_le16((u16
) data
->auto_corr_ofdm_mrc_x1
);
368 tbl
[HD_AUTO_CORR40_X4_TH_ADD_MIN_IDX
] =
369 cpu_to_le16((u16
) data
->auto_corr_cck
);
370 tbl
[HD_AUTO_CORR40_X4_TH_ADD_MIN_MRC_IDX
] =
371 cpu_to_le16((u16
) data
->auto_corr_cck_mrc
);
373 tbl
[HD_MIN_ENERGY_CCK_DET_IDX
] = cpu_to_le16((u16
) data
->nrg_th_cck
);
374 tbl
[HD_MIN_ENERGY_OFDM_DET_IDX
] = cpu_to_le16((u16
) data
->nrg_th_ofdm
);
376 tbl
[HD_BARKER_CORR_TH_ADD_MIN_IDX
] =
377 cpu_to_le16(data
->barker_corr_th_min
);
378 tbl
[HD_BARKER_CORR_TH_ADD_MIN_MRC_IDX
] =
379 cpu_to_le16(data
->barker_corr_th_min_mrc
);
380 tbl
[HD_OFDM_ENERGY_TH_IN_IDX
] = cpu_to_le16(data
->nrg_th_cca
);
382 D_CALIB("ofdm: ac %u mrc %u x1 %u mrc_x1 %u thresh %u\n",
383 data
->auto_corr_ofdm
, data
->auto_corr_ofdm_mrc
,
384 data
->auto_corr_ofdm_x1
, data
->auto_corr_ofdm_mrc_x1
,
387 D_CALIB("cck: ac %u mrc %u thresh %u\n", data
->auto_corr_cck
,
388 data
->auto_corr_cck_mrc
, data
->nrg_th_cck
);
391 /* Prepare a C_SENSITIVITY, send to uCode if values have changed */
393 il4965_sensitivity_write(struct il_priv
*il
)
395 struct il_sensitivity_cmd cmd
;
396 struct il_sensitivity_data
*data
= NULL
;
397 struct il_host_cmd cmd_out
= {
399 .len
= sizeof(struct il_sensitivity_cmd
),
404 data
= &(il
->sensitivity_data
);
406 memset(&cmd
, 0, sizeof(cmd
));
408 il4965_prepare_legacy_sensitivity_tbl(il
, data
, &cmd
.table
[0]);
410 /* Update uCode's "work" table, and copy it to DSP */
411 cmd
.control
= C_SENSITIVITY_CONTROL_WORK_TBL
;
413 /* Don't send command to uCode if nothing has changed */
415 (&cmd
.table
[0], &(il
->sensitivity_tbl
[0]),
416 sizeof(u16
) * HD_TBL_SIZE
)) {
417 D_CALIB("No change in C_SENSITIVITY\n");
421 /* Copy table for comparison next time */
422 memcpy(&(il
->sensitivity_tbl
[0]), &(cmd
.table
[0]),
423 sizeof(u16
) * HD_TBL_SIZE
);
425 return il_send_cmd(il
, &cmd_out
);
429 il4965_init_sensitivity(struct il_priv
*il
)
433 struct il_sensitivity_data
*data
= NULL
;
434 const struct il_sensitivity_ranges
*ranges
= il
->hw_params
.sens
;
436 if (il
->disable_sens_cal
)
439 D_CALIB("Start il4965_init_sensitivity\n");
441 /* Clear driver's sensitivity algo data */
442 data
= &(il
->sensitivity_data
);
447 memset(data
, 0, sizeof(struct il_sensitivity_data
));
449 data
->num_in_cck_no_fa
= 0;
450 data
->nrg_curr_state
= IL_FA_TOO_MANY
;
451 data
->nrg_prev_state
= IL_FA_TOO_MANY
;
452 data
->nrg_silence_ref
= 0;
453 data
->nrg_silence_idx
= 0;
454 data
->nrg_energy_idx
= 0;
456 for (i
= 0; i
< 10; i
++)
457 data
->nrg_value
[i
] = 0;
459 for (i
= 0; i
< NRG_NUM_PREV_STAT_L
; i
++)
460 data
->nrg_silence_rssi
[i
] = 0;
462 data
->auto_corr_ofdm
= ranges
->auto_corr_min_ofdm
;
463 data
->auto_corr_ofdm_mrc
= ranges
->auto_corr_min_ofdm_mrc
;
464 data
->auto_corr_ofdm_x1
= ranges
->auto_corr_min_ofdm_x1
;
465 data
->auto_corr_ofdm_mrc_x1
= ranges
->auto_corr_min_ofdm_mrc_x1
;
466 data
->auto_corr_cck
= AUTO_CORR_CCK_MIN_VAL_DEF
;
467 data
->auto_corr_cck_mrc
= ranges
->auto_corr_min_cck_mrc
;
468 data
->nrg_th_cck
= ranges
->nrg_th_cck
;
469 data
->nrg_th_ofdm
= ranges
->nrg_th_ofdm
;
470 data
->barker_corr_th_min
= ranges
->barker_corr_th_min
;
471 data
->barker_corr_th_min_mrc
= ranges
->barker_corr_th_min_mrc
;
472 data
->nrg_th_cca
= ranges
->nrg_th_cca
;
474 data
->last_bad_plcp_cnt_ofdm
= 0;
475 data
->last_fa_cnt_ofdm
= 0;
476 data
->last_bad_plcp_cnt_cck
= 0;
477 data
->last_fa_cnt_cck
= 0;
479 ret
|= il4965_sensitivity_write(il
);
480 D_CALIB("<<return 0x%X\n", ret
);
484 il4965_sensitivity_calibration(struct il_priv
*il
, void *resp
)
493 struct il_sensitivity_data
*data
= NULL
;
494 struct stats_rx_non_phy
*rx_info
;
495 struct stats_rx_phy
*ofdm
, *cck
;
497 struct stats_general_data statis
;
499 if (il
->disable_sens_cal
)
502 data
= &(il
->sensitivity_data
);
504 if (!il_is_any_associated(il
)) {
505 D_CALIB("<< - not associated\n");
509 spin_lock_irqsave(&il
->lock
, flags
);
511 rx_info
= &(((struct il_notif_stats
*)resp
)->rx
.general
);
512 ofdm
= &(((struct il_notif_stats
*)resp
)->rx
.ofdm
);
513 cck
= &(((struct il_notif_stats
*)resp
)->rx
.cck
);
515 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
516 D_CALIB("<< invalid data.\n");
517 spin_unlock_irqrestore(&il
->lock
, flags
);
521 /* Extract Statistics: */
522 rx_enable_time
= le32_to_cpu(rx_info
->channel_load
);
523 fa_cck
= le32_to_cpu(cck
->false_alarm_cnt
);
524 fa_ofdm
= le32_to_cpu(ofdm
->false_alarm_cnt
);
525 bad_plcp_cck
= le32_to_cpu(cck
->plcp_err
);
526 bad_plcp_ofdm
= le32_to_cpu(ofdm
->plcp_err
);
528 statis
.beacon_silence_rssi_a
=
529 le32_to_cpu(rx_info
->beacon_silence_rssi_a
);
530 statis
.beacon_silence_rssi_b
=
531 le32_to_cpu(rx_info
->beacon_silence_rssi_b
);
532 statis
.beacon_silence_rssi_c
=
533 le32_to_cpu(rx_info
->beacon_silence_rssi_c
);
534 statis
.beacon_energy_a
= le32_to_cpu(rx_info
->beacon_energy_a
);
535 statis
.beacon_energy_b
= le32_to_cpu(rx_info
->beacon_energy_b
);
536 statis
.beacon_energy_c
= le32_to_cpu(rx_info
->beacon_energy_c
);
538 spin_unlock_irqrestore(&il
->lock
, flags
);
540 D_CALIB("rx_enable_time = %u usecs\n", rx_enable_time
);
542 if (!rx_enable_time
) {
543 D_CALIB("<< RX Enable Time == 0!\n");
547 /* These stats increase monotonically, and do not reset
548 * at each beacon. Calculate difference from last value, or just
549 * use the new stats value if it has reset or wrapped around. */
550 if (data
->last_bad_plcp_cnt_cck
> bad_plcp_cck
)
551 data
->last_bad_plcp_cnt_cck
= bad_plcp_cck
;
553 bad_plcp_cck
-= data
->last_bad_plcp_cnt_cck
;
554 data
->last_bad_plcp_cnt_cck
+= bad_plcp_cck
;
557 if (data
->last_bad_plcp_cnt_ofdm
> bad_plcp_ofdm
)
558 data
->last_bad_plcp_cnt_ofdm
= bad_plcp_ofdm
;
560 bad_plcp_ofdm
-= data
->last_bad_plcp_cnt_ofdm
;
561 data
->last_bad_plcp_cnt_ofdm
+= bad_plcp_ofdm
;
564 if (data
->last_fa_cnt_ofdm
> fa_ofdm
)
565 data
->last_fa_cnt_ofdm
= fa_ofdm
;
567 fa_ofdm
-= data
->last_fa_cnt_ofdm
;
568 data
->last_fa_cnt_ofdm
+= fa_ofdm
;
571 if (data
->last_fa_cnt_cck
> fa_cck
)
572 data
->last_fa_cnt_cck
= fa_cck
;
574 fa_cck
-= data
->last_fa_cnt_cck
;
575 data
->last_fa_cnt_cck
+= fa_cck
;
578 /* Total aborted signal locks */
579 norm_fa_ofdm
= fa_ofdm
+ bad_plcp_ofdm
;
580 norm_fa_cck
= fa_cck
+ bad_plcp_cck
;
582 D_CALIB("cck: fa %u badp %u ofdm: fa %u badp %u\n", fa_cck
,
583 bad_plcp_cck
, fa_ofdm
, bad_plcp_ofdm
);
585 il4965_sens_auto_corr_ofdm(il
, norm_fa_ofdm
, rx_enable_time
);
586 il4965_sens_energy_cck(il
, norm_fa_cck
, rx_enable_time
, &statis
);
588 il4965_sensitivity_write(il
);
592 il4965_find_first_chain(u8 mask
)
602 * Run disconnected antenna algorithm to find out which antennas are
606 il4965_find_disconn_antenna(struct il_priv
*il
, u32
* average_sig
,
607 struct il_chain_noise_data
*data
)
609 u32 active_chains
= 0;
611 u16 max_average_sig_antenna_i
;
617 data
->chain_signal_a
/
618 il
->cfg
->chain_noise_num_beacons
;
620 data
->chain_signal_b
/
621 il
->cfg
->chain_noise_num_beacons
;
623 data
->chain_signal_c
/
624 il
->cfg
->chain_noise_num_beacons
;
626 if (average_sig
[0] >= average_sig
[1]) {
627 max_average_sig
= average_sig
[0];
628 max_average_sig_antenna_i
= 0;
629 active_chains
= (1 << max_average_sig_antenna_i
);
631 max_average_sig
= average_sig
[1];
632 max_average_sig_antenna_i
= 1;
633 active_chains
= (1 << max_average_sig_antenna_i
);
636 if (average_sig
[2] >= max_average_sig
) {
637 max_average_sig
= average_sig
[2];
638 max_average_sig_antenna_i
= 2;
639 active_chains
= (1 << max_average_sig_antenna_i
);
642 D_CALIB("average_sig: a %d b %d c %d\n", average_sig
[0], average_sig
[1],
644 D_CALIB("max_average_sig = %d, antenna %d\n", max_average_sig
,
645 max_average_sig_antenna_i
);
647 /* Compare signal strengths for all 3 receivers. */
648 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
649 if (i
!= max_average_sig_antenna_i
) {
650 s32 rssi_delta
= (max_average_sig
- average_sig
[i
]);
652 /* If signal is very weak, compared with
653 * strongest, mark it as disconnected. */
654 if (rssi_delta
> MAXIMUM_ALLOWED_PATHLOSS
)
655 data
->disconn_array
[i
] = 1;
657 active_chains
|= (1 << i
);
658 D_CALIB("i = %d rssiDelta = %d "
659 "disconn_array[i] = %d\n", i
, rssi_delta
,
660 data
->disconn_array
[i
]);
665 * The above algorithm sometimes fails when the ucode
666 * reports 0 for all chains. It's not clear why that
667 * happens to start with, but it is then causing trouble
668 * because this can make us enable more chains than the
669 * hardware really has.
671 * To be safe, simply mask out any chains that we know
672 * are not on the device.
674 active_chains
&= il
->hw_params
.valid_rx_ant
;
677 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
678 /* loops on all the bits of
679 * il->hw_setting.valid_tx_ant */
680 u8 ant_msk
= (1 << i
);
681 if (!(il
->hw_params
.valid_tx_ant
& ant_msk
))
685 if (data
->disconn_array
[i
] == 0)
686 /* there is a Tx antenna connected */
688 if (num_tx_chains
== il
->hw_params
.tx_chains_num
&&
689 data
->disconn_array
[i
]) {
691 * If all chains are disconnected
692 * connect the first valid tx chain
695 il4965_find_first_chain(il
->cfg
->valid_tx_ant
);
696 data
->disconn_array
[first_chain
] = 0;
697 active_chains
|= BIT(first_chain
);
698 D_CALIB("All Tx chains are disconnected"
699 "- declare %d as connected\n", first_chain
);
704 if (active_chains
!= il
->hw_params
.valid_rx_ant
&&
705 active_chains
!= il
->chain_noise_data
.active_chains
)
706 D_CALIB("Detected that not all antennas are connected! "
707 "Connected: %#x, valid: %#x.\n", active_chains
,
708 il
->hw_params
.valid_rx_ant
);
710 /* Save for use within RXON, TX, SCAN commands, etc. */
711 data
->active_chains
= active_chains
;
712 D_CALIB("active_chains (bitwise) = 0x%x\n", active_chains
);
716 il4965_gain_computation(struct il_priv
*il
, u32
* average_noise
,
717 u16 min_average_noise_antenna_i
, u32 min_average_noise
,
721 struct il_chain_noise_data
*data
= &il
->chain_noise_data
;
723 data
->delta_gain_code
[min_average_noise_antenna_i
] = 0;
725 for (i
= default_chain
; i
< NUM_RX_CHAINS
; i
++) {
728 if (!data
->disconn_array
[i
] &&
729 data
->delta_gain_code
[i
] ==
730 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
) {
731 delta_g
= average_noise
[i
] - min_average_noise
;
732 data
->delta_gain_code
[i
] = (u8
) ((delta_g
* 10) / 15);
733 data
->delta_gain_code
[i
] =
734 min(data
->delta_gain_code
[i
],
735 (u8
) CHAIN_NOISE_MAX_DELTA_GAIN_CODE
);
737 data
->delta_gain_code
[i
] =
738 (data
->delta_gain_code
[i
] | (1 << 2));
740 data
->delta_gain_code
[i
] = 0;
743 D_CALIB("delta_gain_codes: a %d b %d c %d\n", data
->delta_gain_code
[0],
744 data
->delta_gain_code
[1], data
->delta_gain_code
[2]);
746 /* Differential gain gets sent to uCode only once */
747 if (!data
->radio_write
) {
748 struct il_calib_diff_gain_cmd cmd
;
749 data
->radio_write
= 1;
751 memset(&cmd
, 0, sizeof(cmd
));
752 cmd
.hdr
.op_code
= IL_PHY_CALIBRATE_DIFF_GAIN_CMD
;
753 cmd
.diff_gain_a
= data
->delta_gain_code
[0];
754 cmd
.diff_gain_b
= data
->delta_gain_code
[1];
755 cmd
.diff_gain_c
= data
->delta_gain_code
[2];
756 ret
= il_send_cmd_pdu(il
, C_PHY_CALIBRATION
, sizeof(cmd
), &cmd
);
758 D_CALIB("fail sending cmd " "C_PHY_CALIBRATION\n");
760 /* TODO we might want recalculate
761 * rx_chain in rxon cmd */
763 /* Mark so we run this algo only once! */
764 data
->state
= IL_CHAIN_NOISE_CALIBRATED
;
769 * Accumulate 16 beacons of signal and noise stats for each of
770 * 3 receivers/antennas/rx-chains, then figure out:
771 * 1) Which antennas are connected.
772 * 2) Differential rx gain settings to balance the 3 receivers.
775 il4965_chain_noise_calibration(struct il_priv
*il
, void *stat_resp
)
777 struct il_chain_noise_data
*data
= NULL
;
785 u32 average_sig
[NUM_RX_CHAINS
] = { INITIALIZATION_VALUE
};
786 u32 average_noise
[NUM_RX_CHAINS
] = { INITIALIZATION_VALUE
};
787 u32 min_average_noise
= MIN_AVERAGE_NOISE_MAX_VALUE
;
788 u16 min_average_noise_antenna_i
= INITIALIZATION_VALUE
;
790 u16 rxon_chnum
= INITIALIZATION_VALUE
;
791 u16 stat_chnum
= INITIALIZATION_VALUE
;
795 struct stats_rx_non_phy
*rx_info
;
797 if (il
->disable_chain_noise_cal
)
800 data
= &(il
->chain_noise_data
);
803 * Accumulate just the first "chain_noise_num_beacons" after
804 * the first association, then we're done forever.
806 if (data
->state
!= IL_CHAIN_NOISE_ACCUMULATE
) {
807 if (data
->state
== IL_CHAIN_NOISE_ALIVE
)
808 D_CALIB("Wait for noise calib reset\n");
812 spin_lock_irqsave(&il
->lock
, flags
);
814 rx_info
= &(((struct il_notif_stats
*)stat_resp
)->rx
.general
);
816 if (rx_info
->interference_data_flag
!= INTERFERENCE_DATA_AVAILABLE
) {
817 D_CALIB(" << Interference data unavailable\n");
818 spin_unlock_irqrestore(&il
->lock
, flags
);
822 rxon_band24
= !!(il
->staging
.flags
& RXON_FLG_BAND_24G_MSK
);
823 rxon_chnum
= le16_to_cpu(il
->staging
.channel
);
826 !!(((struct il_notif_stats
*)stat_resp
)->
827 flag
& STATS_REPLY_FLG_BAND_24G_MSK
);
829 le32_to_cpu(((struct il_notif_stats
*)stat_resp
)->flag
) >> 16;
831 /* Make sure we accumulate data for just the associated channel
832 * (even if scanning). */
833 if (rxon_chnum
!= stat_chnum
|| rxon_band24
!= stat_band24
) {
834 D_CALIB("Stats not from chan=%d, band24=%d\n", rxon_chnum
,
836 spin_unlock_irqrestore(&il
->lock
, flags
);
841 * Accumulate beacon stats values across
842 * "chain_noise_num_beacons"
845 le32_to_cpu(rx_info
->beacon_silence_rssi_a
) & IN_BAND_FILTER
;
847 le32_to_cpu(rx_info
->beacon_silence_rssi_b
) & IN_BAND_FILTER
;
849 le32_to_cpu(rx_info
->beacon_silence_rssi_c
) & IN_BAND_FILTER
;
851 chain_sig_a
= le32_to_cpu(rx_info
->beacon_rssi_a
) & IN_BAND_FILTER
;
852 chain_sig_b
= le32_to_cpu(rx_info
->beacon_rssi_b
) & IN_BAND_FILTER
;
853 chain_sig_c
= le32_to_cpu(rx_info
->beacon_rssi_c
) & IN_BAND_FILTER
;
855 spin_unlock_irqrestore(&il
->lock
, flags
);
857 data
->beacon_count
++;
859 data
->chain_noise_a
= (chain_noise_a
+ data
->chain_noise_a
);
860 data
->chain_noise_b
= (chain_noise_b
+ data
->chain_noise_b
);
861 data
->chain_noise_c
= (chain_noise_c
+ data
->chain_noise_c
);
863 data
->chain_signal_a
= (chain_sig_a
+ data
->chain_signal_a
);
864 data
->chain_signal_b
= (chain_sig_b
+ data
->chain_signal_b
);
865 data
->chain_signal_c
= (chain_sig_c
+ data
->chain_signal_c
);
867 D_CALIB("chan=%d, band24=%d, beacon=%d\n", rxon_chnum
, rxon_band24
,
869 D_CALIB("chain_sig: a %d b %d c %d\n", chain_sig_a
, chain_sig_b
,
871 D_CALIB("chain_noise: a %d b %d c %d\n", chain_noise_a
, chain_noise_b
,
874 /* If this is the "chain_noise_num_beacons", determine:
875 * 1) Disconnected antennas (using signal strengths)
876 * 2) Differential gain (using silence noise) to balance receivers */
877 if (data
->beacon_count
!= il
->cfg
->chain_noise_num_beacons
)
880 /* Analyze signal for disconnected antenna */
881 il4965_find_disconn_antenna(il
, average_sig
, data
);
883 /* Analyze noise for rx balance */
885 data
->chain_noise_a
/ il
->cfg
->chain_noise_num_beacons
;
887 data
->chain_noise_b
/ il
->cfg
->chain_noise_num_beacons
;
889 data
->chain_noise_c
/ il
->cfg
->chain_noise_num_beacons
;
891 for (i
= 0; i
< NUM_RX_CHAINS
; i
++) {
892 if (!data
->disconn_array
[i
] &&
893 average_noise
[i
] <= min_average_noise
) {
894 /* This means that chain i is active and has
895 * lower noise values so far: */
896 min_average_noise
= average_noise
[i
];
897 min_average_noise_antenna_i
= i
;
901 D_CALIB("average_noise: a %d b %d c %d\n", average_noise
[0],
902 average_noise
[1], average_noise
[2]);
904 D_CALIB("min_average_noise = %d, antenna %d\n", min_average_noise
,
905 min_average_noise_antenna_i
);
907 il4965_gain_computation(il
, average_noise
, min_average_noise_antenna_i
,
909 il4965_find_first_chain(il
->cfg
->valid_rx_ant
));
911 /* Some power changes may have been made during the calibration.
912 * Update and commit the RXON
914 if (il
->ops
->update_chain_flags
)
915 il
->ops
->update_chain_flags(il
);
917 data
->state
= IL_CHAIN_NOISE_DONE
;
918 il_power_update_mode(il
, false);
922 il4965_reset_run_time_calib(struct il_priv
*il
)
925 memset(&(il
->sensitivity_data
), 0, sizeof(struct il_sensitivity_data
));
926 memset(&(il
->chain_noise_data
), 0, sizeof(struct il_chain_noise_data
));
927 for (i
= 0; i
< NUM_RX_CHAINS
; i
++)
928 il
->chain_noise_data
.delta_gain_code
[i
] =
929 CHAIN_NOISE_DELTA_GAIN_INIT_VAL
;
931 /* Ask for stats now, the uCode will send notification
932 * periodically after association */
933 il_send_stats_request(il
, CMD_ASYNC
, true);