1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/kthread.h>
7 #include <linux/pagemap.h>
11 #include "free-space-cache.h"
12 #include "inode-map.h"
13 #include "transaction.h"
14 #include "delalloc-space.h"
16 static void fail_caching_thread(struct btrfs_root
*root
)
18 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
20 btrfs_warn(fs_info
, "failed to start inode caching task");
21 btrfs_clear_pending_and_info(fs_info
, INODE_MAP_CACHE
,
22 "disabling inode map caching");
23 spin_lock(&root
->ino_cache_lock
);
24 root
->ino_cache_state
= BTRFS_CACHE_ERROR
;
25 spin_unlock(&root
->ino_cache_lock
);
26 wake_up(&root
->ino_cache_wait
);
29 static int caching_kthread(void *data
)
31 struct btrfs_root
*root
= data
;
32 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
33 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
35 struct btrfs_path
*path
;
36 struct extent_buffer
*leaf
;
41 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
44 path
= btrfs_alloc_path();
46 fail_caching_thread(root
);
50 /* Since the commit root is read-only, we can safely skip locking. */
51 path
->skip_locking
= 1;
52 path
->search_commit_root
= 1;
53 path
->reada
= READA_FORWARD
;
55 key
.objectid
= BTRFS_FIRST_FREE_OBJECTID
;
57 key
.type
= BTRFS_INODE_ITEM_KEY
;
59 /* need to make sure the commit_root doesn't disappear */
60 down_read(&fs_info
->commit_root_sem
);
62 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
67 if (btrfs_fs_closing(fs_info
))
70 leaf
= path
->nodes
[0];
71 slot
= path
->slots
[0];
72 if (slot
>= btrfs_header_nritems(leaf
)) {
73 ret
= btrfs_next_leaf(root
, path
);
80 btrfs_transaction_in_commit(fs_info
)) {
81 leaf
= path
->nodes
[0];
83 if (WARN_ON(btrfs_header_nritems(leaf
) == 0))
87 * Save the key so we can advances forward
90 btrfs_item_key_to_cpu(leaf
, &key
, 0);
91 btrfs_release_path(path
);
92 root
->ino_cache_progress
= last
;
93 up_read(&fs_info
->commit_root_sem
);
100 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
102 if (key
.type
!= BTRFS_INODE_ITEM_KEY
)
105 if (key
.objectid
>= root
->highest_objectid
)
108 if (last
!= (u64
)-1 && last
+ 1 != key
.objectid
) {
109 __btrfs_add_free_space(fs_info
, ctl
, last
+ 1,
110 key
.objectid
- last
- 1, 0);
111 wake_up(&root
->ino_cache_wait
);
119 if (last
< root
->highest_objectid
- 1) {
120 __btrfs_add_free_space(fs_info
, ctl
, last
+ 1,
121 root
->highest_objectid
- last
- 1, 0);
124 spin_lock(&root
->ino_cache_lock
);
125 root
->ino_cache_state
= BTRFS_CACHE_FINISHED
;
126 spin_unlock(&root
->ino_cache_lock
);
128 root
->ino_cache_progress
= (u64
)-1;
129 btrfs_unpin_free_ino(root
);
131 wake_up(&root
->ino_cache_wait
);
132 up_read(&fs_info
->commit_root_sem
);
134 btrfs_free_path(path
);
139 static void start_caching(struct btrfs_root
*root
)
141 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
142 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
143 struct task_struct
*tsk
;
147 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
150 spin_lock(&root
->ino_cache_lock
);
151 if (root
->ino_cache_state
!= BTRFS_CACHE_NO
) {
152 spin_unlock(&root
->ino_cache_lock
);
156 root
->ino_cache_state
= BTRFS_CACHE_STARTED
;
157 spin_unlock(&root
->ino_cache_lock
);
159 ret
= load_free_ino_cache(fs_info
, root
);
161 spin_lock(&root
->ino_cache_lock
);
162 root
->ino_cache_state
= BTRFS_CACHE_FINISHED
;
163 spin_unlock(&root
->ino_cache_lock
);
164 wake_up(&root
->ino_cache_wait
);
169 * It can be quite time-consuming to fill the cache by searching
170 * through the extent tree, and this can keep ino allocation path
171 * waiting. Therefore at start we quickly find out the highest
172 * inode number and we know we can use inode numbers which fall in
173 * [highest_ino + 1, BTRFS_LAST_FREE_OBJECTID].
175 ret
= btrfs_find_free_objectid(root
, &objectid
);
176 if (!ret
&& objectid
<= BTRFS_LAST_FREE_OBJECTID
) {
177 __btrfs_add_free_space(fs_info
, ctl
, objectid
,
178 BTRFS_LAST_FREE_OBJECTID
- objectid
+ 1,
180 wake_up(&root
->ino_cache_wait
);
183 tsk
= kthread_run(caching_kthread
, root
, "btrfs-ino-cache-%llu",
184 root
->root_key
.objectid
);
186 fail_caching_thread(root
);
189 int btrfs_find_free_ino(struct btrfs_root
*root
, u64
*objectid
)
191 if (!btrfs_test_opt(root
->fs_info
, INODE_MAP_CACHE
))
192 return btrfs_find_free_objectid(root
, objectid
);
195 *objectid
= btrfs_find_ino_for_alloc(root
);
202 wait_event(root
->ino_cache_wait
,
203 root
->ino_cache_state
== BTRFS_CACHE_FINISHED
||
204 root
->ino_cache_state
== BTRFS_CACHE_ERROR
||
205 root
->free_ino_ctl
->free_space
> 0);
207 if (root
->ino_cache_state
== BTRFS_CACHE_FINISHED
&&
208 root
->free_ino_ctl
->free_space
== 0)
210 else if (root
->ino_cache_state
== BTRFS_CACHE_ERROR
)
211 return btrfs_find_free_objectid(root
, objectid
);
216 void btrfs_return_ino(struct btrfs_root
*root
, u64 objectid
)
218 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
219 struct btrfs_free_space_ctl
*pinned
= root
->free_ino_pinned
;
221 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
224 if (root
->ino_cache_state
== BTRFS_CACHE_FINISHED
) {
225 __btrfs_add_free_space(fs_info
, pinned
, objectid
, 1, 0);
227 down_write(&fs_info
->commit_root_sem
);
228 spin_lock(&root
->ino_cache_lock
);
229 if (root
->ino_cache_state
== BTRFS_CACHE_FINISHED
) {
230 spin_unlock(&root
->ino_cache_lock
);
231 up_write(&fs_info
->commit_root_sem
);
234 spin_unlock(&root
->ino_cache_lock
);
238 __btrfs_add_free_space(fs_info
, pinned
, objectid
, 1, 0);
240 up_write(&fs_info
->commit_root_sem
);
245 * When a transaction is committed, we'll move those inode numbers which are
246 * smaller than root->ino_cache_progress from pinned tree to free_ino tree, and
247 * others will just be dropped, because the commit root we were searching has
250 * Must be called with root->fs_info->commit_root_sem held
252 void btrfs_unpin_free_ino(struct btrfs_root
*root
)
254 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
255 struct rb_root
*rbroot
= &root
->free_ino_pinned
->free_space_offset
;
256 spinlock_t
*rbroot_lock
= &root
->free_ino_pinned
->tree_lock
;
257 struct btrfs_free_space
*info
;
261 if (!btrfs_test_opt(root
->fs_info
, INODE_MAP_CACHE
))
265 spin_lock(rbroot_lock
);
266 n
= rb_first(rbroot
);
268 spin_unlock(rbroot_lock
);
272 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
273 BUG_ON(info
->bitmap
); /* Logic error */
275 if (info
->offset
> root
->ino_cache_progress
)
278 count
= min(root
->ino_cache_progress
- info
->offset
+ 1,
281 rb_erase(&info
->offset_index
, rbroot
);
282 spin_unlock(rbroot_lock
);
284 __btrfs_add_free_space(root
->fs_info
, ctl
,
285 info
->offset
, count
, 0);
286 kmem_cache_free(btrfs_free_space_cachep
, info
);
290 #define INIT_THRESHOLD ((SZ_32K / 2) / sizeof(struct btrfs_free_space))
291 #define INODES_PER_BITMAP (PAGE_SIZE * 8)
294 * The goal is to keep the memory used by the free_ino tree won't
295 * exceed the memory if we use bitmaps only.
297 static void recalculate_thresholds(struct btrfs_free_space_ctl
*ctl
)
299 struct btrfs_free_space
*info
;
304 n
= rb_last(&ctl
->free_space_offset
);
306 ctl
->extents_thresh
= INIT_THRESHOLD
;
309 info
= rb_entry(n
, struct btrfs_free_space
, offset_index
);
312 * Find the maximum inode number in the filesystem. Note we
313 * ignore the fact that this can be a bitmap, because we are
314 * not doing precise calculation.
316 max_ino
= info
->bytes
- 1;
318 max_bitmaps
= ALIGN(max_ino
, INODES_PER_BITMAP
) / INODES_PER_BITMAP
;
319 if (max_bitmaps
<= ctl
->total_bitmaps
) {
320 ctl
->extents_thresh
= 0;
324 ctl
->extents_thresh
= (max_bitmaps
- ctl
->total_bitmaps
) *
325 PAGE_SIZE
/ sizeof(*info
);
329 * We don't fall back to bitmap, if we are below the extents threshold
330 * or this chunk of inode numbers is a big one.
332 static bool use_bitmap(struct btrfs_free_space_ctl
*ctl
,
333 struct btrfs_free_space
*info
)
335 if (ctl
->free_extents
< ctl
->extents_thresh
||
336 info
->bytes
> INODES_PER_BITMAP
/ 10)
342 static const struct btrfs_free_space_op free_ino_op
= {
343 .recalc_thresholds
= recalculate_thresholds
,
344 .use_bitmap
= use_bitmap
,
347 static void pinned_recalc_thresholds(struct btrfs_free_space_ctl
*ctl
)
351 static bool pinned_use_bitmap(struct btrfs_free_space_ctl
*ctl
,
352 struct btrfs_free_space
*info
)
355 * We always use extents for two reasons:
357 * - The pinned tree is only used during the process of caching
359 * - Make code simpler. See btrfs_unpin_free_ino().
364 static const struct btrfs_free_space_op pinned_free_ino_op
= {
365 .recalc_thresholds
= pinned_recalc_thresholds
,
366 .use_bitmap
= pinned_use_bitmap
,
369 void btrfs_init_free_ino_ctl(struct btrfs_root
*root
)
371 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
372 struct btrfs_free_space_ctl
*pinned
= root
->free_ino_pinned
;
374 spin_lock_init(&ctl
->tree_lock
);
378 ctl
->op
= &free_ino_op
;
379 INIT_LIST_HEAD(&ctl
->trimming_ranges
);
380 mutex_init(&ctl
->cache_writeout_mutex
);
383 * Initially we allow to use 16K of ram to cache chunks of
384 * inode numbers before we resort to bitmaps. This is somewhat
385 * arbitrary, but it will be adjusted in runtime.
387 ctl
->extents_thresh
= INIT_THRESHOLD
;
389 spin_lock_init(&pinned
->tree_lock
);
392 pinned
->private = NULL
;
393 pinned
->extents_thresh
= 0;
394 pinned
->op
= &pinned_free_ino_op
;
397 int btrfs_save_ino_cache(struct btrfs_root
*root
,
398 struct btrfs_trans_handle
*trans
)
400 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
401 struct btrfs_free_space_ctl
*ctl
= root
->free_ino_ctl
;
402 struct btrfs_path
*path
;
404 struct btrfs_block_rsv
*rsv
;
405 struct extent_changeset
*data_reserved
= NULL
;
412 /* only fs tree and subvol/snap needs ino cache */
413 if (root
->root_key
.objectid
!= BTRFS_FS_TREE_OBJECTID
&&
414 (root
->root_key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
||
415 root
->root_key
.objectid
> BTRFS_LAST_FREE_OBJECTID
))
418 /* Don't save inode cache if we are deleting this root */
419 if (btrfs_root_refs(&root
->root_item
) == 0)
422 if (!btrfs_test_opt(fs_info
, INODE_MAP_CACHE
))
425 path
= btrfs_alloc_path();
429 rsv
= trans
->block_rsv
;
430 trans
->block_rsv
= &fs_info
->trans_block_rsv
;
432 num_bytes
= trans
->bytes_reserved
;
434 * 1 item for inode item insertion if need
435 * 4 items for inode item update (in the worst case)
436 * 1 items for slack space if we need do truncation
437 * 1 item for free space object
438 * 3 items for pre-allocation
440 trans
->bytes_reserved
= btrfs_calc_insert_metadata_size(fs_info
, 10);
441 ret
= btrfs_block_rsv_add(root
, trans
->block_rsv
,
442 trans
->bytes_reserved
,
443 BTRFS_RESERVE_NO_FLUSH
);
446 trace_btrfs_space_reservation(fs_info
, "ino_cache", trans
->transid
,
447 trans
->bytes_reserved
, 1);
449 inode
= lookup_free_ino_inode(root
, path
);
450 if (IS_ERR(inode
) && (PTR_ERR(inode
) != -ENOENT
|| retry
)) {
451 ret
= PTR_ERR(inode
);
456 BUG_ON(retry
); /* Logic error */
459 ret
= create_free_ino_inode(root
, trans
, path
);
465 BTRFS_I(inode
)->generation
= 0;
466 ret
= btrfs_update_inode(trans
, root
, inode
);
468 btrfs_abort_transaction(trans
, ret
);
472 if (i_size_read(inode
) > 0) {
473 ret
= btrfs_truncate_free_space_cache(trans
, NULL
, inode
);
476 btrfs_abort_transaction(trans
, ret
);
481 spin_lock(&root
->ino_cache_lock
);
482 if (root
->ino_cache_state
!= BTRFS_CACHE_FINISHED
) {
484 spin_unlock(&root
->ino_cache_lock
);
487 spin_unlock(&root
->ino_cache_lock
);
489 spin_lock(&ctl
->tree_lock
);
490 prealloc
= sizeof(struct btrfs_free_space
) * ctl
->free_extents
;
491 prealloc
= ALIGN(prealloc
, PAGE_SIZE
);
492 prealloc
+= ctl
->total_bitmaps
* PAGE_SIZE
;
493 spin_unlock(&ctl
->tree_lock
);
495 /* Just to make sure we have enough space */
496 prealloc
+= 8 * PAGE_SIZE
;
498 ret
= btrfs_delalloc_reserve_space(inode
, &data_reserved
, 0, prealloc
);
502 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, prealloc
,
503 prealloc
, prealloc
, &alloc_hint
);
505 btrfs_delalloc_release_extents(BTRFS_I(inode
), prealloc
);
506 btrfs_delalloc_release_metadata(BTRFS_I(inode
), prealloc
, true);
510 ret
= btrfs_write_out_ino_cache(root
, trans
, path
, inode
);
511 btrfs_delalloc_release_extents(BTRFS_I(inode
), prealloc
);
515 trace_btrfs_space_reservation(fs_info
, "ino_cache", trans
->transid
,
516 trans
->bytes_reserved
, 0);
517 btrfs_block_rsv_release(fs_info
, trans
->block_rsv
,
518 trans
->bytes_reserved
, NULL
);
520 trans
->block_rsv
= rsv
;
521 trans
->bytes_reserved
= num_bytes
;
523 btrfs_free_path(path
);
524 extent_changeset_free(data_reserved
);
528 int btrfs_find_highest_objectid(struct btrfs_root
*root
, u64
*objectid
)
530 struct btrfs_path
*path
;
532 struct extent_buffer
*l
;
533 struct btrfs_key search_key
;
534 struct btrfs_key found_key
;
537 path
= btrfs_alloc_path();
541 search_key
.objectid
= BTRFS_LAST_FREE_OBJECTID
;
542 search_key
.type
= -1;
543 search_key
.offset
= (u64
)-1;
544 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
547 BUG_ON(ret
== 0); /* Corruption */
548 if (path
->slots
[0] > 0) {
549 slot
= path
->slots
[0] - 1;
551 btrfs_item_key_to_cpu(l
, &found_key
, slot
);
552 *objectid
= max_t(u64
, found_key
.objectid
,
553 BTRFS_FIRST_FREE_OBJECTID
- 1);
555 *objectid
= BTRFS_FIRST_FREE_OBJECTID
- 1;
559 btrfs_free_path(path
);
563 int btrfs_find_free_objectid(struct btrfs_root
*root
, u64
*objectid
)
566 mutex_lock(&root
->objectid_mutex
);
568 if (unlikely(root
->highest_objectid
>= BTRFS_LAST_FREE_OBJECTID
)) {
569 btrfs_warn(root
->fs_info
,
570 "the objectid of root %llu reaches its highest value",
571 root
->root_key
.objectid
);
576 *objectid
= ++root
->highest_objectid
;
579 mutex_unlock(&root
->objectid_mutex
);