1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2008 Oracle. All rights reserved.
6 #include <linux/sched.h>
7 #include <linux/slab.h>
8 #include <linux/blkdev.h>
9 #include <linux/list_sort.h>
10 #include <linux/iversion.h>
16 #include "print-tree.h"
18 #include "compression.h"
20 #include "inode-map.h"
21 #include "block-group.h"
22 #include "space-info.h"
24 /* magic values for the inode_only field in btrfs_log_inode:
26 * LOG_INODE_ALL means to log everything
27 * LOG_INODE_EXISTS means to log just enough to recreate the inode
38 * directory trouble cases
40 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
41 * log, we must force a full commit before doing an fsync of the directory
42 * where the unlink was done.
43 * ---> record transid of last unlink/rename per directory
47 * rename foo/some_dir foo2/some_dir
49 * fsync foo/some_dir/some_file
51 * The fsync above will unlink the original some_dir without recording
52 * it in its new location (foo2). After a crash, some_dir will be gone
53 * unless the fsync of some_file forces a full commit
55 * 2) we must log any new names for any file or dir that is in the fsync
56 * log. ---> check inode while renaming/linking.
58 * 2a) we must log any new names for any file or dir during rename
59 * when the directory they are being removed from was logged.
60 * ---> check inode and old parent dir during rename
62 * 2a is actually the more important variant. With the extra logging
63 * a crash might unlink the old name without recreating the new one
65 * 3) after a crash, we must go through any directories with a link count
66 * of zero and redo the rm -rf
73 * The directory f1 was fully removed from the FS, but fsync was never
74 * called on f1, only its parent dir. After a crash the rm -rf must
75 * be replayed. This must be able to recurse down the entire
76 * directory tree. The inode link count fixup code takes care of the
81 * stages for the tree walking. The first
82 * stage (0) is to only pin down the blocks we find
83 * the second stage (1) is to make sure that all the inodes
84 * we find in the log are created in the subvolume.
86 * The last stage is to deal with directories and links and extents
87 * and all the other fun semantics
91 LOG_WALK_REPLAY_INODES
,
92 LOG_WALK_REPLAY_DIR_INDEX
,
96 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
97 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
101 struct btrfs_log_ctx
*ctx
);
102 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
103 struct btrfs_root
*root
,
104 struct btrfs_path
*path
, u64 objectid
);
105 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
106 struct btrfs_root
*root
,
107 struct btrfs_root
*log
,
108 struct btrfs_path
*path
,
109 u64 dirid
, int del_all
);
112 * tree logging is a special write ahead log used to make sure that
113 * fsyncs and O_SYNCs can happen without doing full tree commits.
115 * Full tree commits are expensive because they require commonly
116 * modified blocks to be recowed, creating many dirty pages in the
117 * extent tree an 4x-6x higher write load than ext3.
119 * Instead of doing a tree commit on every fsync, we use the
120 * key ranges and transaction ids to find items for a given file or directory
121 * that have changed in this transaction. Those items are copied into
122 * a special tree (one per subvolume root), that tree is written to disk
123 * and then the fsync is considered complete.
125 * After a crash, items are copied out of the log-tree back into the
126 * subvolume tree. Any file data extents found are recorded in the extent
127 * allocation tree, and the log-tree freed.
129 * The log tree is read three times, once to pin down all the extents it is
130 * using in ram and once, once to create all the inodes logged in the tree
131 * and once to do all the other items.
135 * start a sub transaction and setup the log tree
136 * this increments the log tree writer count to make the people
137 * syncing the tree wait for us to finish
139 static int start_log_trans(struct btrfs_trans_handle
*trans
,
140 struct btrfs_root
*root
,
141 struct btrfs_log_ctx
*ctx
)
143 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
146 mutex_lock(&root
->log_mutex
);
148 if (root
->log_root
) {
149 if (btrfs_need_log_full_commit(trans
)) {
154 if (!root
->log_start_pid
) {
155 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
156 root
->log_start_pid
= current
->pid
;
157 } else if (root
->log_start_pid
!= current
->pid
) {
158 set_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
161 mutex_lock(&fs_info
->tree_log_mutex
);
162 if (!fs_info
->log_root_tree
)
163 ret
= btrfs_init_log_root_tree(trans
, fs_info
);
164 mutex_unlock(&fs_info
->tree_log_mutex
);
168 ret
= btrfs_add_log_tree(trans
, root
);
172 set_bit(BTRFS_ROOT_HAS_LOG_TREE
, &root
->state
);
173 clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
);
174 root
->log_start_pid
= current
->pid
;
177 atomic_inc(&root
->log_batch
);
178 atomic_inc(&root
->log_writers
);
180 int index
= root
->log_transid
% 2;
181 list_add_tail(&ctx
->list
, &root
->log_ctxs
[index
]);
182 ctx
->log_transid
= root
->log_transid
;
186 mutex_unlock(&root
->log_mutex
);
191 * returns 0 if there was a log transaction running and we were able
192 * to join, or returns -ENOENT if there were not transactions
195 static int join_running_log_trans(struct btrfs_root
*root
)
199 if (!test_bit(BTRFS_ROOT_HAS_LOG_TREE
, &root
->state
))
202 mutex_lock(&root
->log_mutex
);
203 if (root
->log_root
) {
205 atomic_inc(&root
->log_writers
);
207 mutex_unlock(&root
->log_mutex
);
212 * This either makes the current running log transaction wait
213 * until you call btrfs_end_log_trans() or it makes any future
214 * log transactions wait until you call btrfs_end_log_trans()
216 void btrfs_pin_log_trans(struct btrfs_root
*root
)
218 mutex_lock(&root
->log_mutex
);
219 atomic_inc(&root
->log_writers
);
220 mutex_unlock(&root
->log_mutex
);
224 * indicate we're done making changes to the log tree
225 * and wake up anyone waiting to do a sync
227 void btrfs_end_log_trans(struct btrfs_root
*root
)
229 if (atomic_dec_and_test(&root
->log_writers
)) {
230 /* atomic_dec_and_test implies a barrier */
231 cond_wake_up_nomb(&root
->log_writer_wait
);
235 static int btrfs_write_tree_block(struct extent_buffer
*buf
)
237 return filemap_fdatawrite_range(buf
->pages
[0]->mapping
, buf
->start
,
238 buf
->start
+ buf
->len
- 1);
241 static void btrfs_wait_tree_block_writeback(struct extent_buffer
*buf
)
243 filemap_fdatawait_range(buf
->pages
[0]->mapping
,
244 buf
->start
, buf
->start
+ buf
->len
- 1);
248 * the walk control struct is used to pass state down the chain when
249 * processing the log tree. The stage field tells us which part
250 * of the log tree processing we are currently doing. The others
251 * are state fields used for that specific part
253 struct walk_control
{
254 /* should we free the extent on disk when done? This is used
255 * at transaction commit time while freeing a log tree
259 /* should we write out the extent buffer? This is used
260 * while flushing the log tree to disk during a sync
264 /* should we wait for the extent buffer io to finish? Also used
265 * while flushing the log tree to disk for a sync
269 /* pin only walk, we record which extents on disk belong to the
274 /* what stage of the replay code we're currently in */
278 * Ignore any items from the inode currently being processed. Needs
279 * to be set every time we find a BTRFS_INODE_ITEM_KEY and we are in
280 * the LOG_WALK_REPLAY_INODES stage.
282 bool ignore_cur_inode
;
284 /* the root we are currently replaying */
285 struct btrfs_root
*replay_dest
;
287 /* the trans handle for the current replay */
288 struct btrfs_trans_handle
*trans
;
290 /* the function that gets used to process blocks we find in the
291 * tree. Note the extent_buffer might not be up to date when it is
292 * passed in, and it must be checked or read if you need the data
295 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
296 struct walk_control
*wc
, u64 gen
, int level
);
300 * process_func used to pin down extents, write them or wait on them
302 static int process_one_buffer(struct btrfs_root
*log
,
303 struct extent_buffer
*eb
,
304 struct walk_control
*wc
, u64 gen
, int level
)
306 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
310 * If this fs is mixed then we need to be able to process the leaves to
311 * pin down any logged extents, so we have to read the block.
313 if (btrfs_fs_incompat(fs_info
, MIXED_GROUPS
)) {
314 ret
= btrfs_read_buffer(eb
, gen
, level
, NULL
);
320 ret
= btrfs_pin_extent_for_log_replay(wc
->trans
, eb
->start
,
323 if (!ret
&& btrfs_buffer_uptodate(eb
, gen
, 0)) {
324 if (wc
->pin
&& btrfs_header_level(eb
) == 0)
325 ret
= btrfs_exclude_logged_extents(eb
);
327 btrfs_write_tree_block(eb
);
329 btrfs_wait_tree_block_writeback(eb
);
335 * Item overwrite used by replay and tree logging. eb, slot and key all refer
336 * to the src data we are copying out.
338 * root is the tree we are copying into, and path is a scratch
339 * path for use in this function (it should be released on entry and
340 * will be released on exit).
342 * If the key is already in the destination tree the existing item is
343 * overwritten. If the existing item isn't big enough, it is extended.
344 * If it is too large, it is truncated.
346 * If the key isn't in the destination yet, a new item is inserted.
348 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
349 struct btrfs_root
*root
,
350 struct btrfs_path
*path
,
351 struct extent_buffer
*eb
, int slot
,
352 struct btrfs_key
*key
)
356 u64 saved_i_size
= 0;
357 int save_old_i_size
= 0;
358 unsigned long src_ptr
;
359 unsigned long dst_ptr
;
360 int overwrite_root
= 0;
361 bool inode_item
= key
->type
== BTRFS_INODE_ITEM_KEY
;
363 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
366 item_size
= btrfs_item_size_nr(eb
, slot
);
367 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
369 /* look for the key in the destination tree */
370 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
377 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
379 if (dst_size
!= item_size
)
382 if (item_size
== 0) {
383 btrfs_release_path(path
);
386 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
387 src_copy
= kmalloc(item_size
, GFP_NOFS
);
388 if (!dst_copy
|| !src_copy
) {
389 btrfs_release_path(path
);
395 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
397 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
398 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
400 ret
= memcmp(dst_copy
, src_copy
, item_size
);
405 * they have the same contents, just return, this saves
406 * us from cowing blocks in the destination tree and doing
407 * extra writes that may not have been done by a previous
411 btrfs_release_path(path
);
416 * We need to load the old nbytes into the inode so when we
417 * replay the extents we've logged we get the right nbytes.
420 struct btrfs_inode_item
*item
;
424 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
425 struct btrfs_inode_item
);
426 nbytes
= btrfs_inode_nbytes(path
->nodes
[0], item
);
427 item
= btrfs_item_ptr(eb
, slot
,
428 struct btrfs_inode_item
);
429 btrfs_set_inode_nbytes(eb
, item
, nbytes
);
432 * If this is a directory we need to reset the i_size to
433 * 0 so that we can set it up properly when replaying
434 * the rest of the items in this log.
436 mode
= btrfs_inode_mode(eb
, item
);
438 btrfs_set_inode_size(eb
, item
, 0);
440 } else if (inode_item
) {
441 struct btrfs_inode_item
*item
;
445 * New inode, set nbytes to 0 so that the nbytes comes out
446 * properly when we replay the extents.
448 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_inode_item
);
449 btrfs_set_inode_nbytes(eb
, item
, 0);
452 * If this is a directory we need to reset the i_size to 0 so
453 * that we can set it up properly when replaying the rest of
454 * the items in this log.
456 mode
= btrfs_inode_mode(eb
, item
);
458 btrfs_set_inode_size(eb
, item
, 0);
461 btrfs_release_path(path
);
462 /* try to insert the key into the destination tree */
463 path
->skip_release_on_error
= 1;
464 ret
= btrfs_insert_empty_item(trans
, root
, path
,
466 path
->skip_release_on_error
= 0;
468 /* make sure any existing item is the correct size */
469 if (ret
== -EEXIST
|| ret
== -EOVERFLOW
) {
471 found_size
= btrfs_item_size_nr(path
->nodes
[0],
473 if (found_size
> item_size
)
474 btrfs_truncate_item(path
, item_size
, 1);
475 else if (found_size
< item_size
)
476 btrfs_extend_item(path
, item_size
- found_size
);
480 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
483 /* don't overwrite an existing inode if the generation number
484 * was logged as zero. This is done when the tree logging code
485 * is just logging an inode to make sure it exists after recovery.
487 * Also, don't overwrite i_size on directories during replay.
488 * log replay inserts and removes directory items based on the
489 * state of the tree found in the subvolume, and i_size is modified
492 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
493 struct btrfs_inode_item
*src_item
;
494 struct btrfs_inode_item
*dst_item
;
496 src_item
= (struct btrfs_inode_item
*)src_ptr
;
497 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
499 if (btrfs_inode_generation(eb
, src_item
) == 0) {
500 struct extent_buffer
*dst_eb
= path
->nodes
[0];
501 const u64 ino_size
= btrfs_inode_size(eb
, src_item
);
504 * For regular files an ino_size == 0 is used only when
505 * logging that an inode exists, as part of a directory
506 * fsync, and the inode wasn't fsynced before. In this
507 * case don't set the size of the inode in the fs/subvol
508 * tree, otherwise we would be throwing valid data away.
510 if (S_ISREG(btrfs_inode_mode(eb
, src_item
)) &&
511 S_ISREG(btrfs_inode_mode(dst_eb
, dst_item
)) &&
513 btrfs_set_inode_size(dst_eb
, dst_item
, ino_size
);
517 if (overwrite_root
&&
518 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
519 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
521 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
526 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
529 if (save_old_i_size
) {
530 struct btrfs_inode_item
*dst_item
;
531 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
532 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
535 /* make sure the generation is filled in */
536 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
537 struct btrfs_inode_item
*dst_item
;
538 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
539 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
540 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
545 btrfs_mark_buffer_dirty(path
->nodes
[0]);
546 btrfs_release_path(path
);
551 * simple helper to read an inode off the disk from a given root
552 * This can only be called for subvolume roots and not for the log
554 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
559 inode
= btrfs_iget(root
->fs_info
->sb
, objectid
, root
);
565 /* replays a single extent in 'eb' at 'slot' with 'key' into the
566 * subvolume 'root'. path is released on entry and should be released
569 * extents in the log tree have not been allocated out of the extent
570 * tree yet. So, this completes the allocation, taking a reference
571 * as required if the extent already exists or creating a new extent
572 * if it isn't in the extent allocation tree yet.
574 * The extent is inserted into the file, dropping any existing extents
575 * from the file that overlap the new one.
577 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
578 struct btrfs_root
*root
,
579 struct btrfs_path
*path
,
580 struct extent_buffer
*eb
, int slot
,
581 struct btrfs_key
*key
)
583 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
586 u64 start
= key
->offset
;
588 struct btrfs_file_extent_item
*item
;
589 struct inode
*inode
= NULL
;
593 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
594 found_type
= btrfs_file_extent_type(eb
, item
);
596 if (found_type
== BTRFS_FILE_EXTENT_REG
||
597 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
598 nbytes
= btrfs_file_extent_num_bytes(eb
, item
);
599 extent_end
= start
+ nbytes
;
602 * We don't add to the inodes nbytes if we are prealloc or a
605 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0)
607 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
608 size
= btrfs_file_extent_ram_bytes(eb
, item
);
609 nbytes
= btrfs_file_extent_ram_bytes(eb
, item
);
610 extent_end
= ALIGN(start
+ size
,
611 fs_info
->sectorsize
);
617 inode
= read_one_inode(root
, key
->objectid
);
624 * first check to see if we already have this extent in the
625 * file. This must be done before the btrfs_drop_extents run
626 * so we don't try to drop this extent.
628 ret
= btrfs_lookup_file_extent(trans
, root
, path
,
629 btrfs_ino(BTRFS_I(inode
)), start
, 0);
632 (found_type
== BTRFS_FILE_EXTENT_REG
||
633 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
634 struct btrfs_file_extent_item cmp1
;
635 struct btrfs_file_extent_item cmp2
;
636 struct btrfs_file_extent_item
*existing
;
637 struct extent_buffer
*leaf
;
639 leaf
= path
->nodes
[0];
640 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
641 struct btrfs_file_extent_item
);
643 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
645 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
649 * we already have a pointer to this exact extent,
650 * we don't have to do anything
652 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
653 btrfs_release_path(path
);
657 btrfs_release_path(path
);
659 /* drop any overlapping extents */
660 ret
= btrfs_drop_extents(trans
, root
, inode
, start
, extent_end
, 1);
664 if (found_type
== BTRFS_FILE_EXTENT_REG
||
665 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
667 unsigned long dest_offset
;
668 struct btrfs_key ins
;
670 if (btrfs_file_extent_disk_bytenr(eb
, item
) == 0 &&
671 btrfs_fs_incompat(fs_info
, NO_HOLES
))
674 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
678 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
680 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
681 (unsigned long)item
, sizeof(*item
));
683 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
684 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
685 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
686 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
689 * Manually record dirty extent, as here we did a shallow
690 * file extent item copy and skip normal backref update,
691 * but modifying extent tree all by ourselves.
692 * So need to manually record dirty extent for qgroup,
693 * as the owner of the file extent changed from log tree
694 * (doesn't affect qgroup) to fs/file tree(affects qgroup)
696 ret
= btrfs_qgroup_trace_extent(trans
,
697 btrfs_file_extent_disk_bytenr(eb
, item
),
698 btrfs_file_extent_disk_num_bytes(eb
, item
),
703 if (ins
.objectid
> 0) {
704 struct btrfs_ref ref
= { 0 };
707 LIST_HEAD(ordered_sums
);
710 * is this extent already allocated in the extent
711 * allocation tree? If so, just add a reference
713 ret
= btrfs_lookup_data_extent(fs_info
, ins
.objectid
,
716 btrfs_init_generic_ref(&ref
,
717 BTRFS_ADD_DELAYED_REF
,
718 ins
.objectid
, ins
.offset
, 0);
719 btrfs_init_data_ref(&ref
,
720 root
->root_key
.objectid
,
721 key
->objectid
, offset
);
722 ret
= btrfs_inc_extent_ref(trans
, &ref
);
727 * insert the extent pointer in the extent
730 ret
= btrfs_alloc_logged_file_extent(trans
,
731 root
->root_key
.objectid
,
732 key
->objectid
, offset
, &ins
);
736 btrfs_release_path(path
);
738 if (btrfs_file_extent_compression(eb
, item
)) {
739 csum_start
= ins
.objectid
;
740 csum_end
= csum_start
+ ins
.offset
;
742 csum_start
= ins
.objectid
+
743 btrfs_file_extent_offset(eb
, item
);
744 csum_end
= csum_start
+
745 btrfs_file_extent_num_bytes(eb
, item
);
748 ret
= btrfs_lookup_csums_range(root
->log_root
,
749 csum_start
, csum_end
- 1,
754 * Now delete all existing cums in the csum root that
755 * cover our range. We do this because we can have an
756 * extent that is completely referenced by one file
757 * extent item and partially referenced by another
758 * file extent item (like after using the clone or
759 * extent_same ioctls). In this case if we end up doing
760 * the replay of the one that partially references the
761 * extent first, and we do not do the csum deletion
762 * below, we can get 2 csum items in the csum tree that
763 * overlap each other. For example, imagine our log has
764 * the two following file extent items:
766 * key (257 EXTENT_DATA 409600)
767 * extent data disk byte 12845056 nr 102400
768 * extent data offset 20480 nr 20480 ram 102400
770 * key (257 EXTENT_DATA 819200)
771 * extent data disk byte 12845056 nr 102400
772 * extent data offset 0 nr 102400 ram 102400
774 * Where the second one fully references the 100K extent
775 * that starts at disk byte 12845056, and the log tree
776 * has a single csum item that covers the entire range
779 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
781 * After the first file extent item is replayed, the
782 * csum tree gets the following csum item:
784 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
786 * Which covers the 20K sub-range starting at offset 20K
787 * of our extent. Now when we replay the second file
788 * extent item, if we do not delete existing csum items
789 * that cover any of its blocks, we end up getting two
790 * csum items in our csum tree that overlap each other:
792 * key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
793 * key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
795 * Which is a problem, because after this anyone trying
796 * to lookup up for the checksum of any block of our
797 * extent starting at an offset of 40K or higher, will
798 * end up looking at the second csum item only, which
799 * does not contain the checksum for any block starting
800 * at offset 40K or higher of our extent.
802 while (!list_empty(&ordered_sums
)) {
803 struct btrfs_ordered_sum
*sums
;
804 sums
= list_entry(ordered_sums
.next
,
805 struct btrfs_ordered_sum
,
808 ret
= btrfs_del_csums(trans
,
813 ret
= btrfs_csum_file_blocks(trans
,
814 fs_info
->csum_root
, sums
);
815 list_del(&sums
->list
);
821 btrfs_release_path(path
);
823 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
824 /* inline extents are easy, we just overwrite them */
825 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
830 ret
= btrfs_inode_set_file_extent_range(BTRFS_I(inode
), start
,
835 inode_add_bytes(inode
, nbytes
);
837 ret
= btrfs_update_inode(trans
, root
, inode
);
845 * when cleaning up conflicts between the directory names in the
846 * subvolume, directory names in the log and directory names in the
847 * inode back references, we may have to unlink inodes from directories.
849 * This is a helper function to do the unlink of a specific directory
852 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
853 struct btrfs_root
*root
,
854 struct btrfs_path
*path
,
855 struct btrfs_inode
*dir
,
856 struct btrfs_dir_item
*di
)
861 struct extent_buffer
*leaf
;
862 struct btrfs_key location
;
865 leaf
= path
->nodes
[0];
867 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
868 name_len
= btrfs_dir_name_len(leaf
, di
);
869 name
= kmalloc(name_len
, GFP_NOFS
);
873 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
874 btrfs_release_path(path
);
876 inode
= read_one_inode(root
, location
.objectid
);
882 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
886 ret
= btrfs_unlink_inode(trans
, root
, dir
, BTRFS_I(inode
), name
,
891 ret
= btrfs_run_delayed_items(trans
);
899 * helper function to see if a given name and sequence number found
900 * in an inode back reference are already in a directory and correctly
901 * point to this inode
903 static noinline
int inode_in_dir(struct btrfs_root
*root
,
904 struct btrfs_path
*path
,
905 u64 dirid
, u64 objectid
, u64 index
,
906 const char *name
, int name_len
)
908 struct btrfs_dir_item
*di
;
909 struct btrfs_key location
;
912 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
913 index
, name
, name_len
, 0);
914 if (di
&& !IS_ERR(di
)) {
915 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
916 if (location
.objectid
!= objectid
)
920 btrfs_release_path(path
);
922 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
923 if (di
&& !IS_ERR(di
)) {
924 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
925 if (location
.objectid
!= objectid
)
931 btrfs_release_path(path
);
936 * helper function to check a log tree for a named back reference in
937 * an inode. This is used to decide if a back reference that is
938 * found in the subvolume conflicts with what we find in the log.
940 * inode backreferences may have multiple refs in a single item,
941 * during replay we process one reference at a time, and we don't
942 * want to delete valid links to a file from the subvolume if that
943 * link is also in the log.
945 static noinline
int backref_in_log(struct btrfs_root
*log
,
946 struct btrfs_key
*key
,
948 const char *name
, int namelen
)
950 struct btrfs_path
*path
;
953 path
= btrfs_alloc_path();
957 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
960 } else if (ret
== 1) {
965 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
966 ret
= !!btrfs_find_name_in_ext_backref(path
->nodes
[0],
971 ret
= !!btrfs_find_name_in_backref(path
->nodes
[0],
975 btrfs_free_path(path
);
979 static inline int __add_inode_ref(struct btrfs_trans_handle
*trans
,
980 struct btrfs_root
*root
,
981 struct btrfs_path
*path
,
982 struct btrfs_root
*log_root
,
983 struct btrfs_inode
*dir
,
984 struct btrfs_inode
*inode
,
985 u64 inode_objectid
, u64 parent_objectid
,
986 u64 ref_index
, char *name
, int namelen
,
992 struct extent_buffer
*leaf
;
993 struct btrfs_dir_item
*di
;
994 struct btrfs_key search_key
;
995 struct btrfs_inode_extref
*extref
;
998 /* Search old style refs */
999 search_key
.objectid
= inode_objectid
;
1000 search_key
.type
= BTRFS_INODE_REF_KEY
;
1001 search_key
.offset
= parent_objectid
;
1002 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
1004 struct btrfs_inode_ref
*victim_ref
;
1006 unsigned long ptr_end
;
1008 leaf
= path
->nodes
[0];
1010 /* are we trying to overwrite a back ref for the root directory
1011 * if so, just jump out, we're done
1013 if (search_key
.objectid
== search_key
.offset
)
1016 /* check all the names in this back reference to see
1017 * if they are in the log. if so, we allow them to stay
1018 * otherwise they must be unlinked as a conflict
1020 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1021 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1022 while (ptr
< ptr_end
) {
1023 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
1024 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
1026 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1030 read_extent_buffer(leaf
, victim_name
,
1031 (unsigned long)(victim_ref
+ 1),
1034 ret
= backref_in_log(log_root
, &search_key
,
1035 parent_objectid
, victim_name
,
1041 inc_nlink(&inode
->vfs_inode
);
1042 btrfs_release_path(path
);
1044 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1045 victim_name
, victim_name_len
);
1049 ret
= btrfs_run_delayed_items(trans
);
1057 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
1061 * NOTE: we have searched root tree and checked the
1062 * corresponding ref, it does not need to check again.
1066 btrfs_release_path(path
);
1068 /* Same search but for extended refs */
1069 extref
= btrfs_lookup_inode_extref(NULL
, root
, path
, name
, namelen
,
1070 inode_objectid
, parent_objectid
, 0,
1072 if (!IS_ERR_OR_NULL(extref
)) {
1076 struct inode
*victim_parent
;
1078 leaf
= path
->nodes
[0];
1080 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1081 base
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1083 while (cur_offset
< item_size
) {
1084 extref
= (struct btrfs_inode_extref
*)(base
+ cur_offset
);
1086 victim_name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1088 if (btrfs_inode_extref_parent(leaf
, extref
) != parent_objectid
)
1091 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
1094 read_extent_buffer(leaf
, victim_name
, (unsigned long)&extref
->name
,
1097 search_key
.objectid
= inode_objectid
;
1098 search_key
.type
= BTRFS_INODE_EXTREF_KEY
;
1099 search_key
.offset
= btrfs_extref_hash(parent_objectid
,
1102 ret
= backref_in_log(log_root
, &search_key
,
1103 parent_objectid
, victim_name
,
1109 victim_parent
= read_one_inode(root
,
1111 if (victim_parent
) {
1112 inc_nlink(&inode
->vfs_inode
);
1113 btrfs_release_path(path
);
1115 ret
= btrfs_unlink_inode(trans
, root
,
1116 BTRFS_I(victim_parent
),
1121 ret
= btrfs_run_delayed_items(
1124 iput(victim_parent
);
1133 cur_offset
+= victim_name_len
+ sizeof(*extref
);
1137 btrfs_release_path(path
);
1139 /* look for a conflicting sequence number */
1140 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
1141 ref_index
, name
, namelen
, 0);
1142 if (di
&& !IS_ERR(di
)) {
1143 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1147 btrfs_release_path(path
);
1149 /* look for a conflicting name */
1150 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
1152 if (di
&& !IS_ERR(di
)) {
1153 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
1157 btrfs_release_path(path
);
1162 static int extref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1163 u32
*namelen
, char **name
, u64
*index
,
1164 u64
*parent_objectid
)
1166 struct btrfs_inode_extref
*extref
;
1168 extref
= (struct btrfs_inode_extref
*)ref_ptr
;
1170 *namelen
= btrfs_inode_extref_name_len(eb
, extref
);
1171 *name
= kmalloc(*namelen
, GFP_NOFS
);
1175 read_extent_buffer(eb
, *name
, (unsigned long)&extref
->name
,
1179 *index
= btrfs_inode_extref_index(eb
, extref
);
1180 if (parent_objectid
)
1181 *parent_objectid
= btrfs_inode_extref_parent(eb
, extref
);
1186 static int ref_get_fields(struct extent_buffer
*eb
, unsigned long ref_ptr
,
1187 u32
*namelen
, char **name
, u64
*index
)
1189 struct btrfs_inode_ref
*ref
;
1191 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
1193 *namelen
= btrfs_inode_ref_name_len(eb
, ref
);
1194 *name
= kmalloc(*namelen
, GFP_NOFS
);
1198 read_extent_buffer(eb
, *name
, (unsigned long)(ref
+ 1), *namelen
);
1201 *index
= btrfs_inode_ref_index(eb
, ref
);
1207 * Take an inode reference item from the log tree and iterate all names from the
1208 * inode reference item in the subvolume tree with the same key (if it exists).
1209 * For any name that is not in the inode reference item from the log tree, do a
1210 * proper unlink of that name (that is, remove its entry from the inode
1211 * reference item and both dir index keys).
1213 static int unlink_old_inode_refs(struct btrfs_trans_handle
*trans
,
1214 struct btrfs_root
*root
,
1215 struct btrfs_path
*path
,
1216 struct btrfs_inode
*inode
,
1217 struct extent_buffer
*log_eb
,
1219 struct btrfs_key
*key
)
1222 unsigned long ref_ptr
;
1223 unsigned long ref_end
;
1224 struct extent_buffer
*eb
;
1227 btrfs_release_path(path
);
1228 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
1236 eb
= path
->nodes
[0];
1237 ref_ptr
= btrfs_item_ptr_offset(eb
, path
->slots
[0]);
1238 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, path
->slots
[0]);
1239 while (ref_ptr
< ref_end
) {
1244 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1245 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1248 parent_id
= key
->offset
;
1249 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1255 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
1256 ret
= !!btrfs_find_name_in_ext_backref(log_eb
, log_slot
,
1260 ret
= !!btrfs_find_name_in_backref(log_eb
, log_slot
,
1266 btrfs_release_path(path
);
1267 dir
= read_one_inode(root
, parent_id
);
1273 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
1274 inode
, name
, namelen
);
1284 if (key
->type
== BTRFS_INODE_EXTREF_KEY
)
1285 ref_ptr
+= sizeof(struct btrfs_inode_extref
);
1287 ref_ptr
+= sizeof(struct btrfs_inode_ref
);
1291 btrfs_release_path(path
);
1295 static int btrfs_inode_ref_exists(struct inode
*inode
, struct inode
*dir
,
1296 const u8 ref_type
, const char *name
,
1299 struct btrfs_key key
;
1300 struct btrfs_path
*path
;
1301 const u64 parent_id
= btrfs_ino(BTRFS_I(dir
));
1304 path
= btrfs_alloc_path();
1308 key
.objectid
= btrfs_ino(BTRFS_I(inode
));
1309 key
.type
= ref_type
;
1310 if (key
.type
== BTRFS_INODE_REF_KEY
)
1311 key
.offset
= parent_id
;
1313 key
.offset
= btrfs_extref_hash(parent_id
, name
, namelen
);
1315 ret
= btrfs_search_slot(NULL
, BTRFS_I(inode
)->root
, &key
, path
, 0, 0);
1322 if (key
.type
== BTRFS_INODE_EXTREF_KEY
)
1323 ret
= !!btrfs_find_name_in_ext_backref(path
->nodes
[0],
1324 path
->slots
[0], parent_id
, name
, namelen
);
1326 ret
= !!btrfs_find_name_in_backref(path
->nodes
[0], path
->slots
[0],
1330 btrfs_free_path(path
);
1334 static int add_link(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
1335 struct inode
*dir
, struct inode
*inode
, const char *name
,
1336 int namelen
, u64 ref_index
)
1338 struct btrfs_dir_item
*dir_item
;
1339 struct btrfs_key key
;
1340 struct btrfs_path
*path
;
1341 struct inode
*other_inode
= NULL
;
1344 path
= btrfs_alloc_path();
1348 dir_item
= btrfs_lookup_dir_item(NULL
, root
, path
,
1349 btrfs_ino(BTRFS_I(dir
)),
1352 btrfs_release_path(path
);
1354 } else if (IS_ERR(dir_item
)) {
1355 ret
= PTR_ERR(dir_item
);
1360 * Our inode's dentry collides with the dentry of another inode which is
1361 * in the log but not yet processed since it has a higher inode number.
1362 * So delete that other dentry.
1364 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dir_item
, &key
);
1365 btrfs_release_path(path
);
1366 other_inode
= read_one_inode(root
, key
.objectid
);
1371 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
), BTRFS_I(other_inode
),
1376 * If we dropped the link count to 0, bump it so that later the iput()
1377 * on the inode will not free it. We will fixup the link count later.
1379 if (other_inode
->i_nlink
== 0)
1380 inc_nlink(other_inode
);
1382 ret
= btrfs_run_delayed_items(trans
);
1386 ret
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
),
1387 name
, namelen
, 0, ref_index
);
1390 btrfs_free_path(path
);
1396 * replay one inode back reference item found in the log tree.
1397 * eb, slot and key refer to the buffer and key found in the log tree.
1398 * root is the destination we are replaying into, and path is for temp
1399 * use by this function. (it should be released on return).
1401 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
1402 struct btrfs_root
*root
,
1403 struct btrfs_root
*log
,
1404 struct btrfs_path
*path
,
1405 struct extent_buffer
*eb
, int slot
,
1406 struct btrfs_key
*key
)
1408 struct inode
*dir
= NULL
;
1409 struct inode
*inode
= NULL
;
1410 unsigned long ref_ptr
;
1411 unsigned long ref_end
;
1415 int search_done
= 0;
1416 int log_ref_ver
= 0;
1417 u64 parent_objectid
;
1420 int ref_struct_size
;
1422 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
1423 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
1425 if (key
->type
== BTRFS_INODE_EXTREF_KEY
) {
1426 struct btrfs_inode_extref
*r
;
1428 ref_struct_size
= sizeof(struct btrfs_inode_extref
);
1430 r
= (struct btrfs_inode_extref
*)ref_ptr
;
1431 parent_objectid
= btrfs_inode_extref_parent(eb
, r
);
1433 ref_struct_size
= sizeof(struct btrfs_inode_ref
);
1434 parent_objectid
= key
->offset
;
1436 inode_objectid
= key
->objectid
;
1439 * it is possible that we didn't log all the parent directories
1440 * for a given inode. If we don't find the dir, just don't
1441 * copy the back ref in. The link count fixup code will take
1444 dir
= read_one_inode(root
, parent_objectid
);
1450 inode
= read_one_inode(root
, inode_objectid
);
1456 while (ref_ptr
< ref_end
) {
1458 ret
= extref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1459 &ref_index
, &parent_objectid
);
1461 * parent object can change from one array
1465 dir
= read_one_inode(root
, parent_objectid
);
1471 ret
= ref_get_fields(eb
, ref_ptr
, &namelen
, &name
,
1477 /* if we already have a perfect match, we're done */
1478 if (!inode_in_dir(root
, path
, btrfs_ino(BTRFS_I(dir
)),
1479 btrfs_ino(BTRFS_I(inode
)), ref_index
,
1482 * look for a conflicting back reference in the
1483 * metadata. if we find one we have to unlink that name
1484 * of the file before we add our new link. Later on, we
1485 * overwrite any existing back reference, and we don't
1486 * want to create dangling pointers in the directory.
1490 ret
= __add_inode_ref(trans
, root
, path
, log
,
1495 ref_index
, name
, namelen
,
1505 * If a reference item already exists for this inode
1506 * with the same parent and name, but different index,
1507 * drop it and the corresponding directory index entries
1508 * from the parent before adding the new reference item
1509 * and dir index entries, otherwise we would fail with
1510 * -EEXIST returned from btrfs_add_link() below.
1512 ret
= btrfs_inode_ref_exists(inode
, dir
, key
->type
,
1515 ret
= btrfs_unlink_inode(trans
, root
,
1520 * If we dropped the link count to 0, bump it so
1521 * that later the iput() on the inode will not
1522 * free it. We will fixup the link count later.
1524 if (!ret
&& inode
->i_nlink
== 0)
1530 /* insert our name */
1531 ret
= add_link(trans
, root
, dir
, inode
, name
, namelen
,
1536 btrfs_update_inode(trans
, root
, inode
);
1539 ref_ptr
= (unsigned long)(ref_ptr
+ ref_struct_size
) + namelen
;
1549 * Before we overwrite the inode reference item in the subvolume tree
1550 * with the item from the log tree, we must unlink all names from the
1551 * parent directory that are in the subvolume's tree inode reference
1552 * item, otherwise we end up with an inconsistent subvolume tree where
1553 * dir index entries exist for a name but there is no inode reference
1554 * item with the same name.
1556 ret
= unlink_old_inode_refs(trans
, root
, path
, BTRFS_I(inode
), eb
, slot
,
1561 /* finally write the back reference in the inode */
1562 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
1564 btrfs_release_path(path
);
1571 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
1572 struct btrfs_root
*root
, u64 ino
)
1576 ret
= btrfs_insert_orphan_item(trans
, root
, ino
);
1583 static int count_inode_extrefs(struct btrfs_root
*root
,
1584 struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1588 unsigned int nlink
= 0;
1591 u64 inode_objectid
= btrfs_ino(inode
);
1594 struct btrfs_inode_extref
*extref
;
1595 struct extent_buffer
*leaf
;
1598 ret
= btrfs_find_one_extref(root
, inode_objectid
, offset
, path
,
1603 leaf
= path
->nodes
[0];
1604 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1605 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
1608 while (cur_offset
< item_size
) {
1609 extref
= (struct btrfs_inode_extref
*) (ptr
+ cur_offset
);
1610 name_len
= btrfs_inode_extref_name_len(leaf
, extref
);
1614 cur_offset
+= name_len
+ sizeof(*extref
);
1618 btrfs_release_path(path
);
1620 btrfs_release_path(path
);
1622 if (ret
< 0 && ret
!= -ENOENT
)
1627 static int count_inode_refs(struct btrfs_root
*root
,
1628 struct btrfs_inode
*inode
, struct btrfs_path
*path
)
1631 struct btrfs_key key
;
1632 unsigned int nlink
= 0;
1634 unsigned long ptr_end
;
1636 u64 ino
= btrfs_ino(inode
);
1639 key
.type
= BTRFS_INODE_REF_KEY
;
1640 key
.offset
= (u64
)-1;
1643 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1647 if (path
->slots
[0] == 0)
1652 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1654 if (key
.objectid
!= ino
||
1655 key
.type
!= BTRFS_INODE_REF_KEY
)
1657 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1658 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1660 while (ptr
< ptr_end
) {
1661 struct btrfs_inode_ref
*ref
;
1663 ref
= (struct btrfs_inode_ref
*)ptr
;
1664 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1666 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1670 if (key
.offset
== 0)
1672 if (path
->slots
[0] > 0) {
1677 btrfs_release_path(path
);
1679 btrfs_release_path(path
);
1685 * There are a few corners where the link count of the file can't
1686 * be properly maintained during replay. So, instead of adding
1687 * lots of complexity to the log code, we just scan the backrefs
1688 * for any file that has been through replay.
1690 * The scan will update the link count on the inode to reflect the
1691 * number of back refs found. If it goes down to zero, the iput
1692 * will free the inode.
1694 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
1695 struct btrfs_root
*root
,
1696 struct inode
*inode
)
1698 struct btrfs_path
*path
;
1701 u64 ino
= btrfs_ino(BTRFS_I(inode
));
1703 path
= btrfs_alloc_path();
1707 ret
= count_inode_refs(root
, BTRFS_I(inode
), path
);
1713 ret
= count_inode_extrefs(root
, BTRFS_I(inode
), path
);
1721 if (nlink
!= inode
->i_nlink
) {
1722 set_nlink(inode
, nlink
);
1723 btrfs_update_inode(trans
, root
, inode
);
1725 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1727 if (inode
->i_nlink
== 0) {
1728 if (S_ISDIR(inode
->i_mode
)) {
1729 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1734 ret
= insert_orphan_item(trans
, root
, ino
);
1738 btrfs_free_path(path
);
1742 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1743 struct btrfs_root
*root
,
1744 struct btrfs_path
*path
)
1747 struct btrfs_key key
;
1748 struct inode
*inode
;
1750 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1751 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1752 key
.offset
= (u64
)-1;
1754 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1759 if (path
->slots
[0] == 0)
1764 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1765 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1766 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1769 ret
= btrfs_del_item(trans
, root
, path
);
1773 btrfs_release_path(path
);
1774 inode
= read_one_inode(root
, key
.offset
);
1778 ret
= fixup_inode_link_count(trans
, root
, inode
);
1784 * fixup on a directory may create new entries,
1785 * make sure we always look for the highset possible
1788 key
.offset
= (u64
)-1;
1792 btrfs_release_path(path
);
1798 * record a given inode in the fixup dir so we can check its link
1799 * count when replay is done. The link count is incremented here
1800 * so the inode won't go away until we check it
1802 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1803 struct btrfs_root
*root
,
1804 struct btrfs_path
*path
,
1807 struct btrfs_key key
;
1809 struct inode
*inode
;
1811 inode
= read_one_inode(root
, objectid
);
1815 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1816 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1817 key
.offset
= objectid
;
1819 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1821 btrfs_release_path(path
);
1823 if (!inode
->i_nlink
)
1824 set_nlink(inode
, 1);
1827 ret
= btrfs_update_inode(trans
, root
, inode
);
1828 } else if (ret
== -EEXIST
) {
1831 BUG(); /* Logic Error */
1839 * when replaying the log for a directory, we only insert names
1840 * for inodes that actually exist. This means an fsync on a directory
1841 * does not implicitly fsync all the new files in it
1843 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1844 struct btrfs_root
*root
,
1845 u64 dirid
, u64 index
,
1846 char *name
, int name_len
,
1847 struct btrfs_key
*location
)
1849 struct inode
*inode
;
1853 inode
= read_one_inode(root
, location
->objectid
);
1857 dir
= read_one_inode(root
, dirid
);
1863 ret
= btrfs_add_link(trans
, BTRFS_I(dir
), BTRFS_I(inode
), name
,
1864 name_len
, 1, index
);
1866 /* FIXME, put inode into FIXUP list */
1874 * take a single entry in a log directory item and replay it into
1877 * if a conflicting item exists in the subdirectory already,
1878 * the inode it points to is unlinked and put into the link count
1881 * If a name from the log points to a file or directory that does
1882 * not exist in the FS, it is skipped. fsyncs on directories
1883 * do not force down inodes inside that directory, just changes to the
1884 * names or unlinks in a directory.
1886 * Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
1887 * non-existing inode) and 1 if the name was replayed.
1889 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1890 struct btrfs_root
*root
,
1891 struct btrfs_path
*path
,
1892 struct extent_buffer
*eb
,
1893 struct btrfs_dir_item
*di
,
1894 struct btrfs_key
*key
)
1898 struct btrfs_dir_item
*dst_di
;
1899 struct btrfs_key found_key
;
1900 struct btrfs_key log_key
;
1905 bool update_size
= (key
->type
== BTRFS_DIR_INDEX_KEY
);
1906 bool name_added
= false;
1908 dir
= read_one_inode(root
, key
->objectid
);
1912 name_len
= btrfs_dir_name_len(eb
, di
);
1913 name
= kmalloc(name_len
, GFP_NOFS
);
1919 log_type
= btrfs_dir_type(eb
, di
);
1920 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1923 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1924 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1929 btrfs_release_path(path
);
1931 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1932 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1934 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1935 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1944 if (IS_ERR_OR_NULL(dst_di
)) {
1945 /* we need a sequence number to insert, so we only
1946 * do inserts for the BTRFS_DIR_INDEX_KEY types
1948 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1953 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1954 /* the existing item matches the logged item */
1955 if (found_key
.objectid
== log_key
.objectid
&&
1956 found_key
.type
== log_key
.type
&&
1957 found_key
.offset
== log_key
.offset
&&
1958 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1959 update_size
= false;
1964 * don't drop the conflicting directory entry if the inode
1965 * for the new entry doesn't exist
1970 ret
= drop_one_dir_item(trans
, root
, path
, BTRFS_I(dir
), dst_di
);
1974 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1977 btrfs_release_path(path
);
1978 if (!ret
&& update_size
) {
1979 btrfs_i_size_write(BTRFS_I(dir
), dir
->i_size
+ name_len
* 2);
1980 ret
= btrfs_update_inode(trans
, root
, dir
);
1984 if (!ret
&& name_added
)
1990 * Check if the inode reference exists in the log for the given name,
1991 * inode and parent inode
1993 found_key
.objectid
= log_key
.objectid
;
1994 found_key
.type
= BTRFS_INODE_REF_KEY
;
1995 found_key
.offset
= key
->objectid
;
1996 ret
= backref_in_log(root
->log_root
, &found_key
, 0, name
, name_len
);
2000 /* The dentry will be added later. */
2002 update_size
= false;
2006 found_key
.objectid
= log_key
.objectid
;
2007 found_key
.type
= BTRFS_INODE_EXTREF_KEY
;
2008 found_key
.offset
= key
->objectid
;
2009 ret
= backref_in_log(root
->log_root
, &found_key
, key
->objectid
, name
,
2014 /* The dentry will be added later. */
2016 update_size
= false;
2019 btrfs_release_path(path
);
2020 ret
= insert_one_name(trans
, root
, key
->objectid
, key
->offset
,
2021 name
, name_len
, &log_key
);
2022 if (ret
&& ret
!= -ENOENT
&& ret
!= -EEXIST
)
2026 update_size
= false;
2032 * find all the names in a directory item and reconcile them into
2033 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
2034 * one name in a directory item, but the same code gets used for
2035 * both directory index types
2037 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
2038 struct btrfs_root
*root
,
2039 struct btrfs_path
*path
,
2040 struct extent_buffer
*eb
, int slot
,
2041 struct btrfs_key
*key
)
2044 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
2045 struct btrfs_dir_item
*di
;
2048 unsigned long ptr_end
;
2049 struct btrfs_path
*fixup_path
= NULL
;
2051 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2052 ptr_end
= ptr
+ item_size
;
2053 while (ptr
< ptr_end
) {
2054 di
= (struct btrfs_dir_item
*)ptr
;
2055 name_len
= btrfs_dir_name_len(eb
, di
);
2056 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
2059 ptr
= (unsigned long)(di
+ 1);
2063 * If this entry refers to a non-directory (directories can not
2064 * have a link count > 1) and it was added in the transaction
2065 * that was not committed, make sure we fixup the link count of
2066 * the inode it the entry points to. Otherwise something like
2067 * the following would result in a directory pointing to an
2068 * inode with a wrong link that does not account for this dir
2076 * ln testdir/bar testdir/bar_link
2077 * ln testdir/foo testdir/foo_link
2078 * xfs_io -c "fsync" testdir/bar
2082 * mount fs, log replay happens
2084 * File foo would remain with a link count of 1 when it has two
2085 * entries pointing to it in the directory testdir. This would
2086 * make it impossible to ever delete the parent directory has
2087 * it would result in stale dentries that can never be deleted.
2089 if (ret
== 1 && btrfs_dir_type(eb
, di
) != BTRFS_FT_DIR
) {
2090 struct btrfs_key di_key
;
2093 fixup_path
= btrfs_alloc_path();
2100 btrfs_dir_item_key_to_cpu(eb
, di
, &di_key
);
2101 ret
= link_to_fixup_dir(trans
, root
, fixup_path
,
2108 btrfs_free_path(fixup_path
);
2113 * directory replay has two parts. There are the standard directory
2114 * items in the log copied from the subvolume, and range items
2115 * created in the log while the subvolume was logged.
2117 * The range items tell us which parts of the key space the log
2118 * is authoritative for. During replay, if a key in the subvolume
2119 * directory is in a logged range item, but not actually in the log
2120 * that means it was deleted from the directory before the fsync
2121 * and should be removed.
2123 static noinline
int find_dir_range(struct btrfs_root
*root
,
2124 struct btrfs_path
*path
,
2125 u64 dirid
, int key_type
,
2126 u64
*start_ret
, u64
*end_ret
)
2128 struct btrfs_key key
;
2130 struct btrfs_dir_log_item
*item
;
2134 if (*start_ret
== (u64
)-1)
2137 key
.objectid
= dirid
;
2138 key
.type
= key_type
;
2139 key
.offset
= *start_ret
;
2141 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
2145 if (path
->slots
[0] == 0)
2150 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
2152 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
2156 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2157 struct btrfs_dir_log_item
);
2158 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
2160 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
2162 *start_ret
= key
.offset
;
2163 *end_ret
= found_end
;
2168 /* check the next slot in the tree to see if it is a valid item */
2169 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2171 if (path
->slots
[0] >= nritems
) {
2172 ret
= btrfs_next_leaf(root
, path
);
2177 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
2179 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
2183 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2184 struct btrfs_dir_log_item
);
2185 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
2186 *start_ret
= key
.offset
;
2187 *end_ret
= found_end
;
2190 btrfs_release_path(path
);
2195 * this looks for a given directory item in the log. If the directory
2196 * item is not in the log, the item is removed and the inode it points
2199 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
2200 struct btrfs_root
*root
,
2201 struct btrfs_root
*log
,
2202 struct btrfs_path
*path
,
2203 struct btrfs_path
*log_path
,
2205 struct btrfs_key
*dir_key
)
2208 struct extent_buffer
*eb
;
2211 struct btrfs_dir_item
*di
;
2212 struct btrfs_dir_item
*log_di
;
2215 unsigned long ptr_end
;
2217 struct inode
*inode
;
2218 struct btrfs_key location
;
2221 eb
= path
->nodes
[0];
2222 slot
= path
->slots
[0];
2223 item_size
= btrfs_item_size_nr(eb
, slot
);
2224 ptr
= btrfs_item_ptr_offset(eb
, slot
);
2225 ptr_end
= ptr
+ item_size
;
2226 while (ptr
< ptr_end
) {
2227 di
= (struct btrfs_dir_item
*)ptr
;
2228 name_len
= btrfs_dir_name_len(eb
, di
);
2229 name
= kmalloc(name_len
, GFP_NOFS
);
2234 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
2237 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
2238 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
2241 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
2242 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
2248 if (!log_di
|| log_di
== ERR_PTR(-ENOENT
)) {
2249 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
2250 btrfs_release_path(path
);
2251 btrfs_release_path(log_path
);
2252 inode
= read_one_inode(root
, location
.objectid
);
2258 ret
= link_to_fixup_dir(trans
, root
,
2259 path
, location
.objectid
);
2267 ret
= btrfs_unlink_inode(trans
, root
, BTRFS_I(dir
),
2268 BTRFS_I(inode
), name
, name_len
);
2270 ret
= btrfs_run_delayed_items(trans
);
2276 /* there might still be more names under this key
2277 * check and repeat if required
2279 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
2285 } else if (IS_ERR(log_di
)) {
2287 return PTR_ERR(log_di
);
2289 btrfs_release_path(log_path
);
2292 ptr
= (unsigned long)(di
+ 1);
2297 btrfs_release_path(path
);
2298 btrfs_release_path(log_path
);
2302 static int replay_xattr_deletes(struct btrfs_trans_handle
*trans
,
2303 struct btrfs_root
*root
,
2304 struct btrfs_root
*log
,
2305 struct btrfs_path
*path
,
2308 struct btrfs_key search_key
;
2309 struct btrfs_path
*log_path
;
2314 log_path
= btrfs_alloc_path();
2318 search_key
.objectid
= ino
;
2319 search_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2320 search_key
.offset
= 0;
2322 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
2326 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2327 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2328 struct btrfs_key key
;
2329 struct btrfs_dir_item
*di
;
2330 struct btrfs_dir_item
*log_di
;
2334 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, i
);
2335 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
) {
2340 di
= btrfs_item_ptr(path
->nodes
[0], i
, struct btrfs_dir_item
);
2341 total_size
= btrfs_item_size_nr(path
->nodes
[0], i
);
2343 while (cur
< total_size
) {
2344 u16 name_len
= btrfs_dir_name_len(path
->nodes
[0], di
);
2345 u16 data_len
= btrfs_dir_data_len(path
->nodes
[0], di
);
2346 u32 this_len
= sizeof(*di
) + name_len
+ data_len
;
2349 name
= kmalloc(name_len
, GFP_NOFS
);
2354 read_extent_buffer(path
->nodes
[0], name
,
2355 (unsigned long)(di
+ 1), name_len
);
2357 log_di
= btrfs_lookup_xattr(NULL
, log
, log_path
, ino
,
2359 btrfs_release_path(log_path
);
2361 /* Doesn't exist in log tree, so delete it. */
2362 btrfs_release_path(path
);
2363 di
= btrfs_lookup_xattr(trans
, root
, path
, ino
,
2364 name
, name_len
, -1);
2371 ret
= btrfs_delete_one_dir_name(trans
, root
,
2375 btrfs_release_path(path
);
2380 if (IS_ERR(log_di
)) {
2381 ret
= PTR_ERR(log_di
);
2385 di
= (struct btrfs_dir_item
*)((char *)di
+ this_len
);
2388 ret
= btrfs_next_leaf(root
, path
);
2394 btrfs_free_path(log_path
);
2395 btrfs_release_path(path
);
2401 * deletion replay happens before we copy any new directory items
2402 * out of the log or out of backreferences from inodes. It
2403 * scans the log to find ranges of keys that log is authoritative for,
2404 * and then scans the directory to find items in those ranges that are
2405 * not present in the log.
2407 * Anything we don't find in the log is unlinked and removed from the
2410 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
2411 struct btrfs_root
*root
,
2412 struct btrfs_root
*log
,
2413 struct btrfs_path
*path
,
2414 u64 dirid
, int del_all
)
2418 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
2420 struct btrfs_key dir_key
;
2421 struct btrfs_key found_key
;
2422 struct btrfs_path
*log_path
;
2425 dir_key
.objectid
= dirid
;
2426 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
2427 log_path
= btrfs_alloc_path();
2431 dir
= read_one_inode(root
, dirid
);
2432 /* it isn't an error if the inode isn't there, that can happen
2433 * because we replay the deletes before we copy in the inode item
2437 btrfs_free_path(log_path
);
2445 range_end
= (u64
)-1;
2447 ret
= find_dir_range(log
, path
, dirid
, key_type
,
2448 &range_start
, &range_end
);
2453 dir_key
.offset
= range_start
;
2456 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
2461 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2462 if (path
->slots
[0] >= nritems
) {
2463 ret
= btrfs_next_leaf(root
, path
);
2469 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2471 if (found_key
.objectid
!= dirid
||
2472 found_key
.type
!= dir_key
.type
)
2475 if (found_key
.offset
> range_end
)
2478 ret
= check_item_in_log(trans
, root
, log
, path
,
2483 if (found_key
.offset
== (u64
)-1)
2485 dir_key
.offset
= found_key
.offset
+ 1;
2487 btrfs_release_path(path
);
2488 if (range_end
== (u64
)-1)
2490 range_start
= range_end
+ 1;
2495 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
2496 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2497 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
2498 btrfs_release_path(path
);
2502 btrfs_release_path(path
);
2503 btrfs_free_path(log_path
);
2509 * the process_func used to replay items from the log tree. This
2510 * gets called in two different stages. The first stage just looks
2511 * for inodes and makes sure they are all copied into the subvolume.
2513 * The second stage copies all the other item types from the log into
2514 * the subvolume. The two stage approach is slower, but gets rid of
2515 * lots of complexity around inodes referencing other inodes that exist
2516 * only in the log (references come from either directory items or inode
2519 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
2520 struct walk_control
*wc
, u64 gen
, int level
)
2523 struct btrfs_path
*path
;
2524 struct btrfs_root
*root
= wc
->replay_dest
;
2525 struct btrfs_key key
;
2529 ret
= btrfs_read_buffer(eb
, gen
, level
, NULL
);
2533 level
= btrfs_header_level(eb
);
2538 path
= btrfs_alloc_path();
2542 nritems
= btrfs_header_nritems(eb
);
2543 for (i
= 0; i
< nritems
; i
++) {
2544 btrfs_item_key_to_cpu(eb
, &key
, i
);
2546 /* inode keys are done during the first stage */
2547 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
2548 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
2549 struct btrfs_inode_item
*inode_item
;
2552 inode_item
= btrfs_item_ptr(eb
, i
,
2553 struct btrfs_inode_item
);
2555 * If we have a tmpfile (O_TMPFILE) that got fsync'ed
2556 * and never got linked before the fsync, skip it, as
2557 * replaying it is pointless since it would be deleted
2558 * later. We skip logging tmpfiles, but it's always
2559 * possible we are replaying a log created with a kernel
2560 * that used to log tmpfiles.
2562 if (btrfs_inode_nlink(eb
, inode_item
) == 0) {
2563 wc
->ignore_cur_inode
= true;
2566 wc
->ignore_cur_inode
= false;
2568 ret
= replay_xattr_deletes(wc
->trans
, root
, log
,
2569 path
, key
.objectid
);
2572 mode
= btrfs_inode_mode(eb
, inode_item
);
2573 if (S_ISDIR(mode
)) {
2574 ret
= replay_dir_deletes(wc
->trans
,
2575 root
, log
, path
, key
.objectid
, 0);
2579 ret
= overwrite_item(wc
->trans
, root
, path
,
2585 * Before replaying extents, truncate the inode to its
2586 * size. We need to do it now and not after log replay
2587 * because before an fsync we can have prealloc extents
2588 * added beyond the inode's i_size. If we did it after,
2589 * through orphan cleanup for example, we would drop
2590 * those prealloc extents just after replaying them.
2592 if (S_ISREG(mode
)) {
2593 struct inode
*inode
;
2596 inode
= read_one_inode(root
, key
.objectid
);
2601 from
= ALIGN(i_size_read(inode
),
2602 root
->fs_info
->sectorsize
);
2603 ret
= btrfs_drop_extents(wc
->trans
, root
, inode
,
2606 /* Update the inode's nbytes. */
2607 ret
= btrfs_update_inode(wc
->trans
,
2615 ret
= link_to_fixup_dir(wc
->trans
, root
,
2616 path
, key
.objectid
);
2621 if (wc
->ignore_cur_inode
)
2624 if (key
.type
== BTRFS_DIR_INDEX_KEY
&&
2625 wc
->stage
== LOG_WALK_REPLAY_DIR_INDEX
) {
2626 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2632 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
2635 /* these keys are simply copied */
2636 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
2637 ret
= overwrite_item(wc
->trans
, root
, path
,
2641 } else if (key
.type
== BTRFS_INODE_REF_KEY
||
2642 key
.type
== BTRFS_INODE_EXTREF_KEY
) {
2643 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
2645 if (ret
&& ret
!= -ENOENT
)
2648 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
2649 ret
= replay_one_extent(wc
->trans
, root
, path
,
2653 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
) {
2654 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
2660 btrfs_free_path(path
);
2665 * Correctly adjust the reserved bytes occupied by a log tree extent buffer
2667 static void unaccount_log_buffer(struct btrfs_fs_info
*fs_info
, u64 start
)
2669 struct btrfs_block_group
*cache
;
2671 cache
= btrfs_lookup_block_group(fs_info
, start
);
2673 btrfs_err(fs_info
, "unable to find block group for %llu", start
);
2677 spin_lock(&cache
->space_info
->lock
);
2678 spin_lock(&cache
->lock
);
2679 cache
->reserved
-= fs_info
->nodesize
;
2680 cache
->space_info
->bytes_reserved
-= fs_info
->nodesize
;
2681 spin_unlock(&cache
->lock
);
2682 spin_unlock(&cache
->space_info
->lock
);
2684 btrfs_put_block_group(cache
);
2687 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
2688 struct btrfs_root
*root
,
2689 struct btrfs_path
*path
, int *level
,
2690 struct walk_control
*wc
)
2692 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2695 struct extent_buffer
*next
;
2696 struct extent_buffer
*cur
;
2700 while (*level
> 0) {
2701 struct btrfs_key first_key
;
2703 cur
= path
->nodes
[*level
];
2705 WARN_ON(btrfs_header_level(cur
) != *level
);
2707 if (path
->slots
[*level
] >=
2708 btrfs_header_nritems(cur
))
2711 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
2712 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
2713 btrfs_node_key_to_cpu(cur
, &first_key
, path
->slots
[*level
]);
2714 blocksize
= fs_info
->nodesize
;
2716 next
= btrfs_find_create_tree_block(fs_info
, bytenr
);
2718 return PTR_ERR(next
);
2721 ret
= wc
->process_func(root
, next
, wc
, ptr_gen
,
2724 free_extent_buffer(next
);
2728 path
->slots
[*level
]++;
2730 ret
= btrfs_read_buffer(next
, ptr_gen
,
2731 *level
- 1, &first_key
);
2733 free_extent_buffer(next
);
2738 btrfs_tree_lock(next
);
2739 btrfs_set_lock_blocking_write(next
);
2740 btrfs_clean_tree_block(next
);
2741 btrfs_wait_tree_block_writeback(next
);
2742 btrfs_tree_unlock(next
);
2743 ret
= btrfs_pin_reserved_extent(trans
,
2746 free_extent_buffer(next
);
2750 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2751 clear_extent_buffer_dirty(next
);
2752 unaccount_log_buffer(fs_info
, bytenr
);
2755 free_extent_buffer(next
);
2758 ret
= btrfs_read_buffer(next
, ptr_gen
, *level
- 1, &first_key
);
2760 free_extent_buffer(next
);
2764 if (path
->nodes
[*level
-1])
2765 free_extent_buffer(path
->nodes
[*level
-1]);
2766 path
->nodes
[*level
-1] = next
;
2767 *level
= btrfs_header_level(next
);
2768 path
->slots
[*level
] = 0;
2771 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
2777 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
2778 struct btrfs_root
*root
,
2779 struct btrfs_path
*path
, int *level
,
2780 struct walk_control
*wc
)
2782 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
2787 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
2788 slot
= path
->slots
[i
];
2789 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
2792 WARN_ON(*level
== 0);
2795 ret
= wc
->process_func(root
, path
->nodes
[*level
], wc
,
2796 btrfs_header_generation(path
->nodes
[*level
]),
2802 struct extent_buffer
*next
;
2804 next
= path
->nodes
[*level
];
2807 btrfs_tree_lock(next
);
2808 btrfs_set_lock_blocking_write(next
);
2809 btrfs_clean_tree_block(next
);
2810 btrfs_wait_tree_block_writeback(next
);
2811 btrfs_tree_unlock(next
);
2812 ret
= btrfs_pin_reserved_extent(trans
,
2813 path
->nodes
[*level
]->start
,
2814 path
->nodes
[*level
]->len
);
2818 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2819 clear_extent_buffer_dirty(next
);
2821 unaccount_log_buffer(fs_info
,
2822 path
->nodes
[*level
]->start
);
2825 free_extent_buffer(path
->nodes
[*level
]);
2826 path
->nodes
[*level
] = NULL
;
2834 * drop the reference count on the tree rooted at 'snap'. This traverses
2835 * the tree freeing any blocks that have a ref count of zero after being
2838 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
2839 struct btrfs_root
*log
, struct walk_control
*wc
)
2841 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2845 struct btrfs_path
*path
;
2848 path
= btrfs_alloc_path();
2852 level
= btrfs_header_level(log
->node
);
2854 path
->nodes
[level
] = log
->node
;
2855 atomic_inc(&log
->node
->refs
);
2856 path
->slots
[level
] = 0;
2859 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
2867 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
2876 /* was the root node processed? if not, catch it here */
2877 if (path
->nodes
[orig_level
]) {
2878 ret
= wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
2879 btrfs_header_generation(path
->nodes
[orig_level
]),
2884 struct extent_buffer
*next
;
2886 next
= path
->nodes
[orig_level
];
2889 btrfs_tree_lock(next
);
2890 btrfs_set_lock_blocking_write(next
);
2891 btrfs_clean_tree_block(next
);
2892 btrfs_wait_tree_block_writeback(next
);
2893 btrfs_tree_unlock(next
);
2894 ret
= btrfs_pin_reserved_extent(trans
,
2895 next
->start
, next
->len
);
2899 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY
, &next
->bflags
))
2900 clear_extent_buffer_dirty(next
);
2901 unaccount_log_buffer(fs_info
, next
->start
);
2907 btrfs_free_path(path
);
2912 * helper function to update the item for a given subvolumes log root
2913 * in the tree of log roots
2915 static int update_log_root(struct btrfs_trans_handle
*trans
,
2916 struct btrfs_root
*log
,
2917 struct btrfs_root_item
*root_item
)
2919 struct btrfs_fs_info
*fs_info
= log
->fs_info
;
2922 if (log
->log_transid
== 1) {
2923 /* insert root item on the first sync */
2924 ret
= btrfs_insert_root(trans
, fs_info
->log_root_tree
,
2925 &log
->root_key
, root_item
);
2927 ret
= btrfs_update_root(trans
, fs_info
->log_root_tree
,
2928 &log
->root_key
, root_item
);
2933 static void wait_log_commit(struct btrfs_root
*root
, int transid
)
2936 int index
= transid
% 2;
2939 * we only allow two pending log transactions at a time,
2940 * so we know that if ours is more than 2 older than the
2941 * current transaction, we're done
2944 prepare_to_wait(&root
->log_commit_wait
[index
],
2945 &wait
, TASK_UNINTERRUPTIBLE
);
2947 if (!(root
->log_transid_committed
< transid
&&
2948 atomic_read(&root
->log_commit
[index
])))
2951 mutex_unlock(&root
->log_mutex
);
2953 mutex_lock(&root
->log_mutex
);
2955 finish_wait(&root
->log_commit_wait
[index
], &wait
);
2958 static void wait_for_writer(struct btrfs_root
*root
)
2963 prepare_to_wait(&root
->log_writer_wait
, &wait
,
2964 TASK_UNINTERRUPTIBLE
);
2965 if (!atomic_read(&root
->log_writers
))
2968 mutex_unlock(&root
->log_mutex
);
2970 mutex_lock(&root
->log_mutex
);
2972 finish_wait(&root
->log_writer_wait
, &wait
);
2975 static inline void btrfs_remove_log_ctx(struct btrfs_root
*root
,
2976 struct btrfs_log_ctx
*ctx
)
2981 mutex_lock(&root
->log_mutex
);
2982 list_del_init(&ctx
->list
);
2983 mutex_unlock(&root
->log_mutex
);
2987 * Invoked in log mutex context, or be sure there is no other task which
2988 * can access the list.
2990 static inline void btrfs_remove_all_log_ctxs(struct btrfs_root
*root
,
2991 int index
, int error
)
2993 struct btrfs_log_ctx
*ctx
;
2994 struct btrfs_log_ctx
*safe
;
2996 list_for_each_entry_safe(ctx
, safe
, &root
->log_ctxs
[index
], list
) {
2997 list_del_init(&ctx
->list
);
2998 ctx
->log_ret
= error
;
3001 INIT_LIST_HEAD(&root
->log_ctxs
[index
]);
3005 * btrfs_sync_log does sends a given tree log down to the disk and
3006 * updates the super blocks to record it. When this call is done,
3007 * you know that any inodes previously logged are safely on disk only
3010 * Any other return value means you need to call btrfs_commit_transaction.
3011 * Some of the edge cases for fsyncing directories that have had unlinks
3012 * or renames done in the past mean that sometimes the only safe
3013 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
3014 * that has happened.
3016 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
3017 struct btrfs_root
*root
, struct btrfs_log_ctx
*ctx
)
3023 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3024 struct btrfs_root
*log
= root
->log_root
;
3025 struct btrfs_root
*log_root_tree
= fs_info
->log_root_tree
;
3026 struct btrfs_root_item new_root_item
;
3027 int log_transid
= 0;
3028 struct btrfs_log_ctx root_log_ctx
;
3029 struct blk_plug plug
;
3031 mutex_lock(&root
->log_mutex
);
3032 log_transid
= ctx
->log_transid
;
3033 if (root
->log_transid_committed
>= log_transid
) {
3034 mutex_unlock(&root
->log_mutex
);
3035 return ctx
->log_ret
;
3038 index1
= log_transid
% 2;
3039 if (atomic_read(&root
->log_commit
[index1
])) {
3040 wait_log_commit(root
, log_transid
);
3041 mutex_unlock(&root
->log_mutex
);
3042 return ctx
->log_ret
;
3044 ASSERT(log_transid
== root
->log_transid
);
3045 atomic_set(&root
->log_commit
[index1
], 1);
3047 /* wait for previous tree log sync to complete */
3048 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
3049 wait_log_commit(root
, log_transid
- 1);
3052 int batch
= atomic_read(&root
->log_batch
);
3053 /* when we're on an ssd, just kick the log commit out */
3054 if (!btrfs_test_opt(fs_info
, SSD
) &&
3055 test_bit(BTRFS_ROOT_MULTI_LOG_TASKS
, &root
->state
)) {
3056 mutex_unlock(&root
->log_mutex
);
3057 schedule_timeout_uninterruptible(1);
3058 mutex_lock(&root
->log_mutex
);
3060 wait_for_writer(root
);
3061 if (batch
== atomic_read(&root
->log_batch
))
3065 /* bail out if we need to do a full commit */
3066 if (btrfs_need_log_full_commit(trans
)) {
3068 mutex_unlock(&root
->log_mutex
);
3072 if (log_transid
% 2 == 0)
3073 mark
= EXTENT_DIRTY
;
3077 /* we start IO on all the marked extents here, but we don't actually
3078 * wait for them until later.
3080 blk_start_plug(&plug
);
3081 ret
= btrfs_write_marked_extents(fs_info
, &log
->dirty_log_pages
, mark
);
3083 blk_finish_plug(&plug
);
3084 btrfs_abort_transaction(trans
, ret
);
3085 btrfs_set_log_full_commit(trans
);
3086 mutex_unlock(&root
->log_mutex
);
3091 * We _must_ update under the root->log_mutex in order to make sure we
3092 * have a consistent view of the log root we are trying to commit at
3095 * We _must_ copy this into a local copy, because we are not holding the
3096 * log_root_tree->log_mutex yet. This is important because when we
3097 * commit the log_root_tree we must have a consistent view of the
3098 * log_root_tree when we update the super block to point at the
3099 * log_root_tree bytenr. If we update the log_root_tree here we'll race
3100 * with the commit and possibly point at the new block which we may not
3103 btrfs_set_root_node(&log
->root_item
, log
->node
);
3104 memcpy(&new_root_item
, &log
->root_item
, sizeof(new_root_item
));
3106 root
->log_transid
++;
3107 log
->log_transid
= root
->log_transid
;
3108 root
->log_start_pid
= 0;
3110 * IO has been started, blocks of the log tree have WRITTEN flag set
3111 * in their headers. new modifications of the log will be written to
3112 * new positions. so it's safe to allow log writers to go in.
3114 mutex_unlock(&root
->log_mutex
);
3116 btrfs_init_log_ctx(&root_log_ctx
, NULL
);
3118 mutex_lock(&log_root_tree
->log_mutex
);
3119 atomic_inc(&log_root_tree
->log_batch
);
3120 atomic_inc(&log_root_tree
->log_writers
);
3122 index2
= log_root_tree
->log_transid
% 2;
3123 list_add_tail(&root_log_ctx
.list
, &log_root_tree
->log_ctxs
[index2
]);
3124 root_log_ctx
.log_transid
= log_root_tree
->log_transid
;
3126 mutex_unlock(&log_root_tree
->log_mutex
);
3128 mutex_lock(&log_root_tree
->log_mutex
);
3131 * Now we are safe to update the log_root_tree because we're under the
3132 * log_mutex, and we're a current writer so we're holding the commit
3133 * open until we drop the log_mutex.
3135 ret
= update_log_root(trans
, log
, &new_root_item
);
3137 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
3138 /* atomic_dec_and_test implies a barrier */
3139 cond_wake_up_nomb(&log_root_tree
->log_writer_wait
);
3143 if (!list_empty(&root_log_ctx
.list
))
3144 list_del_init(&root_log_ctx
.list
);
3146 blk_finish_plug(&plug
);
3147 btrfs_set_log_full_commit(trans
);
3149 if (ret
!= -ENOSPC
) {
3150 btrfs_abort_transaction(trans
, ret
);
3151 mutex_unlock(&log_root_tree
->log_mutex
);
3154 btrfs_wait_tree_log_extents(log
, mark
);
3155 mutex_unlock(&log_root_tree
->log_mutex
);
3160 if (log_root_tree
->log_transid_committed
>= root_log_ctx
.log_transid
) {
3161 blk_finish_plug(&plug
);
3162 list_del_init(&root_log_ctx
.list
);
3163 mutex_unlock(&log_root_tree
->log_mutex
);
3164 ret
= root_log_ctx
.log_ret
;
3168 index2
= root_log_ctx
.log_transid
% 2;
3169 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
3170 blk_finish_plug(&plug
);
3171 ret
= btrfs_wait_tree_log_extents(log
, mark
);
3172 wait_log_commit(log_root_tree
,
3173 root_log_ctx
.log_transid
);
3174 mutex_unlock(&log_root_tree
->log_mutex
);
3176 ret
= root_log_ctx
.log_ret
;
3179 ASSERT(root_log_ctx
.log_transid
== log_root_tree
->log_transid
);
3180 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
3182 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
3183 wait_log_commit(log_root_tree
,
3184 root_log_ctx
.log_transid
- 1);
3187 wait_for_writer(log_root_tree
);
3190 * now that we've moved on to the tree of log tree roots,
3191 * check the full commit flag again
3193 if (btrfs_need_log_full_commit(trans
)) {
3194 blk_finish_plug(&plug
);
3195 btrfs_wait_tree_log_extents(log
, mark
);
3196 mutex_unlock(&log_root_tree
->log_mutex
);
3198 goto out_wake_log_root
;
3201 ret
= btrfs_write_marked_extents(fs_info
,
3202 &log_root_tree
->dirty_log_pages
,
3203 EXTENT_DIRTY
| EXTENT_NEW
);
3204 blk_finish_plug(&plug
);
3206 btrfs_set_log_full_commit(trans
);
3207 btrfs_abort_transaction(trans
, ret
);
3208 mutex_unlock(&log_root_tree
->log_mutex
);
3209 goto out_wake_log_root
;
3211 ret
= btrfs_wait_tree_log_extents(log
, mark
);
3213 ret
= btrfs_wait_tree_log_extents(log_root_tree
,
3214 EXTENT_NEW
| EXTENT_DIRTY
);
3216 btrfs_set_log_full_commit(trans
);
3217 mutex_unlock(&log_root_tree
->log_mutex
);
3218 goto out_wake_log_root
;
3221 btrfs_set_super_log_root(fs_info
->super_for_commit
,
3222 log_root_tree
->node
->start
);
3223 btrfs_set_super_log_root_level(fs_info
->super_for_commit
,
3224 btrfs_header_level(log_root_tree
->node
));
3226 log_root_tree
->log_transid
++;
3227 mutex_unlock(&log_root_tree
->log_mutex
);
3230 * Nobody else is going to jump in and write the ctree
3231 * super here because the log_commit atomic below is protecting
3232 * us. We must be called with a transaction handle pinning
3233 * the running transaction open, so a full commit can't hop
3234 * in and cause problems either.
3236 ret
= write_all_supers(fs_info
, 1);
3238 btrfs_set_log_full_commit(trans
);
3239 btrfs_abort_transaction(trans
, ret
);
3240 goto out_wake_log_root
;
3243 mutex_lock(&root
->log_mutex
);
3244 if (root
->last_log_commit
< log_transid
)
3245 root
->last_log_commit
= log_transid
;
3246 mutex_unlock(&root
->log_mutex
);
3249 mutex_lock(&log_root_tree
->log_mutex
);
3250 btrfs_remove_all_log_ctxs(log_root_tree
, index2
, ret
);
3252 log_root_tree
->log_transid_committed
++;
3253 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
3254 mutex_unlock(&log_root_tree
->log_mutex
);
3257 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3258 * all the updates above are seen by the woken threads. It might not be
3259 * necessary, but proving that seems to be hard.
3261 cond_wake_up(&log_root_tree
->log_commit_wait
[index2
]);
3263 mutex_lock(&root
->log_mutex
);
3264 btrfs_remove_all_log_ctxs(root
, index1
, ret
);
3265 root
->log_transid_committed
++;
3266 atomic_set(&root
->log_commit
[index1
], 0);
3267 mutex_unlock(&root
->log_mutex
);
3270 * The barrier before waitqueue_active (in cond_wake_up) is needed so
3271 * all the updates above are seen by the woken threads. It might not be
3272 * necessary, but proving that seems to be hard.
3274 cond_wake_up(&root
->log_commit_wait
[index1
]);
3278 static void free_log_tree(struct btrfs_trans_handle
*trans
,
3279 struct btrfs_root
*log
)
3282 struct walk_control wc
= {
3284 .process_func
= process_one_buffer
3287 ret
= walk_log_tree(trans
, log
, &wc
);
3290 btrfs_abort_transaction(trans
, ret
);
3292 btrfs_handle_fs_error(log
->fs_info
, ret
, NULL
);
3295 clear_extent_bits(&log
->dirty_log_pages
, 0, (u64
)-1,
3296 EXTENT_DIRTY
| EXTENT_NEW
| EXTENT_NEED_WAIT
);
3297 extent_io_tree_release(&log
->log_csum_range
);
3298 btrfs_put_root(log
);
3302 * free all the extents used by the tree log. This should be called
3303 * at commit time of the full transaction
3305 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
3307 if (root
->log_root
) {
3308 free_log_tree(trans
, root
->log_root
);
3309 root
->log_root
= NULL
;
3310 clear_bit(BTRFS_ROOT_HAS_LOG_TREE
, &root
->state
);
3315 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
3316 struct btrfs_fs_info
*fs_info
)
3318 if (fs_info
->log_root_tree
) {
3319 free_log_tree(trans
, fs_info
->log_root_tree
);
3320 fs_info
->log_root_tree
= NULL
;
3326 * Check if an inode was logged in the current transaction. We can't always rely
3327 * on an inode's logged_trans value, because it's an in-memory only field and
3328 * therefore not persisted. This means that its value is lost if the inode gets
3329 * evicted and loaded again from disk (in which case it has a value of 0, and
3330 * certainly it is smaller then any possible transaction ID), when that happens
3331 * the full_sync flag is set in the inode's runtime flags, so on that case we
3332 * assume eviction happened and ignore the logged_trans value, assuming the
3333 * worst case, that the inode was logged before in the current transaction.
3335 static bool inode_logged(struct btrfs_trans_handle
*trans
,
3336 struct btrfs_inode
*inode
)
3338 if (inode
->logged_trans
== trans
->transid
)
3341 if (inode
->last_trans
== trans
->transid
&&
3342 test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
) &&
3343 !test_bit(BTRFS_FS_LOG_RECOVERING
, &trans
->fs_info
->flags
))
3350 * If both a file and directory are logged, and unlinks or renames are
3351 * mixed in, we have a few interesting corners:
3353 * create file X in dir Y
3354 * link file X to X.link in dir Y
3356 * unlink file X but leave X.link
3359 * After a crash we would expect only X.link to exist. But file X
3360 * didn't get fsync'd again so the log has back refs for X and X.link.
3362 * We solve this by removing directory entries and inode backrefs from the
3363 * log when a file that was logged in the current transaction is
3364 * unlinked. Any later fsync will include the updated log entries, and
3365 * we'll be able to reconstruct the proper directory items from backrefs.
3367 * This optimizations allows us to avoid relogging the entire inode
3368 * or the entire directory.
3370 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
3371 struct btrfs_root
*root
,
3372 const char *name
, int name_len
,
3373 struct btrfs_inode
*dir
, u64 index
)
3375 struct btrfs_root
*log
;
3376 struct btrfs_dir_item
*di
;
3377 struct btrfs_path
*path
;
3381 u64 dir_ino
= btrfs_ino(dir
);
3383 if (!inode_logged(trans
, dir
))
3386 ret
= join_running_log_trans(root
);
3390 mutex_lock(&dir
->log_mutex
);
3392 log
= root
->log_root
;
3393 path
= btrfs_alloc_path();
3399 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
3400 name
, name_len
, -1);
3406 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3407 bytes_del
+= name_len
;
3413 btrfs_release_path(path
);
3414 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
3415 index
, name
, name_len
, -1);
3421 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
3422 bytes_del
+= name_len
;
3429 /* update the directory size in the log to reflect the names
3433 struct btrfs_key key
;
3435 key
.objectid
= dir_ino
;
3437 key
.type
= BTRFS_INODE_ITEM_KEY
;
3438 btrfs_release_path(path
);
3440 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
3446 struct btrfs_inode_item
*item
;
3449 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3450 struct btrfs_inode_item
);
3451 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
3452 if (i_size
> bytes_del
)
3453 i_size
-= bytes_del
;
3456 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
3457 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3460 btrfs_release_path(path
);
3463 btrfs_free_path(path
);
3465 mutex_unlock(&dir
->log_mutex
);
3466 if (ret
== -ENOSPC
) {
3467 btrfs_set_log_full_commit(trans
);
3470 btrfs_abort_transaction(trans
, ret
);
3472 btrfs_end_log_trans(root
);
3477 /* see comments for btrfs_del_dir_entries_in_log */
3478 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
3479 struct btrfs_root
*root
,
3480 const char *name
, int name_len
,
3481 struct btrfs_inode
*inode
, u64 dirid
)
3483 struct btrfs_root
*log
;
3487 if (!inode_logged(trans
, inode
))
3490 ret
= join_running_log_trans(root
);
3493 log
= root
->log_root
;
3494 mutex_lock(&inode
->log_mutex
);
3496 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
3498 mutex_unlock(&inode
->log_mutex
);
3499 if (ret
== -ENOSPC
) {
3500 btrfs_set_log_full_commit(trans
);
3502 } else if (ret
< 0 && ret
!= -ENOENT
)
3503 btrfs_abort_transaction(trans
, ret
);
3504 btrfs_end_log_trans(root
);
3510 * creates a range item in the log for 'dirid'. first_offset and
3511 * last_offset tell us which parts of the key space the log should
3512 * be considered authoritative for.
3514 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
3515 struct btrfs_root
*log
,
3516 struct btrfs_path
*path
,
3517 int key_type
, u64 dirid
,
3518 u64 first_offset
, u64 last_offset
)
3521 struct btrfs_key key
;
3522 struct btrfs_dir_log_item
*item
;
3524 key
.objectid
= dirid
;
3525 key
.offset
= first_offset
;
3526 if (key_type
== BTRFS_DIR_ITEM_KEY
)
3527 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
3529 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
3530 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
3534 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3535 struct btrfs_dir_log_item
);
3536 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
3537 btrfs_mark_buffer_dirty(path
->nodes
[0]);
3538 btrfs_release_path(path
);
3543 * log all the items included in the current transaction for a given
3544 * directory. This also creates the range items in the log tree required
3545 * to replay anything deleted before the fsync
3547 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
3548 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
3549 struct btrfs_path
*path
,
3550 struct btrfs_path
*dst_path
, int key_type
,
3551 struct btrfs_log_ctx
*ctx
,
3552 u64 min_offset
, u64
*last_offset_ret
)
3554 struct btrfs_key min_key
;
3555 struct btrfs_root
*log
= root
->log_root
;
3556 struct extent_buffer
*src
;
3561 u64 first_offset
= min_offset
;
3562 u64 last_offset
= (u64
)-1;
3563 u64 ino
= btrfs_ino(inode
);
3565 log
= root
->log_root
;
3567 min_key
.objectid
= ino
;
3568 min_key
.type
= key_type
;
3569 min_key
.offset
= min_offset
;
3571 ret
= btrfs_search_forward(root
, &min_key
, path
, trans
->transid
);
3574 * we didn't find anything from this transaction, see if there
3575 * is anything at all
3577 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
3578 min_key
.objectid
= ino
;
3579 min_key
.type
= key_type
;
3580 min_key
.offset
= (u64
)-1;
3581 btrfs_release_path(path
);
3582 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3584 btrfs_release_path(path
);
3587 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3589 /* if ret == 0 there are items for this type,
3590 * create a range to tell us the last key of this type.
3591 * otherwise, there are no items in this directory after
3592 * *min_offset, and we create a range to indicate that.
3595 struct btrfs_key tmp
;
3596 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
3598 if (key_type
== tmp
.type
)
3599 first_offset
= max(min_offset
, tmp
.offset
) + 1;
3604 /* go backward to find any previous key */
3605 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
3607 struct btrfs_key tmp
;
3608 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3609 if (key_type
== tmp
.type
) {
3610 first_offset
= tmp
.offset
;
3611 ret
= overwrite_item(trans
, log
, dst_path
,
3612 path
->nodes
[0], path
->slots
[0],
3620 btrfs_release_path(path
);
3623 * Find the first key from this transaction again. See the note for
3624 * log_new_dir_dentries, if we're logging a directory recursively we
3625 * won't be holding its i_mutex, which means we can modify the directory
3626 * while we're logging it. If we remove an entry between our first
3627 * search and this search we'll not find the key again and can just
3630 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
3635 * we have a block from this transaction, log every item in it
3636 * from our directory
3639 struct btrfs_key tmp
;
3640 src
= path
->nodes
[0];
3641 nritems
= btrfs_header_nritems(src
);
3642 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
3643 struct btrfs_dir_item
*di
;
3645 btrfs_item_key_to_cpu(src
, &min_key
, i
);
3647 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
3649 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
3657 * We must make sure that when we log a directory entry,
3658 * the corresponding inode, after log replay, has a
3659 * matching link count. For example:
3665 * xfs_io -c "fsync" mydir
3667 * <mount fs and log replay>
3669 * Would result in a fsync log that when replayed, our
3670 * file inode would have a link count of 1, but we get
3671 * two directory entries pointing to the same inode.
3672 * After removing one of the names, it would not be
3673 * possible to remove the other name, which resulted
3674 * always in stale file handle errors, and would not
3675 * be possible to rmdir the parent directory, since
3676 * its i_size could never decrement to the value
3677 * BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
3679 di
= btrfs_item_ptr(src
, i
, struct btrfs_dir_item
);
3680 btrfs_dir_item_key_to_cpu(src
, di
, &tmp
);
3682 (btrfs_dir_transid(src
, di
) == trans
->transid
||
3683 btrfs_dir_type(src
, di
) == BTRFS_FT_DIR
) &&
3684 tmp
.type
!= BTRFS_ROOT_ITEM_KEY
)
3685 ctx
->log_new_dentries
= true;
3687 path
->slots
[0] = nritems
;
3690 * look ahead to the next item and see if it is also
3691 * from this directory and from this transaction
3693 ret
= btrfs_next_leaf(root
, path
);
3696 last_offset
= (u64
)-1;
3701 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
3702 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
3703 last_offset
= (u64
)-1;
3706 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
3707 ret
= overwrite_item(trans
, log
, dst_path
,
3708 path
->nodes
[0], path
->slots
[0],
3713 last_offset
= tmp
.offset
;
3718 btrfs_release_path(path
);
3719 btrfs_release_path(dst_path
);
3722 *last_offset_ret
= last_offset
;
3724 * insert the log range keys to indicate where the log
3727 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
3728 ino
, first_offset
, last_offset
);
3736 * logging directories is very similar to logging inodes, We find all the items
3737 * from the current transaction and write them to the log.
3739 * The recovery code scans the directory in the subvolume, and if it finds a
3740 * key in the range logged that is not present in the log tree, then it means
3741 * that dir entry was unlinked during the transaction.
3743 * In order for that scan to work, we must include one key smaller than
3744 * the smallest logged by this transaction and one key larger than the largest
3745 * key logged by this transaction.
3747 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
3748 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
3749 struct btrfs_path
*path
,
3750 struct btrfs_path
*dst_path
,
3751 struct btrfs_log_ctx
*ctx
)
3756 int key_type
= BTRFS_DIR_ITEM_KEY
;
3762 ret
= log_dir_items(trans
, root
, inode
, path
, dst_path
, key_type
,
3763 ctx
, min_key
, &max_key
);
3766 if (max_key
== (u64
)-1)
3768 min_key
= max_key
+ 1;
3771 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
3772 key_type
= BTRFS_DIR_INDEX_KEY
;
3779 * a helper function to drop items from the log before we relog an
3780 * inode. max_key_type indicates the highest item type to remove.
3781 * This cannot be run for file data extents because it does not
3782 * free the extents they point to.
3784 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
3785 struct btrfs_root
*log
,
3786 struct btrfs_path
*path
,
3787 u64 objectid
, int max_key_type
)
3790 struct btrfs_key key
;
3791 struct btrfs_key found_key
;
3794 key
.objectid
= objectid
;
3795 key
.type
= max_key_type
;
3796 key
.offset
= (u64
)-1;
3799 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
3800 BUG_ON(ret
== 0); /* Logic error */
3804 if (path
->slots
[0] == 0)
3808 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3811 if (found_key
.objectid
!= objectid
)
3814 found_key
.offset
= 0;
3816 ret
= btrfs_bin_search(path
->nodes
[0], &found_key
, &start_slot
);
3820 ret
= btrfs_del_items(trans
, log
, path
, start_slot
,
3821 path
->slots
[0] - start_slot
+ 1);
3823 * If start slot isn't 0 then we don't need to re-search, we've
3824 * found the last guy with the objectid in this tree.
3826 if (ret
|| start_slot
!= 0)
3828 btrfs_release_path(path
);
3830 btrfs_release_path(path
);
3836 static void fill_inode_item(struct btrfs_trans_handle
*trans
,
3837 struct extent_buffer
*leaf
,
3838 struct btrfs_inode_item
*item
,
3839 struct inode
*inode
, int log_inode_only
,
3842 struct btrfs_map_token token
;
3844 btrfs_init_map_token(&token
, leaf
);
3846 if (log_inode_only
) {
3847 /* set the generation to zero so the recover code
3848 * can tell the difference between an logging
3849 * just to say 'this inode exists' and a logging
3850 * to say 'update this inode with these values'
3852 btrfs_set_token_inode_generation(&token
, item
, 0);
3853 btrfs_set_token_inode_size(&token
, item
, logged_isize
);
3855 btrfs_set_token_inode_generation(&token
, item
,
3856 BTRFS_I(inode
)->generation
);
3857 btrfs_set_token_inode_size(&token
, item
, inode
->i_size
);
3860 btrfs_set_token_inode_uid(&token
, item
, i_uid_read(inode
));
3861 btrfs_set_token_inode_gid(&token
, item
, i_gid_read(inode
));
3862 btrfs_set_token_inode_mode(&token
, item
, inode
->i_mode
);
3863 btrfs_set_token_inode_nlink(&token
, item
, inode
->i_nlink
);
3865 btrfs_set_token_timespec_sec(&token
, &item
->atime
,
3866 inode
->i_atime
.tv_sec
);
3867 btrfs_set_token_timespec_nsec(&token
, &item
->atime
,
3868 inode
->i_atime
.tv_nsec
);
3870 btrfs_set_token_timespec_sec(&token
, &item
->mtime
,
3871 inode
->i_mtime
.tv_sec
);
3872 btrfs_set_token_timespec_nsec(&token
, &item
->mtime
,
3873 inode
->i_mtime
.tv_nsec
);
3875 btrfs_set_token_timespec_sec(&token
, &item
->ctime
,
3876 inode
->i_ctime
.tv_sec
);
3877 btrfs_set_token_timespec_nsec(&token
, &item
->ctime
,
3878 inode
->i_ctime
.tv_nsec
);
3880 btrfs_set_token_inode_nbytes(&token
, item
, inode_get_bytes(inode
));
3882 btrfs_set_token_inode_sequence(&token
, item
, inode_peek_iversion(inode
));
3883 btrfs_set_token_inode_transid(&token
, item
, trans
->transid
);
3884 btrfs_set_token_inode_rdev(&token
, item
, inode
->i_rdev
);
3885 btrfs_set_token_inode_flags(&token
, item
, BTRFS_I(inode
)->flags
);
3886 btrfs_set_token_inode_block_group(&token
, item
, 0);
3889 static int log_inode_item(struct btrfs_trans_handle
*trans
,
3890 struct btrfs_root
*log
, struct btrfs_path
*path
,
3891 struct btrfs_inode
*inode
)
3893 struct btrfs_inode_item
*inode_item
;
3896 ret
= btrfs_insert_empty_item(trans
, log
, path
,
3897 &inode
->location
, sizeof(*inode_item
));
3898 if (ret
&& ret
!= -EEXIST
)
3900 inode_item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
3901 struct btrfs_inode_item
);
3902 fill_inode_item(trans
, path
->nodes
[0], inode_item
, &inode
->vfs_inode
,
3904 btrfs_release_path(path
);
3908 static int log_csums(struct btrfs_trans_handle
*trans
,
3909 struct btrfs_root
*log_root
,
3910 struct btrfs_ordered_sum
*sums
)
3912 const u64 lock_end
= sums
->bytenr
+ sums
->len
- 1;
3913 struct extent_state
*cached_state
= NULL
;
3917 * Serialize logging for checksums. This is to avoid racing with the
3918 * same checksum being logged by another task that is logging another
3919 * file which happens to refer to the same extent as well. Such races
3920 * can leave checksum items in the log with overlapping ranges.
3922 ret
= lock_extent_bits(&log_root
->log_csum_range
, sums
->bytenr
,
3923 lock_end
, &cached_state
);
3927 * Due to extent cloning, we might have logged a csum item that covers a
3928 * subrange of a cloned extent, and later we can end up logging a csum
3929 * item for a larger subrange of the same extent or the entire range.
3930 * This would leave csum items in the log tree that cover the same range
3931 * and break the searches for checksums in the log tree, resulting in
3932 * some checksums missing in the fs/subvolume tree. So just delete (or
3933 * trim and adjust) any existing csum items in the log for this range.
3935 ret
= btrfs_del_csums(trans
, log_root
, sums
->bytenr
, sums
->len
);
3937 ret
= btrfs_csum_file_blocks(trans
, log_root
, sums
);
3939 unlock_extent_cached(&log_root
->log_csum_range
, sums
->bytenr
, lock_end
,
3945 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
3946 struct btrfs_inode
*inode
,
3947 struct btrfs_path
*dst_path
,
3948 struct btrfs_path
*src_path
,
3949 int start_slot
, int nr
, int inode_only
,
3952 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
3953 unsigned long src_offset
;
3954 unsigned long dst_offset
;
3955 struct btrfs_root
*log
= inode
->root
->log_root
;
3956 struct btrfs_file_extent_item
*extent
;
3957 struct btrfs_inode_item
*inode_item
;
3958 struct extent_buffer
*src
= src_path
->nodes
[0];
3960 struct btrfs_key
*ins_keys
;
3964 struct list_head ordered_sums
;
3965 int skip_csum
= inode
->flags
& BTRFS_INODE_NODATASUM
;
3967 INIT_LIST_HEAD(&ordered_sums
);
3969 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
3970 nr
* sizeof(u32
), GFP_NOFS
);
3974 ins_sizes
= (u32
*)ins_data
;
3975 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
3977 for (i
= 0; i
< nr
; i
++) {
3978 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
3979 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
3981 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
3982 ins_keys
, ins_sizes
, nr
);
3988 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
3989 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
3990 dst_path
->slots
[0]);
3992 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
3994 if (ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
3995 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
3997 struct btrfs_inode_item
);
3998 fill_inode_item(trans
, dst_path
->nodes
[0], inode_item
,
4000 inode_only
== LOG_INODE_EXISTS
,
4003 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
4004 src_offset
, ins_sizes
[i
]);
4007 /* take a reference on file data extents so that truncates
4008 * or deletes of this inode don't have to relog the inode
4011 if (ins_keys
[i
].type
== BTRFS_EXTENT_DATA_KEY
&&
4014 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
4015 struct btrfs_file_extent_item
);
4017 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
4020 found_type
= btrfs_file_extent_type(src
, extent
);
4021 if (found_type
== BTRFS_FILE_EXTENT_REG
) {
4023 ds
= btrfs_file_extent_disk_bytenr(src
,
4025 /* ds == 0 is a hole */
4029 dl
= btrfs_file_extent_disk_num_bytes(src
,
4031 cs
= btrfs_file_extent_offset(src
, extent
);
4032 cl
= btrfs_file_extent_num_bytes(src
,
4034 if (btrfs_file_extent_compression(src
,
4040 ret
= btrfs_lookup_csums_range(
4042 ds
+ cs
, ds
+ cs
+ cl
- 1,
4045 btrfs_release_path(dst_path
);
4053 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
4054 btrfs_release_path(dst_path
);
4058 * we have to do this after the loop above to avoid changing the
4059 * log tree while trying to change the log tree.
4062 while (!list_empty(&ordered_sums
)) {
4063 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4064 struct btrfs_ordered_sum
,
4067 ret
= log_csums(trans
, log
, sums
);
4068 list_del(&sums
->list
);
4075 static int extent_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
4077 struct extent_map
*em1
, *em2
;
4079 em1
= list_entry(a
, struct extent_map
, list
);
4080 em2
= list_entry(b
, struct extent_map
, list
);
4082 if (em1
->start
< em2
->start
)
4084 else if (em1
->start
> em2
->start
)
4089 static int log_extent_csums(struct btrfs_trans_handle
*trans
,
4090 struct btrfs_inode
*inode
,
4091 struct btrfs_root
*log_root
,
4092 const struct extent_map
*em
)
4096 LIST_HEAD(ordered_sums
);
4099 if (inode
->flags
& BTRFS_INODE_NODATASUM
||
4100 test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) ||
4101 em
->block_start
== EXTENT_MAP_HOLE
)
4104 /* If we're compressed we have to save the entire range of csums. */
4105 if (em
->compress_type
) {
4107 csum_len
= max(em
->block_len
, em
->orig_block_len
);
4109 csum_offset
= em
->mod_start
- em
->start
;
4110 csum_len
= em
->mod_len
;
4113 /* block start is already adjusted for the file extent offset. */
4114 ret
= btrfs_lookup_csums_range(trans
->fs_info
->csum_root
,
4115 em
->block_start
+ csum_offset
,
4116 em
->block_start
+ csum_offset
+
4117 csum_len
- 1, &ordered_sums
, 0);
4121 while (!list_empty(&ordered_sums
)) {
4122 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
4123 struct btrfs_ordered_sum
,
4126 ret
= log_csums(trans
, log_root
, sums
);
4127 list_del(&sums
->list
);
4134 static int log_one_extent(struct btrfs_trans_handle
*trans
,
4135 struct btrfs_inode
*inode
, struct btrfs_root
*root
,
4136 const struct extent_map
*em
,
4137 struct btrfs_path
*path
,
4138 struct btrfs_log_ctx
*ctx
)
4140 struct btrfs_root
*log
= root
->log_root
;
4141 struct btrfs_file_extent_item
*fi
;
4142 struct extent_buffer
*leaf
;
4143 struct btrfs_map_token token
;
4144 struct btrfs_key key
;
4145 u64 extent_offset
= em
->start
- em
->orig_start
;
4148 int extent_inserted
= 0;
4150 ret
= log_extent_csums(trans
, inode
, log
, em
);
4154 ret
= __btrfs_drop_extents(trans
, log
, &inode
->vfs_inode
, path
, em
->start
,
4155 em
->start
+ em
->len
, NULL
, 0, 1,
4156 sizeof(*fi
), &extent_inserted
);
4160 if (!extent_inserted
) {
4161 key
.objectid
= btrfs_ino(inode
);
4162 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4163 key
.offset
= em
->start
;
4165 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
,
4170 leaf
= path
->nodes
[0];
4171 btrfs_init_map_token(&token
, leaf
);
4172 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
4173 struct btrfs_file_extent_item
);
4175 btrfs_set_token_file_extent_generation(&token
, fi
, trans
->transid
);
4176 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
))
4177 btrfs_set_token_file_extent_type(&token
, fi
,
4178 BTRFS_FILE_EXTENT_PREALLOC
);
4180 btrfs_set_token_file_extent_type(&token
, fi
,
4181 BTRFS_FILE_EXTENT_REG
);
4183 block_len
= max(em
->block_len
, em
->orig_block_len
);
4184 if (em
->compress_type
!= BTRFS_COMPRESS_NONE
) {
4185 btrfs_set_token_file_extent_disk_bytenr(&token
, fi
,
4187 btrfs_set_token_file_extent_disk_num_bytes(&token
, fi
, block_len
);
4188 } else if (em
->block_start
< EXTENT_MAP_LAST_BYTE
) {
4189 btrfs_set_token_file_extent_disk_bytenr(&token
, fi
,
4192 btrfs_set_token_file_extent_disk_num_bytes(&token
, fi
, block_len
);
4194 btrfs_set_token_file_extent_disk_bytenr(&token
, fi
, 0);
4195 btrfs_set_token_file_extent_disk_num_bytes(&token
, fi
, 0);
4198 btrfs_set_token_file_extent_offset(&token
, fi
, extent_offset
);
4199 btrfs_set_token_file_extent_num_bytes(&token
, fi
, em
->len
);
4200 btrfs_set_token_file_extent_ram_bytes(&token
, fi
, em
->ram_bytes
);
4201 btrfs_set_token_file_extent_compression(&token
, fi
, em
->compress_type
);
4202 btrfs_set_token_file_extent_encryption(&token
, fi
, 0);
4203 btrfs_set_token_file_extent_other_encoding(&token
, fi
, 0);
4204 btrfs_mark_buffer_dirty(leaf
);
4206 btrfs_release_path(path
);
4212 * Log all prealloc extents beyond the inode's i_size to make sure we do not
4213 * lose them after doing a fast fsync and replaying the log. We scan the
4214 * subvolume's root instead of iterating the inode's extent map tree because
4215 * otherwise we can log incorrect extent items based on extent map conversion.
4216 * That can happen due to the fact that extent maps are merged when they
4217 * are not in the extent map tree's list of modified extents.
4219 static int btrfs_log_prealloc_extents(struct btrfs_trans_handle
*trans
,
4220 struct btrfs_inode
*inode
,
4221 struct btrfs_path
*path
)
4223 struct btrfs_root
*root
= inode
->root
;
4224 struct btrfs_key key
;
4225 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
4226 const u64 ino
= btrfs_ino(inode
);
4227 struct btrfs_path
*dst_path
= NULL
;
4228 bool dropped_extents
= false;
4229 u64 truncate_offset
= i_size
;
4230 struct extent_buffer
*leaf
;
4236 if (!(inode
->flags
& BTRFS_INODE_PREALLOC
))
4240 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4241 key
.offset
= i_size
;
4242 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4247 * We must check if there is a prealloc extent that starts before the
4248 * i_size and crosses the i_size boundary. This is to ensure later we
4249 * truncate down to the end of that extent and not to the i_size, as
4250 * otherwise we end up losing part of the prealloc extent after a log
4251 * replay and with an implicit hole if there is another prealloc extent
4252 * that starts at an offset beyond i_size.
4254 ret
= btrfs_previous_item(root
, path
, ino
, BTRFS_EXTENT_DATA_KEY
);
4259 struct btrfs_file_extent_item
*ei
;
4261 leaf
= path
->nodes
[0];
4262 slot
= path
->slots
[0];
4263 ei
= btrfs_item_ptr(leaf
, slot
, struct btrfs_file_extent_item
);
4265 if (btrfs_file_extent_type(leaf
, ei
) ==
4266 BTRFS_FILE_EXTENT_PREALLOC
) {
4269 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4270 extent_end
= key
.offset
+
4271 btrfs_file_extent_num_bytes(leaf
, ei
);
4273 if (extent_end
> i_size
)
4274 truncate_offset
= extent_end
;
4281 leaf
= path
->nodes
[0];
4282 slot
= path
->slots
[0];
4284 if (slot
>= btrfs_header_nritems(leaf
)) {
4286 ret
= copy_items(trans
, inode
, dst_path
, path
,
4287 start_slot
, ins_nr
, 1, 0);
4292 ret
= btrfs_next_leaf(root
, path
);
4302 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4303 if (key
.objectid
> ino
)
4305 if (WARN_ON_ONCE(key
.objectid
< ino
) ||
4306 key
.type
< BTRFS_EXTENT_DATA_KEY
||
4307 key
.offset
< i_size
) {
4311 if (!dropped_extents
) {
4313 * Avoid logging extent items logged in past fsync calls
4314 * and leading to duplicate keys in the log tree.
4317 ret
= btrfs_truncate_inode_items(trans
,
4321 BTRFS_EXTENT_DATA_KEY
);
4322 } while (ret
== -EAGAIN
);
4325 dropped_extents
= true;
4332 dst_path
= btrfs_alloc_path();
4340 ret
= copy_items(trans
, inode
, dst_path
, path
,
4341 start_slot
, ins_nr
, 1, 0);
4343 btrfs_release_path(path
);
4344 btrfs_free_path(dst_path
);
4348 static int btrfs_log_changed_extents(struct btrfs_trans_handle
*trans
,
4349 struct btrfs_root
*root
,
4350 struct btrfs_inode
*inode
,
4351 struct btrfs_path
*path
,
4352 struct btrfs_log_ctx
*ctx
,
4356 struct extent_map
*em
, *n
;
4357 struct list_head extents
;
4358 struct extent_map_tree
*tree
= &inode
->extent_tree
;
4363 INIT_LIST_HEAD(&extents
);
4365 write_lock(&tree
->lock
);
4366 test_gen
= root
->fs_info
->last_trans_committed
;
4368 list_for_each_entry_safe(em
, n
, &tree
->modified_extents
, list
) {
4370 * Skip extents outside our logging range. It's important to do
4371 * it for correctness because if we don't ignore them, we may
4372 * log them before their ordered extent completes, and therefore
4373 * we could log them without logging their respective checksums
4374 * (the checksum items are added to the csum tree at the very
4375 * end of btrfs_finish_ordered_io()). Also leave such extents
4376 * outside of our range in the list, since we may have another
4377 * ranged fsync in the near future that needs them. If an extent
4378 * outside our range corresponds to a hole, log it to avoid
4379 * leaving gaps between extents (fsck will complain when we are
4380 * not using the NO_HOLES feature).
4382 if ((em
->start
> end
|| em
->start
+ em
->len
<= start
) &&
4383 em
->block_start
!= EXTENT_MAP_HOLE
)
4386 list_del_init(&em
->list
);
4388 * Just an arbitrary number, this can be really CPU intensive
4389 * once we start getting a lot of extents, and really once we
4390 * have a bunch of extents we just want to commit since it will
4393 if (++num
> 32768) {
4394 list_del_init(&tree
->modified_extents
);
4399 if (em
->generation
<= test_gen
)
4402 /* We log prealloc extents beyond eof later. */
4403 if (test_bit(EXTENT_FLAG_PREALLOC
, &em
->flags
) &&
4404 em
->start
>= i_size_read(&inode
->vfs_inode
))
4407 /* Need a ref to keep it from getting evicted from cache */
4408 refcount_inc(&em
->refs
);
4409 set_bit(EXTENT_FLAG_LOGGING
, &em
->flags
);
4410 list_add_tail(&em
->list
, &extents
);
4414 list_sort(NULL
, &extents
, extent_cmp
);
4416 while (!list_empty(&extents
)) {
4417 em
= list_entry(extents
.next
, struct extent_map
, list
);
4419 list_del_init(&em
->list
);
4422 * If we had an error we just need to delete everybody from our
4426 clear_em_logging(tree
, em
);
4427 free_extent_map(em
);
4431 write_unlock(&tree
->lock
);
4433 ret
= log_one_extent(trans
, inode
, root
, em
, path
, ctx
);
4434 write_lock(&tree
->lock
);
4435 clear_em_logging(tree
, em
);
4436 free_extent_map(em
);
4438 WARN_ON(!list_empty(&extents
));
4439 write_unlock(&tree
->lock
);
4441 btrfs_release_path(path
);
4443 ret
= btrfs_log_prealloc_extents(trans
, inode
, path
);
4448 static int logged_inode_size(struct btrfs_root
*log
, struct btrfs_inode
*inode
,
4449 struct btrfs_path
*path
, u64
*size_ret
)
4451 struct btrfs_key key
;
4454 key
.objectid
= btrfs_ino(inode
);
4455 key
.type
= BTRFS_INODE_ITEM_KEY
;
4458 ret
= btrfs_search_slot(NULL
, log
, &key
, path
, 0, 0);
4461 } else if (ret
> 0) {
4464 struct btrfs_inode_item
*item
;
4466 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
4467 struct btrfs_inode_item
);
4468 *size_ret
= btrfs_inode_size(path
->nodes
[0], item
);
4470 * If the in-memory inode's i_size is smaller then the inode
4471 * size stored in the btree, return the inode's i_size, so
4472 * that we get a correct inode size after replaying the log
4473 * when before a power failure we had a shrinking truncate
4474 * followed by addition of a new name (rename / new hard link).
4475 * Otherwise return the inode size from the btree, to avoid
4476 * data loss when replaying a log due to previously doing a
4477 * write that expands the inode's size and logging a new name
4478 * immediately after.
4480 if (*size_ret
> inode
->vfs_inode
.i_size
)
4481 *size_ret
= inode
->vfs_inode
.i_size
;
4484 btrfs_release_path(path
);
4489 * At the moment we always log all xattrs. This is to figure out at log replay
4490 * time which xattrs must have their deletion replayed. If a xattr is missing
4491 * in the log tree and exists in the fs/subvol tree, we delete it. This is
4492 * because if a xattr is deleted, the inode is fsynced and a power failure
4493 * happens, causing the log to be replayed the next time the fs is mounted,
4494 * we want the xattr to not exist anymore (same behaviour as other filesystems
4495 * with a journal, ext3/4, xfs, f2fs, etc).
4497 static int btrfs_log_all_xattrs(struct btrfs_trans_handle
*trans
,
4498 struct btrfs_root
*root
,
4499 struct btrfs_inode
*inode
,
4500 struct btrfs_path
*path
,
4501 struct btrfs_path
*dst_path
)
4504 struct btrfs_key key
;
4505 const u64 ino
= btrfs_ino(inode
);
4510 key
.type
= BTRFS_XATTR_ITEM_KEY
;
4513 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4518 int slot
= path
->slots
[0];
4519 struct extent_buffer
*leaf
= path
->nodes
[0];
4520 int nritems
= btrfs_header_nritems(leaf
);
4522 if (slot
>= nritems
) {
4524 ret
= copy_items(trans
, inode
, dst_path
, path
,
4525 start_slot
, ins_nr
, 1, 0);
4530 ret
= btrfs_next_leaf(root
, path
);
4538 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4539 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_XATTR_ITEM_KEY
)
4549 ret
= copy_items(trans
, inode
, dst_path
, path
,
4550 start_slot
, ins_nr
, 1, 0);
4559 * When using the NO_HOLES feature if we punched a hole that causes the
4560 * deletion of entire leafs or all the extent items of the first leaf (the one
4561 * that contains the inode item and references) we may end up not processing
4562 * any extents, because there are no leafs with a generation matching the
4563 * current transaction that have extent items for our inode. So we need to find
4564 * if any holes exist and then log them. We also need to log holes after any
4565 * truncate operation that changes the inode's size.
4567 static int btrfs_log_holes(struct btrfs_trans_handle
*trans
,
4568 struct btrfs_root
*root
,
4569 struct btrfs_inode
*inode
,
4570 struct btrfs_path
*path
)
4572 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4573 struct btrfs_key key
;
4574 const u64 ino
= btrfs_ino(inode
);
4575 const u64 i_size
= i_size_read(&inode
->vfs_inode
);
4576 u64 prev_extent_end
= 0;
4579 if (!btrfs_fs_incompat(fs_info
, NO_HOLES
) || i_size
== 0)
4583 key
.type
= BTRFS_EXTENT_DATA_KEY
;
4586 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4591 struct extent_buffer
*leaf
= path
->nodes
[0];
4593 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
4594 ret
= btrfs_next_leaf(root
, path
);
4601 leaf
= path
->nodes
[0];
4604 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
4605 if (key
.objectid
!= ino
|| key
.type
!= BTRFS_EXTENT_DATA_KEY
)
4608 /* We have a hole, log it. */
4609 if (prev_extent_end
< key
.offset
) {
4610 const u64 hole_len
= key
.offset
- prev_extent_end
;
4613 * Release the path to avoid deadlocks with other code
4614 * paths that search the root while holding locks on
4615 * leafs from the log root.
4617 btrfs_release_path(path
);
4618 ret
= btrfs_insert_file_extent(trans
, root
->log_root
,
4619 ino
, prev_extent_end
, 0,
4620 0, hole_len
, 0, hole_len
,
4626 * Search for the same key again in the root. Since it's
4627 * an extent item and we are holding the inode lock, the
4628 * key must still exist. If it doesn't just emit warning
4629 * and return an error to fall back to a transaction
4632 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4635 if (WARN_ON(ret
> 0))
4637 leaf
= path
->nodes
[0];
4640 prev_extent_end
= btrfs_file_extent_end(path
);
4645 if (prev_extent_end
< i_size
) {
4648 btrfs_release_path(path
);
4649 hole_len
= ALIGN(i_size
- prev_extent_end
, fs_info
->sectorsize
);
4650 ret
= btrfs_insert_file_extent(trans
, root
->log_root
,
4651 ino
, prev_extent_end
, 0, 0,
4652 hole_len
, 0, hole_len
,
4662 * When we are logging a new inode X, check if it doesn't have a reference that
4663 * matches the reference from some other inode Y created in a past transaction
4664 * and that was renamed in the current transaction. If we don't do this, then at
4665 * log replay time we can lose inode Y (and all its files if it's a directory):
4668 * echo "hello world" > /mnt/x/foobar
4671 * mkdir /mnt/x # or touch /mnt/x
4672 * xfs_io -c fsync /mnt/x
4674 * mount fs, trigger log replay
4676 * After the log replay procedure, we would lose the first directory and all its
4677 * files (file foobar).
4678 * For the case where inode Y is not a directory we simply end up losing it:
4680 * echo "123" > /mnt/foo
4682 * mv /mnt/foo /mnt/bar
4683 * echo "abc" > /mnt/foo
4684 * xfs_io -c fsync /mnt/foo
4687 * We also need this for cases where a snapshot entry is replaced by some other
4688 * entry (file or directory) otherwise we end up with an unreplayable log due to
4689 * attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
4690 * if it were a regular entry:
4693 * btrfs subvolume snapshot /mnt /mnt/x/snap
4694 * btrfs subvolume delete /mnt/x/snap
4697 * fsync /mnt/x or fsync some new file inside it
4700 * The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
4701 * the same transaction.
4703 static int btrfs_check_ref_name_override(struct extent_buffer
*eb
,
4705 const struct btrfs_key
*key
,
4706 struct btrfs_inode
*inode
,
4707 u64
*other_ino
, u64
*other_parent
)
4710 struct btrfs_path
*search_path
;
4713 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
4715 unsigned long ptr
= btrfs_item_ptr_offset(eb
, slot
);
4717 search_path
= btrfs_alloc_path();
4720 search_path
->search_commit_root
= 1;
4721 search_path
->skip_locking
= 1;
4723 while (cur_offset
< item_size
) {
4727 unsigned long name_ptr
;
4728 struct btrfs_dir_item
*di
;
4730 if (key
->type
== BTRFS_INODE_REF_KEY
) {
4731 struct btrfs_inode_ref
*iref
;
4733 iref
= (struct btrfs_inode_ref
*)(ptr
+ cur_offset
);
4734 parent
= key
->offset
;
4735 this_name_len
= btrfs_inode_ref_name_len(eb
, iref
);
4736 name_ptr
= (unsigned long)(iref
+ 1);
4737 this_len
= sizeof(*iref
) + this_name_len
;
4739 struct btrfs_inode_extref
*extref
;
4741 extref
= (struct btrfs_inode_extref
*)(ptr
+
4743 parent
= btrfs_inode_extref_parent(eb
, extref
);
4744 this_name_len
= btrfs_inode_extref_name_len(eb
, extref
);
4745 name_ptr
= (unsigned long)&extref
->name
;
4746 this_len
= sizeof(*extref
) + this_name_len
;
4749 if (this_name_len
> name_len
) {
4752 new_name
= krealloc(name
, this_name_len
, GFP_NOFS
);
4757 name_len
= this_name_len
;
4761 read_extent_buffer(eb
, name
, name_ptr
, this_name_len
);
4762 di
= btrfs_lookup_dir_item(NULL
, inode
->root
, search_path
,
4763 parent
, name
, this_name_len
, 0);
4764 if (di
&& !IS_ERR(di
)) {
4765 struct btrfs_key di_key
;
4767 btrfs_dir_item_key_to_cpu(search_path
->nodes
[0],
4769 if (di_key
.type
== BTRFS_INODE_ITEM_KEY
) {
4770 if (di_key
.objectid
!= key
->objectid
) {
4772 *other_ino
= di_key
.objectid
;
4773 *other_parent
= parent
;
4781 } else if (IS_ERR(di
)) {
4785 btrfs_release_path(search_path
);
4787 cur_offset
+= this_len
;
4791 btrfs_free_path(search_path
);
4796 struct btrfs_ino_list
{
4799 struct list_head list
;
4802 static int log_conflicting_inodes(struct btrfs_trans_handle
*trans
,
4803 struct btrfs_root
*root
,
4804 struct btrfs_path
*path
,
4805 struct btrfs_log_ctx
*ctx
,
4806 u64 ino
, u64 parent
)
4808 struct btrfs_ino_list
*ino_elem
;
4809 LIST_HEAD(inode_list
);
4812 ino_elem
= kmalloc(sizeof(*ino_elem
), GFP_NOFS
);
4815 ino_elem
->ino
= ino
;
4816 ino_elem
->parent
= parent
;
4817 list_add_tail(&ino_elem
->list
, &inode_list
);
4819 while (!list_empty(&inode_list
)) {
4820 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4821 struct btrfs_key key
;
4822 struct inode
*inode
;
4824 ino_elem
= list_first_entry(&inode_list
, struct btrfs_ino_list
,
4826 ino
= ino_elem
->ino
;
4827 parent
= ino_elem
->parent
;
4828 list_del(&ino_elem
->list
);
4833 btrfs_release_path(path
);
4835 inode
= btrfs_iget(fs_info
->sb
, ino
, root
);
4837 * If the other inode that had a conflicting dir entry was
4838 * deleted in the current transaction, we need to log its parent
4841 if (IS_ERR(inode
)) {
4842 ret
= PTR_ERR(inode
);
4843 if (ret
== -ENOENT
) {
4844 inode
= btrfs_iget(fs_info
->sb
, parent
, root
);
4845 if (IS_ERR(inode
)) {
4846 ret
= PTR_ERR(inode
);
4848 ret
= btrfs_log_inode(trans
, root
,
4850 LOG_OTHER_INODE_ALL
,
4852 btrfs_add_delayed_iput(inode
);
4858 * If the inode was already logged skip it - otherwise we can
4859 * hit an infinite loop. Example:
4861 * From the commit root (previous transaction) we have the
4864 * inode 257 a directory
4865 * inode 258 with references "zz" and "zz_link" on inode 257
4866 * inode 259 with reference "a" on inode 257
4868 * And in the current (uncommitted) transaction we have:
4870 * inode 257 a directory, unchanged
4871 * inode 258 with references "a" and "a2" on inode 257
4872 * inode 259 with reference "zz_link" on inode 257
4873 * inode 261 with reference "zz" on inode 257
4875 * When logging inode 261 the following infinite loop could
4876 * happen if we don't skip already logged inodes:
4878 * - we detect inode 258 as a conflicting inode, with inode 261
4879 * on reference "zz", and log it;
4881 * - we detect inode 259 as a conflicting inode, with inode 258
4882 * on reference "a", and log it;
4884 * - we detect inode 258 as a conflicting inode, with inode 259
4885 * on reference "zz_link", and log it - again! After this we
4886 * repeat the above steps forever.
4888 spin_lock(&BTRFS_I(inode
)->lock
);
4890 * Check the inode's logged_trans only instead of
4891 * btrfs_inode_in_log(). This is because the last_log_commit of
4892 * the inode is not updated when we only log that it exists and
4893 * and it has the full sync bit set (see btrfs_log_inode()).
4895 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
) {
4896 spin_unlock(&BTRFS_I(inode
)->lock
);
4897 btrfs_add_delayed_iput(inode
);
4900 spin_unlock(&BTRFS_I(inode
)->lock
);
4902 * We are safe logging the other inode without acquiring its
4903 * lock as long as we log with the LOG_INODE_EXISTS mode. We
4904 * are safe against concurrent renames of the other inode as
4905 * well because during a rename we pin the log and update the
4906 * log with the new name before we unpin it.
4908 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(inode
),
4909 LOG_OTHER_INODE
, 0, LLONG_MAX
, ctx
);
4911 btrfs_add_delayed_iput(inode
);
4916 key
.type
= BTRFS_INODE_REF_KEY
;
4918 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4920 btrfs_add_delayed_iput(inode
);
4925 struct extent_buffer
*leaf
= path
->nodes
[0];
4926 int slot
= path
->slots
[0];
4928 u64 other_parent
= 0;
4930 if (slot
>= btrfs_header_nritems(leaf
)) {
4931 ret
= btrfs_next_leaf(root
, path
);
4934 } else if (ret
> 0) {
4941 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
4942 if (key
.objectid
!= ino
||
4943 (key
.type
!= BTRFS_INODE_REF_KEY
&&
4944 key
.type
!= BTRFS_INODE_EXTREF_KEY
)) {
4949 ret
= btrfs_check_ref_name_override(leaf
, slot
, &key
,
4950 BTRFS_I(inode
), &other_ino
,
4955 ino_elem
= kmalloc(sizeof(*ino_elem
), GFP_NOFS
);
4960 ino_elem
->ino
= other_ino
;
4961 ino_elem
->parent
= other_parent
;
4962 list_add_tail(&ino_elem
->list
, &inode_list
);
4967 btrfs_add_delayed_iput(inode
);
4973 static int copy_inode_items_to_log(struct btrfs_trans_handle
*trans
,
4974 struct btrfs_inode
*inode
,
4975 struct btrfs_key
*min_key
,
4976 const struct btrfs_key
*max_key
,
4977 struct btrfs_path
*path
,
4978 struct btrfs_path
*dst_path
,
4979 const u64 logged_isize
,
4980 const bool recursive_logging
,
4981 const int inode_only
,
4982 struct btrfs_log_ctx
*ctx
,
4983 bool *need_log_inode_item
)
4985 struct btrfs_root
*root
= inode
->root
;
4986 int ins_start_slot
= 0;
4991 ret
= btrfs_search_forward(root
, min_key
, path
, trans
->transid
);
4999 /* Note, ins_nr might be > 0 here, cleanup outside the loop */
5000 if (min_key
->objectid
!= max_key
->objectid
)
5002 if (min_key
->type
> max_key
->type
)
5005 if (min_key
->type
== BTRFS_INODE_ITEM_KEY
)
5006 *need_log_inode_item
= false;
5008 if ((min_key
->type
== BTRFS_INODE_REF_KEY
||
5009 min_key
->type
== BTRFS_INODE_EXTREF_KEY
) &&
5010 inode
->generation
== trans
->transid
&&
5011 !recursive_logging
) {
5013 u64 other_parent
= 0;
5015 ret
= btrfs_check_ref_name_override(path
->nodes
[0],
5016 path
->slots
[0], min_key
, inode
,
5017 &other_ino
, &other_parent
);
5020 } else if (ret
> 0 && ctx
&&
5021 other_ino
!= btrfs_ino(BTRFS_I(ctx
->inode
))) {
5026 ins_start_slot
= path
->slots
[0];
5028 ret
= copy_items(trans
, inode
, dst_path
, path
,
5029 ins_start_slot
, ins_nr
,
5030 inode_only
, logged_isize
);
5035 ret
= log_conflicting_inodes(trans
, root
, path
,
5036 ctx
, other_ino
, other_parent
);
5039 btrfs_release_path(path
);
5044 /* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
5045 if (min_key
->type
== BTRFS_XATTR_ITEM_KEY
) {
5048 ret
= copy_items(trans
, inode
, dst_path
, path
,
5050 ins_nr
, inode_only
, logged_isize
);
5057 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
5060 } else if (!ins_nr
) {
5061 ins_start_slot
= path
->slots
[0];
5066 ret
= copy_items(trans
, inode
, dst_path
, path
, ins_start_slot
,
5067 ins_nr
, inode_only
, logged_isize
);
5071 ins_start_slot
= path
->slots
[0];
5074 if (path
->slots
[0] < btrfs_header_nritems(path
->nodes
[0])) {
5075 btrfs_item_key_to_cpu(path
->nodes
[0], min_key
,
5080 ret
= copy_items(trans
, inode
, dst_path
, path
,
5081 ins_start_slot
, ins_nr
, inode_only
,
5087 btrfs_release_path(path
);
5089 if (min_key
->offset
< (u64
)-1) {
5091 } else if (min_key
->type
< max_key
->type
) {
5093 min_key
->offset
= 0;
5099 ret
= copy_items(trans
, inode
, dst_path
, path
, ins_start_slot
,
5100 ins_nr
, inode_only
, logged_isize
);
5105 /* log a single inode in the tree log.
5106 * At least one parent directory for this inode must exist in the tree
5107 * or be logged already.
5109 * Any items from this inode changed by the current transaction are copied
5110 * to the log tree. An extra reference is taken on any extents in this
5111 * file, allowing us to avoid a whole pile of corner cases around logging
5112 * blocks that have been removed from the tree.
5114 * See LOG_INODE_ALL and related defines for a description of what inode_only
5117 * This handles both files and directories.
5119 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
5120 struct btrfs_root
*root
, struct btrfs_inode
*inode
,
5124 struct btrfs_log_ctx
*ctx
)
5126 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5127 struct btrfs_path
*path
;
5128 struct btrfs_path
*dst_path
;
5129 struct btrfs_key min_key
;
5130 struct btrfs_key max_key
;
5131 struct btrfs_root
*log
= root
->log_root
;
5134 bool fast_search
= false;
5135 u64 ino
= btrfs_ino(inode
);
5136 struct extent_map_tree
*em_tree
= &inode
->extent_tree
;
5137 u64 logged_isize
= 0;
5138 bool need_log_inode_item
= true;
5139 bool xattrs_logged
= false;
5140 bool recursive_logging
= false;
5142 path
= btrfs_alloc_path();
5145 dst_path
= btrfs_alloc_path();
5147 btrfs_free_path(path
);
5151 min_key
.objectid
= ino
;
5152 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
5155 max_key
.objectid
= ino
;
5158 /* today the code can only do partial logging of directories */
5159 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
5160 (!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
5161 &inode
->runtime_flags
) &&
5162 inode_only
>= LOG_INODE_EXISTS
))
5163 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
5165 max_key
.type
= (u8
)-1;
5166 max_key
.offset
= (u64
)-1;
5169 * Only run delayed items if we are a dir or a new file.
5170 * Otherwise commit the delayed inode only, which is needed in
5171 * order for the log replay code to mark inodes for link count
5172 * fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
5174 if (S_ISDIR(inode
->vfs_inode
.i_mode
) ||
5175 inode
->generation
> fs_info
->last_trans_committed
)
5176 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
5178 ret
= btrfs_commit_inode_delayed_inode(inode
);
5181 btrfs_free_path(path
);
5182 btrfs_free_path(dst_path
);
5186 if (inode_only
== LOG_OTHER_INODE
|| inode_only
== LOG_OTHER_INODE_ALL
) {
5187 recursive_logging
= true;
5188 if (inode_only
== LOG_OTHER_INODE
)
5189 inode_only
= LOG_INODE_EXISTS
;
5191 inode_only
= LOG_INODE_ALL
;
5192 mutex_lock_nested(&inode
->log_mutex
, SINGLE_DEPTH_NESTING
);
5194 mutex_lock(&inode
->log_mutex
);
5198 * a brute force approach to making sure we get the most uptodate
5199 * copies of everything.
5201 if (S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5202 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
5204 if (inode_only
== LOG_INODE_EXISTS
)
5205 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
5206 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
5208 if (inode_only
== LOG_INODE_EXISTS
) {
5210 * Make sure the new inode item we write to the log has
5211 * the same isize as the current one (if it exists).
5212 * This is necessary to prevent data loss after log
5213 * replay, and also to prevent doing a wrong expanding
5214 * truncate - for e.g. create file, write 4K into offset
5215 * 0, fsync, write 4K into offset 4096, add hard link,
5216 * fsync some other file (to sync log), power fail - if
5217 * we use the inode's current i_size, after log replay
5218 * we get a 8Kb file, with the last 4Kb extent as a hole
5219 * (zeroes), as if an expanding truncate happened,
5220 * instead of getting a file of 4Kb only.
5222 err
= logged_inode_size(log
, inode
, path
, &logged_isize
);
5226 if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
5227 &inode
->runtime_flags
)) {
5228 if (inode_only
== LOG_INODE_EXISTS
) {
5229 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
5230 ret
= drop_objectid_items(trans
, log
, path
, ino
,
5233 clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC
,
5234 &inode
->runtime_flags
);
5235 clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
5236 &inode
->runtime_flags
);
5238 ret
= btrfs_truncate_inode_items(trans
,
5239 log
, &inode
->vfs_inode
, 0, 0);
5244 } else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING
,
5245 &inode
->runtime_flags
) ||
5246 inode_only
== LOG_INODE_EXISTS
) {
5247 if (inode_only
== LOG_INODE_ALL
)
5249 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
5250 ret
= drop_objectid_items(trans
, log
, path
, ino
,
5253 if (inode_only
== LOG_INODE_ALL
)
5264 err
= copy_inode_items_to_log(trans
, inode
, &min_key
, &max_key
,
5265 path
, dst_path
, logged_isize
,
5266 recursive_logging
, inode_only
, ctx
,
5267 &need_log_inode_item
);
5271 btrfs_release_path(path
);
5272 btrfs_release_path(dst_path
);
5273 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
, dst_path
);
5276 xattrs_logged
= true;
5277 if (max_key
.type
>= BTRFS_EXTENT_DATA_KEY
&& !fast_search
) {
5278 btrfs_release_path(path
);
5279 btrfs_release_path(dst_path
);
5280 err
= btrfs_log_holes(trans
, root
, inode
, path
);
5285 btrfs_release_path(path
);
5286 btrfs_release_path(dst_path
);
5287 if (need_log_inode_item
) {
5288 err
= log_inode_item(trans
, log
, dst_path
, inode
);
5289 if (!err
&& !xattrs_logged
) {
5290 err
= btrfs_log_all_xattrs(trans
, root
, inode
, path
,
5292 btrfs_release_path(path
);
5298 ret
= btrfs_log_changed_extents(trans
, root
, inode
, dst_path
,
5304 } else if (inode_only
== LOG_INODE_ALL
) {
5305 struct extent_map
*em
, *n
;
5307 write_lock(&em_tree
->lock
);
5309 * We can't just remove every em if we're called for a ranged
5310 * fsync - that is, one that doesn't cover the whole possible
5311 * file range (0 to LLONG_MAX). This is because we can have
5312 * em's that fall outside the range we're logging and therefore
5313 * their ordered operations haven't completed yet
5314 * (btrfs_finish_ordered_io() not invoked yet). This means we
5315 * didn't get their respective file extent item in the fs/subvol
5316 * tree yet, and need to let the next fast fsync (one which
5317 * consults the list of modified extent maps) find the em so
5318 * that it logs a matching file extent item and waits for the
5319 * respective ordered operation to complete (if it's still
5322 * Removing every em outside the range we're logging would make
5323 * the next fast fsync not log their matching file extent items,
5324 * therefore making us lose data after a log replay.
5326 list_for_each_entry_safe(em
, n
, &em_tree
->modified_extents
,
5328 const u64 mod_end
= em
->mod_start
+ em
->mod_len
- 1;
5330 if (em
->mod_start
>= start
&& mod_end
<= end
)
5331 list_del_init(&em
->list
);
5333 write_unlock(&em_tree
->lock
);
5336 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5337 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
,
5346 * Don't update last_log_commit if we logged that an inode exists after
5347 * it was loaded to memory (full_sync bit set).
5348 * This is to prevent data loss when we do a write to the inode, then
5349 * the inode gets evicted after all delalloc was flushed, then we log
5350 * it exists (due to a rename for example) and then fsync it. This last
5351 * fsync would do nothing (not logging the extents previously written).
5353 spin_lock(&inode
->lock
);
5354 inode
->logged_trans
= trans
->transid
;
5355 if (inode_only
!= LOG_INODE_EXISTS
||
5356 !test_bit(BTRFS_INODE_NEEDS_FULL_SYNC
, &inode
->runtime_flags
))
5357 inode
->last_log_commit
= inode
->last_sub_trans
;
5358 spin_unlock(&inode
->lock
);
5360 mutex_unlock(&inode
->log_mutex
);
5362 btrfs_free_path(path
);
5363 btrfs_free_path(dst_path
);
5368 * Check if we must fallback to a transaction commit when logging an inode.
5369 * This must be called after logging the inode and is used only in the context
5370 * when fsyncing an inode requires the need to log some other inode - in which
5371 * case we can't lock the i_mutex of each other inode we need to log as that
5372 * can lead to deadlocks with concurrent fsync against other inodes (as we can
5373 * log inodes up or down in the hierarchy) or rename operations for example. So
5374 * we take the log_mutex of the inode after we have logged it and then check for
5375 * its last_unlink_trans value - this is safe because any task setting
5376 * last_unlink_trans must take the log_mutex and it must do this before it does
5377 * the actual unlink operation, so if we do this check before a concurrent task
5378 * sets last_unlink_trans it means we've logged a consistent version/state of
5379 * all the inode items, otherwise we are not sure and must do a transaction
5380 * commit (the concurrent task might have only updated last_unlink_trans before
5381 * we logged the inode or it might have also done the unlink).
5383 static bool btrfs_must_commit_transaction(struct btrfs_trans_handle
*trans
,
5384 struct btrfs_inode
*inode
)
5386 struct btrfs_fs_info
*fs_info
= inode
->root
->fs_info
;
5389 mutex_lock(&inode
->log_mutex
);
5390 if (inode
->last_unlink_trans
> fs_info
->last_trans_committed
) {
5392 * Make sure any commits to the log are forced to be full
5395 btrfs_set_log_full_commit(trans
);
5398 mutex_unlock(&inode
->log_mutex
);
5404 * follow the dentry parent pointers up the chain and see if any
5405 * of the directories in it require a full commit before they can
5406 * be logged. Returns zero if nothing special needs to be done or 1 if
5407 * a full commit is required.
5409 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
5410 struct btrfs_inode
*inode
,
5411 struct dentry
*parent
,
5412 struct super_block
*sb
,
5416 struct dentry
*old_parent
= NULL
;
5419 * for regular files, if its inode is already on disk, we don't
5420 * have to worry about the parents at all. This is because
5421 * we can use the last_unlink_trans field to record renames
5422 * and other fun in this file.
5424 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
5425 inode
->generation
<= last_committed
&&
5426 inode
->last_unlink_trans
<= last_committed
)
5429 if (!S_ISDIR(inode
->vfs_inode
.i_mode
)) {
5430 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5432 inode
= BTRFS_I(d_inode(parent
));
5436 if (btrfs_must_commit_transaction(trans
, inode
)) {
5441 if (!parent
|| d_really_is_negative(parent
) || sb
!= parent
->d_sb
)
5444 if (IS_ROOT(parent
)) {
5445 inode
= BTRFS_I(d_inode(parent
));
5446 if (btrfs_must_commit_transaction(trans
, inode
))
5451 parent
= dget_parent(parent
);
5453 old_parent
= parent
;
5454 inode
= BTRFS_I(d_inode(parent
));
5462 struct btrfs_dir_list
{
5464 struct list_head list
;
5468 * Log the inodes of the new dentries of a directory. See log_dir_items() for
5469 * details about the why it is needed.
5470 * This is a recursive operation - if an existing dentry corresponds to a
5471 * directory, that directory's new entries are logged too (same behaviour as
5472 * ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
5473 * the dentries point to we do not lock their i_mutex, otherwise lockdep
5474 * complains about the following circular lock dependency / possible deadlock:
5478 * lock(&type->i_mutex_dir_key#3/2);
5479 * lock(sb_internal#2);
5480 * lock(&type->i_mutex_dir_key#3/2);
5481 * lock(&sb->s_type->i_mutex_key#14);
5483 * Where sb_internal is the lock (a counter that works as a lock) acquired by
5484 * sb_start_intwrite() in btrfs_start_transaction().
5485 * Not locking i_mutex of the inodes is still safe because:
5487 * 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
5488 * that while logging the inode new references (names) are added or removed
5489 * from the inode, leaving the logged inode item with a link count that does
5490 * not match the number of logged inode reference items. This is fine because
5491 * at log replay time we compute the real number of links and correct the
5492 * link count in the inode item (see replay_one_buffer() and
5493 * link_to_fixup_dir());
5495 * 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
5496 * while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
5497 * BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
5498 * has a size that doesn't match the sum of the lengths of all the logged
5499 * names. This does not result in a problem because if a dir_item key is
5500 * logged but its matching dir_index key is not logged, at log replay time we
5501 * don't use it to replay the respective name (see replay_one_name()). On the
5502 * other hand if only the dir_index key ends up being logged, the respective
5503 * name is added to the fs/subvol tree with both the dir_item and dir_index
5504 * keys created (see replay_one_name()).
5505 * The directory's inode item with a wrong i_size is not a problem as well,
5506 * since we don't use it at log replay time to set the i_size in the inode
5507 * item of the fs/subvol tree (see overwrite_item()).
5509 static int log_new_dir_dentries(struct btrfs_trans_handle
*trans
,
5510 struct btrfs_root
*root
,
5511 struct btrfs_inode
*start_inode
,
5512 struct btrfs_log_ctx
*ctx
)
5514 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5515 struct btrfs_root
*log
= root
->log_root
;
5516 struct btrfs_path
*path
;
5517 LIST_HEAD(dir_list
);
5518 struct btrfs_dir_list
*dir_elem
;
5521 path
= btrfs_alloc_path();
5525 dir_elem
= kmalloc(sizeof(*dir_elem
), GFP_NOFS
);
5527 btrfs_free_path(path
);
5530 dir_elem
->ino
= btrfs_ino(start_inode
);
5531 list_add_tail(&dir_elem
->list
, &dir_list
);
5533 while (!list_empty(&dir_list
)) {
5534 struct extent_buffer
*leaf
;
5535 struct btrfs_key min_key
;
5539 dir_elem
= list_first_entry(&dir_list
, struct btrfs_dir_list
,
5542 goto next_dir_inode
;
5544 min_key
.objectid
= dir_elem
->ino
;
5545 min_key
.type
= BTRFS_DIR_ITEM_KEY
;
5548 btrfs_release_path(path
);
5549 ret
= btrfs_search_forward(log
, &min_key
, path
, trans
->transid
);
5551 goto next_dir_inode
;
5552 } else if (ret
> 0) {
5554 goto next_dir_inode
;
5558 leaf
= path
->nodes
[0];
5559 nritems
= btrfs_header_nritems(leaf
);
5560 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
5561 struct btrfs_dir_item
*di
;
5562 struct btrfs_key di_key
;
5563 struct inode
*di_inode
;
5564 struct btrfs_dir_list
*new_dir_elem
;
5565 int log_mode
= LOG_INODE_EXISTS
;
5568 btrfs_item_key_to_cpu(leaf
, &min_key
, i
);
5569 if (min_key
.objectid
!= dir_elem
->ino
||
5570 min_key
.type
!= BTRFS_DIR_ITEM_KEY
)
5571 goto next_dir_inode
;
5573 di
= btrfs_item_ptr(leaf
, i
, struct btrfs_dir_item
);
5574 type
= btrfs_dir_type(leaf
, di
);
5575 if (btrfs_dir_transid(leaf
, di
) < trans
->transid
&&
5576 type
!= BTRFS_FT_DIR
)
5578 btrfs_dir_item_key_to_cpu(leaf
, di
, &di_key
);
5579 if (di_key
.type
== BTRFS_ROOT_ITEM_KEY
)
5582 btrfs_release_path(path
);
5583 di_inode
= btrfs_iget(fs_info
->sb
, di_key
.objectid
, root
);
5584 if (IS_ERR(di_inode
)) {
5585 ret
= PTR_ERR(di_inode
);
5586 goto next_dir_inode
;
5589 if (btrfs_inode_in_log(BTRFS_I(di_inode
), trans
->transid
)) {
5590 btrfs_add_delayed_iput(di_inode
);
5594 ctx
->log_new_dentries
= false;
5595 if (type
== BTRFS_FT_DIR
|| type
== BTRFS_FT_SYMLINK
)
5596 log_mode
= LOG_INODE_ALL
;
5597 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(di_inode
),
5598 log_mode
, 0, LLONG_MAX
, ctx
);
5600 btrfs_must_commit_transaction(trans
, BTRFS_I(di_inode
)))
5602 btrfs_add_delayed_iput(di_inode
);
5604 goto next_dir_inode
;
5605 if (ctx
->log_new_dentries
) {
5606 new_dir_elem
= kmalloc(sizeof(*new_dir_elem
),
5608 if (!new_dir_elem
) {
5610 goto next_dir_inode
;
5612 new_dir_elem
->ino
= di_key
.objectid
;
5613 list_add_tail(&new_dir_elem
->list
, &dir_list
);
5618 ret
= btrfs_next_leaf(log
, path
);
5620 goto next_dir_inode
;
5621 } else if (ret
> 0) {
5623 goto next_dir_inode
;
5627 if (min_key
.offset
< (u64
)-1) {
5632 list_del(&dir_elem
->list
);
5636 btrfs_free_path(path
);
5640 static int btrfs_log_all_parents(struct btrfs_trans_handle
*trans
,
5641 struct btrfs_inode
*inode
,
5642 struct btrfs_log_ctx
*ctx
)
5644 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5646 struct btrfs_path
*path
;
5647 struct btrfs_key key
;
5648 struct btrfs_root
*root
= inode
->root
;
5649 const u64 ino
= btrfs_ino(inode
);
5651 path
= btrfs_alloc_path();
5654 path
->skip_locking
= 1;
5655 path
->search_commit_root
= 1;
5658 key
.type
= BTRFS_INODE_REF_KEY
;
5660 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
5665 struct extent_buffer
*leaf
= path
->nodes
[0];
5666 int slot
= path
->slots
[0];
5671 if (slot
>= btrfs_header_nritems(leaf
)) {
5672 ret
= btrfs_next_leaf(root
, path
);
5680 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
5681 /* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
5682 if (key
.objectid
!= ino
|| key
.type
> BTRFS_INODE_EXTREF_KEY
)
5685 item_size
= btrfs_item_size_nr(leaf
, slot
);
5686 ptr
= btrfs_item_ptr_offset(leaf
, slot
);
5687 while (cur_offset
< item_size
) {
5688 struct btrfs_key inode_key
;
5689 struct inode
*dir_inode
;
5691 inode_key
.type
= BTRFS_INODE_ITEM_KEY
;
5692 inode_key
.offset
= 0;
5694 if (key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5695 struct btrfs_inode_extref
*extref
;
5697 extref
= (struct btrfs_inode_extref
*)
5699 inode_key
.objectid
= btrfs_inode_extref_parent(
5701 cur_offset
+= sizeof(*extref
);
5702 cur_offset
+= btrfs_inode_extref_name_len(leaf
,
5705 inode_key
.objectid
= key
.offset
;
5706 cur_offset
= item_size
;
5709 dir_inode
= btrfs_iget(fs_info
->sb
, inode_key
.objectid
,
5712 * If the parent inode was deleted, return an error to
5713 * fallback to a transaction commit. This is to prevent
5714 * getting an inode that was moved from one parent A to
5715 * a parent B, got its former parent A deleted and then
5716 * it got fsync'ed, from existing at both parents after
5717 * a log replay (and the old parent still existing).
5724 * mv /mnt/B/bar /mnt/A/bar
5725 * mv -T /mnt/A /mnt/B
5729 * If we ignore the old parent B which got deleted,
5730 * after a log replay we would have file bar linked
5731 * at both parents and the old parent B would still
5734 if (IS_ERR(dir_inode
)) {
5735 ret
= PTR_ERR(dir_inode
);
5740 ctx
->log_new_dentries
= false;
5741 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(dir_inode
),
5742 LOG_INODE_ALL
, 0, LLONG_MAX
, ctx
);
5744 btrfs_must_commit_transaction(trans
, BTRFS_I(dir_inode
)))
5746 if (!ret
&& ctx
&& ctx
->log_new_dentries
)
5747 ret
= log_new_dir_dentries(trans
, root
,
5748 BTRFS_I(dir_inode
), ctx
);
5749 btrfs_add_delayed_iput(dir_inode
);
5757 btrfs_free_path(path
);
5761 static int log_new_ancestors(struct btrfs_trans_handle
*trans
,
5762 struct btrfs_root
*root
,
5763 struct btrfs_path
*path
,
5764 struct btrfs_log_ctx
*ctx
)
5766 struct btrfs_key found_key
;
5768 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
, path
->slots
[0]);
5771 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5772 const u64 last_committed
= fs_info
->last_trans_committed
;
5773 struct extent_buffer
*leaf
= path
->nodes
[0];
5774 int slot
= path
->slots
[0];
5775 struct btrfs_key search_key
;
5776 struct inode
*inode
;
5780 btrfs_release_path(path
);
5782 ino
= found_key
.offset
;
5784 search_key
.objectid
= found_key
.offset
;
5785 search_key
.type
= BTRFS_INODE_ITEM_KEY
;
5786 search_key
.offset
= 0;
5787 inode
= btrfs_iget(fs_info
->sb
, ino
, root
);
5789 return PTR_ERR(inode
);
5791 if (BTRFS_I(inode
)->generation
> last_committed
)
5792 ret
= btrfs_log_inode(trans
, root
, BTRFS_I(inode
),
5795 btrfs_add_delayed_iput(inode
);
5799 if (search_key
.objectid
== BTRFS_FIRST_FREE_OBJECTID
)
5802 search_key
.type
= BTRFS_INODE_REF_KEY
;
5803 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
5807 leaf
= path
->nodes
[0];
5808 slot
= path
->slots
[0];
5809 if (slot
>= btrfs_header_nritems(leaf
)) {
5810 ret
= btrfs_next_leaf(root
, path
);
5815 leaf
= path
->nodes
[0];
5816 slot
= path
->slots
[0];
5819 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5820 if (found_key
.objectid
!= search_key
.objectid
||
5821 found_key
.type
!= BTRFS_INODE_REF_KEY
)
5827 static int log_new_ancestors_fast(struct btrfs_trans_handle
*trans
,
5828 struct btrfs_inode
*inode
,
5829 struct dentry
*parent
,
5830 struct btrfs_log_ctx
*ctx
)
5832 struct btrfs_root
*root
= inode
->root
;
5833 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5834 struct dentry
*old_parent
= NULL
;
5835 struct super_block
*sb
= inode
->vfs_inode
.i_sb
;
5839 if (!parent
|| d_really_is_negative(parent
) ||
5843 inode
= BTRFS_I(d_inode(parent
));
5844 if (root
!= inode
->root
)
5847 if (inode
->generation
> fs_info
->last_trans_committed
) {
5848 ret
= btrfs_log_inode(trans
, root
, inode
,
5849 LOG_INODE_EXISTS
, 0, LLONG_MAX
, ctx
);
5853 if (IS_ROOT(parent
))
5856 parent
= dget_parent(parent
);
5858 old_parent
= parent
;
5865 static int log_all_new_ancestors(struct btrfs_trans_handle
*trans
,
5866 struct btrfs_inode
*inode
,
5867 struct dentry
*parent
,
5868 struct btrfs_log_ctx
*ctx
)
5870 struct btrfs_root
*root
= inode
->root
;
5871 const u64 ino
= btrfs_ino(inode
);
5872 struct btrfs_path
*path
;
5873 struct btrfs_key search_key
;
5877 * For a single hard link case, go through a fast path that does not
5878 * need to iterate the fs/subvolume tree.
5880 if (inode
->vfs_inode
.i_nlink
< 2)
5881 return log_new_ancestors_fast(trans
, inode
, parent
, ctx
);
5883 path
= btrfs_alloc_path();
5887 search_key
.objectid
= ino
;
5888 search_key
.type
= BTRFS_INODE_REF_KEY
;
5889 search_key
.offset
= 0;
5891 ret
= btrfs_search_slot(NULL
, root
, &search_key
, path
, 0, 0);
5898 struct extent_buffer
*leaf
= path
->nodes
[0];
5899 int slot
= path
->slots
[0];
5900 struct btrfs_key found_key
;
5902 if (slot
>= btrfs_header_nritems(leaf
)) {
5903 ret
= btrfs_next_leaf(root
, path
);
5911 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
5912 if (found_key
.objectid
!= ino
||
5913 found_key
.type
> BTRFS_INODE_EXTREF_KEY
)
5917 * Don't deal with extended references because they are rare
5918 * cases and too complex to deal with (we would need to keep
5919 * track of which subitem we are processing for each item in
5920 * this loop, etc). So just return some error to fallback to
5921 * a transaction commit.
5923 if (found_key
.type
== BTRFS_INODE_EXTREF_KEY
) {
5929 * Logging ancestors needs to do more searches on the fs/subvol
5930 * tree, so it releases the path as needed to avoid deadlocks.
5931 * Keep track of the last inode ref key and resume from that key
5932 * after logging all new ancestors for the current hard link.
5934 memcpy(&search_key
, &found_key
, sizeof(search_key
));
5936 ret
= log_new_ancestors(trans
, root
, path
, ctx
);
5939 btrfs_release_path(path
);
5944 btrfs_free_path(path
);
5949 * helper function around btrfs_log_inode to make sure newly created
5950 * parent directories also end up in the log. A minimal inode and backref
5951 * only logging is done of any parent directories that are older than
5952 * the last committed transaction
5954 static int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
5955 struct btrfs_inode
*inode
,
5956 struct dentry
*parent
,
5960 struct btrfs_log_ctx
*ctx
)
5962 struct btrfs_root
*root
= inode
->root
;
5963 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5964 struct super_block
*sb
;
5966 u64 last_committed
= fs_info
->last_trans_committed
;
5967 bool log_dentries
= false;
5969 sb
= inode
->vfs_inode
.i_sb
;
5971 if (btrfs_test_opt(fs_info
, NOTREELOG
)) {
5977 * The prev transaction commit doesn't complete, we need do
5978 * full commit by ourselves.
5980 if (fs_info
->last_trans_log_full_commit
>
5981 fs_info
->last_trans_committed
) {
5986 if (btrfs_root_refs(&root
->root_item
) == 0) {
5991 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
, sb
,
5997 * Skip already logged inodes or inodes corresponding to tmpfiles
5998 * (since logging them is pointless, a link count of 0 means they
5999 * will never be accessible).
6001 if (btrfs_inode_in_log(inode
, trans
->transid
) ||
6002 inode
->vfs_inode
.i_nlink
== 0) {
6003 ret
= BTRFS_NO_LOG_SYNC
;
6007 ret
= start_log_trans(trans
, root
, ctx
);
6011 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
, start
, end
, ctx
);
6016 * for regular files, if its inode is already on disk, we don't
6017 * have to worry about the parents at all. This is because
6018 * we can use the last_unlink_trans field to record renames
6019 * and other fun in this file.
6021 if (S_ISREG(inode
->vfs_inode
.i_mode
) &&
6022 inode
->generation
<= last_committed
&&
6023 inode
->last_unlink_trans
<= last_committed
) {
6028 if (S_ISDIR(inode
->vfs_inode
.i_mode
) && ctx
&& ctx
->log_new_dentries
)
6029 log_dentries
= true;
6032 * On unlink we must make sure all our current and old parent directory
6033 * inodes are fully logged. This is to prevent leaving dangling
6034 * directory index entries in directories that were our parents but are
6035 * not anymore. Not doing this results in old parent directory being
6036 * impossible to delete after log replay (rmdir will always fail with
6037 * error -ENOTEMPTY).
6043 * ln testdir/foo testdir/bar
6045 * unlink testdir/bar
6046 * xfs_io -c fsync testdir/foo
6048 * mount fs, triggers log replay
6050 * If we don't log the parent directory (testdir), after log replay the
6051 * directory still has an entry pointing to the file inode using the bar
6052 * name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
6053 * the file inode has a link count of 1.
6059 * ln foo testdir/foo2
6060 * ln foo testdir/foo3
6062 * unlink testdir/foo3
6063 * xfs_io -c fsync foo
6065 * mount fs, triggers log replay
6067 * Similar as the first example, after log replay the parent directory
6068 * testdir still has an entry pointing to the inode file with name foo3
6069 * but the file inode does not have a matching BTRFS_INODE_REF_KEY item
6070 * and has a link count of 2.
6072 if (inode
->last_unlink_trans
> last_committed
) {
6073 ret
= btrfs_log_all_parents(trans
, inode
, ctx
);
6078 ret
= log_all_new_ancestors(trans
, inode
, parent
, ctx
);
6083 ret
= log_new_dir_dentries(trans
, root
, inode
, ctx
);
6088 btrfs_set_log_full_commit(trans
);
6093 btrfs_remove_log_ctx(root
, ctx
);
6094 btrfs_end_log_trans(root
);
6100 * it is not safe to log dentry if the chunk root has added new
6101 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
6102 * If this returns 1, you must commit the transaction to safely get your
6105 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
6106 struct dentry
*dentry
,
6109 struct btrfs_log_ctx
*ctx
)
6111 struct dentry
*parent
= dget_parent(dentry
);
6114 ret
= btrfs_log_inode_parent(trans
, BTRFS_I(d_inode(dentry
)), parent
,
6115 start
, end
, LOG_INODE_ALL
, ctx
);
6122 * should be called during mount to recover any replay any log trees
6125 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
6128 struct btrfs_path
*path
;
6129 struct btrfs_trans_handle
*trans
;
6130 struct btrfs_key key
;
6131 struct btrfs_key found_key
;
6132 struct btrfs_root
*log
;
6133 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
6134 struct walk_control wc
= {
6135 .process_func
= process_one_buffer
,
6136 .stage
= LOG_WALK_PIN_ONLY
,
6139 path
= btrfs_alloc_path();
6143 set_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
6145 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
6146 if (IS_ERR(trans
)) {
6147 ret
= PTR_ERR(trans
);
6154 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
6156 btrfs_handle_fs_error(fs_info
, ret
,
6157 "Failed to pin buffers while recovering log root tree.");
6162 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
6163 key
.offset
= (u64
)-1;
6164 key
.type
= BTRFS_ROOT_ITEM_KEY
;
6167 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
6170 btrfs_handle_fs_error(fs_info
, ret
,
6171 "Couldn't find tree log root.");
6175 if (path
->slots
[0] == 0)
6179 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
6181 btrfs_release_path(path
);
6182 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
6185 log
= btrfs_read_tree_root(log_root_tree
, &found_key
);
6188 btrfs_handle_fs_error(fs_info
, ret
,
6189 "Couldn't read tree log root.");
6193 wc
.replay_dest
= btrfs_get_fs_root(fs_info
, found_key
.offset
,
6195 if (IS_ERR(wc
.replay_dest
)) {
6196 ret
= PTR_ERR(wc
.replay_dest
);
6199 * We didn't find the subvol, likely because it was
6200 * deleted. This is ok, simply skip this log and go to
6203 * We need to exclude the root because we can't have
6204 * other log replays overwriting this log as we'll read
6205 * it back in a few more times. This will keep our
6206 * block from being modified, and we'll just bail for
6207 * each subsequent pass.
6210 ret
= btrfs_pin_extent_for_log_replay(trans
,
6213 btrfs_put_root(log
);
6217 btrfs_handle_fs_error(fs_info
, ret
,
6218 "Couldn't read target root for tree log recovery.");
6222 wc
.replay_dest
->log_root
= log
;
6223 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
6224 ret
= walk_log_tree(trans
, log
, &wc
);
6226 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
6227 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
6231 if (!ret
&& wc
.stage
== LOG_WALK_REPLAY_ALL
) {
6232 struct btrfs_root
*root
= wc
.replay_dest
;
6234 btrfs_release_path(path
);
6237 * We have just replayed everything, and the highest
6238 * objectid of fs roots probably has changed in case
6239 * some inode_item's got replayed.
6241 * root->objectid_mutex is not acquired as log replay
6242 * could only happen during mount.
6244 ret
= btrfs_find_highest_objectid(root
,
6245 &root
->highest_objectid
);
6248 wc
.replay_dest
->log_root
= NULL
;
6249 btrfs_put_root(wc
.replay_dest
);
6250 btrfs_put_root(log
);
6255 if (found_key
.offset
== 0)
6257 key
.offset
= found_key
.offset
- 1;
6259 btrfs_release_path(path
);
6261 /* step one is to pin it all, step two is to replay just inodes */
6264 wc
.process_func
= replay_one_buffer
;
6265 wc
.stage
= LOG_WALK_REPLAY_INODES
;
6268 /* step three is to replay everything */
6269 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
6274 btrfs_free_path(path
);
6276 /* step 4: commit the transaction, which also unpins the blocks */
6277 ret
= btrfs_commit_transaction(trans
);
6281 log_root_tree
->log_root
= NULL
;
6282 clear_bit(BTRFS_FS_LOG_RECOVERING
, &fs_info
->flags
);
6283 btrfs_put_root(log_root_tree
);
6288 btrfs_end_transaction(wc
.trans
);
6289 btrfs_free_path(path
);
6294 * there are some corner cases where we want to force a full
6295 * commit instead of allowing a directory to be logged.
6297 * They revolve around files there were unlinked from the directory, and
6298 * this function updates the parent directory so that a full commit is
6299 * properly done if it is fsync'd later after the unlinks are done.
6301 * Must be called before the unlink operations (updates to the subvolume tree,
6302 * inodes, etc) are done.
6304 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
6305 struct btrfs_inode
*dir
, struct btrfs_inode
*inode
,
6309 * when we're logging a file, if it hasn't been renamed
6310 * or unlinked, and its inode is fully committed on disk,
6311 * we don't have to worry about walking up the directory chain
6312 * to log its parents.
6314 * So, we use the last_unlink_trans field to put this transid
6315 * into the file. When the file is logged we check it and
6316 * don't log the parents if the file is fully on disk.
6318 mutex_lock(&inode
->log_mutex
);
6319 inode
->last_unlink_trans
= trans
->transid
;
6320 mutex_unlock(&inode
->log_mutex
);
6323 * if this directory was already logged any new
6324 * names for this file/dir will get recorded
6326 if (dir
->logged_trans
== trans
->transid
)
6330 * if the inode we're about to unlink was logged,
6331 * the log will be properly updated for any new names
6333 if (inode
->logged_trans
== trans
->transid
)
6337 * when renaming files across directories, if the directory
6338 * there we're unlinking from gets fsync'd later on, there's
6339 * no way to find the destination directory later and fsync it
6340 * properly. So, we have to be conservative and force commits
6341 * so the new name gets discovered.
6346 /* we can safely do the unlink without any special recording */
6350 mutex_lock(&dir
->log_mutex
);
6351 dir
->last_unlink_trans
= trans
->transid
;
6352 mutex_unlock(&dir
->log_mutex
);
6356 * Make sure that if someone attempts to fsync the parent directory of a deleted
6357 * snapshot, it ends up triggering a transaction commit. This is to guarantee
6358 * that after replaying the log tree of the parent directory's root we will not
6359 * see the snapshot anymore and at log replay time we will not see any log tree
6360 * corresponding to the deleted snapshot's root, which could lead to replaying
6361 * it after replaying the log tree of the parent directory (which would replay
6362 * the snapshot delete operation).
6364 * Must be called before the actual snapshot destroy operation (updates to the
6365 * parent root and tree of tree roots trees, etc) are done.
6367 void btrfs_record_snapshot_destroy(struct btrfs_trans_handle
*trans
,
6368 struct btrfs_inode
*dir
)
6370 mutex_lock(&dir
->log_mutex
);
6371 dir
->last_unlink_trans
= trans
->transid
;
6372 mutex_unlock(&dir
->log_mutex
);
6376 * Call this after adding a new name for a file and it will properly
6377 * update the log to reflect the new name.
6379 * @ctx can not be NULL when @sync_log is false, and should be NULL when it's
6380 * true (because it's not used).
6382 * Return value depends on whether @sync_log is true or false.
6383 * When true: returns BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6384 * committed by the caller, and BTRFS_DONT_NEED_TRANS_COMMIT
6386 * When false: returns BTRFS_DONT_NEED_LOG_SYNC if the caller does not need to
6387 * to sync the log, BTRFS_NEED_LOG_SYNC if it needs to sync the log,
6388 * or BTRFS_NEED_TRANS_COMMIT if the transaction needs to be
6389 * committed (without attempting to sync the log).
6391 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
6392 struct btrfs_inode
*inode
, struct btrfs_inode
*old_dir
,
6393 struct dentry
*parent
,
6394 bool sync_log
, struct btrfs_log_ctx
*ctx
)
6396 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
6400 * this will force the logging code to walk the dentry chain
6403 if (!S_ISDIR(inode
->vfs_inode
.i_mode
))
6404 inode
->last_unlink_trans
= trans
->transid
;
6407 * if this inode hasn't been logged and directory we're renaming it
6408 * from hasn't been logged, we don't need to log it
6410 if (inode
->logged_trans
<= fs_info
->last_trans_committed
&&
6411 (!old_dir
|| old_dir
->logged_trans
<= fs_info
->last_trans_committed
))
6412 return sync_log
? BTRFS_DONT_NEED_TRANS_COMMIT
:
6413 BTRFS_DONT_NEED_LOG_SYNC
;
6416 struct btrfs_log_ctx ctx2
;
6418 btrfs_init_log_ctx(&ctx2
, &inode
->vfs_inode
);
6419 ret
= btrfs_log_inode_parent(trans
, inode
, parent
, 0, LLONG_MAX
,
6420 LOG_INODE_EXISTS
, &ctx2
);
6421 if (ret
== BTRFS_NO_LOG_SYNC
)
6422 return BTRFS_DONT_NEED_TRANS_COMMIT
;
6424 return BTRFS_NEED_TRANS_COMMIT
;
6426 ret
= btrfs_sync_log(trans
, inode
->root
, &ctx2
);
6428 return BTRFS_NEED_TRANS_COMMIT
;
6429 return BTRFS_DONT_NEED_TRANS_COMMIT
;
6433 ret
= btrfs_log_inode_parent(trans
, inode
, parent
, 0, LLONG_MAX
,
6434 LOG_INODE_EXISTS
, ctx
);
6435 if (ret
== BTRFS_NO_LOG_SYNC
)
6436 return BTRFS_DONT_NEED_LOG_SYNC
;
6438 return BTRFS_NEED_TRANS_COMMIT
;
6440 return BTRFS_NEED_LOG_SYNC
;