1 // SPDX-License-Identifier: GPL-2.0
3 * Copyright (C) 2007 Oracle. All rights reserved.
6 #include <linux/sched.h>
8 #include <linux/slab.h>
9 #include <linux/blkdev.h>
10 #include <linux/ratelimit.h>
11 #include <linux/kthread.h>
12 #include <linux/raid/pq.h>
13 #include <linux/semaphore.h>
14 #include <linux/uuid.h>
15 #include <linux/list_sort.h>
18 #include "extent_map.h"
20 #include "transaction.h"
21 #include "print-tree.h"
24 #include "async-thread.h"
25 #include "check-integrity.h"
26 #include "rcu-string.h"
27 #include "dev-replace.h"
29 #include "tree-checker.h"
30 #include "space-info.h"
31 #include "block-group.h"
34 const struct btrfs_raid_attr btrfs_raid_array
[BTRFS_NR_RAID_TYPES
] = {
35 [BTRFS_RAID_RAID10
] = {
38 .devs_max
= 0, /* 0 == as many as possible */
40 .tolerated_failures
= 1,
44 .raid_name
= "raid10",
45 .bg_flag
= BTRFS_BLOCK_GROUP_RAID10
,
46 .mindev_error
= BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET
,
48 [BTRFS_RAID_RAID1
] = {
53 .tolerated_failures
= 1,
58 .bg_flag
= BTRFS_BLOCK_GROUP_RAID1
,
59 .mindev_error
= BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET
,
61 [BTRFS_RAID_RAID1C3
] = {
66 .tolerated_failures
= 2,
70 .raid_name
= "raid1c3",
71 .bg_flag
= BTRFS_BLOCK_GROUP_RAID1C3
,
72 .mindev_error
= BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET
,
74 [BTRFS_RAID_RAID1C4
] = {
79 .tolerated_failures
= 3,
83 .raid_name
= "raid1c4",
84 .bg_flag
= BTRFS_BLOCK_GROUP_RAID1C4
,
85 .mindev_error
= BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET
,
92 .tolerated_failures
= 0,
97 .bg_flag
= BTRFS_BLOCK_GROUP_DUP
,
100 [BTRFS_RAID_RAID0
] = {
105 .tolerated_failures
= 0,
109 .raid_name
= "raid0",
110 .bg_flag
= BTRFS_BLOCK_GROUP_RAID0
,
113 [BTRFS_RAID_SINGLE
] = {
118 .tolerated_failures
= 0,
122 .raid_name
= "single",
126 [BTRFS_RAID_RAID5
] = {
131 .tolerated_failures
= 1,
135 .raid_name
= "raid5",
136 .bg_flag
= BTRFS_BLOCK_GROUP_RAID5
,
137 .mindev_error
= BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET
,
139 [BTRFS_RAID_RAID6
] = {
144 .tolerated_failures
= 2,
148 .raid_name
= "raid6",
149 .bg_flag
= BTRFS_BLOCK_GROUP_RAID6
,
150 .mindev_error
= BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET
,
154 const char *btrfs_bg_type_to_raid_name(u64 flags
)
156 const int index
= btrfs_bg_flags_to_raid_index(flags
);
158 if (index
>= BTRFS_NR_RAID_TYPES
)
161 return btrfs_raid_array
[index
].raid_name
;
165 * Fill @buf with textual description of @bg_flags, no more than @size_buf
166 * bytes including terminating null byte.
168 void btrfs_describe_block_groups(u64 bg_flags
, char *buf
, u32 size_buf
)
173 u64 flags
= bg_flags
;
174 u32 size_bp
= size_buf
;
181 #define DESCRIBE_FLAG(flag, desc) \
183 if (flags & (flag)) { \
184 ret = snprintf(bp, size_bp, "%s|", (desc)); \
185 if (ret < 0 || ret >= size_bp) \
193 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA
, "data");
194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM
, "system");
195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA
, "metadata");
197 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE
, "single");
198 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
199 DESCRIBE_FLAG(btrfs_raid_array
[i
].bg_flag
,
200 btrfs_raid_array
[i
].raid_name
);
204 ret
= snprintf(bp
, size_bp
, "0x%llx|", flags
);
208 if (size_bp
< size_buf
)
209 buf
[size_buf
- size_bp
- 1] = '\0'; /* remove last | */
212 * The text is trimmed, it's up to the caller to provide sufficiently
218 static int init_first_rw_device(struct btrfs_trans_handle
*trans
);
219 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
);
220 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
);
221 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*device
);
222 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
223 enum btrfs_map_op op
,
224 u64 logical
, u64
*length
,
225 struct btrfs_bio
**bbio_ret
,
226 int mirror_num
, int need_raid_map
);
232 * There are several mutexes that protect manipulation of devices and low-level
233 * structures like chunks but not block groups, extents or files
235 * uuid_mutex (global lock)
236 * ------------------------
237 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from
238 * the SCAN_DEV ioctl registration or from mount either implicitly (the first
239 * device) or requested by the device= mount option
241 * the mutex can be very coarse and can cover long-running operations
243 * protects: updates to fs_devices counters like missing devices, rw devices,
244 * seeding, structure cloning, opening/closing devices at mount/umount time
246 * global::fs_devs - add, remove, updates to the global list
248 * does not protect: manipulation of the fs_devices::devices list!
250 * btrfs_device::name - renames (write side), read is RCU
252 * fs_devices::device_list_mutex (per-fs, with RCU)
253 * ------------------------------------------------
254 * protects updates to fs_devices::devices, ie. adding and deleting
256 * simple list traversal with read-only actions can be done with RCU protection
258 * may be used to exclude some operations from running concurrently without any
259 * modifications to the list (see write_all_supers)
263 * protects balance structures (status, state) and context accessed from
264 * several places (internally, ioctl)
268 * protects chunks, adding or removing during allocation, trim or when a new
269 * device is added/removed. Additionally it also protects post_commit_list of
270 * individual devices, since they can be added to the transaction's
271 * post_commit_list only with chunk_mutex held.
275 * a big lock that is held by the cleaner thread and prevents running subvolume
276 * cleaning together with relocation or delayed iputs
288 * Exclusive operations, BTRFS_FS_EXCL_OP
289 * ======================================
291 * Maintains the exclusivity of the following operations that apply to the
292 * whole filesystem and cannot run in parallel.
297 * - Device replace (*)
300 * The device operations (as above) can be in one of the following states:
306 * Only device operations marked with (*) can go into the Paused state for the
309 * - ioctl (only Balance can be Paused through ioctl)
310 * - filesystem remounted as read-only
311 * - filesystem unmounted and mounted as read-only
312 * - system power-cycle and filesystem mounted as read-only
313 * - filesystem or device errors leading to forced read-only
315 * BTRFS_FS_EXCL_OP flag is set and cleared using atomic operations.
316 * During the course of Paused state, the BTRFS_FS_EXCL_OP remains set.
317 * A device operation in Paused or Running state can be canceled or resumed
318 * either by ioctl (Balance only) or when remounted as read-write.
319 * BTRFS_FS_EXCL_OP flag is cleared when the device operation is canceled or
323 DEFINE_MUTEX(uuid_mutex
);
324 static LIST_HEAD(fs_uuids
);
325 struct list_head
* __attribute_const__
btrfs_get_fs_uuids(void)
331 * alloc_fs_devices - allocate struct btrfs_fs_devices
332 * @fsid: if not NULL, copy the UUID to fs_devices::fsid
333 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid
335 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR().
336 * The returned struct is not linked onto any lists and can be destroyed with
337 * kfree() right away.
339 static struct btrfs_fs_devices
*alloc_fs_devices(const u8
*fsid
,
340 const u8
*metadata_fsid
)
342 struct btrfs_fs_devices
*fs_devs
;
344 fs_devs
= kzalloc(sizeof(*fs_devs
), GFP_KERNEL
);
346 return ERR_PTR(-ENOMEM
);
348 mutex_init(&fs_devs
->device_list_mutex
);
350 INIT_LIST_HEAD(&fs_devs
->devices
);
351 INIT_LIST_HEAD(&fs_devs
->alloc_list
);
352 INIT_LIST_HEAD(&fs_devs
->fs_list
);
354 memcpy(fs_devs
->fsid
, fsid
, BTRFS_FSID_SIZE
);
357 memcpy(fs_devs
->metadata_uuid
, metadata_fsid
, BTRFS_FSID_SIZE
);
359 memcpy(fs_devs
->metadata_uuid
, fsid
, BTRFS_FSID_SIZE
);
364 void btrfs_free_device(struct btrfs_device
*device
)
366 WARN_ON(!list_empty(&device
->post_commit_list
));
367 rcu_string_free(device
->name
);
368 extent_io_tree_release(&device
->alloc_state
);
369 bio_put(device
->flush_bio
);
373 static void free_fs_devices(struct btrfs_fs_devices
*fs_devices
)
375 struct btrfs_device
*device
;
376 WARN_ON(fs_devices
->opened
);
377 while (!list_empty(&fs_devices
->devices
)) {
378 device
= list_entry(fs_devices
->devices
.next
,
379 struct btrfs_device
, dev_list
);
380 list_del(&device
->dev_list
);
381 btrfs_free_device(device
);
386 void __exit
btrfs_cleanup_fs_uuids(void)
388 struct btrfs_fs_devices
*fs_devices
;
390 while (!list_empty(&fs_uuids
)) {
391 fs_devices
= list_entry(fs_uuids
.next
,
392 struct btrfs_fs_devices
, fs_list
);
393 list_del(&fs_devices
->fs_list
);
394 free_fs_devices(fs_devices
);
399 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error.
400 * Returned struct is not linked onto any lists and must be destroyed using
403 static struct btrfs_device
*__alloc_device(void)
405 struct btrfs_device
*dev
;
407 dev
= kzalloc(sizeof(*dev
), GFP_KERNEL
);
409 return ERR_PTR(-ENOMEM
);
412 * Preallocate a bio that's always going to be used for flushing device
413 * barriers and matches the device lifespan
415 dev
->flush_bio
= bio_alloc_bioset(GFP_KERNEL
, 0, NULL
);
416 if (!dev
->flush_bio
) {
418 return ERR_PTR(-ENOMEM
);
421 INIT_LIST_HEAD(&dev
->dev_list
);
422 INIT_LIST_HEAD(&dev
->dev_alloc_list
);
423 INIT_LIST_HEAD(&dev
->post_commit_list
);
425 atomic_set(&dev
->reada_in_flight
, 0);
426 atomic_set(&dev
->dev_stats_ccnt
, 0);
427 btrfs_device_data_ordered_init(dev
);
428 INIT_RADIX_TREE(&dev
->reada_zones
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
429 INIT_RADIX_TREE(&dev
->reada_extents
, GFP_NOFS
& ~__GFP_DIRECT_RECLAIM
);
430 extent_io_tree_init(NULL
, &dev
->alloc_state
, 0, NULL
);
435 static noinline
struct btrfs_fs_devices
*find_fsid(
436 const u8
*fsid
, const u8
*metadata_fsid
)
438 struct btrfs_fs_devices
*fs_devices
;
442 /* Handle non-split brain cases */
443 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
445 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0
446 && memcmp(metadata_fsid
, fs_devices
->metadata_uuid
,
447 BTRFS_FSID_SIZE
) == 0)
450 if (memcmp(fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
) == 0)
457 static struct btrfs_fs_devices
*find_fsid_with_metadata_uuid(
458 struct btrfs_super_block
*disk_super
)
461 struct btrfs_fs_devices
*fs_devices
;
464 * Handle scanned device having completed its fsid change but
465 * belonging to a fs_devices that was created by first scanning
466 * a device which didn't have its fsid/metadata_uuid changed
467 * at all and the CHANGING_FSID_V2 flag set.
469 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
470 if (fs_devices
->fsid_change
&&
471 memcmp(disk_super
->metadata_uuid
, fs_devices
->fsid
,
472 BTRFS_FSID_SIZE
) == 0 &&
473 memcmp(fs_devices
->fsid
, fs_devices
->metadata_uuid
,
474 BTRFS_FSID_SIZE
) == 0) {
479 * Handle scanned device having completed its fsid change but
480 * belonging to a fs_devices that was created by a device that
481 * has an outdated pair of fsid/metadata_uuid and
482 * CHANGING_FSID_V2 flag set.
484 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
485 if (fs_devices
->fsid_change
&&
486 memcmp(fs_devices
->metadata_uuid
,
487 fs_devices
->fsid
, BTRFS_FSID_SIZE
) != 0 &&
488 memcmp(disk_super
->metadata_uuid
, fs_devices
->metadata_uuid
,
489 BTRFS_FSID_SIZE
) == 0) {
494 return find_fsid(disk_super
->fsid
, disk_super
->metadata_uuid
);
499 btrfs_get_bdev_and_sb(const char *device_path
, fmode_t flags
, void *holder
,
500 int flush
, struct block_device
**bdev
,
501 struct btrfs_super_block
**disk_super
)
505 *bdev
= blkdev_get_by_path(device_path
, flags
, holder
);
508 ret
= PTR_ERR(*bdev
);
513 filemap_write_and_wait((*bdev
)->bd_inode
->i_mapping
);
514 ret
= set_blocksize(*bdev
, BTRFS_BDEV_BLOCKSIZE
);
516 blkdev_put(*bdev
, flags
);
519 invalidate_bdev(*bdev
);
520 *disk_super
= btrfs_read_dev_super(*bdev
);
521 if (IS_ERR(*disk_super
)) {
522 ret
= PTR_ERR(*disk_super
);
523 blkdev_put(*bdev
, flags
);
534 static bool device_path_matched(const char *path
, struct btrfs_device
*device
)
539 found
= strcmp(rcu_str_deref(device
->name
), path
);
546 * Search and remove all stale (devices which are not mounted) devices.
547 * When both inputs are NULL, it will search and release all stale devices.
548 * path: Optional. When provided will it release all unmounted devices
549 * matching this path only.
550 * skip_dev: Optional. Will skip this device when searching for the stale
552 * Return: 0 for success or if @path is NULL.
553 * -EBUSY if @path is a mounted device.
554 * -ENOENT if @path does not match any device in the list.
556 static int btrfs_free_stale_devices(const char *path
,
557 struct btrfs_device
*skip_device
)
559 struct btrfs_fs_devices
*fs_devices
, *tmp_fs_devices
;
560 struct btrfs_device
*device
, *tmp_device
;
566 list_for_each_entry_safe(fs_devices
, tmp_fs_devices
, &fs_uuids
, fs_list
) {
568 mutex_lock(&fs_devices
->device_list_mutex
);
569 list_for_each_entry_safe(device
, tmp_device
,
570 &fs_devices
->devices
, dev_list
) {
571 if (skip_device
&& skip_device
== device
)
573 if (path
&& !device
->name
)
575 if (path
&& !device_path_matched(path
, device
))
577 if (fs_devices
->opened
) {
578 /* for an already deleted device return 0 */
579 if (path
&& ret
!= 0)
584 /* delete the stale device */
585 fs_devices
->num_devices
--;
586 list_del(&device
->dev_list
);
587 btrfs_free_device(device
);
590 if (fs_devices
->num_devices
== 0)
593 mutex_unlock(&fs_devices
->device_list_mutex
);
595 if (fs_devices
->num_devices
== 0) {
596 btrfs_sysfs_remove_fsid(fs_devices
);
597 list_del(&fs_devices
->fs_list
);
598 free_fs_devices(fs_devices
);
605 static int btrfs_open_one_device(struct btrfs_fs_devices
*fs_devices
,
606 struct btrfs_device
*device
, fmode_t flags
,
609 struct request_queue
*q
;
610 struct block_device
*bdev
;
611 struct btrfs_super_block
*disk_super
;
620 ret
= btrfs_get_bdev_and_sb(device
->name
->str
, flags
, holder
, 1,
625 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
626 if (devid
!= device
->devid
)
627 goto error_free_page
;
629 if (memcmp(device
->uuid
, disk_super
->dev_item
.uuid
, BTRFS_UUID_SIZE
))
630 goto error_free_page
;
632 device
->generation
= btrfs_super_generation(disk_super
);
634 if (btrfs_super_flags(disk_super
) & BTRFS_SUPER_FLAG_SEEDING
) {
635 if (btrfs_super_incompat_flags(disk_super
) &
636 BTRFS_FEATURE_INCOMPAT_METADATA_UUID
) {
638 "BTRFS: Invalid seeding and uuid-changed device detected\n");
639 goto error_free_page
;
642 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
643 fs_devices
->seeding
= true;
645 if (bdev_read_only(bdev
))
646 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
648 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
651 q
= bdev_get_queue(bdev
);
652 if (!blk_queue_nonrot(q
))
653 fs_devices
->rotating
= true;
656 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
657 device
->mode
= flags
;
659 fs_devices
->open_devices
++;
660 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
661 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
662 fs_devices
->rw_devices
++;
663 list_add_tail(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
665 btrfs_release_disk_super(disk_super
);
670 btrfs_release_disk_super(disk_super
);
671 blkdev_put(bdev
, flags
);
677 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices
678 * being created with a disk that has already completed its fsid change. Such
679 * disk can belong to an fs which has its FSID changed or to one which doesn't.
680 * Handle both cases here.
682 static struct btrfs_fs_devices
*find_fsid_inprogress(
683 struct btrfs_super_block
*disk_super
)
685 struct btrfs_fs_devices
*fs_devices
;
687 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
688 if (memcmp(fs_devices
->metadata_uuid
, fs_devices
->fsid
,
689 BTRFS_FSID_SIZE
) != 0 &&
690 memcmp(fs_devices
->metadata_uuid
, disk_super
->fsid
,
691 BTRFS_FSID_SIZE
) == 0 && !fs_devices
->fsid_change
) {
696 return find_fsid(disk_super
->fsid
, NULL
);
700 static struct btrfs_fs_devices
*find_fsid_changed(
701 struct btrfs_super_block
*disk_super
)
703 struct btrfs_fs_devices
*fs_devices
;
706 * Handles the case where scanned device is part of an fs that had
707 * multiple successful changes of FSID but curently device didn't
708 * observe it. Meaning our fsid will be different than theirs. We need
709 * to handle two subcases :
710 * 1 - The fs still continues to have different METADATA/FSID uuids.
711 * 2 - The fs is switched back to its original FSID (METADATA/FSID
714 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
716 if (memcmp(fs_devices
->metadata_uuid
, fs_devices
->fsid
,
717 BTRFS_FSID_SIZE
) != 0 &&
718 memcmp(fs_devices
->metadata_uuid
, disk_super
->metadata_uuid
,
719 BTRFS_FSID_SIZE
) == 0 &&
720 memcmp(fs_devices
->fsid
, disk_super
->fsid
,
721 BTRFS_FSID_SIZE
) != 0)
724 /* Unchanged UUIDs */
725 if (memcmp(fs_devices
->metadata_uuid
, fs_devices
->fsid
,
726 BTRFS_FSID_SIZE
) == 0 &&
727 memcmp(fs_devices
->fsid
, disk_super
->metadata_uuid
,
728 BTRFS_FSID_SIZE
) == 0)
735 static struct btrfs_fs_devices
*find_fsid_reverted_metadata(
736 struct btrfs_super_block
*disk_super
)
738 struct btrfs_fs_devices
*fs_devices
;
741 * Handle the case where the scanned device is part of an fs whose last
742 * metadata UUID change reverted it to the original FSID. At the same
743 * time * fs_devices was first created by another constitutent device
744 * which didn't fully observe the operation. This results in an
745 * btrfs_fs_devices created with metadata/fsid different AND
746 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the
747 * fs_devices equal to the FSID of the disk.
749 list_for_each_entry(fs_devices
, &fs_uuids
, fs_list
) {
750 if (memcmp(fs_devices
->fsid
, fs_devices
->metadata_uuid
,
751 BTRFS_FSID_SIZE
) != 0 &&
752 memcmp(fs_devices
->metadata_uuid
, disk_super
->fsid
,
753 BTRFS_FSID_SIZE
) == 0 &&
754 fs_devices
->fsid_change
)
761 * Add new device to list of registered devices
764 * device pointer which was just added or updated when successful
765 * error pointer when failed
767 static noinline
struct btrfs_device
*device_list_add(const char *path
,
768 struct btrfs_super_block
*disk_super
,
769 bool *new_device_added
)
771 struct btrfs_device
*device
;
772 struct btrfs_fs_devices
*fs_devices
= NULL
;
773 struct rcu_string
*name
;
774 u64 found_transid
= btrfs_super_generation(disk_super
);
775 u64 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
776 bool has_metadata_uuid
= (btrfs_super_incompat_flags(disk_super
) &
777 BTRFS_FEATURE_INCOMPAT_METADATA_UUID
);
778 bool fsid_change_in_progress
= (btrfs_super_flags(disk_super
) &
779 BTRFS_SUPER_FLAG_CHANGING_FSID_V2
);
781 if (fsid_change_in_progress
) {
782 if (!has_metadata_uuid
)
783 fs_devices
= find_fsid_inprogress(disk_super
);
785 fs_devices
= find_fsid_changed(disk_super
);
786 } else if (has_metadata_uuid
) {
787 fs_devices
= find_fsid_with_metadata_uuid(disk_super
);
789 fs_devices
= find_fsid_reverted_metadata(disk_super
);
791 fs_devices
= find_fsid(disk_super
->fsid
, NULL
);
796 if (has_metadata_uuid
)
797 fs_devices
= alloc_fs_devices(disk_super
->fsid
,
798 disk_super
->metadata_uuid
);
800 fs_devices
= alloc_fs_devices(disk_super
->fsid
, NULL
);
802 if (IS_ERR(fs_devices
))
803 return ERR_CAST(fs_devices
);
805 fs_devices
->fsid_change
= fsid_change_in_progress
;
807 mutex_lock(&fs_devices
->device_list_mutex
);
808 list_add(&fs_devices
->fs_list
, &fs_uuids
);
812 mutex_lock(&fs_devices
->device_list_mutex
);
813 device
= btrfs_find_device(fs_devices
, devid
,
814 disk_super
->dev_item
.uuid
, NULL
, false);
817 * If this disk has been pulled into an fs devices created by
818 * a device which had the CHANGING_FSID_V2 flag then replace the
819 * metadata_uuid/fsid values of the fs_devices.
821 if (fs_devices
->fsid_change
&&
822 found_transid
> fs_devices
->latest_generation
) {
823 memcpy(fs_devices
->fsid
, disk_super
->fsid
,
826 if (has_metadata_uuid
)
827 memcpy(fs_devices
->metadata_uuid
,
828 disk_super
->metadata_uuid
,
831 memcpy(fs_devices
->metadata_uuid
,
832 disk_super
->fsid
, BTRFS_FSID_SIZE
);
834 fs_devices
->fsid_change
= false;
839 if (fs_devices
->opened
) {
840 mutex_unlock(&fs_devices
->device_list_mutex
);
841 return ERR_PTR(-EBUSY
);
844 device
= btrfs_alloc_device(NULL
, &devid
,
845 disk_super
->dev_item
.uuid
);
846 if (IS_ERR(device
)) {
847 mutex_unlock(&fs_devices
->device_list_mutex
);
848 /* we can safely leave the fs_devices entry around */
852 name
= rcu_string_strdup(path
, GFP_NOFS
);
854 btrfs_free_device(device
);
855 mutex_unlock(&fs_devices
->device_list_mutex
);
856 return ERR_PTR(-ENOMEM
);
858 rcu_assign_pointer(device
->name
, name
);
860 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
861 fs_devices
->num_devices
++;
863 device
->fs_devices
= fs_devices
;
864 *new_device_added
= true;
866 if (disk_super
->label
[0])
868 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n",
869 disk_super
->label
, devid
, found_transid
, path
,
870 current
->comm
, task_pid_nr(current
));
873 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n",
874 disk_super
->fsid
, devid
, found_transid
, path
,
875 current
->comm
, task_pid_nr(current
));
877 } else if (!device
->name
|| strcmp(device
->name
->str
, path
)) {
879 * When FS is already mounted.
880 * 1. If you are here and if the device->name is NULL that
881 * means this device was missing at time of FS mount.
882 * 2. If you are here and if the device->name is different
883 * from 'path' that means either
884 * a. The same device disappeared and reappeared with
886 * b. The missing-disk-which-was-replaced, has
889 * We must allow 1 and 2a above. But 2b would be a spurious
892 * Further in case of 1 and 2a above, the disk at 'path'
893 * would have missed some transaction when it was away and
894 * in case of 2a the stale bdev has to be updated as well.
895 * 2b must not be allowed at all time.
899 * For now, we do allow update to btrfs_fs_device through the
900 * btrfs dev scan cli after FS has been mounted. We're still
901 * tracking a problem where systems fail mount by subvolume id
902 * when we reject replacement on a mounted FS.
904 if (!fs_devices
->opened
&& found_transid
< device
->generation
) {
906 * That is if the FS is _not_ mounted and if you
907 * are here, that means there is more than one
908 * disk with same uuid and devid.We keep the one
909 * with larger generation number or the last-in if
910 * generation are equal.
912 mutex_unlock(&fs_devices
->device_list_mutex
);
913 return ERR_PTR(-EEXIST
);
917 * We are going to replace the device path for a given devid,
918 * make sure it's the same device if the device is mounted
921 struct block_device
*path_bdev
;
923 path_bdev
= lookup_bdev(path
);
924 if (IS_ERR(path_bdev
)) {
925 mutex_unlock(&fs_devices
->device_list_mutex
);
926 return ERR_CAST(path_bdev
);
929 if (device
->bdev
!= path_bdev
) {
931 mutex_unlock(&fs_devices
->device_list_mutex
);
932 btrfs_warn_in_rcu(device
->fs_info
,
933 "duplicate device fsid:devid for %pU:%llu old:%s new:%s",
934 disk_super
->fsid
, devid
,
935 rcu_str_deref(device
->name
), path
);
936 return ERR_PTR(-EEXIST
);
939 btrfs_info_in_rcu(device
->fs_info
,
940 "device fsid %pU devid %llu moved old:%s new:%s",
941 disk_super
->fsid
, devid
,
942 rcu_str_deref(device
->name
), path
);
945 name
= rcu_string_strdup(path
, GFP_NOFS
);
947 mutex_unlock(&fs_devices
->device_list_mutex
);
948 return ERR_PTR(-ENOMEM
);
950 rcu_string_free(device
->name
);
951 rcu_assign_pointer(device
->name
, name
);
952 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
953 fs_devices
->missing_devices
--;
954 clear_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
959 * Unmount does not free the btrfs_device struct but would zero
960 * generation along with most of the other members. So just update
961 * it back. We need it to pick the disk with largest generation
964 if (!fs_devices
->opened
) {
965 device
->generation
= found_transid
;
966 fs_devices
->latest_generation
= max_t(u64
, found_transid
,
967 fs_devices
->latest_generation
);
970 fs_devices
->total_devices
= btrfs_super_num_devices(disk_super
);
972 mutex_unlock(&fs_devices
->device_list_mutex
);
976 static struct btrfs_fs_devices
*clone_fs_devices(struct btrfs_fs_devices
*orig
)
978 struct btrfs_fs_devices
*fs_devices
;
979 struct btrfs_device
*device
;
980 struct btrfs_device
*orig_dev
;
983 fs_devices
= alloc_fs_devices(orig
->fsid
, NULL
);
984 if (IS_ERR(fs_devices
))
987 mutex_lock(&orig
->device_list_mutex
);
988 fs_devices
->total_devices
= orig
->total_devices
;
990 list_for_each_entry(orig_dev
, &orig
->devices
, dev_list
) {
991 struct rcu_string
*name
;
993 device
= btrfs_alloc_device(NULL
, &orig_dev
->devid
,
995 if (IS_ERR(device
)) {
996 ret
= PTR_ERR(device
);
1001 * This is ok to do without rcu read locked because we hold the
1002 * uuid mutex so nothing we touch in here is going to disappear.
1004 if (orig_dev
->name
) {
1005 name
= rcu_string_strdup(orig_dev
->name
->str
,
1008 btrfs_free_device(device
);
1012 rcu_assign_pointer(device
->name
, name
);
1015 list_add(&device
->dev_list
, &fs_devices
->devices
);
1016 device
->fs_devices
= fs_devices
;
1017 fs_devices
->num_devices
++;
1019 mutex_unlock(&orig
->device_list_mutex
);
1022 mutex_unlock(&orig
->device_list_mutex
);
1023 free_fs_devices(fs_devices
);
1024 return ERR_PTR(ret
);
1028 * After we have read the system tree and know devids belonging to
1029 * this filesystem, remove the device which does not belong there.
1031 void btrfs_free_extra_devids(struct btrfs_fs_devices
*fs_devices
, int step
)
1033 struct btrfs_device
*device
, *next
;
1034 struct btrfs_device
*latest_dev
= NULL
;
1036 mutex_lock(&uuid_mutex
);
1038 /* This is the initialized path, it is safe to release the devices. */
1039 list_for_each_entry_safe(device
, next
, &fs_devices
->devices
, dev_list
) {
1040 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
1041 &device
->dev_state
)) {
1042 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
1043 &device
->dev_state
) &&
1044 !test_bit(BTRFS_DEV_STATE_MISSING
,
1045 &device
->dev_state
) &&
1047 device
->generation
> latest_dev
->generation
)) {
1048 latest_dev
= device
;
1053 if (device
->devid
== BTRFS_DEV_REPLACE_DEVID
) {
1055 * In the first step, keep the device which has
1056 * the correct fsid and the devid that is used
1057 * for the dev_replace procedure.
1058 * In the second step, the dev_replace state is
1059 * read from the device tree and it is known
1060 * whether the procedure is really active or
1061 * not, which means whether this device is
1062 * used or whether it should be removed.
1064 if (step
== 0 || test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
1065 &device
->dev_state
)) {
1070 blkdev_put(device
->bdev
, device
->mode
);
1071 device
->bdev
= NULL
;
1072 fs_devices
->open_devices
--;
1074 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1075 list_del_init(&device
->dev_alloc_list
);
1076 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
1077 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
,
1078 &device
->dev_state
))
1079 fs_devices
->rw_devices
--;
1081 list_del_init(&device
->dev_list
);
1082 fs_devices
->num_devices
--;
1083 btrfs_free_device(device
);
1086 if (fs_devices
->seed
) {
1087 fs_devices
= fs_devices
->seed
;
1091 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1093 mutex_unlock(&uuid_mutex
);
1096 static void btrfs_close_bdev(struct btrfs_device
*device
)
1101 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
1102 sync_blockdev(device
->bdev
);
1103 invalidate_bdev(device
->bdev
);
1106 blkdev_put(device
->bdev
, device
->mode
);
1109 static void btrfs_close_one_device(struct btrfs_device
*device
)
1111 struct btrfs_fs_devices
*fs_devices
= device
->fs_devices
;
1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
1114 device
->devid
!= BTRFS_DEV_REPLACE_DEVID
) {
1115 list_del_init(&device
->dev_alloc_list
);
1116 fs_devices
->rw_devices
--;
1119 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
1120 fs_devices
->missing_devices
--;
1122 btrfs_close_bdev(device
);
1124 fs_devices
->open_devices
--;
1125 device
->bdev
= NULL
;
1127 clear_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
1129 device
->fs_info
= NULL
;
1130 atomic_set(&device
->dev_stats_ccnt
, 0);
1131 extent_io_tree_release(&device
->alloc_state
);
1133 /* Verify the device is back in a pristine state */
1134 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT
, &device
->dev_state
));
1135 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
));
1136 ASSERT(list_empty(&device
->dev_alloc_list
));
1137 ASSERT(list_empty(&device
->post_commit_list
));
1138 ASSERT(atomic_read(&device
->reada_in_flight
) == 0);
1141 static int close_fs_devices(struct btrfs_fs_devices
*fs_devices
)
1143 struct btrfs_device
*device
, *tmp
;
1145 if (--fs_devices
->opened
> 0)
1148 mutex_lock(&fs_devices
->device_list_mutex
);
1149 list_for_each_entry_safe(device
, tmp
, &fs_devices
->devices
, dev_list
) {
1150 btrfs_close_one_device(device
);
1152 mutex_unlock(&fs_devices
->device_list_mutex
);
1154 WARN_ON(fs_devices
->open_devices
);
1155 WARN_ON(fs_devices
->rw_devices
);
1156 fs_devices
->opened
= 0;
1157 fs_devices
->seeding
= false;
1162 int btrfs_close_devices(struct btrfs_fs_devices
*fs_devices
)
1164 struct btrfs_fs_devices
*seed_devices
= NULL
;
1167 mutex_lock(&uuid_mutex
);
1168 ret
= close_fs_devices(fs_devices
);
1169 if (!fs_devices
->opened
) {
1170 seed_devices
= fs_devices
->seed
;
1171 fs_devices
->seed
= NULL
;
1173 mutex_unlock(&uuid_mutex
);
1175 while (seed_devices
) {
1176 fs_devices
= seed_devices
;
1177 seed_devices
= fs_devices
->seed
;
1178 close_fs_devices(fs_devices
);
1179 free_fs_devices(fs_devices
);
1184 static int open_fs_devices(struct btrfs_fs_devices
*fs_devices
,
1185 fmode_t flags
, void *holder
)
1187 struct btrfs_device
*device
;
1188 struct btrfs_device
*latest_dev
= NULL
;
1190 flags
|= FMODE_EXCL
;
1192 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
1193 /* Just open everything we can; ignore failures here */
1194 if (btrfs_open_one_device(fs_devices
, device
, flags
, holder
))
1198 device
->generation
> latest_dev
->generation
)
1199 latest_dev
= device
;
1201 if (fs_devices
->open_devices
== 0)
1204 fs_devices
->opened
= 1;
1205 fs_devices
->latest_bdev
= latest_dev
->bdev
;
1206 fs_devices
->total_rw_bytes
= 0;
1207 fs_devices
->chunk_alloc_policy
= BTRFS_CHUNK_ALLOC_REGULAR
;
1212 static int devid_cmp(void *priv
, struct list_head
*a
, struct list_head
*b
)
1214 struct btrfs_device
*dev1
, *dev2
;
1216 dev1
= list_entry(a
, struct btrfs_device
, dev_list
);
1217 dev2
= list_entry(b
, struct btrfs_device
, dev_list
);
1219 if (dev1
->devid
< dev2
->devid
)
1221 else if (dev1
->devid
> dev2
->devid
)
1226 int btrfs_open_devices(struct btrfs_fs_devices
*fs_devices
,
1227 fmode_t flags
, void *holder
)
1231 lockdep_assert_held(&uuid_mutex
);
1233 mutex_lock(&fs_devices
->device_list_mutex
);
1234 if (fs_devices
->opened
) {
1235 fs_devices
->opened
++;
1238 list_sort(NULL
, &fs_devices
->devices
, devid_cmp
);
1239 ret
= open_fs_devices(fs_devices
, flags
, holder
);
1241 mutex_unlock(&fs_devices
->device_list_mutex
);
1246 void btrfs_release_disk_super(struct btrfs_super_block
*super
)
1248 struct page
*page
= virt_to_page(super
);
1253 static struct btrfs_super_block
*btrfs_read_disk_super(struct block_device
*bdev
,
1256 struct btrfs_super_block
*disk_super
;
1261 /* make sure our super fits in the device */
1262 if (bytenr
+ PAGE_SIZE
>= i_size_read(bdev
->bd_inode
))
1263 return ERR_PTR(-EINVAL
);
1265 /* make sure our super fits in the page */
1266 if (sizeof(*disk_super
) > PAGE_SIZE
)
1267 return ERR_PTR(-EINVAL
);
1269 /* make sure our super doesn't straddle pages on disk */
1270 index
= bytenr
>> PAGE_SHIFT
;
1271 if ((bytenr
+ sizeof(*disk_super
) - 1) >> PAGE_SHIFT
!= index
)
1272 return ERR_PTR(-EINVAL
);
1274 /* pull in the page with our super */
1275 page
= read_cache_page_gfp(bdev
->bd_inode
->i_mapping
, index
, GFP_KERNEL
);
1278 return ERR_CAST(page
);
1280 p
= page_address(page
);
1282 /* align our pointer to the offset of the super block */
1283 disk_super
= p
+ offset_in_page(bytenr
);
1285 if (btrfs_super_bytenr(disk_super
) != bytenr
||
1286 btrfs_super_magic(disk_super
) != BTRFS_MAGIC
) {
1287 btrfs_release_disk_super(p
);
1288 return ERR_PTR(-EINVAL
);
1291 if (disk_super
->label
[0] && disk_super
->label
[BTRFS_LABEL_SIZE
- 1])
1292 disk_super
->label
[BTRFS_LABEL_SIZE
- 1] = 0;
1297 int btrfs_forget_devices(const char *path
)
1301 mutex_lock(&uuid_mutex
);
1302 ret
= btrfs_free_stale_devices(strlen(path
) ? path
: NULL
, NULL
);
1303 mutex_unlock(&uuid_mutex
);
1309 * Look for a btrfs signature on a device. This may be called out of the mount path
1310 * and we are not allowed to call set_blocksize during the scan. The superblock
1311 * is read via pagecache
1313 struct btrfs_device
*btrfs_scan_one_device(const char *path
, fmode_t flags
,
1316 struct btrfs_super_block
*disk_super
;
1317 bool new_device_added
= false;
1318 struct btrfs_device
*device
= NULL
;
1319 struct block_device
*bdev
;
1322 lockdep_assert_held(&uuid_mutex
);
1325 * we would like to check all the supers, but that would make
1326 * a btrfs mount succeed after a mkfs from a different FS.
1327 * So, we need to add a special mount option to scan for
1328 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
1330 bytenr
= btrfs_sb_offset(0);
1331 flags
|= FMODE_EXCL
;
1333 bdev
= blkdev_get_by_path(path
, flags
, holder
);
1335 return ERR_CAST(bdev
);
1337 disk_super
= btrfs_read_disk_super(bdev
, bytenr
);
1338 if (IS_ERR(disk_super
)) {
1339 device
= ERR_CAST(disk_super
);
1340 goto error_bdev_put
;
1343 device
= device_list_add(path
, disk_super
, &new_device_added
);
1344 if (!IS_ERR(device
)) {
1345 if (new_device_added
)
1346 btrfs_free_stale_devices(path
, device
);
1349 btrfs_release_disk_super(disk_super
);
1352 blkdev_put(bdev
, flags
);
1358 * Try to find a chunk that intersects [start, start + len] range and when one
1359 * such is found, record the end of it in *start
1361 static bool contains_pending_extent(struct btrfs_device
*device
, u64
*start
,
1364 u64 physical_start
, physical_end
;
1366 lockdep_assert_held(&device
->fs_info
->chunk_mutex
);
1368 if (!find_first_extent_bit(&device
->alloc_state
, *start
,
1369 &physical_start
, &physical_end
,
1370 CHUNK_ALLOCATED
, NULL
)) {
1372 if (in_range(physical_start
, *start
, len
) ||
1373 in_range(*start
, physical_start
,
1374 physical_end
- physical_start
)) {
1375 *start
= physical_end
+ 1;
1382 static u64
dev_extent_search_start(struct btrfs_device
*device
, u64 start
)
1384 switch (device
->fs_devices
->chunk_alloc_policy
) {
1385 case BTRFS_CHUNK_ALLOC_REGULAR
:
1387 * We don't want to overwrite the superblock on the drive nor
1388 * any area used by the boot loader (grub for example), so we
1389 * make sure to start at an offset of at least 1MB.
1391 return max_t(u64
, start
, SZ_1M
);
1398 * dev_extent_hole_check - check if specified hole is suitable for allocation
1399 * @device: the device which we have the hole
1400 * @hole_start: starting position of the hole
1401 * @hole_size: the size of the hole
1402 * @num_bytes: the size of the free space that we need
1404 * This function may modify @hole_start and @hole_end to reflect the suitable
1405 * position for allocation. Returns 1 if hole position is updated, 0 otherwise.
1407 static bool dev_extent_hole_check(struct btrfs_device
*device
, u64
*hole_start
,
1408 u64
*hole_size
, u64 num_bytes
)
1410 bool changed
= false;
1411 u64 hole_end
= *hole_start
+ *hole_size
;
1414 * Check before we set max_hole_start, otherwise we could end up
1415 * sending back this offset anyway.
1417 if (contains_pending_extent(device
, hole_start
, *hole_size
)) {
1418 if (hole_end
>= *hole_start
)
1419 *hole_size
= hole_end
- *hole_start
;
1425 switch (device
->fs_devices
->chunk_alloc_policy
) {
1426 case BTRFS_CHUNK_ALLOC_REGULAR
:
1427 /* No extra check */
1437 * find_free_dev_extent_start - find free space in the specified device
1438 * @device: the device which we search the free space in
1439 * @num_bytes: the size of the free space that we need
1440 * @search_start: the position from which to begin the search
1441 * @start: store the start of the free space.
1442 * @len: the size of the free space. that we find, or the size
1443 * of the max free space if we don't find suitable free space
1445 * this uses a pretty simple search, the expectation is that it is
1446 * called very infrequently and that a given device has a small number
1449 * @start is used to store the start of the free space if we find. But if we
1450 * don't find suitable free space, it will be used to store the start position
1451 * of the max free space.
1453 * @len is used to store the size of the free space that we find.
1454 * But if we don't find suitable free space, it is used to store the size of
1455 * the max free space.
1457 * NOTE: This function will search *commit* root of device tree, and does extra
1458 * check to ensure dev extents are not double allocated.
1459 * This makes the function safe to allocate dev extents but may not report
1460 * correct usable device space, as device extent freed in current transaction
1461 * is not reported as avaiable.
1463 static int find_free_dev_extent_start(struct btrfs_device
*device
,
1464 u64 num_bytes
, u64 search_start
, u64
*start
,
1467 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1468 struct btrfs_root
*root
= fs_info
->dev_root
;
1469 struct btrfs_key key
;
1470 struct btrfs_dev_extent
*dev_extent
;
1471 struct btrfs_path
*path
;
1476 u64 search_end
= device
->total_bytes
;
1479 struct extent_buffer
*l
;
1481 search_start
= dev_extent_search_start(device
, search_start
);
1483 path
= btrfs_alloc_path();
1487 max_hole_start
= search_start
;
1491 if (search_start
>= search_end
||
1492 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
1497 path
->reada
= READA_FORWARD
;
1498 path
->search_commit_root
= 1;
1499 path
->skip_locking
= 1;
1501 key
.objectid
= device
->devid
;
1502 key
.offset
= search_start
;
1503 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1505 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1509 ret
= btrfs_previous_item(root
, path
, key
.objectid
, key
.type
);
1516 slot
= path
->slots
[0];
1517 if (slot
>= btrfs_header_nritems(l
)) {
1518 ret
= btrfs_next_leaf(root
, path
);
1526 btrfs_item_key_to_cpu(l
, &key
, slot
);
1528 if (key
.objectid
< device
->devid
)
1531 if (key
.objectid
> device
->devid
)
1534 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
1537 if (key
.offset
> search_start
) {
1538 hole_size
= key
.offset
- search_start
;
1539 dev_extent_hole_check(device
, &search_start
, &hole_size
,
1542 if (hole_size
> max_hole_size
) {
1543 max_hole_start
= search_start
;
1544 max_hole_size
= hole_size
;
1548 * If this free space is greater than which we need,
1549 * it must be the max free space that we have found
1550 * until now, so max_hole_start must point to the start
1551 * of this free space and the length of this free space
1552 * is stored in max_hole_size. Thus, we return
1553 * max_hole_start and max_hole_size and go back to the
1556 if (hole_size
>= num_bytes
) {
1562 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
1563 extent_end
= key
.offset
+ btrfs_dev_extent_length(l
,
1565 if (extent_end
> search_start
)
1566 search_start
= extent_end
;
1573 * At this point, search_start should be the end of
1574 * allocated dev extents, and when shrinking the device,
1575 * search_end may be smaller than search_start.
1577 if (search_end
> search_start
) {
1578 hole_size
= search_end
- search_start
;
1579 if (dev_extent_hole_check(device
, &search_start
, &hole_size
,
1581 btrfs_release_path(path
);
1585 if (hole_size
> max_hole_size
) {
1586 max_hole_start
= search_start
;
1587 max_hole_size
= hole_size
;
1592 if (max_hole_size
< num_bytes
)
1598 btrfs_free_path(path
);
1599 *start
= max_hole_start
;
1601 *len
= max_hole_size
;
1605 int find_free_dev_extent(struct btrfs_device
*device
, u64 num_bytes
,
1606 u64
*start
, u64
*len
)
1608 /* FIXME use last free of some kind */
1609 return find_free_dev_extent_start(device
, num_bytes
, 0, start
, len
);
1612 static int btrfs_free_dev_extent(struct btrfs_trans_handle
*trans
,
1613 struct btrfs_device
*device
,
1614 u64 start
, u64
*dev_extent_len
)
1616 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1617 struct btrfs_root
*root
= fs_info
->dev_root
;
1619 struct btrfs_path
*path
;
1620 struct btrfs_key key
;
1621 struct btrfs_key found_key
;
1622 struct extent_buffer
*leaf
= NULL
;
1623 struct btrfs_dev_extent
*extent
= NULL
;
1625 path
= btrfs_alloc_path();
1629 key
.objectid
= device
->devid
;
1631 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1633 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1635 ret
= btrfs_previous_item(root
, path
, key
.objectid
,
1636 BTRFS_DEV_EXTENT_KEY
);
1639 leaf
= path
->nodes
[0];
1640 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
1641 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1642 struct btrfs_dev_extent
);
1643 BUG_ON(found_key
.offset
> start
|| found_key
.offset
+
1644 btrfs_dev_extent_length(leaf
, extent
) < start
);
1646 btrfs_release_path(path
);
1648 } else if (ret
== 0) {
1649 leaf
= path
->nodes
[0];
1650 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1651 struct btrfs_dev_extent
);
1653 btrfs_handle_fs_error(fs_info
, ret
, "Slot search failed");
1657 *dev_extent_len
= btrfs_dev_extent_length(leaf
, extent
);
1659 ret
= btrfs_del_item(trans
, root
, path
);
1661 btrfs_handle_fs_error(fs_info
, ret
,
1662 "Failed to remove dev extent item");
1664 set_bit(BTRFS_TRANS_HAVE_FREE_BGS
, &trans
->transaction
->flags
);
1667 btrfs_free_path(path
);
1671 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle
*trans
,
1672 struct btrfs_device
*device
,
1673 u64 chunk_offset
, u64 start
, u64 num_bytes
)
1676 struct btrfs_path
*path
;
1677 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1678 struct btrfs_root
*root
= fs_info
->dev_root
;
1679 struct btrfs_dev_extent
*extent
;
1680 struct extent_buffer
*leaf
;
1681 struct btrfs_key key
;
1683 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
));
1684 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
));
1685 path
= btrfs_alloc_path();
1689 key
.objectid
= device
->devid
;
1691 key
.type
= BTRFS_DEV_EXTENT_KEY
;
1692 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1697 leaf
= path
->nodes
[0];
1698 extent
= btrfs_item_ptr(leaf
, path
->slots
[0],
1699 struct btrfs_dev_extent
);
1700 btrfs_set_dev_extent_chunk_tree(leaf
, extent
,
1701 BTRFS_CHUNK_TREE_OBJECTID
);
1702 btrfs_set_dev_extent_chunk_objectid(leaf
, extent
,
1703 BTRFS_FIRST_CHUNK_TREE_OBJECTID
);
1704 btrfs_set_dev_extent_chunk_offset(leaf
, extent
, chunk_offset
);
1706 btrfs_set_dev_extent_length(leaf
, extent
, num_bytes
);
1707 btrfs_mark_buffer_dirty(leaf
);
1709 btrfs_free_path(path
);
1713 static u64
find_next_chunk(struct btrfs_fs_info
*fs_info
)
1715 struct extent_map_tree
*em_tree
;
1716 struct extent_map
*em
;
1720 em_tree
= &fs_info
->mapping_tree
;
1721 read_lock(&em_tree
->lock
);
1722 n
= rb_last(&em_tree
->map
.rb_root
);
1724 em
= rb_entry(n
, struct extent_map
, rb_node
);
1725 ret
= em
->start
+ em
->len
;
1727 read_unlock(&em_tree
->lock
);
1732 static noinline
int find_next_devid(struct btrfs_fs_info
*fs_info
,
1736 struct btrfs_key key
;
1737 struct btrfs_key found_key
;
1738 struct btrfs_path
*path
;
1740 path
= btrfs_alloc_path();
1744 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1745 key
.type
= BTRFS_DEV_ITEM_KEY
;
1746 key
.offset
= (u64
)-1;
1748 ret
= btrfs_search_slot(NULL
, fs_info
->chunk_root
, &key
, path
, 0, 0);
1754 btrfs_err(fs_info
, "corrupted chunk tree devid -1 matched");
1759 ret
= btrfs_previous_item(fs_info
->chunk_root
, path
,
1760 BTRFS_DEV_ITEMS_OBJECTID
,
1761 BTRFS_DEV_ITEM_KEY
);
1765 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1767 *devid_ret
= found_key
.offset
+ 1;
1771 btrfs_free_path(path
);
1776 * the device information is stored in the chunk root
1777 * the btrfs_device struct should be fully filled in
1779 static int btrfs_add_dev_item(struct btrfs_trans_handle
*trans
,
1780 struct btrfs_device
*device
)
1783 struct btrfs_path
*path
;
1784 struct btrfs_dev_item
*dev_item
;
1785 struct extent_buffer
*leaf
;
1786 struct btrfs_key key
;
1789 path
= btrfs_alloc_path();
1793 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1794 key
.type
= BTRFS_DEV_ITEM_KEY
;
1795 key
.offset
= device
->devid
;
1797 ret
= btrfs_insert_empty_item(trans
, trans
->fs_info
->chunk_root
, path
,
1798 &key
, sizeof(*dev_item
));
1802 leaf
= path
->nodes
[0];
1803 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
1805 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
1806 btrfs_set_device_generation(leaf
, dev_item
, 0);
1807 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
1808 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
1809 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
1810 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
1811 btrfs_set_device_total_bytes(leaf
, dev_item
,
1812 btrfs_device_get_disk_total_bytes(device
));
1813 btrfs_set_device_bytes_used(leaf
, dev_item
,
1814 btrfs_device_get_bytes_used(device
));
1815 btrfs_set_device_group(leaf
, dev_item
, 0);
1816 btrfs_set_device_seek_speed(leaf
, dev_item
, 0);
1817 btrfs_set_device_bandwidth(leaf
, dev_item
, 0);
1818 btrfs_set_device_start_offset(leaf
, dev_item
, 0);
1820 ptr
= btrfs_device_uuid(dev_item
);
1821 write_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
1822 ptr
= btrfs_device_fsid(dev_item
);
1823 write_extent_buffer(leaf
, trans
->fs_info
->fs_devices
->metadata_uuid
,
1824 ptr
, BTRFS_FSID_SIZE
);
1825 btrfs_mark_buffer_dirty(leaf
);
1829 btrfs_free_path(path
);
1834 * Function to update ctime/mtime for a given device path.
1835 * Mainly used for ctime/mtime based probe like libblkid.
1837 static void update_dev_time(const char *path_name
)
1841 filp
= filp_open(path_name
, O_RDWR
, 0);
1844 file_update_time(filp
);
1845 filp_close(filp
, NULL
);
1848 static int btrfs_rm_dev_item(struct btrfs_device
*device
)
1850 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
1852 struct btrfs_path
*path
;
1853 struct btrfs_key key
;
1854 struct btrfs_trans_handle
*trans
;
1856 path
= btrfs_alloc_path();
1860 trans
= btrfs_start_transaction(root
, 0);
1861 if (IS_ERR(trans
)) {
1862 btrfs_free_path(path
);
1863 return PTR_ERR(trans
);
1865 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
1866 key
.type
= BTRFS_DEV_ITEM_KEY
;
1867 key
.offset
= device
->devid
;
1869 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1873 btrfs_abort_transaction(trans
, ret
);
1874 btrfs_end_transaction(trans
);
1878 ret
= btrfs_del_item(trans
, root
, path
);
1880 btrfs_abort_transaction(trans
, ret
);
1881 btrfs_end_transaction(trans
);
1885 btrfs_free_path(path
);
1887 ret
= btrfs_commit_transaction(trans
);
1892 * Verify that @num_devices satisfies the RAID profile constraints in the whole
1893 * filesystem. It's up to the caller to adjust that number regarding eg. device
1896 static int btrfs_check_raid_min_devices(struct btrfs_fs_info
*fs_info
,
1904 seq
= read_seqbegin(&fs_info
->profiles_lock
);
1906 all_avail
= fs_info
->avail_data_alloc_bits
|
1907 fs_info
->avail_system_alloc_bits
|
1908 fs_info
->avail_metadata_alloc_bits
;
1909 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
1911 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++) {
1912 if (!(all_avail
& btrfs_raid_array
[i
].bg_flag
))
1915 if (num_devices
< btrfs_raid_array
[i
].devs_min
) {
1916 int ret
= btrfs_raid_array
[i
].mindev_error
;
1926 static struct btrfs_device
* btrfs_find_next_active_device(
1927 struct btrfs_fs_devices
*fs_devs
, struct btrfs_device
*device
)
1929 struct btrfs_device
*next_device
;
1931 list_for_each_entry(next_device
, &fs_devs
->devices
, dev_list
) {
1932 if (next_device
!= device
&&
1933 !test_bit(BTRFS_DEV_STATE_MISSING
, &next_device
->dev_state
)
1934 && next_device
->bdev
)
1942 * Helper function to check if the given device is part of s_bdev / latest_bdev
1943 * and replace it with the provided or the next active device, in the context
1944 * where this function called, there should be always be another device (or
1945 * this_dev) which is active.
1947 void __cold
btrfs_assign_next_active_device(struct btrfs_device
*device
,
1948 struct btrfs_device
*this_dev
)
1950 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
1951 struct btrfs_device
*next_device
;
1954 next_device
= this_dev
;
1956 next_device
= btrfs_find_next_active_device(fs_info
->fs_devices
,
1958 ASSERT(next_device
);
1960 if (fs_info
->sb
->s_bdev
&&
1961 (fs_info
->sb
->s_bdev
== device
->bdev
))
1962 fs_info
->sb
->s_bdev
= next_device
->bdev
;
1964 if (fs_info
->fs_devices
->latest_bdev
== device
->bdev
)
1965 fs_info
->fs_devices
->latest_bdev
= next_device
->bdev
;
1969 * Return btrfs_fs_devices::num_devices excluding the device that's being
1970 * currently replaced.
1972 static u64
btrfs_num_devices(struct btrfs_fs_info
*fs_info
)
1974 u64 num_devices
= fs_info
->fs_devices
->num_devices
;
1976 down_read(&fs_info
->dev_replace
.rwsem
);
1977 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
)) {
1978 ASSERT(num_devices
> 1);
1981 up_read(&fs_info
->dev_replace
.rwsem
);
1986 static void btrfs_scratch_superblocks(struct btrfs_fs_info
*fs_info
,
1987 struct block_device
*bdev
,
1988 const char *device_path
)
1990 struct btrfs_super_block
*disk_super
;
1996 for (copy_num
= 0; copy_num
< BTRFS_SUPER_MIRROR_MAX
; copy_num
++) {
2000 disk_super
= btrfs_read_dev_one_super(bdev
, copy_num
);
2001 if (IS_ERR(disk_super
))
2004 memset(&disk_super
->magic
, 0, sizeof(disk_super
->magic
));
2006 page
= virt_to_page(disk_super
);
2007 set_page_dirty(page
);
2009 /* write_on_page() unlocks the page */
2010 ret
= write_one_page(page
);
2013 "error clearing superblock number %d (%d)",
2015 btrfs_release_disk_super(disk_super
);
2019 /* Notify udev that device has changed */
2020 btrfs_kobject_uevent(bdev
, KOBJ_CHANGE
);
2022 /* Update ctime/mtime for device path for libblkid */
2023 update_dev_time(device_path
);
2026 int btrfs_rm_device(struct btrfs_fs_info
*fs_info
, const char *device_path
,
2029 struct btrfs_device
*device
;
2030 struct btrfs_fs_devices
*cur_devices
;
2031 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2035 mutex_lock(&uuid_mutex
);
2037 num_devices
= btrfs_num_devices(fs_info
);
2039 ret
= btrfs_check_raid_min_devices(fs_info
, num_devices
- 1);
2043 device
= btrfs_find_device_by_devspec(fs_info
, devid
, device_path
);
2045 if (IS_ERR(device
)) {
2046 if (PTR_ERR(device
) == -ENOENT
&&
2047 strcmp(device_path
, "missing") == 0)
2048 ret
= BTRFS_ERROR_DEV_MISSING_NOT_FOUND
;
2050 ret
= PTR_ERR(device
);
2054 if (btrfs_pinned_by_swapfile(fs_info
, device
)) {
2055 btrfs_warn_in_rcu(fs_info
,
2056 "cannot remove device %s (devid %llu) due to active swapfile",
2057 rcu_str_deref(device
->name
), device
->devid
);
2062 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
2063 ret
= BTRFS_ERROR_DEV_TGT_REPLACE
;
2067 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
2068 fs_info
->fs_devices
->rw_devices
== 1) {
2069 ret
= BTRFS_ERROR_DEV_ONLY_WRITABLE
;
2073 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2074 mutex_lock(&fs_info
->chunk_mutex
);
2075 list_del_init(&device
->dev_alloc_list
);
2076 device
->fs_devices
->rw_devices
--;
2077 mutex_unlock(&fs_info
->chunk_mutex
);
2080 mutex_unlock(&uuid_mutex
);
2081 ret
= btrfs_shrink_device(device
, 0);
2082 mutex_lock(&uuid_mutex
);
2087 * TODO: the superblock still includes this device in its num_devices
2088 * counter although write_all_supers() is not locked out. This
2089 * could give a filesystem state which requires a degraded mount.
2091 ret
= btrfs_rm_dev_item(device
);
2095 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2096 btrfs_scrub_cancel_dev(device
);
2099 * the device list mutex makes sure that we don't change
2100 * the device list while someone else is writing out all
2101 * the device supers. Whoever is writing all supers, should
2102 * lock the device list mutex before getting the number of
2103 * devices in the super block (super_copy). Conversely,
2104 * whoever updates the number of devices in the super block
2105 * (super_copy) should hold the device list mutex.
2109 * In normal cases the cur_devices == fs_devices. But in case
2110 * of deleting a seed device, the cur_devices should point to
2111 * its own fs_devices listed under the fs_devices->seed.
2113 cur_devices
= device
->fs_devices
;
2114 mutex_lock(&fs_devices
->device_list_mutex
);
2115 list_del_rcu(&device
->dev_list
);
2117 cur_devices
->num_devices
--;
2118 cur_devices
->total_devices
--;
2119 /* Update total_devices of the parent fs_devices if it's seed */
2120 if (cur_devices
!= fs_devices
)
2121 fs_devices
->total_devices
--;
2123 if (test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
))
2124 cur_devices
->missing_devices
--;
2126 btrfs_assign_next_active_device(device
, NULL
);
2129 cur_devices
->open_devices
--;
2130 /* remove sysfs entry */
2131 btrfs_sysfs_remove_devices_dir(fs_devices
, device
);
2134 num_devices
= btrfs_super_num_devices(fs_info
->super_copy
) - 1;
2135 btrfs_set_super_num_devices(fs_info
->super_copy
, num_devices
);
2136 mutex_unlock(&fs_devices
->device_list_mutex
);
2139 * at this point, the device is zero sized and detached from
2140 * the devices list. All that's left is to zero out the old
2141 * supers and free the device.
2143 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2144 btrfs_scratch_superblocks(fs_info
, device
->bdev
,
2147 btrfs_close_bdev(device
);
2149 btrfs_free_device(device
);
2151 if (cur_devices
->open_devices
== 0) {
2152 while (fs_devices
) {
2153 if (fs_devices
->seed
== cur_devices
) {
2154 fs_devices
->seed
= cur_devices
->seed
;
2157 fs_devices
= fs_devices
->seed
;
2159 cur_devices
->seed
= NULL
;
2160 close_fs_devices(cur_devices
);
2161 free_fs_devices(cur_devices
);
2165 mutex_unlock(&uuid_mutex
);
2169 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
2170 mutex_lock(&fs_info
->chunk_mutex
);
2171 list_add(&device
->dev_alloc_list
,
2172 &fs_devices
->alloc_list
);
2173 device
->fs_devices
->rw_devices
++;
2174 mutex_unlock(&fs_info
->chunk_mutex
);
2179 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device
*srcdev
)
2181 struct btrfs_fs_devices
*fs_devices
;
2183 lockdep_assert_held(&srcdev
->fs_info
->fs_devices
->device_list_mutex
);
2186 * in case of fs with no seed, srcdev->fs_devices will point
2187 * to fs_devices of fs_info. However when the dev being replaced is
2188 * a seed dev it will point to the seed's local fs_devices. In short
2189 * srcdev will have its correct fs_devices in both the cases.
2191 fs_devices
= srcdev
->fs_devices
;
2193 list_del_rcu(&srcdev
->dev_list
);
2194 list_del(&srcdev
->dev_alloc_list
);
2195 fs_devices
->num_devices
--;
2196 if (test_bit(BTRFS_DEV_STATE_MISSING
, &srcdev
->dev_state
))
2197 fs_devices
->missing_devices
--;
2199 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
))
2200 fs_devices
->rw_devices
--;
2203 fs_devices
->open_devices
--;
2206 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device
*srcdev
)
2208 struct btrfs_fs_info
*fs_info
= srcdev
->fs_info
;
2209 struct btrfs_fs_devices
*fs_devices
= srcdev
->fs_devices
;
2211 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &srcdev
->dev_state
)) {
2212 /* zero out the old super if it is writable */
2213 btrfs_scratch_superblocks(fs_info
, srcdev
->bdev
,
2217 btrfs_close_bdev(srcdev
);
2219 btrfs_free_device(srcdev
);
2221 /* if this is no devs we rather delete the fs_devices */
2222 if (!fs_devices
->num_devices
) {
2223 struct btrfs_fs_devices
*tmp_fs_devices
;
2226 * On a mounted FS, num_devices can't be zero unless it's a
2227 * seed. In case of a seed device being replaced, the replace
2228 * target added to the sprout FS, so there will be no more
2229 * device left under the seed FS.
2231 ASSERT(fs_devices
->seeding
);
2233 tmp_fs_devices
= fs_info
->fs_devices
;
2234 while (tmp_fs_devices
) {
2235 if (tmp_fs_devices
->seed
== fs_devices
) {
2236 tmp_fs_devices
->seed
= fs_devices
->seed
;
2239 tmp_fs_devices
= tmp_fs_devices
->seed
;
2241 fs_devices
->seed
= NULL
;
2242 close_fs_devices(fs_devices
);
2243 free_fs_devices(fs_devices
);
2247 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device
*tgtdev
)
2249 struct btrfs_fs_devices
*fs_devices
= tgtdev
->fs_info
->fs_devices
;
2251 mutex_lock(&fs_devices
->device_list_mutex
);
2253 btrfs_sysfs_remove_devices_dir(fs_devices
, tgtdev
);
2256 fs_devices
->open_devices
--;
2258 fs_devices
->num_devices
--;
2260 btrfs_assign_next_active_device(tgtdev
, NULL
);
2262 list_del_rcu(&tgtdev
->dev_list
);
2264 mutex_unlock(&fs_devices
->device_list_mutex
);
2267 * The update_dev_time() with in btrfs_scratch_superblocks()
2268 * may lead to a call to btrfs_show_devname() which will try
2269 * to hold device_list_mutex. And here this device
2270 * is already out of device list, so we don't have to hold
2271 * the device_list_mutex lock.
2273 btrfs_scratch_superblocks(tgtdev
->fs_info
, tgtdev
->bdev
,
2276 btrfs_close_bdev(tgtdev
);
2278 btrfs_free_device(tgtdev
);
2281 static struct btrfs_device
*btrfs_find_device_by_path(
2282 struct btrfs_fs_info
*fs_info
, const char *device_path
)
2285 struct btrfs_super_block
*disk_super
;
2288 struct block_device
*bdev
;
2289 struct btrfs_device
*device
;
2291 ret
= btrfs_get_bdev_and_sb(device_path
, FMODE_READ
,
2292 fs_info
->bdev_holder
, 0, &bdev
, &disk_super
);
2294 return ERR_PTR(ret
);
2296 devid
= btrfs_stack_device_id(&disk_super
->dev_item
);
2297 dev_uuid
= disk_super
->dev_item
.uuid
;
2298 if (btrfs_fs_incompat(fs_info
, METADATA_UUID
))
2299 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
2300 disk_super
->metadata_uuid
, true);
2302 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
2303 disk_super
->fsid
, true);
2305 btrfs_release_disk_super(disk_super
);
2307 device
= ERR_PTR(-ENOENT
);
2308 blkdev_put(bdev
, FMODE_READ
);
2313 * Lookup a device given by device id, or the path if the id is 0.
2315 struct btrfs_device
*btrfs_find_device_by_devspec(
2316 struct btrfs_fs_info
*fs_info
, u64 devid
,
2317 const char *device_path
)
2319 struct btrfs_device
*device
;
2322 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, NULL
,
2325 return ERR_PTR(-ENOENT
);
2329 if (!device_path
|| !device_path
[0])
2330 return ERR_PTR(-EINVAL
);
2332 if (strcmp(device_path
, "missing") == 0) {
2333 /* Find first missing device */
2334 list_for_each_entry(device
, &fs_info
->fs_devices
->devices
,
2336 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
2337 &device
->dev_state
) && !device
->bdev
)
2340 return ERR_PTR(-ENOENT
);
2343 return btrfs_find_device_by_path(fs_info
, device_path
);
2347 * does all the dirty work required for changing file system's UUID.
2349 static int btrfs_prepare_sprout(struct btrfs_fs_info
*fs_info
)
2351 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2352 struct btrfs_fs_devices
*old_devices
;
2353 struct btrfs_fs_devices
*seed_devices
;
2354 struct btrfs_super_block
*disk_super
= fs_info
->super_copy
;
2355 struct btrfs_device
*device
;
2358 lockdep_assert_held(&uuid_mutex
);
2359 if (!fs_devices
->seeding
)
2362 seed_devices
= alloc_fs_devices(NULL
, NULL
);
2363 if (IS_ERR(seed_devices
))
2364 return PTR_ERR(seed_devices
);
2366 old_devices
= clone_fs_devices(fs_devices
);
2367 if (IS_ERR(old_devices
)) {
2368 kfree(seed_devices
);
2369 return PTR_ERR(old_devices
);
2372 list_add(&old_devices
->fs_list
, &fs_uuids
);
2374 memcpy(seed_devices
, fs_devices
, sizeof(*seed_devices
));
2375 seed_devices
->opened
= 1;
2376 INIT_LIST_HEAD(&seed_devices
->devices
);
2377 INIT_LIST_HEAD(&seed_devices
->alloc_list
);
2378 mutex_init(&seed_devices
->device_list_mutex
);
2380 mutex_lock(&fs_devices
->device_list_mutex
);
2381 list_splice_init_rcu(&fs_devices
->devices
, &seed_devices
->devices
,
2383 list_for_each_entry(device
, &seed_devices
->devices
, dev_list
)
2384 device
->fs_devices
= seed_devices
;
2386 mutex_lock(&fs_info
->chunk_mutex
);
2387 list_splice_init(&fs_devices
->alloc_list
, &seed_devices
->alloc_list
);
2388 mutex_unlock(&fs_info
->chunk_mutex
);
2390 fs_devices
->seeding
= false;
2391 fs_devices
->num_devices
= 0;
2392 fs_devices
->open_devices
= 0;
2393 fs_devices
->missing_devices
= 0;
2394 fs_devices
->rotating
= false;
2395 fs_devices
->seed
= seed_devices
;
2397 generate_random_uuid(fs_devices
->fsid
);
2398 memcpy(fs_devices
->metadata_uuid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2399 memcpy(disk_super
->fsid
, fs_devices
->fsid
, BTRFS_FSID_SIZE
);
2400 mutex_unlock(&fs_devices
->device_list_mutex
);
2402 super_flags
= btrfs_super_flags(disk_super
) &
2403 ~BTRFS_SUPER_FLAG_SEEDING
;
2404 btrfs_set_super_flags(disk_super
, super_flags
);
2410 * Store the expected generation for seed devices in device items.
2412 static int btrfs_finish_sprout(struct btrfs_trans_handle
*trans
)
2414 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2415 struct btrfs_root
*root
= fs_info
->chunk_root
;
2416 struct btrfs_path
*path
;
2417 struct extent_buffer
*leaf
;
2418 struct btrfs_dev_item
*dev_item
;
2419 struct btrfs_device
*device
;
2420 struct btrfs_key key
;
2421 u8 fs_uuid
[BTRFS_FSID_SIZE
];
2422 u8 dev_uuid
[BTRFS_UUID_SIZE
];
2426 path
= btrfs_alloc_path();
2430 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2432 key
.type
= BTRFS_DEV_ITEM_KEY
;
2435 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2439 leaf
= path
->nodes
[0];
2441 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
2442 ret
= btrfs_next_leaf(root
, path
);
2447 leaf
= path
->nodes
[0];
2448 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2449 btrfs_release_path(path
);
2453 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2454 if (key
.objectid
!= BTRFS_DEV_ITEMS_OBJECTID
||
2455 key
.type
!= BTRFS_DEV_ITEM_KEY
)
2458 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
2459 struct btrfs_dev_item
);
2460 devid
= btrfs_device_id(leaf
, dev_item
);
2461 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
2463 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
2465 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
2467 BUG_ON(!device
); /* Logic error */
2469 if (device
->fs_devices
->seeding
) {
2470 btrfs_set_device_generation(leaf
, dev_item
,
2471 device
->generation
);
2472 btrfs_mark_buffer_dirty(leaf
);
2480 btrfs_free_path(path
);
2484 int btrfs_init_new_device(struct btrfs_fs_info
*fs_info
, const char *device_path
)
2486 struct btrfs_root
*root
= fs_info
->dev_root
;
2487 struct request_queue
*q
;
2488 struct btrfs_trans_handle
*trans
;
2489 struct btrfs_device
*device
;
2490 struct block_device
*bdev
;
2491 struct super_block
*sb
= fs_info
->sb
;
2492 struct rcu_string
*name
;
2493 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2494 u64 orig_super_total_bytes
;
2495 u64 orig_super_num_devices
;
2496 int seeding_dev
= 0;
2498 bool unlocked
= false;
2500 if (sb_rdonly(sb
) && !fs_devices
->seeding
)
2503 bdev
= blkdev_get_by_path(device_path
, FMODE_WRITE
| FMODE_EXCL
,
2504 fs_info
->bdev_holder
);
2506 return PTR_ERR(bdev
);
2508 if (fs_devices
->seeding
) {
2510 down_write(&sb
->s_umount
);
2511 mutex_lock(&uuid_mutex
);
2514 filemap_write_and_wait(bdev
->bd_inode
->i_mapping
);
2516 mutex_lock(&fs_devices
->device_list_mutex
);
2517 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
2518 if (device
->bdev
== bdev
) {
2521 &fs_devices
->device_list_mutex
);
2525 mutex_unlock(&fs_devices
->device_list_mutex
);
2527 device
= btrfs_alloc_device(fs_info
, NULL
, NULL
);
2528 if (IS_ERR(device
)) {
2529 /* we can safely leave the fs_devices entry around */
2530 ret
= PTR_ERR(device
);
2534 name
= rcu_string_strdup(device_path
, GFP_KERNEL
);
2537 goto error_free_device
;
2539 rcu_assign_pointer(device
->name
, name
);
2541 trans
= btrfs_start_transaction(root
, 0);
2542 if (IS_ERR(trans
)) {
2543 ret
= PTR_ERR(trans
);
2544 goto error_free_device
;
2547 q
= bdev_get_queue(bdev
);
2548 set_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
);
2549 device
->generation
= trans
->transid
;
2550 device
->io_width
= fs_info
->sectorsize
;
2551 device
->io_align
= fs_info
->sectorsize
;
2552 device
->sector_size
= fs_info
->sectorsize
;
2553 device
->total_bytes
= round_down(i_size_read(bdev
->bd_inode
),
2554 fs_info
->sectorsize
);
2555 device
->disk_total_bytes
= device
->total_bytes
;
2556 device
->commit_total_bytes
= device
->total_bytes
;
2557 device
->fs_info
= fs_info
;
2558 device
->bdev
= bdev
;
2559 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
2560 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
2561 device
->mode
= FMODE_EXCL
;
2562 device
->dev_stats_valid
= 1;
2563 set_blocksize(device
->bdev
, BTRFS_BDEV_BLOCKSIZE
);
2566 sb
->s_flags
&= ~SB_RDONLY
;
2567 ret
= btrfs_prepare_sprout(fs_info
);
2569 btrfs_abort_transaction(trans
, ret
);
2574 device
->fs_devices
= fs_devices
;
2576 mutex_lock(&fs_devices
->device_list_mutex
);
2577 mutex_lock(&fs_info
->chunk_mutex
);
2578 list_add_rcu(&device
->dev_list
, &fs_devices
->devices
);
2579 list_add(&device
->dev_alloc_list
, &fs_devices
->alloc_list
);
2580 fs_devices
->num_devices
++;
2581 fs_devices
->open_devices
++;
2582 fs_devices
->rw_devices
++;
2583 fs_devices
->total_devices
++;
2584 fs_devices
->total_rw_bytes
+= device
->total_bytes
;
2586 atomic64_add(device
->total_bytes
, &fs_info
->free_chunk_space
);
2588 if (!blk_queue_nonrot(q
))
2589 fs_devices
->rotating
= true;
2591 orig_super_total_bytes
= btrfs_super_total_bytes(fs_info
->super_copy
);
2592 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2593 round_down(orig_super_total_bytes
+ device
->total_bytes
,
2594 fs_info
->sectorsize
));
2596 orig_super_num_devices
= btrfs_super_num_devices(fs_info
->super_copy
);
2597 btrfs_set_super_num_devices(fs_info
->super_copy
,
2598 orig_super_num_devices
+ 1);
2600 /* add sysfs device entry */
2601 btrfs_sysfs_add_devices_dir(fs_devices
, device
);
2604 * we've got more storage, clear any full flags on the space
2607 btrfs_clear_space_info_full(fs_info
);
2609 mutex_unlock(&fs_info
->chunk_mutex
);
2610 mutex_unlock(&fs_devices
->device_list_mutex
);
2613 mutex_lock(&fs_info
->chunk_mutex
);
2614 ret
= init_first_rw_device(trans
);
2615 mutex_unlock(&fs_info
->chunk_mutex
);
2617 btrfs_abort_transaction(trans
, ret
);
2622 ret
= btrfs_add_dev_item(trans
, device
);
2624 btrfs_abort_transaction(trans
, ret
);
2629 ret
= btrfs_finish_sprout(trans
);
2631 btrfs_abort_transaction(trans
, ret
);
2635 btrfs_sysfs_update_sprout_fsid(fs_devices
,
2636 fs_info
->fs_devices
->fsid
);
2639 ret
= btrfs_commit_transaction(trans
);
2642 mutex_unlock(&uuid_mutex
);
2643 up_write(&sb
->s_umount
);
2646 if (ret
) /* transaction commit */
2649 ret
= btrfs_relocate_sys_chunks(fs_info
);
2651 btrfs_handle_fs_error(fs_info
, ret
,
2652 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command.");
2653 trans
= btrfs_attach_transaction(root
);
2654 if (IS_ERR(trans
)) {
2655 if (PTR_ERR(trans
) == -ENOENT
)
2657 ret
= PTR_ERR(trans
);
2661 ret
= btrfs_commit_transaction(trans
);
2665 * Now that we have written a new super block to this device, check all
2666 * other fs_devices list if device_path alienates any other scanned
2668 * We can ignore the return value as it typically returns -EINVAL and
2669 * only succeeds if the device was an alien.
2671 btrfs_forget_devices(device_path
);
2673 /* Update ctime/mtime for blkid or udev */
2674 update_dev_time(device_path
);
2679 btrfs_sysfs_remove_devices_dir(fs_devices
, device
);
2680 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
2681 mutex_lock(&fs_info
->chunk_mutex
);
2682 list_del_rcu(&device
->dev_list
);
2683 list_del(&device
->dev_alloc_list
);
2684 fs_info
->fs_devices
->num_devices
--;
2685 fs_info
->fs_devices
->open_devices
--;
2686 fs_info
->fs_devices
->rw_devices
--;
2687 fs_info
->fs_devices
->total_devices
--;
2688 fs_info
->fs_devices
->total_rw_bytes
-= device
->total_bytes
;
2689 atomic64_sub(device
->total_bytes
, &fs_info
->free_chunk_space
);
2690 btrfs_set_super_total_bytes(fs_info
->super_copy
,
2691 orig_super_total_bytes
);
2692 btrfs_set_super_num_devices(fs_info
->super_copy
,
2693 orig_super_num_devices
);
2694 mutex_unlock(&fs_info
->chunk_mutex
);
2695 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
2698 sb
->s_flags
|= SB_RDONLY
;
2700 btrfs_end_transaction(trans
);
2702 btrfs_free_device(device
);
2704 blkdev_put(bdev
, FMODE_EXCL
);
2705 if (seeding_dev
&& !unlocked
) {
2706 mutex_unlock(&uuid_mutex
);
2707 up_write(&sb
->s_umount
);
2712 static noinline
int btrfs_update_device(struct btrfs_trans_handle
*trans
,
2713 struct btrfs_device
*device
)
2716 struct btrfs_path
*path
;
2717 struct btrfs_root
*root
= device
->fs_info
->chunk_root
;
2718 struct btrfs_dev_item
*dev_item
;
2719 struct extent_buffer
*leaf
;
2720 struct btrfs_key key
;
2722 path
= btrfs_alloc_path();
2726 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
2727 key
.type
= BTRFS_DEV_ITEM_KEY
;
2728 key
.offset
= device
->devid
;
2730 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
2739 leaf
= path
->nodes
[0];
2740 dev_item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_dev_item
);
2742 btrfs_set_device_id(leaf
, dev_item
, device
->devid
);
2743 btrfs_set_device_type(leaf
, dev_item
, device
->type
);
2744 btrfs_set_device_io_align(leaf
, dev_item
, device
->io_align
);
2745 btrfs_set_device_io_width(leaf
, dev_item
, device
->io_width
);
2746 btrfs_set_device_sector_size(leaf
, dev_item
, device
->sector_size
);
2747 btrfs_set_device_total_bytes(leaf
, dev_item
,
2748 btrfs_device_get_disk_total_bytes(device
));
2749 btrfs_set_device_bytes_used(leaf
, dev_item
,
2750 btrfs_device_get_bytes_used(device
));
2751 btrfs_mark_buffer_dirty(leaf
);
2754 btrfs_free_path(path
);
2758 int btrfs_grow_device(struct btrfs_trans_handle
*trans
,
2759 struct btrfs_device
*device
, u64 new_size
)
2761 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
2762 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2766 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
2769 new_size
= round_down(new_size
, fs_info
->sectorsize
);
2771 mutex_lock(&fs_info
->chunk_mutex
);
2772 old_total
= btrfs_super_total_bytes(super_copy
);
2773 diff
= round_down(new_size
- device
->total_bytes
, fs_info
->sectorsize
);
2775 if (new_size
<= device
->total_bytes
||
2776 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
2777 mutex_unlock(&fs_info
->chunk_mutex
);
2781 btrfs_set_super_total_bytes(super_copy
,
2782 round_down(old_total
+ diff
, fs_info
->sectorsize
));
2783 device
->fs_devices
->total_rw_bytes
+= diff
;
2785 btrfs_device_set_total_bytes(device
, new_size
);
2786 btrfs_device_set_disk_total_bytes(device
, new_size
);
2787 btrfs_clear_space_info_full(device
->fs_info
);
2788 if (list_empty(&device
->post_commit_list
))
2789 list_add_tail(&device
->post_commit_list
,
2790 &trans
->transaction
->dev_update_list
);
2791 mutex_unlock(&fs_info
->chunk_mutex
);
2793 return btrfs_update_device(trans
, device
);
2796 static int btrfs_free_chunk(struct btrfs_trans_handle
*trans
, u64 chunk_offset
)
2798 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2799 struct btrfs_root
*root
= fs_info
->chunk_root
;
2801 struct btrfs_path
*path
;
2802 struct btrfs_key key
;
2804 path
= btrfs_alloc_path();
2808 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
2809 key
.offset
= chunk_offset
;
2810 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
2812 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
2815 else if (ret
> 0) { /* Logic error or corruption */
2816 btrfs_handle_fs_error(fs_info
, -ENOENT
,
2817 "Failed lookup while freeing chunk.");
2822 ret
= btrfs_del_item(trans
, root
, path
);
2824 btrfs_handle_fs_error(fs_info
, ret
,
2825 "Failed to delete chunk item.");
2827 btrfs_free_path(path
);
2831 static int btrfs_del_sys_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
2833 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
2834 struct btrfs_disk_key
*disk_key
;
2835 struct btrfs_chunk
*chunk
;
2842 struct btrfs_key key
;
2844 mutex_lock(&fs_info
->chunk_mutex
);
2845 array_size
= btrfs_super_sys_array_size(super_copy
);
2847 ptr
= super_copy
->sys_chunk_array
;
2850 while (cur
< array_size
) {
2851 disk_key
= (struct btrfs_disk_key
*)ptr
;
2852 btrfs_disk_key_to_cpu(&key
, disk_key
);
2854 len
= sizeof(*disk_key
);
2856 if (key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
2857 chunk
= (struct btrfs_chunk
*)(ptr
+ len
);
2858 num_stripes
= btrfs_stack_chunk_num_stripes(chunk
);
2859 len
+= btrfs_chunk_item_size(num_stripes
);
2864 if (key
.objectid
== BTRFS_FIRST_CHUNK_TREE_OBJECTID
&&
2865 key
.offset
== chunk_offset
) {
2866 memmove(ptr
, ptr
+ len
, array_size
- (cur
+ len
));
2868 btrfs_set_super_sys_array_size(super_copy
, array_size
);
2874 mutex_unlock(&fs_info
->chunk_mutex
);
2879 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent.
2880 * @logical: Logical block offset in bytes.
2881 * @length: Length of extent in bytes.
2883 * Return: Chunk mapping or ERR_PTR.
2885 struct extent_map
*btrfs_get_chunk_map(struct btrfs_fs_info
*fs_info
,
2886 u64 logical
, u64 length
)
2888 struct extent_map_tree
*em_tree
;
2889 struct extent_map
*em
;
2891 em_tree
= &fs_info
->mapping_tree
;
2892 read_lock(&em_tree
->lock
);
2893 em
= lookup_extent_mapping(em_tree
, logical
, length
);
2894 read_unlock(&em_tree
->lock
);
2897 btrfs_crit(fs_info
, "unable to find logical %llu length %llu",
2899 return ERR_PTR(-EINVAL
);
2902 if (em
->start
> logical
|| em
->start
+ em
->len
< logical
) {
2904 "found a bad mapping, wanted %llu-%llu, found %llu-%llu",
2905 logical
, length
, em
->start
, em
->start
+ em
->len
);
2906 free_extent_map(em
);
2907 return ERR_PTR(-EINVAL
);
2910 /* callers are responsible for dropping em's ref. */
2914 int btrfs_remove_chunk(struct btrfs_trans_handle
*trans
, u64 chunk_offset
)
2916 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
2917 struct extent_map
*em
;
2918 struct map_lookup
*map
;
2919 u64 dev_extent_len
= 0;
2921 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
2923 em
= btrfs_get_chunk_map(fs_info
, chunk_offset
, 1);
2926 * This is a logic error, but we don't want to just rely on the
2927 * user having built with ASSERT enabled, so if ASSERT doesn't
2928 * do anything we still error out.
2933 map
= em
->map_lookup
;
2934 mutex_lock(&fs_info
->chunk_mutex
);
2935 check_system_chunk(trans
, map
->type
);
2936 mutex_unlock(&fs_info
->chunk_mutex
);
2939 * Take the device list mutex to prevent races with the final phase of
2940 * a device replace operation that replaces the device object associated
2941 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()).
2943 mutex_lock(&fs_devices
->device_list_mutex
);
2944 for (i
= 0; i
< map
->num_stripes
; i
++) {
2945 struct btrfs_device
*device
= map
->stripes
[i
].dev
;
2946 ret
= btrfs_free_dev_extent(trans
, device
,
2947 map
->stripes
[i
].physical
,
2950 mutex_unlock(&fs_devices
->device_list_mutex
);
2951 btrfs_abort_transaction(trans
, ret
);
2955 if (device
->bytes_used
> 0) {
2956 mutex_lock(&fs_info
->chunk_mutex
);
2957 btrfs_device_set_bytes_used(device
,
2958 device
->bytes_used
- dev_extent_len
);
2959 atomic64_add(dev_extent_len
, &fs_info
->free_chunk_space
);
2960 btrfs_clear_space_info_full(fs_info
);
2961 mutex_unlock(&fs_info
->chunk_mutex
);
2964 ret
= btrfs_update_device(trans
, device
);
2966 mutex_unlock(&fs_devices
->device_list_mutex
);
2967 btrfs_abort_transaction(trans
, ret
);
2971 mutex_unlock(&fs_devices
->device_list_mutex
);
2973 ret
= btrfs_free_chunk(trans
, chunk_offset
);
2975 btrfs_abort_transaction(trans
, ret
);
2979 trace_btrfs_chunk_free(fs_info
, map
, chunk_offset
, em
->len
);
2981 if (map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
2982 ret
= btrfs_del_sys_chunk(fs_info
, chunk_offset
);
2984 btrfs_abort_transaction(trans
, ret
);
2989 ret
= btrfs_remove_block_group(trans
, chunk_offset
, em
);
2991 btrfs_abort_transaction(trans
, ret
);
2997 free_extent_map(em
);
3001 static int btrfs_relocate_chunk(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
3003 struct btrfs_root
*root
= fs_info
->chunk_root
;
3004 struct btrfs_trans_handle
*trans
;
3005 struct btrfs_block_group
*block_group
;
3009 * Prevent races with automatic removal of unused block groups.
3010 * After we relocate and before we remove the chunk with offset
3011 * chunk_offset, automatic removal of the block group can kick in,
3012 * resulting in a failure when calling btrfs_remove_chunk() below.
3014 * Make sure to acquire this mutex before doing a tree search (dev
3015 * or chunk trees) to find chunks. Otherwise the cleaner kthread might
3016 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after
3017 * we release the path used to search the chunk/dev tree and before
3018 * the current task acquires this mutex and calls us.
3020 lockdep_assert_held(&fs_info
->delete_unused_bgs_mutex
);
3022 /* step one, relocate all the extents inside this chunk */
3023 btrfs_scrub_pause(fs_info
);
3024 ret
= btrfs_relocate_block_group(fs_info
, chunk_offset
);
3025 btrfs_scrub_continue(fs_info
);
3029 block_group
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3032 btrfs_discard_cancel_work(&fs_info
->discard_ctl
, block_group
);
3033 btrfs_put_block_group(block_group
);
3035 trans
= btrfs_start_trans_remove_block_group(root
->fs_info
,
3037 if (IS_ERR(trans
)) {
3038 ret
= PTR_ERR(trans
);
3039 btrfs_handle_fs_error(root
->fs_info
, ret
, NULL
);
3044 * step two, delete the device extents and the
3045 * chunk tree entries
3047 ret
= btrfs_remove_chunk(trans
, chunk_offset
);
3048 btrfs_end_transaction(trans
);
3052 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info
*fs_info
)
3054 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3055 struct btrfs_path
*path
;
3056 struct extent_buffer
*leaf
;
3057 struct btrfs_chunk
*chunk
;
3058 struct btrfs_key key
;
3059 struct btrfs_key found_key
;
3061 bool retried
= false;
3065 path
= btrfs_alloc_path();
3070 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3071 key
.offset
= (u64
)-1;
3072 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3075 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3076 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3078 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3081 BUG_ON(ret
== 0); /* Corruption */
3083 ret
= btrfs_previous_item(chunk_root
, path
, key
.objectid
,
3086 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3092 leaf
= path
->nodes
[0];
3093 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
3095 chunk
= btrfs_item_ptr(leaf
, path
->slots
[0],
3096 struct btrfs_chunk
);
3097 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3098 btrfs_release_path(path
);
3100 if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
3101 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3107 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3109 if (found_key
.offset
== 0)
3111 key
.offset
= found_key
.offset
- 1;
3114 if (failed
&& !retried
) {
3118 } else if (WARN_ON(failed
&& retried
)) {
3122 btrfs_free_path(path
);
3127 * return 1 : allocate a data chunk successfully,
3128 * return <0: errors during allocating a data chunk,
3129 * return 0 : no need to allocate a data chunk.
3131 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info
*fs_info
,
3134 struct btrfs_block_group
*cache
;
3138 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3140 chunk_type
= cache
->flags
;
3141 btrfs_put_block_group(cache
);
3143 if (!(chunk_type
& BTRFS_BLOCK_GROUP_DATA
))
3146 spin_lock(&fs_info
->data_sinfo
->lock
);
3147 bytes_used
= fs_info
->data_sinfo
->bytes_used
;
3148 spin_unlock(&fs_info
->data_sinfo
->lock
);
3151 struct btrfs_trans_handle
*trans
;
3154 trans
= btrfs_join_transaction(fs_info
->tree_root
);
3156 return PTR_ERR(trans
);
3158 ret
= btrfs_force_chunk_alloc(trans
, BTRFS_BLOCK_GROUP_DATA
);
3159 btrfs_end_transaction(trans
);
3168 static int insert_balance_item(struct btrfs_fs_info
*fs_info
,
3169 struct btrfs_balance_control
*bctl
)
3171 struct btrfs_root
*root
= fs_info
->tree_root
;
3172 struct btrfs_trans_handle
*trans
;
3173 struct btrfs_balance_item
*item
;
3174 struct btrfs_disk_balance_args disk_bargs
;
3175 struct btrfs_path
*path
;
3176 struct extent_buffer
*leaf
;
3177 struct btrfs_key key
;
3180 path
= btrfs_alloc_path();
3184 trans
= btrfs_start_transaction(root
, 0);
3185 if (IS_ERR(trans
)) {
3186 btrfs_free_path(path
);
3187 return PTR_ERR(trans
);
3190 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3191 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3194 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
3199 leaf
= path
->nodes
[0];
3200 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
3202 memzero_extent_buffer(leaf
, (unsigned long)item
, sizeof(*item
));
3204 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->data
);
3205 btrfs_set_balance_data(leaf
, item
, &disk_bargs
);
3206 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->meta
);
3207 btrfs_set_balance_meta(leaf
, item
, &disk_bargs
);
3208 btrfs_cpu_balance_args_to_disk(&disk_bargs
, &bctl
->sys
);
3209 btrfs_set_balance_sys(leaf
, item
, &disk_bargs
);
3211 btrfs_set_balance_flags(leaf
, item
, bctl
->flags
);
3213 btrfs_mark_buffer_dirty(leaf
);
3215 btrfs_free_path(path
);
3216 err
= btrfs_commit_transaction(trans
);
3222 static int del_balance_item(struct btrfs_fs_info
*fs_info
)
3224 struct btrfs_root
*root
= fs_info
->tree_root
;
3225 struct btrfs_trans_handle
*trans
;
3226 struct btrfs_path
*path
;
3227 struct btrfs_key key
;
3230 path
= btrfs_alloc_path();
3234 trans
= btrfs_start_transaction(root
, 0);
3235 if (IS_ERR(trans
)) {
3236 btrfs_free_path(path
);
3237 return PTR_ERR(trans
);
3240 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
3241 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
3244 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
3252 ret
= btrfs_del_item(trans
, root
, path
);
3254 btrfs_free_path(path
);
3255 err
= btrfs_commit_transaction(trans
);
3262 * This is a heuristic used to reduce the number of chunks balanced on
3263 * resume after balance was interrupted.
3265 static void update_balance_args(struct btrfs_balance_control
*bctl
)
3268 * Turn on soft mode for chunk types that were being converted.
3270 if (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3271 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3272 if (bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3273 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3274 if (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3275 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_SOFT
;
3278 * Turn on usage filter if is not already used. The idea is
3279 * that chunks that we have already balanced should be
3280 * reasonably full. Don't do it for chunks that are being
3281 * converted - that will keep us from relocating unconverted
3282 * (albeit full) chunks.
3284 if (!(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3285 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3286 !(bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3287 bctl
->data
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3288 bctl
->data
.usage
= 90;
3290 if (!(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3291 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3292 !(bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3293 bctl
->sys
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3294 bctl
->sys
.usage
= 90;
3296 if (!(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3297 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3298 !(bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
)) {
3299 bctl
->meta
.flags
|= BTRFS_BALANCE_ARGS_USAGE
;
3300 bctl
->meta
.usage
= 90;
3305 * Clear the balance status in fs_info and delete the balance item from disk.
3307 static void reset_balance_state(struct btrfs_fs_info
*fs_info
)
3309 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3312 BUG_ON(!fs_info
->balance_ctl
);
3314 spin_lock(&fs_info
->balance_lock
);
3315 fs_info
->balance_ctl
= NULL
;
3316 spin_unlock(&fs_info
->balance_lock
);
3319 ret
= del_balance_item(fs_info
);
3321 btrfs_handle_fs_error(fs_info
, ret
, NULL
);
3325 * Balance filters. Return 1 if chunk should be filtered out
3326 * (should not be balanced).
3328 static int chunk_profiles_filter(u64 chunk_type
,
3329 struct btrfs_balance_args
*bargs
)
3331 chunk_type
= chunk_to_extended(chunk_type
) &
3332 BTRFS_EXTENDED_PROFILE_MASK
;
3334 if (bargs
->profiles
& chunk_type
)
3340 static int chunk_usage_range_filter(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
,
3341 struct btrfs_balance_args
*bargs
)
3343 struct btrfs_block_group
*cache
;
3345 u64 user_thresh_min
;
3346 u64 user_thresh_max
;
3349 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3350 chunk_used
= cache
->used
;
3352 if (bargs
->usage_min
== 0)
3353 user_thresh_min
= 0;
3355 user_thresh_min
= div_factor_fine(cache
->length
,
3358 if (bargs
->usage_max
== 0)
3359 user_thresh_max
= 1;
3360 else if (bargs
->usage_max
> 100)
3361 user_thresh_max
= cache
->length
;
3363 user_thresh_max
= div_factor_fine(cache
->length
,
3366 if (user_thresh_min
<= chunk_used
&& chunk_used
< user_thresh_max
)
3369 btrfs_put_block_group(cache
);
3373 static int chunk_usage_filter(struct btrfs_fs_info
*fs_info
,
3374 u64 chunk_offset
, struct btrfs_balance_args
*bargs
)
3376 struct btrfs_block_group
*cache
;
3377 u64 chunk_used
, user_thresh
;
3380 cache
= btrfs_lookup_block_group(fs_info
, chunk_offset
);
3381 chunk_used
= cache
->used
;
3383 if (bargs
->usage_min
== 0)
3385 else if (bargs
->usage
> 100)
3386 user_thresh
= cache
->length
;
3388 user_thresh
= div_factor_fine(cache
->length
, bargs
->usage
);
3390 if (chunk_used
< user_thresh
)
3393 btrfs_put_block_group(cache
);
3397 static int chunk_devid_filter(struct extent_buffer
*leaf
,
3398 struct btrfs_chunk
*chunk
,
3399 struct btrfs_balance_args
*bargs
)
3401 struct btrfs_stripe
*stripe
;
3402 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3405 for (i
= 0; i
< num_stripes
; i
++) {
3406 stripe
= btrfs_stripe_nr(chunk
, i
);
3407 if (btrfs_stripe_devid(leaf
, stripe
) == bargs
->devid
)
3414 static u64
calc_data_stripes(u64 type
, int num_stripes
)
3416 const int index
= btrfs_bg_flags_to_raid_index(type
);
3417 const int ncopies
= btrfs_raid_array
[index
].ncopies
;
3418 const int nparity
= btrfs_raid_array
[index
].nparity
;
3421 return num_stripes
- nparity
;
3423 return num_stripes
/ ncopies
;
3426 /* [pstart, pend) */
3427 static int chunk_drange_filter(struct extent_buffer
*leaf
,
3428 struct btrfs_chunk
*chunk
,
3429 struct btrfs_balance_args
*bargs
)
3431 struct btrfs_stripe
*stripe
;
3432 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3439 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
))
3442 type
= btrfs_chunk_type(leaf
, chunk
);
3443 factor
= calc_data_stripes(type
, num_stripes
);
3445 for (i
= 0; i
< num_stripes
; i
++) {
3446 stripe
= btrfs_stripe_nr(chunk
, i
);
3447 if (btrfs_stripe_devid(leaf
, stripe
) != bargs
->devid
)
3450 stripe_offset
= btrfs_stripe_offset(leaf
, stripe
);
3451 stripe_length
= btrfs_chunk_length(leaf
, chunk
);
3452 stripe_length
= div_u64(stripe_length
, factor
);
3454 if (stripe_offset
< bargs
->pend
&&
3455 stripe_offset
+ stripe_length
> bargs
->pstart
)
3462 /* [vstart, vend) */
3463 static int chunk_vrange_filter(struct extent_buffer
*leaf
,
3464 struct btrfs_chunk
*chunk
,
3466 struct btrfs_balance_args
*bargs
)
3468 if (chunk_offset
< bargs
->vend
&&
3469 chunk_offset
+ btrfs_chunk_length(leaf
, chunk
) > bargs
->vstart
)
3470 /* at least part of the chunk is inside this vrange */
3476 static int chunk_stripes_range_filter(struct extent_buffer
*leaf
,
3477 struct btrfs_chunk
*chunk
,
3478 struct btrfs_balance_args
*bargs
)
3480 int num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
3482 if (bargs
->stripes_min
<= num_stripes
3483 && num_stripes
<= bargs
->stripes_max
)
3489 static int chunk_soft_convert_filter(u64 chunk_type
,
3490 struct btrfs_balance_args
*bargs
)
3492 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3495 chunk_type
= chunk_to_extended(chunk_type
) &
3496 BTRFS_EXTENDED_PROFILE_MASK
;
3498 if (bargs
->target
== chunk_type
)
3504 static int should_balance_chunk(struct extent_buffer
*leaf
,
3505 struct btrfs_chunk
*chunk
, u64 chunk_offset
)
3507 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
3508 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3509 struct btrfs_balance_args
*bargs
= NULL
;
3510 u64 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3513 if (!((chunk_type
& BTRFS_BLOCK_GROUP_TYPE_MASK
) &
3514 (bctl
->flags
& BTRFS_BALANCE_TYPE_MASK
))) {
3518 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3519 bargs
= &bctl
->data
;
3520 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3522 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3523 bargs
= &bctl
->meta
;
3525 /* profiles filter */
3526 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_PROFILES
) &&
3527 chunk_profiles_filter(chunk_type
, bargs
)) {
3532 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE
) &&
3533 chunk_usage_filter(fs_info
, chunk_offset
, bargs
)) {
3535 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
) &&
3536 chunk_usage_range_filter(fs_info
, chunk_offset
, bargs
)) {
3541 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DEVID
) &&
3542 chunk_devid_filter(leaf
, chunk
, bargs
)) {
3546 /* drange filter, makes sense only with devid filter */
3547 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_DRANGE
) &&
3548 chunk_drange_filter(leaf
, chunk
, bargs
)) {
3553 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_VRANGE
) &&
3554 chunk_vrange_filter(leaf
, chunk
, chunk_offset
, bargs
)) {
3558 /* stripes filter */
3559 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
) &&
3560 chunk_stripes_range_filter(leaf
, chunk
, bargs
)) {
3564 /* soft profile changing mode */
3565 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_SOFT
) &&
3566 chunk_soft_convert_filter(chunk_type
, bargs
)) {
3571 * limited by count, must be the last filter
3573 if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT
)) {
3574 if (bargs
->limit
== 0)
3578 } else if ((bargs
->flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)) {
3580 * Same logic as the 'limit' filter; the minimum cannot be
3581 * determined here because we do not have the global information
3582 * about the count of all chunks that satisfy the filters.
3584 if (bargs
->limit_max
== 0)
3593 static int __btrfs_balance(struct btrfs_fs_info
*fs_info
)
3595 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3596 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
3598 struct btrfs_chunk
*chunk
;
3599 struct btrfs_path
*path
= NULL
;
3600 struct btrfs_key key
;
3601 struct btrfs_key found_key
;
3602 struct extent_buffer
*leaf
;
3605 int enospc_errors
= 0;
3606 bool counting
= true;
3607 /* The single value limit and min/max limits use the same bytes in the */
3608 u64 limit_data
= bctl
->data
.limit
;
3609 u64 limit_meta
= bctl
->meta
.limit
;
3610 u64 limit_sys
= bctl
->sys
.limit
;
3614 int chunk_reserved
= 0;
3616 path
= btrfs_alloc_path();
3622 /* zero out stat counters */
3623 spin_lock(&fs_info
->balance_lock
);
3624 memset(&bctl
->stat
, 0, sizeof(bctl
->stat
));
3625 spin_unlock(&fs_info
->balance_lock
);
3629 * The single value limit and min/max limits use the same bytes
3632 bctl
->data
.limit
= limit_data
;
3633 bctl
->meta
.limit
= limit_meta
;
3634 bctl
->sys
.limit
= limit_sys
;
3636 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
3637 key
.offset
= (u64
)-1;
3638 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
3641 if ((!counting
&& atomic_read(&fs_info
->balance_pause_req
)) ||
3642 atomic_read(&fs_info
->balance_cancel_req
)) {
3647 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
3648 ret
= btrfs_search_slot(NULL
, chunk_root
, &key
, path
, 0, 0);
3650 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3655 * this shouldn't happen, it means the last relocate
3659 BUG(); /* FIXME break ? */
3661 ret
= btrfs_previous_item(chunk_root
, path
, 0,
3662 BTRFS_CHUNK_ITEM_KEY
);
3664 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3669 leaf
= path
->nodes
[0];
3670 slot
= path
->slots
[0];
3671 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
3673 if (found_key
.objectid
!= key
.objectid
) {
3674 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3678 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
3679 chunk_type
= btrfs_chunk_type(leaf
, chunk
);
3682 spin_lock(&fs_info
->balance_lock
);
3683 bctl
->stat
.considered
++;
3684 spin_unlock(&fs_info
->balance_lock
);
3687 ret
= should_balance_chunk(leaf
, chunk
, found_key
.offset
);
3689 btrfs_release_path(path
);
3691 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3696 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3697 spin_lock(&fs_info
->balance_lock
);
3698 bctl
->stat
.expected
++;
3699 spin_unlock(&fs_info
->balance_lock
);
3701 if (chunk_type
& BTRFS_BLOCK_GROUP_DATA
)
3703 else if (chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
)
3705 else if (chunk_type
& BTRFS_BLOCK_GROUP_METADATA
)
3712 * Apply limit_min filter, no need to check if the LIMITS
3713 * filter is used, limit_min is 0 by default
3715 if (((chunk_type
& BTRFS_BLOCK_GROUP_DATA
) &&
3716 count_data
< bctl
->data
.limit_min
)
3717 || ((chunk_type
& BTRFS_BLOCK_GROUP_METADATA
) &&
3718 count_meta
< bctl
->meta
.limit_min
)
3719 || ((chunk_type
& BTRFS_BLOCK_GROUP_SYSTEM
) &&
3720 count_sys
< bctl
->sys
.limit_min
)) {
3721 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3725 if (!chunk_reserved
) {
3727 * We may be relocating the only data chunk we have,
3728 * which could potentially end up with losing data's
3729 * raid profile, so lets allocate an empty one in
3732 ret
= btrfs_may_alloc_data_chunk(fs_info
,
3735 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3737 } else if (ret
== 1) {
3742 ret
= btrfs_relocate_chunk(fs_info
, found_key
.offset
);
3743 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
3744 if (ret
== -ENOSPC
) {
3746 } else if (ret
== -ETXTBSY
) {
3748 "skipping relocation of block group %llu due to active swapfile",
3754 spin_lock(&fs_info
->balance_lock
);
3755 bctl
->stat
.completed
++;
3756 spin_unlock(&fs_info
->balance_lock
);
3759 if (found_key
.offset
== 0)
3761 key
.offset
= found_key
.offset
- 1;
3765 btrfs_release_path(path
);
3770 btrfs_free_path(path
);
3771 if (enospc_errors
) {
3772 btrfs_info(fs_info
, "%d enospc errors during balance",
3782 * alloc_profile_is_valid - see if a given profile is valid and reduced
3783 * @flags: profile to validate
3784 * @extended: if true @flags is treated as an extended profile
3786 static int alloc_profile_is_valid(u64 flags
, int extended
)
3788 u64 mask
= (extended
? BTRFS_EXTENDED_PROFILE_MASK
:
3789 BTRFS_BLOCK_GROUP_PROFILE_MASK
);
3791 flags
&= ~BTRFS_BLOCK_GROUP_TYPE_MASK
;
3793 /* 1) check that all other bits are zeroed */
3797 /* 2) see if profile is reduced */
3799 return !extended
; /* "0" is valid for usual profiles */
3801 return has_single_bit_set(flags
);
3804 static inline int balance_need_close(struct btrfs_fs_info
*fs_info
)
3806 /* cancel requested || normal exit path */
3807 return atomic_read(&fs_info
->balance_cancel_req
) ||
3808 (atomic_read(&fs_info
->balance_pause_req
) == 0 &&
3809 atomic_read(&fs_info
->balance_cancel_req
) == 0);
3813 * Validate target profile against allowed profiles and return true if it's OK.
3814 * Otherwise print the error message and return false.
3816 static inline int validate_convert_profile(struct btrfs_fs_info
*fs_info
,
3817 const struct btrfs_balance_args
*bargs
,
3818 u64 allowed
, const char *type
)
3820 if (!(bargs
->flags
& BTRFS_BALANCE_ARGS_CONVERT
))
3823 /* Profile is valid and does not have bits outside of the allowed set */
3824 if (alloc_profile_is_valid(bargs
->target
, 1) &&
3825 (bargs
->target
& ~allowed
) == 0)
3828 btrfs_err(fs_info
, "balance: invalid convert %s profile %s",
3829 type
, btrfs_bg_type_to_raid_name(bargs
->target
));
3834 * Fill @buf with textual description of balance filter flags @bargs, up to
3835 * @size_buf including the terminating null. The output may be trimmed if it
3836 * does not fit into the provided buffer.
3838 static void describe_balance_args(struct btrfs_balance_args
*bargs
, char *buf
,
3842 u32 size_bp
= size_buf
;
3844 u64 flags
= bargs
->flags
;
3845 char tmp_buf
[128] = {'\0'};
3850 #define CHECK_APPEND_NOARG(a) \
3852 ret = snprintf(bp, size_bp, (a)); \
3853 if (ret < 0 || ret >= size_bp) \
3854 goto out_overflow; \
3859 #define CHECK_APPEND_1ARG(a, v1) \
3861 ret = snprintf(bp, size_bp, (a), (v1)); \
3862 if (ret < 0 || ret >= size_bp) \
3863 goto out_overflow; \
3868 #define CHECK_APPEND_2ARG(a, v1, v2) \
3870 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \
3871 if (ret < 0 || ret >= size_bp) \
3872 goto out_overflow; \
3877 if (flags
& BTRFS_BALANCE_ARGS_CONVERT
)
3878 CHECK_APPEND_1ARG("convert=%s,",
3879 btrfs_bg_type_to_raid_name(bargs
->target
));
3881 if (flags
& BTRFS_BALANCE_ARGS_SOFT
)
3882 CHECK_APPEND_NOARG("soft,");
3884 if (flags
& BTRFS_BALANCE_ARGS_PROFILES
) {
3885 btrfs_describe_block_groups(bargs
->profiles
, tmp_buf
,
3887 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf
);
3890 if (flags
& BTRFS_BALANCE_ARGS_USAGE
)
3891 CHECK_APPEND_1ARG("usage=%llu,", bargs
->usage
);
3893 if (flags
& BTRFS_BALANCE_ARGS_USAGE_RANGE
)
3894 CHECK_APPEND_2ARG("usage=%u..%u,",
3895 bargs
->usage_min
, bargs
->usage_max
);
3897 if (flags
& BTRFS_BALANCE_ARGS_DEVID
)
3898 CHECK_APPEND_1ARG("devid=%llu,", bargs
->devid
);
3900 if (flags
& BTRFS_BALANCE_ARGS_DRANGE
)
3901 CHECK_APPEND_2ARG("drange=%llu..%llu,",
3902 bargs
->pstart
, bargs
->pend
);
3904 if (flags
& BTRFS_BALANCE_ARGS_VRANGE
)
3905 CHECK_APPEND_2ARG("vrange=%llu..%llu,",
3906 bargs
->vstart
, bargs
->vend
);
3908 if (flags
& BTRFS_BALANCE_ARGS_LIMIT
)
3909 CHECK_APPEND_1ARG("limit=%llu,", bargs
->limit
);
3911 if (flags
& BTRFS_BALANCE_ARGS_LIMIT_RANGE
)
3912 CHECK_APPEND_2ARG("limit=%u..%u,",
3913 bargs
->limit_min
, bargs
->limit_max
);
3915 if (flags
& BTRFS_BALANCE_ARGS_STRIPES_RANGE
)
3916 CHECK_APPEND_2ARG("stripes=%u..%u,",
3917 bargs
->stripes_min
, bargs
->stripes_max
);
3919 #undef CHECK_APPEND_2ARG
3920 #undef CHECK_APPEND_1ARG
3921 #undef CHECK_APPEND_NOARG
3925 if (size_bp
< size_buf
)
3926 buf
[size_buf
- size_bp
- 1] = '\0'; /* remove last , */
3931 static void describe_balance_start_or_resume(struct btrfs_fs_info
*fs_info
)
3933 u32 size_buf
= 1024;
3934 char tmp_buf
[192] = {'\0'};
3937 u32 size_bp
= size_buf
;
3939 struct btrfs_balance_control
*bctl
= fs_info
->balance_ctl
;
3941 buf
= kzalloc(size_buf
, GFP_KERNEL
);
3947 #define CHECK_APPEND_1ARG(a, v1) \
3949 ret = snprintf(bp, size_bp, (a), (v1)); \
3950 if (ret < 0 || ret >= size_bp) \
3951 goto out_overflow; \
3956 if (bctl
->flags
& BTRFS_BALANCE_FORCE
)
3957 CHECK_APPEND_1ARG("%s", "-f ");
3959 if (bctl
->flags
& BTRFS_BALANCE_DATA
) {
3960 describe_balance_args(&bctl
->data
, tmp_buf
, sizeof(tmp_buf
));
3961 CHECK_APPEND_1ARG("-d%s ", tmp_buf
);
3964 if (bctl
->flags
& BTRFS_BALANCE_METADATA
) {
3965 describe_balance_args(&bctl
->meta
, tmp_buf
, sizeof(tmp_buf
));
3966 CHECK_APPEND_1ARG("-m%s ", tmp_buf
);
3969 if (bctl
->flags
& BTRFS_BALANCE_SYSTEM
) {
3970 describe_balance_args(&bctl
->sys
, tmp_buf
, sizeof(tmp_buf
));
3971 CHECK_APPEND_1ARG("-s%s ", tmp_buf
);
3974 #undef CHECK_APPEND_1ARG
3978 if (size_bp
< size_buf
)
3979 buf
[size_buf
- size_bp
- 1] = '\0'; /* remove last " " */
3980 btrfs_info(fs_info
, "balance: %s %s",
3981 (bctl
->flags
& BTRFS_BALANCE_RESUME
) ?
3982 "resume" : "start", buf
);
3988 * Should be called with balance mutexe held
3990 int btrfs_balance(struct btrfs_fs_info
*fs_info
,
3991 struct btrfs_balance_control
*bctl
,
3992 struct btrfs_ioctl_balance_args
*bargs
)
3994 u64 meta_target
, data_target
;
4000 bool reducing_redundancy
;
4003 if (btrfs_fs_closing(fs_info
) ||
4004 atomic_read(&fs_info
->balance_pause_req
) ||
4005 btrfs_should_cancel_balance(fs_info
)) {
4010 allowed
= btrfs_super_incompat_flags(fs_info
->super_copy
);
4011 if (allowed
& BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS
)
4015 * In case of mixed groups both data and meta should be picked,
4016 * and identical options should be given for both of them.
4018 allowed
= BTRFS_BALANCE_DATA
| BTRFS_BALANCE_METADATA
;
4019 if (mixed
&& (bctl
->flags
& allowed
)) {
4020 if (!(bctl
->flags
& BTRFS_BALANCE_DATA
) ||
4021 !(bctl
->flags
& BTRFS_BALANCE_METADATA
) ||
4022 memcmp(&bctl
->data
, &bctl
->meta
, sizeof(bctl
->data
))) {
4024 "balance: mixed groups data and metadata options must be the same");
4031 * rw_devices will not change at the moment, device add/delete/replace
4032 * are excluded by EXCL_OP
4034 num_devices
= fs_info
->fs_devices
->rw_devices
;
4037 * SINGLE profile on-disk has no profile bit, but in-memory we have a
4038 * special bit for it, to make it easier to distinguish. Thus we need
4039 * to set it manually, or balance would refuse the profile.
4041 allowed
= BTRFS_AVAIL_ALLOC_BIT_SINGLE
;
4042 for (i
= 0; i
< ARRAY_SIZE(btrfs_raid_array
); i
++)
4043 if (num_devices
>= btrfs_raid_array
[i
].devs_min
)
4044 allowed
|= btrfs_raid_array
[i
].bg_flag
;
4046 if (!validate_convert_profile(fs_info
, &bctl
->data
, allowed
, "data") ||
4047 !validate_convert_profile(fs_info
, &bctl
->meta
, allowed
, "metadata") ||
4048 !validate_convert_profile(fs_info
, &bctl
->sys
, allowed
, "system")) {
4054 * Allow to reduce metadata or system integrity only if force set for
4055 * profiles with redundancy (copies, parity)
4058 for (i
= 0; i
< ARRAY_SIZE(btrfs_raid_array
); i
++) {
4059 if (btrfs_raid_array
[i
].ncopies
>= 2 ||
4060 btrfs_raid_array
[i
].tolerated_failures
>= 1)
4061 allowed
|= btrfs_raid_array
[i
].bg_flag
;
4064 seq
= read_seqbegin(&fs_info
->profiles_lock
);
4066 if (((bctl
->sys
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
4067 (fs_info
->avail_system_alloc_bits
& allowed
) &&
4068 !(bctl
->sys
.target
& allowed
)) ||
4069 ((bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) &&
4070 (fs_info
->avail_metadata_alloc_bits
& allowed
) &&
4071 !(bctl
->meta
.target
& allowed
)))
4072 reducing_redundancy
= true;
4074 reducing_redundancy
= false;
4076 /* if we're not converting, the target field is uninitialized */
4077 meta_target
= (bctl
->meta
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
4078 bctl
->meta
.target
: fs_info
->avail_metadata_alloc_bits
;
4079 data_target
= (bctl
->data
.flags
& BTRFS_BALANCE_ARGS_CONVERT
) ?
4080 bctl
->data
.target
: fs_info
->avail_data_alloc_bits
;
4081 } while (read_seqretry(&fs_info
->profiles_lock
, seq
));
4083 if (reducing_redundancy
) {
4084 if (bctl
->flags
& BTRFS_BALANCE_FORCE
) {
4086 "balance: force reducing metadata redundancy");
4089 "balance: reduces metadata redundancy, use --force if you want this");
4095 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target
) <
4096 btrfs_get_num_tolerated_disk_barrier_failures(data_target
)) {
4098 "balance: metadata profile %s has lower redundancy than data profile %s",
4099 btrfs_bg_type_to_raid_name(meta_target
),
4100 btrfs_bg_type_to_raid_name(data_target
));
4103 if (fs_info
->send_in_progress
) {
4104 btrfs_warn_rl(fs_info
,
4105 "cannot run balance while send operations are in progress (%d in progress)",
4106 fs_info
->send_in_progress
);
4111 ret
= insert_balance_item(fs_info
, bctl
);
4112 if (ret
&& ret
!= -EEXIST
)
4115 if (!(bctl
->flags
& BTRFS_BALANCE_RESUME
)) {
4116 BUG_ON(ret
== -EEXIST
);
4117 BUG_ON(fs_info
->balance_ctl
);
4118 spin_lock(&fs_info
->balance_lock
);
4119 fs_info
->balance_ctl
= bctl
;
4120 spin_unlock(&fs_info
->balance_lock
);
4122 BUG_ON(ret
!= -EEXIST
);
4123 spin_lock(&fs_info
->balance_lock
);
4124 update_balance_args(bctl
);
4125 spin_unlock(&fs_info
->balance_lock
);
4128 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4129 set_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
);
4130 describe_balance_start_or_resume(fs_info
);
4131 mutex_unlock(&fs_info
->balance_mutex
);
4133 ret
= __btrfs_balance(fs_info
);
4135 mutex_lock(&fs_info
->balance_mutex
);
4136 if (ret
== -ECANCELED
&& atomic_read(&fs_info
->balance_pause_req
))
4137 btrfs_info(fs_info
, "balance: paused");
4138 else if (ret
== -ECANCELED
&& atomic_read(&fs_info
->balance_cancel_req
))
4139 btrfs_info(fs_info
, "balance: canceled");
4141 btrfs_info(fs_info
, "balance: ended with status: %d", ret
);
4143 clear_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
);
4146 memset(bargs
, 0, sizeof(*bargs
));
4147 btrfs_update_ioctl_balance_args(fs_info
, bargs
);
4150 if ((ret
&& ret
!= -ECANCELED
&& ret
!= -ENOSPC
) ||
4151 balance_need_close(fs_info
)) {
4152 reset_balance_state(fs_info
);
4153 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4156 wake_up(&fs_info
->balance_wait_q
);
4160 if (bctl
->flags
& BTRFS_BALANCE_RESUME
)
4161 reset_balance_state(fs_info
);
4164 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4169 static int balance_kthread(void *data
)
4171 struct btrfs_fs_info
*fs_info
= data
;
4174 mutex_lock(&fs_info
->balance_mutex
);
4175 if (fs_info
->balance_ctl
)
4176 ret
= btrfs_balance(fs_info
, fs_info
->balance_ctl
, NULL
);
4177 mutex_unlock(&fs_info
->balance_mutex
);
4182 int btrfs_resume_balance_async(struct btrfs_fs_info
*fs_info
)
4184 struct task_struct
*tsk
;
4186 mutex_lock(&fs_info
->balance_mutex
);
4187 if (!fs_info
->balance_ctl
) {
4188 mutex_unlock(&fs_info
->balance_mutex
);
4191 mutex_unlock(&fs_info
->balance_mutex
);
4193 if (btrfs_test_opt(fs_info
, SKIP_BALANCE
)) {
4194 btrfs_info(fs_info
, "balance: resume skipped");
4199 * A ro->rw remount sequence should continue with the paused balance
4200 * regardless of who pauses it, system or the user as of now, so set
4203 spin_lock(&fs_info
->balance_lock
);
4204 fs_info
->balance_ctl
->flags
|= BTRFS_BALANCE_RESUME
;
4205 spin_unlock(&fs_info
->balance_lock
);
4207 tsk
= kthread_run(balance_kthread
, fs_info
, "btrfs-balance");
4208 return PTR_ERR_OR_ZERO(tsk
);
4211 int btrfs_recover_balance(struct btrfs_fs_info
*fs_info
)
4213 struct btrfs_balance_control
*bctl
;
4214 struct btrfs_balance_item
*item
;
4215 struct btrfs_disk_balance_args disk_bargs
;
4216 struct btrfs_path
*path
;
4217 struct extent_buffer
*leaf
;
4218 struct btrfs_key key
;
4221 path
= btrfs_alloc_path();
4225 key
.objectid
= BTRFS_BALANCE_OBJECTID
;
4226 key
.type
= BTRFS_TEMPORARY_ITEM_KEY
;
4229 ret
= btrfs_search_slot(NULL
, fs_info
->tree_root
, &key
, path
, 0, 0);
4232 if (ret
> 0) { /* ret = -ENOENT; */
4237 bctl
= kzalloc(sizeof(*bctl
), GFP_NOFS
);
4243 leaf
= path
->nodes
[0];
4244 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_balance_item
);
4246 bctl
->flags
= btrfs_balance_flags(leaf
, item
);
4247 bctl
->flags
|= BTRFS_BALANCE_RESUME
;
4249 btrfs_balance_data(leaf
, item
, &disk_bargs
);
4250 btrfs_disk_balance_args_to_cpu(&bctl
->data
, &disk_bargs
);
4251 btrfs_balance_meta(leaf
, item
, &disk_bargs
);
4252 btrfs_disk_balance_args_to_cpu(&bctl
->meta
, &disk_bargs
);
4253 btrfs_balance_sys(leaf
, item
, &disk_bargs
);
4254 btrfs_disk_balance_args_to_cpu(&bctl
->sys
, &disk_bargs
);
4257 * This should never happen, as the paused balance state is recovered
4258 * during mount without any chance of other exclusive ops to collide.
4260 * This gives the exclusive op status to balance and keeps in paused
4261 * state until user intervention (cancel or umount). If the ownership
4262 * cannot be assigned, show a message but do not fail. The balance
4263 * is in a paused state and must have fs_info::balance_ctl properly
4266 if (test_and_set_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
))
4268 "balance: cannot set exclusive op status, resume manually");
4270 mutex_lock(&fs_info
->balance_mutex
);
4271 BUG_ON(fs_info
->balance_ctl
);
4272 spin_lock(&fs_info
->balance_lock
);
4273 fs_info
->balance_ctl
= bctl
;
4274 spin_unlock(&fs_info
->balance_lock
);
4275 mutex_unlock(&fs_info
->balance_mutex
);
4277 btrfs_free_path(path
);
4281 int btrfs_pause_balance(struct btrfs_fs_info
*fs_info
)
4285 mutex_lock(&fs_info
->balance_mutex
);
4286 if (!fs_info
->balance_ctl
) {
4287 mutex_unlock(&fs_info
->balance_mutex
);
4291 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4292 atomic_inc(&fs_info
->balance_pause_req
);
4293 mutex_unlock(&fs_info
->balance_mutex
);
4295 wait_event(fs_info
->balance_wait_q
,
4296 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4298 mutex_lock(&fs_info
->balance_mutex
);
4299 /* we are good with balance_ctl ripped off from under us */
4300 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4301 atomic_dec(&fs_info
->balance_pause_req
);
4306 mutex_unlock(&fs_info
->balance_mutex
);
4310 int btrfs_cancel_balance(struct btrfs_fs_info
*fs_info
)
4312 mutex_lock(&fs_info
->balance_mutex
);
4313 if (!fs_info
->balance_ctl
) {
4314 mutex_unlock(&fs_info
->balance_mutex
);
4319 * A paused balance with the item stored on disk can be resumed at
4320 * mount time if the mount is read-write. Otherwise it's still paused
4321 * and we must not allow cancelling as it deletes the item.
4323 if (sb_rdonly(fs_info
->sb
)) {
4324 mutex_unlock(&fs_info
->balance_mutex
);
4328 atomic_inc(&fs_info
->balance_cancel_req
);
4330 * if we are running just wait and return, balance item is
4331 * deleted in btrfs_balance in this case
4333 if (test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
)) {
4334 mutex_unlock(&fs_info
->balance_mutex
);
4335 wait_event(fs_info
->balance_wait_q
,
4336 !test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4337 mutex_lock(&fs_info
->balance_mutex
);
4339 mutex_unlock(&fs_info
->balance_mutex
);
4341 * Lock released to allow other waiters to continue, we'll
4342 * reexamine the status again.
4344 mutex_lock(&fs_info
->balance_mutex
);
4346 if (fs_info
->balance_ctl
) {
4347 reset_balance_state(fs_info
);
4348 clear_bit(BTRFS_FS_EXCL_OP
, &fs_info
->flags
);
4349 btrfs_info(fs_info
, "balance: canceled");
4353 BUG_ON(fs_info
->balance_ctl
||
4354 test_bit(BTRFS_FS_BALANCE_RUNNING
, &fs_info
->flags
));
4355 atomic_dec(&fs_info
->balance_cancel_req
);
4356 mutex_unlock(&fs_info
->balance_mutex
);
4360 int btrfs_uuid_scan_kthread(void *data
)
4362 struct btrfs_fs_info
*fs_info
= data
;
4363 struct btrfs_root
*root
= fs_info
->tree_root
;
4364 struct btrfs_key key
;
4365 struct btrfs_path
*path
= NULL
;
4367 struct extent_buffer
*eb
;
4369 struct btrfs_root_item root_item
;
4371 struct btrfs_trans_handle
*trans
= NULL
;
4372 bool closing
= false;
4374 path
= btrfs_alloc_path();
4381 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4385 if (btrfs_fs_closing(fs_info
)) {
4389 ret
= btrfs_search_forward(root
, &key
, path
,
4390 BTRFS_OLDEST_GENERATION
);
4397 if (key
.type
!= BTRFS_ROOT_ITEM_KEY
||
4398 (key
.objectid
< BTRFS_FIRST_FREE_OBJECTID
&&
4399 key
.objectid
!= BTRFS_FS_TREE_OBJECTID
) ||
4400 key
.objectid
> BTRFS_LAST_FREE_OBJECTID
)
4403 eb
= path
->nodes
[0];
4404 slot
= path
->slots
[0];
4405 item_size
= btrfs_item_size_nr(eb
, slot
);
4406 if (item_size
< sizeof(root_item
))
4409 read_extent_buffer(eb
, &root_item
,
4410 btrfs_item_ptr_offset(eb
, slot
),
4411 (int)sizeof(root_item
));
4412 if (btrfs_root_refs(&root_item
) == 0)
4415 if (!btrfs_is_empty_uuid(root_item
.uuid
) ||
4416 !btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4420 btrfs_release_path(path
);
4422 * 1 - subvol uuid item
4423 * 1 - received_subvol uuid item
4425 trans
= btrfs_start_transaction(fs_info
->uuid_root
, 2);
4426 if (IS_ERR(trans
)) {
4427 ret
= PTR_ERR(trans
);
4435 if (!btrfs_is_empty_uuid(root_item
.uuid
)) {
4436 ret
= btrfs_uuid_tree_add(trans
, root_item
.uuid
,
4437 BTRFS_UUID_KEY_SUBVOL
,
4440 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4446 if (!btrfs_is_empty_uuid(root_item
.received_uuid
)) {
4447 ret
= btrfs_uuid_tree_add(trans
,
4448 root_item
.received_uuid
,
4449 BTRFS_UUID_KEY_RECEIVED_SUBVOL
,
4452 btrfs_warn(fs_info
, "uuid_tree_add failed %d",
4460 ret
= btrfs_end_transaction(trans
);
4466 btrfs_release_path(path
);
4467 if (key
.offset
< (u64
)-1) {
4469 } else if (key
.type
< BTRFS_ROOT_ITEM_KEY
) {
4471 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4472 } else if (key
.objectid
< (u64
)-1) {
4474 key
.type
= BTRFS_ROOT_ITEM_KEY
;
4483 btrfs_free_path(path
);
4484 if (trans
&& !IS_ERR(trans
))
4485 btrfs_end_transaction(trans
);
4487 btrfs_warn(fs_info
, "btrfs_uuid_scan_kthread failed %d", ret
);
4489 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN
, &fs_info
->flags
);
4490 up(&fs_info
->uuid_tree_rescan_sem
);
4494 int btrfs_create_uuid_tree(struct btrfs_fs_info
*fs_info
)
4496 struct btrfs_trans_handle
*trans
;
4497 struct btrfs_root
*tree_root
= fs_info
->tree_root
;
4498 struct btrfs_root
*uuid_root
;
4499 struct task_struct
*task
;
4506 trans
= btrfs_start_transaction(tree_root
, 2);
4508 return PTR_ERR(trans
);
4510 uuid_root
= btrfs_create_tree(trans
, BTRFS_UUID_TREE_OBJECTID
);
4511 if (IS_ERR(uuid_root
)) {
4512 ret
= PTR_ERR(uuid_root
);
4513 btrfs_abort_transaction(trans
, ret
);
4514 btrfs_end_transaction(trans
);
4518 fs_info
->uuid_root
= uuid_root
;
4520 ret
= btrfs_commit_transaction(trans
);
4524 down(&fs_info
->uuid_tree_rescan_sem
);
4525 task
= kthread_run(btrfs_uuid_scan_kthread
, fs_info
, "btrfs-uuid");
4527 /* fs_info->update_uuid_tree_gen remains 0 in all error case */
4528 btrfs_warn(fs_info
, "failed to start uuid_scan task");
4529 up(&fs_info
->uuid_tree_rescan_sem
);
4530 return PTR_ERR(task
);
4537 * shrinking a device means finding all of the device extents past
4538 * the new size, and then following the back refs to the chunks.
4539 * The chunk relocation code actually frees the device extent
4541 int btrfs_shrink_device(struct btrfs_device
*device
, u64 new_size
)
4543 struct btrfs_fs_info
*fs_info
= device
->fs_info
;
4544 struct btrfs_root
*root
= fs_info
->dev_root
;
4545 struct btrfs_trans_handle
*trans
;
4546 struct btrfs_dev_extent
*dev_extent
= NULL
;
4547 struct btrfs_path
*path
;
4553 bool retried
= false;
4554 struct extent_buffer
*l
;
4555 struct btrfs_key key
;
4556 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4557 u64 old_total
= btrfs_super_total_bytes(super_copy
);
4558 u64 old_size
= btrfs_device_get_total_bytes(device
);
4562 new_size
= round_down(new_size
, fs_info
->sectorsize
);
4564 diff
= round_down(old_size
- new_size
, fs_info
->sectorsize
);
4566 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4569 path
= btrfs_alloc_path();
4573 path
->reada
= READA_BACK
;
4575 trans
= btrfs_start_transaction(root
, 0);
4576 if (IS_ERR(trans
)) {
4577 btrfs_free_path(path
);
4578 return PTR_ERR(trans
);
4581 mutex_lock(&fs_info
->chunk_mutex
);
4583 btrfs_device_set_total_bytes(device
, new_size
);
4584 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4585 device
->fs_devices
->total_rw_bytes
-= diff
;
4586 atomic64_sub(diff
, &fs_info
->free_chunk_space
);
4590 * Once the device's size has been set to the new size, ensure all
4591 * in-memory chunks are synced to disk so that the loop below sees them
4592 * and relocates them accordingly.
4594 if (contains_pending_extent(device
, &start
, diff
)) {
4595 mutex_unlock(&fs_info
->chunk_mutex
);
4596 ret
= btrfs_commit_transaction(trans
);
4600 mutex_unlock(&fs_info
->chunk_mutex
);
4601 btrfs_end_transaction(trans
);
4605 key
.objectid
= device
->devid
;
4606 key
.offset
= (u64
)-1;
4607 key
.type
= BTRFS_DEV_EXTENT_KEY
;
4610 mutex_lock(&fs_info
->delete_unused_bgs_mutex
);
4611 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
4613 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4617 ret
= btrfs_previous_item(root
, path
, 0, key
.type
);
4619 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4624 btrfs_release_path(path
);
4629 slot
= path
->slots
[0];
4630 btrfs_item_key_to_cpu(l
, &key
, path
->slots
[0]);
4632 if (key
.objectid
!= device
->devid
) {
4633 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4634 btrfs_release_path(path
);
4638 dev_extent
= btrfs_item_ptr(l
, slot
, struct btrfs_dev_extent
);
4639 length
= btrfs_dev_extent_length(l
, dev_extent
);
4641 if (key
.offset
+ length
<= new_size
) {
4642 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4643 btrfs_release_path(path
);
4647 chunk_offset
= btrfs_dev_extent_chunk_offset(l
, dev_extent
);
4648 btrfs_release_path(path
);
4651 * We may be relocating the only data chunk we have,
4652 * which could potentially end up with losing data's
4653 * raid profile, so lets allocate an empty one in
4656 ret
= btrfs_may_alloc_data_chunk(fs_info
, chunk_offset
);
4658 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4662 ret
= btrfs_relocate_chunk(fs_info
, chunk_offset
);
4663 mutex_unlock(&fs_info
->delete_unused_bgs_mutex
);
4664 if (ret
== -ENOSPC
) {
4667 if (ret
== -ETXTBSY
) {
4669 "could not shrink block group %llu due to active swapfile",
4674 } while (key
.offset
-- > 0);
4676 if (failed
&& !retried
) {
4680 } else if (failed
&& retried
) {
4685 /* Shrinking succeeded, else we would be at "done". */
4686 trans
= btrfs_start_transaction(root
, 0);
4687 if (IS_ERR(trans
)) {
4688 ret
= PTR_ERR(trans
);
4692 mutex_lock(&fs_info
->chunk_mutex
);
4693 btrfs_device_set_disk_total_bytes(device
, new_size
);
4694 if (list_empty(&device
->post_commit_list
))
4695 list_add_tail(&device
->post_commit_list
,
4696 &trans
->transaction
->dev_update_list
);
4698 WARN_ON(diff
> old_total
);
4699 btrfs_set_super_total_bytes(super_copy
,
4700 round_down(old_total
- diff
, fs_info
->sectorsize
));
4701 mutex_unlock(&fs_info
->chunk_mutex
);
4703 /* Now btrfs_update_device() will change the on-disk size. */
4704 ret
= btrfs_update_device(trans
, device
);
4706 btrfs_abort_transaction(trans
, ret
);
4707 btrfs_end_transaction(trans
);
4709 ret
= btrfs_commit_transaction(trans
);
4712 btrfs_free_path(path
);
4714 mutex_lock(&fs_info
->chunk_mutex
);
4715 btrfs_device_set_total_bytes(device
, old_size
);
4716 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
))
4717 device
->fs_devices
->total_rw_bytes
+= diff
;
4718 atomic64_add(diff
, &fs_info
->free_chunk_space
);
4719 mutex_unlock(&fs_info
->chunk_mutex
);
4724 static int btrfs_add_system_chunk(struct btrfs_fs_info
*fs_info
,
4725 struct btrfs_key
*key
,
4726 struct btrfs_chunk
*chunk
, int item_size
)
4728 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
4729 struct btrfs_disk_key disk_key
;
4733 mutex_lock(&fs_info
->chunk_mutex
);
4734 array_size
= btrfs_super_sys_array_size(super_copy
);
4735 if (array_size
+ item_size
+ sizeof(disk_key
)
4736 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE
) {
4737 mutex_unlock(&fs_info
->chunk_mutex
);
4741 ptr
= super_copy
->sys_chunk_array
+ array_size
;
4742 btrfs_cpu_key_to_disk(&disk_key
, key
);
4743 memcpy(ptr
, &disk_key
, sizeof(disk_key
));
4744 ptr
+= sizeof(disk_key
);
4745 memcpy(ptr
, chunk
, item_size
);
4746 item_size
+= sizeof(disk_key
);
4747 btrfs_set_super_sys_array_size(super_copy
, array_size
+ item_size
);
4748 mutex_unlock(&fs_info
->chunk_mutex
);
4754 * sort the devices in descending order by max_avail, total_avail
4756 static int btrfs_cmp_device_info(const void *a
, const void *b
)
4758 const struct btrfs_device_info
*di_a
= a
;
4759 const struct btrfs_device_info
*di_b
= b
;
4761 if (di_a
->max_avail
> di_b
->max_avail
)
4763 if (di_a
->max_avail
< di_b
->max_avail
)
4765 if (di_a
->total_avail
> di_b
->total_avail
)
4767 if (di_a
->total_avail
< di_b
->total_avail
)
4772 static void check_raid56_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4774 if (!(type
& BTRFS_BLOCK_GROUP_RAID56_MASK
))
4777 btrfs_set_fs_incompat(info
, RAID56
);
4780 static void check_raid1c34_incompat_flag(struct btrfs_fs_info
*info
, u64 type
)
4782 if (!(type
& (BTRFS_BLOCK_GROUP_RAID1C3
| BTRFS_BLOCK_GROUP_RAID1C4
)))
4785 btrfs_set_fs_incompat(info
, RAID1C34
);
4789 * Structure used internally for __btrfs_alloc_chunk() function.
4790 * Wraps needed parameters.
4792 struct alloc_chunk_ctl
{
4795 /* Total number of stripes to allocate */
4797 /* sub_stripes info for map */
4799 /* Stripes per device */
4801 /* Maximum number of devices to use */
4803 /* Minimum number of devices to use */
4805 /* ndevs has to be a multiple of this */
4807 /* Number of copies */
4809 /* Number of stripes worth of bytes to store parity information */
4811 u64 max_stripe_size
;
4819 static void init_alloc_chunk_ctl_policy_regular(
4820 struct btrfs_fs_devices
*fs_devices
,
4821 struct alloc_chunk_ctl
*ctl
)
4823 u64 type
= ctl
->type
;
4825 if (type
& BTRFS_BLOCK_GROUP_DATA
) {
4826 ctl
->max_stripe_size
= SZ_1G
;
4827 ctl
->max_chunk_size
= BTRFS_MAX_DATA_CHUNK_SIZE
;
4828 } else if (type
& BTRFS_BLOCK_GROUP_METADATA
) {
4829 /* For larger filesystems, use larger metadata chunks */
4830 if (fs_devices
->total_rw_bytes
> 50ULL * SZ_1G
)
4831 ctl
->max_stripe_size
= SZ_1G
;
4833 ctl
->max_stripe_size
= SZ_256M
;
4834 ctl
->max_chunk_size
= ctl
->max_stripe_size
;
4835 } else if (type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
4836 ctl
->max_stripe_size
= SZ_32M
;
4837 ctl
->max_chunk_size
= 2 * ctl
->max_stripe_size
;
4838 ctl
->devs_max
= min_t(int, ctl
->devs_max
,
4839 BTRFS_MAX_DEVS_SYS_CHUNK
);
4844 /* We don't want a chunk larger than 10% of writable space */
4845 ctl
->max_chunk_size
= min(div_factor(fs_devices
->total_rw_bytes
, 1),
4846 ctl
->max_chunk_size
);
4847 ctl
->dev_extent_min
= BTRFS_STRIPE_LEN
* ctl
->dev_stripes
;
4850 static void init_alloc_chunk_ctl(struct btrfs_fs_devices
*fs_devices
,
4851 struct alloc_chunk_ctl
*ctl
)
4853 int index
= btrfs_bg_flags_to_raid_index(ctl
->type
);
4855 ctl
->sub_stripes
= btrfs_raid_array
[index
].sub_stripes
;
4856 ctl
->dev_stripes
= btrfs_raid_array
[index
].dev_stripes
;
4857 ctl
->devs_max
= btrfs_raid_array
[index
].devs_max
;
4859 ctl
->devs_max
= BTRFS_MAX_DEVS(fs_devices
->fs_info
);
4860 ctl
->devs_min
= btrfs_raid_array
[index
].devs_min
;
4861 ctl
->devs_increment
= btrfs_raid_array
[index
].devs_increment
;
4862 ctl
->ncopies
= btrfs_raid_array
[index
].ncopies
;
4863 ctl
->nparity
= btrfs_raid_array
[index
].nparity
;
4866 switch (fs_devices
->chunk_alloc_policy
) {
4867 case BTRFS_CHUNK_ALLOC_REGULAR
:
4868 init_alloc_chunk_ctl_policy_regular(fs_devices
, ctl
);
4875 static int gather_device_info(struct btrfs_fs_devices
*fs_devices
,
4876 struct alloc_chunk_ctl
*ctl
,
4877 struct btrfs_device_info
*devices_info
)
4879 struct btrfs_fs_info
*info
= fs_devices
->fs_info
;
4880 struct btrfs_device
*device
;
4882 u64 dev_extent_want
= ctl
->max_stripe_size
* ctl
->dev_stripes
;
4889 * in the first pass through the devices list, we gather information
4890 * about the available holes on each device.
4892 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
4893 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
)) {
4895 "BTRFS: read-only device in alloc_list\n");
4899 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
4900 &device
->dev_state
) ||
4901 test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
))
4904 if (device
->total_bytes
> device
->bytes_used
)
4905 total_avail
= device
->total_bytes
- device
->bytes_used
;
4909 /* If there is no space on this device, skip it. */
4910 if (total_avail
< ctl
->dev_extent_min
)
4913 ret
= find_free_dev_extent(device
, dev_extent_want
, &dev_offset
,
4915 if (ret
&& ret
!= -ENOSPC
)
4919 max_avail
= dev_extent_want
;
4921 if (max_avail
< ctl
->dev_extent_min
) {
4922 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
4924 "%s: devid %llu has no free space, have=%llu want=%llu",
4925 __func__
, device
->devid
, max_avail
,
4926 ctl
->dev_extent_min
);
4930 if (ndevs
== fs_devices
->rw_devices
) {
4931 WARN(1, "%s: found more than %llu devices\n",
4932 __func__
, fs_devices
->rw_devices
);
4935 devices_info
[ndevs
].dev_offset
= dev_offset
;
4936 devices_info
[ndevs
].max_avail
= max_avail
;
4937 devices_info
[ndevs
].total_avail
= total_avail
;
4938 devices_info
[ndevs
].dev
= device
;
4944 * now sort the devices by hole size / available space
4946 sort(devices_info
, ndevs
, sizeof(struct btrfs_device_info
),
4947 btrfs_cmp_device_info
, NULL
);
4952 static int decide_stripe_size_regular(struct alloc_chunk_ctl
*ctl
,
4953 struct btrfs_device_info
*devices_info
)
4955 /* Number of stripes that count for block group size */
4959 * The primary goal is to maximize the number of stripes, so use as
4960 * many devices as possible, even if the stripes are not maximum sized.
4962 * The DUP profile stores more than one stripe per device, the
4963 * max_avail is the total size so we have to adjust.
4965 ctl
->stripe_size
= div_u64(devices_info
[ctl
->ndevs
- 1].max_avail
,
4967 ctl
->num_stripes
= ctl
->ndevs
* ctl
->dev_stripes
;
4969 /* This will have to be fixed for RAID1 and RAID10 over more drives */
4970 data_stripes
= (ctl
->num_stripes
- ctl
->nparity
) / ctl
->ncopies
;
4973 * Use the number of data stripes to figure out how big this chunk is
4974 * really going to be in terms of logical address space, and compare
4975 * that answer with the max chunk size. If it's higher, we try to
4976 * reduce stripe_size.
4978 if (ctl
->stripe_size
* data_stripes
> ctl
->max_chunk_size
) {
4980 * Reduce stripe_size, round it up to a 16MB boundary again and
4981 * then use it, unless it ends up being even bigger than the
4982 * previous value we had already.
4984 ctl
->stripe_size
= min(round_up(div_u64(ctl
->max_chunk_size
,
4985 data_stripes
), SZ_16M
),
4989 /* Align to BTRFS_STRIPE_LEN */
4990 ctl
->stripe_size
= round_down(ctl
->stripe_size
, BTRFS_STRIPE_LEN
);
4991 ctl
->chunk_size
= ctl
->stripe_size
* data_stripes
;
4996 static int decide_stripe_size(struct btrfs_fs_devices
*fs_devices
,
4997 struct alloc_chunk_ctl
*ctl
,
4998 struct btrfs_device_info
*devices_info
)
5000 struct btrfs_fs_info
*info
= fs_devices
->fs_info
;
5003 * Round down to number of usable stripes, devs_increment can be any
5004 * number so we can't use round_down() that requires power of 2, while
5005 * rounddown is safe.
5007 ctl
->ndevs
= rounddown(ctl
->ndevs
, ctl
->devs_increment
);
5009 if (ctl
->ndevs
< ctl
->devs_min
) {
5010 if (btrfs_test_opt(info
, ENOSPC_DEBUG
)) {
5012 "%s: not enough devices with free space: have=%d minimum required=%d",
5013 __func__
, ctl
->ndevs
, ctl
->devs_min
);
5018 ctl
->ndevs
= min(ctl
->ndevs
, ctl
->devs_max
);
5020 switch (fs_devices
->chunk_alloc_policy
) {
5021 case BTRFS_CHUNK_ALLOC_REGULAR
:
5022 return decide_stripe_size_regular(ctl
, devices_info
);
5028 static int create_chunk(struct btrfs_trans_handle
*trans
,
5029 struct alloc_chunk_ctl
*ctl
,
5030 struct btrfs_device_info
*devices_info
)
5032 struct btrfs_fs_info
*info
= trans
->fs_info
;
5033 struct map_lookup
*map
= NULL
;
5034 struct extent_map_tree
*em_tree
;
5035 struct extent_map
*em
;
5036 u64 start
= ctl
->start
;
5037 u64 type
= ctl
->type
;
5042 map
= kmalloc(map_lookup_size(ctl
->num_stripes
), GFP_NOFS
);
5045 map
->num_stripes
= ctl
->num_stripes
;
5047 for (i
= 0; i
< ctl
->ndevs
; ++i
) {
5048 for (j
= 0; j
< ctl
->dev_stripes
; ++j
) {
5049 int s
= i
* ctl
->dev_stripes
+ j
;
5050 map
->stripes
[s
].dev
= devices_info
[i
].dev
;
5051 map
->stripes
[s
].physical
= devices_info
[i
].dev_offset
+
5052 j
* ctl
->stripe_size
;
5055 map
->stripe_len
= BTRFS_STRIPE_LEN
;
5056 map
->io_align
= BTRFS_STRIPE_LEN
;
5057 map
->io_width
= BTRFS_STRIPE_LEN
;
5059 map
->sub_stripes
= ctl
->sub_stripes
;
5061 trace_btrfs_chunk_alloc(info
, map
, start
, ctl
->chunk_size
);
5063 em
= alloc_extent_map();
5068 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
5069 em
->map_lookup
= map
;
5071 em
->len
= ctl
->chunk_size
;
5072 em
->block_start
= 0;
5073 em
->block_len
= em
->len
;
5074 em
->orig_block_len
= ctl
->stripe_size
;
5076 em_tree
= &info
->mapping_tree
;
5077 write_lock(&em_tree
->lock
);
5078 ret
= add_extent_mapping(em_tree
, em
, 0);
5080 write_unlock(&em_tree
->lock
);
5081 free_extent_map(em
);
5084 write_unlock(&em_tree
->lock
);
5086 ret
= btrfs_make_block_group(trans
, 0, type
, start
, ctl
->chunk_size
);
5088 goto error_del_extent
;
5090 for (i
= 0; i
< map
->num_stripes
; i
++) {
5091 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
5093 btrfs_device_set_bytes_used(dev
,
5094 dev
->bytes_used
+ ctl
->stripe_size
);
5095 if (list_empty(&dev
->post_commit_list
))
5096 list_add_tail(&dev
->post_commit_list
,
5097 &trans
->transaction
->dev_update_list
);
5100 atomic64_sub(ctl
->stripe_size
* map
->num_stripes
,
5101 &info
->free_chunk_space
);
5103 free_extent_map(em
);
5104 check_raid56_incompat_flag(info
, type
);
5105 check_raid1c34_incompat_flag(info
, type
);
5110 write_lock(&em_tree
->lock
);
5111 remove_extent_mapping(em_tree
, em
);
5112 write_unlock(&em_tree
->lock
);
5114 /* One for our allocation */
5115 free_extent_map(em
);
5116 /* One for the tree reference */
5117 free_extent_map(em
);
5122 int btrfs_alloc_chunk(struct btrfs_trans_handle
*trans
, u64 type
)
5124 struct btrfs_fs_info
*info
= trans
->fs_info
;
5125 struct btrfs_fs_devices
*fs_devices
= info
->fs_devices
;
5126 struct btrfs_device_info
*devices_info
= NULL
;
5127 struct alloc_chunk_ctl ctl
;
5130 lockdep_assert_held(&info
->chunk_mutex
);
5132 if (!alloc_profile_is_valid(type
, 0)) {
5137 if (list_empty(&fs_devices
->alloc_list
)) {
5138 if (btrfs_test_opt(info
, ENOSPC_DEBUG
))
5139 btrfs_debug(info
, "%s: no writable device", __func__
);
5143 if (!(type
& BTRFS_BLOCK_GROUP_TYPE_MASK
)) {
5144 btrfs_err(info
, "invalid chunk type 0x%llx requested", type
);
5149 ctl
.start
= find_next_chunk(info
);
5151 init_alloc_chunk_ctl(fs_devices
, &ctl
);
5153 devices_info
= kcalloc(fs_devices
->rw_devices
, sizeof(*devices_info
),
5158 ret
= gather_device_info(fs_devices
, &ctl
, devices_info
);
5162 ret
= decide_stripe_size(fs_devices
, &ctl
, devices_info
);
5166 ret
= create_chunk(trans
, &ctl
, devices_info
);
5169 kfree(devices_info
);
5174 * Chunk allocation falls into two parts. The first part does work
5175 * that makes the new allocated chunk usable, but does not do any operation
5176 * that modifies the chunk tree. The second part does the work that
5177 * requires modifying the chunk tree. This division is important for the
5178 * bootstrap process of adding storage to a seed btrfs.
5180 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle
*trans
,
5181 u64 chunk_offset
, u64 chunk_size
)
5183 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5184 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
5185 struct btrfs_root
*chunk_root
= fs_info
->chunk_root
;
5186 struct btrfs_key key
;
5187 struct btrfs_device
*device
;
5188 struct btrfs_chunk
*chunk
;
5189 struct btrfs_stripe
*stripe
;
5190 struct extent_map
*em
;
5191 struct map_lookup
*map
;
5198 em
= btrfs_get_chunk_map(fs_info
, chunk_offset
, chunk_size
);
5202 map
= em
->map_lookup
;
5203 item_size
= btrfs_chunk_item_size(map
->num_stripes
);
5204 stripe_size
= em
->orig_block_len
;
5206 chunk
= kzalloc(item_size
, GFP_NOFS
);
5213 * Take the device list mutex to prevent races with the final phase of
5214 * a device replace operation that replaces the device object associated
5215 * with the map's stripes, because the device object's id can change
5216 * at any time during that final phase of the device replace operation
5217 * (dev-replace.c:btrfs_dev_replace_finishing()).
5219 mutex_lock(&fs_info
->fs_devices
->device_list_mutex
);
5220 for (i
= 0; i
< map
->num_stripes
; i
++) {
5221 device
= map
->stripes
[i
].dev
;
5222 dev_offset
= map
->stripes
[i
].physical
;
5224 ret
= btrfs_update_device(trans
, device
);
5227 ret
= btrfs_alloc_dev_extent(trans
, device
, chunk_offset
,
5228 dev_offset
, stripe_size
);
5233 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5237 stripe
= &chunk
->stripe
;
5238 for (i
= 0; i
< map
->num_stripes
; i
++) {
5239 device
= map
->stripes
[i
].dev
;
5240 dev_offset
= map
->stripes
[i
].physical
;
5242 btrfs_set_stack_stripe_devid(stripe
, device
->devid
);
5243 btrfs_set_stack_stripe_offset(stripe
, dev_offset
);
5244 memcpy(stripe
->dev_uuid
, device
->uuid
, BTRFS_UUID_SIZE
);
5247 mutex_unlock(&fs_info
->fs_devices
->device_list_mutex
);
5249 btrfs_set_stack_chunk_length(chunk
, chunk_size
);
5250 btrfs_set_stack_chunk_owner(chunk
, extent_root
->root_key
.objectid
);
5251 btrfs_set_stack_chunk_stripe_len(chunk
, map
->stripe_len
);
5252 btrfs_set_stack_chunk_type(chunk
, map
->type
);
5253 btrfs_set_stack_chunk_num_stripes(chunk
, map
->num_stripes
);
5254 btrfs_set_stack_chunk_io_align(chunk
, map
->stripe_len
);
5255 btrfs_set_stack_chunk_io_width(chunk
, map
->stripe_len
);
5256 btrfs_set_stack_chunk_sector_size(chunk
, fs_info
->sectorsize
);
5257 btrfs_set_stack_chunk_sub_stripes(chunk
, map
->sub_stripes
);
5259 key
.objectid
= BTRFS_FIRST_CHUNK_TREE_OBJECTID
;
5260 key
.type
= BTRFS_CHUNK_ITEM_KEY
;
5261 key
.offset
= chunk_offset
;
5263 ret
= btrfs_insert_item(trans
, chunk_root
, &key
, chunk
, item_size
);
5264 if (ret
== 0 && map
->type
& BTRFS_BLOCK_GROUP_SYSTEM
) {
5266 * TODO: Cleanup of inserted chunk root in case of
5269 ret
= btrfs_add_system_chunk(fs_info
, &key
, chunk
, item_size
);
5274 free_extent_map(em
);
5278 static noinline
int init_first_rw_device(struct btrfs_trans_handle
*trans
)
5280 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
5284 alloc_profile
= btrfs_metadata_alloc_profile(fs_info
);
5285 ret
= btrfs_alloc_chunk(trans
, alloc_profile
);
5289 alloc_profile
= btrfs_system_alloc_profile(fs_info
);
5290 ret
= btrfs_alloc_chunk(trans
, alloc_profile
);
5294 static inline int btrfs_chunk_max_errors(struct map_lookup
*map
)
5296 const int index
= btrfs_bg_flags_to_raid_index(map
->type
);
5298 return btrfs_raid_array
[index
].tolerated_failures
;
5301 int btrfs_chunk_readonly(struct btrfs_fs_info
*fs_info
, u64 chunk_offset
)
5303 struct extent_map
*em
;
5304 struct map_lookup
*map
;
5309 em
= btrfs_get_chunk_map(fs_info
, chunk_offset
, 1);
5313 map
= em
->map_lookup
;
5314 for (i
= 0; i
< map
->num_stripes
; i
++) {
5315 if (test_bit(BTRFS_DEV_STATE_MISSING
,
5316 &map
->stripes
[i
].dev
->dev_state
)) {
5320 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE
,
5321 &map
->stripes
[i
].dev
->dev_state
)) {
5328 * If the number of missing devices is larger than max errors,
5329 * we can not write the data into that chunk successfully, so
5332 if (miss_ndevs
> btrfs_chunk_max_errors(map
))
5335 free_extent_map(em
);
5339 void btrfs_mapping_tree_free(struct extent_map_tree
*tree
)
5341 struct extent_map
*em
;
5344 write_lock(&tree
->lock
);
5345 em
= lookup_extent_mapping(tree
, 0, (u64
)-1);
5347 remove_extent_mapping(tree
, em
);
5348 write_unlock(&tree
->lock
);
5352 free_extent_map(em
);
5353 /* once for the tree */
5354 free_extent_map(em
);
5358 int btrfs_num_copies(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5360 struct extent_map
*em
;
5361 struct map_lookup
*map
;
5364 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5367 * We could return errors for these cases, but that could get
5368 * ugly and we'd probably do the same thing which is just not do
5369 * anything else and exit, so return 1 so the callers don't try
5370 * to use other copies.
5374 map
= em
->map_lookup
;
5375 if (map
->type
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1_MASK
))
5376 ret
= map
->num_stripes
;
5377 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5378 ret
= map
->sub_stripes
;
5379 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID5
)
5381 else if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
5383 * There could be two corrupted data stripes, we need
5384 * to loop retry in order to rebuild the correct data.
5386 * Fail a stripe at a time on every retry except the
5387 * stripe under reconstruction.
5389 ret
= map
->num_stripes
;
5392 free_extent_map(em
);
5394 down_read(&fs_info
->dev_replace
.rwsem
);
5395 if (btrfs_dev_replace_is_ongoing(&fs_info
->dev_replace
) &&
5396 fs_info
->dev_replace
.tgtdev
)
5398 up_read(&fs_info
->dev_replace
.rwsem
);
5403 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info
*fs_info
,
5406 struct extent_map
*em
;
5407 struct map_lookup
*map
;
5408 unsigned long len
= fs_info
->sectorsize
;
5410 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5412 if (!WARN_ON(IS_ERR(em
))) {
5413 map
= em
->map_lookup
;
5414 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5415 len
= map
->stripe_len
* nr_data_stripes(map
);
5416 free_extent_map(em
);
5421 int btrfs_is_parity_mirror(struct btrfs_fs_info
*fs_info
, u64 logical
, u64 len
)
5423 struct extent_map
*em
;
5424 struct map_lookup
*map
;
5427 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5429 if(!WARN_ON(IS_ERR(em
))) {
5430 map
= em
->map_lookup
;
5431 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
)
5433 free_extent_map(em
);
5438 static int find_live_mirror(struct btrfs_fs_info
*fs_info
,
5439 struct map_lookup
*map
, int first
,
5440 int dev_replace_is_ongoing
)
5444 int preferred_mirror
;
5446 struct btrfs_device
*srcdev
;
5449 (BTRFS_BLOCK_GROUP_RAID1_MASK
| BTRFS_BLOCK_GROUP_RAID10
)));
5451 if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
)
5452 num_stripes
= map
->sub_stripes
;
5454 num_stripes
= map
->num_stripes
;
5456 preferred_mirror
= first
+ current
->pid
% num_stripes
;
5458 if (dev_replace_is_ongoing
&&
5459 fs_info
->dev_replace
.cont_reading_from_srcdev_mode
==
5460 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID
)
5461 srcdev
= fs_info
->dev_replace
.srcdev
;
5466 * try to avoid the drive that is the source drive for a
5467 * dev-replace procedure, only choose it if no other non-missing
5468 * mirror is available
5470 for (tolerance
= 0; tolerance
< 2; tolerance
++) {
5471 if (map
->stripes
[preferred_mirror
].dev
->bdev
&&
5472 (tolerance
|| map
->stripes
[preferred_mirror
].dev
!= srcdev
))
5473 return preferred_mirror
;
5474 for (i
= first
; i
< first
+ num_stripes
; i
++) {
5475 if (map
->stripes
[i
].dev
->bdev
&&
5476 (tolerance
|| map
->stripes
[i
].dev
!= srcdev
))
5481 /* we couldn't find one that doesn't fail. Just return something
5482 * and the io error handling code will clean up eventually
5484 return preferred_mirror
;
5487 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
5488 static void sort_parity_stripes(struct btrfs_bio
*bbio
, int num_stripes
)
5495 for (i
= 0; i
< num_stripes
- 1; i
++) {
5496 /* Swap if parity is on a smaller index */
5497 if (bbio
->raid_map
[i
] > bbio
->raid_map
[i
+ 1]) {
5498 swap(bbio
->stripes
[i
], bbio
->stripes
[i
+ 1]);
5499 swap(bbio
->raid_map
[i
], bbio
->raid_map
[i
+ 1]);
5506 static struct btrfs_bio
*alloc_btrfs_bio(int total_stripes
, int real_stripes
)
5508 struct btrfs_bio
*bbio
= kzalloc(
5509 /* the size of the btrfs_bio */
5510 sizeof(struct btrfs_bio
) +
5511 /* plus the variable array for the stripes */
5512 sizeof(struct btrfs_bio_stripe
) * (total_stripes
) +
5513 /* plus the variable array for the tgt dev */
5514 sizeof(int) * (real_stripes
) +
5516 * plus the raid_map, which includes both the tgt dev
5519 sizeof(u64
) * (total_stripes
),
5520 GFP_NOFS
|__GFP_NOFAIL
);
5522 atomic_set(&bbio
->error
, 0);
5523 refcount_set(&bbio
->refs
, 1);
5528 void btrfs_get_bbio(struct btrfs_bio
*bbio
)
5530 WARN_ON(!refcount_read(&bbio
->refs
));
5531 refcount_inc(&bbio
->refs
);
5534 void btrfs_put_bbio(struct btrfs_bio
*bbio
)
5538 if (refcount_dec_and_test(&bbio
->refs
))
5542 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */
5544 * Please note that, discard won't be sent to target device of device
5547 static int __btrfs_map_block_for_discard(struct btrfs_fs_info
*fs_info
,
5548 u64 logical
, u64
*length_ret
,
5549 struct btrfs_bio
**bbio_ret
)
5551 struct extent_map
*em
;
5552 struct map_lookup
*map
;
5553 struct btrfs_bio
*bbio
;
5554 u64 length
= *length_ret
;
5558 u64 stripe_end_offset
;
5565 u32 sub_stripes
= 0;
5566 u64 stripes_per_dev
= 0;
5567 u32 remaining_stripes
= 0;
5568 u32 last_stripe
= 0;
5572 /* discard always return a bbio */
5575 em
= btrfs_get_chunk_map(fs_info
, logical
, length
);
5579 map
= em
->map_lookup
;
5580 /* we don't discard raid56 yet */
5581 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5586 offset
= logical
- em
->start
;
5587 length
= min_t(u64
, em
->start
+ em
->len
- logical
, length
);
5588 *length_ret
= length
;
5590 stripe_len
= map
->stripe_len
;
5592 * stripe_nr counts the total number of stripes we have to stride
5593 * to get to this block
5595 stripe_nr
= div64_u64(offset
, stripe_len
);
5597 /* stripe_offset is the offset of this block in its stripe */
5598 stripe_offset
= offset
- stripe_nr
* stripe_len
;
5600 stripe_nr_end
= round_up(offset
+ length
, map
->stripe_len
);
5601 stripe_nr_end
= div64_u64(stripe_nr_end
, map
->stripe_len
);
5602 stripe_cnt
= stripe_nr_end
- stripe_nr
;
5603 stripe_end_offset
= stripe_nr_end
* map
->stripe_len
-
5606 * after this, stripe_nr is the number of stripes on this
5607 * device we have to walk to find the data, and stripe_index is
5608 * the number of our device in the stripe array
5612 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5613 BTRFS_BLOCK_GROUP_RAID10
)) {
5614 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
)
5617 sub_stripes
= map
->sub_stripes
;
5619 factor
= map
->num_stripes
/ sub_stripes
;
5620 num_stripes
= min_t(u64
, map
->num_stripes
,
5621 sub_stripes
* stripe_cnt
);
5622 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
5623 stripe_index
*= sub_stripes
;
5624 stripes_per_dev
= div_u64_rem(stripe_cnt
, factor
,
5625 &remaining_stripes
);
5626 div_u64_rem(stripe_nr_end
- 1, factor
, &last_stripe
);
5627 last_stripe
*= sub_stripes
;
5628 } else if (map
->type
& (BTRFS_BLOCK_GROUP_RAID1_MASK
|
5629 BTRFS_BLOCK_GROUP_DUP
)) {
5630 num_stripes
= map
->num_stripes
;
5632 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
5636 bbio
= alloc_btrfs_bio(num_stripes
, 0);
5642 for (i
= 0; i
< num_stripes
; i
++) {
5643 bbio
->stripes
[i
].physical
=
5644 map
->stripes
[stripe_index
].physical
+
5645 stripe_offset
+ stripe_nr
* map
->stripe_len
;
5646 bbio
->stripes
[i
].dev
= map
->stripes
[stripe_index
].dev
;
5648 if (map
->type
& (BTRFS_BLOCK_GROUP_RAID0
|
5649 BTRFS_BLOCK_GROUP_RAID10
)) {
5650 bbio
->stripes
[i
].length
= stripes_per_dev
*
5653 if (i
/ sub_stripes
< remaining_stripes
)
5654 bbio
->stripes
[i
].length
+=
5658 * Special for the first stripe and
5661 * |-------|...|-------|
5665 if (i
< sub_stripes
)
5666 bbio
->stripes
[i
].length
-=
5669 if (stripe_index
>= last_stripe
&&
5670 stripe_index
<= (last_stripe
+
5672 bbio
->stripes
[i
].length
-=
5675 if (i
== sub_stripes
- 1)
5678 bbio
->stripes
[i
].length
= length
;
5682 if (stripe_index
== map
->num_stripes
) {
5689 bbio
->map_type
= map
->type
;
5690 bbio
->num_stripes
= num_stripes
;
5692 free_extent_map(em
);
5697 * In dev-replace case, for repair case (that's the only case where the mirror
5698 * is selected explicitly when calling btrfs_map_block), blocks left of the
5699 * left cursor can also be read from the target drive.
5701 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the
5703 * For READ, it also needs to be supported using the same mirror number.
5705 * If the requested block is not left of the left cursor, EIO is returned. This
5706 * can happen because btrfs_num_copies() returns one more in the dev-replace
5709 static int get_extra_mirror_from_replace(struct btrfs_fs_info
*fs_info
,
5710 u64 logical
, u64 length
,
5711 u64 srcdev_devid
, int *mirror_num
,
5714 struct btrfs_bio
*bbio
= NULL
;
5716 int index_srcdev
= 0;
5718 u64 physical_of_found
= 0;
5722 ret
= __btrfs_map_block(fs_info
, BTRFS_MAP_GET_READ_MIRRORS
,
5723 logical
, &length
, &bbio
, 0, 0);
5725 ASSERT(bbio
== NULL
);
5729 num_stripes
= bbio
->num_stripes
;
5730 if (*mirror_num
> num_stripes
) {
5732 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror,
5733 * that means that the requested area is not left of the left
5736 btrfs_put_bbio(bbio
);
5741 * process the rest of the function using the mirror_num of the source
5742 * drive. Therefore look it up first. At the end, patch the device
5743 * pointer to the one of the target drive.
5745 for (i
= 0; i
< num_stripes
; i
++) {
5746 if (bbio
->stripes
[i
].dev
->devid
!= srcdev_devid
)
5750 * In case of DUP, in order to keep it simple, only add the
5751 * mirror with the lowest physical address
5754 physical_of_found
<= bbio
->stripes
[i
].physical
)
5759 physical_of_found
= bbio
->stripes
[i
].physical
;
5762 btrfs_put_bbio(bbio
);
5768 *mirror_num
= index_srcdev
+ 1;
5769 *physical
= physical_of_found
;
5773 static void handle_ops_on_dev_replace(enum btrfs_map_op op
,
5774 struct btrfs_bio
**bbio_ret
,
5775 struct btrfs_dev_replace
*dev_replace
,
5776 int *num_stripes_ret
, int *max_errors_ret
)
5778 struct btrfs_bio
*bbio
= *bbio_ret
;
5779 u64 srcdev_devid
= dev_replace
->srcdev
->devid
;
5780 int tgtdev_indexes
= 0;
5781 int num_stripes
= *num_stripes_ret
;
5782 int max_errors
= *max_errors_ret
;
5785 if (op
== BTRFS_MAP_WRITE
) {
5786 int index_where_to_add
;
5789 * duplicate the write operations while the dev replace
5790 * procedure is running. Since the copying of the old disk to
5791 * the new disk takes place at run time while the filesystem is
5792 * mounted writable, the regular write operations to the old
5793 * disk have to be duplicated to go to the new disk as well.
5795 * Note that device->missing is handled by the caller, and that
5796 * the write to the old disk is already set up in the stripes
5799 index_where_to_add
= num_stripes
;
5800 for (i
= 0; i
< num_stripes
; i
++) {
5801 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5802 /* write to new disk, too */
5803 struct btrfs_bio_stripe
*new =
5804 bbio
->stripes
+ index_where_to_add
;
5805 struct btrfs_bio_stripe
*old
=
5808 new->physical
= old
->physical
;
5809 new->length
= old
->length
;
5810 new->dev
= dev_replace
->tgtdev
;
5811 bbio
->tgtdev_map
[i
] = index_where_to_add
;
5812 index_where_to_add
++;
5817 num_stripes
= index_where_to_add
;
5818 } else if (op
== BTRFS_MAP_GET_READ_MIRRORS
) {
5819 int index_srcdev
= 0;
5821 u64 physical_of_found
= 0;
5824 * During the dev-replace procedure, the target drive can also
5825 * be used to read data in case it is needed to repair a corrupt
5826 * block elsewhere. This is possible if the requested area is
5827 * left of the left cursor. In this area, the target drive is a
5828 * full copy of the source drive.
5830 for (i
= 0; i
< num_stripes
; i
++) {
5831 if (bbio
->stripes
[i
].dev
->devid
== srcdev_devid
) {
5833 * In case of DUP, in order to keep it simple,
5834 * only add the mirror with the lowest physical
5838 physical_of_found
<=
5839 bbio
->stripes
[i
].physical
)
5843 physical_of_found
= bbio
->stripes
[i
].physical
;
5847 struct btrfs_bio_stripe
*tgtdev_stripe
=
5848 bbio
->stripes
+ num_stripes
;
5850 tgtdev_stripe
->physical
= physical_of_found
;
5851 tgtdev_stripe
->length
=
5852 bbio
->stripes
[index_srcdev
].length
;
5853 tgtdev_stripe
->dev
= dev_replace
->tgtdev
;
5854 bbio
->tgtdev_map
[index_srcdev
] = num_stripes
;
5861 *num_stripes_ret
= num_stripes
;
5862 *max_errors_ret
= max_errors
;
5863 bbio
->num_tgtdevs
= tgtdev_indexes
;
5867 static bool need_full_stripe(enum btrfs_map_op op
)
5869 return (op
== BTRFS_MAP_WRITE
|| op
== BTRFS_MAP_GET_READ_MIRRORS
);
5873 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len)
5874 * tuple. This information is used to calculate how big a
5875 * particular bio can get before it straddles a stripe.
5877 * @fs_info - the filesystem
5878 * @logical - address that we want to figure out the geometry of
5879 * @len - the length of IO we are going to perform, starting at @logical
5880 * @op - type of operation - write or read
5881 * @io_geom - pointer used to return values
5883 * Returns < 0 in case a chunk for the given logical address cannot be found,
5884 * usually shouldn't happen unless @logical is corrupted, 0 otherwise.
5886 int btrfs_get_io_geometry(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
5887 u64 logical
, u64 len
, struct btrfs_io_geometry
*io_geom
)
5889 struct extent_map
*em
;
5890 struct map_lookup
*map
;
5895 u64 raid56_full_stripe_start
= (u64
)-1;
5899 ASSERT(op
!= BTRFS_MAP_DISCARD
);
5901 em
= btrfs_get_chunk_map(fs_info
, logical
, len
);
5905 map
= em
->map_lookup
;
5906 /* Offset of this logical address in the chunk */
5907 offset
= logical
- em
->start
;
5908 /* Len of a stripe in a chunk */
5909 stripe_len
= map
->stripe_len
;
5910 /* Stripe wher this block falls in */
5911 stripe_nr
= div64_u64(offset
, stripe_len
);
5912 /* Offset of stripe in the chunk */
5913 stripe_offset
= stripe_nr
* stripe_len
;
5914 if (offset
< stripe_offset
) {
5916 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu",
5917 stripe_offset
, offset
, em
->start
, logical
, stripe_len
);
5922 /* stripe_offset is the offset of this block in its stripe */
5923 stripe_offset
= offset
- stripe_offset
;
5924 data_stripes
= nr_data_stripes(map
);
5926 if (map
->type
& BTRFS_BLOCK_GROUP_PROFILE_MASK
) {
5927 u64 max_len
= stripe_len
- stripe_offset
;
5930 * In case of raid56, we need to know the stripe aligned start
5932 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
5933 unsigned long full_stripe_len
= stripe_len
* data_stripes
;
5934 raid56_full_stripe_start
= offset
;
5937 * Allow a write of a full stripe, but make sure we
5938 * don't allow straddling of stripes
5940 raid56_full_stripe_start
= div64_u64(raid56_full_stripe_start
,
5942 raid56_full_stripe_start
*= full_stripe_len
;
5945 * For writes to RAID[56], allow a full stripeset across
5946 * all disks. For other RAID types and for RAID[56]
5947 * reads, just allow a single stripe (on a single disk).
5949 if (op
== BTRFS_MAP_WRITE
) {
5950 max_len
= stripe_len
* data_stripes
-
5951 (offset
- raid56_full_stripe_start
);
5954 len
= min_t(u64
, em
->len
- offset
, max_len
);
5956 len
= em
->len
- offset
;
5960 io_geom
->offset
= offset
;
5961 io_geom
->stripe_len
= stripe_len
;
5962 io_geom
->stripe_nr
= stripe_nr
;
5963 io_geom
->stripe_offset
= stripe_offset
;
5964 io_geom
->raid56_stripe_offset
= raid56_full_stripe_start
;
5968 free_extent_map(em
);
5972 static int __btrfs_map_block(struct btrfs_fs_info
*fs_info
,
5973 enum btrfs_map_op op
,
5974 u64 logical
, u64
*length
,
5975 struct btrfs_bio
**bbio_ret
,
5976 int mirror_num
, int need_raid_map
)
5978 struct extent_map
*em
;
5979 struct map_lookup
*map
;
5989 int tgtdev_indexes
= 0;
5990 struct btrfs_bio
*bbio
= NULL
;
5991 struct btrfs_dev_replace
*dev_replace
= &fs_info
->dev_replace
;
5992 int dev_replace_is_ongoing
= 0;
5993 int num_alloc_stripes
;
5994 int patch_the_first_stripe_for_dev_replace
= 0;
5995 u64 physical_to_patch_in_first_stripe
= 0;
5996 u64 raid56_full_stripe_start
= (u64
)-1;
5997 struct btrfs_io_geometry geom
;
6000 ASSERT(op
!= BTRFS_MAP_DISCARD
);
6002 ret
= btrfs_get_io_geometry(fs_info
, op
, logical
, *length
, &geom
);
6006 em
= btrfs_get_chunk_map(fs_info
, logical
, *length
);
6007 ASSERT(!IS_ERR(em
));
6008 map
= em
->map_lookup
;
6011 stripe_len
= geom
.stripe_len
;
6012 stripe_nr
= geom
.stripe_nr
;
6013 stripe_offset
= geom
.stripe_offset
;
6014 raid56_full_stripe_start
= geom
.raid56_stripe_offset
;
6015 data_stripes
= nr_data_stripes(map
);
6017 down_read(&dev_replace
->rwsem
);
6018 dev_replace_is_ongoing
= btrfs_dev_replace_is_ongoing(dev_replace
);
6020 * Hold the semaphore for read during the whole operation, write is
6021 * requested at commit time but must wait.
6023 if (!dev_replace_is_ongoing
)
6024 up_read(&dev_replace
->rwsem
);
6026 if (dev_replace_is_ongoing
&& mirror_num
== map
->num_stripes
+ 1 &&
6027 !need_full_stripe(op
) && dev_replace
->tgtdev
!= NULL
) {
6028 ret
= get_extra_mirror_from_replace(fs_info
, logical
, *length
,
6029 dev_replace
->srcdev
->devid
,
6031 &physical_to_patch_in_first_stripe
);
6035 patch_the_first_stripe_for_dev_replace
= 1;
6036 } else if (mirror_num
> map
->num_stripes
) {
6042 if (map
->type
& BTRFS_BLOCK_GROUP_RAID0
) {
6043 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
6045 if (!need_full_stripe(op
))
6047 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID1_MASK
) {
6048 if (need_full_stripe(op
))
6049 num_stripes
= map
->num_stripes
;
6050 else if (mirror_num
)
6051 stripe_index
= mirror_num
- 1;
6053 stripe_index
= find_live_mirror(fs_info
, map
, 0,
6054 dev_replace_is_ongoing
);
6055 mirror_num
= stripe_index
+ 1;
6058 } else if (map
->type
& BTRFS_BLOCK_GROUP_DUP
) {
6059 if (need_full_stripe(op
)) {
6060 num_stripes
= map
->num_stripes
;
6061 } else if (mirror_num
) {
6062 stripe_index
= mirror_num
- 1;
6067 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID10
) {
6068 u32 factor
= map
->num_stripes
/ map
->sub_stripes
;
6070 stripe_nr
= div_u64_rem(stripe_nr
, factor
, &stripe_index
);
6071 stripe_index
*= map
->sub_stripes
;
6073 if (need_full_stripe(op
))
6074 num_stripes
= map
->sub_stripes
;
6075 else if (mirror_num
)
6076 stripe_index
+= mirror_num
- 1;
6078 int old_stripe_index
= stripe_index
;
6079 stripe_index
= find_live_mirror(fs_info
, map
,
6081 dev_replace_is_ongoing
);
6082 mirror_num
= stripe_index
- old_stripe_index
+ 1;
6085 } else if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) {
6086 if (need_raid_map
&& (need_full_stripe(op
) || mirror_num
> 1)) {
6087 /* push stripe_nr back to the start of the full stripe */
6088 stripe_nr
= div64_u64(raid56_full_stripe_start
,
6089 stripe_len
* data_stripes
);
6091 /* RAID[56] write or recovery. Return all stripes */
6092 num_stripes
= map
->num_stripes
;
6093 max_errors
= nr_parity_stripes(map
);
6095 *length
= map
->stripe_len
;
6100 * Mirror #0 or #1 means the original data block.
6101 * Mirror #2 is RAID5 parity block.
6102 * Mirror #3 is RAID6 Q block.
6104 stripe_nr
= div_u64_rem(stripe_nr
,
6105 data_stripes
, &stripe_index
);
6107 stripe_index
= data_stripes
+ mirror_num
- 2;
6109 /* We distribute the parity blocks across stripes */
6110 div_u64_rem(stripe_nr
+ stripe_index
, map
->num_stripes
,
6112 if (!need_full_stripe(op
) && mirror_num
<= 1)
6117 * after this, stripe_nr is the number of stripes on this
6118 * device we have to walk to find the data, and stripe_index is
6119 * the number of our device in the stripe array
6121 stripe_nr
= div_u64_rem(stripe_nr
, map
->num_stripes
,
6123 mirror_num
= stripe_index
+ 1;
6125 if (stripe_index
>= map
->num_stripes
) {
6127 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u",
6128 stripe_index
, map
->num_stripes
);
6133 num_alloc_stripes
= num_stripes
;
6134 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
) {
6135 if (op
== BTRFS_MAP_WRITE
)
6136 num_alloc_stripes
<<= 1;
6137 if (op
== BTRFS_MAP_GET_READ_MIRRORS
)
6138 num_alloc_stripes
++;
6139 tgtdev_indexes
= num_stripes
;
6142 bbio
= alloc_btrfs_bio(num_alloc_stripes
, tgtdev_indexes
);
6147 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
)
6148 bbio
->tgtdev_map
= (int *)(bbio
->stripes
+ num_alloc_stripes
);
6150 /* build raid_map */
6151 if (map
->type
& BTRFS_BLOCK_GROUP_RAID56_MASK
&& need_raid_map
&&
6152 (need_full_stripe(op
) || mirror_num
> 1)) {
6156 bbio
->raid_map
= (u64
*)((void *)bbio
->stripes
+
6157 sizeof(struct btrfs_bio_stripe
) *
6159 sizeof(int) * tgtdev_indexes
);
6161 /* Work out the disk rotation on this stripe-set */
6162 div_u64_rem(stripe_nr
, num_stripes
, &rot
);
6164 /* Fill in the logical address of each stripe */
6165 tmp
= stripe_nr
* data_stripes
;
6166 for (i
= 0; i
< data_stripes
; i
++)
6167 bbio
->raid_map
[(i
+rot
) % num_stripes
] =
6168 em
->start
+ (tmp
+ i
) * map
->stripe_len
;
6170 bbio
->raid_map
[(i
+rot
) % map
->num_stripes
] = RAID5_P_STRIPE
;
6171 if (map
->type
& BTRFS_BLOCK_GROUP_RAID6
)
6172 bbio
->raid_map
[(i
+rot
+1) % num_stripes
] =
6177 for (i
= 0; i
< num_stripes
; i
++) {
6178 bbio
->stripes
[i
].physical
=
6179 map
->stripes
[stripe_index
].physical
+
6181 stripe_nr
* map
->stripe_len
;
6182 bbio
->stripes
[i
].dev
=
6183 map
->stripes
[stripe_index
].dev
;
6187 if (need_full_stripe(op
))
6188 max_errors
= btrfs_chunk_max_errors(map
);
6191 sort_parity_stripes(bbio
, num_stripes
);
6193 if (dev_replace_is_ongoing
&& dev_replace
->tgtdev
!= NULL
&&
6194 need_full_stripe(op
)) {
6195 handle_ops_on_dev_replace(op
, &bbio
, dev_replace
, &num_stripes
,
6200 bbio
->map_type
= map
->type
;
6201 bbio
->num_stripes
= num_stripes
;
6202 bbio
->max_errors
= max_errors
;
6203 bbio
->mirror_num
= mirror_num
;
6206 * this is the case that REQ_READ && dev_replace_is_ongoing &&
6207 * mirror_num == num_stripes + 1 && dev_replace target drive is
6208 * available as a mirror
6210 if (patch_the_first_stripe_for_dev_replace
&& num_stripes
> 0) {
6211 WARN_ON(num_stripes
> 1);
6212 bbio
->stripes
[0].dev
= dev_replace
->tgtdev
;
6213 bbio
->stripes
[0].physical
= physical_to_patch_in_first_stripe
;
6214 bbio
->mirror_num
= map
->num_stripes
+ 1;
6217 if (dev_replace_is_ongoing
) {
6218 lockdep_assert_held(&dev_replace
->rwsem
);
6219 /* Unlock and let waiting writers proceed */
6220 up_read(&dev_replace
->rwsem
);
6222 free_extent_map(em
);
6226 int btrfs_map_block(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
6227 u64 logical
, u64
*length
,
6228 struct btrfs_bio
**bbio_ret
, int mirror_num
)
6230 if (op
== BTRFS_MAP_DISCARD
)
6231 return __btrfs_map_block_for_discard(fs_info
, logical
,
6234 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
,
6238 /* For Scrub/replace */
6239 int btrfs_map_sblock(struct btrfs_fs_info
*fs_info
, enum btrfs_map_op op
,
6240 u64 logical
, u64
*length
,
6241 struct btrfs_bio
**bbio_ret
)
6243 return __btrfs_map_block(fs_info
, op
, logical
, length
, bbio_ret
, 0, 1);
6246 static inline void btrfs_end_bbio(struct btrfs_bio
*bbio
, struct bio
*bio
)
6248 bio
->bi_private
= bbio
->private;
6249 bio
->bi_end_io
= bbio
->end_io
;
6252 btrfs_put_bbio(bbio
);
6255 static void btrfs_end_bio(struct bio
*bio
)
6257 struct btrfs_bio
*bbio
= bio
->bi_private
;
6258 int is_orig_bio
= 0;
6260 if (bio
->bi_status
) {
6261 atomic_inc(&bbio
->error
);
6262 if (bio
->bi_status
== BLK_STS_IOERR
||
6263 bio
->bi_status
== BLK_STS_TARGET
) {
6264 unsigned int stripe_index
=
6265 btrfs_io_bio(bio
)->stripe_index
;
6266 struct btrfs_device
*dev
;
6268 BUG_ON(stripe_index
>= bbio
->num_stripes
);
6269 dev
= bbio
->stripes
[stripe_index
].dev
;
6271 if (bio_op(bio
) == REQ_OP_WRITE
)
6272 btrfs_dev_stat_inc_and_print(dev
,
6273 BTRFS_DEV_STAT_WRITE_ERRS
);
6274 else if (!(bio
->bi_opf
& REQ_RAHEAD
))
6275 btrfs_dev_stat_inc_and_print(dev
,
6276 BTRFS_DEV_STAT_READ_ERRS
);
6277 if (bio
->bi_opf
& REQ_PREFLUSH
)
6278 btrfs_dev_stat_inc_and_print(dev
,
6279 BTRFS_DEV_STAT_FLUSH_ERRS
);
6284 if (bio
== bbio
->orig_bio
)
6287 btrfs_bio_counter_dec(bbio
->fs_info
);
6289 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6292 bio
= bbio
->orig_bio
;
6295 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6296 /* only send an error to the higher layers if it is
6297 * beyond the tolerance of the btrfs bio
6299 if (atomic_read(&bbio
->error
) > bbio
->max_errors
) {
6300 bio
->bi_status
= BLK_STS_IOERR
;
6303 * this bio is actually up to date, we didn't
6304 * go over the max number of errors
6306 bio
->bi_status
= BLK_STS_OK
;
6309 btrfs_end_bbio(bbio
, bio
);
6310 } else if (!is_orig_bio
) {
6315 static void submit_stripe_bio(struct btrfs_bio
*bbio
, struct bio
*bio
,
6316 u64 physical
, int dev_nr
)
6318 struct btrfs_device
*dev
= bbio
->stripes
[dev_nr
].dev
;
6319 struct btrfs_fs_info
*fs_info
= bbio
->fs_info
;
6321 bio
->bi_private
= bbio
;
6322 btrfs_io_bio(bio
)->stripe_index
= dev_nr
;
6323 bio
->bi_end_io
= btrfs_end_bio
;
6324 bio
->bi_iter
.bi_sector
= physical
>> 9;
6325 btrfs_debug_in_rcu(fs_info
,
6326 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u",
6327 bio_op(bio
), bio
->bi_opf
, (u64
)bio
->bi_iter
.bi_sector
,
6328 (unsigned long)dev
->bdev
->bd_dev
, rcu_str_deref(dev
->name
),
6329 dev
->devid
, bio
->bi_iter
.bi_size
);
6330 bio_set_dev(bio
, dev
->bdev
);
6332 btrfs_bio_counter_inc_noblocked(fs_info
);
6334 btrfsic_submit_bio(bio
);
6337 static void bbio_error(struct btrfs_bio
*bbio
, struct bio
*bio
, u64 logical
)
6339 atomic_inc(&bbio
->error
);
6340 if (atomic_dec_and_test(&bbio
->stripes_pending
)) {
6341 /* Should be the original bio. */
6342 WARN_ON(bio
!= bbio
->orig_bio
);
6344 btrfs_io_bio(bio
)->mirror_num
= bbio
->mirror_num
;
6345 bio
->bi_iter
.bi_sector
= logical
>> 9;
6346 if (atomic_read(&bbio
->error
) > bbio
->max_errors
)
6347 bio
->bi_status
= BLK_STS_IOERR
;
6349 bio
->bi_status
= BLK_STS_OK
;
6350 btrfs_end_bbio(bbio
, bio
);
6354 blk_status_t
btrfs_map_bio(struct btrfs_fs_info
*fs_info
, struct bio
*bio
,
6357 struct btrfs_device
*dev
;
6358 struct bio
*first_bio
= bio
;
6359 u64 logical
= (u64
)bio
->bi_iter
.bi_sector
<< 9;
6365 struct btrfs_bio
*bbio
= NULL
;
6367 length
= bio
->bi_iter
.bi_size
;
6368 map_length
= length
;
6370 btrfs_bio_counter_inc_blocked(fs_info
);
6371 ret
= __btrfs_map_block(fs_info
, btrfs_op(bio
), logical
,
6372 &map_length
, &bbio
, mirror_num
, 1);
6374 btrfs_bio_counter_dec(fs_info
);
6375 return errno_to_blk_status(ret
);
6378 total_devs
= bbio
->num_stripes
;
6379 bbio
->orig_bio
= first_bio
;
6380 bbio
->private = first_bio
->bi_private
;
6381 bbio
->end_io
= first_bio
->bi_end_io
;
6382 bbio
->fs_info
= fs_info
;
6383 atomic_set(&bbio
->stripes_pending
, bbio
->num_stripes
);
6385 if ((bbio
->map_type
& BTRFS_BLOCK_GROUP_RAID56_MASK
) &&
6386 ((bio_op(bio
) == REQ_OP_WRITE
) || (mirror_num
> 1))) {
6387 /* In this case, map_length has been set to the length of
6388 a single stripe; not the whole write */
6389 if (bio_op(bio
) == REQ_OP_WRITE
) {
6390 ret
= raid56_parity_write(fs_info
, bio
, bbio
,
6393 ret
= raid56_parity_recover(fs_info
, bio
, bbio
,
6394 map_length
, mirror_num
, 1);
6397 btrfs_bio_counter_dec(fs_info
);
6398 return errno_to_blk_status(ret
);
6401 if (map_length
< length
) {
6403 "mapping failed logical %llu bio len %llu len %llu",
6404 logical
, length
, map_length
);
6408 for (dev_nr
= 0; dev_nr
< total_devs
; dev_nr
++) {
6409 dev
= bbio
->stripes
[dev_nr
].dev
;
6410 if (!dev
|| !dev
->bdev
|| test_bit(BTRFS_DEV_STATE_MISSING
,
6412 (bio_op(first_bio
) == REQ_OP_WRITE
&&
6413 !test_bit(BTRFS_DEV_STATE_WRITEABLE
, &dev
->dev_state
))) {
6414 bbio_error(bbio
, first_bio
, logical
);
6418 if (dev_nr
< total_devs
- 1)
6419 bio
= btrfs_bio_clone(first_bio
);
6423 submit_stripe_bio(bbio
, bio
, bbio
->stripes
[dev_nr
].physical
,
6426 btrfs_bio_counter_dec(fs_info
);
6431 * Find a device specified by @devid or @uuid in the list of @fs_devices, or
6434 * If devid and uuid are both specified, the match must be exact, otherwise
6435 * only devid is used.
6437 * If @seed is true, traverse through the seed devices.
6439 struct btrfs_device
*btrfs_find_device(struct btrfs_fs_devices
*fs_devices
,
6440 u64 devid
, u8
*uuid
, u8
*fsid
,
6443 struct btrfs_device
*device
;
6445 while (fs_devices
) {
6447 !memcmp(fs_devices
->metadata_uuid
, fsid
, BTRFS_FSID_SIZE
)) {
6448 list_for_each_entry(device
, &fs_devices
->devices
,
6450 if (device
->devid
== devid
&&
6451 (!uuid
|| memcmp(device
->uuid
, uuid
,
6452 BTRFS_UUID_SIZE
) == 0))
6457 fs_devices
= fs_devices
->seed
;
6464 static struct btrfs_device
*add_missing_dev(struct btrfs_fs_devices
*fs_devices
,
6465 u64 devid
, u8
*dev_uuid
)
6467 struct btrfs_device
*device
;
6469 device
= btrfs_alloc_device(NULL
, &devid
, dev_uuid
);
6473 list_add(&device
->dev_list
, &fs_devices
->devices
);
6474 device
->fs_devices
= fs_devices
;
6475 fs_devices
->num_devices
++;
6477 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6478 fs_devices
->missing_devices
++;
6484 * btrfs_alloc_device - allocate struct btrfs_device
6485 * @fs_info: used only for generating a new devid, can be NULL if
6486 * devid is provided (i.e. @devid != NULL).
6487 * @devid: a pointer to devid for this device. If NULL a new devid
6489 * @uuid: a pointer to UUID for this device. If NULL a new UUID
6492 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
6493 * on error. Returned struct is not linked onto any lists and must be
6494 * destroyed with btrfs_free_device.
6496 struct btrfs_device
*btrfs_alloc_device(struct btrfs_fs_info
*fs_info
,
6500 struct btrfs_device
*dev
;
6503 if (WARN_ON(!devid
&& !fs_info
))
6504 return ERR_PTR(-EINVAL
);
6506 dev
= __alloc_device();
6515 ret
= find_next_devid(fs_info
, &tmp
);
6517 btrfs_free_device(dev
);
6518 return ERR_PTR(ret
);
6524 memcpy(dev
->uuid
, uuid
, BTRFS_UUID_SIZE
);
6526 generate_random_uuid(dev
->uuid
);
6531 static void btrfs_report_missing_device(struct btrfs_fs_info
*fs_info
,
6532 u64 devid
, u8
*uuid
, bool error
)
6535 btrfs_err_rl(fs_info
, "devid %llu uuid %pU is missing",
6538 btrfs_warn_rl(fs_info
, "devid %llu uuid %pU is missing",
6542 static u64
calc_stripe_length(u64 type
, u64 chunk_len
, int num_stripes
)
6544 int index
= btrfs_bg_flags_to_raid_index(type
);
6545 int ncopies
= btrfs_raid_array
[index
].ncopies
;
6546 const int nparity
= btrfs_raid_array
[index
].nparity
;
6550 data_stripes
= num_stripes
- nparity
;
6552 data_stripes
= num_stripes
/ ncopies
;
6554 return div_u64(chunk_len
, data_stripes
);
6557 static int read_one_chunk(struct btrfs_key
*key
, struct extent_buffer
*leaf
,
6558 struct btrfs_chunk
*chunk
)
6560 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
6561 struct extent_map_tree
*map_tree
= &fs_info
->mapping_tree
;
6562 struct map_lookup
*map
;
6563 struct extent_map
*em
;
6567 u8 uuid
[BTRFS_UUID_SIZE
];
6572 logical
= key
->offset
;
6573 length
= btrfs_chunk_length(leaf
, chunk
);
6574 num_stripes
= btrfs_chunk_num_stripes(leaf
, chunk
);
6577 * Only need to verify chunk item if we're reading from sys chunk array,
6578 * as chunk item in tree block is already verified by tree-checker.
6580 if (leaf
->start
== BTRFS_SUPER_INFO_OFFSET
) {
6581 ret
= btrfs_check_chunk_valid(leaf
, chunk
, logical
);
6586 read_lock(&map_tree
->lock
);
6587 em
= lookup_extent_mapping(map_tree
, logical
, 1);
6588 read_unlock(&map_tree
->lock
);
6590 /* already mapped? */
6591 if (em
&& em
->start
<= logical
&& em
->start
+ em
->len
> logical
) {
6592 free_extent_map(em
);
6595 free_extent_map(em
);
6598 em
= alloc_extent_map();
6601 map
= kmalloc(map_lookup_size(num_stripes
), GFP_NOFS
);
6603 free_extent_map(em
);
6607 set_bit(EXTENT_FLAG_FS_MAPPING
, &em
->flags
);
6608 em
->map_lookup
= map
;
6609 em
->start
= logical
;
6612 em
->block_start
= 0;
6613 em
->block_len
= em
->len
;
6615 map
->num_stripes
= num_stripes
;
6616 map
->io_width
= btrfs_chunk_io_width(leaf
, chunk
);
6617 map
->io_align
= btrfs_chunk_io_align(leaf
, chunk
);
6618 map
->stripe_len
= btrfs_chunk_stripe_len(leaf
, chunk
);
6619 map
->type
= btrfs_chunk_type(leaf
, chunk
);
6620 map
->sub_stripes
= btrfs_chunk_sub_stripes(leaf
, chunk
);
6621 map
->verified_stripes
= 0;
6622 em
->orig_block_len
= calc_stripe_length(map
->type
, em
->len
,
6624 for (i
= 0; i
< num_stripes
; i
++) {
6625 map
->stripes
[i
].physical
=
6626 btrfs_stripe_offset_nr(leaf
, chunk
, i
);
6627 devid
= btrfs_stripe_devid_nr(leaf
, chunk
, i
);
6628 read_extent_buffer(leaf
, uuid
, (unsigned long)
6629 btrfs_stripe_dev_uuid_nr(chunk
, i
),
6631 map
->stripes
[i
].dev
= btrfs_find_device(fs_info
->fs_devices
,
6632 devid
, uuid
, NULL
, true);
6633 if (!map
->stripes
[i
].dev
&&
6634 !btrfs_test_opt(fs_info
, DEGRADED
)) {
6635 free_extent_map(em
);
6636 btrfs_report_missing_device(fs_info
, devid
, uuid
, true);
6639 if (!map
->stripes
[i
].dev
) {
6640 map
->stripes
[i
].dev
=
6641 add_missing_dev(fs_info
->fs_devices
, devid
,
6643 if (IS_ERR(map
->stripes
[i
].dev
)) {
6644 free_extent_map(em
);
6646 "failed to init missing dev %llu: %ld",
6647 devid
, PTR_ERR(map
->stripes
[i
].dev
));
6648 return PTR_ERR(map
->stripes
[i
].dev
);
6650 btrfs_report_missing_device(fs_info
, devid
, uuid
, false);
6652 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
,
6653 &(map
->stripes
[i
].dev
->dev_state
));
6657 write_lock(&map_tree
->lock
);
6658 ret
= add_extent_mapping(map_tree
, em
, 0);
6659 write_unlock(&map_tree
->lock
);
6662 "failed to add chunk map, start=%llu len=%llu: %d",
6663 em
->start
, em
->len
, ret
);
6665 free_extent_map(em
);
6670 static void fill_device_from_item(struct extent_buffer
*leaf
,
6671 struct btrfs_dev_item
*dev_item
,
6672 struct btrfs_device
*device
)
6676 device
->devid
= btrfs_device_id(leaf
, dev_item
);
6677 device
->disk_total_bytes
= btrfs_device_total_bytes(leaf
, dev_item
);
6678 device
->total_bytes
= device
->disk_total_bytes
;
6679 device
->commit_total_bytes
= device
->disk_total_bytes
;
6680 device
->bytes_used
= btrfs_device_bytes_used(leaf
, dev_item
);
6681 device
->commit_bytes_used
= device
->bytes_used
;
6682 device
->type
= btrfs_device_type(leaf
, dev_item
);
6683 device
->io_align
= btrfs_device_io_align(leaf
, dev_item
);
6684 device
->io_width
= btrfs_device_io_width(leaf
, dev_item
);
6685 device
->sector_size
= btrfs_device_sector_size(leaf
, dev_item
);
6686 WARN_ON(device
->devid
== BTRFS_DEV_REPLACE_DEVID
);
6687 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
);
6689 ptr
= btrfs_device_uuid(dev_item
);
6690 read_extent_buffer(leaf
, device
->uuid
, ptr
, BTRFS_UUID_SIZE
);
6693 static struct btrfs_fs_devices
*open_seed_devices(struct btrfs_fs_info
*fs_info
,
6696 struct btrfs_fs_devices
*fs_devices
;
6699 lockdep_assert_held(&uuid_mutex
);
6702 fs_devices
= fs_info
->fs_devices
->seed
;
6703 while (fs_devices
) {
6704 if (!memcmp(fs_devices
->fsid
, fsid
, BTRFS_FSID_SIZE
))
6707 fs_devices
= fs_devices
->seed
;
6710 fs_devices
= find_fsid(fsid
, NULL
);
6712 if (!btrfs_test_opt(fs_info
, DEGRADED
))
6713 return ERR_PTR(-ENOENT
);
6715 fs_devices
= alloc_fs_devices(fsid
, NULL
);
6716 if (IS_ERR(fs_devices
))
6719 fs_devices
->seeding
= true;
6720 fs_devices
->opened
= 1;
6724 fs_devices
= clone_fs_devices(fs_devices
);
6725 if (IS_ERR(fs_devices
))
6728 ret
= open_fs_devices(fs_devices
, FMODE_READ
, fs_info
->bdev_holder
);
6730 free_fs_devices(fs_devices
);
6731 fs_devices
= ERR_PTR(ret
);
6735 if (!fs_devices
->seeding
) {
6736 close_fs_devices(fs_devices
);
6737 free_fs_devices(fs_devices
);
6738 fs_devices
= ERR_PTR(-EINVAL
);
6742 fs_devices
->seed
= fs_info
->fs_devices
->seed
;
6743 fs_info
->fs_devices
->seed
= fs_devices
;
6748 static int read_one_dev(struct extent_buffer
*leaf
,
6749 struct btrfs_dev_item
*dev_item
)
6751 struct btrfs_fs_info
*fs_info
= leaf
->fs_info
;
6752 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
6753 struct btrfs_device
*device
;
6756 u8 fs_uuid
[BTRFS_FSID_SIZE
];
6757 u8 dev_uuid
[BTRFS_UUID_SIZE
];
6759 devid
= btrfs_device_id(leaf
, dev_item
);
6760 read_extent_buffer(leaf
, dev_uuid
, btrfs_device_uuid(dev_item
),
6762 read_extent_buffer(leaf
, fs_uuid
, btrfs_device_fsid(dev_item
),
6765 if (memcmp(fs_uuid
, fs_devices
->metadata_uuid
, BTRFS_FSID_SIZE
)) {
6766 fs_devices
= open_seed_devices(fs_info
, fs_uuid
);
6767 if (IS_ERR(fs_devices
))
6768 return PTR_ERR(fs_devices
);
6771 device
= btrfs_find_device(fs_info
->fs_devices
, devid
, dev_uuid
,
6774 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6775 btrfs_report_missing_device(fs_info
, devid
,
6780 device
= add_missing_dev(fs_devices
, devid
, dev_uuid
);
6781 if (IS_ERR(device
)) {
6783 "failed to add missing dev %llu: %ld",
6784 devid
, PTR_ERR(device
));
6785 return PTR_ERR(device
);
6787 btrfs_report_missing_device(fs_info
, devid
, dev_uuid
, false);
6789 if (!device
->bdev
) {
6790 if (!btrfs_test_opt(fs_info
, DEGRADED
)) {
6791 btrfs_report_missing_device(fs_info
,
6792 devid
, dev_uuid
, true);
6795 btrfs_report_missing_device(fs_info
, devid
,
6799 if (!device
->bdev
&&
6800 !test_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
)) {
6802 * this happens when a device that was properly setup
6803 * in the device info lists suddenly goes bad.
6804 * device->bdev is NULL, and so we have to set
6805 * device->missing to one here
6807 device
->fs_devices
->missing_devices
++;
6808 set_bit(BTRFS_DEV_STATE_MISSING
, &device
->dev_state
);
6811 /* Move the device to its own fs_devices */
6812 if (device
->fs_devices
!= fs_devices
) {
6813 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING
,
6814 &device
->dev_state
));
6816 list_move(&device
->dev_list
, &fs_devices
->devices
);
6817 device
->fs_devices
->num_devices
--;
6818 fs_devices
->num_devices
++;
6820 device
->fs_devices
->missing_devices
--;
6821 fs_devices
->missing_devices
++;
6823 device
->fs_devices
= fs_devices
;
6827 if (device
->fs_devices
!= fs_info
->fs_devices
) {
6828 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
));
6829 if (device
->generation
!=
6830 btrfs_device_generation(leaf
, dev_item
))
6834 fill_device_from_item(leaf
, dev_item
, device
);
6835 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA
, &device
->dev_state
);
6836 if (test_bit(BTRFS_DEV_STATE_WRITEABLE
, &device
->dev_state
) &&
6837 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT
, &device
->dev_state
)) {
6838 device
->fs_devices
->total_rw_bytes
+= device
->total_bytes
;
6839 atomic64_add(device
->total_bytes
- device
->bytes_used
,
6840 &fs_info
->free_chunk_space
);
6846 int btrfs_read_sys_array(struct btrfs_fs_info
*fs_info
)
6848 struct btrfs_root
*root
= fs_info
->tree_root
;
6849 struct btrfs_super_block
*super_copy
= fs_info
->super_copy
;
6850 struct extent_buffer
*sb
;
6851 struct btrfs_disk_key
*disk_key
;
6852 struct btrfs_chunk
*chunk
;
6854 unsigned long sb_array_offset
;
6861 struct btrfs_key key
;
6863 ASSERT(BTRFS_SUPER_INFO_SIZE
<= fs_info
->nodesize
);
6865 * This will create extent buffer of nodesize, superblock size is
6866 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will
6867 * overallocate but we can keep it as-is, only the first page is used.
6869 sb
= btrfs_find_create_tree_block(fs_info
, BTRFS_SUPER_INFO_OFFSET
);
6872 set_extent_buffer_uptodate(sb
);
6873 btrfs_set_buffer_lockdep_class(root
->root_key
.objectid
, sb
, 0);
6875 * The sb extent buffer is artificial and just used to read the system array.
6876 * set_extent_buffer_uptodate() call does not properly mark all it's
6877 * pages up-to-date when the page is larger: extent does not cover the
6878 * whole page and consequently check_page_uptodate does not find all
6879 * the page's extents up-to-date (the hole beyond sb),
6880 * write_extent_buffer then triggers a WARN_ON.
6882 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
6883 * but sb spans only this function. Add an explicit SetPageUptodate call
6884 * to silence the warning eg. on PowerPC 64.
6886 if (PAGE_SIZE
> BTRFS_SUPER_INFO_SIZE
)
6887 SetPageUptodate(sb
->pages
[0]);
6889 write_extent_buffer(sb
, super_copy
, 0, BTRFS_SUPER_INFO_SIZE
);
6890 array_size
= btrfs_super_sys_array_size(super_copy
);
6892 array_ptr
= super_copy
->sys_chunk_array
;
6893 sb_array_offset
= offsetof(struct btrfs_super_block
, sys_chunk_array
);
6896 while (cur_offset
< array_size
) {
6897 disk_key
= (struct btrfs_disk_key
*)array_ptr
;
6898 len
= sizeof(*disk_key
);
6899 if (cur_offset
+ len
> array_size
)
6900 goto out_short_read
;
6902 btrfs_disk_key_to_cpu(&key
, disk_key
);
6905 sb_array_offset
+= len
;
6908 if (key
.type
!= BTRFS_CHUNK_ITEM_KEY
) {
6910 "unexpected item type %u in sys_array at offset %u",
6911 (u32
)key
.type
, cur_offset
);
6916 chunk
= (struct btrfs_chunk
*)sb_array_offset
;
6918 * At least one btrfs_chunk with one stripe must be present,
6919 * exact stripe count check comes afterwards
6921 len
= btrfs_chunk_item_size(1);
6922 if (cur_offset
+ len
> array_size
)
6923 goto out_short_read
;
6925 num_stripes
= btrfs_chunk_num_stripes(sb
, chunk
);
6928 "invalid number of stripes %u in sys_array at offset %u",
6929 num_stripes
, cur_offset
);
6934 type
= btrfs_chunk_type(sb
, chunk
);
6935 if ((type
& BTRFS_BLOCK_GROUP_SYSTEM
) == 0) {
6937 "invalid chunk type %llu in sys_array at offset %u",
6943 len
= btrfs_chunk_item_size(num_stripes
);
6944 if (cur_offset
+ len
> array_size
)
6945 goto out_short_read
;
6947 ret
= read_one_chunk(&key
, sb
, chunk
);
6952 sb_array_offset
+= len
;
6955 clear_extent_buffer_uptodate(sb
);
6956 free_extent_buffer_stale(sb
);
6960 btrfs_err(fs_info
, "sys_array too short to read %u bytes at offset %u",
6962 clear_extent_buffer_uptodate(sb
);
6963 free_extent_buffer_stale(sb
);
6968 * Check if all chunks in the fs are OK for read-write degraded mount
6970 * If the @failing_dev is specified, it's accounted as missing.
6972 * Return true if all chunks meet the minimal RW mount requirements.
6973 * Return false if any chunk doesn't meet the minimal RW mount requirements.
6975 bool btrfs_check_rw_degradable(struct btrfs_fs_info
*fs_info
,
6976 struct btrfs_device
*failing_dev
)
6978 struct extent_map_tree
*map_tree
= &fs_info
->mapping_tree
;
6979 struct extent_map
*em
;
6983 read_lock(&map_tree
->lock
);
6984 em
= lookup_extent_mapping(map_tree
, 0, (u64
)-1);
6985 read_unlock(&map_tree
->lock
);
6986 /* No chunk at all? Return false anyway */
6992 struct map_lookup
*map
;
6997 map
= em
->map_lookup
;
6999 btrfs_get_num_tolerated_disk_barrier_failures(
7001 for (i
= 0; i
< map
->num_stripes
; i
++) {
7002 struct btrfs_device
*dev
= map
->stripes
[i
].dev
;
7004 if (!dev
|| !dev
->bdev
||
7005 test_bit(BTRFS_DEV_STATE_MISSING
, &dev
->dev_state
) ||
7006 dev
->last_flush_error
)
7008 else if (failing_dev
&& failing_dev
== dev
)
7011 if (missing
> max_tolerated
) {
7014 "chunk %llu missing %d devices, max tolerance is %d for writable mount",
7015 em
->start
, missing
, max_tolerated
);
7016 free_extent_map(em
);
7020 next_start
= extent_map_end(em
);
7021 free_extent_map(em
);
7023 read_lock(&map_tree
->lock
);
7024 em
= lookup_extent_mapping(map_tree
, next_start
,
7025 (u64
)(-1) - next_start
);
7026 read_unlock(&map_tree
->lock
);
7032 int btrfs_read_chunk_tree(struct btrfs_fs_info
*fs_info
)
7034 struct btrfs_root
*root
= fs_info
->chunk_root
;
7035 struct btrfs_path
*path
;
7036 struct extent_buffer
*leaf
;
7037 struct btrfs_key key
;
7038 struct btrfs_key found_key
;
7043 path
= btrfs_alloc_path();
7048 * uuid_mutex is needed only if we are mounting a sprout FS
7049 * otherwise we don't need it.
7051 mutex_lock(&uuid_mutex
);
7052 mutex_lock(&fs_info
->chunk_mutex
);
7055 * Read all device items, and then all the chunk items. All
7056 * device items are found before any chunk item (their object id
7057 * is smaller than the lowest possible object id for a chunk
7058 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
7060 key
.objectid
= BTRFS_DEV_ITEMS_OBJECTID
;
7063 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
7067 leaf
= path
->nodes
[0];
7068 slot
= path
->slots
[0];
7069 if (slot
>= btrfs_header_nritems(leaf
)) {
7070 ret
= btrfs_next_leaf(root
, path
);
7077 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
7078 if (found_key
.type
== BTRFS_DEV_ITEM_KEY
) {
7079 struct btrfs_dev_item
*dev_item
;
7080 dev_item
= btrfs_item_ptr(leaf
, slot
,
7081 struct btrfs_dev_item
);
7082 ret
= read_one_dev(leaf
, dev_item
);
7086 } else if (found_key
.type
== BTRFS_CHUNK_ITEM_KEY
) {
7087 struct btrfs_chunk
*chunk
;
7088 chunk
= btrfs_item_ptr(leaf
, slot
, struct btrfs_chunk
);
7089 ret
= read_one_chunk(&found_key
, leaf
, chunk
);
7097 * After loading chunk tree, we've got all device information,
7098 * do another round of validation checks.
7100 if (total_dev
!= fs_info
->fs_devices
->total_devices
) {
7102 "super_num_devices %llu mismatch with num_devices %llu found here",
7103 btrfs_super_num_devices(fs_info
->super_copy
),
7108 if (btrfs_super_total_bytes(fs_info
->super_copy
) <
7109 fs_info
->fs_devices
->total_rw_bytes
) {
7111 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu",
7112 btrfs_super_total_bytes(fs_info
->super_copy
),
7113 fs_info
->fs_devices
->total_rw_bytes
);
7119 mutex_unlock(&fs_info
->chunk_mutex
);
7120 mutex_unlock(&uuid_mutex
);
7122 btrfs_free_path(path
);
7126 void btrfs_init_devices_late(struct btrfs_fs_info
*fs_info
)
7128 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7129 struct btrfs_device
*device
;
7131 while (fs_devices
) {
7132 mutex_lock(&fs_devices
->device_list_mutex
);
7133 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
)
7134 device
->fs_info
= fs_info
;
7135 mutex_unlock(&fs_devices
->device_list_mutex
);
7137 fs_devices
= fs_devices
->seed
;
7141 static u64
btrfs_dev_stats_value(const struct extent_buffer
*eb
,
7142 const struct btrfs_dev_stats_item
*ptr
,
7147 read_extent_buffer(eb
, &val
,
7148 offsetof(struct btrfs_dev_stats_item
, values
) +
7149 ((unsigned long)ptr
) + (index
* sizeof(u64
)),
7154 static void btrfs_set_dev_stats_value(struct extent_buffer
*eb
,
7155 struct btrfs_dev_stats_item
*ptr
,
7158 write_extent_buffer(eb
, &val
,
7159 offsetof(struct btrfs_dev_stats_item
, values
) +
7160 ((unsigned long)ptr
) + (index
* sizeof(u64
)),
7164 int btrfs_init_dev_stats(struct btrfs_fs_info
*fs_info
)
7166 struct btrfs_key key
;
7167 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7168 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7169 struct extent_buffer
*eb
;
7172 struct btrfs_device
*device
;
7173 struct btrfs_path
*path
= NULL
;
7176 path
= btrfs_alloc_path();
7180 mutex_lock(&fs_devices
->device_list_mutex
);
7181 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7183 struct btrfs_dev_stats_item
*ptr
;
7185 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7186 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7187 key
.offset
= device
->devid
;
7188 ret
= btrfs_search_slot(NULL
, dev_root
, &key
, path
, 0, 0);
7190 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7191 btrfs_dev_stat_set(device
, i
, 0);
7192 device
->dev_stats_valid
= 1;
7193 btrfs_release_path(path
);
7196 slot
= path
->slots
[0];
7197 eb
= path
->nodes
[0];
7198 item_size
= btrfs_item_size_nr(eb
, slot
);
7200 ptr
= btrfs_item_ptr(eb
, slot
,
7201 struct btrfs_dev_stats_item
);
7203 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7204 if (item_size
>= (1 + i
) * sizeof(__le64
))
7205 btrfs_dev_stat_set(device
, i
,
7206 btrfs_dev_stats_value(eb
, ptr
, i
));
7208 btrfs_dev_stat_set(device
, i
, 0);
7211 device
->dev_stats_valid
= 1;
7212 btrfs_dev_stat_print_on_load(device
);
7213 btrfs_release_path(path
);
7215 mutex_unlock(&fs_devices
->device_list_mutex
);
7217 btrfs_free_path(path
);
7218 return ret
< 0 ? ret
: 0;
7221 static int update_dev_stat_item(struct btrfs_trans_handle
*trans
,
7222 struct btrfs_device
*device
)
7224 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
7225 struct btrfs_root
*dev_root
= fs_info
->dev_root
;
7226 struct btrfs_path
*path
;
7227 struct btrfs_key key
;
7228 struct extent_buffer
*eb
;
7229 struct btrfs_dev_stats_item
*ptr
;
7233 key
.objectid
= BTRFS_DEV_STATS_OBJECTID
;
7234 key
.type
= BTRFS_PERSISTENT_ITEM_KEY
;
7235 key
.offset
= device
->devid
;
7237 path
= btrfs_alloc_path();
7240 ret
= btrfs_search_slot(trans
, dev_root
, &key
, path
, -1, 1);
7242 btrfs_warn_in_rcu(fs_info
,
7243 "error %d while searching for dev_stats item for device %s",
7244 ret
, rcu_str_deref(device
->name
));
7249 btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]) < sizeof(*ptr
)) {
7250 /* need to delete old one and insert a new one */
7251 ret
= btrfs_del_item(trans
, dev_root
, path
);
7253 btrfs_warn_in_rcu(fs_info
,
7254 "delete too small dev_stats item for device %s failed %d",
7255 rcu_str_deref(device
->name
), ret
);
7262 /* need to insert a new item */
7263 btrfs_release_path(path
);
7264 ret
= btrfs_insert_empty_item(trans
, dev_root
, path
,
7265 &key
, sizeof(*ptr
));
7267 btrfs_warn_in_rcu(fs_info
,
7268 "insert dev_stats item for device %s failed %d",
7269 rcu_str_deref(device
->name
), ret
);
7274 eb
= path
->nodes
[0];
7275 ptr
= btrfs_item_ptr(eb
, path
->slots
[0], struct btrfs_dev_stats_item
);
7276 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7277 btrfs_set_dev_stats_value(eb
, ptr
, i
,
7278 btrfs_dev_stat_read(device
, i
));
7279 btrfs_mark_buffer_dirty(eb
);
7282 btrfs_free_path(path
);
7287 * called from commit_transaction. Writes all changed device stats to disk.
7289 int btrfs_run_dev_stats(struct btrfs_trans_handle
*trans
)
7291 struct btrfs_fs_info
*fs_info
= trans
->fs_info
;
7292 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7293 struct btrfs_device
*device
;
7297 mutex_lock(&fs_devices
->device_list_mutex
);
7298 list_for_each_entry(device
, &fs_devices
->devices
, dev_list
) {
7299 stats_cnt
= atomic_read(&device
->dev_stats_ccnt
);
7300 if (!device
->dev_stats_valid
|| stats_cnt
== 0)
7305 * There is a LOAD-LOAD control dependency between the value of
7306 * dev_stats_ccnt and updating the on-disk values which requires
7307 * reading the in-memory counters. Such control dependencies
7308 * require explicit read memory barriers.
7310 * This memory barriers pairs with smp_mb__before_atomic in
7311 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full
7312 * barrier implied by atomic_xchg in
7313 * btrfs_dev_stats_read_and_reset
7317 ret
= update_dev_stat_item(trans
, device
);
7319 atomic_sub(stats_cnt
, &device
->dev_stats_ccnt
);
7321 mutex_unlock(&fs_devices
->device_list_mutex
);
7326 void btrfs_dev_stat_inc_and_print(struct btrfs_device
*dev
, int index
)
7328 btrfs_dev_stat_inc(dev
, index
);
7329 btrfs_dev_stat_print_on_error(dev
);
7332 static void btrfs_dev_stat_print_on_error(struct btrfs_device
*dev
)
7334 if (!dev
->dev_stats_valid
)
7336 btrfs_err_rl_in_rcu(dev
->fs_info
,
7337 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7338 rcu_str_deref(dev
->name
),
7339 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7340 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7341 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7342 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7343 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7346 static void btrfs_dev_stat_print_on_load(struct btrfs_device
*dev
)
7350 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7351 if (btrfs_dev_stat_read(dev
, i
) != 0)
7353 if (i
== BTRFS_DEV_STAT_VALUES_MAX
)
7354 return; /* all values == 0, suppress message */
7356 btrfs_info_in_rcu(dev
->fs_info
,
7357 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u",
7358 rcu_str_deref(dev
->name
),
7359 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_WRITE_ERRS
),
7360 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_READ_ERRS
),
7361 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_FLUSH_ERRS
),
7362 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_CORRUPTION_ERRS
),
7363 btrfs_dev_stat_read(dev
, BTRFS_DEV_STAT_GENERATION_ERRS
));
7366 int btrfs_get_dev_stats(struct btrfs_fs_info
*fs_info
,
7367 struct btrfs_ioctl_get_dev_stats
*stats
)
7369 struct btrfs_device
*dev
;
7370 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7373 mutex_lock(&fs_devices
->device_list_mutex
);
7374 dev
= btrfs_find_device(fs_info
->fs_devices
, stats
->devid
, NULL
, NULL
,
7376 mutex_unlock(&fs_devices
->device_list_mutex
);
7379 btrfs_warn(fs_info
, "get dev_stats failed, device not found");
7381 } else if (!dev
->dev_stats_valid
) {
7382 btrfs_warn(fs_info
, "get dev_stats failed, not yet valid");
7384 } else if (stats
->flags
& BTRFS_DEV_STATS_RESET
) {
7385 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++) {
7386 if (stats
->nr_items
> i
)
7388 btrfs_dev_stat_read_and_reset(dev
, i
);
7390 btrfs_dev_stat_set(dev
, i
, 0);
7392 btrfs_info(fs_info
, "device stats zeroed by %s (%d)",
7393 current
->comm
, task_pid_nr(current
));
7395 for (i
= 0; i
< BTRFS_DEV_STAT_VALUES_MAX
; i
++)
7396 if (stats
->nr_items
> i
)
7397 stats
->values
[i
] = btrfs_dev_stat_read(dev
, i
);
7399 if (stats
->nr_items
> BTRFS_DEV_STAT_VALUES_MAX
)
7400 stats
->nr_items
= BTRFS_DEV_STAT_VALUES_MAX
;
7405 * Update the size and bytes used for each device where it changed. This is
7406 * delayed since we would otherwise get errors while writing out the
7409 * Must be invoked during transaction commit.
7411 void btrfs_commit_device_sizes(struct btrfs_transaction
*trans
)
7413 struct btrfs_device
*curr
, *next
;
7415 ASSERT(trans
->state
== TRANS_STATE_COMMIT_DOING
);
7417 if (list_empty(&trans
->dev_update_list
))
7421 * We don't need the device_list_mutex here. This list is owned by the
7422 * transaction and the transaction must complete before the device is
7425 mutex_lock(&trans
->fs_info
->chunk_mutex
);
7426 list_for_each_entry_safe(curr
, next
, &trans
->dev_update_list
,
7428 list_del_init(&curr
->post_commit_list
);
7429 curr
->commit_total_bytes
= curr
->disk_total_bytes
;
7430 curr
->commit_bytes_used
= curr
->bytes_used
;
7432 mutex_unlock(&trans
->fs_info
->chunk_mutex
);
7435 void btrfs_set_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7437 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7438 while (fs_devices
) {
7439 fs_devices
->fs_info
= fs_info
;
7440 fs_devices
= fs_devices
->seed
;
7444 void btrfs_reset_fs_info_ptr(struct btrfs_fs_info
*fs_info
)
7446 struct btrfs_fs_devices
*fs_devices
= fs_info
->fs_devices
;
7447 while (fs_devices
) {
7448 fs_devices
->fs_info
= NULL
;
7449 fs_devices
= fs_devices
->seed
;
7454 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10.
7456 int btrfs_bg_type_to_factor(u64 flags
)
7458 const int index
= btrfs_bg_flags_to_raid_index(flags
);
7460 return btrfs_raid_array
[index
].ncopies
;
7465 static int verify_one_dev_extent(struct btrfs_fs_info
*fs_info
,
7466 u64 chunk_offset
, u64 devid
,
7467 u64 physical_offset
, u64 physical_len
)
7469 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
;
7470 struct extent_map
*em
;
7471 struct map_lookup
*map
;
7472 struct btrfs_device
*dev
;
7478 read_lock(&em_tree
->lock
);
7479 em
= lookup_extent_mapping(em_tree
, chunk_offset
, 1);
7480 read_unlock(&em_tree
->lock
);
7484 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk",
7485 physical_offset
, devid
);
7490 map
= em
->map_lookup
;
7491 stripe_len
= calc_stripe_length(map
->type
, em
->len
, map
->num_stripes
);
7492 if (physical_len
!= stripe_len
) {
7494 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu",
7495 physical_offset
, devid
, em
->start
, physical_len
,
7501 for (i
= 0; i
< map
->num_stripes
; i
++) {
7502 if (map
->stripes
[i
].dev
->devid
== devid
&&
7503 map
->stripes
[i
].physical
== physical_offset
) {
7505 if (map
->verified_stripes
>= map
->num_stripes
) {
7507 "too many dev extents for chunk %llu found",
7512 map
->verified_stripes
++;
7518 "dev extent physical offset %llu devid %llu has no corresponding chunk",
7519 physical_offset
, devid
);
7523 /* Make sure no dev extent is beyond device bondary */
7524 dev
= btrfs_find_device(fs_info
->fs_devices
, devid
, NULL
, NULL
, true);
7526 btrfs_err(fs_info
, "failed to find devid %llu", devid
);
7531 /* It's possible this device is a dummy for seed device */
7532 if (dev
->disk_total_bytes
== 0) {
7533 dev
= btrfs_find_device(fs_info
->fs_devices
->seed
, devid
, NULL
,
7536 btrfs_err(fs_info
, "failed to find seed devid %llu",
7543 if (physical_offset
+ physical_len
> dev
->disk_total_bytes
) {
7545 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu",
7546 devid
, physical_offset
, physical_len
,
7547 dev
->disk_total_bytes
);
7552 free_extent_map(em
);
7556 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info
*fs_info
)
7558 struct extent_map_tree
*em_tree
= &fs_info
->mapping_tree
;
7559 struct extent_map
*em
;
7560 struct rb_node
*node
;
7563 read_lock(&em_tree
->lock
);
7564 for (node
= rb_first_cached(&em_tree
->map
); node
; node
= rb_next(node
)) {
7565 em
= rb_entry(node
, struct extent_map
, rb_node
);
7566 if (em
->map_lookup
->num_stripes
!=
7567 em
->map_lookup
->verified_stripes
) {
7569 "chunk %llu has missing dev extent, have %d expect %d",
7570 em
->start
, em
->map_lookup
->verified_stripes
,
7571 em
->map_lookup
->num_stripes
);
7577 read_unlock(&em_tree
->lock
);
7582 * Ensure that all dev extents are mapped to correct chunk, otherwise
7583 * later chunk allocation/free would cause unexpected behavior.
7585 * NOTE: This will iterate through the whole device tree, which should be of
7586 * the same size level as the chunk tree. This slightly increases mount time.
7588 int btrfs_verify_dev_extents(struct btrfs_fs_info
*fs_info
)
7590 struct btrfs_path
*path
;
7591 struct btrfs_root
*root
= fs_info
->dev_root
;
7592 struct btrfs_key key
;
7594 u64 prev_dev_ext_end
= 0;
7598 key
.type
= BTRFS_DEV_EXTENT_KEY
;
7601 path
= btrfs_alloc_path();
7605 path
->reada
= READA_FORWARD
;
7606 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
7610 if (path
->slots
[0] >= btrfs_header_nritems(path
->nodes
[0])) {
7611 ret
= btrfs_next_item(root
, path
);
7614 /* No dev extents at all? Not good */
7621 struct extent_buffer
*leaf
= path
->nodes
[0];
7622 struct btrfs_dev_extent
*dext
;
7623 int slot
= path
->slots
[0];
7625 u64 physical_offset
;
7629 btrfs_item_key_to_cpu(leaf
, &key
, slot
);
7630 if (key
.type
!= BTRFS_DEV_EXTENT_KEY
)
7632 devid
= key
.objectid
;
7633 physical_offset
= key
.offset
;
7635 dext
= btrfs_item_ptr(leaf
, slot
, struct btrfs_dev_extent
);
7636 chunk_offset
= btrfs_dev_extent_chunk_offset(leaf
, dext
);
7637 physical_len
= btrfs_dev_extent_length(leaf
, dext
);
7639 /* Check if this dev extent overlaps with the previous one */
7640 if (devid
== prev_devid
&& physical_offset
< prev_dev_ext_end
) {
7642 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu",
7643 devid
, physical_offset
, prev_dev_ext_end
);
7648 ret
= verify_one_dev_extent(fs_info
, chunk_offset
, devid
,
7649 physical_offset
, physical_len
);
7653 prev_dev_ext_end
= physical_offset
+ physical_len
;
7655 ret
= btrfs_next_item(root
, path
);
7664 /* Ensure all chunks have corresponding dev extents */
7665 ret
= verify_chunk_dev_extent_mapping(fs_info
);
7667 btrfs_free_path(path
);
7672 * Check whether the given block group or device is pinned by any inode being
7673 * used as a swapfile.
7675 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info
*fs_info
, void *ptr
)
7677 struct btrfs_swapfile_pin
*sp
;
7678 struct rb_node
*node
;
7680 spin_lock(&fs_info
->swapfile_pins_lock
);
7681 node
= fs_info
->swapfile_pins
.rb_node
;
7683 sp
= rb_entry(node
, struct btrfs_swapfile_pin
, node
);
7685 node
= node
->rb_left
;
7686 else if (ptr
> sp
->ptr
)
7687 node
= node
->rb_right
;
7691 spin_unlock(&fs_info
->swapfile_pins_lock
);
7692 return node
!= NULL
;