2 * sparse memory mappings.
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
20 * Permanent SPARSEMEM data:
22 * 1) mem_section - memory sections, mem_map's for valid memory
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section
*mem_section
[NR_SECTION_ROOTS
]
26 ____cacheline_internodealigned_in_smp
;
28 struct mem_section mem_section
[NR_SECTION_ROOTS
][SECTIONS_PER_ROOT
]
29 ____cacheline_internodealigned_in_smp
;
31 EXPORT_SYMBOL(mem_section
);
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
42 static u16 section_to_node_table
[NR_MEM_SECTIONS
] __cacheline_aligned
;
45 int page_to_nid(const struct page
*page
)
47 return section_to_node_table
[page_to_section(page
)];
49 EXPORT_SYMBOL(page_to_nid
);
51 static void set_section_nid(unsigned long section_nr
, int nid
)
53 section_to_node_table
[section_nr
] = nid
;
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr
, int nid
)
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline
struct mem_section __ref
*sparse_index_alloc(int nid
)
64 struct mem_section
*section
= NULL
;
65 unsigned long array_size
= SECTIONS_PER_ROOT
*
66 sizeof(struct mem_section
);
68 if (slab_is_available()) {
69 if (node_state(nid
, N_HIGH_MEMORY
))
70 section
= kzalloc_node(array_size
, GFP_KERNEL
, nid
);
72 section
= kzalloc(array_size
, GFP_KERNEL
);
74 section
= memblock_virt_alloc_node(array_size
, nid
);
80 static int __meminit
sparse_index_init(unsigned long section_nr
, int nid
)
82 unsigned long root
= SECTION_NR_TO_ROOT(section_nr
);
83 struct mem_section
*section
;
85 if (mem_section
[root
])
88 section
= sparse_index_alloc(nid
);
92 mem_section
[root
] = section
;
96 #else /* !SPARSEMEM_EXTREME */
97 static inline int sparse_index_init(unsigned long section_nr
, int nid
)
103 #ifdef CONFIG_SPARSEMEM_EXTREME
104 int __section_nr(struct mem_section
* ms
)
106 unsigned long root_nr
;
107 struct mem_section
* root
;
109 for (root_nr
= 0; root_nr
< NR_SECTION_ROOTS
; root_nr
++) {
110 root
= __nr_to_section(root_nr
* SECTIONS_PER_ROOT
);
114 if ((ms
>= root
) && (ms
< (root
+ SECTIONS_PER_ROOT
)))
118 VM_BUG_ON(root_nr
== NR_SECTION_ROOTS
);
120 return (root_nr
* SECTIONS_PER_ROOT
) + (ms
- root
);
123 int __section_nr(struct mem_section
* ms
)
125 return (int)(ms
- mem_section
[0]);
130 * During early boot, before section_mem_map is used for an actual
131 * mem_map, we use section_mem_map to store the section's NUMA
132 * node. This keeps us from having to use another data structure. The
133 * node information is cleared just before we store the real mem_map.
135 static inline unsigned long sparse_encode_early_nid(int nid
)
137 return (nid
<< SECTION_NID_SHIFT
);
140 static inline int sparse_early_nid(struct mem_section
*section
)
142 return (section
->section_mem_map
>> SECTION_NID_SHIFT
);
145 /* Validate the physical addressing limitations of the model */
146 void __meminit
mminit_validate_memmodel_limits(unsigned long *start_pfn
,
147 unsigned long *end_pfn
)
149 unsigned long max_sparsemem_pfn
= 1UL << (MAX_PHYSMEM_BITS
-PAGE_SHIFT
);
152 * Sanity checks - do not allow an architecture to pass
153 * in larger pfns than the maximum scope of sparsemem:
155 if (*start_pfn
> max_sparsemem_pfn
) {
156 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
157 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
158 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
160 *start_pfn
= max_sparsemem_pfn
;
161 *end_pfn
= max_sparsemem_pfn
;
162 } else if (*end_pfn
> max_sparsemem_pfn
) {
163 mminit_dprintk(MMINIT_WARNING
, "pfnvalidation",
164 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
165 *start_pfn
, *end_pfn
, max_sparsemem_pfn
);
167 *end_pfn
= max_sparsemem_pfn
;
172 * There are a number of times that we loop over NR_MEM_SECTIONS,
173 * looking for section_present() on each. But, when we have very
174 * large physical address spaces, NR_MEM_SECTIONS can also be
175 * very large which makes the loops quite long.
177 * Keeping track of this gives us an easy way to break out of
180 int __highest_present_section_nr
;
181 static void section_mark_present(struct mem_section
*ms
)
183 int section_nr
= __section_nr(ms
);
185 if (section_nr
> __highest_present_section_nr
)
186 __highest_present_section_nr
= section_nr
;
188 ms
->section_mem_map
|= SECTION_MARKED_PRESENT
;
191 static inline int next_present_section_nr(int section_nr
)
195 if (present_section_nr(section_nr
))
197 } while ((section_nr
< NR_MEM_SECTIONS
) &&
198 (section_nr
<= __highest_present_section_nr
));
202 #define for_each_present_section_nr(start, section_nr) \
203 for (section_nr = next_present_section_nr(start-1); \
204 ((section_nr >= 0) && \
205 (section_nr < NR_MEM_SECTIONS) && \
206 (section_nr <= __highest_present_section_nr)); \
207 section_nr = next_present_section_nr(section_nr))
209 /* Record a memory area against a node. */
210 void __init
memory_present(int nid
, unsigned long start
, unsigned long end
)
214 start
&= PAGE_SECTION_MASK
;
215 mminit_validate_memmodel_limits(&start
, &end
);
216 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
217 unsigned long section
= pfn_to_section_nr(pfn
);
218 struct mem_section
*ms
;
220 sparse_index_init(section
, nid
);
221 set_section_nid(section
, nid
);
223 ms
= __nr_to_section(section
);
224 if (!ms
->section_mem_map
) {
225 ms
->section_mem_map
= sparse_encode_early_nid(nid
) |
227 section_mark_present(ms
);
233 * Only used by the i386 NUMA architecures, but relatively
236 unsigned long __init
node_memmap_size_bytes(int nid
, unsigned long start_pfn
,
237 unsigned long end_pfn
)
240 unsigned long nr_pages
= 0;
242 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
243 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
244 if (nid
!= early_pfn_to_nid(pfn
))
247 if (pfn_present(pfn
))
248 nr_pages
+= PAGES_PER_SECTION
;
251 return nr_pages
* sizeof(struct page
);
255 * Subtle, we encode the real pfn into the mem_map such that
256 * the identity pfn - section_mem_map will return the actual
257 * physical page frame number.
259 static unsigned long sparse_encode_mem_map(struct page
*mem_map
, unsigned long pnum
)
261 return (unsigned long)(mem_map
- (section_nr_to_pfn(pnum
)));
265 * Decode mem_map from the coded memmap
267 struct page
*sparse_decode_mem_map(unsigned long coded_mem_map
, unsigned long pnum
)
269 /* mask off the extra low bits of information */
270 coded_mem_map
&= SECTION_MAP_MASK
;
271 return ((struct page
*)coded_mem_map
) + section_nr_to_pfn(pnum
);
274 static int __meminit
sparse_init_one_section(struct mem_section
*ms
,
275 unsigned long pnum
, struct page
*mem_map
,
276 unsigned long *pageblock_bitmap
)
278 if (!present_section(ms
))
281 ms
->section_mem_map
&= ~SECTION_MAP_MASK
;
282 ms
->section_mem_map
|= sparse_encode_mem_map(mem_map
, pnum
) |
284 ms
->pageblock_flags
= pageblock_bitmap
;
289 unsigned long usemap_size(void)
291 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS
) * sizeof(unsigned long);
294 #ifdef CONFIG_MEMORY_HOTPLUG
295 static unsigned long *__kmalloc_section_usemap(void)
297 return kmalloc(usemap_size(), GFP_KERNEL
);
299 #endif /* CONFIG_MEMORY_HOTPLUG */
301 #ifdef CONFIG_MEMORY_HOTREMOVE
302 static unsigned long * __init
303 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
306 unsigned long goal
, limit
;
310 * A page may contain usemaps for other sections preventing the
311 * page being freed and making a section unremovable while
312 * other sections referencing the usemap remain active. Similarly,
313 * a pgdat can prevent a section being removed. If section A
314 * contains a pgdat and section B contains the usemap, both
315 * sections become inter-dependent. This allocates usemaps
316 * from the same section as the pgdat where possible to avoid
319 goal
= __pa(pgdat
) & (PAGE_SECTION_MASK
<< PAGE_SHIFT
);
320 limit
= goal
+ (1UL << PA_SECTION_SHIFT
);
321 nid
= early_pfn_to_nid(goal
>> PAGE_SHIFT
);
323 p
= memblock_virt_alloc_try_nid_nopanic(size
,
324 SMP_CACHE_BYTES
, goal
, limit
,
333 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
335 unsigned long usemap_snr
, pgdat_snr
;
336 static unsigned long old_usemap_snr
= NR_MEM_SECTIONS
;
337 static unsigned long old_pgdat_snr
= NR_MEM_SECTIONS
;
338 struct pglist_data
*pgdat
= NODE_DATA(nid
);
341 usemap_snr
= pfn_to_section_nr(__pa(usemap
) >> PAGE_SHIFT
);
342 pgdat_snr
= pfn_to_section_nr(__pa(pgdat
) >> PAGE_SHIFT
);
343 if (usemap_snr
== pgdat_snr
)
346 if (old_usemap_snr
== usemap_snr
&& old_pgdat_snr
== pgdat_snr
)
347 /* skip redundant message */
350 old_usemap_snr
= usemap_snr
;
351 old_pgdat_snr
= pgdat_snr
;
353 usemap_nid
= sparse_early_nid(__nr_to_section(usemap_snr
));
354 if (usemap_nid
!= nid
) {
355 pr_info("node %d must be removed before remove section %ld\n",
360 * There is a circular dependency.
361 * Some platforms allow un-removable section because they will just
362 * gather other removable sections for dynamic partitioning.
363 * Just notify un-removable section's number here.
365 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
366 usemap_snr
, pgdat_snr
, nid
);
369 static unsigned long * __init
370 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data
*pgdat
,
373 return memblock_virt_alloc_node_nopanic(size
, pgdat
->node_id
);
376 static void __init
check_usemap_section_nr(int nid
, unsigned long *usemap
)
379 #endif /* CONFIG_MEMORY_HOTREMOVE */
381 static void __init
sparse_early_usemaps_alloc_node(void *data
,
382 unsigned long pnum_begin
,
383 unsigned long pnum_end
,
384 unsigned long usemap_count
, int nodeid
)
388 unsigned long **usemap_map
= (unsigned long **)data
;
389 int size
= usemap_size();
391 usemap
= sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid
),
392 size
* usemap_count
);
394 pr_warn("%s: allocation failed\n", __func__
);
398 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
399 if (!present_section_nr(pnum
))
401 usemap_map
[pnum
] = usemap
;
403 check_usemap_section_nr(nodeid
, usemap_map
[pnum
]);
407 #ifndef CONFIG_SPARSEMEM_VMEMMAP
408 struct page __init
*sparse_mem_map_populate(unsigned long pnum
, int nid
)
413 map
= alloc_remap(nid
, sizeof(struct page
) * PAGES_PER_SECTION
);
417 size
= PAGE_ALIGN(sizeof(struct page
) * PAGES_PER_SECTION
);
418 map
= memblock_virt_alloc_try_nid(size
,
419 PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
),
420 BOOTMEM_ALLOC_ACCESSIBLE
, nid
);
423 void __init
sparse_mem_maps_populate_node(struct page
**map_map
,
424 unsigned long pnum_begin
,
425 unsigned long pnum_end
,
426 unsigned long map_count
, int nodeid
)
430 unsigned long size
= sizeof(struct page
) * PAGES_PER_SECTION
;
432 map
= alloc_remap(nodeid
, size
* map_count
);
434 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
435 if (!present_section_nr(pnum
))
443 size
= PAGE_ALIGN(size
);
444 map
= memblock_virt_alloc_try_nid(size
* map_count
,
445 PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
),
446 BOOTMEM_ALLOC_ACCESSIBLE
, nodeid
);
448 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
449 if (!present_section_nr(pnum
))
458 for (pnum
= pnum_begin
; pnum
< pnum_end
; pnum
++) {
459 struct mem_section
*ms
;
461 if (!present_section_nr(pnum
))
463 map_map
[pnum
] = sparse_mem_map_populate(pnum
, nodeid
);
466 ms
= __nr_to_section(pnum
);
467 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
469 ms
->section_mem_map
= 0;
472 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
474 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
475 static void __init
sparse_early_mem_maps_alloc_node(void *data
,
476 unsigned long pnum_begin
,
477 unsigned long pnum_end
,
478 unsigned long map_count
, int nodeid
)
480 struct page
**map_map
= (struct page
**)data
;
481 sparse_mem_maps_populate_node(map_map
, pnum_begin
, pnum_end
,
485 static struct page __init
*sparse_early_mem_map_alloc(unsigned long pnum
)
488 struct mem_section
*ms
= __nr_to_section(pnum
);
489 int nid
= sparse_early_nid(ms
);
491 map
= sparse_mem_map_populate(pnum
, nid
);
495 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
497 ms
->section_mem_map
= 0;
502 void __weak __meminit
vmemmap_populate_print_last(void)
507 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
508 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
510 static void __init
alloc_usemap_and_memmap(void (*alloc_func
)
511 (void *, unsigned long, unsigned long,
512 unsigned long, int), void *data
)
515 unsigned long map_count
;
516 int nodeid_begin
= 0;
517 unsigned long pnum_begin
= 0;
519 for_each_present_section_nr(0, pnum
) {
520 struct mem_section
*ms
;
522 ms
= __nr_to_section(pnum
);
523 nodeid_begin
= sparse_early_nid(ms
);
528 for_each_present_section_nr(pnum_begin
+ 1, pnum
) {
529 struct mem_section
*ms
;
532 ms
= __nr_to_section(pnum
);
533 nodeid
= sparse_early_nid(ms
);
534 if (nodeid
== nodeid_begin
) {
538 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
539 alloc_func(data
, pnum_begin
, pnum
,
540 map_count
, nodeid_begin
);
541 /* new start, update count etc*/
542 nodeid_begin
= nodeid
;
547 alloc_func(data
, pnum_begin
, NR_MEM_SECTIONS
,
548 map_count
, nodeid_begin
);
552 * Allocate the accumulated non-linear sections, allocate a mem_map
553 * for each and record the physical to section mapping.
555 void __init
sparse_init(void)
559 unsigned long *usemap
;
560 unsigned long **usemap_map
;
562 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
564 struct page
**map_map
;
567 /* see include/linux/mmzone.h 'struct mem_section' definition */
568 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section
)));
570 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
571 set_pageblock_order();
574 * map is using big page (aka 2M in x86 64 bit)
575 * usemap is less one page (aka 24 bytes)
576 * so alloc 2M (with 2M align) and 24 bytes in turn will
577 * make next 2M slip to one more 2M later.
578 * then in big system, the memory will have a lot of holes...
579 * here try to allocate 2M pages continuously.
581 * powerpc need to call sparse_init_one_section right after each
582 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
584 size
= sizeof(unsigned long *) * NR_MEM_SECTIONS
;
585 usemap_map
= memblock_virt_alloc(size
, 0);
587 panic("can not allocate usemap_map\n");
588 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node
,
591 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
592 size2
= sizeof(struct page
*) * NR_MEM_SECTIONS
;
593 map_map
= memblock_virt_alloc(size2
, 0);
595 panic("can not allocate map_map\n");
596 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node
,
600 for_each_present_section_nr(0, pnum
) {
601 usemap
= usemap_map
[pnum
];
605 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
608 map
= sparse_early_mem_map_alloc(pnum
);
613 sparse_init_one_section(__nr_to_section(pnum
), pnum
, map
,
617 vmemmap_populate_print_last();
619 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
620 memblock_free_early(__pa(map_map
), size2
);
622 memblock_free_early(__pa(usemap_map
), size
);
625 #ifdef CONFIG_MEMORY_HOTPLUG
627 /* Mark all memory sections within the pfn range as online */
628 void online_mem_sections(unsigned long start_pfn
, unsigned long end_pfn
)
632 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
633 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
634 struct mem_section
*ms
;
636 /* onlining code should never touch invalid ranges */
637 if (WARN_ON(!valid_section_nr(section_nr
)))
640 ms
= __nr_to_section(section_nr
);
641 ms
->section_mem_map
|= SECTION_IS_ONLINE
;
645 #ifdef CONFIG_MEMORY_HOTREMOVE
646 /* Mark all memory sections within the pfn range as online */
647 void offline_mem_sections(unsigned long start_pfn
, unsigned long end_pfn
)
651 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= PAGES_PER_SECTION
) {
652 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
653 struct mem_section
*ms
;
656 * TODO this needs some double checking. Offlining code makes
657 * sure to check pfn_valid but those checks might be just bogus
659 if (WARN_ON(!valid_section_nr(section_nr
)))
662 ms
= __nr_to_section(section_nr
);
663 ms
->section_mem_map
&= ~SECTION_IS_ONLINE
;
668 #ifdef CONFIG_SPARSEMEM_VMEMMAP
669 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
)
671 /* This will make the necessary allocations eventually. */
672 return sparse_mem_map_populate(pnum
, nid
);
674 static void __kfree_section_memmap(struct page
*memmap
)
676 unsigned long start
= (unsigned long)memmap
;
677 unsigned long end
= (unsigned long)(memmap
+ PAGES_PER_SECTION
);
679 vmemmap_free(start
, end
);
681 #ifdef CONFIG_MEMORY_HOTREMOVE
682 static void free_map_bootmem(struct page
*memmap
)
684 unsigned long start
= (unsigned long)memmap
;
685 unsigned long end
= (unsigned long)(memmap
+ PAGES_PER_SECTION
);
687 vmemmap_free(start
, end
);
689 #endif /* CONFIG_MEMORY_HOTREMOVE */
691 static struct page
*__kmalloc_section_memmap(void)
693 struct page
*page
, *ret
;
694 unsigned long memmap_size
= sizeof(struct page
) * PAGES_PER_SECTION
;
696 page
= alloc_pages(GFP_KERNEL
|__GFP_NOWARN
, get_order(memmap_size
));
700 ret
= vmalloc(memmap_size
);
706 ret
= (struct page
*)pfn_to_kaddr(page_to_pfn(page
));
712 static inline struct page
*kmalloc_section_memmap(unsigned long pnum
, int nid
)
714 return __kmalloc_section_memmap();
717 static void __kfree_section_memmap(struct page
*memmap
)
719 if (is_vmalloc_addr(memmap
))
722 free_pages((unsigned long)memmap
,
723 get_order(sizeof(struct page
) * PAGES_PER_SECTION
));
726 #ifdef CONFIG_MEMORY_HOTREMOVE
727 static void free_map_bootmem(struct page
*memmap
)
729 unsigned long maps_section_nr
, removing_section_nr
, i
;
730 unsigned long magic
, nr_pages
;
731 struct page
*page
= virt_to_page(memmap
);
733 nr_pages
= PAGE_ALIGN(PAGES_PER_SECTION
* sizeof(struct page
))
736 for (i
= 0; i
< nr_pages
; i
++, page
++) {
737 magic
= (unsigned long) page
->freelist
;
739 BUG_ON(magic
== NODE_INFO
);
741 maps_section_nr
= pfn_to_section_nr(page_to_pfn(page
));
742 removing_section_nr
= page_private(page
);
745 * When this function is called, the removing section is
746 * logical offlined state. This means all pages are isolated
747 * from page allocator. If removing section's memmap is placed
748 * on the same section, it must not be freed.
749 * If it is freed, page allocator may allocate it which will
750 * be removed physically soon.
752 if (maps_section_nr
!= removing_section_nr
)
753 put_page_bootmem(page
);
756 #endif /* CONFIG_MEMORY_HOTREMOVE */
757 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
760 * returns the number of sections whose mem_maps were properly
761 * set. If this is <=0, then that means that the passed-in
762 * map was not consumed and must be freed.
764 int __meminit
sparse_add_one_section(struct pglist_data
*pgdat
, unsigned long start_pfn
)
766 unsigned long section_nr
= pfn_to_section_nr(start_pfn
);
767 struct mem_section
*ms
;
769 unsigned long *usemap
;
774 * no locking for this, because it does its own
775 * plus, it does a kmalloc
777 ret
= sparse_index_init(section_nr
, pgdat
->node_id
);
778 if (ret
< 0 && ret
!= -EEXIST
)
780 memmap
= kmalloc_section_memmap(section_nr
, pgdat
->node_id
);
783 usemap
= __kmalloc_section_usemap();
785 __kfree_section_memmap(memmap
);
789 pgdat_resize_lock(pgdat
, &flags
);
791 ms
= __pfn_to_section(start_pfn
);
792 if (ms
->section_mem_map
& SECTION_MARKED_PRESENT
) {
797 memset(memmap
, 0, sizeof(struct page
) * PAGES_PER_SECTION
);
799 section_mark_present(ms
);
801 ret
= sparse_init_one_section(ms
, section_nr
, memmap
, usemap
);
804 pgdat_resize_unlock(pgdat
, &flags
);
807 __kfree_section_memmap(memmap
);
812 #ifdef CONFIG_MEMORY_HOTREMOVE
813 #ifdef CONFIG_MEMORY_FAILURE
814 static void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
821 for (i
= 0; i
< nr_pages
; i
++) {
822 if (PageHWPoison(&memmap
[i
])) {
823 atomic_long_sub(1, &num_poisoned_pages
);
824 ClearPageHWPoison(&memmap
[i
]);
829 static inline void clear_hwpoisoned_pages(struct page
*memmap
, int nr_pages
)
834 static void free_section_usemap(struct page
*memmap
, unsigned long *usemap
)
836 struct page
*usemap_page
;
841 usemap_page
= virt_to_page(usemap
);
843 * Check to see if allocation came from hot-plug-add
845 if (PageSlab(usemap_page
) || PageCompound(usemap_page
)) {
848 __kfree_section_memmap(memmap
);
853 * The usemap came from bootmem. This is packed with other usemaps
854 * on the section which has pgdat at boot time. Just keep it as is now.
858 free_map_bootmem(memmap
);
861 void sparse_remove_one_section(struct zone
*zone
, struct mem_section
*ms
,
862 unsigned long map_offset
)
864 struct page
*memmap
= NULL
;
865 unsigned long *usemap
= NULL
, flags
;
866 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
868 pgdat_resize_lock(pgdat
, &flags
);
869 if (ms
->section_mem_map
) {
870 usemap
= ms
->pageblock_flags
;
871 memmap
= sparse_decode_mem_map(ms
->section_mem_map
,
873 ms
->section_mem_map
= 0;
874 ms
->pageblock_flags
= NULL
;
876 pgdat_resize_unlock(pgdat
, &flags
);
878 clear_hwpoisoned_pages(memmap
+ map_offset
,
879 PAGES_PER_SECTION
- map_offset
);
880 free_section_usemap(memmap
, usemap
);
882 #endif /* CONFIG_MEMORY_HOTREMOVE */
883 #endif /* CONFIG_MEMORY_HOTPLUG */