2 * Copyright (c) 2007-2011 Nicira, Inc.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public License
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
21 #include <linux/uaccess.h>
22 #include <linux/netdevice.h>
23 #include <linux/etherdevice.h>
24 #include <linux/if_ether.h>
25 #include <linux/if_vlan.h>
26 #include <net/llc_pdu.h>
27 #include <linux/kernel.h>
28 #include <linux/jhash.h>
29 #include <linux/jiffies.h>
30 #include <linux/llc.h>
31 #include <linux/module.h>
33 #include <linux/rcupdate.h>
34 #include <linux/if_arp.h>
36 #include <linux/ipv6.h>
37 #include <linux/tcp.h>
38 #include <linux/udp.h>
39 #include <linux/icmp.h>
40 #include <linux/icmpv6.h>
41 #include <linux/rculist.h>
44 #include <net/ndisc.h>
46 static struct kmem_cache
*flow_cache
;
48 static int check_header(struct sk_buff
*skb
, int len
)
50 if (unlikely(skb
->len
< len
))
52 if (unlikely(!pskb_may_pull(skb
, len
)))
57 static bool arphdr_ok(struct sk_buff
*skb
)
59 return pskb_may_pull(skb
, skb_network_offset(skb
) +
60 sizeof(struct arp_eth_header
));
63 static int check_iphdr(struct sk_buff
*skb
)
65 unsigned int nh_ofs
= skb_network_offset(skb
);
69 err
= check_header(skb
, nh_ofs
+ sizeof(struct iphdr
));
73 ip_len
= ip_hdrlen(skb
);
74 if (unlikely(ip_len
< sizeof(struct iphdr
) ||
75 skb
->len
< nh_ofs
+ ip_len
))
78 skb_set_transport_header(skb
, nh_ofs
+ ip_len
);
82 static bool tcphdr_ok(struct sk_buff
*skb
)
84 int th_ofs
= skb_transport_offset(skb
);
87 if (unlikely(!pskb_may_pull(skb
, th_ofs
+ sizeof(struct tcphdr
))))
90 tcp_len
= tcp_hdrlen(skb
);
91 if (unlikely(tcp_len
< sizeof(struct tcphdr
) ||
92 skb
->len
< th_ofs
+ tcp_len
))
98 static bool udphdr_ok(struct sk_buff
*skb
)
100 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
101 sizeof(struct udphdr
));
104 static bool icmphdr_ok(struct sk_buff
*skb
)
106 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
107 sizeof(struct icmphdr
));
110 u64
ovs_flow_used_time(unsigned long flow_jiffies
)
112 struct timespec cur_ts
;
115 ktime_get_ts(&cur_ts
);
116 idle_ms
= jiffies_to_msecs(jiffies
- flow_jiffies
);
117 cur_ms
= (u64
)cur_ts
.tv_sec
* MSEC_PER_SEC
+
118 cur_ts
.tv_nsec
/ NSEC_PER_MSEC
;
120 return cur_ms
- idle_ms
;
123 #define SW_FLOW_KEY_OFFSET(field) \
124 (offsetof(struct sw_flow_key, field) + \
125 FIELD_SIZEOF(struct sw_flow_key, field))
127 static int parse_ipv6hdr(struct sk_buff
*skb
, struct sw_flow_key
*key
,
130 unsigned int nh_ofs
= skb_network_offset(skb
);
138 *key_lenp
= SW_FLOW_KEY_OFFSET(ipv6
.label
);
140 err
= check_header(skb
, nh_ofs
+ sizeof(*nh
));
145 nexthdr
= nh
->nexthdr
;
146 payload_ofs
= (u8
*)(nh
+ 1) - skb
->data
;
148 key
->ip
.proto
= NEXTHDR_NONE
;
149 key
->ip
.tos
= ipv6_get_dsfield(nh
);
150 key
->ip
.ttl
= nh
->hop_limit
;
151 key
->ipv6
.label
= *(__be32
*)nh
& htonl(IPV6_FLOWINFO_FLOWLABEL
);
152 key
->ipv6
.addr
.src
= nh
->saddr
;
153 key
->ipv6
.addr
.dst
= nh
->daddr
;
155 payload_ofs
= ipv6_skip_exthdr(skb
, payload_ofs
, &nexthdr
, &frag_off
);
156 if (unlikely(payload_ofs
< 0))
160 if (frag_off
& htons(~0x7))
161 key
->ip
.frag
= OVS_FRAG_TYPE_LATER
;
163 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
166 nh_len
= payload_ofs
- nh_ofs
;
167 skb_set_transport_header(skb
, nh_ofs
+ nh_len
);
168 key
->ip
.proto
= nexthdr
;
172 static bool icmp6hdr_ok(struct sk_buff
*skb
)
174 return pskb_may_pull(skb
, skb_transport_offset(skb
) +
175 sizeof(struct icmp6hdr
));
178 #define TCP_FLAGS_OFFSET 13
179 #define TCP_FLAG_MASK 0x3f
181 void ovs_flow_used(struct sw_flow
*flow
, struct sk_buff
*skb
)
185 if ((flow
->key
.eth
.type
== htons(ETH_P_IP
) ||
186 flow
->key
.eth
.type
== htons(ETH_P_IPV6
)) &&
187 flow
->key
.ip
.proto
== IPPROTO_TCP
&&
188 likely(skb
->len
>= skb_transport_offset(skb
) + sizeof(struct tcphdr
))) {
189 u8
*tcp
= (u8
*)tcp_hdr(skb
);
190 tcp_flags
= *(tcp
+ TCP_FLAGS_OFFSET
) & TCP_FLAG_MASK
;
193 spin_lock(&flow
->lock
);
194 flow
->used
= jiffies
;
195 flow
->packet_count
++;
196 flow
->byte_count
+= skb
->len
;
197 flow
->tcp_flags
|= tcp_flags
;
198 spin_unlock(&flow
->lock
);
201 struct sw_flow_actions
*ovs_flow_actions_alloc(const struct nlattr
*actions
)
203 int actions_len
= nla_len(actions
);
204 struct sw_flow_actions
*sfa
;
206 if (actions_len
> MAX_ACTIONS_BUFSIZE
)
207 return ERR_PTR(-EINVAL
);
209 sfa
= kmalloc(sizeof(*sfa
) + actions_len
, GFP_KERNEL
);
211 return ERR_PTR(-ENOMEM
);
213 sfa
->actions_len
= actions_len
;
214 memcpy(sfa
->actions
, nla_data(actions
), actions_len
);
218 struct sw_flow
*ovs_flow_alloc(void)
220 struct sw_flow
*flow
;
222 flow
= kmem_cache_alloc(flow_cache
, GFP_KERNEL
);
224 return ERR_PTR(-ENOMEM
);
226 spin_lock_init(&flow
->lock
);
227 flow
->sf_acts
= NULL
;
232 static struct hlist_head
*find_bucket(struct flow_table
*table
, u32 hash
)
234 hash
= jhash_1word(hash
, table
->hash_seed
);
235 return flex_array_get(table
->buckets
,
236 (hash
& (table
->n_buckets
- 1)));
239 static struct flex_array
*alloc_buckets(unsigned int n_buckets
)
241 struct flex_array
*buckets
;
244 buckets
= flex_array_alloc(sizeof(struct hlist_head
*),
245 n_buckets
, GFP_KERNEL
);
249 err
= flex_array_prealloc(buckets
, 0, n_buckets
, GFP_KERNEL
);
251 flex_array_free(buckets
);
255 for (i
= 0; i
< n_buckets
; i
++)
256 INIT_HLIST_HEAD((struct hlist_head
*)
257 flex_array_get(buckets
, i
));
262 static void free_buckets(struct flex_array
*buckets
)
264 flex_array_free(buckets
);
267 struct flow_table
*ovs_flow_tbl_alloc(int new_size
)
269 struct flow_table
*table
= kmalloc(sizeof(*table
), GFP_KERNEL
);
274 table
->buckets
= alloc_buckets(new_size
);
276 if (!table
->buckets
) {
280 table
->n_buckets
= new_size
;
283 table
->keep_flows
= false;
284 get_random_bytes(&table
->hash_seed
, sizeof(u32
));
289 void ovs_flow_tbl_destroy(struct flow_table
*table
)
296 if (table
->keep_flows
)
299 for (i
= 0; i
< table
->n_buckets
; i
++) {
300 struct sw_flow
*flow
;
301 struct hlist_head
*head
= flex_array_get(table
->buckets
, i
);
302 struct hlist_node
*node
, *n
;
303 int ver
= table
->node_ver
;
305 hlist_for_each_entry_safe(flow
, node
, n
, head
, hash_node
[ver
]) {
306 hlist_del_rcu(&flow
->hash_node
[ver
]);
312 free_buckets(table
->buckets
);
316 static void flow_tbl_destroy_rcu_cb(struct rcu_head
*rcu
)
318 struct flow_table
*table
= container_of(rcu
, struct flow_table
, rcu
);
320 ovs_flow_tbl_destroy(table
);
323 void ovs_flow_tbl_deferred_destroy(struct flow_table
*table
)
328 call_rcu(&table
->rcu
, flow_tbl_destroy_rcu_cb
);
331 struct sw_flow
*ovs_flow_tbl_next(struct flow_table
*table
, u32
*bucket
, u32
*last
)
333 struct sw_flow
*flow
;
334 struct hlist_head
*head
;
335 struct hlist_node
*n
;
339 ver
= table
->node_ver
;
340 while (*bucket
< table
->n_buckets
) {
342 head
= flex_array_get(table
->buckets
, *bucket
);
343 hlist_for_each_entry_rcu(flow
, n
, head
, hash_node
[ver
]) {
358 static void flow_table_copy_flows(struct flow_table
*old
, struct flow_table
*new)
363 old_ver
= old
->node_ver
;
364 new->node_ver
= !old_ver
;
366 /* Insert in new table. */
367 for (i
= 0; i
< old
->n_buckets
; i
++) {
368 struct sw_flow
*flow
;
369 struct hlist_head
*head
;
370 struct hlist_node
*n
;
372 head
= flex_array_get(old
->buckets
, i
);
374 hlist_for_each_entry(flow
, n
, head
, hash_node
[old_ver
])
375 ovs_flow_tbl_insert(new, flow
);
377 old
->keep_flows
= true;
380 static struct flow_table
*__flow_tbl_rehash(struct flow_table
*table
, int n_buckets
)
382 struct flow_table
*new_table
;
384 new_table
= ovs_flow_tbl_alloc(n_buckets
);
386 return ERR_PTR(-ENOMEM
);
388 flow_table_copy_flows(table
, new_table
);
393 struct flow_table
*ovs_flow_tbl_rehash(struct flow_table
*table
)
395 return __flow_tbl_rehash(table
, table
->n_buckets
);
398 struct flow_table
*ovs_flow_tbl_expand(struct flow_table
*table
)
400 return __flow_tbl_rehash(table
, table
->n_buckets
* 2);
403 void ovs_flow_free(struct sw_flow
*flow
)
408 kfree((struct sf_flow_acts __force
*)flow
->sf_acts
);
409 kmem_cache_free(flow_cache
, flow
);
412 /* RCU callback used by ovs_flow_deferred_free. */
413 static void rcu_free_flow_callback(struct rcu_head
*rcu
)
415 struct sw_flow
*flow
= container_of(rcu
, struct sw_flow
, rcu
);
420 /* Schedules 'flow' to be freed after the next RCU grace period.
421 * The caller must hold rcu_read_lock for this to be sensible. */
422 void ovs_flow_deferred_free(struct sw_flow
*flow
)
424 call_rcu(&flow
->rcu
, rcu_free_flow_callback
);
427 /* Schedules 'sf_acts' to be freed after the next RCU grace period.
428 * The caller must hold rcu_read_lock for this to be sensible. */
429 void ovs_flow_deferred_free_acts(struct sw_flow_actions
*sf_acts
)
431 kfree_rcu(sf_acts
, rcu
);
434 static int parse_vlan(struct sk_buff
*skb
, struct sw_flow_key
*key
)
437 __be16 eth_type
; /* ETH_P_8021Q */
440 struct qtag_prefix
*qp
;
442 if (unlikely(skb
->len
< sizeof(struct qtag_prefix
) + sizeof(__be16
)))
445 if (unlikely(!pskb_may_pull(skb
, sizeof(struct qtag_prefix
) +
449 qp
= (struct qtag_prefix
*) skb
->data
;
450 key
->eth
.tci
= qp
->tci
| htons(VLAN_TAG_PRESENT
);
451 __skb_pull(skb
, sizeof(struct qtag_prefix
));
456 static __be16
parse_ethertype(struct sk_buff
*skb
)
458 struct llc_snap_hdr
{
459 u8 dsap
; /* Always 0xAA */
460 u8 ssap
; /* Always 0xAA */
465 struct llc_snap_hdr
*llc
;
468 proto
= *(__be16
*) skb
->data
;
469 __skb_pull(skb
, sizeof(__be16
));
471 if (ntohs(proto
) >= 1536)
474 if (skb
->len
< sizeof(struct llc_snap_hdr
))
475 return htons(ETH_P_802_2
);
477 if (unlikely(!pskb_may_pull(skb
, sizeof(struct llc_snap_hdr
))))
480 llc
= (struct llc_snap_hdr
*) skb
->data
;
481 if (llc
->dsap
!= LLC_SAP_SNAP
||
482 llc
->ssap
!= LLC_SAP_SNAP
||
483 (llc
->oui
[0] | llc
->oui
[1] | llc
->oui
[2]) != 0)
484 return htons(ETH_P_802_2
);
486 __skb_pull(skb
, sizeof(struct llc_snap_hdr
));
488 if (ntohs(llc
->ethertype
) >= 1536)
489 return llc
->ethertype
;
491 return htons(ETH_P_802_2
);
494 static int parse_icmpv6(struct sk_buff
*skb
, struct sw_flow_key
*key
,
495 int *key_lenp
, int nh_len
)
497 struct icmp6hdr
*icmp
= icmp6_hdr(skb
);
501 /* The ICMPv6 type and code fields use the 16-bit transport port
502 * fields, so we need to store them in 16-bit network byte order.
504 key
->ipv6
.tp
.src
= htons(icmp
->icmp6_type
);
505 key
->ipv6
.tp
.dst
= htons(icmp
->icmp6_code
);
506 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
508 if (icmp
->icmp6_code
== 0 &&
509 (icmp
->icmp6_type
== NDISC_NEIGHBOUR_SOLICITATION
||
510 icmp
->icmp6_type
== NDISC_NEIGHBOUR_ADVERTISEMENT
)) {
511 int icmp_len
= skb
->len
- skb_transport_offset(skb
);
515 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.nd
);
517 /* In order to process neighbor discovery options, we need the
520 if (unlikely(icmp_len
< sizeof(*nd
)))
522 if (unlikely(skb_linearize(skb
))) {
527 nd
= (struct nd_msg
*)skb_transport_header(skb
);
528 key
->ipv6
.nd
.target
= nd
->target
;
529 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.nd
);
531 icmp_len
-= sizeof(*nd
);
533 while (icmp_len
>= 8) {
534 struct nd_opt_hdr
*nd_opt
=
535 (struct nd_opt_hdr
*)(nd
->opt
+ offset
);
536 int opt_len
= nd_opt
->nd_opt_len
* 8;
538 if (unlikely(!opt_len
|| opt_len
> icmp_len
))
541 /* Store the link layer address if the appropriate
542 * option is provided. It is considered an error if
543 * the same link layer option is specified twice.
545 if (nd_opt
->nd_opt_type
== ND_OPT_SOURCE_LL_ADDR
547 if (unlikely(!is_zero_ether_addr(key
->ipv6
.nd
.sll
)))
549 memcpy(key
->ipv6
.nd
.sll
,
550 &nd
->opt
[offset
+sizeof(*nd_opt
)], ETH_ALEN
);
551 } else if (nd_opt
->nd_opt_type
== ND_OPT_TARGET_LL_ADDR
553 if (unlikely(!is_zero_ether_addr(key
->ipv6
.nd
.tll
)))
555 memcpy(key
->ipv6
.nd
.tll
,
556 &nd
->opt
[offset
+sizeof(*nd_opt
)], ETH_ALEN
);
567 memset(&key
->ipv6
.nd
.target
, 0, sizeof(key
->ipv6
.nd
.target
));
568 memset(key
->ipv6
.nd
.sll
, 0, sizeof(key
->ipv6
.nd
.sll
));
569 memset(key
->ipv6
.nd
.tll
, 0, sizeof(key
->ipv6
.nd
.tll
));
577 * ovs_flow_extract - extracts a flow key from an Ethernet frame.
578 * @skb: sk_buff that contains the frame, with skb->data pointing to the
580 * @in_port: port number on which @skb was received.
581 * @key: output flow key
582 * @key_lenp: length of output flow key
584 * The caller must ensure that skb->len >= ETH_HLEN.
586 * Returns 0 if successful, otherwise a negative errno value.
588 * Initializes @skb header pointers as follows:
590 * - skb->mac_header: the Ethernet header.
592 * - skb->network_header: just past the Ethernet header, or just past the
593 * VLAN header, to the first byte of the Ethernet payload.
595 * - skb->transport_header: If key->dl_type is ETH_P_IP or ETH_P_IPV6
596 * on output, then just past the IP header, if one is present and
597 * of a correct length, otherwise the same as skb->network_header.
598 * For other key->dl_type values it is left untouched.
600 int ovs_flow_extract(struct sk_buff
*skb
, u16 in_port
, struct sw_flow_key
*key
,
604 int key_len
= SW_FLOW_KEY_OFFSET(eth
);
607 memset(key
, 0, sizeof(*key
));
609 key
->phy
.priority
= skb
->priority
;
610 key
->phy
.in_port
= in_port
;
611 key
->phy
.skb_mark
= skb
->mark
;
613 skb_reset_mac_header(skb
);
615 /* Link layer. We are guaranteed to have at least the 14 byte Ethernet
616 * header in the linear data area.
619 memcpy(key
->eth
.src
, eth
->h_source
, ETH_ALEN
);
620 memcpy(key
->eth
.dst
, eth
->h_dest
, ETH_ALEN
);
622 __skb_pull(skb
, 2 * ETH_ALEN
);
624 if (vlan_tx_tag_present(skb
))
625 key
->eth
.tci
= htons(skb
->vlan_tci
);
626 else if (eth
->h_proto
== htons(ETH_P_8021Q
))
627 if (unlikely(parse_vlan(skb
, key
)))
630 key
->eth
.type
= parse_ethertype(skb
);
631 if (unlikely(key
->eth
.type
== htons(0)))
634 skb_reset_network_header(skb
);
635 __skb_push(skb
, skb
->data
- skb_mac_header(skb
));
638 if (key
->eth
.type
== htons(ETH_P_IP
)) {
642 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.addr
);
644 error
= check_iphdr(skb
);
645 if (unlikely(error
)) {
646 if (error
== -EINVAL
) {
647 skb
->transport_header
= skb
->network_header
;
654 key
->ipv4
.addr
.src
= nh
->saddr
;
655 key
->ipv4
.addr
.dst
= nh
->daddr
;
657 key
->ip
.proto
= nh
->protocol
;
658 key
->ip
.tos
= nh
->tos
;
659 key
->ip
.ttl
= nh
->ttl
;
661 offset
= nh
->frag_off
& htons(IP_OFFSET
);
663 key
->ip
.frag
= OVS_FRAG_TYPE_LATER
;
666 if (nh
->frag_off
& htons(IP_MF
) ||
667 skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP
)
668 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
670 /* Transport layer. */
671 if (key
->ip
.proto
== IPPROTO_TCP
) {
672 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
673 if (tcphdr_ok(skb
)) {
674 struct tcphdr
*tcp
= tcp_hdr(skb
);
675 key
->ipv4
.tp
.src
= tcp
->source
;
676 key
->ipv4
.tp
.dst
= tcp
->dest
;
678 } else if (key
->ip
.proto
== IPPROTO_UDP
) {
679 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
680 if (udphdr_ok(skb
)) {
681 struct udphdr
*udp
= udp_hdr(skb
);
682 key
->ipv4
.tp
.src
= udp
->source
;
683 key
->ipv4
.tp
.dst
= udp
->dest
;
685 } else if (key
->ip
.proto
== IPPROTO_ICMP
) {
686 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
687 if (icmphdr_ok(skb
)) {
688 struct icmphdr
*icmp
= icmp_hdr(skb
);
689 /* The ICMP type and code fields use the 16-bit
690 * transport port fields, so we need to store
691 * them in 16-bit network byte order. */
692 key
->ipv4
.tp
.src
= htons(icmp
->type
);
693 key
->ipv4
.tp
.dst
= htons(icmp
->code
);
697 } else if ((key
->eth
.type
== htons(ETH_P_ARP
) ||
698 key
->eth
.type
== htons(ETH_P_RARP
)) && arphdr_ok(skb
)) {
699 struct arp_eth_header
*arp
;
701 arp
= (struct arp_eth_header
*)skb_network_header(skb
);
703 if (arp
->ar_hrd
== htons(ARPHRD_ETHER
)
704 && arp
->ar_pro
== htons(ETH_P_IP
)
705 && arp
->ar_hln
== ETH_ALEN
706 && arp
->ar_pln
== 4) {
708 /* We only match on the lower 8 bits of the opcode. */
709 if (ntohs(arp
->ar_op
) <= 0xff)
710 key
->ip
.proto
= ntohs(arp
->ar_op
);
711 memcpy(&key
->ipv4
.addr
.src
, arp
->ar_sip
, sizeof(key
->ipv4
.addr
.src
));
712 memcpy(&key
->ipv4
.addr
.dst
, arp
->ar_tip
, sizeof(key
->ipv4
.addr
.dst
));
713 memcpy(key
->ipv4
.arp
.sha
, arp
->ar_sha
, ETH_ALEN
);
714 memcpy(key
->ipv4
.arp
.tha
, arp
->ar_tha
, ETH_ALEN
);
715 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.arp
);
717 } else if (key
->eth
.type
== htons(ETH_P_IPV6
)) {
718 int nh_len
; /* IPv6 Header + Extensions */
720 nh_len
= parse_ipv6hdr(skb
, key
, &key_len
);
721 if (unlikely(nh_len
< 0)) {
722 if (nh_len
== -EINVAL
)
723 skb
->transport_header
= skb
->network_header
;
729 if (key
->ip
.frag
== OVS_FRAG_TYPE_LATER
)
731 if (skb_shinfo(skb
)->gso_type
& SKB_GSO_UDP
)
732 key
->ip
.frag
= OVS_FRAG_TYPE_FIRST
;
734 /* Transport layer. */
735 if (key
->ip
.proto
== NEXTHDR_TCP
) {
736 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
737 if (tcphdr_ok(skb
)) {
738 struct tcphdr
*tcp
= tcp_hdr(skb
);
739 key
->ipv6
.tp
.src
= tcp
->source
;
740 key
->ipv6
.tp
.dst
= tcp
->dest
;
742 } else if (key
->ip
.proto
== NEXTHDR_UDP
) {
743 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
744 if (udphdr_ok(skb
)) {
745 struct udphdr
*udp
= udp_hdr(skb
);
746 key
->ipv6
.tp
.src
= udp
->source
;
747 key
->ipv6
.tp
.dst
= udp
->dest
;
749 } else if (key
->ip
.proto
== NEXTHDR_ICMP
) {
750 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
751 if (icmp6hdr_ok(skb
)) {
752 error
= parse_icmpv6(skb
, key
, &key_len
, nh_len
);
764 u32
ovs_flow_hash(const struct sw_flow_key
*key
, int key_len
)
766 return jhash2((u32
*)key
, DIV_ROUND_UP(key_len
, sizeof(u32
)), 0);
769 struct sw_flow
*ovs_flow_tbl_lookup(struct flow_table
*table
,
770 struct sw_flow_key
*key
, int key_len
)
772 struct sw_flow
*flow
;
773 struct hlist_node
*n
;
774 struct hlist_head
*head
;
777 hash
= ovs_flow_hash(key
, key_len
);
779 head
= find_bucket(table
, hash
);
780 hlist_for_each_entry_rcu(flow
, n
, head
, hash_node
[table
->node_ver
]) {
782 if (flow
->hash
== hash
&&
783 !memcmp(&flow
->key
, key
, key_len
)) {
790 void ovs_flow_tbl_insert(struct flow_table
*table
, struct sw_flow
*flow
)
792 struct hlist_head
*head
;
794 head
= find_bucket(table
, flow
->hash
);
795 hlist_add_head_rcu(&flow
->hash_node
[table
->node_ver
], head
);
799 void ovs_flow_tbl_remove(struct flow_table
*table
, struct sw_flow
*flow
)
801 hlist_del_rcu(&flow
->hash_node
[table
->node_ver
]);
803 BUG_ON(table
->count
< 0);
806 /* The size of the argument for each %OVS_KEY_ATTR_* Netlink attribute. */
807 const int ovs_key_lens
[OVS_KEY_ATTR_MAX
+ 1] = {
808 [OVS_KEY_ATTR_ENCAP
] = -1,
809 [OVS_KEY_ATTR_PRIORITY
] = sizeof(u32
),
810 [OVS_KEY_ATTR_IN_PORT
] = sizeof(u32
),
811 [OVS_KEY_ATTR_SKB_MARK
] = sizeof(u32
),
812 [OVS_KEY_ATTR_ETHERNET
] = sizeof(struct ovs_key_ethernet
),
813 [OVS_KEY_ATTR_VLAN
] = sizeof(__be16
),
814 [OVS_KEY_ATTR_ETHERTYPE
] = sizeof(__be16
),
815 [OVS_KEY_ATTR_IPV4
] = sizeof(struct ovs_key_ipv4
),
816 [OVS_KEY_ATTR_IPV6
] = sizeof(struct ovs_key_ipv6
),
817 [OVS_KEY_ATTR_TCP
] = sizeof(struct ovs_key_tcp
),
818 [OVS_KEY_ATTR_UDP
] = sizeof(struct ovs_key_udp
),
819 [OVS_KEY_ATTR_ICMP
] = sizeof(struct ovs_key_icmp
),
820 [OVS_KEY_ATTR_ICMPV6
] = sizeof(struct ovs_key_icmpv6
),
821 [OVS_KEY_ATTR_ARP
] = sizeof(struct ovs_key_arp
),
822 [OVS_KEY_ATTR_ND
] = sizeof(struct ovs_key_nd
),
825 static int ipv4_flow_from_nlattrs(struct sw_flow_key
*swkey
, int *key_len
,
826 const struct nlattr
*a
[], u32
*attrs
)
828 const struct ovs_key_icmp
*icmp_key
;
829 const struct ovs_key_tcp
*tcp_key
;
830 const struct ovs_key_udp
*udp_key
;
832 switch (swkey
->ip
.proto
) {
834 if (!(*attrs
& (1 << OVS_KEY_ATTR_TCP
)))
836 *attrs
&= ~(1 << OVS_KEY_ATTR_TCP
);
838 *key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
839 tcp_key
= nla_data(a
[OVS_KEY_ATTR_TCP
]);
840 swkey
->ipv4
.tp
.src
= tcp_key
->tcp_src
;
841 swkey
->ipv4
.tp
.dst
= tcp_key
->tcp_dst
;
845 if (!(*attrs
& (1 << OVS_KEY_ATTR_UDP
)))
847 *attrs
&= ~(1 << OVS_KEY_ATTR_UDP
);
849 *key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
850 udp_key
= nla_data(a
[OVS_KEY_ATTR_UDP
]);
851 swkey
->ipv4
.tp
.src
= udp_key
->udp_src
;
852 swkey
->ipv4
.tp
.dst
= udp_key
->udp_dst
;
856 if (!(*attrs
& (1 << OVS_KEY_ATTR_ICMP
)))
858 *attrs
&= ~(1 << OVS_KEY_ATTR_ICMP
);
860 *key_len
= SW_FLOW_KEY_OFFSET(ipv4
.tp
);
861 icmp_key
= nla_data(a
[OVS_KEY_ATTR_ICMP
]);
862 swkey
->ipv4
.tp
.src
= htons(icmp_key
->icmp_type
);
863 swkey
->ipv4
.tp
.dst
= htons(icmp_key
->icmp_code
);
870 static int ipv6_flow_from_nlattrs(struct sw_flow_key
*swkey
, int *key_len
,
871 const struct nlattr
*a
[], u32
*attrs
)
873 const struct ovs_key_icmpv6
*icmpv6_key
;
874 const struct ovs_key_tcp
*tcp_key
;
875 const struct ovs_key_udp
*udp_key
;
877 switch (swkey
->ip
.proto
) {
879 if (!(*attrs
& (1 << OVS_KEY_ATTR_TCP
)))
881 *attrs
&= ~(1 << OVS_KEY_ATTR_TCP
);
883 *key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
884 tcp_key
= nla_data(a
[OVS_KEY_ATTR_TCP
]);
885 swkey
->ipv6
.tp
.src
= tcp_key
->tcp_src
;
886 swkey
->ipv6
.tp
.dst
= tcp_key
->tcp_dst
;
890 if (!(*attrs
& (1 << OVS_KEY_ATTR_UDP
)))
892 *attrs
&= ~(1 << OVS_KEY_ATTR_UDP
);
894 *key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
895 udp_key
= nla_data(a
[OVS_KEY_ATTR_UDP
]);
896 swkey
->ipv6
.tp
.src
= udp_key
->udp_src
;
897 swkey
->ipv6
.tp
.dst
= udp_key
->udp_dst
;
901 if (!(*attrs
& (1 << OVS_KEY_ATTR_ICMPV6
)))
903 *attrs
&= ~(1 << OVS_KEY_ATTR_ICMPV6
);
905 *key_len
= SW_FLOW_KEY_OFFSET(ipv6
.tp
);
906 icmpv6_key
= nla_data(a
[OVS_KEY_ATTR_ICMPV6
]);
907 swkey
->ipv6
.tp
.src
= htons(icmpv6_key
->icmpv6_type
);
908 swkey
->ipv6
.tp
.dst
= htons(icmpv6_key
->icmpv6_code
);
910 if (swkey
->ipv6
.tp
.src
== htons(NDISC_NEIGHBOUR_SOLICITATION
) ||
911 swkey
->ipv6
.tp
.src
== htons(NDISC_NEIGHBOUR_ADVERTISEMENT
)) {
912 const struct ovs_key_nd
*nd_key
;
914 if (!(*attrs
& (1 << OVS_KEY_ATTR_ND
)))
916 *attrs
&= ~(1 << OVS_KEY_ATTR_ND
);
918 *key_len
= SW_FLOW_KEY_OFFSET(ipv6
.nd
);
919 nd_key
= nla_data(a
[OVS_KEY_ATTR_ND
]);
920 memcpy(&swkey
->ipv6
.nd
.target
, nd_key
->nd_target
,
921 sizeof(swkey
->ipv6
.nd
.target
));
922 memcpy(swkey
->ipv6
.nd
.sll
, nd_key
->nd_sll
, ETH_ALEN
);
923 memcpy(swkey
->ipv6
.nd
.tll
, nd_key
->nd_tll
, ETH_ALEN
);
931 static int parse_flow_nlattrs(const struct nlattr
*attr
,
932 const struct nlattr
*a
[], u32
*attrsp
)
934 const struct nlattr
*nla
;
939 nla_for_each_nested(nla
, attr
, rem
) {
940 u16 type
= nla_type(nla
);
943 if (type
> OVS_KEY_ATTR_MAX
|| attrs
& (1 << type
))
946 expected_len
= ovs_key_lens
[type
];
947 if (nla_len(nla
) != expected_len
&& expected_len
!= -1)
961 * ovs_flow_from_nlattrs - parses Netlink attributes into a flow key.
962 * @swkey: receives the extracted flow key.
963 * @key_lenp: number of bytes used in @swkey.
964 * @attr: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
967 int ovs_flow_from_nlattrs(struct sw_flow_key
*swkey
, int *key_lenp
,
968 const struct nlattr
*attr
)
970 const struct nlattr
*a
[OVS_KEY_ATTR_MAX
+ 1];
971 const struct ovs_key_ethernet
*eth_key
;
976 memset(swkey
, 0, sizeof(struct sw_flow_key
));
977 key_len
= SW_FLOW_KEY_OFFSET(eth
);
979 err
= parse_flow_nlattrs(attr
, a
, &attrs
);
983 /* Metadata attributes. */
984 if (attrs
& (1 << OVS_KEY_ATTR_PRIORITY
)) {
985 swkey
->phy
.priority
= nla_get_u32(a
[OVS_KEY_ATTR_PRIORITY
]);
986 attrs
&= ~(1 << OVS_KEY_ATTR_PRIORITY
);
988 if (attrs
& (1 << OVS_KEY_ATTR_IN_PORT
)) {
989 u32 in_port
= nla_get_u32(a
[OVS_KEY_ATTR_IN_PORT
]);
990 if (in_port
>= DP_MAX_PORTS
)
992 swkey
->phy
.in_port
= in_port
;
993 attrs
&= ~(1 << OVS_KEY_ATTR_IN_PORT
);
995 swkey
->phy
.in_port
= DP_MAX_PORTS
;
997 if (attrs
& (1 << OVS_KEY_ATTR_SKB_MARK
)) {
998 swkey
->phy
.skb_mark
= nla_get_u32(a
[OVS_KEY_ATTR_SKB_MARK
]);
999 attrs
&= ~(1 << OVS_KEY_ATTR_SKB_MARK
);
1002 /* Data attributes. */
1003 if (!(attrs
& (1 << OVS_KEY_ATTR_ETHERNET
)))
1005 attrs
&= ~(1 << OVS_KEY_ATTR_ETHERNET
);
1007 eth_key
= nla_data(a
[OVS_KEY_ATTR_ETHERNET
]);
1008 memcpy(swkey
->eth
.src
, eth_key
->eth_src
, ETH_ALEN
);
1009 memcpy(swkey
->eth
.dst
, eth_key
->eth_dst
, ETH_ALEN
);
1011 if (attrs
& (1u << OVS_KEY_ATTR_ETHERTYPE
) &&
1012 nla_get_be16(a
[OVS_KEY_ATTR_ETHERTYPE
]) == htons(ETH_P_8021Q
)) {
1013 const struct nlattr
*encap
;
1016 if (attrs
!= ((1 << OVS_KEY_ATTR_VLAN
) |
1017 (1 << OVS_KEY_ATTR_ETHERTYPE
) |
1018 (1 << OVS_KEY_ATTR_ENCAP
)))
1021 encap
= a
[OVS_KEY_ATTR_ENCAP
];
1022 tci
= nla_get_be16(a
[OVS_KEY_ATTR_VLAN
]);
1023 if (tci
& htons(VLAN_TAG_PRESENT
)) {
1024 swkey
->eth
.tci
= tci
;
1026 err
= parse_flow_nlattrs(encap
, a
, &attrs
);
1030 /* Corner case for truncated 802.1Q header. */
1034 swkey
->eth
.type
= htons(ETH_P_8021Q
);
1035 *key_lenp
= key_len
;
1042 if (attrs
& (1 << OVS_KEY_ATTR_ETHERTYPE
)) {
1043 swkey
->eth
.type
= nla_get_be16(a
[OVS_KEY_ATTR_ETHERTYPE
]);
1044 if (ntohs(swkey
->eth
.type
) < 1536)
1046 attrs
&= ~(1 << OVS_KEY_ATTR_ETHERTYPE
);
1048 swkey
->eth
.type
= htons(ETH_P_802_2
);
1051 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1052 const struct ovs_key_ipv4
*ipv4_key
;
1054 if (!(attrs
& (1 << OVS_KEY_ATTR_IPV4
)))
1056 attrs
&= ~(1 << OVS_KEY_ATTR_IPV4
);
1058 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.addr
);
1059 ipv4_key
= nla_data(a
[OVS_KEY_ATTR_IPV4
]);
1060 if (ipv4_key
->ipv4_frag
> OVS_FRAG_TYPE_MAX
)
1062 swkey
->ip
.proto
= ipv4_key
->ipv4_proto
;
1063 swkey
->ip
.tos
= ipv4_key
->ipv4_tos
;
1064 swkey
->ip
.ttl
= ipv4_key
->ipv4_ttl
;
1065 swkey
->ip
.frag
= ipv4_key
->ipv4_frag
;
1066 swkey
->ipv4
.addr
.src
= ipv4_key
->ipv4_src
;
1067 swkey
->ipv4
.addr
.dst
= ipv4_key
->ipv4_dst
;
1069 if (swkey
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
1070 err
= ipv4_flow_from_nlattrs(swkey
, &key_len
, a
, &attrs
);
1074 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1075 const struct ovs_key_ipv6
*ipv6_key
;
1077 if (!(attrs
& (1 << OVS_KEY_ATTR_IPV6
)))
1079 attrs
&= ~(1 << OVS_KEY_ATTR_IPV6
);
1081 key_len
= SW_FLOW_KEY_OFFSET(ipv6
.label
);
1082 ipv6_key
= nla_data(a
[OVS_KEY_ATTR_IPV6
]);
1083 if (ipv6_key
->ipv6_frag
> OVS_FRAG_TYPE_MAX
)
1085 swkey
->ipv6
.label
= ipv6_key
->ipv6_label
;
1086 swkey
->ip
.proto
= ipv6_key
->ipv6_proto
;
1087 swkey
->ip
.tos
= ipv6_key
->ipv6_tclass
;
1088 swkey
->ip
.ttl
= ipv6_key
->ipv6_hlimit
;
1089 swkey
->ip
.frag
= ipv6_key
->ipv6_frag
;
1090 memcpy(&swkey
->ipv6
.addr
.src
, ipv6_key
->ipv6_src
,
1091 sizeof(swkey
->ipv6
.addr
.src
));
1092 memcpy(&swkey
->ipv6
.addr
.dst
, ipv6_key
->ipv6_dst
,
1093 sizeof(swkey
->ipv6
.addr
.dst
));
1095 if (swkey
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
1096 err
= ipv6_flow_from_nlattrs(swkey
, &key_len
, a
, &attrs
);
1100 } else if (swkey
->eth
.type
== htons(ETH_P_ARP
) ||
1101 swkey
->eth
.type
== htons(ETH_P_RARP
)) {
1102 const struct ovs_key_arp
*arp_key
;
1104 if (!(attrs
& (1 << OVS_KEY_ATTR_ARP
)))
1106 attrs
&= ~(1 << OVS_KEY_ATTR_ARP
);
1108 key_len
= SW_FLOW_KEY_OFFSET(ipv4
.arp
);
1109 arp_key
= nla_data(a
[OVS_KEY_ATTR_ARP
]);
1110 swkey
->ipv4
.addr
.src
= arp_key
->arp_sip
;
1111 swkey
->ipv4
.addr
.dst
= arp_key
->arp_tip
;
1112 if (arp_key
->arp_op
& htons(0xff00))
1114 swkey
->ip
.proto
= ntohs(arp_key
->arp_op
);
1115 memcpy(swkey
->ipv4
.arp
.sha
, arp_key
->arp_sha
, ETH_ALEN
);
1116 memcpy(swkey
->ipv4
.arp
.tha
, arp_key
->arp_tha
, ETH_ALEN
);
1121 *key_lenp
= key_len
;
1127 * ovs_flow_metadata_from_nlattrs - parses Netlink attributes into a flow key.
1128 * @priority: receives the skb priority
1129 * @mark: receives the skb mark
1130 * @in_port: receives the extracted input port.
1131 * @key: Netlink attribute holding nested %OVS_KEY_ATTR_* Netlink attribute
1134 * This parses a series of Netlink attributes that form a flow key, which must
1135 * take the same form accepted by flow_from_nlattrs(), but only enough of it to
1136 * get the metadata, that is, the parts of the flow key that cannot be
1137 * extracted from the packet itself.
1139 int ovs_flow_metadata_from_nlattrs(u32
*priority
, u32
*mark
, u16
*in_port
,
1140 const struct nlattr
*attr
)
1142 const struct nlattr
*nla
;
1145 *in_port
= DP_MAX_PORTS
;
1149 nla_for_each_nested(nla
, attr
, rem
) {
1150 int type
= nla_type(nla
);
1152 if (type
<= OVS_KEY_ATTR_MAX
&& ovs_key_lens
[type
] > 0) {
1153 if (nla_len(nla
) != ovs_key_lens
[type
])
1157 case OVS_KEY_ATTR_PRIORITY
:
1158 *priority
= nla_get_u32(nla
);
1161 case OVS_KEY_ATTR_IN_PORT
:
1162 if (nla_get_u32(nla
) >= DP_MAX_PORTS
)
1164 *in_port
= nla_get_u32(nla
);
1167 case OVS_KEY_ATTR_SKB_MARK
:
1168 *mark
= nla_get_u32(nla
);
1178 int ovs_flow_to_nlattrs(const struct sw_flow_key
*swkey
, struct sk_buff
*skb
)
1180 struct ovs_key_ethernet
*eth_key
;
1181 struct nlattr
*nla
, *encap
;
1183 if (swkey
->phy
.priority
&&
1184 nla_put_u32(skb
, OVS_KEY_ATTR_PRIORITY
, swkey
->phy
.priority
))
1185 goto nla_put_failure
;
1187 if (swkey
->phy
.in_port
!= DP_MAX_PORTS
&&
1188 nla_put_u32(skb
, OVS_KEY_ATTR_IN_PORT
, swkey
->phy
.in_port
))
1189 goto nla_put_failure
;
1191 if (swkey
->phy
.skb_mark
&&
1192 nla_put_u32(skb
, OVS_KEY_ATTR_SKB_MARK
, swkey
->phy
.skb_mark
))
1193 goto nla_put_failure
;
1195 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ETHERNET
, sizeof(*eth_key
));
1197 goto nla_put_failure
;
1198 eth_key
= nla_data(nla
);
1199 memcpy(eth_key
->eth_src
, swkey
->eth
.src
, ETH_ALEN
);
1200 memcpy(eth_key
->eth_dst
, swkey
->eth
.dst
, ETH_ALEN
);
1202 if (swkey
->eth
.tci
|| swkey
->eth
.type
== htons(ETH_P_8021Q
)) {
1203 if (nla_put_be16(skb
, OVS_KEY_ATTR_ETHERTYPE
, htons(ETH_P_8021Q
)) ||
1204 nla_put_be16(skb
, OVS_KEY_ATTR_VLAN
, swkey
->eth
.tci
))
1205 goto nla_put_failure
;
1206 encap
= nla_nest_start(skb
, OVS_KEY_ATTR_ENCAP
);
1207 if (!swkey
->eth
.tci
)
1213 if (swkey
->eth
.type
== htons(ETH_P_802_2
))
1216 if (nla_put_be16(skb
, OVS_KEY_ATTR_ETHERTYPE
, swkey
->eth
.type
))
1217 goto nla_put_failure
;
1219 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1220 struct ovs_key_ipv4
*ipv4_key
;
1222 nla
= nla_reserve(skb
, OVS_KEY_ATTR_IPV4
, sizeof(*ipv4_key
));
1224 goto nla_put_failure
;
1225 ipv4_key
= nla_data(nla
);
1226 ipv4_key
->ipv4_src
= swkey
->ipv4
.addr
.src
;
1227 ipv4_key
->ipv4_dst
= swkey
->ipv4
.addr
.dst
;
1228 ipv4_key
->ipv4_proto
= swkey
->ip
.proto
;
1229 ipv4_key
->ipv4_tos
= swkey
->ip
.tos
;
1230 ipv4_key
->ipv4_ttl
= swkey
->ip
.ttl
;
1231 ipv4_key
->ipv4_frag
= swkey
->ip
.frag
;
1232 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1233 struct ovs_key_ipv6
*ipv6_key
;
1235 nla
= nla_reserve(skb
, OVS_KEY_ATTR_IPV6
, sizeof(*ipv6_key
));
1237 goto nla_put_failure
;
1238 ipv6_key
= nla_data(nla
);
1239 memcpy(ipv6_key
->ipv6_src
, &swkey
->ipv6
.addr
.src
,
1240 sizeof(ipv6_key
->ipv6_src
));
1241 memcpy(ipv6_key
->ipv6_dst
, &swkey
->ipv6
.addr
.dst
,
1242 sizeof(ipv6_key
->ipv6_dst
));
1243 ipv6_key
->ipv6_label
= swkey
->ipv6
.label
;
1244 ipv6_key
->ipv6_proto
= swkey
->ip
.proto
;
1245 ipv6_key
->ipv6_tclass
= swkey
->ip
.tos
;
1246 ipv6_key
->ipv6_hlimit
= swkey
->ip
.ttl
;
1247 ipv6_key
->ipv6_frag
= swkey
->ip
.frag
;
1248 } else if (swkey
->eth
.type
== htons(ETH_P_ARP
) ||
1249 swkey
->eth
.type
== htons(ETH_P_RARP
)) {
1250 struct ovs_key_arp
*arp_key
;
1252 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ARP
, sizeof(*arp_key
));
1254 goto nla_put_failure
;
1255 arp_key
= nla_data(nla
);
1256 memset(arp_key
, 0, sizeof(struct ovs_key_arp
));
1257 arp_key
->arp_sip
= swkey
->ipv4
.addr
.src
;
1258 arp_key
->arp_tip
= swkey
->ipv4
.addr
.dst
;
1259 arp_key
->arp_op
= htons(swkey
->ip
.proto
);
1260 memcpy(arp_key
->arp_sha
, swkey
->ipv4
.arp
.sha
, ETH_ALEN
);
1261 memcpy(arp_key
->arp_tha
, swkey
->ipv4
.arp
.tha
, ETH_ALEN
);
1264 if ((swkey
->eth
.type
== htons(ETH_P_IP
) ||
1265 swkey
->eth
.type
== htons(ETH_P_IPV6
)) &&
1266 swkey
->ip
.frag
!= OVS_FRAG_TYPE_LATER
) {
1268 if (swkey
->ip
.proto
== IPPROTO_TCP
) {
1269 struct ovs_key_tcp
*tcp_key
;
1271 nla
= nla_reserve(skb
, OVS_KEY_ATTR_TCP
, sizeof(*tcp_key
));
1273 goto nla_put_failure
;
1274 tcp_key
= nla_data(nla
);
1275 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1276 tcp_key
->tcp_src
= swkey
->ipv4
.tp
.src
;
1277 tcp_key
->tcp_dst
= swkey
->ipv4
.tp
.dst
;
1278 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1279 tcp_key
->tcp_src
= swkey
->ipv6
.tp
.src
;
1280 tcp_key
->tcp_dst
= swkey
->ipv6
.tp
.dst
;
1282 } else if (swkey
->ip
.proto
== IPPROTO_UDP
) {
1283 struct ovs_key_udp
*udp_key
;
1285 nla
= nla_reserve(skb
, OVS_KEY_ATTR_UDP
, sizeof(*udp_key
));
1287 goto nla_put_failure
;
1288 udp_key
= nla_data(nla
);
1289 if (swkey
->eth
.type
== htons(ETH_P_IP
)) {
1290 udp_key
->udp_src
= swkey
->ipv4
.tp
.src
;
1291 udp_key
->udp_dst
= swkey
->ipv4
.tp
.dst
;
1292 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
)) {
1293 udp_key
->udp_src
= swkey
->ipv6
.tp
.src
;
1294 udp_key
->udp_dst
= swkey
->ipv6
.tp
.dst
;
1296 } else if (swkey
->eth
.type
== htons(ETH_P_IP
) &&
1297 swkey
->ip
.proto
== IPPROTO_ICMP
) {
1298 struct ovs_key_icmp
*icmp_key
;
1300 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ICMP
, sizeof(*icmp_key
));
1302 goto nla_put_failure
;
1303 icmp_key
= nla_data(nla
);
1304 icmp_key
->icmp_type
= ntohs(swkey
->ipv4
.tp
.src
);
1305 icmp_key
->icmp_code
= ntohs(swkey
->ipv4
.tp
.dst
);
1306 } else if (swkey
->eth
.type
== htons(ETH_P_IPV6
) &&
1307 swkey
->ip
.proto
== IPPROTO_ICMPV6
) {
1308 struct ovs_key_icmpv6
*icmpv6_key
;
1310 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ICMPV6
,
1311 sizeof(*icmpv6_key
));
1313 goto nla_put_failure
;
1314 icmpv6_key
= nla_data(nla
);
1315 icmpv6_key
->icmpv6_type
= ntohs(swkey
->ipv6
.tp
.src
);
1316 icmpv6_key
->icmpv6_code
= ntohs(swkey
->ipv6
.tp
.dst
);
1318 if (icmpv6_key
->icmpv6_type
== NDISC_NEIGHBOUR_SOLICITATION
||
1319 icmpv6_key
->icmpv6_type
== NDISC_NEIGHBOUR_ADVERTISEMENT
) {
1320 struct ovs_key_nd
*nd_key
;
1322 nla
= nla_reserve(skb
, OVS_KEY_ATTR_ND
, sizeof(*nd_key
));
1324 goto nla_put_failure
;
1325 nd_key
= nla_data(nla
);
1326 memcpy(nd_key
->nd_target
, &swkey
->ipv6
.nd
.target
,
1327 sizeof(nd_key
->nd_target
));
1328 memcpy(nd_key
->nd_sll
, swkey
->ipv6
.nd
.sll
, ETH_ALEN
);
1329 memcpy(nd_key
->nd_tll
, swkey
->ipv6
.nd
.tll
, ETH_ALEN
);
1336 nla_nest_end(skb
, encap
);
1344 /* Initializes the flow module.
1345 * Returns zero if successful or a negative error code. */
1346 int ovs_flow_init(void)
1348 flow_cache
= kmem_cache_create("sw_flow", sizeof(struct sw_flow
), 0,
1350 if (flow_cache
== NULL
)
1356 /* Uninitializes the flow module. */
1357 void ovs_flow_exit(void)
1359 kmem_cache_destroy(flow_cache
);