4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
41 #include <linux/kernel_stat.h>
43 #include <linux/hugetlb.h>
44 #include <linux/mman.h>
45 #include <linux/swap.h>
46 #include <linux/highmem.h>
47 #include <linux/pagemap.h>
48 #include <linux/ksm.h>
49 #include <linux/rmap.h>
50 #include <linux/export.h>
51 #include <linux/delayacct.h>
52 #include <linux/init.h>
53 #include <linux/writeback.h>
54 #include <linux/memcontrol.h>
55 #include <linux/mmu_notifier.h>
56 #include <linux/kallsyms.h>
57 #include <linux/swapops.h>
58 #include <linux/elf.h>
59 #include <linux/gfp.h>
62 #include <asm/pgalloc.h>
63 #include <asm/uaccess.h>
65 #include <asm/tlbflush.h>
66 #include <asm/pgtable.h>
70 #ifndef CONFIG_NEED_MULTIPLE_NODES
71 /* use the per-pgdat data instead for discontigmem - mbligh */
72 unsigned long max_mapnr
;
75 EXPORT_SYMBOL(max_mapnr
);
76 EXPORT_SYMBOL(mem_map
);
79 unsigned long num_physpages
;
81 * A number of key systems in x86 including ioremap() rely on the assumption
82 * that high_memory defines the upper bound on direct map memory, then end
83 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
84 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
89 EXPORT_SYMBOL(num_physpages
);
90 EXPORT_SYMBOL(high_memory
);
93 * Randomize the address space (stacks, mmaps, brk, etc.).
95 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
96 * as ancient (libc5 based) binaries can segfault. )
98 int randomize_va_space __read_mostly
=
99 #ifdef CONFIG_COMPAT_BRK
105 static int __init
disable_randmaps(char *s
)
107 randomize_va_space
= 0;
110 __setup("norandmaps", disable_randmaps
);
112 unsigned long zero_pfn __read_mostly
;
113 unsigned long highest_memmap_pfn __read_mostly
;
116 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
118 static int __init
init_zero_pfn(void)
120 zero_pfn
= page_to_pfn(ZERO_PAGE(0));
123 core_initcall(init_zero_pfn
);
126 #if defined(SPLIT_RSS_COUNTING)
128 static void __sync_task_rss_stat(struct task_struct
*task
, struct mm_struct
*mm
)
132 for (i
= 0; i
< NR_MM_COUNTERS
; i
++) {
133 if (task
->rss_stat
.count
[i
]) {
134 add_mm_counter(mm
, i
, task
->rss_stat
.count
[i
]);
135 task
->rss_stat
.count
[i
] = 0;
138 task
->rss_stat
.events
= 0;
141 static void add_mm_counter_fast(struct mm_struct
*mm
, int member
, int val
)
143 struct task_struct
*task
= current
;
145 if (likely(task
->mm
== mm
))
146 task
->rss_stat
.count
[member
] += val
;
148 add_mm_counter(mm
, member
, val
);
150 #define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
151 #define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
153 /* sync counter once per 64 page faults */
154 #define TASK_RSS_EVENTS_THRESH (64)
155 static void check_sync_rss_stat(struct task_struct
*task
)
157 if (unlikely(task
!= current
))
159 if (unlikely(task
->rss_stat
.events
++ > TASK_RSS_EVENTS_THRESH
))
160 __sync_task_rss_stat(task
, task
->mm
);
163 unsigned long get_mm_counter(struct mm_struct
*mm
, int member
)
168 * Don't use task->mm here...for avoiding to use task_get_mm()..
169 * The caller must guarantee task->mm is not invalid.
171 val
= atomic_long_read(&mm
->rss_stat
.count
[member
]);
173 * counter is updated in asynchronous manner and may go to minus.
174 * But it's never be expected number for users.
178 return (unsigned long)val
;
181 void sync_mm_rss(struct task_struct
*task
, struct mm_struct
*mm
)
183 __sync_task_rss_stat(task
, mm
);
185 #else /* SPLIT_RSS_COUNTING */
187 #define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
188 #define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
190 static void check_sync_rss_stat(struct task_struct
*task
)
194 #endif /* SPLIT_RSS_COUNTING */
196 #ifdef HAVE_GENERIC_MMU_GATHER
198 static int tlb_next_batch(struct mmu_gather
*tlb
)
200 struct mmu_gather_batch
*batch
;
204 tlb
->active
= batch
->next
;
208 batch
= (void *)__get_free_pages(GFP_NOWAIT
| __GFP_NOWARN
, 0);
214 batch
->max
= MAX_GATHER_BATCH
;
216 tlb
->active
->next
= batch
;
223 * Called to initialize an (on-stack) mmu_gather structure for page-table
224 * tear-down from @mm. The @fullmm argument is used when @mm is without
225 * users and we're going to destroy the full address space (exit/execve).
227 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, bool fullmm
)
231 tlb
->fullmm
= fullmm
;
233 tlb
->fast_mode
= (num_possible_cpus() == 1);
234 tlb
->local
.next
= NULL
;
236 tlb
->local
.max
= ARRAY_SIZE(tlb
->__pages
);
237 tlb
->active
= &tlb
->local
;
239 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
244 void tlb_flush_mmu(struct mmu_gather
*tlb
)
246 struct mmu_gather_batch
*batch
;
248 if (!tlb
->need_flush
)
252 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
253 tlb_table_flush(tlb
);
256 if (tlb_fast_mode(tlb
))
259 for (batch
= &tlb
->local
; batch
; batch
= batch
->next
) {
260 free_pages_and_swap_cache(batch
->pages
, batch
->nr
);
263 tlb
->active
= &tlb
->local
;
267 * Called at the end of the shootdown operation to free up any resources
268 * that were required.
270 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
, unsigned long end
)
272 struct mmu_gather_batch
*batch
, *next
;
276 /* keep the page table cache within bounds */
279 for (batch
= tlb
->local
.next
; batch
; batch
= next
) {
281 free_pages((unsigned long)batch
, 0);
283 tlb
->local
.next
= NULL
;
287 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
288 * handling the additional races in SMP caused by other CPUs caching valid
289 * mappings in their TLBs. Returns the number of free page slots left.
290 * When out of page slots we must call tlb_flush_mmu().
292 int __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
294 struct mmu_gather_batch
*batch
;
296 VM_BUG_ON(!tlb
->need_flush
);
298 if (tlb_fast_mode(tlb
)) {
299 free_page_and_swap_cache(page
);
300 return 1; /* avoid calling tlb_flush_mmu() */
304 batch
->pages
[batch
->nr
++] = page
;
305 if (batch
->nr
== batch
->max
) {
306 if (!tlb_next_batch(tlb
))
310 VM_BUG_ON(batch
->nr
> batch
->max
);
312 return batch
->max
- batch
->nr
;
315 #endif /* HAVE_GENERIC_MMU_GATHER */
317 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
320 * See the comment near struct mmu_table_batch.
323 static void tlb_remove_table_smp_sync(void *arg
)
325 /* Simply deliver the interrupt */
328 static void tlb_remove_table_one(void *table
)
331 * This isn't an RCU grace period and hence the page-tables cannot be
332 * assumed to be actually RCU-freed.
334 * It is however sufficient for software page-table walkers that rely on
335 * IRQ disabling. See the comment near struct mmu_table_batch.
337 smp_call_function(tlb_remove_table_smp_sync
, NULL
, 1);
338 __tlb_remove_table(table
);
341 static void tlb_remove_table_rcu(struct rcu_head
*head
)
343 struct mmu_table_batch
*batch
;
346 batch
= container_of(head
, struct mmu_table_batch
, rcu
);
348 for (i
= 0; i
< batch
->nr
; i
++)
349 __tlb_remove_table(batch
->tables
[i
]);
351 free_page((unsigned long)batch
);
354 void tlb_table_flush(struct mmu_gather
*tlb
)
356 struct mmu_table_batch
**batch
= &tlb
->batch
;
359 call_rcu_sched(&(*batch
)->rcu
, tlb_remove_table_rcu
);
364 void tlb_remove_table(struct mmu_gather
*tlb
, void *table
)
366 struct mmu_table_batch
**batch
= &tlb
->batch
;
371 * When there's less then two users of this mm there cannot be a
372 * concurrent page-table walk.
374 if (atomic_read(&tlb
->mm
->mm_users
) < 2) {
375 __tlb_remove_table(table
);
379 if (*batch
== NULL
) {
380 *batch
= (struct mmu_table_batch
*)__get_free_page(GFP_NOWAIT
| __GFP_NOWARN
);
381 if (*batch
== NULL
) {
382 tlb_remove_table_one(table
);
387 (*batch
)->tables
[(*batch
)->nr
++] = table
;
388 if ((*batch
)->nr
== MAX_TABLE_BATCH
)
389 tlb_table_flush(tlb
);
392 #endif /* CONFIG_HAVE_RCU_TABLE_FREE */
395 * If a p?d_bad entry is found while walking page tables, report
396 * the error, before resetting entry to p?d_none. Usually (but
397 * very seldom) called out from the p?d_none_or_clear_bad macros.
400 void pgd_clear_bad(pgd_t
*pgd
)
406 void pud_clear_bad(pud_t
*pud
)
412 void pmd_clear_bad(pmd_t
*pmd
)
419 * Note: this doesn't free the actual pages themselves. That
420 * has been handled earlier when unmapping all the memory regions.
422 static void free_pte_range(struct mmu_gather
*tlb
, pmd_t
*pmd
,
425 pgtable_t token
= pmd_pgtable(*pmd
);
427 pte_free_tlb(tlb
, token
, addr
);
431 static inline void free_pmd_range(struct mmu_gather
*tlb
, pud_t
*pud
,
432 unsigned long addr
, unsigned long end
,
433 unsigned long floor
, unsigned long ceiling
)
440 pmd
= pmd_offset(pud
, addr
);
442 next
= pmd_addr_end(addr
, end
);
443 if (pmd_none_or_clear_bad(pmd
))
445 free_pte_range(tlb
, pmd
, addr
);
446 } while (pmd
++, addr
= next
, addr
!= end
);
456 if (end
- 1 > ceiling
- 1)
459 pmd
= pmd_offset(pud
, start
);
461 pmd_free_tlb(tlb
, pmd
, start
);
464 static inline void free_pud_range(struct mmu_gather
*tlb
, pgd_t
*pgd
,
465 unsigned long addr
, unsigned long end
,
466 unsigned long floor
, unsigned long ceiling
)
473 pud
= pud_offset(pgd
, addr
);
475 next
= pud_addr_end(addr
, end
);
476 if (pud_none_or_clear_bad(pud
))
478 free_pmd_range(tlb
, pud
, addr
, next
, floor
, ceiling
);
479 } while (pud
++, addr
= next
, addr
!= end
);
485 ceiling
&= PGDIR_MASK
;
489 if (end
- 1 > ceiling
- 1)
492 pud
= pud_offset(pgd
, start
);
494 pud_free_tlb(tlb
, pud
, start
);
498 * This function frees user-level page tables of a process.
500 * Must be called with pagetable lock held.
502 void free_pgd_range(struct mmu_gather
*tlb
,
503 unsigned long addr
, unsigned long end
,
504 unsigned long floor
, unsigned long ceiling
)
510 * The next few lines have given us lots of grief...
512 * Why are we testing PMD* at this top level? Because often
513 * there will be no work to do at all, and we'd prefer not to
514 * go all the way down to the bottom just to discover that.
516 * Why all these "- 1"s? Because 0 represents both the bottom
517 * of the address space and the top of it (using -1 for the
518 * top wouldn't help much: the masks would do the wrong thing).
519 * The rule is that addr 0 and floor 0 refer to the bottom of
520 * the address space, but end 0 and ceiling 0 refer to the top
521 * Comparisons need to use "end - 1" and "ceiling - 1" (though
522 * that end 0 case should be mythical).
524 * Wherever addr is brought up or ceiling brought down, we must
525 * be careful to reject "the opposite 0" before it confuses the
526 * subsequent tests. But what about where end is brought down
527 * by PMD_SIZE below? no, end can't go down to 0 there.
529 * Whereas we round start (addr) and ceiling down, by different
530 * masks at different levels, in order to test whether a table
531 * now has no other vmas using it, so can be freed, we don't
532 * bother to round floor or end up - the tests don't need that.
546 if (end
- 1 > ceiling
- 1)
551 pgd
= pgd_offset(tlb
->mm
, addr
);
553 next
= pgd_addr_end(addr
, end
);
554 if (pgd_none_or_clear_bad(pgd
))
556 free_pud_range(tlb
, pgd
, addr
, next
, floor
, ceiling
);
557 } while (pgd
++, addr
= next
, addr
!= end
);
560 void free_pgtables(struct mmu_gather
*tlb
, struct vm_area_struct
*vma
,
561 unsigned long floor
, unsigned long ceiling
)
564 struct vm_area_struct
*next
= vma
->vm_next
;
565 unsigned long addr
= vma
->vm_start
;
568 * Hide vma from rmap and truncate_pagecache before freeing
571 unlink_anon_vmas(vma
);
572 unlink_file_vma(vma
);
574 if (is_vm_hugetlb_page(vma
)) {
575 hugetlb_free_pgd_range(tlb
, addr
, vma
->vm_end
,
576 floor
, next
? next
->vm_start
: ceiling
);
579 * Optimization: gather nearby vmas into one call down
581 while (next
&& next
->vm_start
<= vma
->vm_end
+ PMD_SIZE
582 && !is_vm_hugetlb_page(next
)) {
585 unlink_anon_vmas(vma
);
586 unlink_file_vma(vma
);
588 free_pgd_range(tlb
, addr
, vma
->vm_end
,
589 floor
, next
? next
->vm_start
: ceiling
);
595 int __pte_alloc(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
596 pmd_t
*pmd
, unsigned long address
)
598 pgtable_t
new = pte_alloc_one(mm
, address
);
599 int wait_split_huge_page
;
604 * Ensure all pte setup (eg. pte page lock and page clearing) are
605 * visible before the pte is made visible to other CPUs by being
606 * put into page tables.
608 * The other side of the story is the pointer chasing in the page
609 * table walking code (when walking the page table without locking;
610 * ie. most of the time). Fortunately, these data accesses consist
611 * of a chain of data-dependent loads, meaning most CPUs (alpha
612 * being the notable exception) will already guarantee loads are
613 * seen in-order. See the alpha page table accessors for the
614 * smp_read_barrier_depends() barriers in page table walking code.
616 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
618 spin_lock(&mm
->page_table_lock
);
619 wait_split_huge_page
= 0;
620 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
622 pmd_populate(mm
, pmd
, new);
624 } else if (unlikely(pmd_trans_splitting(*pmd
)))
625 wait_split_huge_page
= 1;
626 spin_unlock(&mm
->page_table_lock
);
629 if (wait_split_huge_page
)
630 wait_split_huge_page(vma
->anon_vma
, pmd
);
634 int __pte_alloc_kernel(pmd_t
*pmd
, unsigned long address
)
636 pte_t
*new = pte_alloc_one_kernel(&init_mm
, address
);
640 smp_wmb(); /* See comment in __pte_alloc */
642 spin_lock(&init_mm
.page_table_lock
);
643 if (likely(pmd_none(*pmd
))) { /* Has another populated it ? */
644 pmd_populate_kernel(&init_mm
, pmd
, new);
647 VM_BUG_ON(pmd_trans_splitting(*pmd
));
648 spin_unlock(&init_mm
.page_table_lock
);
650 pte_free_kernel(&init_mm
, new);
654 static inline void init_rss_vec(int *rss
)
656 memset(rss
, 0, sizeof(int) * NR_MM_COUNTERS
);
659 static inline void add_mm_rss_vec(struct mm_struct
*mm
, int *rss
)
663 if (current
->mm
== mm
)
664 sync_mm_rss(current
, mm
);
665 for (i
= 0; i
< NR_MM_COUNTERS
; i
++)
667 add_mm_counter(mm
, i
, rss
[i
]);
671 * This function is called to print an error when a bad pte
672 * is found. For example, we might have a PFN-mapped pte in
673 * a region that doesn't allow it.
675 * The calling function must still handle the error.
677 static void print_bad_pte(struct vm_area_struct
*vma
, unsigned long addr
,
678 pte_t pte
, struct page
*page
)
680 pgd_t
*pgd
= pgd_offset(vma
->vm_mm
, addr
);
681 pud_t
*pud
= pud_offset(pgd
, addr
);
682 pmd_t
*pmd
= pmd_offset(pud
, addr
);
683 struct address_space
*mapping
;
685 static unsigned long resume
;
686 static unsigned long nr_shown
;
687 static unsigned long nr_unshown
;
690 * Allow a burst of 60 reports, then keep quiet for that minute;
691 * or allow a steady drip of one report per second.
693 if (nr_shown
== 60) {
694 if (time_before(jiffies
, resume
)) {
700 "BUG: Bad page map: %lu messages suppressed\n",
707 resume
= jiffies
+ 60 * HZ
;
709 mapping
= vma
->vm_file
? vma
->vm_file
->f_mapping
: NULL
;
710 index
= linear_page_index(vma
, addr
);
713 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
715 (long long)pte_val(pte
), (long long)pmd_val(*pmd
));
719 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
720 (void *)addr
, vma
->vm_flags
, vma
->anon_vma
, mapping
, index
);
722 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
725 print_symbol(KERN_ALERT
"vma->vm_ops->fault: %s\n",
726 (unsigned long)vma
->vm_ops
->fault
);
727 if (vma
->vm_file
&& vma
->vm_file
->f_op
)
728 print_symbol(KERN_ALERT
"vma->vm_file->f_op->mmap: %s\n",
729 (unsigned long)vma
->vm_file
->f_op
->mmap
);
731 add_taint(TAINT_BAD_PAGE
);
734 static inline int is_cow_mapping(vm_flags_t flags
)
736 return (flags
& (VM_SHARED
| VM_MAYWRITE
)) == VM_MAYWRITE
;
740 static inline int is_zero_pfn(unsigned long pfn
)
742 return pfn
== zero_pfn
;
747 static inline unsigned long my_zero_pfn(unsigned long addr
)
754 * vm_normal_page -- This function gets the "struct page" associated with a pte.
756 * "Special" mappings do not wish to be associated with a "struct page" (either
757 * it doesn't exist, or it exists but they don't want to touch it). In this
758 * case, NULL is returned here. "Normal" mappings do have a struct page.
760 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
761 * pte bit, in which case this function is trivial. Secondly, an architecture
762 * may not have a spare pte bit, which requires a more complicated scheme,
765 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
766 * special mapping (even if there are underlying and valid "struct pages").
767 * COWed pages of a VM_PFNMAP are always normal.
769 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
770 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
771 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
772 * mapping will always honor the rule
774 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
776 * And for normal mappings this is false.
778 * This restricts such mappings to be a linear translation from virtual address
779 * to pfn. To get around this restriction, we allow arbitrary mappings so long
780 * as the vma is not a COW mapping; in that case, we know that all ptes are
781 * special (because none can have been COWed).
784 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
786 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
787 * page" backing, however the difference is that _all_ pages with a struct
788 * page (that is, those where pfn_valid is true) are refcounted and considered
789 * normal pages by the VM. The disadvantage is that pages are refcounted
790 * (which can be slower and simply not an option for some PFNMAP users). The
791 * advantage is that we don't have to follow the strict linearity rule of
792 * PFNMAP mappings in order to support COWable mappings.
795 #ifdef __HAVE_ARCH_PTE_SPECIAL
796 # define HAVE_PTE_SPECIAL 1
798 # define HAVE_PTE_SPECIAL 0
800 struct page
*vm_normal_page(struct vm_area_struct
*vma
, unsigned long addr
,
803 unsigned long pfn
= pte_pfn(pte
);
805 if (HAVE_PTE_SPECIAL
) {
806 if (likely(!pte_special(pte
)))
808 if (vma
->vm_flags
& (VM_PFNMAP
| VM_MIXEDMAP
))
810 if (!is_zero_pfn(pfn
))
811 print_bad_pte(vma
, addr
, pte
, NULL
);
815 /* !HAVE_PTE_SPECIAL case follows: */
817 if (unlikely(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
))) {
818 if (vma
->vm_flags
& VM_MIXEDMAP
) {
824 off
= (addr
- vma
->vm_start
) >> PAGE_SHIFT
;
825 if (pfn
== vma
->vm_pgoff
+ off
)
827 if (!is_cow_mapping(vma
->vm_flags
))
832 if (is_zero_pfn(pfn
))
835 if (unlikely(pfn
> highest_memmap_pfn
)) {
836 print_bad_pte(vma
, addr
, pte
, NULL
);
841 * NOTE! We still have PageReserved() pages in the page tables.
842 * eg. VDSO mappings can cause them to exist.
845 return pfn_to_page(pfn
);
849 * copy one vm_area from one task to the other. Assumes the page tables
850 * already present in the new task to be cleared in the whole range
851 * covered by this vma.
854 static inline unsigned long
855 copy_one_pte(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
856 pte_t
*dst_pte
, pte_t
*src_pte
, struct vm_area_struct
*vma
,
857 unsigned long addr
, int *rss
)
859 unsigned long vm_flags
= vma
->vm_flags
;
860 pte_t pte
= *src_pte
;
863 /* pte contains position in swap or file, so copy. */
864 if (unlikely(!pte_present(pte
))) {
865 if (!pte_file(pte
)) {
866 swp_entry_t entry
= pte_to_swp_entry(pte
);
868 if (swap_duplicate(entry
) < 0)
871 /* make sure dst_mm is on swapoff's mmlist. */
872 if (unlikely(list_empty(&dst_mm
->mmlist
))) {
873 spin_lock(&mmlist_lock
);
874 if (list_empty(&dst_mm
->mmlist
))
875 list_add(&dst_mm
->mmlist
,
877 spin_unlock(&mmlist_lock
);
879 if (likely(!non_swap_entry(entry
)))
881 else if (is_migration_entry(entry
)) {
882 page
= migration_entry_to_page(entry
);
889 if (is_write_migration_entry(entry
) &&
890 is_cow_mapping(vm_flags
)) {
892 * COW mappings require pages in both
893 * parent and child to be set to read.
895 make_migration_entry_read(&entry
);
896 pte
= swp_entry_to_pte(entry
);
897 set_pte_at(src_mm
, addr
, src_pte
, pte
);
905 * If it's a COW mapping, write protect it both
906 * in the parent and the child
908 if (is_cow_mapping(vm_flags
)) {
909 ptep_set_wrprotect(src_mm
, addr
, src_pte
);
910 pte
= pte_wrprotect(pte
);
914 * If it's a shared mapping, mark it clean in
917 if (vm_flags
& VM_SHARED
)
918 pte
= pte_mkclean(pte
);
919 pte
= pte_mkold(pte
);
921 page
= vm_normal_page(vma
, addr
, pte
);
932 set_pte_at(dst_mm
, addr
, dst_pte
, pte
);
936 int copy_pte_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
937 pmd_t
*dst_pmd
, pmd_t
*src_pmd
, struct vm_area_struct
*vma
,
938 unsigned long addr
, unsigned long end
)
940 pte_t
*orig_src_pte
, *orig_dst_pte
;
941 pte_t
*src_pte
, *dst_pte
;
942 spinlock_t
*src_ptl
, *dst_ptl
;
944 int rss
[NR_MM_COUNTERS
];
945 swp_entry_t entry
= (swp_entry_t
){0};
950 dst_pte
= pte_alloc_map_lock(dst_mm
, dst_pmd
, addr
, &dst_ptl
);
953 src_pte
= pte_offset_map(src_pmd
, addr
);
954 src_ptl
= pte_lockptr(src_mm
, src_pmd
);
955 spin_lock_nested(src_ptl
, SINGLE_DEPTH_NESTING
);
956 orig_src_pte
= src_pte
;
957 orig_dst_pte
= dst_pte
;
958 arch_enter_lazy_mmu_mode();
962 * We are holding two locks at this point - either of them
963 * could generate latencies in another task on another CPU.
965 if (progress
>= 32) {
967 if (need_resched() ||
968 spin_needbreak(src_ptl
) || spin_needbreak(dst_ptl
))
971 if (pte_none(*src_pte
)) {
975 entry
.val
= copy_one_pte(dst_mm
, src_mm
, dst_pte
, src_pte
,
980 } while (dst_pte
++, src_pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
982 arch_leave_lazy_mmu_mode();
983 spin_unlock(src_ptl
);
984 pte_unmap(orig_src_pte
);
985 add_mm_rss_vec(dst_mm
, rss
);
986 pte_unmap_unlock(orig_dst_pte
, dst_ptl
);
990 if (add_swap_count_continuation(entry
, GFP_KERNEL
) < 0)
999 static inline int copy_pmd_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1000 pud_t
*dst_pud
, pud_t
*src_pud
, struct vm_area_struct
*vma
,
1001 unsigned long addr
, unsigned long end
)
1003 pmd_t
*src_pmd
, *dst_pmd
;
1006 dst_pmd
= pmd_alloc(dst_mm
, dst_pud
, addr
);
1009 src_pmd
= pmd_offset(src_pud
, addr
);
1011 next
= pmd_addr_end(addr
, end
);
1012 if (pmd_trans_huge(*src_pmd
)) {
1014 VM_BUG_ON(next
-addr
!= HPAGE_PMD_SIZE
);
1015 err
= copy_huge_pmd(dst_mm
, src_mm
,
1016 dst_pmd
, src_pmd
, addr
, vma
);
1023 if (pmd_none_or_clear_bad(src_pmd
))
1025 if (copy_pte_range(dst_mm
, src_mm
, dst_pmd
, src_pmd
,
1028 } while (dst_pmd
++, src_pmd
++, addr
= next
, addr
!= end
);
1032 static inline int copy_pud_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1033 pgd_t
*dst_pgd
, pgd_t
*src_pgd
, struct vm_area_struct
*vma
,
1034 unsigned long addr
, unsigned long end
)
1036 pud_t
*src_pud
, *dst_pud
;
1039 dst_pud
= pud_alloc(dst_mm
, dst_pgd
, addr
);
1042 src_pud
= pud_offset(src_pgd
, addr
);
1044 next
= pud_addr_end(addr
, end
);
1045 if (pud_none_or_clear_bad(src_pud
))
1047 if (copy_pmd_range(dst_mm
, src_mm
, dst_pud
, src_pud
,
1050 } while (dst_pud
++, src_pud
++, addr
= next
, addr
!= end
);
1054 int copy_page_range(struct mm_struct
*dst_mm
, struct mm_struct
*src_mm
,
1055 struct vm_area_struct
*vma
)
1057 pgd_t
*src_pgd
, *dst_pgd
;
1059 unsigned long addr
= vma
->vm_start
;
1060 unsigned long end
= vma
->vm_end
;
1064 * Don't copy ptes where a page fault will fill them correctly.
1065 * Fork becomes much lighter when there are big shared or private
1066 * readonly mappings. The tradeoff is that copy_page_range is more
1067 * efficient than faulting.
1069 if (!(vma
->vm_flags
& (VM_HUGETLB
|VM_NONLINEAR
|VM_PFNMAP
|VM_INSERTPAGE
))) {
1074 if (is_vm_hugetlb_page(vma
))
1075 return copy_hugetlb_page_range(dst_mm
, src_mm
, vma
);
1077 if (unlikely(is_pfn_mapping(vma
))) {
1079 * We do not free on error cases below as remove_vma
1080 * gets called on error from higher level routine
1082 ret
= track_pfn_vma_copy(vma
);
1088 * We need to invalidate the secondary MMU mappings only when
1089 * there could be a permission downgrade on the ptes of the
1090 * parent mm. And a permission downgrade will only happen if
1091 * is_cow_mapping() returns true.
1093 if (is_cow_mapping(vma
->vm_flags
))
1094 mmu_notifier_invalidate_range_start(src_mm
, addr
, end
);
1097 dst_pgd
= pgd_offset(dst_mm
, addr
);
1098 src_pgd
= pgd_offset(src_mm
, addr
);
1100 next
= pgd_addr_end(addr
, end
);
1101 if (pgd_none_or_clear_bad(src_pgd
))
1103 if (unlikely(copy_pud_range(dst_mm
, src_mm
, dst_pgd
, src_pgd
,
1104 vma
, addr
, next
))) {
1108 } while (dst_pgd
++, src_pgd
++, addr
= next
, addr
!= end
);
1110 if (is_cow_mapping(vma
->vm_flags
))
1111 mmu_notifier_invalidate_range_end(src_mm
,
1112 vma
->vm_start
, end
);
1116 static unsigned long zap_pte_range(struct mmu_gather
*tlb
,
1117 struct vm_area_struct
*vma
, pmd_t
*pmd
,
1118 unsigned long addr
, unsigned long end
,
1119 struct zap_details
*details
)
1121 struct mm_struct
*mm
= tlb
->mm
;
1122 int force_flush
= 0;
1123 int rss
[NR_MM_COUNTERS
];
1130 start_pte
= pte_offset_map_lock(mm
, pmd
, addr
, &ptl
);
1132 arch_enter_lazy_mmu_mode();
1135 if (pte_none(ptent
)) {
1139 if (pte_present(ptent
)) {
1142 page
= vm_normal_page(vma
, addr
, ptent
);
1143 if (unlikely(details
) && page
) {
1145 * unmap_shared_mapping_pages() wants to
1146 * invalidate cache without truncating:
1147 * unmap shared but keep private pages.
1149 if (details
->check_mapping
&&
1150 details
->check_mapping
!= page
->mapping
)
1153 * Each page->index must be checked when
1154 * invalidating or truncating nonlinear.
1156 if (details
->nonlinear_vma
&&
1157 (page
->index
< details
->first_index
||
1158 page
->index
> details
->last_index
))
1161 ptent
= ptep_get_and_clear_full(mm
, addr
, pte
,
1163 tlb_remove_tlb_entry(tlb
, pte
, addr
);
1164 if (unlikely(!page
))
1166 if (unlikely(details
) && details
->nonlinear_vma
1167 && linear_page_index(details
->nonlinear_vma
,
1168 addr
) != page
->index
)
1169 set_pte_at(mm
, addr
, pte
,
1170 pgoff_to_pte(page
->index
));
1172 rss
[MM_ANONPAGES
]--;
1174 if (pte_dirty(ptent
))
1175 set_page_dirty(page
);
1176 if (pte_young(ptent
) &&
1177 likely(!VM_SequentialReadHint(vma
)))
1178 mark_page_accessed(page
);
1179 rss
[MM_FILEPAGES
]--;
1181 page_remove_rmap(page
);
1182 if (unlikely(page_mapcount(page
) < 0))
1183 print_bad_pte(vma
, addr
, ptent
, page
);
1184 force_flush
= !__tlb_remove_page(tlb
, page
);
1190 * If details->check_mapping, we leave swap entries;
1191 * if details->nonlinear_vma, we leave file entries.
1193 if (unlikely(details
))
1195 if (pte_file(ptent
)) {
1196 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
)))
1197 print_bad_pte(vma
, addr
, ptent
, NULL
);
1199 swp_entry_t entry
= pte_to_swp_entry(ptent
);
1201 if (!non_swap_entry(entry
))
1203 else if (is_migration_entry(entry
)) {
1206 page
= migration_entry_to_page(entry
);
1209 rss
[MM_ANONPAGES
]--;
1211 rss
[MM_FILEPAGES
]--;
1213 if (unlikely(!free_swap_and_cache(entry
)))
1214 print_bad_pte(vma
, addr
, ptent
, NULL
);
1216 pte_clear_not_present_full(mm
, addr
, pte
, tlb
->fullmm
);
1217 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
1219 add_mm_rss_vec(mm
, rss
);
1220 arch_leave_lazy_mmu_mode();
1221 pte_unmap_unlock(start_pte
, ptl
);
1224 * mmu_gather ran out of room to batch pages, we break out of
1225 * the PTE lock to avoid doing the potential expensive TLB invalidate
1226 * and page-free while holding it.
1238 static inline unsigned long zap_pmd_range(struct mmu_gather
*tlb
,
1239 struct vm_area_struct
*vma
, pud_t
*pud
,
1240 unsigned long addr
, unsigned long end
,
1241 struct zap_details
*details
)
1246 pmd
= pmd_offset(pud
, addr
);
1248 next
= pmd_addr_end(addr
, end
);
1249 if (pmd_trans_huge(*pmd
)) {
1250 if (next
- addr
!= HPAGE_PMD_SIZE
) {
1251 VM_BUG_ON(!rwsem_is_locked(&tlb
->mm
->mmap_sem
));
1252 split_huge_page_pmd(vma
->vm_mm
, pmd
);
1253 } else if (zap_huge_pmd(tlb
, vma
, pmd
, addr
))
1258 * Here there can be other concurrent MADV_DONTNEED or
1259 * trans huge page faults running, and if the pmd is
1260 * none or trans huge it can change under us. This is
1261 * because MADV_DONTNEED holds the mmap_sem in read
1264 if (pmd_none_or_trans_huge_or_clear_bad(pmd
))
1266 next
= zap_pte_range(tlb
, vma
, pmd
, addr
, next
, details
);
1269 } while (pmd
++, addr
= next
, addr
!= end
);
1274 static inline unsigned long zap_pud_range(struct mmu_gather
*tlb
,
1275 struct vm_area_struct
*vma
, pgd_t
*pgd
,
1276 unsigned long addr
, unsigned long end
,
1277 struct zap_details
*details
)
1282 pud
= pud_offset(pgd
, addr
);
1284 next
= pud_addr_end(addr
, end
);
1285 if (pud_none_or_clear_bad(pud
))
1287 next
= zap_pmd_range(tlb
, vma
, pud
, addr
, next
, details
);
1288 } while (pud
++, addr
= next
, addr
!= end
);
1293 static unsigned long unmap_page_range(struct mmu_gather
*tlb
,
1294 struct vm_area_struct
*vma
,
1295 unsigned long addr
, unsigned long end
,
1296 struct zap_details
*details
)
1301 if (details
&& !details
->check_mapping
&& !details
->nonlinear_vma
)
1304 BUG_ON(addr
>= end
);
1305 mem_cgroup_uncharge_start();
1306 tlb_start_vma(tlb
, vma
);
1307 pgd
= pgd_offset(vma
->vm_mm
, addr
);
1309 next
= pgd_addr_end(addr
, end
);
1310 if (pgd_none_or_clear_bad(pgd
))
1312 next
= zap_pud_range(tlb
, vma
, pgd
, addr
, next
, details
);
1313 } while (pgd
++, addr
= next
, addr
!= end
);
1314 tlb_end_vma(tlb
, vma
);
1315 mem_cgroup_uncharge_end();
1321 * unmap_vmas - unmap a range of memory covered by a list of vma's
1322 * @tlb: address of the caller's struct mmu_gather
1323 * @vma: the starting vma
1324 * @start_addr: virtual address at which to start unmapping
1325 * @end_addr: virtual address at which to end unmapping
1326 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
1327 * @details: details of nonlinear truncation or shared cache invalidation
1329 * Returns the end address of the unmapping (restart addr if interrupted).
1331 * Unmap all pages in the vma list.
1333 * Only addresses between `start' and `end' will be unmapped.
1335 * The VMA list must be sorted in ascending virtual address order.
1337 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1338 * range after unmap_vmas() returns. So the only responsibility here is to
1339 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1340 * drops the lock and schedules.
1342 unsigned long unmap_vmas(struct mmu_gather
*tlb
,
1343 struct vm_area_struct
*vma
, unsigned long start_addr
,
1344 unsigned long end_addr
, unsigned long *nr_accounted
,
1345 struct zap_details
*details
)
1347 unsigned long start
= start_addr
;
1348 struct mm_struct
*mm
= vma
->vm_mm
;
1350 mmu_notifier_invalidate_range_start(mm
, start_addr
, end_addr
);
1351 for ( ; vma
&& vma
->vm_start
< end_addr
; vma
= vma
->vm_next
) {
1354 start
= max(vma
->vm_start
, start_addr
);
1355 if (start
>= vma
->vm_end
)
1357 end
= min(vma
->vm_end
, end_addr
);
1358 if (end
<= vma
->vm_start
)
1361 if (vma
->vm_flags
& VM_ACCOUNT
)
1362 *nr_accounted
+= (end
- start
) >> PAGE_SHIFT
;
1364 if (unlikely(is_pfn_mapping(vma
)))
1365 untrack_pfn_vma(vma
, 0, 0);
1367 while (start
!= end
) {
1368 if (unlikely(is_vm_hugetlb_page(vma
))) {
1370 * It is undesirable to test vma->vm_file as it
1371 * should be non-null for valid hugetlb area.
1372 * However, vm_file will be NULL in the error
1373 * cleanup path of do_mmap_pgoff. When
1374 * hugetlbfs ->mmap method fails,
1375 * do_mmap_pgoff() nullifies vma->vm_file
1376 * before calling this function to clean up.
1377 * Since no pte has actually been setup, it is
1378 * safe to do nothing in this case.
1381 unmap_hugepage_range(vma
, start
, end
, NULL
);
1385 start
= unmap_page_range(tlb
, vma
, start
, end
, details
);
1389 mmu_notifier_invalidate_range_end(mm
, start_addr
, end_addr
);
1390 return start
; /* which is now the end (or restart) address */
1394 * zap_page_range - remove user pages in a given range
1395 * @vma: vm_area_struct holding the applicable pages
1396 * @address: starting address of pages to zap
1397 * @size: number of bytes to zap
1398 * @details: details of nonlinear truncation or shared cache invalidation
1400 unsigned long zap_page_range(struct vm_area_struct
*vma
, unsigned long address
,
1401 unsigned long size
, struct zap_details
*details
)
1403 struct mm_struct
*mm
= vma
->vm_mm
;
1404 struct mmu_gather tlb
;
1405 unsigned long end
= address
+ size
;
1406 unsigned long nr_accounted
= 0;
1409 tlb_gather_mmu(&tlb
, mm
, 0);
1410 update_hiwater_rss(mm
);
1411 end
= unmap_vmas(&tlb
, vma
, address
, end
, &nr_accounted
, details
);
1412 tlb_finish_mmu(&tlb
, address
, end
);
1417 * zap_vma_ptes - remove ptes mapping the vma
1418 * @vma: vm_area_struct holding ptes to be zapped
1419 * @address: starting address of pages to zap
1420 * @size: number of bytes to zap
1422 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1424 * The entire address range must be fully contained within the vma.
1426 * Returns 0 if successful.
1428 int zap_vma_ptes(struct vm_area_struct
*vma
, unsigned long address
,
1431 if (address
< vma
->vm_start
|| address
+ size
> vma
->vm_end
||
1432 !(vma
->vm_flags
& VM_PFNMAP
))
1434 zap_page_range(vma
, address
, size
, NULL
);
1437 EXPORT_SYMBOL_GPL(zap_vma_ptes
);
1440 * follow_page - look up a page descriptor from a user-virtual address
1441 * @vma: vm_area_struct mapping @address
1442 * @address: virtual address to look up
1443 * @flags: flags modifying lookup behaviour
1445 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
1447 * Returns the mapped (struct page *), %NULL if no mapping exists, or
1448 * an error pointer if there is a mapping to something not represented
1449 * by a page descriptor (see also vm_normal_page()).
1451 struct page
*follow_page(struct vm_area_struct
*vma
, unsigned long address
,
1460 struct mm_struct
*mm
= vma
->vm_mm
;
1462 page
= follow_huge_addr(mm
, address
, flags
& FOLL_WRITE
);
1463 if (!IS_ERR(page
)) {
1464 BUG_ON(flags
& FOLL_GET
);
1469 pgd
= pgd_offset(mm
, address
);
1470 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
1473 pud
= pud_offset(pgd
, address
);
1476 if (pud_huge(*pud
) && vma
->vm_flags
& VM_HUGETLB
) {
1477 BUG_ON(flags
& FOLL_GET
);
1478 page
= follow_huge_pud(mm
, address
, pud
, flags
& FOLL_WRITE
);
1481 if (unlikely(pud_bad(*pud
)))
1484 pmd
= pmd_offset(pud
, address
);
1487 if (pmd_huge(*pmd
) && vma
->vm_flags
& VM_HUGETLB
) {
1488 BUG_ON(flags
& FOLL_GET
);
1489 page
= follow_huge_pmd(mm
, address
, pmd
, flags
& FOLL_WRITE
);
1492 if (pmd_trans_huge(*pmd
)) {
1493 if (flags
& FOLL_SPLIT
) {
1494 split_huge_page_pmd(mm
, pmd
);
1495 goto split_fallthrough
;
1497 spin_lock(&mm
->page_table_lock
);
1498 if (likely(pmd_trans_huge(*pmd
))) {
1499 if (unlikely(pmd_trans_splitting(*pmd
))) {
1500 spin_unlock(&mm
->page_table_lock
);
1501 wait_split_huge_page(vma
->anon_vma
, pmd
);
1503 page
= follow_trans_huge_pmd(mm
, address
,
1505 spin_unlock(&mm
->page_table_lock
);
1509 spin_unlock(&mm
->page_table_lock
);
1513 if (unlikely(pmd_bad(*pmd
)))
1516 ptep
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
1519 if (!pte_present(pte
))
1521 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
1524 page
= vm_normal_page(vma
, address
, pte
);
1525 if (unlikely(!page
)) {
1526 if ((flags
& FOLL_DUMP
) ||
1527 !is_zero_pfn(pte_pfn(pte
)))
1529 page
= pte_page(pte
);
1532 if (flags
& FOLL_GET
)
1533 get_page_foll(page
);
1534 if (flags
& FOLL_TOUCH
) {
1535 if ((flags
& FOLL_WRITE
) &&
1536 !pte_dirty(pte
) && !PageDirty(page
))
1537 set_page_dirty(page
);
1539 * pte_mkyoung() would be more correct here, but atomic care
1540 * is needed to avoid losing the dirty bit: it is easier to use
1541 * mark_page_accessed().
1543 mark_page_accessed(page
);
1545 if ((flags
& FOLL_MLOCK
) && (vma
->vm_flags
& VM_LOCKED
)) {
1547 * The preliminary mapping check is mainly to avoid the
1548 * pointless overhead of lock_page on the ZERO_PAGE
1549 * which might bounce very badly if there is contention.
1551 * If the page is already locked, we don't need to
1552 * handle it now - vmscan will handle it later if and
1553 * when it attempts to reclaim the page.
1555 if (page
->mapping
&& trylock_page(page
)) {
1556 lru_add_drain(); /* push cached pages to LRU */
1558 * Because we lock page here and migration is
1559 * blocked by the pte's page reference, we need
1560 * only check for file-cache page truncation.
1563 mlock_vma_page(page
);
1568 pte_unmap_unlock(ptep
, ptl
);
1573 pte_unmap_unlock(ptep
, ptl
);
1574 return ERR_PTR(-EFAULT
);
1577 pte_unmap_unlock(ptep
, ptl
);
1583 * When core dumping an enormous anonymous area that nobody
1584 * has touched so far, we don't want to allocate unnecessary pages or
1585 * page tables. Return error instead of NULL to skip handle_mm_fault,
1586 * then get_dump_page() will return NULL to leave a hole in the dump.
1587 * But we can only make this optimization where a hole would surely
1588 * be zero-filled if handle_mm_fault() actually did handle it.
1590 if ((flags
& FOLL_DUMP
) &&
1591 (!vma
->vm_ops
|| !vma
->vm_ops
->fault
))
1592 return ERR_PTR(-EFAULT
);
1596 static inline int stack_guard_page(struct vm_area_struct
*vma
, unsigned long addr
)
1598 return stack_guard_page_start(vma
, addr
) ||
1599 stack_guard_page_end(vma
, addr
+PAGE_SIZE
);
1603 * __get_user_pages() - pin user pages in memory
1604 * @tsk: task_struct of target task
1605 * @mm: mm_struct of target mm
1606 * @start: starting user address
1607 * @nr_pages: number of pages from start to pin
1608 * @gup_flags: flags modifying pin behaviour
1609 * @pages: array that receives pointers to the pages pinned.
1610 * Should be at least nr_pages long. Or NULL, if caller
1611 * only intends to ensure the pages are faulted in.
1612 * @vmas: array of pointers to vmas corresponding to each page.
1613 * Or NULL if the caller does not require them.
1614 * @nonblocking: whether waiting for disk IO or mmap_sem contention
1616 * Returns number of pages pinned. This may be fewer than the number
1617 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1618 * were pinned, returns -errno. Each page returned must be released
1619 * with a put_page() call when it is finished with. vmas will only
1620 * remain valid while mmap_sem is held.
1622 * Must be called with mmap_sem held for read or write.
1624 * __get_user_pages walks a process's page tables and takes a reference to
1625 * each struct page that each user address corresponds to at a given
1626 * instant. That is, it takes the page that would be accessed if a user
1627 * thread accesses the given user virtual address at that instant.
1629 * This does not guarantee that the page exists in the user mappings when
1630 * __get_user_pages returns, and there may even be a completely different
1631 * page there in some cases (eg. if mmapped pagecache has been invalidated
1632 * and subsequently re faulted). However it does guarantee that the page
1633 * won't be freed completely. And mostly callers simply care that the page
1634 * contains data that was valid *at some point in time*. Typically, an IO
1635 * or similar operation cannot guarantee anything stronger anyway because
1636 * locks can't be held over the syscall boundary.
1638 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1639 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1640 * appropriate) must be called after the page is finished with, and
1641 * before put_page is called.
1643 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
1644 * or mmap_sem contention, and if waiting is needed to pin all pages,
1645 * *@nonblocking will be set to 0.
1647 * In most cases, get_user_pages or get_user_pages_fast should be used
1648 * instead of __get_user_pages. __get_user_pages should be used only if
1649 * you need some special @gup_flags.
1651 int __get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1652 unsigned long start
, int nr_pages
, unsigned int gup_flags
,
1653 struct page
**pages
, struct vm_area_struct
**vmas
,
1657 unsigned long vm_flags
;
1662 VM_BUG_ON(!!pages
!= !!(gup_flags
& FOLL_GET
));
1665 * Require read or write permissions.
1666 * If FOLL_FORCE is set, we only require the "MAY" flags.
1668 vm_flags
= (gup_flags
& FOLL_WRITE
) ?
1669 (VM_WRITE
| VM_MAYWRITE
) : (VM_READ
| VM_MAYREAD
);
1670 vm_flags
&= (gup_flags
& FOLL_FORCE
) ?
1671 (VM_MAYREAD
| VM_MAYWRITE
) : (VM_READ
| VM_WRITE
);
1675 struct vm_area_struct
*vma
;
1677 vma
= find_extend_vma(mm
, start
);
1678 if (!vma
&& in_gate_area(mm
, start
)) {
1679 unsigned long pg
= start
& PAGE_MASK
;
1685 /* user gate pages are read-only */
1686 if (gup_flags
& FOLL_WRITE
)
1687 return i
? : -EFAULT
;
1689 pgd
= pgd_offset_k(pg
);
1691 pgd
= pgd_offset_gate(mm
, pg
);
1692 BUG_ON(pgd_none(*pgd
));
1693 pud
= pud_offset(pgd
, pg
);
1694 BUG_ON(pud_none(*pud
));
1695 pmd
= pmd_offset(pud
, pg
);
1697 return i
? : -EFAULT
;
1698 VM_BUG_ON(pmd_trans_huge(*pmd
));
1699 pte
= pte_offset_map(pmd
, pg
);
1700 if (pte_none(*pte
)) {
1702 return i
? : -EFAULT
;
1704 vma
= get_gate_vma(mm
);
1708 page
= vm_normal_page(vma
, start
, *pte
);
1710 if (!(gup_flags
& FOLL_DUMP
) &&
1711 is_zero_pfn(pte_pfn(*pte
)))
1712 page
= pte_page(*pte
);
1715 return i
? : -EFAULT
;
1726 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)) ||
1727 !(vm_flags
& vma
->vm_flags
))
1728 return i
? : -EFAULT
;
1730 if (is_vm_hugetlb_page(vma
)) {
1731 i
= follow_hugetlb_page(mm
, vma
, pages
, vmas
,
1732 &start
, &nr_pages
, i
, gup_flags
);
1738 unsigned int foll_flags
= gup_flags
;
1741 * If we have a pending SIGKILL, don't keep faulting
1742 * pages and potentially allocating memory.
1744 if (unlikely(fatal_signal_pending(current
)))
1745 return i
? i
: -ERESTARTSYS
;
1748 while (!(page
= follow_page(vma
, start
, foll_flags
))) {
1750 unsigned int fault_flags
= 0;
1752 /* For mlock, just skip the stack guard page. */
1753 if (foll_flags
& FOLL_MLOCK
) {
1754 if (stack_guard_page(vma
, start
))
1757 if (foll_flags
& FOLL_WRITE
)
1758 fault_flags
|= FAULT_FLAG_WRITE
;
1760 fault_flags
|= FAULT_FLAG_ALLOW_RETRY
;
1761 if (foll_flags
& FOLL_NOWAIT
)
1762 fault_flags
|= (FAULT_FLAG_ALLOW_RETRY
| FAULT_FLAG_RETRY_NOWAIT
);
1764 ret
= handle_mm_fault(mm
, vma
, start
,
1767 if (ret
& VM_FAULT_ERROR
) {
1768 if (ret
& VM_FAULT_OOM
)
1769 return i
? i
: -ENOMEM
;
1770 if (ret
& (VM_FAULT_HWPOISON
|
1771 VM_FAULT_HWPOISON_LARGE
)) {
1774 else if (gup_flags
& FOLL_HWPOISON
)
1779 if (ret
& VM_FAULT_SIGBUS
)
1780 return i
? i
: -EFAULT
;
1785 if (ret
& VM_FAULT_MAJOR
)
1791 if (ret
& VM_FAULT_RETRY
) {
1798 * The VM_FAULT_WRITE bit tells us that
1799 * do_wp_page has broken COW when necessary,
1800 * even if maybe_mkwrite decided not to set
1801 * pte_write. We can thus safely do subsequent
1802 * page lookups as if they were reads. But only
1803 * do so when looping for pte_write is futile:
1804 * in some cases userspace may also be wanting
1805 * to write to the gotten user page, which a
1806 * read fault here might prevent (a readonly
1807 * page might get reCOWed by userspace write).
1809 if ((ret
& VM_FAULT_WRITE
) &&
1810 !(vma
->vm_flags
& VM_WRITE
))
1811 foll_flags
&= ~FOLL_WRITE
;
1816 return i
? i
: PTR_ERR(page
);
1820 flush_anon_page(vma
, page
, start
);
1821 flush_dcache_page(page
);
1829 } while (nr_pages
&& start
< vma
->vm_end
);
1833 EXPORT_SYMBOL(__get_user_pages
);
1836 * fixup_user_fault() - manually resolve a user page fault
1837 * @tsk: the task_struct to use for page fault accounting, or
1838 * NULL if faults are not to be recorded.
1839 * @mm: mm_struct of target mm
1840 * @address: user address
1841 * @fault_flags:flags to pass down to handle_mm_fault()
1843 * This is meant to be called in the specific scenario where for locking reasons
1844 * we try to access user memory in atomic context (within a pagefault_disable()
1845 * section), this returns -EFAULT, and we want to resolve the user fault before
1848 * Typically this is meant to be used by the futex code.
1850 * The main difference with get_user_pages() is that this function will
1851 * unconditionally call handle_mm_fault() which will in turn perform all the
1852 * necessary SW fixup of the dirty and young bits in the PTE, while
1853 * handle_mm_fault() only guarantees to update these in the struct page.
1855 * This is important for some architectures where those bits also gate the
1856 * access permission to the page because they are maintained in software. On
1857 * such architectures, gup() will not be enough to make a subsequent access
1860 * This should be called with the mm_sem held for read.
1862 int fixup_user_fault(struct task_struct
*tsk
, struct mm_struct
*mm
,
1863 unsigned long address
, unsigned int fault_flags
)
1865 struct vm_area_struct
*vma
;
1868 vma
= find_extend_vma(mm
, address
);
1869 if (!vma
|| address
< vma
->vm_start
)
1872 ret
= handle_mm_fault(mm
, vma
, address
, fault_flags
);
1873 if (ret
& VM_FAULT_ERROR
) {
1874 if (ret
& VM_FAULT_OOM
)
1876 if (ret
& (VM_FAULT_HWPOISON
| VM_FAULT_HWPOISON_LARGE
))
1878 if (ret
& VM_FAULT_SIGBUS
)
1883 if (ret
& VM_FAULT_MAJOR
)
1892 * get_user_pages() - pin user pages in memory
1893 * @tsk: the task_struct to use for page fault accounting, or
1894 * NULL if faults are not to be recorded.
1895 * @mm: mm_struct of target mm
1896 * @start: starting user address
1897 * @nr_pages: number of pages from start to pin
1898 * @write: whether pages will be written to by the caller
1899 * @force: whether to force write access even if user mapping is
1900 * readonly. This will result in the page being COWed even
1901 * in MAP_SHARED mappings. You do not want this.
1902 * @pages: array that receives pointers to the pages pinned.
1903 * Should be at least nr_pages long. Or NULL, if caller
1904 * only intends to ensure the pages are faulted in.
1905 * @vmas: array of pointers to vmas corresponding to each page.
1906 * Or NULL if the caller does not require them.
1908 * Returns number of pages pinned. This may be fewer than the number
1909 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1910 * were pinned, returns -errno. Each page returned must be released
1911 * with a put_page() call when it is finished with. vmas will only
1912 * remain valid while mmap_sem is held.
1914 * Must be called with mmap_sem held for read or write.
1916 * get_user_pages walks a process's page tables and takes a reference to
1917 * each struct page that each user address corresponds to at a given
1918 * instant. That is, it takes the page that would be accessed if a user
1919 * thread accesses the given user virtual address at that instant.
1921 * This does not guarantee that the page exists in the user mappings when
1922 * get_user_pages returns, and there may even be a completely different
1923 * page there in some cases (eg. if mmapped pagecache has been invalidated
1924 * and subsequently re faulted). However it does guarantee that the page
1925 * won't be freed completely. And mostly callers simply care that the page
1926 * contains data that was valid *at some point in time*. Typically, an IO
1927 * or similar operation cannot guarantee anything stronger anyway because
1928 * locks can't be held over the syscall boundary.
1930 * If write=0, the page must not be written to. If the page is written to,
1931 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
1932 * after the page is finished with, and before put_page is called.
1934 * get_user_pages is typically used for fewer-copy IO operations, to get a
1935 * handle on the memory by some means other than accesses via the user virtual
1936 * addresses. The pages may be submitted for DMA to devices or accessed via
1937 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1938 * use the correct cache flushing APIs.
1940 * See also get_user_pages_fast, for performance critical applications.
1942 int get_user_pages(struct task_struct
*tsk
, struct mm_struct
*mm
,
1943 unsigned long start
, int nr_pages
, int write
, int force
,
1944 struct page
**pages
, struct vm_area_struct
**vmas
)
1946 int flags
= FOLL_TOUCH
;
1951 flags
|= FOLL_WRITE
;
1953 flags
|= FOLL_FORCE
;
1955 return __get_user_pages(tsk
, mm
, start
, nr_pages
, flags
, pages
, vmas
,
1958 EXPORT_SYMBOL(get_user_pages
);
1961 * get_dump_page() - pin user page in memory while writing it to core dump
1962 * @addr: user address
1964 * Returns struct page pointer of user page pinned for dump,
1965 * to be freed afterwards by page_cache_release() or put_page().
1967 * Returns NULL on any kind of failure - a hole must then be inserted into
1968 * the corefile, to preserve alignment with its headers; and also returns
1969 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1970 * allowing a hole to be left in the corefile to save diskspace.
1972 * Called without mmap_sem, but after all other threads have been killed.
1974 #ifdef CONFIG_ELF_CORE
1975 struct page
*get_dump_page(unsigned long addr
)
1977 struct vm_area_struct
*vma
;
1980 if (__get_user_pages(current
, current
->mm
, addr
, 1,
1981 FOLL_FORCE
| FOLL_DUMP
| FOLL_GET
, &page
, &vma
,
1984 flush_cache_page(vma
, addr
, page_to_pfn(page
));
1987 #endif /* CONFIG_ELF_CORE */
1989 pte_t
*__get_locked_pte(struct mm_struct
*mm
, unsigned long addr
,
1992 pgd_t
* pgd
= pgd_offset(mm
, addr
);
1993 pud_t
* pud
= pud_alloc(mm
, pgd
, addr
);
1995 pmd_t
* pmd
= pmd_alloc(mm
, pud
, addr
);
1997 VM_BUG_ON(pmd_trans_huge(*pmd
));
1998 return pte_alloc_map_lock(mm
, pmd
, addr
, ptl
);
2005 * This is the old fallback for page remapping.
2007 * For historical reasons, it only allows reserved pages. Only
2008 * old drivers should use this, and they needed to mark their
2009 * pages reserved for the old functions anyway.
2011 static int insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2012 struct page
*page
, pgprot_t prot
)
2014 struct mm_struct
*mm
= vma
->vm_mm
;
2023 flush_dcache_page(page
);
2024 pte
= get_locked_pte(mm
, addr
, &ptl
);
2028 if (!pte_none(*pte
))
2031 /* Ok, finally just insert the thing.. */
2033 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
2034 page_add_file_rmap(page
);
2035 set_pte_at(mm
, addr
, pte
, mk_pte(page
, prot
));
2038 pte_unmap_unlock(pte
, ptl
);
2041 pte_unmap_unlock(pte
, ptl
);
2047 * vm_insert_page - insert single page into user vma
2048 * @vma: user vma to map to
2049 * @addr: target user address of this page
2050 * @page: source kernel page
2052 * This allows drivers to insert individual pages they've allocated
2055 * The page has to be a nice clean _individual_ kernel allocation.
2056 * If you allocate a compound page, you need to have marked it as
2057 * such (__GFP_COMP), or manually just split the page up yourself
2058 * (see split_page()).
2060 * NOTE! Traditionally this was done with "remap_pfn_range()" which
2061 * took an arbitrary page protection parameter. This doesn't allow
2062 * that. Your vma protection will have to be set up correctly, which
2063 * means that if you want a shared writable mapping, you'd better
2064 * ask for a shared writable mapping!
2066 * The page does not need to be reserved.
2068 int vm_insert_page(struct vm_area_struct
*vma
, unsigned long addr
,
2071 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2073 if (!page_count(page
))
2075 vma
->vm_flags
|= VM_INSERTPAGE
;
2076 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2078 EXPORT_SYMBOL(vm_insert_page
);
2080 static int insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2081 unsigned long pfn
, pgprot_t prot
)
2083 struct mm_struct
*mm
= vma
->vm_mm
;
2089 pte
= get_locked_pte(mm
, addr
, &ptl
);
2093 if (!pte_none(*pte
))
2096 /* Ok, finally just insert the thing.. */
2097 entry
= pte_mkspecial(pfn_pte(pfn
, prot
));
2098 set_pte_at(mm
, addr
, pte
, entry
);
2099 update_mmu_cache(vma
, addr
, pte
); /* XXX: why not for insert_page? */
2103 pte_unmap_unlock(pte
, ptl
);
2109 * vm_insert_pfn - insert single pfn into user vma
2110 * @vma: user vma to map to
2111 * @addr: target user address of this page
2112 * @pfn: source kernel pfn
2114 * Similar to vm_inert_page, this allows drivers to insert individual pages
2115 * they've allocated into a user vma. Same comments apply.
2117 * This function should only be called from a vm_ops->fault handler, and
2118 * in that case the handler should return NULL.
2120 * vma cannot be a COW mapping.
2122 * As this is called only for pages that do not currently exist, we
2123 * do not need to flush old virtual caches or the TLB.
2125 int vm_insert_pfn(struct vm_area_struct
*vma
, unsigned long addr
,
2129 pgprot_t pgprot
= vma
->vm_page_prot
;
2131 * Technically, architectures with pte_special can avoid all these
2132 * restrictions (same for remap_pfn_range). However we would like
2133 * consistency in testing and feature parity among all, so we should
2134 * try to keep these invariants in place for everybody.
2136 BUG_ON(!(vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)));
2137 BUG_ON((vma
->vm_flags
& (VM_PFNMAP
|VM_MIXEDMAP
)) ==
2138 (VM_PFNMAP
|VM_MIXEDMAP
));
2139 BUG_ON((vma
->vm_flags
& VM_PFNMAP
) && is_cow_mapping(vma
->vm_flags
));
2140 BUG_ON((vma
->vm_flags
& VM_MIXEDMAP
) && pfn_valid(pfn
));
2142 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2144 if (track_pfn_vma_new(vma
, &pgprot
, pfn
, PAGE_SIZE
))
2147 ret
= insert_pfn(vma
, addr
, pfn
, pgprot
);
2150 untrack_pfn_vma(vma
, pfn
, PAGE_SIZE
);
2154 EXPORT_SYMBOL(vm_insert_pfn
);
2156 int vm_insert_mixed(struct vm_area_struct
*vma
, unsigned long addr
,
2159 BUG_ON(!(vma
->vm_flags
& VM_MIXEDMAP
));
2161 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
2165 * If we don't have pte special, then we have to use the pfn_valid()
2166 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
2167 * refcount the page if pfn_valid is true (hence insert_page rather
2168 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
2169 * without pte special, it would there be refcounted as a normal page.
2171 if (!HAVE_PTE_SPECIAL
&& pfn_valid(pfn
)) {
2174 page
= pfn_to_page(pfn
);
2175 return insert_page(vma
, addr
, page
, vma
->vm_page_prot
);
2177 return insert_pfn(vma
, addr
, pfn
, vma
->vm_page_prot
);
2179 EXPORT_SYMBOL(vm_insert_mixed
);
2182 * maps a range of physical memory into the requested pages. the old
2183 * mappings are removed. any references to nonexistent pages results
2184 * in null mappings (currently treated as "copy-on-access")
2186 static int remap_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2187 unsigned long addr
, unsigned long end
,
2188 unsigned long pfn
, pgprot_t prot
)
2193 pte
= pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2196 arch_enter_lazy_mmu_mode();
2198 BUG_ON(!pte_none(*pte
));
2199 set_pte_at(mm
, addr
, pte
, pte_mkspecial(pfn_pte(pfn
, prot
)));
2201 } while (pte
++, addr
+= PAGE_SIZE
, addr
!= end
);
2202 arch_leave_lazy_mmu_mode();
2203 pte_unmap_unlock(pte
- 1, ptl
);
2207 static inline int remap_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2208 unsigned long addr
, unsigned long end
,
2209 unsigned long pfn
, pgprot_t prot
)
2214 pfn
-= addr
>> PAGE_SHIFT
;
2215 pmd
= pmd_alloc(mm
, pud
, addr
);
2218 VM_BUG_ON(pmd_trans_huge(*pmd
));
2220 next
= pmd_addr_end(addr
, end
);
2221 if (remap_pte_range(mm
, pmd
, addr
, next
,
2222 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2224 } while (pmd
++, addr
= next
, addr
!= end
);
2228 static inline int remap_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2229 unsigned long addr
, unsigned long end
,
2230 unsigned long pfn
, pgprot_t prot
)
2235 pfn
-= addr
>> PAGE_SHIFT
;
2236 pud
= pud_alloc(mm
, pgd
, addr
);
2240 next
= pud_addr_end(addr
, end
);
2241 if (remap_pmd_range(mm
, pud
, addr
, next
,
2242 pfn
+ (addr
>> PAGE_SHIFT
), prot
))
2244 } while (pud
++, addr
= next
, addr
!= end
);
2249 * remap_pfn_range - remap kernel memory to userspace
2250 * @vma: user vma to map to
2251 * @addr: target user address to start at
2252 * @pfn: physical address of kernel memory
2253 * @size: size of map area
2254 * @prot: page protection flags for this mapping
2256 * Note: this is only safe if the mm semaphore is held when called.
2258 int remap_pfn_range(struct vm_area_struct
*vma
, unsigned long addr
,
2259 unsigned long pfn
, unsigned long size
, pgprot_t prot
)
2263 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2264 struct mm_struct
*mm
= vma
->vm_mm
;
2268 * Physically remapped pages are special. Tell the
2269 * rest of the world about it:
2270 * VM_IO tells people not to look at these pages
2271 * (accesses can have side effects).
2272 * VM_RESERVED is specified all over the place, because
2273 * in 2.4 it kept swapout's vma scan off this vma; but
2274 * in 2.6 the LRU scan won't even find its pages, so this
2275 * flag means no more than count its pages in reserved_vm,
2276 * and omit it from core dump, even when VM_IO turned off.
2277 * VM_PFNMAP tells the core MM that the base pages are just
2278 * raw PFN mappings, and do not have a "struct page" associated
2281 * There's a horrible special case to handle copy-on-write
2282 * behaviour that some programs depend on. We mark the "original"
2283 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
2285 if (addr
== vma
->vm_start
&& end
== vma
->vm_end
) {
2286 vma
->vm_pgoff
= pfn
;
2287 vma
->vm_flags
|= VM_PFN_AT_MMAP
;
2288 } else if (is_cow_mapping(vma
->vm_flags
))
2291 vma
->vm_flags
|= VM_IO
| VM_RESERVED
| VM_PFNMAP
;
2293 err
= track_pfn_vma_new(vma
, &prot
, pfn
, PAGE_ALIGN(size
));
2296 * To indicate that track_pfn related cleanup is not
2297 * needed from higher level routine calling unmap_vmas
2299 vma
->vm_flags
&= ~(VM_IO
| VM_RESERVED
| VM_PFNMAP
);
2300 vma
->vm_flags
&= ~VM_PFN_AT_MMAP
;
2304 BUG_ON(addr
>= end
);
2305 pfn
-= addr
>> PAGE_SHIFT
;
2306 pgd
= pgd_offset(mm
, addr
);
2307 flush_cache_range(vma
, addr
, end
);
2309 next
= pgd_addr_end(addr
, end
);
2310 err
= remap_pud_range(mm
, pgd
, addr
, next
,
2311 pfn
+ (addr
>> PAGE_SHIFT
), prot
);
2314 } while (pgd
++, addr
= next
, addr
!= end
);
2317 untrack_pfn_vma(vma
, pfn
, PAGE_ALIGN(size
));
2321 EXPORT_SYMBOL(remap_pfn_range
);
2323 static int apply_to_pte_range(struct mm_struct
*mm
, pmd_t
*pmd
,
2324 unsigned long addr
, unsigned long end
,
2325 pte_fn_t fn
, void *data
)
2330 spinlock_t
*uninitialized_var(ptl
);
2332 pte
= (mm
== &init_mm
) ?
2333 pte_alloc_kernel(pmd
, addr
) :
2334 pte_alloc_map_lock(mm
, pmd
, addr
, &ptl
);
2338 BUG_ON(pmd_huge(*pmd
));
2340 arch_enter_lazy_mmu_mode();
2342 token
= pmd_pgtable(*pmd
);
2345 err
= fn(pte
++, token
, addr
, data
);
2348 } while (addr
+= PAGE_SIZE
, addr
!= end
);
2350 arch_leave_lazy_mmu_mode();
2353 pte_unmap_unlock(pte
-1, ptl
);
2357 static int apply_to_pmd_range(struct mm_struct
*mm
, pud_t
*pud
,
2358 unsigned long addr
, unsigned long end
,
2359 pte_fn_t fn
, void *data
)
2365 BUG_ON(pud_huge(*pud
));
2367 pmd
= pmd_alloc(mm
, pud
, addr
);
2371 next
= pmd_addr_end(addr
, end
);
2372 err
= apply_to_pte_range(mm
, pmd
, addr
, next
, fn
, data
);
2375 } while (pmd
++, addr
= next
, addr
!= end
);
2379 static int apply_to_pud_range(struct mm_struct
*mm
, pgd_t
*pgd
,
2380 unsigned long addr
, unsigned long end
,
2381 pte_fn_t fn
, void *data
)
2387 pud
= pud_alloc(mm
, pgd
, addr
);
2391 next
= pud_addr_end(addr
, end
);
2392 err
= apply_to_pmd_range(mm
, pud
, addr
, next
, fn
, data
);
2395 } while (pud
++, addr
= next
, addr
!= end
);
2400 * Scan a region of virtual memory, filling in page tables as necessary
2401 * and calling a provided function on each leaf page table.
2403 int apply_to_page_range(struct mm_struct
*mm
, unsigned long addr
,
2404 unsigned long size
, pte_fn_t fn
, void *data
)
2408 unsigned long end
= addr
+ size
;
2411 BUG_ON(addr
>= end
);
2412 pgd
= pgd_offset(mm
, addr
);
2414 next
= pgd_addr_end(addr
, end
);
2415 err
= apply_to_pud_range(mm
, pgd
, addr
, next
, fn
, data
);
2418 } while (pgd
++, addr
= next
, addr
!= end
);
2422 EXPORT_SYMBOL_GPL(apply_to_page_range
);
2425 * handle_pte_fault chooses page fault handler according to an entry
2426 * which was read non-atomically. Before making any commitment, on
2427 * those architectures or configurations (e.g. i386 with PAE) which
2428 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
2429 * must check under lock before unmapping the pte and proceeding
2430 * (but do_wp_page is only called after already making such a check;
2431 * and do_anonymous_page can safely check later on).
2433 static inline int pte_unmap_same(struct mm_struct
*mm
, pmd_t
*pmd
,
2434 pte_t
*page_table
, pte_t orig_pte
)
2437 #if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2438 if (sizeof(pte_t
) > sizeof(unsigned long)) {
2439 spinlock_t
*ptl
= pte_lockptr(mm
, pmd
);
2441 same
= pte_same(*page_table
, orig_pte
);
2445 pte_unmap(page_table
);
2449 static inline void cow_user_page(struct page
*dst
, struct page
*src
, unsigned long va
, struct vm_area_struct
*vma
)
2452 * If the source page was a PFN mapping, we don't have
2453 * a "struct page" for it. We do a best-effort copy by
2454 * just copying from the original user address. If that
2455 * fails, we just zero-fill it. Live with it.
2457 if (unlikely(!src
)) {
2458 void *kaddr
= kmap_atomic(dst
, KM_USER0
);
2459 void __user
*uaddr
= (void __user
*)(va
& PAGE_MASK
);
2462 * This really shouldn't fail, because the page is there
2463 * in the page tables. But it might just be unreadable,
2464 * in which case we just give up and fill the result with
2467 if (__copy_from_user_inatomic(kaddr
, uaddr
, PAGE_SIZE
))
2469 kunmap_atomic(kaddr
, KM_USER0
);
2470 flush_dcache_page(dst
);
2472 copy_user_highpage(dst
, src
, va
, vma
);
2476 * This routine handles present pages, when users try to write
2477 * to a shared page. It is done by copying the page to a new address
2478 * and decrementing the shared-page counter for the old page.
2480 * Note that this routine assumes that the protection checks have been
2481 * done by the caller (the low-level page fault routine in most cases).
2482 * Thus we can safely just mark it writable once we've done any necessary
2485 * We also mark the page dirty at this point even though the page will
2486 * change only once the write actually happens. This avoids a few races,
2487 * and potentially makes it more efficient.
2489 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2490 * but allow concurrent faults), with pte both mapped and locked.
2491 * We return with mmap_sem still held, but pte unmapped and unlocked.
2493 static int do_wp_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2494 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2495 spinlock_t
*ptl
, pte_t orig_pte
)
2498 struct page
*old_page
, *new_page
;
2501 int page_mkwrite
= 0;
2502 struct page
*dirty_page
= NULL
;
2504 old_page
= vm_normal_page(vma
, address
, orig_pte
);
2507 * VM_MIXEDMAP !pfn_valid() case
2509 * We should not cow pages in a shared writeable mapping.
2510 * Just mark the pages writable as we can't do any dirty
2511 * accounting on raw pfn maps.
2513 if ((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2514 (VM_WRITE
|VM_SHARED
))
2520 * Take out anonymous pages first, anonymous shared vmas are
2521 * not dirty accountable.
2523 if (PageAnon(old_page
) && !PageKsm(old_page
)) {
2524 if (!trylock_page(old_page
)) {
2525 page_cache_get(old_page
);
2526 pte_unmap_unlock(page_table
, ptl
);
2527 lock_page(old_page
);
2528 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2530 if (!pte_same(*page_table
, orig_pte
)) {
2531 unlock_page(old_page
);
2534 page_cache_release(old_page
);
2536 if (reuse_swap_page(old_page
)) {
2538 * The page is all ours. Move it to our anon_vma so
2539 * the rmap code will not search our parent or siblings.
2540 * Protected against the rmap code by the page lock.
2542 page_move_anon_rmap(old_page
, vma
, address
);
2543 unlock_page(old_page
);
2546 unlock_page(old_page
);
2547 } else if (unlikely((vma
->vm_flags
& (VM_WRITE
|VM_SHARED
)) ==
2548 (VM_WRITE
|VM_SHARED
))) {
2550 * Only catch write-faults on shared writable pages,
2551 * read-only shared pages can get COWed by
2552 * get_user_pages(.write=1, .force=1).
2554 if (vma
->vm_ops
&& vma
->vm_ops
->page_mkwrite
) {
2555 struct vm_fault vmf
;
2558 vmf
.virtual_address
= (void __user
*)(address
&
2560 vmf
.pgoff
= old_page
->index
;
2561 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
2562 vmf
.page
= old_page
;
2565 * Notify the address space that the page is about to
2566 * become writable so that it can prohibit this or wait
2567 * for the page to get into an appropriate state.
2569 * We do this without the lock held, so that it can
2570 * sleep if it needs to.
2572 page_cache_get(old_page
);
2573 pte_unmap_unlock(page_table
, ptl
);
2575 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
2577 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
2579 goto unwritable_page
;
2581 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
2582 lock_page(old_page
);
2583 if (!old_page
->mapping
) {
2584 ret
= 0; /* retry the fault */
2585 unlock_page(old_page
);
2586 goto unwritable_page
;
2589 VM_BUG_ON(!PageLocked(old_page
));
2592 * Since we dropped the lock we need to revalidate
2593 * the PTE as someone else may have changed it. If
2594 * they did, we just return, as we can count on the
2595 * MMU to tell us if they didn't also make it writable.
2597 page_table
= pte_offset_map_lock(mm
, pmd
, address
,
2599 if (!pte_same(*page_table
, orig_pte
)) {
2600 unlock_page(old_page
);
2606 dirty_page
= old_page
;
2607 get_page(dirty_page
);
2610 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2611 entry
= pte_mkyoung(orig_pte
);
2612 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2613 if (ptep_set_access_flags(vma
, address
, page_table
, entry
,1))
2614 update_mmu_cache(vma
, address
, page_table
);
2615 pte_unmap_unlock(page_table
, ptl
);
2616 ret
|= VM_FAULT_WRITE
;
2622 * Yes, Virginia, this is actually required to prevent a race
2623 * with clear_page_dirty_for_io() from clearing the page dirty
2624 * bit after it clear all dirty ptes, but before a racing
2625 * do_wp_page installs a dirty pte.
2627 * __do_fault is protected similarly.
2629 if (!page_mkwrite
) {
2630 wait_on_page_locked(dirty_page
);
2631 set_page_dirty_balance(dirty_page
, page_mkwrite
);
2633 put_page(dirty_page
);
2635 struct address_space
*mapping
= dirty_page
->mapping
;
2637 set_page_dirty(dirty_page
);
2638 unlock_page(dirty_page
);
2639 page_cache_release(dirty_page
);
2642 * Some device drivers do not set page.mapping
2643 * but still dirty their pages
2645 balance_dirty_pages_ratelimited(mapping
);
2649 /* file_update_time outside page_lock */
2651 file_update_time(vma
->vm_file
);
2657 * Ok, we need to copy. Oh, well..
2659 page_cache_get(old_page
);
2661 pte_unmap_unlock(page_table
, ptl
);
2663 if (unlikely(anon_vma_prepare(vma
)))
2666 if (is_zero_pfn(pte_pfn(orig_pte
))) {
2667 new_page
= alloc_zeroed_user_highpage_movable(vma
, address
);
2671 new_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
2674 cow_user_page(new_page
, old_page
, address
, vma
);
2676 __SetPageUptodate(new_page
);
2678 if (mem_cgroup_newpage_charge(new_page
, mm
, GFP_KERNEL
))
2682 * Re-check the pte - we dropped the lock
2684 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2685 if (likely(pte_same(*page_table
, orig_pte
))) {
2687 if (!PageAnon(old_page
)) {
2688 dec_mm_counter_fast(mm
, MM_FILEPAGES
);
2689 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2692 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2693 flush_cache_page(vma
, address
, pte_pfn(orig_pte
));
2694 entry
= mk_pte(new_page
, vma
->vm_page_prot
);
2695 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
2697 * Clear the pte entry and flush it first, before updating the
2698 * pte with the new entry. This will avoid a race condition
2699 * seen in the presence of one thread doing SMC and another
2702 ptep_clear_flush(vma
, address
, page_table
);
2703 page_add_new_anon_rmap(new_page
, vma
, address
);
2705 * We call the notify macro here because, when using secondary
2706 * mmu page tables (such as kvm shadow page tables), we want the
2707 * new page to be mapped directly into the secondary page table.
2709 set_pte_at_notify(mm
, address
, page_table
, entry
);
2710 update_mmu_cache(vma
, address
, page_table
);
2713 * Only after switching the pte to the new page may
2714 * we remove the mapcount here. Otherwise another
2715 * process may come and find the rmap count decremented
2716 * before the pte is switched to the new page, and
2717 * "reuse" the old page writing into it while our pte
2718 * here still points into it and can be read by other
2721 * The critical issue is to order this
2722 * page_remove_rmap with the ptp_clear_flush above.
2723 * Those stores are ordered by (if nothing else,)
2724 * the barrier present in the atomic_add_negative
2725 * in page_remove_rmap.
2727 * Then the TLB flush in ptep_clear_flush ensures that
2728 * no process can access the old page before the
2729 * decremented mapcount is visible. And the old page
2730 * cannot be reused until after the decremented
2731 * mapcount is visible. So transitively, TLBs to
2732 * old page will be flushed before it can be reused.
2734 page_remove_rmap(old_page
);
2737 /* Free the old page.. */
2738 new_page
= old_page
;
2739 ret
|= VM_FAULT_WRITE
;
2741 mem_cgroup_uncharge_page(new_page
);
2744 page_cache_release(new_page
);
2746 pte_unmap_unlock(page_table
, ptl
);
2749 * Don't let another task, with possibly unlocked vma,
2750 * keep the mlocked page.
2752 if ((ret
& VM_FAULT_WRITE
) && (vma
->vm_flags
& VM_LOCKED
)) {
2753 lock_page(old_page
); /* LRU manipulation */
2754 munlock_vma_page(old_page
);
2755 unlock_page(old_page
);
2757 page_cache_release(old_page
);
2761 page_cache_release(new_page
);
2765 unlock_page(old_page
);
2766 page_cache_release(old_page
);
2768 page_cache_release(old_page
);
2770 return VM_FAULT_OOM
;
2773 page_cache_release(old_page
);
2777 static void unmap_mapping_range_vma(struct vm_area_struct
*vma
,
2778 unsigned long start_addr
, unsigned long end_addr
,
2779 struct zap_details
*details
)
2781 zap_page_range(vma
, start_addr
, end_addr
- start_addr
, details
);
2784 static inline void unmap_mapping_range_tree(struct prio_tree_root
*root
,
2785 struct zap_details
*details
)
2787 struct vm_area_struct
*vma
;
2788 struct prio_tree_iter iter
;
2789 pgoff_t vba
, vea
, zba
, zea
;
2791 vma_prio_tree_foreach(vma
, &iter
, root
,
2792 details
->first_index
, details
->last_index
) {
2794 vba
= vma
->vm_pgoff
;
2795 vea
= vba
+ ((vma
->vm_end
- vma
->vm_start
) >> PAGE_SHIFT
) - 1;
2796 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2797 zba
= details
->first_index
;
2800 zea
= details
->last_index
;
2804 unmap_mapping_range_vma(vma
,
2805 ((zba
- vba
) << PAGE_SHIFT
) + vma
->vm_start
,
2806 ((zea
- vba
+ 1) << PAGE_SHIFT
) + vma
->vm_start
,
2811 static inline void unmap_mapping_range_list(struct list_head
*head
,
2812 struct zap_details
*details
)
2814 struct vm_area_struct
*vma
;
2817 * In nonlinear VMAs there is no correspondence between virtual address
2818 * offset and file offset. So we must perform an exhaustive search
2819 * across *all* the pages in each nonlinear VMA, not just the pages
2820 * whose virtual address lies outside the file truncation point.
2822 list_for_each_entry(vma
, head
, shared
.vm_set
.list
) {
2823 details
->nonlinear_vma
= vma
;
2824 unmap_mapping_range_vma(vma
, vma
->vm_start
, vma
->vm_end
, details
);
2829 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
2830 * @mapping: the address space containing mmaps to be unmapped.
2831 * @holebegin: byte in first page to unmap, relative to the start of
2832 * the underlying file. This will be rounded down to a PAGE_SIZE
2833 * boundary. Note that this is different from truncate_pagecache(), which
2834 * must keep the partial page. In contrast, we must get rid of
2836 * @holelen: size of prospective hole in bytes. This will be rounded
2837 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2839 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2840 * but 0 when invalidating pagecache, don't throw away private data.
2842 void unmap_mapping_range(struct address_space
*mapping
,
2843 loff_t
const holebegin
, loff_t
const holelen
, int even_cows
)
2845 struct zap_details details
;
2846 pgoff_t hba
= holebegin
>> PAGE_SHIFT
;
2847 pgoff_t hlen
= (holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2849 /* Check for overflow. */
2850 if (sizeof(holelen
) > sizeof(hlen
)) {
2852 (holebegin
+ holelen
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
2853 if (holeend
& ~(long long)ULONG_MAX
)
2854 hlen
= ULONG_MAX
- hba
+ 1;
2857 details
.check_mapping
= even_cows
? NULL
: mapping
;
2858 details
.nonlinear_vma
= NULL
;
2859 details
.first_index
= hba
;
2860 details
.last_index
= hba
+ hlen
- 1;
2861 if (details
.last_index
< details
.first_index
)
2862 details
.last_index
= ULONG_MAX
;
2865 mutex_lock(&mapping
->i_mmap_mutex
);
2866 if (unlikely(!prio_tree_empty(&mapping
->i_mmap
)))
2867 unmap_mapping_range_tree(&mapping
->i_mmap
, &details
);
2868 if (unlikely(!list_empty(&mapping
->i_mmap_nonlinear
)))
2869 unmap_mapping_range_list(&mapping
->i_mmap_nonlinear
, &details
);
2870 mutex_unlock(&mapping
->i_mmap_mutex
);
2872 EXPORT_SYMBOL(unmap_mapping_range
);
2875 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2876 * but allow concurrent faults), and pte mapped but not yet locked.
2877 * We return with mmap_sem still held, but pte unmapped and unlocked.
2879 static int do_swap_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
2880 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
2881 unsigned int flags
, pte_t orig_pte
)
2884 struct page
*page
, *swapcache
= NULL
;
2888 struct mem_cgroup
*ptr
;
2892 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
2895 entry
= pte_to_swp_entry(orig_pte
);
2896 if (unlikely(non_swap_entry(entry
))) {
2897 if (is_migration_entry(entry
)) {
2898 migration_entry_wait(mm
, pmd
, address
);
2899 } else if (is_hwpoison_entry(entry
)) {
2900 ret
= VM_FAULT_HWPOISON
;
2902 print_bad_pte(vma
, address
, orig_pte
, NULL
);
2903 ret
= VM_FAULT_SIGBUS
;
2907 delayacct_set_flag(DELAYACCT_PF_SWAPIN
);
2908 page
= lookup_swap_cache(entry
);
2910 grab_swap_token(mm
); /* Contend for token _before_ read-in */
2911 page
= swapin_readahead(entry
,
2912 GFP_HIGHUSER_MOVABLE
, vma
, address
);
2915 * Back out if somebody else faulted in this pte
2916 * while we released the pte lock.
2918 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2919 if (likely(pte_same(*page_table
, orig_pte
)))
2921 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2925 /* Had to read the page from swap area: Major fault */
2926 ret
= VM_FAULT_MAJOR
;
2927 count_vm_event(PGMAJFAULT
);
2928 mem_cgroup_count_vm_event(mm
, PGMAJFAULT
);
2929 } else if (PageHWPoison(page
)) {
2931 * hwpoisoned dirty swapcache pages are kept for killing
2932 * owner processes (which may be unknown at hwpoison time)
2934 ret
= VM_FAULT_HWPOISON
;
2935 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2939 locked
= lock_page_or_retry(page
, mm
, flags
);
2940 delayacct_clear_flag(DELAYACCT_PF_SWAPIN
);
2942 ret
|= VM_FAULT_RETRY
;
2947 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2948 * release the swapcache from under us. The page pin, and pte_same
2949 * test below, are not enough to exclude that. Even if it is still
2950 * swapcache, we need to check that the page's swap has not changed.
2952 if (unlikely(!PageSwapCache(page
) || page_private(page
) != entry
.val
))
2955 if (ksm_might_need_to_copy(page
, vma
, address
)) {
2957 page
= ksm_does_need_to_copy(page
, vma
, address
);
2959 if (unlikely(!page
)) {
2967 if (mem_cgroup_try_charge_swapin(mm
, page
, GFP_KERNEL
, &ptr
)) {
2973 * Back out if somebody else already faulted in this pte.
2975 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
2976 if (unlikely(!pte_same(*page_table
, orig_pte
)))
2979 if (unlikely(!PageUptodate(page
))) {
2980 ret
= VM_FAULT_SIGBUS
;
2985 * The page isn't present yet, go ahead with the fault.
2987 * Be careful about the sequence of operations here.
2988 * To get its accounting right, reuse_swap_page() must be called
2989 * while the page is counted on swap but not yet in mapcount i.e.
2990 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2991 * must be called after the swap_free(), or it will never succeed.
2992 * Because delete_from_swap_page() may be called by reuse_swap_page(),
2993 * mem_cgroup_commit_charge_swapin() may not be able to find swp_entry
2994 * in page->private. In this case, a record in swap_cgroup is silently
2995 * discarded at swap_free().
2998 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
2999 dec_mm_counter_fast(mm
, MM_SWAPENTS
);
3000 pte
= mk_pte(page
, vma
->vm_page_prot
);
3001 if ((flags
& FAULT_FLAG_WRITE
) && reuse_swap_page(page
)) {
3002 pte
= maybe_mkwrite(pte_mkdirty(pte
), vma
);
3003 flags
&= ~FAULT_FLAG_WRITE
;
3004 ret
|= VM_FAULT_WRITE
;
3007 flush_icache_page(vma
, page
);
3008 set_pte_at(mm
, address
, page_table
, pte
);
3009 do_page_add_anon_rmap(page
, vma
, address
, exclusive
);
3010 /* It's better to call commit-charge after rmap is established */
3011 mem_cgroup_commit_charge_swapin(page
, ptr
);
3014 if (vm_swap_full() || (vma
->vm_flags
& VM_LOCKED
) || PageMlocked(page
))
3015 try_to_free_swap(page
);
3019 * Hold the lock to avoid the swap entry to be reused
3020 * until we take the PT lock for the pte_same() check
3021 * (to avoid false positives from pte_same). For
3022 * further safety release the lock after the swap_free
3023 * so that the swap count won't change under a
3024 * parallel locked swapcache.
3026 unlock_page(swapcache
);
3027 page_cache_release(swapcache
);
3030 if (flags
& FAULT_FLAG_WRITE
) {
3031 ret
|= do_wp_page(mm
, vma
, address
, page_table
, pmd
, ptl
, pte
);
3032 if (ret
& VM_FAULT_ERROR
)
3033 ret
&= VM_FAULT_ERROR
;
3037 /* No need to invalidate - it was non-present before */
3038 update_mmu_cache(vma
, address
, page_table
);
3040 pte_unmap_unlock(page_table
, ptl
);
3044 mem_cgroup_cancel_charge_swapin(ptr
);
3045 pte_unmap_unlock(page_table
, ptl
);
3049 page_cache_release(page
);
3051 unlock_page(swapcache
);
3052 page_cache_release(swapcache
);
3058 * This is like a special single-page "expand_{down|up}wards()",
3059 * except we must first make sure that 'address{-|+}PAGE_SIZE'
3060 * doesn't hit another vma.
3062 static inline int check_stack_guard_page(struct vm_area_struct
*vma
, unsigned long address
)
3064 address
&= PAGE_MASK
;
3065 if ((vma
->vm_flags
& VM_GROWSDOWN
) && address
== vma
->vm_start
) {
3066 struct vm_area_struct
*prev
= vma
->vm_prev
;
3069 * Is there a mapping abutting this one below?
3071 * That's only ok if it's the same stack mapping
3072 * that has gotten split..
3074 if (prev
&& prev
->vm_end
== address
)
3075 return prev
->vm_flags
& VM_GROWSDOWN
? 0 : -ENOMEM
;
3077 expand_downwards(vma
, address
- PAGE_SIZE
);
3079 if ((vma
->vm_flags
& VM_GROWSUP
) && address
+ PAGE_SIZE
== vma
->vm_end
) {
3080 struct vm_area_struct
*next
= vma
->vm_next
;
3082 /* As VM_GROWSDOWN but s/below/above/ */
3083 if (next
&& next
->vm_start
== address
+ PAGE_SIZE
)
3084 return next
->vm_flags
& VM_GROWSUP
? 0 : -ENOMEM
;
3086 expand_upwards(vma
, address
+ PAGE_SIZE
);
3092 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3093 * but allow concurrent faults), and pte mapped but not yet locked.
3094 * We return with mmap_sem still held, but pte unmapped and unlocked.
3096 static int do_anonymous_page(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3097 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3104 pte_unmap(page_table
);
3106 /* Check if we need to add a guard page to the stack */
3107 if (check_stack_guard_page(vma
, address
) < 0)
3108 return VM_FAULT_SIGBUS
;
3110 /* Use the zero-page for reads */
3111 if (!(flags
& FAULT_FLAG_WRITE
)) {
3112 entry
= pte_mkspecial(pfn_pte(my_zero_pfn(address
),
3113 vma
->vm_page_prot
));
3114 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3115 if (!pte_none(*page_table
))
3120 /* Allocate our own private page. */
3121 if (unlikely(anon_vma_prepare(vma
)))
3123 page
= alloc_zeroed_user_highpage_movable(vma
, address
);
3126 __SetPageUptodate(page
);
3128 if (mem_cgroup_newpage_charge(page
, mm
, GFP_KERNEL
))
3131 entry
= mk_pte(page
, vma
->vm_page_prot
);
3132 if (vma
->vm_flags
& VM_WRITE
)
3133 entry
= pte_mkwrite(pte_mkdirty(entry
));
3135 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3136 if (!pte_none(*page_table
))
3139 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3140 page_add_new_anon_rmap(page
, vma
, address
);
3142 set_pte_at(mm
, address
, page_table
, entry
);
3144 /* No need to invalidate - it was non-present before */
3145 update_mmu_cache(vma
, address
, page_table
);
3147 pte_unmap_unlock(page_table
, ptl
);
3150 mem_cgroup_uncharge_page(page
);
3151 page_cache_release(page
);
3154 page_cache_release(page
);
3156 return VM_FAULT_OOM
;
3160 * __do_fault() tries to create a new page mapping. It aggressively
3161 * tries to share with existing pages, but makes a separate copy if
3162 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
3163 * the next page fault.
3165 * As this is called only for pages that do not currently exist, we
3166 * do not need to flush old virtual caches or the TLB.
3168 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3169 * but allow concurrent faults), and pte neither mapped nor locked.
3170 * We return with mmap_sem still held, but pte unmapped and unlocked.
3172 static int __do_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3173 unsigned long address
, pmd_t
*pmd
,
3174 pgoff_t pgoff
, unsigned int flags
, pte_t orig_pte
)
3179 struct page
*cow_page
;
3182 struct page
*dirty_page
= NULL
;
3183 struct vm_fault vmf
;
3185 int page_mkwrite
= 0;
3188 * If we do COW later, allocate page befor taking lock_page()
3189 * on the file cache page. This will reduce lock holding time.
3191 if ((flags
& FAULT_FLAG_WRITE
) && !(vma
->vm_flags
& VM_SHARED
)) {
3193 if (unlikely(anon_vma_prepare(vma
)))
3194 return VM_FAULT_OOM
;
3196 cow_page
= alloc_page_vma(GFP_HIGHUSER_MOVABLE
, vma
, address
);
3198 return VM_FAULT_OOM
;
3200 if (mem_cgroup_newpage_charge(cow_page
, mm
, GFP_KERNEL
)) {
3201 page_cache_release(cow_page
);
3202 return VM_FAULT_OOM
;
3207 vmf
.virtual_address
= (void __user
*)(address
& PAGE_MASK
);
3212 ret
= vma
->vm_ops
->fault(vma
, &vmf
);
3213 if (unlikely(ret
& (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
|
3217 if (unlikely(PageHWPoison(vmf
.page
))) {
3218 if (ret
& VM_FAULT_LOCKED
)
3219 unlock_page(vmf
.page
);
3220 ret
= VM_FAULT_HWPOISON
;
3225 * For consistency in subsequent calls, make the faulted page always
3228 if (unlikely(!(ret
& VM_FAULT_LOCKED
)))
3229 lock_page(vmf
.page
);
3231 VM_BUG_ON(!PageLocked(vmf
.page
));
3234 * Should we do an early C-O-W break?
3237 if (flags
& FAULT_FLAG_WRITE
) {
3238 if (!(vma
->vm_flags
& VM_SHARED
)) {
3241 copy_user_highpage(page
, vmf
.page
, address
, vma
);
3242 __SetPageUptodate(page
);
3245 * If the page will be shareable, see if the backing
3246 * address space wants to know that the page is about
3247 * to become writable
3249 if (vma
->vm_ops
->page_mkwrite
) {
3253 vmf
.flags
= FAULT_FLAG_WRITE
|FAULT_FLAG_MKWRITE
;
3254 tmp
= vma
->vm_ops
->page_mkwrite(vma
, &vmf
);
3256 (VM_FAULT_ERROR
| VM_FAULT_NOPAGE
))) {
3258 goto unwritable_page
;
3260 if (unlikely(!(tmp
& VM_FAULT_LOCKED
))) {
3262 if (!page
->mapping
) {
3263 ret
= 0; /* retry the fault */
3265 goto unwritable_page
;
3268 VM_BUG_ON(!PageLocked(page
));
3275 page_table
= pte_offset_map_lock(mm
, pmd
, address
, &ptl
);
3278 * This silly early PAGE_DIRTY setting removes a race
3279 * due to the bad i386 page protection. But it's valid
3280 * for other architectures too.
3282 * Note that if FAULT_FLAG_WRITE is set, we either now have
3283 * an exclusive copy of the page, or this is a shared mapping,
3284 * so we can make it writable and dirty to avoid having to
3285 * handle that later.
3287 /* Only go through if we didn't race with anybody else... */
3288 if (likely(pte_same(*page_table
, orig_pte
))) {
3289 flush_icache_page(vma
, page
);
3290 entry
= mk_pte(page
, vma
->vm_page_prot
);
3291 if (flags
& FAULT_FLAG_WRITE
)
3292 entry
= maybe_mkwrite(pte_mkdirty(entry
), vma
);
3294 inc_mm_counter_fast(mm
, MM_ANONPAGES
);
3295 page_add_new_anon_rmap(page
, vma
, address
);
3297 inc_mm_counter_fast(mm
, MM_FILEPAGES
);
3298 page_add_file_rmap(page
);
3299 if (flags
& FAULT_FLAG_WRITE
) {
3301 get_page(dirty_page
);
3304 set_pte_at(mm
, address
, page_table
, entry
);
3306 /* no need to invalidate: a not-present page won't be cached */
3307 update_mmu_cache(vma
, address
, page_table
);
3310 mem_cgroup_uncharge_page(cow_page
);
3312 page_cache_release(page
);
3314 anon
= 1; /* no anon but release faulted_page */
3317 pte_unmap_unlock(page_table
, ptl
);
3320 struct address_space
*mapping
= page
->mapping
;
3322 if (set_page_dirty(dirty_page
))
3324 unlock_page(dirty_page
);
3325 put_page(dirty_page
);
3326 if (page_mkwrite
&& mapping
) {
3328 * Some device drivers do not set page.mapping but still
3331 balance_dirty_pages_ratelimited(mapping
);
3334 /* file_update_time outside page_lock */
3336 file_update_time(vma
->vm_file
);
3338 unlock_page(vmf
.page
);
3340 page_cache_release(vmf
.page
);
3346 page_cache_release(page
);
3349 /* fs's fault handler get error */
3351 mem_cgroup_uncharge_page(cow_page
);
3352 page_cache_release(cow_page
);
3357 static int do_linear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3358 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3359 unsigned int flags
, pte_t orig_pte
)
3361 pgoff_t pgoff
= (((address
& PAGE_MASK
)
3362 - vma
->vm_start
) >> PAGE_SHIFT
) + vma
->vm_pgoff
;
3364 pte_unmap(page_table
);
3365 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3369 * Fault of a previously existing named mapping. Repopulate the pte
3370 * from the encoded file_pte if possible. This enables swappable
3373 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3374 * but allow concurrent faults), and pte mapped but not yet locked.
3375 * We return with mmap_sem still held, but pte unmapped and unlocked.
3377 static int do_nonlinear_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3378 unsigned long address
, pte_t
*page_table
, pmd_t
*pmd
,
3379 unsigned int flags
, pte_t orig_pte
)
3383 flags
|= FAULT_FLAG_NONLINEAR
;
3385 if (!pte_unmap_same(mm
, pmd
, page_table
, orig_pte
))
3388 if (unlikely(!(vma
->vm_flags
& VM_NONLINEAR
))) {
3390 * Page table corrupted: show pte and kill process.
3392 print_bad_pte(vma
, address
, orig_pte
, NULL
);
3393 return VM_FAULT_SIGBUS
;
3396 pgoff
= pte_to_pgoff(orig_pte
);
3397 return __do_fault(mm
, vma
, address
, pmd
, pgoff
, flags
, orig_pte
);
3401 * These routines also need to handle stuff like marking pages dirty
3402 * and/or accessed for architectures that don't do it in hardware (most
3403 * RISC architectures). The early dirtying is also good on the i386.
3405 * There is also a hook called "update_mmu_cache()" that architectures
3406 * with external mmu caches can use to update those (ie the Sparc or
3407 * PowerPC hashed page tables that act as extended TLBs).
3409 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3410 * but allow concurrent faults), and pte mapped but not yet locked.
3411 * We return with mmap_sem still held, but pte unmapped and unlocked.
3413 int handle_pte_fault(struct mm_struct
*mm
,
3414 struct vm_area_struct
*vma
, unsigned long address
,
3415 pte_t
*pte
, pmd_t
*pmd
, unsigned int flags
)
3421 if (!pte_present(entry
)) {
3422 if (pte_none(entry
)) {
3424 if (likely(vma
->vm_ops
->fault
))
3425 return do_linear_fault(mm
, vma
, address
,
3426 pte
, pmd
, flags
, entry
);
3428 return do_anonymous_page(mm
, vma
, address
,
3431 if (pte_file(entry
))
3432 return do_nonlinear_fault(mm
, vma
, address
,
3433 pte
, pmd
, flags
, entry
);
3434 return do_swap_page(mm
, vma
, address
,
3435 pte
, pmd
, flags
, entry
);
3438 ptl
= pte_lockptr(mm
, pmd
);
3440 if (unlikely(!pte_same(*pte
, entry
)))
3442 if (flags
& FAULT_FLAG_WRITE
) {
3443 if (!pte_write(entry
))
3444 return do_wp_page(mm
, vma
, address
,
3445 pte
, pmd
, ptl
, entry
);
3446 entry
= pte_mkdirty(entry
);
3448 entry
= pte_mkyoung(entry
);
3449 if (ptep_set_access_flags(vma
, address
, pte
, entry
, flags
& FAULT_FLAG_WRITE
)) {
3450 update_mmu_cache(vma
, address
, pte
);
3453 * This is needed only for protection faults but the arch code
3454 * is not yet telling us if this is a protection fault or not.
3455 * This still avoids useless tlb flushes for .text page faults
3458 if (flags
& FAULT_FLAG_WRITE
)
3459 flush_tlb_fix_spurious_fault(vma
, address
);
3462 pte_unmap_unlock(pte
, ptl
);
3467 * By the time we get here, we already hold the mm semaphore
3469 int handle_mm_fault(struct mm_struct
*mm
, struct vm_area_struct
*vma
,
3470 unsigned long address
, unsigned int flags
)
3477 __set_current_state(TASK_RUNNING
);
3479 count_vm_event(PGFAULT
);
3480 mem_cgroup_count_vm_event(mm
, PGFAULT
);
3482 /* do counter updates before entering really critical section. */
3483 check_sync_rss_stat(current
);
3485 if (unlikely(is_vm_hugetlb_page(vma
)))
3486 return hugetlb_fault(mm
, vma
, address
, flags
);
3488 pgd
= pgd_offset(mm
, address
);
3489 pud
= pud_alloc(mm
, pgd
, address
);
3491 return VM_FAULT_OOM
;
3492 pmd
= pmd_alloc(mm
, pud
, address
);
3494 return VM_FAULT_OOM
;
3495 if (pmd_none(*pmd
) && transparent_hugepage_enabled(vma
)) {
3497 return do_huge_pmd_anonymous_page(mm
, vma
, address
,
3500 pmd_t orig_pmd
= *pmd
;
3502 if (pmd_trans_huge(orig_pmd
)) {
3503 if (flags
& FAULT_FLAG_WRITE
&&
3504 !pmd_write(orig_pmd
) &&
3505 !pmd_trans_splitting(orig_pmd
))
3506 return do_huge_pmd_wp_page(mm
, vma
, address
,
3513 * Use __pte_alloc instead of pte_alloc_map, because we can't
3514 * run pte_offset_map on the pmd, if an huge pmd could
3515 * materialize from under us from a different thread.
3517 if (unlikely(pmd_none(*pmd
)) && __pte_alloc(mm
, vma
, pmd
, address
))
3518 return VM_FAULT_OOM
;
3519 /* if an huge pmd materialized from under us just retry later */
3520 if (unlikely(pmd_trans_huge(*pmd
)))
3523 * A regular pmd is established and it can't morph into a huge pmd
3524 * from under us anymore at this point because we hold the mmap_sem
3525 * read mode and khugepaged takes it in write mode. So now it's
3526 * safe to run pte_offset_map().
3528 pte
= pte_offset_map(pmd
, address
);
3530 return handle_pte_fault(mm
, vma
, address
, pte
, pmd
, flags
);
3533 #ifndef __PAGETABLE_PUD_FOLDED
3535 * Allocate page upper directory.
3536 * We've already handled the fast-path in-line.
3538 int __pud_alloc(struct mm_struct
*mm
, pgd_t
*pgd
, unsigned long address
)
3540 pud_t
*new = pud_alloc_one(mm
, address
);
3544 smp_wmb(); /* See comment in __pte_alloc */
3546 spin_lock(&mm
->page_table_lock
);
3547 if (pgd_present(*pgd
)) /* Another has populated it */
3550 pgd_populate(mm
, pgd
, new);
3551 spin_unlock(&mm
->page_table_lock
);
3554 #endif /* __PAGETABLE_PUD_FOLDED */
3556 #ifndef __PAGETABLE_PMD_FOLDED
3558 * Allocate page middle directory.
3559 * We've already handled the fast-path in-line.
3561 int __pmd_alloc(struct mm_struct
*mm
, pud_t
*pud
, unsigned long address
)
3563 pmd_t
*new = pmd_alloc_one(mm
, address
);
3567 smp_wmb(); /* See comment in __pte_alloc */
3569 spin_lock(&mm
->page_table_lock
);
3570 #ifndef __ARCH_HAS_4LEVEL_HACK
3571 if (pud_present(*pud
)) /* Another has populated it */
3574 pud_populate(mm
, pud
, new);
3576 if (pgd_present(*pud
)) /* Another has populated it */
3579 pgd_populate(mm
, pud
, new);
3580 #endif /* __ARCH_HAS_4LEVEL_HACK */
3581 spin_unlock(&mm
->page_table_lock
);
3584 #endif /* __PAGETABLE_PMD_FOLDED */
3586 int make_pages_present(unsigned long addr
, unsigned long end
)
3588 int ret
, len
, write
;
3589 struct vm_area_struct
* vma
;
3591 vma
= find_vma(current
->mm
, addr
);
3595 * We want to touch writable mappings with a write fault in order
3596 * to break COW, except for shared mappings because these don't COW
3597 * and we would not want to dirty them for nothing.
3599 write
= (vma
->vm_flags
& (VM_WRITE
| VM_SHARED
)) == VM_WRITE
;
3600 BUG_ON(addr
>= end
);
3601 BUG_ON(end
> vma
->vm_end
);
3602 len
= DIV_ROUND_UP(end
, PAGE_SIZE
) - addr
/PAGE_SIZE
;
3603 ret
= get_user_pages(current
, current
->mm
, addr
,
3604 len
, write
, 0, NULL
, NULL
);
3607 return ret
== len
? 0 : -EFAULT
;
3610 #if !defined(__HAVE_ARCH_GATE_AREA)
3612 #if defined(AT_SYSINFO_EHDR)
3613 static struct vm_area_struct gate_vma
;
3615 static int __init
gate_vma_init(void)
3617 gate_vma
.vm_mm
= NULL
;
3618 gate_vma
.vm_start
= FIXADDR_USER_START
;
3619 gate_vma
.vm_end
= FIXADDR_USER_END
;
3620 gate_vma
.vm_flags
= VM_READ
| VM_MAYREAD
| VM_EXEC
| VM_MAYEXEC
;
3621 gate_vma
.vm_page_prot
= __P101
;
3623 * Make sure the vDSO gets into every core dump.
3624 * Dumping its contents makes post-mortem fully interpretable later
3625 * without matching up the same kernel and hardware config to see
3626 * what PC values meant.
3628 gate_vma
.vm_flags
|= VM_ALWAYSDUMP
;
3631 __initcall(gate_vma_init
);
3634 struct vm_area_struct
*get_gate_vma(struct mm_struct
*mm
)
3636 #ifdef AT_SYSINFO_EHDR
3643 int in_gate_area_no_mm(unsigned long addr
)
3645 #ifdef AT_SYSINFO_EHDR
3646 if ((addr
>= FIXADDR_USER_START
) && (addr
< FIXADDR_USER_END
))
3652 #endif /* __HAVE_ARCH_GATE_AREA */
3654 static int __follow_pte(struct mm_struct
*mm
, unsigned long address
,
3655 pte_t
**ptepp
, spinlock_t
**ptlp
)
3662 pgd
= pgd_offset(mm
, address
);
3663 if (pgd_none(*pgd
) || unlikely(pgd_bad(*pgd
)))
3666 pud
= pud_offset(pgd
, address
);
3667 if (pud_none(*pud
) || unlikely(pud_bad(*pud
)))
3670 pmd
= pmd_offset(pud
, address
);
3671 VM_BUG_ON(pmd_trans_huge(*pmd
));
3672 if (pmd_none(*pmd
) || unlikely(pmd_bad(*pmd
)))
3675 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3679 ptep
= pte_offset_map_lock(mm
, pmd
, address
, ptlp
);
3682 if (!pte_present(*ptep
))
3687 pte_unmap_unlock(ptep
, *ptlp
);
3692 static inline int follow_pte(struct mm_struct
*mm
, unsigned long address
,
3693 pte_t
**ptepp
, spinlock_t
**ptlp
)
3697 /* (void) is needed to make gcc happy */
3698 (void) __cond_lock(*ptlp
,
3699 !(res
= __follow_pte(mm
, address
, ptepp
, ptlp
)));
3704 * follow_pfn - look up PFN at a user virtual address
3705 * @vma: memory mapping
3706 * @address: user virtual address
3707 * @pfn: location to store found PFN
3709 * Only IO mappings and raw PFN mappings are allowed.
3711 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3713 int follow_pfn(struct vm_area_struct
*vma
, unsigned long address
,
3720 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3723 ret
= follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
);
3726 *pfn
= pte_pfn(*ptep
);
3727 pte_unmap_unlock(ptep
, ptl
);
3730 EXPORT_SYMBOL(follow_pfn
);
3732 #ifdef CONFIG_HAVE_IOREMAP_PROT
3733 int follow_phys(struct vm_area_struct
*vma
,
3734 unsigned long address
, unsigned int flags
,
3735 unsigned long *prot
, resource_size_t
*phys
)
3741 if (!(vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
3744 if (follow_pte(vma
->vm_mm
, address
, &ptep
, &ptl
))
3748 if ((flags
& FOLL_WRITE
) && !pte_write(pte
))
3751 *prot
= pgprot_val(pte_pgprot(pte
));
3752 *phys
= (resource_size_t
)pte_pfn(pte
) << PAGE_SHIFT
;
3756 pte_unmap_unlock(ptep
, ptl
);
3761 int generic_access_phys(struct vm_area_struct
*vma
, unsigned long addr
,
3762 void *buf
, int len
, int write
)
3764 resource_size_t phys_addr
;
3765 unsigned long prot
= 0;
3766 void __iomem
*maddr
;
3767 int offset
= addr
& (PAGE_SIZE
-1);
3769 if (follow_phys(vma
, addr
, write
, &prot
, &phys_addr
))
3772 maddr
= ioremap_prot(phys_addr
, PAGE_SIZE
, prot
);
3774 memcpy_toio(maddr
+ offset
, buf
, len
);
3776 memcpy_fromio(buf
, maddr
+ offset
, len
);
3784 * Access another process' address space as given in mm. If non-NULL, use the
3785 * given task for page fault accounting.
3787 static int __access_remote_vm(struct task_struct
*tsk
, struct mm_struct
*mm
,
3788 unsigned long addr
, void *buf
, int len
, int write
)
3790 struct vm_area_struct
*vma
;
3791 void *old_buf
= buf
;
3793 down_read(&mm
->mmap_sem
);
3794 /* ignore errors, just check how much was successfully transferred */
3796 int bytes
, ret
, offset
;
3798 struct page
*page
= NULL
;
3800 ret
= get_user_pages(tsk
, mm
, addr
, 1,
3801 write
, 1, &page
, &vma
);
3804 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3805 * we can access using slightly different code.
3807 #ifdef CONFIG_HAVE_IOREMAP_PROT
3808 vma
= find_vma(mm
, addr
);
3809 if (!vma
|| vma
->vm_start
> addr
)
3811 if (vma
->vm_ops
&& vma
->vm_ops
->access
)
3812 ret
= vma
->vm_ops
->access(vma
, addr
, buf
,
3820 offset
= addr
& (PAGE_SIZE
-1);
3821 if (bytes
> PAGE_SIZE
-offset
)
3822 bytes
= PAGE_SIZE
-offset
;
3826 copy_to_user_page(vma
, page
, addr
,
3827 maddr
+ offset
, buf
, bytes
);
3828 set_page_dirty_lock(page
);
3830 copy_from_user_page(vma
, page
, addr
,
3831 buf
, maddr
+ offset
, bytes
);
3834 page_cache_release(page
);
3840 up_read(&mm
->mmap_sem
);
3842 return buf
- old_buf
;
3846 * access_remote_vm - access another process' address space
3847 * @mm: the mm_struct of the target address space
3848 * @addr: start address to access
3849 * @buf: source or destination buffer
3850 * @len: number of bytes to transfer
3851 * @write: whether the access is a write
3853 * The caller must hold a reference on @mm.
3855 int access_remote_vm(struct mm_struct
*mm
, unsigned long addr
,
3856 void *buf
, int len
, int write
)
3858 return __access_remote_vm(NULL
, mm
, addr
, buf
, len
, write
);
3862 * Access another process' address space.
3863 * Source/target buffer must be kernel space,
3864 * Do not walk the page table directly, use get_user_pages
3866 int access_process_vm(struct task_struct
*tsk
, unsigned long addr
,
3867 void *buf
, int len
, int write
)
3869 struct mm_struct
*mm
;
3872 mm
= get_task_mm(tsk
);
3876 ret
= __access_remote_vm(tsk
, mm
, addr
, buf
, len
, write
);
3883 * Print the name of a VMA.
3885 void print_vma_addr(char *prefix
, unsigned long ip
)
3887 struct mm_struct
*mm
= current
->mm
;
3888 struct vm_area_struct
*vma
;
3891 * Do not print if we are in atomic
3892 * contexts (in exception stacks, etc.):
3894 if (preempt_count())
3897 down_read(&mm
->mmap_sem
);
3898 vma
= find_vma(mm
, ip
);
3899 if (vma
&& vma
->vm_file
) {
3900 struct file
*f
= vma
->vm_file
;
3901 char *buf
= (char *)__get_free_page(GFP_KERNEL
);
3905 p
= d_path(&f
->f_path
, buf
, PAGE_SIZE
);
3908 s
= strrchr(p
, '/');
3911 printk("%s%s[%lx+%lx]", prefix
, p
,
3913 vma
->vm_end
- vma
->vm_start
);
3914 free_page((unsigned long)buf
);
3917 up_read(¤t
->mm
->mmap_sem
);
3920 #ifdef CONFIG_PROVE_LOCKING
3921 void might_fault(void)
3924 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3925 * holding the mmap_sem, this is safe because kernel memory doesn't
3926 * get paged out, therefore we'll never actually fault, and the
3927 * below annotations will generate false positives.
3929 if (segment_eq(get_fs(), KERNEL_DS
))
3934 * it would be nicer only to annotate paths which are not under
3935 * pagefault_disable, however that requires a larger audit and
3936 * providing helpers like get_user_atomic.
3938 if (!in_atomic() && current
->mm
)
3939 might_lock_read(¤t
->mm
->mmap_sem
);
3941 EXPORT_SYMBOL(might_fault
);
3944 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3945 static void clear_gigantic_page(struct page
*page
,
3947 unsigned int pages_per_huge_page
)
3950 struct page
*p
= page
;
3953 for (i
= 0; i
< pages_per_huge_page
;
3954 i
++, p
= mem_map_next(p
, page
, i
)) {
3956 clear_user_highpage(p
, addr
+ i
* PAGE_SIZE
);
3959 void clear_huge_page(struct page
*page
,
3960 unsigned long addr
, unsigned int pages_per_huge_page
)
3964 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
3965 clear_gigantic_page(page
, addr
, pages_per_huge_page
);
3970 for (i
= 0; i
< pages_per_huge_page
; i
++) {
3972 clear_user_highpage(page
+ i
, addr
+ i
* PAGE_SIZE
);
3976 static void copy_user_gigantic_page(struct page
*dst
, struct page
*src
,
3978 struct vm_area_struct
*vma
,
3979 unsigned int pages_per_huge_page
)
3982 struct page
*dst_base
= dst
;
3983 struct page
*src_base
= src
;
3985 for (i
= 0; i
< pages_per_huge_page
; ) {
3987 copy_user_highpage(dst
, src
, addr
+ i
*PAGE_SIZE
, vma
);
3990 dst
= mem_map_next(dst
, dst_base
, i
);
3991 src
= mem_map_next(src
, src_base
, i
);
3995 void copy_user_huge_page(struct page
*dst
, struct page
*src
,
3996 unsigned long addr
, struct vm_area_struct
*vma
,
3997 unsigned int pages_per_huge_page
)
4001 if (unlikely(pages_per_huge_page
> MAX_ORDER_NR_PAGES
)) {
4002 copy_user_gigantic_page(dst
, src
, addr
, vma
,
4003 pages_per_huge_page
);
4008 for (i
= 0; i
< pages_per_huge_page
; i
++) {
4010 copy_user_highpage(dst
+ i
, src
+ i
, addr
+ i
*PAGE_SIZE
, vma
);
4013 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */