mm/hmm.c: remove superfluous RCU protection around radix tree lookup
[linux/fpc-iii.git] / drivers / nvme / host / core.c
blob197a6ba9700fbe6a232af502f739a85856f755e6
1 /*
2 * NVM Express device driver
3 * Copyright (c) 2011-2014, Intel Corporation.
5 * This program is free software; you can redistribute it and/or modify it
6 * under the terms and conditions of the GNU General Public License,
7 * version 2, as published by the Free Software Foundation.
9 * This program is distributed in the hope it will be useful, but WITHOUT
10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 * more details.
15 #include <linux/blkdev.h>
16 #include <linux/blk-mq.h>
17 #include <linux/delay.h>
18 #include <linux/errno.h>
19 #include <linux/hdreg.h>
20 #include <linux/kernel.h>
21 #include <linux/module.h>
22 #include <linux/list_sort.h>
23 #include <linux/slab.h>
24 #include <linux/types.h>
25 #include <linux/pr.h>
26 #include <linux/ptrace.h>
27 #include <linux/nvme_ioctl.h>
28 #include <linux/t10-pi.h>
29 #include <linux/pm_qos.h>
30 #include <asm/unaligned.h>
32 #define CREATE_TRACE_POINTS
33 #include "trace.h"
35 #include "nvme.h"
36 #include "fabrics.h"
38 #define NVME_MINORS (1U << MINORBITS)
40 unsigned int admin_timeout = 60;
41 module_param(admin_timeout, uint, 0644);
42 MODULE_PARM_DESC(admin_timeout, "timeout in seconds for admin commands");
43 EXPORT_SYMBOL_GPL(admin_timeout);
45 unsigned int nvme_io_timeout = 30;
46 module_param_named(io_timeout, nvme_io_timeout, uint, 0644);
47 MODULE_PARM_DESC(io_timeout, "timeout in seconds for I/O");
48 EXPORT_SYMBOL_GPL(nvme_io_timeout);
50 static unsigned char shutdown_timeout = 5;
51 module_param(shutdown_timeout, byte, 0644);
52 MODULE_PARM_DESC(shutdown_timeout, "timeout in seconds for controller shutdown");
54 static u8 nvme_max_retries = 5;
55 module_param_named(max_retries, nvme_max_retries, byte, 0644);
56 MODULE_PARM_DESC(max_retries, "max number of retries a command may have");
58 static unsigned long default_ps_max_latency_us = 100000;
59 module_param(default_ps_max_latency_us, ulong, 0644);
60 MODULE_PARM_DESC(default_ps_max_latency_us,
61 "max power saving latency for new devices; use PM QOS to change per device");
63 static bool force_apst;
64 module_param(force_apst, bool, 0644);
65 MODULE_PARM_DESC(force_apst, "allow APST for newly enumerated devices even if quirked off");
67 static bool streams;
68 module_param(streams, bool, 0644);
69 MODULE_PARM_DESC(streams, "turn on support for Streams write directives");
72 * nvme_wq - hosts nvme related works that are not reset or delete
73 * nvme_reset_wq - hosts nvme reset works
74 * nvme_delete_wq - hosts nvme delete works
76 * nvme_wq will host works such are scan, aen handling, fw activation,
77 * keep-alive error recovery, periodic reconnects etc. nvme_reset_wq
78 * runs reset works which also flush works hosted on nvme_wq for
79 * serialization purposes. nvme_delete_wq host controller deletion
80 * works which flush reset works for serialization.
82 struct workqueue_struct *nvme_wq;
83 EXPORT_SYMBOL_GPL(nvme_wq);
85 struct workqueue_struct *nvme_reset_wq;
86 EXPORT_SYMBOL_GPL(nvme_reset_wq);
88 struct workqueue_struct *nvme_delete_wq;
89 EXPORT_SYMBOL_GPL(nvme_delete_wq);
91 static DEFINE_IDA(nvme_subsystems_ida);
92 static LIST_HEAD(nvme_subsystems);
93 static DEFINE_MUTEX(nvme_subsystems_lock);
95 static DEFINE_IDA(nvme_instance_ida);
96 static dev_t nvme_chr_devt;
97 static struct class *nvme_class;
98 static struct class *nvme_subsys_class;
100 static void nvme_ns_remove(struct nvme_ns *ns);
101 static int nvme_revalidate_disk(struct gendisk *disk);
103 int nvme_reset_ctrl(struct nvme_ctrl *ctrl)
105 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_RESETTING))
106 return -EBUSY;
107 if (!queue_work(nvme_reset_wq, &ctrl->reset_work))
108 return -EBUSY;
109 return 0;
111 EXPORT_SYMBOL_GPL(nvme_reset_ctrl);
113 int nvme_reset_ctrl_sync(struct nvme_ctrl *ctrl)
115 int ret;
117 ret = nvme_reset_ctrl(ctrl);
118 if (!ret) {
119 flush_work(&ctrl->reset_work);
120 if (ctrl->state != NVME_CTRL_LIVE)
121 ret = -ENETRESET;
124 return ret;
126 EXPORT_SYMBOL_GPL(nvme_reset_ctrl_sync);
128 static void nvme_delete_ctrl_work(struct work_struct *work)
130 struct nvme_ctrl *ctrl =
131 container_of(work, struct nvme_ctrl, delete_work);
133 dev_info(ctrl->device,
134 "Removing ctrl: NQN \"%s\"\n", ctrl->opts->subsysnqn);
136 flush_work(&ctrl->reset_work);
137 nvme_stop_ctrl(ctrl);
138 nvme_remove_namespaces(ctrl);
139 ctrl->ops->delete_ctrl(ctrl);
140 nvme_uninit_ctrl(ctrl);
141 nvme_put_ctrl(ctrl);
144 int nvme_delete_ctrl(struct nvme_ctrl *ctrl)
146 if (!nvme_change_ctrl_state(ctrl, NVME_CTRL_DELETING))
147 return -EBUSY;
148 if (!queue_work(nvme_delete_wq, &ctrl->delete_work))
149 return -EBUSY;
150 return 0;
152 EXPORT_SYMBOL_GPL(nvme_delete_ctrl);
154 int nvme_delete_ctrl_sync(struct nvme_ctrl *ctrl)
156 int ret = 0;
159 * Keep a reference until the work is flushed since ->delete_ctrl
160 * can free the controller.
162 nvme_get_ctrl(ctrl);
163 ret = nvme_delete_ctrl(ctrl);
164 if (!ret)
165 flush_work(&ctrl->delete_work);
166 nvme_put_ctrl(ctrl);
167 return ret;
169 EXPORT_SYMBOL_GPL(nvme_delete_ctrl_sync);
171 static inline bool nvme_ns_has_pi(struct nvme_ns *ns)
173 return ns->pi_type && ns->ms == sizeof(struct t10_pi_tuple);
176 static blk_status_t nvme_error_status(struct request *req)
178 switch (nvme_req(req)->status & 0x7ff) {
179 case NVME_SC_SUCCESS:
180 return BLK_STS_OK;
181 case NVME_SC_CAP_EXCEEDED:
182 return BLK_STS_NOSPC;
183 case NVME_SC_LBA_RANGE:
184 return BLK_STS_TARGET;
185 case NVME_SC_BAD_ATTRIBUTES:
186 case NVME_SC_ONCS_NOT_SUPPORTED:
187 case NVME_SC_INVALID_OPCODE:
188 case NVME_SC_INVALID_FIELD:
189 case NVME_SC_INVALID_NS:
190 return BLK_STS_NOTSUPP;
191 case NVME_SC_WRITE_FAULT:
192 case NVME_SC_READ_ERROR:
193 case NVME_SC_UNWRITTEN_BLOCK:
194 case NVME_SC_ACCESS_DENIED:
195 case NVME_SC_READ_ONLY:
196 case NVME_SC_COMPARE_FAILED:
197 return BLK_STS_MEDIUM;
198 case NVME_SC_GUARD_CHECK:
199 case NVME_SC_APPTAG_CHECK:
200 case NVME_SC_REFTAG_CHECK:
201 case NVME_SC_INVALID_PI:
202 return BLK_STS_PROTECTION;
203 case NVME_SC_RESERVATION_CONFLICT:
204 return BLK_STS_NEXUS;
205 default:
206 return BLK_STS_IOERR;
210 static inline bool nvme_req_needs_retry(struct request *req)
212 if (blk_noretry_request(req))
213 return false;
214 if (nvme_req(req)->status & NVME_SC_DNR)
215 return false;
216 if (nvme_req(req)->retries >= nvme_max_retries)
217 return false;
218 return true;
221 void nvme_complete_rq(struct request *req)
223 blk_status_t status = nvme_error_status(req);
225 trace_nvme_complete_rq(req);
227 if (unlikely(status != BLK_STS_OK && nvme_req_needs_retry(req))) {
228 if (nvme_req_needs_failover(req, status)) {
229 nvme_failover_req(req);
230 return;
233 if (!blk_queue_dying(req->q)) {
234 nvme_req(req)->retries++;
235 blk_mq_requeue_request(req, true);
236 return;
239 blk_mq_end_request(req, status);
241 EXPORT_SYMBOL_GPL(nvme_complete_rq);
243 void nvme_cancel_request(struct request *req, void *data, bool reserved)
245 if (!blk_mq_request_started(req))
246 return;
248 dev_dbg_ratelimited(((struct nvme_ctrl *) data)->device,
249 "Cancelling I/O %d", req->tag);
251 nvme_req(req)->status = NVME_SC_ABORT_REQ;
252 blk_mq_complete_request(req);
255 EXPORT_SYMBOL_GPL(nvme_cancel_request);
257 bool nvme_change_ctrl_state(struct nvme_ctrl *ctrl,
258 enum nvme_ctrl_state new_state)
260 enum nvme_ctrl_state old_state;
261 unsigned long flags;
262 bool changed = false;
264 spin_lock_irqsave(&ctrl->lock, flags);
266 old_state = ctrl->state;
267 switch (new_state) {
268 case NVME_CTRL_ADMIN_ONLY:
269 switch (old_state) {
270 case NVME_CTRL_CONNECTING:
271 changed = true;
272 /* FALLTHRU */
273 default:
274 break;
276 break;
277 case NVME_CTRL_LIVE:
278 switch (old_state) {
279 case NVME_CTRL_NEW:
280 case NVME_CTRL_RESETTING:
281 case NVME_CTRL_CONNECTING:
282 changed = true;
283 /* FALLTHRU */
284 default:
285 break;
287 break;
288 case NVME_CTRL_RESETTING:
289 switch (old_state) {
290 case NVME_CTRL_NEW:
291 case NVME_CTRL_LIVE:
292 case NVME_CTRL_ADMIN_ONLY:
293 changed = true;
294 /* FALLTHRU */
295 default:
296 break;
298 break;
299 case NVME_CTRL_CONNECTING:
300 switch (old_state) {
301 case NVME_CTRL_NEW:
302 case NVME_CTRL_RESETTING:
303 changed = true;
304 /* FALLTHRU */
305 default:
306 break;
308 break;
309 case NVME_CTRL_DELETING:
310 switch (old_state) {
311 case NVME_CTRL_LIVE:
312 case NVME_CTRL_ADMIN_ONLY:
313 case NVME_CTRL_RESETTING:
314 case NVME_CTRL_CONNECTING:
315 changed = true;
316 /* FALLTHRU */
317 default:
318 break;
320 break;
321 case NVME_CTRL_DEAD:
322 switch (old_state) {
323 case NVME_CTRL_DELETING:
324 changed = true;
325 /* FALLTHRU */
326 default:
327 break;
329 break;
330 default:
331 break;
334 if (changed)
335 ctrl->state = new_state;
337 spin_unlock_irqrestore(&ctrl->lock, flags);
338 if (changed && ctrl->state == NVME_CTRL_LIVE)
339 nvme_kick_requeue_lists(ctrl);
340 return changed;
342 EXPORT_SYMBOL_GPL(nvme_change_ctrl_state);
344 static void nvme_free_ns_head(struct kref *ref)
346 struct nvme_ns_head *head =
347 container_of(ref, struct nvme_ns_head, ref);
349 nvme_mpath_remove_disk(head);
350 ida_simple_remove(&head->subsys->ns_ida, head->instance);
351 list_del_init(&head->entry);
352 cleanup_srcu_struct(&head->srcu);
353 kfree(head);
356 static void nvme_put_ns_head(struct nvme_ns_head *head)
358 kref_put(&head->ref, nvme_free_ns_head);
361 static void nvme_free_ns(struct kref *kref)
363 struct nvme_ns *ns = container_of(kref, struct nvme_ns, kref);
365 if (ns->ndev)
366 nvme_nvm_unregister(ns);
368 put_disk(ns->disk);
369 nvme_put_ns_head(ns->head);
370 nvme_put_ctrl(ns->ctrl);
371 kfree(ns);
374 static void nvme_put_ns(struct nvme_ns *ns)
376 kref_put(&ns->kref, nvme_free_ns);
379 struct request *nvme_alloc_request(struct request_queue *q,
380 struct nvme_command *cmd, blk_mq_req_flags_t flags, int qid)
382 unsigned op = nvme_is_write(cmd) ? REQ_OP_DRV_OUT : REQ_OP_DRV_IN;
383 struct request *req;
385 if (qid == NVME_QID_ANY) {
386 req = blk_mq_alloc_request(q, op, flags);
387 } else {
388 req = blk_mq_alloc_request_hctx(q, op, flags,
389 qid ? qid - 1 : 0);
391 if (IS_ERR(req))
392 return req;
394 req->cmd_flags |= REQ_FAILFAST_DRIVER;
395 nvme_req(req)->cmd = cmd;
397 return req;
399 EXPORT_SYMBOL_GPL(nvme_alloc_request);
401 static int nvme_toggle_streams(struct nvme_ctrl *ctrl, bool enable)
403 struct nvme_command c;
405 memset(&c, 0, sizeof(c));
407 c.directive.opcode = nvme_admin_directive_send;
408 c.directive.nsid = cpu_to_le32(NVME_NSID_ALL);
409 c.directive.doper = NVME_DIR_SND_ID_OP_ENABLE;
410 c.directive.dtype = NVME_DIR_IDENTIFY;
411 c.directive.tdtype = NVME_DIR_STREAMS;
412 c.directive.endir = enable ? NVME_DIR_ENDIR : 0;
414 return nvme_submit_sync_cmd(ctrl->admin_q, &c, NULL, 0);
417 static int nvme_disable_streams(struct nvme_ctrl *ctrl)
419 return nvme_toggle_streams(ctrl, false);
422 static int nvme_enable_streams(struct nvme_ctrl *ctrl)
424 return nvme_toggle_streams(ctrl, true);
427 static int nvme_get_stream_params(struct nvme_ctrl *ctrl,
428 struct streams_directive_params *s, u32 nsid)
430 struct nvme_command c;
432 memset(&c, 0, sizeof(c));
433 memset(s, 0, sizeof(*s));
435 c.directive.opcode = nvme_admin_directive_recv;
436 c.directive.nsid = cpu_to_le32(nsid);
437 c.directive.numd = cpu_to_le32((sizeof(*s) >> 2) - 1);
438 c.directive.doper = NVME_DIR_RCV_ST_OP_PARAM;
439 c.directive.dtype = NVME_DIR_STREAMS;
441 return nvme_submit_sync_cmd(ctrl->admin_q, &c, s, sizeof(*s));
444 static int nvme_configure_directives(struct nvme_ctrl *ctrl)
446 struct streams_directive_params s;
447 int ret;
449 if (!(ctrl->oacs & NVME_CTRL_OACS_DIRECTIVES))
450 return 0;
451 if (!streams)
452 return 0;
454 ret = nvme_enable_streams(ctrl);
455 if (ret)
456 return ret;
458 ret = nvme_get_stream_params(ctrl, &s, NVME_NSID_ALL);
459 if (ret)
460 return ret;
462 ctrl->nssa = le16_to_cpu(s.nssa);
463 if (ctrl->nssa < BLK_MAX_WRITE_HINTS - 1) {
464 dev_info(ctrl->device, "too few streams (%u) available\n",
465 ctrl->nssa);
466 nvme_disable_streams(ctrl);
467 return 0;
470 ctrl->nr_streams = min_t(unsigned, ctrl->nssa, BLK_MAX_WRITE_HINTS - 1);
471 dev_info(ctrl->device, "Using %u streams\n", ctrl->nr_streams);
472 return 0;
476 * Check if 'req' has a write hint associated with it. If it does, assign
477 * a valid namespace stream to the write.
479 static void nvme_assign_write_stream(struct nvme_ctrl *ctrl,
480 struct request *req, u16 *control,
481 u32 *dsmgmt)
483 enum rw_hint streamid = req->write_hint;
485 if (streamid == WRITE_LIFE_NOT_SET || streamid == WRITE_LIFE_NONE)
486 streamid = 0;
487 else {
488 streamid--;
489 if (WARN_ON_ONCE(streamid > ctrl->nr_streams))
490 return;
492 *control |= NVME_RW_DTYPE_STREAMS;
493 *dsmgmt |= streamid << 16;
496 if (streamid < ARRAY_SIZE(req->q->write_hints))
497 req->q->write_hints[streamid] += blk_rq_bytes(req) >> 9;
500 static inline void nvme_setup_flush(struct nvme_ns *ns,
501 struct nvme_command *cmnd)
503 memset(cmnd, 0, sizeof(*cmnd));
504 cmnd->common.opcode = nvme_cmd_flush;
505 cmnd->common.nsid = cpu_to_le32(ns->head->ns_id);
508 static blk_status_t nvme_setup_discard(struct nvme_ns *ns, struct request *req,
509 struct nvme_command *cmnd)
511 unsigned short segments = blk_rq_nr_discard_segments(req), n = 0;
512 struct nvme_dsm_range *range;
513 struct bio *bio;
515 range = kmalloc_array(segments, sizeof(*range), GFP_ATOMIC);
516 if (!range)
517 return BLK_STS_RESOURCE;
519 __rq_for_each_bio(bio, req) {
520 u64 slba = nvme_block_nr(ns, bio->bi_iter.bi_sector);
521 u32 nlb = bio->bi_iter.bi_size >> ns->lba_shift;
523 if (n < segments) {
524 range[n].cattr = cpu_to_le32(0);
525 range[n].nlb = cpu_to_le32(nlb);
526 range[n].slba = cpu_to_le64(slba);
528 n++;
531 if (WARN_ON_ONCE(n != segments)) {
532 kfree(range);
533 return BLK_STS_IOERR;
536 memset(cmnd, 0, sizeof(*cmnd));
537 cmnd->dsm.opcode = nvme_cmd_dsm;
538 cmnd->dsm.nsid = cpu_to_le32(ns->head->ns_id);
539 cmnd->dsm.nr = cpu_to_le32(segments - 1);
540 cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
542 req->special_vec.bv_page = virt_to_page(range);
543 req->special_vec.bv_offset = offset_in_page(range);
544 req->special_vec.bv_len = sizeof(*range) * segments;
545 req->rq_flags |= RQF_SPECIAL_PAYLOAD;
547 return BLK_STS_OK;
550 static inline blk_status_t nvme_setup_rw(struct nvme_ns *ns,
551 struct request *req, struct nvme_command *cmnd)
553 struct nvme_ctrl *ctrl = ns->ctrl;
554 u16 control = 0;
555 u32 dsmgmt = 0;
557 if (req->cmd_flags & REQ_FUA)
558 control |= NVME_RW_FUA;
559 if (req->cmd_flags & (REQ_FAILFAST_DEV | REQ_RAHEAD))
560 control |= NVME_RW_LR;
562 if (req->cmd_flags & REQ_RAHEAD)
563 dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
565 memset(cmnd, 0, sizeof(*cmnd));
566 cmnd->rw.opcode = (rq_data_dir(req) ? nvme_cmd_write : nvme_cmd_read);
567 cmnd->rw.nsid = cpu_to_le32(ns->head->ns_id);
568 cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, blk_rq_pos(req)));
569 cmnd->rw.length = cpu_to_le16((blk_rq_bytes(req) >> ns->lba_shift) - 1);
571 if (req_op(req) == REQ_OP_WRITE && ctrl->nr_streams)
572 nvme_assign_write_stream(ctrl, req, &control, &dsmgmt);
574 if (ns->ms) {
576 * If formated with metadata, the block layer always provides a
577 * metadata buffer if CONFIG_BLK_DEV_INTEGRITY is enabled. Else
578 * we enable the PRACT bit for protection information or set the
579 * namespace capacity to zero to prevent any I/O.
581 if (!blk_integrity_rq(req)) {
582 if (WARN_ON_ONCE(!nvme_ns_has_pi(ns)))
583 return BLK_STS_NOTSUPP;
584 control |= NVME_RW_PRINFO_PRACT;
587 switch (ns->pi_type) {
588 case NVME_NS_DPS_PI_TYPE3:
589 control |= NVME_RW_PRINFO_PRCHK_GUARD;
590 break;
591 case NVME_NS_DPS_PI_TYPE1:
592 case NVME_NS_DPS_PI_TYPE2:
593 control |= NVME_RW_PRINFO_PRCHK_GUARD |
594 NVME_RW_PRINFO_PRCHK_REF;
595 cmnd->rw.reftag = cpu_to_le32(
596 nvme_block_nr(ns, blk_rq_pos(req)));
597 break;
601 cmnd->rw.control = cpu_to_le16(control);
602 cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
603 return 0;
606 blk_status_t nvme_setup_cmd(struct nvme_ns *ns, struct request *req,
607 struct nvme_command *cmd)
609 blk_status_t ret = BLK_STS_OK;
611 if (!(req->rq_flags & RQF_DONTPREP)) {
612 nvme_req(req)->retries = 0;
613 nvme_req(req)->flags = 0;
614 req->rq_flags |= RQF_DONTPREP;
617 switch (req_op(req)) {
618 case REQ_OP_DRV_IN:
619 case REQ_OP_DRV_OUT:
620 memcpy(cmd, nvme_req(req)->cmd, sizeof(*cmd));
621 break;
622 case REQ_OP_FLUSH:
623 nvme_setup_flush(ns, cmd);
624 break;
625 case REQ_OP_WRITE_ZEROES:
626 /* currently only aliased to deallocate for a few ctrls: */
627 case REQ_OP_DISCARD:
628 ret = nvme_setup_discard(ns, req, cmd);
629 break;
630 case REQ_OP_READ:
631 case REQ_OP_WRITE:
632 ret = nvme_setup_rw(ns, req, cmd);
633 break;
634 default:
635 WARN_ON_ONCE(1);
636 return BLK_STS_IOERR;
639 cmd->common.command_id = req->tag;
640 if (ns)
641 trace_nvme_setup_nvm_cmd(req->q->id, cmd);
642 else
643 trace_nvme_setup_admin_cmd(cmd);
644 return ret;
646 EXPORT_SYMBOL_GPL(nvme_setup_cmd);
649 * Returns 0 on success. If the result is negative, it's a Linux error code;
650 * if the result is positive, it's an NVM Express status code
652 int __nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
653 union nvme_result *result, void *buffer, unsigned bufflen,
654 unsigned timeout, int qid, int at_head,
655 blk_mq_req_flags_t flags)
657 struct request *req;
658 int ret;
660 req = nvme_alloc_request(q, cmd, flags, qid);
661 if (IS_ERR(req))
662 return PTR_ERR(req);
664 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
666 if (buffer && bufflen) {
667 ret = blk_rq_map_kern(q, req, buffer, bufflen, GFP_KERNEL);
668 if (ret)
669 goto out;
672 blk_execute_rq(req->q, NULL, req, at_head);
673 if (result)
674 *result = nvme_req(req)->result;
675 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
676 ret = -EINTR;
677 else
678 ret = nvme_req(req)->status;
679 out:
680 blk_mq_free_request(req);
681 return ret;
683 EXPORT_SYMBOL_GPL(__nvme_submit_sync_cmd);
685 int nvme_submit_sync_cmd(struct request_queue *q, struct nvme_command *cmd,
686 void *buffer, unsigned bufflen)
688 return __nvme_submit_sync_cmd(q, cmd, NULL, buffer, bufflen, 0,
689 NVME_QID_ANY, 0, 0);
691 EXPORT_SYMBOL_GPL(nvme_submit_sync_cmd);
693 static void *nvme_add_user_metadata(struct bio *bio, void __user *ubuf,
694 unsigned len, u32 seed, bool write)
696 struct bio_integrity_payload *bip;
697 int ret = -ENOMEM;
698 void *buf;
700 buf = kmalloc(len, GFP_KERNEL);
701 if (!buf)
702 goto out;
704 ret = -EFAULT;
705 if (write && copy_from_user(buf, ubuf, len))
706 goto out_free_meta;
708 bip = bio_integrity_alloc(bio, GFP_KERNEL, 1);
709 if (IS_ERR(bip)) {
710 ret = PTR_ERR(bip);
711 goto out_free_meta;
714 bip->bip_iter.bi_size = len;
715 bip->bip_iter.bi_sector = seed;
716 ret = bio_integrity_add_page(bio, virt_to_page(buf), len,
717 offset_in_page(buf));
718 if (ret == len)
719 return buf;
720 ret = -ENOMEM;
721 out_free_meta:
722 kfree(buf);
723 out:
724 return ERR_PTR(ret);
727 static int nvme_submit_user_cmd(struct request_queue *q,
728 struct nvme_command *cmd, void __user *ubuffer,
729 unsigned bufflen, void __user *meta_buffer, unsigned meta_len,
730 u32 meta_seed, u32 *result, unsigned timeout)
732 bool write = nvme_is_write(cmd);
733 struct nvme_ns *ns = q->queuedata;
734 struct gendisk *disk = ns ? ns->disk : NULL;
735 struct request *req;
736 struct bio *bio = NULL;
737 void *meta = NULL;
738 int ret;
740 req = nvme_alloc_request(q, cmd, 0, NVME_QID_ANY);
741 if (IS_ERR(req))
742 return PTR_ERR(req);
744 req->timeout = timeout ? timeout : ADMIN_TIMEOUT;
746 if (ubuffer && bufflen) {
747 ret = blk_rq_map_user(q, req, NULL, ubuffer, bufflen,
748 GFP_KERNEL);
749 if (ret)
750 goto out;
751 bio = req->bio;
752 bio->bi_disk = disk;
753 if (disk && meta_buffer && meta_len) {
754 meta = nvme_add_user_metadata(bio, meta_buffer, meta_len,
755 meta_seed, write);
756 if (IS_ERR(meta)) {
757 ret = PTR_ERR(meta);
758 goto out_unmap;
763 blk_execute_rq(req->q, disk, req, 0);
764 if (nvme_req(req)->flags & NVME_REQ_CANCELLED)
765 ret = -EINTR;
766 else
767 ret = nvme_req(req)->status;
768 if (result)
769 *result = le32_to_cpu(nvme_req(req)->result.u32);
770 if (meta && !ret && !write) {
771 if (copy_to_user(meta_buffer, meta, meta_len))
772 ret = -EFAULT;
774 kfree(meta);
775 out_unmap:
776 if (bio)
777 blk_rq_unmap_user(bio);
778 out:
779 blk_mq_free_request(req);
780 return ret;
783 static void nvme_keep_alive_end_io(struct request *rq, blk_status_t status)
785 struct nvme_ctrl *ctrl = rq->end_io_data;
787 blk_mq_free_request(rq);
789 if (status) {
790 dev_err(ctrl->device,
791 "failed nvme_keep_alive_end_io error=%d\n",
792 status);
793 return;
796 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
799 static int nvme_keep_alive(struct nvme_ctrl *ctrl)
801 struct request *rq;
803 rq = nvme_alloc_request(ctrl->admin_q, &ctrl->ka_cmd, BLK_MQ_REQ_RESERVED,
804 NVME_QID_ANY);
805 if (IS_ERR(rq))
806 return PTR_ERR(rq);
808 rq->timeout = ctrl->kato * HZ;
809 rq->end_io_data = ctrl;
811 blk_execute_rq_nowait(rq->q, NULL, rq, 0, nvme_keep_alive_end_io);
813 return 0;
816 static void nvme_keep_alive_work(struct work_struct *work)
818 struct nvme_ctrl *ctrl = container_of(to_delayed_work(work),
819 struct nvme_ctrl, ka_work);
821 if (nvme_keep_alive(ctrl)) {
822 /* allocation failure, reset the controller */
823 dev_err(ctrl->device, "keep-alive failed\n");
824 nvme_reset_ctrl(ctrl);
825 return;
829 void nvme_start_keep_alive(struct nvme_ctrl *ctrl)
831 if (unlikely(ctrl->kato == 0))
832 return;
834 INIT_DELAYED_WORK(&ctrl->ka_work, nvme_keep_alive_work);
835 memset(&ctrl->ka_cmd, 0, sizeof(ctrl->ka_cmd));
836 ctrl->ka_cmd.common.opcode = nvme_admin_keep_alive;
837 schedule_delayed_work(&ctrl->ka_work, ctrl->kato * HZ);
839 EXPORT_SYMBOL_GPL(nvme_start_keep_alive);
841 void nvme_stop_keep_alive(struct nvme_ctrl *ctrl)
843 if (unlikely(ctrl->kato == 0))
844 return;
846 cancel_delayed_work_sync(&ctrl->ka_work);
848 EXPORT_SYMBOL_GPL(nvme_stop_keep_alive);
850 static int nvme_identify_ctrl(struct nvme_ctrl *dev, struct nvme_id_ctrl **id)
852 struct nvme_command c = { };
853 int error;
855 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
856 c.identify.opcode = nvme_admin_identify;
857 c.identify.cns = NVME_ID_CNS_CTRL;
859 *id = kmalloc(sizeof(struct nvme_id_ctrl), GFP_KERNEL);
860 if (!*id)
861 return -ENOMEM;
863 error = nvme_submit_sync_cmd(dev->admin_q, &c, *id,
864 sizeof(struct nvme_id_ctrl));
865 if (error)
866 kfree(*id);
867 return error;
870 static int nvme_identify_ns_descs(struct nvme_ctrl *ctrl, unsigned nsid,
871 struct nvme_ns_ids *ids)
873 struct nvme_command c = { };
874 int status;
875 void *data;
876 int pos;
877 int len;
879 c.identify.opcode = nvme_admin_identify;
880 c.identify.nsid = cpu_to_le32(nsid);
881 c.identify.cns = NVME_ID_CNS_NS_DESC_LIST;
883 data = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
884 if (!data)
885 return -ENOMEM;
887 status = nvme_submit_sync_cmd(ctrl->admin_q, &c, data,
888 NVME_IDENTIFY_DATA_SIZE);
889 if (status)
890 goto free_data;
892 for (pos = 0; pos < NVME_IDENTIFY_DATA_SIZE; pos += len) {
893 struct nvme_ns_id_desc *cur = data + pos;
895 if (cur->nidl == 0)
896 break;
898 switch (cur->nidt) {
899 case NVME_NIDT_EUI64:
900 if (cur->nidl != NVME_NIDT_EUI64_LEN) {
901 dev_warn(ctrl->device,
902 "ctrl returned bogus length: %d for NVME_NIDT_EUI64\n",
903 cur->nidl);
904 goto free_data;
906 len = NVME_NIDT_EUI64_LEN;
907 memcpy(ids->eui64, data + pos + sizeof(*cur), len);
908 break;
909 case NVME_NIDT_NGUID:
910 if (cur->nidl != NVME_NIDT_NGUID_LEN) {
911 dev_warn(ctrl->device,
912 "ctrl returned bogus length: %d for NVME_NIDT_NGUID\n",
913 cur->nidl);
914 goto free_data;
916 len = NVME_NIDT_NGUID_LEN;
917 memcpy(ids->nguid, data + pos + sizeof(*cur), len);
918 break;
919 case NVME_NIDT_UUID:
920 if (cur->nidl != NVME_NIDT_UUID_LEN) {
921 dev_warn(ctrl->device,
922 "ctrl returned bogus length: %d for NVME_NIDT_UUID\n",
923 cur->nidl);
924 goto free_data;
926 len = NVME_NIDT_UUID_LEN;
927 uuid_copy(&ids->uuid, data + pos + sizeof(*cur));
928 break;
929 default:
930 /* Skip unnkown types */
931 len = cur->nidl;
932 break;
935 len += sizeof(*cur);
937 free_data:
938 kfree(data);
939 return status;
942 static int nvme_identify_ns_list(struct nvme_ctrl *dev, unsigned nsid, __le32 *ns_list)
944 struct nvme_command c = { };
946 c.identify.opcode = nvme_admin_identify;
947 c.identify.cns = NVME_ID_CNS_NS_ACTIVE_LIST;
948 c.identify.nsid = cpu_to_le32(nsid);
949 return nvme_submit_sync_cmd(dev->admin_q, &c, ns_list,
950 NVME_IDENTIFY_DATA_SIZE);
953 static struct nvme_id_ns *nvme_identify_ns(struct nvme_ctrl *ctrl,
954 unsigned nsid)
956 struct nvme_id_ns *id;
957 struct nvme_command c = { };
958 int error;
960 /* gcc-4.4.4 (at least) has issues with initializers and anon unions */
961 c.identify.opcode = nvme_admin_identify;
962 c.identify.nsid = cpu_to_le32(nsid);
963 c.identify.cns = NVME_ID_CNS_NS;
965 id = kmalloc(sizeof(*id), GFP_KERNEL);
966 if (!id)
967 return NULL;
969 error = nvme_submit_sync_cmd(ctrl->admin_q, &c, id, sizeof(*id));
970 if (error) {
971 dev_warn(ctrl->device, "Identify namespace failed\n");
972 kfree(id);
973 return NULL;
976 return id;
979 static int nvme_set_features(struct nvme_ctrl *dev, unsigned fid, unsigned dword11,
980 void *buffer, size_t buflen, u32 *result)
982 struct nvme_command c;
983 union nvme_result res;
984 int ret;
986 memset(&c, 0, sizeof(c));
987 c.features.opcode = nvme_admin_set_features;
988 c.features.fid = cpu_to_le32(fid);
989 c.features.dword11 = cpu_to_le32(dword11);
991 ret = __nvme_submit_sync_cmd(dev->admin_q, &c, &res,
992 buffer, buflen, 0, NVME_QID_ANY, 0, 0);
993 if (ret >= 0 && result)
994 *result = le32_to_cpu(res.u32);
995 return ret;
998 int nvme_set_queue_count(struct nvme_ctrl *ctrl, int *count)
1000 u32 q_count = (*count - 1) | ((*count - 1) << 16);
1001 u32 result;
1002 int status, nr_io_queues;
1004 status = nvme_set_features(ctrl, NVME_FEAT_NUM_QUEUES, q_count, NULL, 0,
1005 &result);
1006 if (status < 0)
1007 return status;
1010 * Degraded controllers might return an error when setting the queue
1011 * count. We still want to be able to bring them online and offer
1012 * access to the admin queue, as that might be only way to fix them up.
1014 if (status > 0) {
1015 dev_err(ctrl->device, "Could not set queue count (%d)\n", status);
1016 *count = 0;
1017 } else {
1018 nr_io_queues = min(result & 0xffff, result >> 16) + 1;
1019 *count = min(*count, nr_io_queues);
1022 return 0;
1024 EXPORT_SYMBOL_GPL(nvme_set_queue_count);
1026 static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1028 struct nvme_user_io io;
1029 struct nvme_command c;
1030 unsigned length, meta_len;
1031 void __user *metadata;
1033 if (copy_from_user(&io, uio, sizeof(io)))
1034 return -EFAULT;
1035 if (io.flags)
1036 return -EINVAL;
1038 switch (io.opcode) {
1039 case nvme_cmd_write:
1040 case nvme_cmd_read:
1041 case nvme_cmd_compare:
1042 break;
1043 default:
1044 return -EINVAL;
1047 length = (io.nblocks + 1) << ns->lba_shift;
1048 meta_len = (io.nblocks + 1) * ns->ms;
1049 metadata = (void __user *)(uintptr_t)io.metadata;
1051 if (ns->ext) {
1052 length += meta_len;
1053 meta_len = 0;
1054 } else if (meta_len) {
1055 if ((io.metadata & 3) || !io.metadata)
1056 return -EINVAL;
1059 memset(&c, 0, sizeof(c));
1060 c.rw.opcode = io.opcode;
1061 c.rw.flags = io.flags;
1062 c.rw.nsid = cpu_to_le32(ns->head->ns_id);
1063 c.rw.slba = cpu_to_le64(io.slba);
1064 c.rw.length = cpu_to_le16(io.nblocks);
1065 c.rw.control = cpu_to_le16(io.control);
1066 c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1067 c.rw.reftag = cpu_to_le32(io.reftag);
1068 c.rw.apptag = cpu_to_le16(io.apptag);
1069 c.rw.appmask = cpu_to_le16(io.appmask);
1071 return nvme_submit_user_cmd(ns->queue, &c,
1072 (void __user *)(uintptr_t)io.addr, length,
1073 metadata, meta_len, io.slba, NULL, 0);
1076 static u32 nvme_known_admin_effects(u8 opcode)
1078 switch (opcode) {
1079 case nvme_admin_format_nvm:
1080 return NVME_CMD_EFFECTS_CSUPP | NVME_CMD_EFFECTS_LBCC |
1081 NVME_CMD_EFFECTS_CSE_MASK;
1082 case nvme_admin_sanitize_nvm:
1083 return NVME_CMD_EFFECTS_CSE_MASK;
1084 default:
1085 break;
1087 return 0;
1090 static u32 nvme_passthru_start(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1091 u8 opcode)
1093 u32 effects = 0;
1095 if (ns) {
1096 if (ctrl->effects)
1097 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1098 if (effects & ~NVME_CMD_EFFECTS_CSUPP)
1099 dev_warn(ctrl->device,
1100 "IO command:%02x has unhandled effects:%08x\n",
1101 opcode, effects);
1102 return 0;
1105 if (ctrl->effects)
1106 effects = le32_to_cpu(ctrl->effects->iocs[opcode]);
1107 else
1108 effects = nvme_known_admin_effects(opcode);
1111 * For simplicity, IO to all namespaces is quiesced even if the command
1112 * effects say only one namespace is affected.
1114 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK)) {
1115 nvme_start_freeze(ctrl);
1116 nvme_wait_freeze(ctrl);
1118 return effects;
1121 static void nvme_update_formats(struct nvme_ctrl *ctrl)
1123 struct nvme_ns *ns, *next;
1124 LIST_HEAD(rm_list);
1126 down_write(&ctrl->namespaces_rwsem);
1127 list_for_each_entry(ns, &ctrl->namespaces, list) {
1128 if (ns->disk && nvme_revalidate_disk(ns->disk)) {
1129 list_move_tail(&ns->list, &rm_list);
1132 up_write(&ctrl->namespaces_rwsem);
1134 list_for_each_entry_safe(ns, next, &rm_list, list)
1135 nvme_ns_remove(ns);
1138 static void nvme_passthru_end(struct nvme_ctrl *ctrl, u32 effects)
1141 * Revalidate LBA changes prior to unfreezing. This is necessary to
1142 * prevent memory corruption if a logical block size was changed by
1143 * this command.
1145 if (effects & NVME_CMD_EFFECTS_LBCC)
1146 nvme_update_formats(ctrl);
1147 if (effects & (NVME_CMD_EFFECTS_LBCC | NVME_CMD_EFFECTS_CSE_MASK))
1148 nvme_unfreeze(ctrl);
1149 if (effects & NVME_CMD_EFFECTS_CCC)
1150 nvme_init_identify(ctrl);
1151 if (effects & (NVME_CMD_EFFECTS_NIC | NVME_CMD_EFFECTS_NCC))
1152 nvme_queue_scan(ctrl);
1155 static int nvme_user_cmd(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
1156 struct nvme_passthru_cmd __user *ucmd)
1158 struct nvme_passthru_cmd cmd;
1159 struct nvme_command c;
1160 unsigned timeout = 0;
1161 u32 effects;
1162 int status;
1164 if (!capable(CAP_SYS_ADMIN))
1165 return -EACCES;
1166 if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1167 return -EFAULT;
1168 if (cmd.flags)
1169 return -EINVAL;
1171 memset(&c, 0, sizeof(c));
1172 c.common.opcode = cmd.opcode;
1173 c.common.flags = cmd.flags;
1174 c.common.nsid = cpu_to_le32(cmd.nsid);
1175 c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1176 c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1177 c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1178 c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1179 c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1180 c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1181 c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1182 c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1184 if (cmd.timeout_ms)
1185 timeout = msecs_to_jiffies(cmd.timeout_ms);
1187 effects = nvme_passthru_start(ctrl, ns, cmd.opcode);
1188 status = nvme_submit_user_cmd(ns ? ns->queue : ctrl->admin_q, &c,
1189 (void __user *)(uintptr_t)cmd.addr, cmd.data_len,
1190 (void __user *)(uintptr_t)cmd.metadata, cmd.metadata,
1191 0, &cmd.result, timeout);
1192 nvme_passthru_end(ctrl, effects);
1194 if (status >= 0) {
1195 if (put_user(cmd.result, &ucmd->result))
1196 return -EFAULT;
1199 return status;
1203 * Issue ioctl requests on the first available path. Note that unlike normal
1204 * block layer requests we will not retry failed request on another controller.
1206 static struct nvme_ns *nvme_get_ns_from_disk(struct gendisk *disk,
1207 struct nvme_ns_head **head, int *srcu_idx)
1209 #ifdef CONFIG_NVME_MULTIPATH
1210 if (disk->fops == &nvme_ns_head_ops) {
1211 *head = disk->private_data;
1212 *srcu_idx = srcu_read_lock(&(*head)->srcu);
1213 return nvme_find_path(*head);
1215 #endif
1216 *head = NULL;
1217 *srcu_idx = -1;
1218 return disk->private_data;
1221 static void nvme_put_ns_from_disk(struct nvme_ns_head *head, int idx)
1223 if (head)
1224 srcu_read_unlock(&head->srcu, idx);
1227 static int nvme_ns_ioctl(struct nvme_ns *ns, unsigned cmd, unsigned long arg)
1229 switch (cmd) {
1230 case NVME_IOCTL_ID:
1231 force_successful_syscall_return();
1232 return ns->head->ns_id;
1233 case NVME_IOCTL_ADMIN_CMD:
1234 return nvme_user_cmd(ns->ctrl, NULL, (void __user *)arg);
1235 case NVME_IOCTL_IO_CMD:
1236 return nvme_user_cmd(ns->ctrl, ns, (void __user *)arg);
1237 case NVME_IOCTL_SUBMIT_IO:
1238 return nvme_submit_io(ns, (void __user *)arg);
1239 default:
1240 #ifdef CONFIG_NVM
1241 if (ns->ndev)
1242 return nvme_nvm_ioctl(ns, cmd, arg);
1243 #endif
1244 if (is_sed_ioctl(cmd))
1245 return sed_ioctl(ns->ctrl->opal_dev, cmd,
1246 (void __user *) arg);
1247 return -ENOTTY;
1251 static int nvme_ioctl(struct block_device *bdev, fmode_t mode,
1252 unsigned int cmd, unsigned long arg)
1254 struct nvme_ns_head *head = NULL;
1255 struct nvme_ns *ns;
1256 int srcu_idx, ret;
1258 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1259 if (unlikely(!ns))
1260 ret = -EWOULDBLOCK;
1261 else
1262 ret = nvme_ns_ioctl(ns, cmd, arg);
1263 nvme_put_ns_from_disk(head, srcu_idx);
1264 return ret;
1267 static int nvme_open(struct block_device *bdev, fmode_t mode)
1269 struct nvme_ns *ns = bdev->bd_disk->private_data;
1271 #ifdef CONFIG_NVME_MULTIPATH
1272 /* should never be called due to GENHD_FL_HIDDEN */
1273 if (WARN_ON_ONCE(ns->head->disk))
1274 goto fail;
1275 #endif
1276 if (!kref_get_unless_zero(&ns->kref))
1277 goto fail;
1278 if (!try_module_get(ns->ctrl->ops->module))
1279 goto fail_put_ns;
1281 return 0;
1283 fail_put_ns:
1284 nvme_put_ns(ns);
1285 fail:
1286 return -ENXIO;
1289 static void nvme_release(struct gendisk *disk, fmode_t mode)
1291 struct nvme_ns *ns = disk->private_data;
1293 module_put(ns->ctrl->ops->module);
1294 nvme_put_ns(ns);
1297 static int nvme_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1299 /* some standard values */
1300 geo->heads = 1 << 6;
1301 geo->sectors = 1 << 5;
1302 geo->cylinders = get_capacity(bdev->bd_disk) >> 11;
1303 return 0;
1306 #ifdef CONFIG_BLK_DEV_INTEGRITY
1307 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1309 struct blk_integrity integrity;
1311 memset(&integrity, 0, sizeof(integrity));
1312 switch (pi_type) {
1313 case NVME_NS_DPS_PI_TYPE3:
1314 integrity.profile = &t10_pi_type3_crc;
1315 integrity.tag_size = sizeof(u16) + sizeof(u32);
1316 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1317 break;
1318 case NVME_NS_DPS_PI_TYPE1:
1319 case NVME_NS_DPS_PI_TYPE2:
1320 integrity.profile = &t10_pi_type1_crc;
1321 integrity.tag_size = sizeof(u16);
1322 integrity.flags |= BLK_INTEGRITY_DEVICE_CAPABLE;
1323 break;
1324 default:
1325 integrity.profile = NULL;
1326 break;
1328 integrity.tuple_size = ms;
1329 blk_integrity_register(disk, &integrity);
1330 blk_queue_max_integrity_segments(disk->queue, 1);
1332 #else
1333 static void nvme_init_integrity(struct gendisk *disk, u16 ms, u8 pi_type)
1336 #endif /* CONFIG_BLK_DEV_INTEGRITY */
1338 static void nvme_set_chunk_size(struct nvme_ns *ns)
1340 u32 chunk_size = (((u32)ns->noiob) << (ns->lba_shift - 9));
1341 blk_queue_chunk_sectors(ns->queue, rounddown_pow_of_two(chunk_size));
1344 static void nvme_config_discard(struct nvme_ctrl *ctrl,
1345 unsigned stream_alignment, struct request_queue *queue)
1347 u32 size = queue_logical_block_size(queue);
1349 if (stream_alignment)
1350 size *= stream_alignment;
1352 BUILD_BUG_ON(PAGE_SIZE / sizeof(struct nvme_dsm_range) <
1353 NVME_DSM_MAX_RANGES);
1355 queue->limits.discard_alignment = 0;
1356 queue->limits.discard_granularity = size;
1358 blk_queue_max_discard_sectors(queue, UINT_MAX);
1359 blk_queue_max_discard_segments(queue, NVME_DSM_MAX_RANGES);
1360 blk_queue_flag_set(QUEUE_FLAG_DISCARD, queue);
1362 if (ctrl->quirks & NVME_QUIRK_DEALLOCATE_ZEROES)
1363 blk_queue_max_write_zeroes_sectors(queue, UINT_MAX);
1366 static void nvme_report_ns_ids(struct nvme_ctrl *ctrl, unsigned int nsid,
1367 struct nvme_id_ns *id, struct nvme_ns_ids *ids)
1369 memset(ids, 0, sizeof(*ids));
1371 if (ctrl->vs >= NVME_VS(1, 1, 0))
1372 memcpy(ids->eui64, id->eui64, sizeof(id->eui64));
1373 if (ctrl->vs >= NVME_VS(1, 2, 0))
1374 memcpy(ids->nguid, id->nguid, sizeof(id->nguid));
1375 if (ctrl->vs >= NVME_VS(1, 3, 0)) {
1376 /* Don't treat error as fatal we potentially
1377 * already have a NGUID or EUI-64
1379 if (nvme_identify_ns_descs(ctrl, nsid, ids))
1380 dev_warn(ctrl->device,
1381 "%s: Identify Descriptors failed\n", __func__);
1385 static bool nvme_ns_ids_valid(struct nvme_ns_ids *ids)
1387 return !uuid_is_null(&ids->uuid) ||
1388 memchr_inv(ids->nguid, 0, sizeof(ids->nguid)) ||
1389 memchr_inv(ids->eui64, 0, sizeof(ids->eui64));
1392 static bool nvme_ns_ids_equal(struct nvme_ns_ids *a, struct nvme_ns_ids *b)
1394 return uuid_equal(&a->uuid, &b->uuid) &&
1395 memcmp(&a->nguid, &b->nguid, sizeof(a->nguid)) == 0 &&
1396 memcmp(&a->eui64, &b->eui64, sizeof(a->eui64)) == 0;
1399 static void nvme_update_disk_info(struct gendisk *disk,
1400 struct nvme_ns *ns, struct nvme_id_ns *id)
1402 sector_t capacity = le64_to_cpup(&id->nsze) << (ns->lba_shift - 9);
1403 unsigned short bs = 1 << ns->lba_shift;
1404 unsigned stream_alignment = 0;
1406 if (ns->ctrl->nr_streams && ns->sws && ns->sgs)
1407 stream_alignment = ns->sws * ns->sgs;
1409 blk_mq_freeze_queue(disk->queue);
1410 blk_integrity_unregister(disk);
1412 blk_queue_logical_block_size(disk->queue, bs);
1413 blk_queue_physical_block_size(disk->queue, bs);
1414 blk_queue_io_min(disk->queue, bs);
1416 if (ns->ms && !ns->ext &&
1417 (ns->ctrl->ops->flags & NVME_F_METADATA_SUPPORTED))
1418 nvme_init_integrity(disk, ns->ms, ns->pi_type);
1419 if (ns->ms && !nvme_ns_has_pi(ns) && !blk_get_integrity(disk))
1420 capacity = 0;
1421 set_capacity(disk, capacity);
1423 if (ns->ctrl->oncs & NVME_CTRL_ONCS_DSM)
1424 nvme_config_discard(ns->ctrl, stream_alignment, disk->queue);
1425 blk_mq_unfreeze_queue(disk->queue);
1428 static void __nvme_revalidate_disk(struct gendisk *disk, struct nvme_id_ns *id)
1430 struct nvme_ns *ns = disk->private_data;
1433 * If identify namespace failed, use default 512 byte block size so
1434 * block layer can use before failing read/write for 0 capacity.
1436 ns->lba_shift = id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ds;
1437 if (ns->lba_shift == 0)
1438 ns->lba_shift = 9;
1439 ns->noiob = le16_to_cpu(id->noiob);
1440 ns->ext = ns->ms && (id->flbas & NVME_NS_FLBAS_META_EXT);
1441 ns->ms = le16_to_cpu(id->lbaf[id->flbas & NVME_NS_FLBAS_LBA_MASK].ms);
1442 /* the PI implementation requires metadata equal t10 pi tuple size */
1443 if (ns->ms == sizeof(struct t10_pi_tuple))
1444 ns->pi_type = id->dps & NVME_NS_DPS_PI_MASK;
1445 else
1446 ns->pi_type = 0;
1448 if (ns->noiob)
1449 nvme_set_chunk_size(ns);
1450 nvme_update_disk_info(disk, ns, id);
1451 if (ns->ndev)
1452 nvme_nvm_update_nvm_info(ns);
1453 #ifdef CONFIG_NVME_MULTIPATH
1454 if (ns->head->disk)
1455 nvme_update_disk_info(ns->head->disk, ns, id);
1456 #endif
1459 static int nvme_revalidate_disk(struct gendisk *disk)
1461 struct nvme_ns *ns = disk->private_data;
1462 struct nvme_ctrl *ctrl = ns->ctrl;
1463 struct nvme_id_ns *id;
1464 struct nvme_ns_ids ids;
1465 int ret = 0;
1467 if (test_bit(NVME_NS_DEAD, &ns->flags)) {
1468 set_capacity(disk, 0);
1469 return -ENODEV;
1472 id = nvme_identify_ns(ctrl, ns->head->ns_id);
1473 if (!id)
1474 return -ENODEV;
1476 if (id->ncap == 0) {
1477 ret = -ENODEV;
1478 goto out;
1481 __nvme_revalidate_disk(disk, id);
1482 nvme_report_ns_ids(ctrl, ns->head->ns_id, id, &ids);
1483 if (!nvme_ns_ids_equal(&ns->head->ids, &ids)) {
1484 dev_err(ctrl->device,
1485 "identifiers changed for nsid %d\n", ns->head->ns_id);
1486 ret = -ENODEV;
1489 out:
1490 kfree(id);
1491 return ret;
1494 static char nvme_pr_type(enum pr_type type)
1496 switch (type) {
1497 case PR_WRITE_EXCLUSIVE:
1498 return 1;
1499 case PR_EXCLUSIVE_ACCESS:
1500 return 2;
1501 case PR_WRITE_EXCLUSIVE_REG_ONLY:
1502 return 3;
1503 case PR_EXCLUSIVE_ACCESS_REG_ONLY:
1504 return 4;
1505 case PR_WRITE_EXCLUSIVE_ALL_REGS:
1506 return 5;
1507 case PR_EXCLUSIVE_ACCESS_ALL_REGS:
1508 return 6;
1509 default:
1510 return 0;
1514 static int nvme_pr_command(struct block_device *bdev, u32 cdw10,
1515 u64 key, u64 sa_key, u8 op)
1517 struct nvme_ns_head *head = NULL;
1518 struct nvme_ns *ns;
1519 struct nvme_command c;
1520 int srcu_idx, ret;
1521 u8 data[16] = { 0, };
1523 ns = nvme_get_ns_from_disk(bdev->bd_disk, &head, &srcu_idx);
1524 if (unlikely(!ns))
1525 return -EWOULDBLOCK;
1527 put_unaligned_le64(key, &data[0]);
1528 put_unaligned_le64(sa_key, &data[8]);
1530 memset(&c, 0, sizeof(c));
1531 c.common.opcode = op;
1532 c.common.nsid = cpu_to_le32(ns->head->ns_id);
1533 c.common.cdw10[0] = cpu_to_le32(cdw10);
1535 ret = nvme_submit_sync_cmd(ns->queue, &c, data, 16);
1536 nvme_put_ns_from_disk(head, srcu_idx);
1537 return ret;
1540 static int nvme_pr_register(struct block_device *bdev, u64 old,
1541 u64 new, unsigned flags)
1543 u32 cdw10;
1545 if (flags & ~PR_FL_IGNORE_KEY)
1546 return -EOPNOTSUPP;
1548 cdw10 = old ? 2 : 0;
1549 cdw10 |= (flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0;
1550 cdw10 |= (1 << 30) | (1 << 31); /* PTPL=1 */
1551 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_register);
1554 static int nvme_pr_reserve(struct block_device *bdev, u64 key,
1555 enum pr_type type, unsigned flags)
1557 u32 cdw10;
1559 if (flags & ~PR_FL_IGNORE_KEY)
1560 return -EOPNOTSUPP;
1562 cdw10 = nvme_pr_type(type) << 8;
1563 cdw10 |= ((flags & PR_FL_IGNORE_KEY) ? 1 << 3 : 0);
1564 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_acquire);
1567 static int nvme_pr_preempt(struct block_device *bdev, u64 old, u64 new,
1568 enum pr_type type, bool abort)
1570 u32 cdw10 = nvme_pr_type(type) << 8 | abort ? 2 : 1;
1571 return nvme_pr_command(bdev, cdw10, old, new, nvme_cmd_resv_acquire);
1574 static int nvme_pr_clear(struct block_device *bdev, u64 key)
1576 u32 cdw10 = 1 | (key ? 1 << 3 : 0);
1577 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_register);
1580 static int nvme_pr_release(struct block_device *bdev, u64 key, enum pr_type type)
1582 u32 cdw10 = nvme_pr_type(type) << 8 | key ? 1 << 3 : 0;
1583 return nvme_pr_command(bdev, cdw10, key, 0, nvme_cmd_resv_release);
1586 static const struct pr_ops nvme_pr_ops = {
1587 .pr_register = nvme_pr_register,
1588 .pr_reserve = nvme_pr_reserve,
1589 .pr_release = nvme_pr_release,
1590 .pr_preempt = nvme_pr_preempt,
1591 .pr_clear = nvme_pr_clear,
1594 #ifdef CONFIG_BLK_SED_OPAL
1595 int nvme_sec_submit(void *data, u16 spsp, u8 secp, void *buffer, size_t len,
1596 bool send)
1598 struct nvme_ctrl *ctrl = data;
1599 struct nvme_command cmd;
1601 memset(&cmd, 0, sizeof(cmd));
1602 if (send)
1603 cmd.common.opcode = nvme_admin_security_send;
1604 else
1605 cmd.common.opcode = nvme_admin_security_recv;
1606 cmd.common.nsid = 0;
1607 cmd.common.cdw10[0] = cpu_to_le32(((u32)secp) << 24 | ((u32)spsp) << 8);
1608 cmd.common.cdw10[1] = cpu_to_le32(len);
1610 return __nvme_submit_sync_cmd(ctrl->admin_q, &cmd, NULL, buffer, len,
1611 ADMIN_TIMEOUT, NVME_QID_ANY, 1, 0);
1613 EXPORT_SYMBOL_GPL(nvme_sec_submit);
1614 #endif /* CONFIG_BLK_SED_OPAL */
1616 static const struct block_device_operations nvme_fops = {
1617 .owner = THIS_MODULE,
1618 .ioctl = nvme_ioctl,
1619 .compat_ioctl = nvme_ioctl,
1620 .open = nvme_open,
1621 .release = nvme_release,
1622 .getgeo = nvme_getgeo,
1623 .revalidate_disk= nvme_revalidate_disk,
1624 .pr_ops = &nvme_pr_ops,
1627 #ifdef CONFIG_NVME_MULTIPATH
1628 static int nvme_ns_head_open(struct block_device *bdev, fmode_t mode)
1630 struct nvme_ns_head *head = bdev->bd_disk->private_data;
1632 if (!kref_get_unless_zero(&head->ref))
1633 return -ENXIO;
1634 return 0;
1637 static void nvme_ns_head_release(struct gendisk *disk, fmode_t mode)
1639 nvme_put_ns_head(disk->private_data);
1642 const struct block_device_operations nvme_ns_head_ops = {
1643 .owner = THIS_MODULE,
1644 .open = nvme_ns_head_open,
1645 .release = nvme_ns_head_release,
1646 .ioctl = nvme_ioctl,
1647 .compat_ioctl = nvme_ioctl,
1648 .getgeo = nvme_getgeo,
1649 .pr_ops = &nvme_pr_ops,
1651 #endif /* CONFIG_NVME_MULTIPATH */
1653 static int nvme_wait_ready(struct nvme_ctrl *ctrl, u64 cap, bool enabled)
1655 unsigned long timeout =
1656 ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1657 u32 csts, bit = enabled ? NVME_CSTS_RDY : 0;
1658 int ret;
1660 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1661 if (csts == ~0)
1662 return -ENODEV;
1663 if ((csts & NVME_CSTS_RDY) == bit)
1664 break;
1666 msleep(100);
1667 if (fatal_signal_pending(current))
1668 return -EINTR;
1669 if (time_after(jiffies, timeout)) {
1670 dev_err(ctrl->device,
1671 "Device not ready; aborting %s\n", enabled ?
1672 "initialisation" : "reset");
1673 return -ENODEV;
1677 return ret;
1681 * If the device has been passed off to us in an enabled state, just clear
1682 * the enabled bit. The spec says we should set the 'shutdown notification
1683 * bits', but doing so may cause the device to complete commands to the
1684 * admin queue ... and we don't know what memory that might be pointing at!
1686 int nvme_disable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1688 int ret;
1690 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1691 ctrl->ctrl_config &= ~NVME_CC_ENABLE;
1693 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1694 if (ret)
1695 return ret;
1697 if (ctrl->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY)
1698 msleep(NVME_QUIRK_DELAY_AMOUNT);
1700 return nvme_wait_ready(ctrl, cap, false);
1702 EXPORT_SYMBOL_GPL(nvme_disable_ctrl);
1704 int nvme_enable_ctrl(struct nvme_ctrl *ctrl, u64 cap)
1707 * Default to a 4K page size, with the intention to update this
1708 * path in the future to accomodate architectures with differing
1709 * kernel and IO page sizes.
1711 unsigned dev_page_min = NVME_CAP_MPSMIN(cap) + 12, page_shift = 12;
1712 int ret;
1714 if (page_shift < dev_page_min) {
1715 dev_err(ctrl->device,
1716 "Minimum device page size %u too large for host (%u)\n",
1717 1 << dev_page_min, 1 << page_shift);
1718 return -ENODEV;
1721 ctrl->page_size = 1 << page_shift;
1723 ctrl->ctrl_config = NVME_CC_CSS_NVM;
1724 ctrl->ctrl_config |= (page_shift - 12) << NVME_CC_MPS_SHIFT;
1725 ctrl->ctrl_config |= NVME_CC_AMS_RR | NVME_CC_SHN_NONE;
1726 ctrl->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1727 ctrl->ctrl_config |= NVME_CC_ENABLE;
1729 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1730 if (ret)
1731 return ret;
1732 return nvme_wait_ready(ctrl, cap, true);
1734 EXPORT_SYMBOL_GPL(nvme_enable_ctrl);
1736 int nvme_shutdown_ctrl(struct nvme_ctrl *ctrl)
1738 unsigned long timeout = jiffies + (ctrl->shutdown_timeout * HZ);
1739 u32 csts;
1740 int ret;
1742 ctrl->ctrl_config &= ~NVME_CC_SHN_MASK;
1743 ctrl->ctrl_config |= NVME_CC_SHN_NORMAL;
1745 ret = ctrl->ops->reg_write32(ctrl, NVME_REG_CC, ctrl->ctrl_config);
1746 if (ret)
1747 return ret;
1749 while ((ret = ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts)) == 0) {
1750 if ((csts & NVME_CSTS_SHST_MASK) == NVME_CSTS_SHST_CMPLT)
1751 break;
1753 msleep(100);
1754 if (fatal_signal_pending(current))
1755 return -EINTR;
1756 if (time_after(jiffies, timeout)) {
1757 dev_err(ctrl->device,
1758 "Device shutdown incomplete; abort shutdown\n");
1759 return -ENODEV;
1763 return ret;
1765 EXPORT_SYMBOL_GPL(nvme_shutdown_ctrl);
1767 static void nvme_set_queue_limits(struct nvme_ctrl *ctrl,
1768 struct request_queue *q)
1770 bool vwc = false;
1772 if (ctrl->max_hw_sectors) {
1773 u32 max_segments =
1774 (ctrl->max_hw_sectors / (ctrl->page_size >> 9)) + 1;
1776 blk_queue_max_hw_sectors(q, ctrl->max_hw_sectors);
1777 blk_queue_max_segments(q, min_t(u32, max_segments, USHRT_MAX));
1779 if ((ctrl->quirks & NVME_QUIRK_STRIPE_SIZE) &&
1780 is_power_of_2(ctrl->max_hw_sectors))
1781 blk_queue_chunk_sectors(q, ctrl->max_hw_sectors);
1782 blk_queue_virt_boundary(q, ctrl->page_size - 1);
1783 if (ctrl->vwc & NVME_CTRL_VWC_PRESENT)
1784 vwc = true;
1785 blk_queue_write_cache(q, vwc, vwc);
1788 static int nvme_configure_timestamp(struct nvme_ctrl *ctrl)
1790 __le64 ts;
1791 int ret;
1793 if (!(ctrl->oncs & NVME_CTRL_ONCS_TIMESTAMP))
1794 return 0;
1796 ts = cpu_to_le64(ktime_to_ms(ktime_get_real()));
1797 ret = nvme_set_features(ctrl, NVME_FEAT_TIMESTAMP, 0, &ts, sizeof(ts),
1798 NULL);
1799 if (ret)
1800 dev_warn_once(ctrl->device,
1801 "could not set timestamp (%d)\n", ret);
1802 return ret;
1805 static int nvme_configure_apst(struct nvme_ctrl *ctrl)
1808 * APST (Autonomous Power State Transition) lets us program a
1809 * table of power state transitions that the controller will
1810 * perform automatically. We configure it with a simple
1811 * heuristic: we are willing to spend at most 2% of the time
1812 * transitioning between power states. Therefore, when running
1813 * in any given state, we will enter the next lower-power
1814 * non-operational state after waiting 50 * (enlat + exlat)
1815 * microseconds, as long as that state's exit latency is under
1816 * the requested maximum latency.
1818 * We will not autonomously enter any non-operational state for
1819 * which the total latency exceeds ps_max_latency_us. Users
1820 * can set ps_max_latency_us to zero to turn off APST.
1823 unsigned apste;
1824 struct nvme_feat_auto_pst *table;
1825 u64 max_lat_us = 0;
1826 int max_ps = -1;
1827 int ret;
1830 * If APST isn't supported or if we haven't been initialized yet,
1831 * then don't do anything.
1833 if (!ctrl->apsta)
1834 return 0;
1836 if (ctrl->npss > 31) {
1837 dev_warn(ctrl->device, "NPSS is invalid; not using APST\n");
1838 return 0;
1841 table = kzalloc(sizeof(*table), GFP_KERNEL);
1842 if (!table)
1843 return 0;
1845 if (!ctrl->apst_enabled || ctrl->ps_max_latency_us == 0) {
1846 /* Turn off APST. */
1847 apste = 0;
1848 dev_dbg(ctrl->device, "APST disabled\n");
1849 } else {
1850 __le64 target = cpu_to_le64(0);
1851 int state;
1854 * Walk through all states from lowest- to highest-power.
1855 * According to the spec, lower-numbered states use more
1856 * power. NPSS, despite the name, is the index of the
1857 * lowest-power state, not the number of states.
1859 for (state = (int)ctrl->npss; state >= 0; state--) {
1860 u64 total_latency_us, exit_latency_us, transition_ms;
1862 if (target)
1863 table->entries[state] = target;
1866 * Don't allow transitions to the deepest state
1867 * if it's quirked off.
1869 if (state == ctrl->npss &&
1870 (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS))
1871 continue;
1874 * Is this state a useful non-operational state for
1875 * higher-power states to autonomously transition to?
1877 if (!(ctrl->psd[state].flags &
1878 NVME_PS_FLAGS_NON_OP_STATE))
1879 continue;
1881 exit_latency_us =
1882 (u64)le32_to_cpu(ctrl->psd[state].exit_lat);
1883 if (exit_latency_us > ctrl->ps_max_latency_us)
1884 continue;
1886 total_latency_us =
1887 exit_latency_us +
1888 le32_to_cpu(ctrl->psd[state].entry_lat);
1891 * This state is good. Use it as the APST idle
1892 * target for higher power states.
1894 transition_ms = total_latency_us + 19;
1895 do_div(transition_ms, 20);
1896 if (transition_ms > (1 << 24) - 1)
1897 transition_ms = (1 << 24) - 1;
1899 target = cpu_to_le64((state << 3) |
1900 (transition_ms << 8));
1902 if (max_ps == -1)
1903 max_ps = state;
1905 if (total_latency_us > max_lat_us)
1906 max_lat_us = total_latency_us;
1909 apste = 1;
1911 if (max_ps == -1) {
1912 dev_dbg(ctrl->device, "APST enabled but no non-operational states are available\n");
1913 } else {
1914 dev_dbg(ctrl->device, "APST enabled: max PS = %d, max round-trip latency = %lluus, table = %*phN\n",
1915 max_ps, max_lat_us, (int)sizeof(*table), table);
1919 ret = nvme_set_features(ctrl, NVME_FEAT_AUTO_PST, apste,
1920 table, sizeof(*table), NULL);
1921 if (ret)
1922 dev_err(ctrl->device, "failed to set APST feature (%d)\n", ret);
1924 kfree(table);
1925 return ret;
1928 static void nvme_set_latency_tolerance(struct device *dev, s32 val)
1930 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
1931 u64 latency;
1933 switch (val) {
1934 case PM_QOS_LATENCY_TOLERANCE_NO_CONSTRAINT:
1935 case PM_QOS_LATENCY_ANY:
1936 latency = U64_MAX;
1937 break;
1939 default:
1940 latency = val;
1943 if (ctrl->ps_max_latency_us != latency) {
1944 ctrl->ps_max_latency_us = latency;
1945 nvme_configure_apst(ctrl);
1949 struct nvme_core_quirk_entry {
1951 * NVMe model and firmware strings are padded with spaces. For
1952 * simplicity, strings in the quirk table are padded with NULLs
1953 * instead.
1955 u16 vid;
1956 const char *mn;
1957 const char *fr;
1958 unsigned long quirks;
1961 static const struct nvme_core_quirk_entry core_quirks[] = {
1964 * This Toshiba device seems to die using any APST states. See:
1965 * https://bugs.launchpad.net/ubuntu/+source/linux/+bug/1678184/comments/11
1967 .vid = 0x1179,
1968 .mn = "THNSF5256GPUK TOSHIBA",
1969 .quirks = NVME_QUIRK_NO_APST,
1973 /* match is null-terminated but idstr is space-padded. */
1974 static bool string_matches(const char *idstr, const char *match, size_t len)
1976 size_t matchlen;
1978 if (!match)
1979 return true;
1981 matchlen = strlen(match);
1982 WARN_ON_ONCE(matchlen > len);
1984 if (memcmp(idstr, match, matchlen))
1985 return false;
1987 for (; matchlen < len; matchlen++)
1988 if (idstr[matchlen] != ' ')
1989 return false;
1991 return true;
1994 static bool quirk_matches(const struct nvme_id_ctrl *id,
1995 const struct nvme_core_quirk_entry *q)
1997 return q->vid == le16_to_cpu(id->vid) &&
1998 string_matches(id->mn, q->mn, sizeof(id->mn)) &&
1999 string_matches(id->fr, q->fr, sizeof(id->fr));
2002 static void nvme_init_subnqn(struct nvme_subsystem *subsys, struct nvme_ctrl *ctrl,
2003 struct nvme_id_ctrl *id)
2005 size_t nqnlen;
2006 int off;
2008 nqnlen = strnlen(id->subnqn, NVMF_NQN_SIZE);
2009 if (nqnlen > 0 && nqnlen < NVMF_NQN_SIZE) {
2010 strncpy(subsys->subnqn, id->subnqn, NVMF_NQN_SIZE);
2011 return;
2014 if (ctrl->vs >= NVME_VS(1, 2, 1))
2015 dev_warn(ctrl->device, "missing or invalid SUBNQN field.\n");
2017 /* Generate a "fake" NQN per Figure 254 in NVMe 1.3 + ECN 001 */
2018 off = snprintf(subsys->subnqn, NVMF_NQN_SIZE,
2019 "nqn.2014.08.org.nvmexpress:%4x%4x",
2020 le16_to_cpu(id->vid), le16_to_cpu(id->ssvid));
2021 memcpy(subsys->subnqn + off, id->sn, sizeof(id->sn));
2022 off += sizeof(id->sn);
2023 memcpy(subsys->subnqn + off, id->mn, sizeof(id->mn));
2024 off += sizeof(id->mn);
2025 memset(subsys->subnqn + off, 0, sizeof(subsys->subnqn) - off);
2028 static void __nvme_release_subsystem(struct nvme_subsystem *subsys)
2030 ida_simple_remove(&nvme_subsystems_ida, subsys->instance);
2031 kfree(subsys);
2034 static void nvme_release_subsystem(struct device *dev)
2036 __nvme_release_subsystem(container_of(dev, struct nvme_subsystem, dev));
2039 static void nvme_destroy_subsystem(struct kref *ref)
2041 struct nvme_subsystem *subsys =
2042 container_of(ref, struct nvme_subsystem, ref);
2044 mutex_lock(&nvme_subsystems_lock);
2045 list_del(&subsys->entry);
2046 mutex_unlock(&nvme_subsystems_lock);
2048 ida_destroy(&subsys->ns_ida);
2049 device_del(&subsys->dev);
2050 put_device(&subsys->dev);
2053 static void nvme_put_subsystem(struct nvme_subsystem *subsys)
2055 kref_put(&subsys->ref, nvme_destroy_subsystem);
2058 static struct nvme_subsystem *__nvme_find_get_subsystem(const char *subsysnqn)
2060 struct nvme_subsystem *subsys;
2062 lockdep_assert_held(&nvme_subsystems_lock);
2064 list_for_each_entry(subsys, &nvme_subsystems, entry) {
2065 if (strcmp(subsys->subnqn, subsysnqn))
2066 continue;
2067 if (!kref_get_unless_zero(&subsys->ref))
2068 continue;
2069 return subsys;
2072 return NULL;
2075 #define SUBSYS_ATTR_RO(_name, _mode, _show) \
2076 struct device_attribute subsys_attr_##_name = \
2077 __ATTR(_name, _mode, _show, NULL)
2079 static ssize_t nvme_subsys_show_nqn(struct device *dev,
2080 struct device_attribute *attr,
2081 char *buf)
2083 struct nvme_subsystem *subsys =
2084 container_of(dev, struct nvme_subsystem, dev);
2086 return snprintf(buf, PAGE_SIZE, "%s\n", subsys->subnqn);
2088 static SUBSYS_ATTR_RO(subsysnqn, S_IRUGO, nvme_subsys_show_nqn);
2090 #define nvme_subsys_show_str_function(field) \
2091 static ssize_t subsys_##field##_show(struct device *dev, \
2092 struct device_attribute *attr, char *buf) \
2094 struct nvme_subsystem *subsys = \
2095 container_of(dev, struct nvme_subsystem, dev); \
2096 return sprintf(buf, "%.*s\n", \
2097 (int)sizeof(subsys->field), subsys->field); \
2099 static SUBSYS_ATTR_RO(field, S_IRUGO, subsys_##field##_show);
2101 nvme_subsys_show_str_function(model);
2102 nvme_subsys_show_str_function(serial);
2103 nvme_subsys_show_str_function(firmware_rev);
2105 static struct attribute *nvme_subsys_attrs[] = {
2106 &subsys_attr_model.attr,
2107 &subsys_attr_serial.attr,
2108 &subsys_attr_firmware_rev.attr,
2109 &subsys_attr_subsysnqn.attr,
2110 NULL,
2113 static struct attribute_group nvme_subsys_attrs_group = {
2114 .attrs = nvme_subsys_attrs,
2117 static const struct attribute_group *nvme_subsys_attrs_groups[] = {
2118 &nvme_subsys_attrs_group,
2119 NULL,
2122 static int nvme_active_ctrls(struct nvme_subsystem *subsys)
2124 int count = 0;
2125 struct nvme_ctrl *ctrl;
2127 mutex_lock(&subsys->lock);
2128 list_for_each_entry(ctrl, &subsys->ctrls, subsys_entry) {
2129 if (ctrl->state != NVME_CTRL_DELETING &&
2130 ctrl->state != NVME_CTRL_DEAD)
2131 count++;
2133 mutex_unlock(&subsys->lock);
2135 return count;
2138 static int nvme_init_subsystem(struct nvme_ctrl *ctrl, struct nvme_id_ctrl *id)
2140 struct nvme_subsystem *subsys, *found;
2141 int ret;
2143 subsys = kzalloc(sizeof(*subsys), GFP_KERNEL);
2144 if (!subsys)
2145 return -ENOMEM;
2146 ret = ida_simple_get(&nvme_subsystems_ida, 0, 0, GFP_KERNEL);
2147 if (ret < 0) {
2148 kfree(subsys);
2149 return ret;
2151 subsys->instance = ret;
2152 mutex_init(&subsys->lock);
2153 kref_init(&subsys->ref);
2154 INIT_LIST_HEAD(&subsys->ctrls);
2155 INIT_LIST_HEAD(&subsys->nsheads);
2156 nvme_init_subnqn(subsys, ctrl, id);
2157 memcpy(subsys->serial, id->sn, sizeof(subsys->serial));
2158 memcpy(subsys->model, id->mn, sizeof(subsys->model));
2159 memcpy(subsys->firmware_rev, id->fr, sizeof(subsys->firmware_rev));
2160 subsys->vendor_id = le16_to_cpu(id->vid);
2161 subsys->cmic = id->cmic;
2163 subsys->dev.class = nvme_subsys_class;
2164 subsys->dev.release = nvme_release_subsystem;
2165 subsys->dev.groups = nvme_subsys_attrs_groups;
2166 dev_set_name(&subsys->dev, "nvme-subsys%d", subsys->instance);
2167 device_initialize(&subsys->dev);
2169 mutex_lock(&nvme_subsystems_lock);
2170 found = __nvme_find_get_subsystem(subsys->subnqn);
2171 if (found) {
2173 * Verify that the subsystem actually supports multiple
2174 * controllers, else bail out.
2176 if (nvme_active_ctrls(found) && !(id->cmic & (1 << 1))) {
2177 dev_err(ctrl->device,
2178 "ignoring ctrl due to duplicate subnqn (%s).\n",
2179 found->subnqn);
2180 nvme_put_subsystem(found);
2181 ret = -EINVAL;
2182 goto out_unlock;
2185 __nvme_release_subsystem(subsys);
2186 subsys = found;
2187 } else {
2188 ret = device_add(&subsys->dev);
2189 if (ret) {
2190 dev_err(ctrl->device,
2191 "failed to register subsystem device.\n");
2192 goto out_unlock;
2194 ida_init(&subsys->ns_ida);
2195 list_add_tail(&subsys->entry, &nvme_subsystems);
2198 ctrl->subsys = subsys;
2199 mutex_unlock(&nvme_subsystems_lock);
2201 if (sysfs_create_link(&subsys->dev.kobj, &ctrl->device->kobj,
2202 dev_name(ctrl->device))) {
2203 dev_err(ctrl->device,
2204 "failed to create sysfs link from subsystem.\n");
2205 /* the transport driver will eventually put the subsystem */
2206 return -EINVAL;
2209 mutex_lock(&subsys->lock);
2210 list_add_tail(&ctrl->subsys_entry, &subsys->ctrls);
2211 mutex_unlock(&subsys->lock);
2213 return 0;
2215 out_unlock:
2216 mutex_unlock(&nvme_subsystems_lock);
2217 put_device(&subsys->dev);
2218 return ret;
2221 int nvme_get_log_ext(struct nvme_ctrl *ctrl, struct nvme_ns *ns,
2222 u8 log_page, void *log,
2223 size_t size, size_t offset)
2225 struct nvme_command c = { };
2226 unsigned long dwlen = size / 4 - 1;
2228 c.get_log_page.opcode = nvme_admin_get_log_page;
2230 if (ns)
2231 c.get_log_page.nsid = cpu_to_le32(ns->head->ns_id);
2232 else
2233 c.get_log_page.nsid = cpu_to_le32(NVME_NSID_ALL);
2235 c.get_log_page.lid = log_page;
2236 c.get_log_page.numdl = cpu_to_le16(dwlen & ((1 << 16) - 1));
2237 c.get_log_page.numdu = cpu_to_le16(dwlen >> 16);
2238 c.get_log_page.lpol = cpu_to_le32(offset & ((1ULL << 32) - 1));
2239 c.get_log_page.lpou = cpu_to_le32(offset >> 32ULL);
2241 return nvme_submit_sync_cmd(ctrl->admin_q, &c, log, size);
2244 static int nvme_get_log(struct nvme_ctrl *ctrl, u8 log_page, void *log,
2245 size_t size)
2247 return nvme_get_log_ext(ctrl, NULL, log_page, log, size, 0);
2250 static int nvme_get_effects_log(struct nvme_ctrl *ctrl)
2252 int ret;
2254 if (!ctrl->effects)
2255 ctrl->effects = kzalloc(sizeof(*ctrl->effects), GFP_KERNEL);
2257 if (!ctrl->effects)
2258 return 0;
2260 ret = nvme_get_log(ctrl, NVME_LOG_CMD_EFFECTS, ctrl->effects,
2261 sizeof(*ctrl->effects));
2262 if (ret) {
2263 kfree(ctrl->effects);
2264 ctrl->effects = NULL;
2266 return ret;
2270 * Initialize the cached copies of the Identify data and various controller
2271 * register in our nvme_ctrl structure. This should be called as soon as
2272 * the admin queue is fully up and running.
2274 int nvme_init_identify(struct nvme_ctrl *ctrl)
2276 struct nvme_id_ctrl *id;
2277 u64 cap;
2278 int ret, page_shift;
2279 u32 max_hw_sectors;
2280 bool prev_apst_enabled;
2282 ret = ctrl->ops->reg_read32(ctrl, NVME_REG_VS, &ctrl->vs);
2283 if (ret) {
2284 dev_err(ctrl->device, "Reading VS failed (%d)\n", ret);
2285 return ret;
2288 ret = ctrl->ops->reg_read64(ctrl, NVME_REG_CAP, &cap);
2289 if (ret) {
2290 dev_err(ctrl->device, "Reading CAP failed (%d)\n", ret);
2291 return ret;
2293 page_shift = NVME_CAP_MPSMIN(cap) + 12;
2295 if (ctrl->vs >= NVME_VS(1, 1, 0))
2296 ctrl->subsystem = NVME_CAP_NSSRC(cap);
2298 ret = nvme_identify_ctrl(ctrl, &id);
2299 if (ret) {
2300 dev_err(ctrl->device, "Identify Controller failed (%d)\n", ret);
2301 return -EIO;
2304 if (id->lpa & NVME_CTRL_LPA_CMD_EFFECTS_LOG) {
2305 ret = nvme_get_effects_log(ctrl);
2306 if (ret < 0)
2307 return ret;
2310 if (!ctrl->identified) {
2311 int i;
2313 ret = nvme_init_subsystem(ctrl, id);
2314 if (ret)
2315 goto out_free;
2318 * Check for quirks. Quirk can depend on firmware version,
2319 * so, in principle, the set of quirks present can change
2320 * across a reset. As a possible future enhancement, we
2321 * could re-scan for quirks every time we reinitialize
2322 * the device, but we'd have to make sure that the driver
2323 * behaves intelligently if the quirks change.
2325 for (i = 0; i < ARRAY_SIZE(core_quirks); i++) {
2326 if (quirk_matches(id, &core_quirks[i]))
2327 ctrl->quirks |= core_quirks[i].quirks;
2331 if (force_apst && (ctrl->quirks & NVME_QUIRK_NO_DEEPEST_PS)) {
2332 dev_warn(ctrl->device, "forcibly allowing all power states due to nvme_core.force_apst -- use at your own risk\n");
2333 ctrl->quirks &= ~NVME_QUIRK_NO_DEEPEST_PS;
2336 ctrl->oacs = le16_to_cpu(id->oacs);
2337 ctrl->oncs = le16_to_cpup(&id->oncs);
2338 atomic_set(&ctrl->abort_limit, id->acl + 1);
2339 ctrl->vwc = id->vwc;
2340 ctrl->cntlid = le16_to_cpup(&id->cntlid);
2341 if (id->mdts)
2342 max_hw_sectors = 1 << (id->mdts + page_shift - 9);
2343 else
2344 max_hw_sectors = UINT_MAX;
2345 ctrl->max_hw_sectors =
2346 min_not_zero(ctrl->max_hw_sectors, max_hw_sectors);
2348 nvme_set_queue_limits(ctrl, ctrl->admin_q);
2349 ctrl->sgls = le32_to_cpu(id->sgls);
2350 ctrl->kas = le16_to_cpu(id->kas);
2352 if (id->rtd3e) {
2353 /* us -> s */
2354 u32 transition_time = le32_to_cpu(id->rtd3e) / 1000000;
2356 ctrl->shutdown_timeout = clamp_t(unsigned int, transition_time,
2357 shutdown_timeout, 60);
2359 if (ctrl->shutdown_timeout != shutdown_timeout)
2360 dev_info(ctrl->device,
2361 "Shutdown timeout set to %u seconds\n",
2362 ctrl->shutdown_timeout);
2363 } else
2364 ctrl->shutdown_timeout = shutdown_timeout;
2366 ctrl->npss = id->npss;
2367 ctrl->apsta = id->apsta;
2368 prev_apst_enabled = ctrl->apst_enabled;
2369 if (ctrl->quirks & NVME_QUIRK_NO_APST) {
2370 if (force_apst && id->apsta) {
2371 dev_warn(ctrl->device, "forcibly allowing APST due to nvme_core.force_apst -- use at your own risk\n");
2372 ctrl->apst_enabled = true;
2373 } else {
2374 ctrl->apst_enabled = false;
2376 } else {
2377 ctrl->apst_enabled = id->apsta;
2379 memcpy(ctrl->psd, id->psd, sizeof(ctrl->psd));
2381 if (ctrl->ops->flags & NVME_F_FABRICS) {
2382 ctrl->icdoff = le16_to_cpu(id->icdoff);
2383 ctrl->ioccsz = le32_to_cpu(id->ioccsz);
2384 ctrl->iorcsz = le32_to_cpu(id->iorcsz);
2385 ctrl->maxcmd = le16_to_cpu(id->maxcmd);
2388 * In fabrics we need to verify the cntlid matches the
2389 * admin connect
2391 if (ctrl->cntlid != le16_to_cpu(id->cntlid)) {
2392 ret = -EINVAL;
2393 goto out_free;
2396 if (!ctrl->opts->discovery_nqn && !ctrl->kas) {
2397 dev_err(ctrl->device,
2398 "keep-alive support is mandatory for fabrics\n");
2399 ret = -EINVAL;
2400 goto out_free;
2402 } else {
2403 ctrl->cntlid = le16_to_cpu(id->cntlid);
2404 ctrl->hmpre = le32_to_cpu(id->hmpre);
2405 ctrl->hmmin = le32_to_cpu(id->hmmin);
2406 ctrl->hmminds = le32_to_cpu(id->hmminds);
2407 ctrl->hmmaxd = le16_to_cpu(id->hmmaxd);
2410 kfree(id);
2412 if (ctrl->apst_enabled && !prev_apst_enabled)
2413 dev_pm_qos_expose_latency_tolerance(ctrl->device);
2414 else if (!ctrl->apst_enabled && prev_apst_enabled)
2415 dev_pm_qos_hide_latency_tolerance(ctrl->device);
2417 ret = nvme_configure_apst(ctrl);
2418 if (ret < 0)
2419 return ret;
2421 ret = nvme_configure_timestamp(ctrl);
2422 if (ret < 0)
2423 return ret;
2425 ret = nvme_configure_directives(ctrl);
2426 if (ret < 0)
2427 return ret;
2429 ctrl->identified = true;
2431 return 0;
2433 out_free:
2434 kfree(id);
2435 return ret;
2437 EXPORT_SYMBOL_GPL(nvme_init_identify);
2439 static int nvme_dev_open(struct inode *inode, struct file *file)
2441 struct nvme_ctrl *ctrl =
2442 container_of(inode->i_cdev, struct nvme_ctrl, cdev);
2444 switch (ctrl->state) {
2445 case NVME_CTRL_LIVE:
2446 case NVME_CTRL_ADMIN_ONLY:
2447 break;
2448 default:
2449 return -EWOULDBLOCK;
2452 file->private_data = ctrl;
2453 return 0;
2456 static int nvme_dev_user_cmd(struct nvme_ctrl *ctrl, void __user *argp)
2458 struct nvme_ns *ns;
2459 int ret;
2461 down_read(&ctrl->namespaces_rwsem);
2462 if (list_empty(&ctrl->namespaces)) {
2463 ret = -ENOTTY;
2464 goto out_unlock;
2467 ns = list_first_entry(&ctrl->namespaces, struct nvme_ns, list);
2468 if (ns != list_last_entry(&ctrl->namespaces, struct nvme_ns, list)) {
2469 dev_warn(ctrl->device,
2470 "NVME_IOCTL_IO_CMD not supported when multiple namespaces present!\n");
2471 ret = -EINVAL;
2472 goto out_unlock;
2475 dev_warn(ctrl->device,
2476 "using deprecated NVME_IOCTL_IO_CMD ioctl on the char device!\n");
2477 kref_get(&ns->kref);
2478 up_read(&ctrl->namespaces_rwsem);
2480 ret = nvme_user_cmd(ctrl, ns, argp);
2481 nvme_put_ns(ns);
2482 return ret;
2484 out_unlock:
2485 up_read(&ctrl->namespaces_rwsem);
2486 return ret;
2489 static long nvme_dev_ioctl(struct file *file, unsigned int cmd,
2490 unsigned long arg)
2492 struct nvme_ctrl *ctrl = file->private_data;
2493 void __user *argp = (void __user *)arg;
2495 switch (cmd) {
2496 case NVME_IOCTL_ADMIN_CMD:
2497 return nvme_user_cmd(ctrl, NULL, argp);
2498 case NVME_IOCTL_IO_CMD:
2499 return nvme_dev_user_cmd(ctrl, argp);
2500 case NVME_IOCTL_RESET:
2501 dev_warn(ctrl->device, "resetting controller\n");
2502 return nvme_reset_ctrl_sync(ctrl);
2503 case NVME_IOCTL_SUBSYS_RESET:
2504 return nvme_reset_subsystem(ctrl);
2505 case NVME_IOCTL_RESCAN:
2506 nvme_queue_scan(ctrl);
2507 return 0;
2508 default:
2509 return -ENOTTY;
2513 static const struct file_operations nvme_dev_fops = {
2514 .owner = THIS_MODULE,
2515 .open = nvme_dev_open,
2516 .unlocked_ioctl = nvme_dev_ioctl,
2517 .compat_ioctl = nvme_dev_ioctl,
2520 static ssize_t nvme_sysfs_reset(struct device *dev,
2521 struct device_attribute *attr, const char *buf,
2522 size_t count)
2524 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2525 int ret;
2527 ret = nvme_reset_ctrl_sync(ctrl);
2528 if (ret < 0)
2529 return ret;
2530 return count;
2532 static DEVICE_ATTR(reset_controller, S_IWUSR, NULL, nvme_sysfs_reset);
2534 static ssize_t nvme_sysfs_rescan(struct device *dev,
2535 struct device_attribute *attr, const char *buf,
2536 size_t count)
2538 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2540 nvme_queue_scan(ctrl);
2541 return count;
2543 static DEVICE_ATTR(rescan_controller, S_IWUSR, NULL, nvme_sysfs_rescan);
2545 static inline struct nvme_ns_head *dev_to_ns_head(struct device *dev)
2547 struct gendisk *disk = dev_to_disk(dev);
2549 if (disk->fops == &nvme_fops)
2550 return nvme_get_ns_from_dev(dev)->head;
2551 else
2552 return disk->private_data;
2555 static ssize_t wwid_show(struct device *dev, struct device_attribute *attr,
2556 char *buf)
2558 struct nvme_ns_head *head = dev_to_ns_head(dev);
2559 struct nvme_ns_ids *ids = &head->ids;
2560 struct nvme_subsystem *subsys = head->subsys;
2561 int serial_len = sizeof(subsys->serial);
2562 int model_len = sizeof(subsys->model);
2564 if (!uuid_is_null(&ids->uuid))
2565 return sprintf(buf, "uuid.%pU\n", &ids->uuid);
2567 if (memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2568 return sprintf(buf, "eui.%16phN\n", ids->nguid);
2570 if (memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2571 return sprintf(buf, "eui.%8phN\n", ids->eui64);
2573 while (serial_len > 0 && (subsys->serial[serial_len - 1] == ' ' ||
2574 subsys->serial[serial_len - 1] == '\0'))
2575 serial_len--;
2576 while (model_len > 0 && (subsys->model[model_len - 1] == ' ' ||
2577 subsys->model[model_len - 1] == '\0'))
2578 model_len--;
2580 return sprintf(buf, "nvme.%04x-%*phN-%*phN-%08x\n", subsys->vendor_id,
2581 serial_len, subsys->serial, model_len, subsys->model,
2582 head->ns_id);
2584 static DEVICE_ATTR_RO(wwid);
2586 static ssize_t nguid_show(struct device *dev, struct device_attribute *attr,
2587 char *buf)
2589 return sprintf(buf, "%pU\n", dev_to_ns_head(dev)->ids.nguid);
2591 static DEVICE_ATTR_RO(nguid);
2593 static ssize_t uuid_show(struct device *dev, struct device_attribute *attr,
2594 char *buf)
2596 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2598 /* For backward compatibility expose the NGUID to userspace if
2599 * we have no UUID set
2601 if (uuid_is_null(&ids->uuid)) {
2602 printk_ratelimited(KERN_WARNING
2603 "No UUID available providing old NGUID\n");
2604 return sprintf(buf, "%pU\n", ids->nguid);
2606 return sprintf(buf, "%pU\n", &ids->uuid);
2608 static DEVICE_ATTR_RO(uuid);
2610 static ssize_t eui_show(struct device *dev, struct device_attribute *attr,
2611 char *buf)
2613 return sprintf(buf, "%8ph\n", dev_to_ns_head(dev)->ids.eui64);
2615 static DEVICE_ATTR_RO(eui);
2617 static ssize_t nsid_show(struct device *dev, struct device_attribute *attr,
2618 char *buf)
2620 return sprintf(buf, "%d\n", dev_to_ns_head(dev)->ns_id);
2622 static DEVICE_ATTR_RO(nsid);
2624 static struct attribute *nvme_ns_id_attrs[] = {
2625 &dev_attr_wwid.attr,
2626 &dev_attr_uuid.attr,
2627 &dev_attr_nguid.attr,
2628 &dev_attr_eui.attr,
2629 &dev_attr_nsid.attr,
2630 NULL,
2633 static umode_t nvme_ns_id_attrs_are_visible(struct kobject *kobj,
2634 struct attribute *a, int n)
2636 struct device *dev = container_of(kobj, struct device, kobj);
2637 struct nvme_ns_ids *ids = &dev_to_ns_head(dev)->ids;
2639 if (a == &dev_attr_uuid.attr) {
2640 if (uuid_is_null(&ids->uuid) &&
2641 !memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2642 return 0;
2644 if (a == &dev_attr_nguid.attr) {
2645 if (!memchr_inv(ids->nguid, 0, sizeof(ids->nguid)))
2646 return 0;
2648 if (a == &dev_attr_eui.attr) {
2649 if (!memchr_inv(ids->eui64, 0, sizeof(ids->eui64)))
2650 return 0;
2652 return a->mode;
2655 const struct attribute_group nvme_ns_id_attr_group = {
2656 .attrs = nvme_ns_id_attrs,
2657 .is_visible = nvme_ns_id_attrs_are_visible,
2660 #define nvme_show_str_function(field) \
2661 static ssize_t field##_show(struct device *dev, \
2662 struct device_attribute *attr, char *buf) \
2664 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2665 return sprintf(buf, "%.*s\n", \
2666 (int)sizeof(ctrl->subsys->field), ctrl->subsys->field); \
2668 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2670 nvme_show_str_function(model);
2671 nvme_show_str_function(serial);
2672 nvme_show_str_function(firmware_rev);
2674 #define nvme_show_int_function(field) \
2675 static ssize_t field##_show(struct device *dev, \
2676 struct device_attribute *attr, char *buf) \
2678 struct nvme_ctrl *ctrl = dev_get_drvdata(dev); \
2679 return sprintf(buf, "%d\n", ctrl->field); \
2681 static DEVICE_ATTR(field, S_IRUGO, field##_show, NULL);
2683 nvme_show_int_function(cntlid);
2685 static ssize_t nvme_sysfs_delete(struct device *dev,
2686 struct device_attribute *attr, const char *buf,
2687 size_t count)
2689 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2691 if (device_remove_file_self(dev, attr))
2692 nvme_delete_ctrl_sync(ctrl);
2693 return count;
2695 static DEVICE_ATTR(delete_controller, S_IWUSR, NULL, nvme_sysfs_delete);
2697 static ssize_t nvme_sysfs_show_transport(struct device *dev,
2698 struct device_attribute *attr,
2699 char *buf)
2701 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2703 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->ops->name);
2705 static DEVICE_ATTR(transport, S_IRUGO, nvme_sysfs_show_transport, NULL);
2707 static ssize_t nvme_sysfs_show_state(struct device *dev,
2708 struct device_attribute *attr,
2709 char *buf)
2711 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2712 static const char *const state_name[] = {
2713 [NVME_CTRL_NEW] = "new",
2714 [NVME_CTRL_LIVE] = "live",
2715 [NVME_CTRL_ADMIN_ONLY] = "only-admin",
2716 [NVME_CTRL_RESETTING] = "resetting",
2717 [NVME_CTRL_CONNECTING] = "connecting",
2718 [NVME_CTRL_DELETING] = "deleting",
2719 [NVME_CTRL_DEAD] = "dead",
2722 if ((unsigned)ctrl->state < ARRAY_SIZE(state_name) &&
2723 state_name[ctrl->state])
2724 return sprintf(buf, "%s\n", state_name[ctrl->state]);
2726 return sprintf(buf, "unknown state\n");
2729 static DEVICE_ATTR(state, S_IRUGO, nvme_sysfs_show_state, NULL);
2731 static ssize_t nvme_sysfs_show_subsysnqn(struct device *dev,
2732 struct device_attribute *attr,
2733 char *buf)
2735 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2737 return snprintf(buf, PAGE_SIZE, "%s\n", ctrl->subsys->subnqn);
2739 static DEVICE_ATTR(subsysnqn, S_IRUGO, nvme_sysfs_show_subsysnqn, NULL);
2741 static ssize_t nvme_sysfs_show_address(struct device *dev,
2742 struct device_attribute *attr,
2743 char *buf)
2745 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2747 return ctrl->ops->get_address(ctrl, buf, PAGE_SIZE);
2749 static DEVICE_ATTR(address, S_IRUGO, nvme_sysfs_show_address, NULL);
2751 static struct attribute *nvme_dev_attrs[] = {
2752 &dev_attr_reset_controller.attr,
2753 &dev_attr_rescan_controller.attr,
2754 &dev_attr_model.attr,
2755 &dev_attr_serial.attr,
2756 &dev_attr_firmware_rev.attr,
2757 &dev_attr_cntlid.attr,
2758 &dev_attr_delete_controller.attr,
2759 &dev_attr_transport.attr,
2760 &dev_attr_subsysnqn.attr,
2761 &dev_attr_address.attr,
2762 &dev_attr_state.attr,
2763 NULL
2766 static umode_t nvme_dev_attrs_are_visible(struct kobject *kobj,
2767 struct attribute *a, int n)
2769 struct device *dev = container_of(kobj, struct device, kobj);
2770 struct nvme_ctrl *ctrl = dev_get_drvdata(dev);
2772 if (a == &dev_attr_delete_controller.attr && !ctrl->ops->delete_ctrl)
2773 return 0;
2774 if (a == &dev_attr_address.attr && !ctrl->ops->get_address)
2775 return 0;
2777 return a->mode;
2780 static struct attribute_group nvme_dev_attrs_group = {
2781 .attrs = nvme_dev_attrs,
2782 .is_visible = nvme_dev_attrs_are_visible,
2785 static const struct attribute_group *nvme_dev_attr_groups[] = {
2786 &nvme_dev_attrs_group,
2787 NULL,
2790 static struct nvme_ns_head *__nvme_find_ns_head(struct nvme_subsystem *subsys,
2791 unsigned nsid)
2793 struct nvme_ns_head *h;
2795 lockdep_assert_held(&subsys->lock);
2797 list_for_each_entry(h, &subsys->nsheads, entry) {
2798 if (h->ns_id == nsid && kref_get_unless_zero(&h->ref))
2799 return h;
2802 return NULL;
2805 static int __nvme_check_ids(struct nvme_subsystem *subsys,
2806 struct nvme_ns_head *new)
2808 struct nvme_ns_head *h;
2810 lockdep_assert_held(&subsys->lock);
2812 list_for_each_entry(h, &subsys->nsheads, entry) {
2813 if (nvme_ns_ids_valid(&new->ids) &&
2814 !list_empty(&h->list) &&
2815 nvme_ns_ids_equal(&new->ids, &h->ids))
2816 return -EINVAL;
2819 return 0;
2822 static struct nvme_ns_head *nvme_alloc_ns_head(struct nvme_ctrl *ctrl,
2823 unsigned nsid, struct nvme_id_ns *id)
2825 struct nvme_ns_head *head;
2826 int ret = -ENOMEM;
2828 head = kzalloc(sizeof(*head), GFP_KERNEL);
2829 if (!head)
2830 goto out;
2831 ret = ida_simple_get(&ctrl->subsys->ns_ida, 1, 0, GFP_KERNEL);
2832 if (ret < 0)
2833 goto out_free_head;
2834 head->instance = ret;
2835 INIT_LIST_HEAD(&head->list);
2836 init_srcu_struct(&head->srcu);
2837 head->subsys = ctrl->subsys;
2838 head->ns_id = nsid;
2839 kref_init(&head->ref);
2841 nvme_report_ns_ids(ctrl, nsid, id, &head->ids);
2843 ret = __nvme_check_ids(ctrl->subsys, head);
2844 if (ret) {
2845 dev_err(ctrl->device,
2846 "duplicate IDs for nsid %d\n", nsid);
2847 goto out_cleanup_srcu;
2850 ret = nvme_mpath_alloc_disk(ctrl, head);
2851 if (ret)
2852 goto out_cleanup_srcu;
2854 list_add_tail(&head->entry, &ctrl->subsys->nsheads);
2855 return head;
2856 out_cleanup_srcu:
2857 cleanup_srcu_struct(&head->srcu);
2858 ida_simple_remove(&ctrl->subsys->ns_ida, head->instance);
2859 out_free_head:
2860 kfree(head);
2861 out:
2862 return ERR_PTR(ret);
2865 static int nvme_init_ns_head(struct nvme_ns *ns, unsigned nsid,
2866 struct nvme_id_ns *id)
2868 struct nvme_ctrl *ctrl = ns->ctrl;
2869 bool is_shared = id->nmic & (1 << 0);
2870 struct nvme_ns_head *head = NULL;
2871 int ret = 0;
2873 mutex_lock(&ctrl->subsys->lock);
2874 if (is_shared)
2875 head = __nvme_find_ns_head(ctrl->subsys, nsid);
2876 if (!head) {
2877 head = nvme_alloc_ns_head(ctrl, nsid, id);
2878 if (IS_ERR(head)) {
2879 ret = PTR_ERR(head);
2880 goto out_unlock;
2882 } else {
2883 struct nvme_ns_ids ids;
2885 nvme_report_ns_ids(ctrl, nsid, id, &ids);
2886 if (!nvme_ns_ids_equal(&head->ids, &ids)) {
2887 dev_err(ctrl->device,
2888 "IDs don't match for shared namespace %d\n",
2889 nsid);
2890 ret = -EINVAL;
2891 goto out_unlock;
2895 list_add_tail(&ns->siblings, &head->list);
2896 ns->head = head;
2898 out_unlock:
2899 mutex_unlock(&ctrl->subsys->lock);
2900 return ret;
2903 static int ns_cmp(void *priv, struct list_head *a, struct list_head *b)
2905 struct nvme_ns *nsa = container_of(a, struct nvme_ns, list);
2906 struct nvme_ns *nsb = container_of(b, struct nvme_ns, list);
2908 return nsa->head->ns_id - nsb->head->ns_id;
2911 static struct nvme_ns *nvme_find_get_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2913 struct nvme_ns *ns, *ret = NULL;
2915 down_read(&ctrl->namespaces_rwsem);
2916 list_for_each_entry(ns, &ctrl->namespaces, list) {
2917 if (ns->head->ns_id == nsid) {
2918 if (!kref_get_unless_zero(&ns->kref))
2919 continue;
2920 ret = ns;
2921 break;
2923 if (ns->head->ns_id > nsid)
2924 break;
2926 up_read(&ctrl->namespaces_rwsem);
2927 return ret;
2930 static int nvme_setup_streams_ns(struct nvme_ctrl *ctrl, struct nvme_ns *ns)
2932 struct streams_directive_params s;
2933 int ret;
2935 if (!ctrl->nr_streams)
2936 return 0;
2938 ret = nvme_get_stream_params(ctrl, &s, ns->head->ns_id);
2939 if (ret)
2940 return ret;
2942 ns->sws = le32_to_cpu(s.sws);
2943 ns->sgs = le16_to_cpu(s.sgs);
2945 if (ns->sws) {
2946 unsigned int bs = 1 << ns->lba_shift;
2948 blk_queue_io_min(ns->queue, bs * ns->sws);
2949 if (ns->sgs)
2950 blk_queue_io_opt(ns->queue, bs * ns->sws * ns->sgs);
2953 return 0;
2956 static void nvme_alloc_ns(struct nvme_ctrl *ctrl, unsigned nsid)
2958 struct nvme_ns *ns;
2959 struct gendisk *disk;
2960 struct nvme_id_ns *id;
2961 char disk_name[DISK_NAME_LEN];
2962 int node = dev_to_node(ctrl->dev), flags = GENHD_FL_EXT_DEVT;
2964 ns = kzalloc_node(sizeof(*ns), GFP_KERNEL, node);
2965 if (!ns)
2966 return;
2968 ns->queue = blk_mq_init_queue(ctrl->tagset);
2969 if (IS_ERR(ns->queue))
2970 goto out_free_ns;
2971 blk_queue_flag_set(QUEUE_FLAG_NONROT, ns->queue);
2972 ns->queue->queuedata = ns;
2973 ns->ctrl = ctrl;
2975 kref_init(&ns->kref);
2976 ns->lba_shift = 9; /* set to a default value for 512 until disk is validated */
2978 blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
2979 nvme_set_queue_limits(ctrl, ns->queue);
2981 id = nvme_identify_ns(ctrl, nsid);
2982 if (!id)
2983 goto out_free_queue;
2985 if (id->ncap == 0)
2986 goto out_free_id;
2988 if (nvme_init_ns_head(ns, nsid, id))
2989 goto out_free_id;
2990 nvme_setup_streams_ns(ctrl, ns);
2992 #ifdef CONFIG_NVME_MULTIPATH
2994 * If multipathing is enabled we need to always use the subsystem
2995 * instance number for numbering our devices to avoid conflicts
2996 * between subsystems that have multiple controllers and thus use
2997 * the multipath-aware subsystem node and those that have a single
2998 * controller and use the controller node directly.
3000 if (ns->head->disk) {
3001 sprintf(disk_name, "nvme%dc%dn%d", ctrl->subsys->instance,
3002 ctrl->cntlid, ns->head->instance);
3003 flags = GENHD_FL_HIDDEN;
3004 } else {
3005 sprintf(disk_name, "nvme%dn%d", ctrl->subsys->instance,
3006 ns->head->instance);
3008 #else
3010 * But without the multipath code enabled, multiple controller per
3011 * subsystems are visible as devices and thus we cannot use the
3012 * subsystem instance.
3014 sprintf(disk_name, "nvme%dn%d", ctrl->instance, ns->head->instance);
3015 #endif
3017 if ((ctrl->quirks & NVME_QUIRK_LIGHTNVM) && id->vs[0] == 0x1) {
3018 if (nvme_nvm_register(ns, disk_name, node)) {
3019 dev_warn(ctrl->device, "LightNVM init failure\n");
3020 goto out_unlink_ns;
3024 disk = alloc_disk_node(0, node);
3025 if (!disk)
3026 goto out_unlink_ns;
3028 disk->fops = &nvme_fops;
3029 disk->private_data = ns;
3030 disk->queue = ns->queue;
3031 disk->flags = flags;
3032 memcpy(disk->disk_name, disk_name, DISK_NAME_LEN);
3033 ns->disk = disk;
3035 __nvme_revalidate_disk(disk, id);
3037 down_write(&ctrl->namespaces_rwsem);
3038 list_add_tail(&ns->list, &ctrl->namespaces);
3039 up_write(&ctrl->namespaces_rwsem);
3041 nvme_get_ctrl(ctrl);
3043 kfree(id);
3045 device_add_disk(ctrl->device, ns->disk);
3046 if (sysfs_create_group(&disk_to_dev(ns->disk)->kobj,
3047 &nvme_ns_id_attr_group))
3048 pr_warn("%s: failed to create sysfs group for identification\n",
3049 ns->disk->disk_name);
3050 if (ns->ndev && nvme_nvm_register_sysfs(ns))
3051 pr_warn("%s: failed to register lightnvm sysfs group for identification\n",
3052 ns->disk->disk_name);
3054 nvme_mpath_add_disk(ns->head);
3055 nvme_fault_inject_init(ns);
3056 return;
3057 out_unlink_ns:
3058 mutex_lock(&ctrl->subsys->lock);
3059 list_del_rcu(&ns->siblings);
3060 mutex_unlock(&ctrl->subsys->lock);
3061 out_free_id:
3062 kfree(id);
3063 out_free_queue:
3064 blk_cleanup_queue(ns->queue);
3065 out_free_ns:
3066 kfree(ns);
3069 static void nvme_ns_remove(struct nvme_ns *ns)
3071 if (test_and_set_bit(NVME_NS_REMOVING, &ns->flags))
3072 return;
3074 nvme_fault_inject_fini(ns);
3075 if (ns->disk && ns->disk->flags & GENHD_FL_UP) {
3076 sysfs_remove_group(&disk_to_dev(ns->disk)->kobj,
3077 &nvme_ns_id_attr_group);
3078 if (ns->ndev)
3079 nvme_nvm_unregister_sysfs(ns);
3080 del_gendisk(ns->disk);
3081 blk_cleanup_queue(ns->queue);
3082 if (blk_get_integrity(ns->disk))
3083 blk_integrity_unregister(ns->disk);
3086 mutex_lock(&ns->ctrl->subsys->lock);
3087 nvme_mpath_clear_current_path(ns);
3088 list_del_rcu(&ns->siblings);
3089 mutex_unlock(&ns->ctrl->subsys->lock);
3091 down_write(&ns->ctrl->namespaces_rwsem);
3092 list_del_init(&ns->list);
3093 up_write(&ns->ctrl->namespaces_rwsem);
3095 synchronize_srcu(&ns->head->srcu);
3096 nvme_mpath_check_last_path(ns);
3097 nvme_put_ns(ns);
3100 static void nvme_validate_ns(struct nvme_ctrl *ctrl, unsigned nsid)
3102 struct nvme_ns *ns;
3104 ns = nvme_find_get_ns(ctrl, nsid);
3105 if (ns) {
3106 if (ns->disk && revalidate_disk(ns->disk))
3107 nvme_ns_remove(ns);
3108 nvme_put_ns(ns);
3109 } else
3110 nvme_alloc_ns(ctrl, nsid);
3113 static void nvme_remove_invalid_namespaces(struct nvme_ctrl *ctrl,
3114 unsigned nsid)
3116 struct nvme_ns *ns, *next;
3117 LIST_HEAD(rm_list);
3119 down_write(&ctrl->namespaces_rwsem);
3120 list_for_each_entry_safe(ns, next, &ctrl->namespaces, list) {
3121 if (ns->head->ns_id > nsid)
3122 list_move_tail(&ns->list, &rm_list);
3124 up_write(&ctrl->namespaces_rwsem);
3126 list_for_each_entry_safe(ns, next, &rm_list, list)
3127 nvme_ns_remove(ns);
3131 static int nvme_scan_ns_list(struct nvme_ctrl *ctrl, unsigned nn)
3133 struct nvme_ns *ns;
3134 __le32 *ns_list;
3135 unsigned i, j, nsid, prev = 0, num_lists = DIV_ROUND_UP(nn, 1024);
3136 int ret = 0;
3138 ns_list = kzalloc(NVME_IDENTIFY_DATA_SIZE, GFP_KERNEL);
3139 if (!ns_list)
3140 return -ENOMEM;
3142 for (i = 0; i < num_lists; i++) {
3143 ret = nvme_identify_ns_list(ctrl, prev, ns_list);
3144 if (ret)
3145 goto free;
3147 for (j = 0; j < min(nn, 1024U); j++) {
3148 nsid = le32_to_cpu(ns_list[j]);
3149 if (!nsid)
3150 goto out;
3152 nvme_validate_ns(ctrl, nsid);
3154 while (++prev < nsid) {
3155 ns = nvme_find_get_ns(ctrl, prev);
3156 if (ns) {
3157 nvme_ns_remove(ns);
3158 nvme_put_ns(ns);
3162 nn -= j;
3164 out:
3165 nvme_remove_invalid_namespaces(ctrl, prev);
3166 free:
3167 kfree(ns_list);
3168 return ret;
3171 static void nvme_scan_ns_sequential(struct nvme_ctrl *ctrl, unsigned nn)
3173 unsigned i;
3175 for (i = 1; i <= nn; i++)
3176 nvme_validate_ns(ctrl, i);
3178 nvme_remove_invalid_namespaces(ctrl, nn);
3181 static void nvme_scan_work(struct work_struct *work)
3183 struct nvme_ctrl *ctrl =
3184 container_of(work, struct nvme_ctrl, scan_work);
3185 struct nvme_id_ctrl *id;
3186 unsigned nn;
3188 if (ctrl->state != NVME_CTRL_LIVE)
3189 return;
3191 WARN_ON_ONCE(!ctrl->tagset);
3193 if (nvme_identify_ctrl(ctrl, &id))
3194 return;
3196 nn = le32_to_cpu(id->nn);
3197 if (ctrl->vs >= NVME_VS(1, 1, 0) &&
3198 !(ctrl->quirks & NVME_QUIRK_IDENTIFY_CNS)) {
3199 if (!nvme_scan_ns_list(ctrl, nn))
3200 goto done;
3202 nvme_scan_ns_sequential(ctrl, nn);
3203 done:
3204 down_write(&ctrl->namespaces_rwsem);
3205 list_sort(NULL, &ctrl->namespaces, ns_cmp);
3206 up_write(&ctrl->namespaces_rwsem);
3207 kfree(id);
3210 void nvme_queue_scan(struct nvme_ctrl *ctrl)
3213 * Only new queue scan work when admin and IO queues are both alive
3215 if (ctrl->state == NVME_CTRL_LIVE)
3216 queue_work(nvme_wq, &ctrl->scan_work);
3218 EXPORT_SYMBOL_GPL(nvme_queue_scan);
3221 * This function iterates the namespace list unlocked to allow recovery from
3222 * controller failure. It is up to the caller to ensure the namespace list is
3223 * not modified by scan work while this function is executing.
3225 void nvme_remove_namespaces(struct nvme_ctrl *ctrl)
3227 struct nvme_ns *ns, *next;
3228 LIST_HEAD(ns_list);
3231 * The dead states indicates the controller was not gracefully
3232 * disconnected. In that case, we won't be able to flush any data while
3233 * removing the namespaces' disks; fail all the queues now to avoid
3234 * potentially having to clean up the failed sync later.
3236 if (ctrl->state == NVME_CTRL_DEAD)
3237 nvme_kill_queues(ctrl);
3239 down_write(&ctrl->namespaces_rwsem);
3240 list_splice_init(&ctrl->namespaces, &ns_list);
3241 up_write(&ctrl->namespaces_rwsem);
3243 list_for_each_entry_safe(ns, next, &ns_list, list)
3244 nvme_ns_remove(ns);
3246 EXPORT_SYMBOL_GPL(nvme_remove_namespaces);
3248 static void nvme_aen_uevent(struct nvme_ctrl *ctrl)
3250 char *envp[2] = { NULL, NULL };
3251 u32 aen_result = ctrl->aen_result;
3253 ctrl->aen_result = 0;
3254 if (!aen_result)
3255 return;
3257 envp[0] = kasprintf(GFP_KERNEL, "NVME_AEN=%#08x", aen_result);
3258 if (!envp[0])
3259 return;
3260 kobject_uevent_env(&ctrl->device->kobj, KOBJ_CHANGE, envp);
3261 kfree(envp[0]);
3264 static void nvme_async_event_work(struct work_struct *work)
3266 struct nvme_ctrl *ctrl =
3267 container_of(work, struct nvme_ctrl, async_event_work);
3269 nvme_aen_uevent(ctrl);
3270 ctrl->ops->submit_async_event(ctrl);
3273 static bool nvme_ctrl_pp_status(struct nvme_ctrl *ctrl)
3276 u32 csts;
3278 if (ctrl->ops->reg_read32(ctrl, NVME_REG_CSTS, &csts))
3279 return false;
3281 if (csts == ~0)
3282 return false;
3284 return ((ctrl->ctrl_config & NVME_CC_ENABLE) && (csts & NVME_CSTS_PP));
3287 static void nvme_get_fw_slot_info(struct nvme_ctrl *ctrl)
3289 struct nvme_fw_slot_info_log *log;
3291 log = kmalloc(sizeof(*log), GFP_KERNEL);
3292 if (!log)
3293 return;
3295 if (nvme_get_log(ctrl, NVME_LOG_FW_SLOT, log, sizeof(*log)))
3296 dev_warn(ctrl->device,
3297 "Get FW SLOT INFO log error\n");
3298 kfree(log);
3301 static void nvme_fw_act_work(struct work_struct *work)
3303 struct nvme_ctrl *ctrl = container_of(work,
3304 struct nvme_ctrl, fw_act_work);
3305 unsigned long fw_act_timeout;
3307 if (ctrl->mtfa)
3308 fw_act_timeout = jiffies +
3309 msecs_to_jiffies(ctrl->mtfa * 100);
3310 else
3311 fw_act_timeout = jiffies +
3312 msecs_to_jiffies(admin_timeout * 1000);
3314 nvme_stop_queues(ctrl);
3315 while (nvme_ctrl_pp_status(ctrl)) {
3316 if (time_after(jiffies, fw_act_timeout)) {
3317 dev_warn(ctrl->device,
3318 "Fw activation timeout, reset controller\n");
3319 nvme_reset_ctrl(ctrl);
3320 break;
3322 msleep(100);
3325 if (ctrl->state != NVME_CTRL_LIVE)
3326 return;
3328 nvme_start_queues(ctrl);
3329 /* read FW slot information to clear the AER */
3330 nvme_get_fw_slot_info(ctrl);
3333 void nvme_complete_async_event(struct nvme_ctrl *ctrl, __le16 status,
3334 union nvme_result *res)
3336 u32 result = le32_to_cpu(res->u32);
3338 if (le16_to_cpu(status) >> 1 != NVME_SC_SUCCESS)
3339 return;
3341 switch (result & 0x7) {
3342 case NVME_AER_ERROR:
3343 case NVME_AER_SMART:
3344 case NVME_AER_CSS:
3345 case NVME_AER_VS:
3346 ctrl->aen_result = result;
3347 break;
3348 default:
3349 break;
3352 switch (result & 0xff07) {
3353 case NVME_AER_NOTICE_NS_CHANGED:
3354 dev_info(ctrl->device, "rescanning\n");
3355 nvme_queue_scan(ctrl);
3356 break;
3357 case NVME_AER_NOTICE_FW_ACT_STARTING:
3358 queue_work(nvme_wq, &ctrl->fw_act_work);
3359 break;
3360 default:
3361 dev_warn(ctrl->device, "async event result %08x\n", result);
3363 queue_work(nvme_wq, &ctrl->async_event_work);
3365 EXPORT_SYMBOL_GPL(nvme_complete_async_event);
3367 void nvme_stop_ctrl(struct nvme_ctrl *ctrl)
3369 nvme_stop_keep_alive(ctrl);
3370 flush_work(&ctrl->async_event_work);
3371 flush_work(&ctrl->scan_work);
3372 cancel_work_sync(&ctrl->fw_act_work);
3373 if (ctrl->ops->stop_ctrl)
3374 ctrl->ops->stop_ctrl(ctrl);
3376 EXPORT_SYMBOL_GPL(nvme_stop_ctrl);
3378 void nvme_start_ctrl(struct nvme_ctrl *ctrl)
3380 if (ctrl->kato)
3381 nvme_start_keep_alive(ctrl);
3383 if (ctrl->queue_count > 1) {
3384 nvme_queue_scan(ctrl);
3385 queue_work(nvme_wq, &ctrl->async_event_work);
3386 nvme_start_queues(ctrl);
3389 EXPORT_SYMBOL_GPL(nvme_start_ctrl);
3391 void nvme_uninit_ctrl(struct nvme_ctrl *ctrl)
3393 cdev_device_del(&ctrl->cdev, ctrl->device);
3395 EXPORT_SYMBOL_GPL(nvme_uninit_ctrl);
3397 static void nvme_free_ctrl(struct device *dev)
3399 struct nvme_ctrl *ctrl =
3400 container_of(dev, struct nvme_ctrl, ctrl_device);
3401 struct nvme_subsystem *subsys = ctrl->subsys;
3403 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3404 kfree(ctrl->effects);
3406 if (subsys) {
3407 mutex_lock(&subsys->lock);
3408 list_del(&ctrl->subsys_entry);
3409 mutex_unlock(&subsys->lock);
3410 sysfs_remove_link(&subsys->dev.kobj, dev_name(ctrl->device));
3413 ctrl->ops->free_ctrl(ctrl);
3415 if (subsys)
3416 nvme_put_subsystem(subsys);
3420 * Initialize a NVMe controller structures. This needs to be called during
3421 * earliest initialization so that we have the initialized structured around
3422 * during probing.
3424 int nvme_init_ctrl(struct nvme_ctrl *ctrl, struct device *dev,
3425 const struct nvme_ctrl_ops *ops, unsigned long quirks)
3427 int ret;
3429 ctrl->state = NVME_CTRL_NEW;
3430 spin_lock_init(&ctrl->lock);
3431 INIT_LIST_HEAD(&ctrl->namespaces);
3432 init_rwsem(&ctrl->namespaces_rwsem);
3433 ctrl->dev = dev;
3434 ctrl->ops = ops;
3435 ctrl->quirks = quirks;
3436 INIT_WORK(&ctrl->scan_work, nvme_scan_work);
3437 INIT_WORK(&ctrl->async_event_work, nvme_async_event_work);
3438 INIT_WORK(&ctrl->fw_act_work, nvme_fw_act_work);
3439 INIT_WORK(&ctrl->delete_work, nvme_delete_ctrl_work);
3441 ret = ida_simple_get(&nvme_instance_ida, 0, 0, GFP_KERNEL);
3442 if (ret < 0)
3443 goto out;
3444 ctrl->instance = ret;
3446 device_initialize(&ctrl->ctrl_device);
3447 ctrl->device = &ctrl->ctrl_device;
3448 ctrl->device->devt = MKDEV(MAJOR(nvme_chr_devt), ctrl->instance);
3449 ctrl->device->class = nvme_class;
3450 ctrl->device->parent = ctrl->dev;
3451 ctrl->device->groups = nvme_dev_attr_groups;
3452 ctrl->device->release = nvme_free_ctrl;
3453 dev_set_drvdata(ctrl->device, ctrl);
3454 ret = dev_set_name(ctrl->device, "nvme%d", ctrl->instance);
3455 if (ret)
3456 goto out_release_instance;
3458 cdev_init(&ctrl->cdev, &nvme_dev_fops);
3459 ctrl->cdev.owner = ops->module;
3460 ret = cdev_device_add(&ctrl->cdev, ctrl->device);
3461 if (ret)
3462 goto out_free_name;
3465 * Initialize latency tolerance controls. The sysfs files won't
3466 * be visible to userspace unless the device actually supports APST.
3468 ctrl->device->power.set_latency_tolerance = nvme_set_latency_tolerance;
3469 dev_pm_qos_update_user_latency_tolerance(ctrl->device,
3470 min(default_ps_max_latency_us, (unsigned long)S32_MAX));
3472 return 0;
3473 out_free_name:
3474 kfree_const(dev->kobj.name);
3475 out_release_instance:
3476 ida_simple_remove(&nvme_instance_ida, ctrl->instance);
3477 out:
3478 return ret;
3480 EXPORT_SYMBOL_GPL(nvme_init_ctrl);
3483 * nvme_kill_queues(): Ends all namespace queues
3484 * @ctrl: the dead controller that needs to end
3486 * Call this function when the driver determines it is unable to get the
3487 * controller in a state capable of servicing IO.
3489 void nvme_kill_queues(struct nvme_ctrl *ctrl)
3491 struct nvme_ns *ns;
3493 down_read(&ctrl->namespaces_rwsem);
3495 /* Forcibly unquiesce queues to avoid blocking dispatch */
3496 if (ctrl->admin_q)
3497 blk_mq_unquiesce_queue(ctrl->admin_q);
3499 list_for_each_entry(ns, &ctrl->namespaces, list) {
3501 * Revalidating a dead namespace sets capacity to 0. This will
3502 * end buffered writers dirtying pages that can't be synced.
3504 if (!ns->disk || test_and_set_bit(NVME_NS_DEAD, &ns->flags))
3505 continue;
3506 revalidate_disk(ns->disk);
3507 blk_set_queue_dying(ns->queue);
3509 /* Forcibly unquiesce queues to avoid blocking dispatch */
3510 blk_mq_unquiesce_queue(ns->queue);
3512 up_read(&ctrl->namespaces_rwsem);
3514 EXPORT_SYMBOL_GPL(nvme_kill_queues);
3516 void nvme_unfreeze(struct nvme_ctrl *ctrl)
3518 struct nvme_ns *ns;
3520 down_read(&ctrl->namespaces_rwsem);
3521 list_for_each_entry(ns, &ctrl->namespaces, list)
3522 blk_mq_unfreeze_queue(ns->queue);
3523 up_read(&ctrl->namespaces_rwsem);
3525 EXPORT_SYMBOL_GPL(nvme_unfreeze);
3527 void nvme_wait_freeze_timeout(struct nvme_ctrl *ctrl, long timeout)
3529 struct nvme_ns *ns;
3531 down_read(&ctrl->namespaces_rwsem);
3532 list_for_each_entry(ns, &ctrl->namespaces, list) {
3533 timeout = blk_mq_freeze_queue_wait_timeout(ns->queue, timeout);
3534 if (timeout <= 0)
3535 break;
3537 up_read(&ctrl->namespaces_rwsem);
3539 EXPORT_SYMBOL_GPL(nvme_wait_freeze_timeout);
3541 void nvme_wait_freeze(struct nvme_ctrl *ctrl)
3543 struct nvme_ns *ns;
3545 down_read(&ctrl->namespaces_rwsem);
3546 list_for_each_entry(ns, &ctrl->namespaces, list)
3547 blk_mq_freeze_queue_wait(ns->queue);
3548 up_read(&ctrl->namespaces_rwsem);
3550 EXPORT_SYMBOL_GPL(nvme_wait_freeze);
3552 void nvme_start_freeze(struct nvme_ctrl *ctrl)
3554 struct nvme_ns *ns;
3556 down_read(&ctrl->namespaces_rwsem);
3557 list_for_each_entry(ns, &ctrl->namespaces, list)
3558 blk_freeze_queue_start(ns->queue);
3559 up_read(&ctrl->namespaces_rwsem);
3561 EXPORT_SYMBOL_GPL(nvme_start_freeze);
3563 void nvme_stop_queues(struct nvme_ctrl *ctrl)
3565 struct nvme_ns *ns;
3567 down_read(&ctrl->namespaces_rwsem);
3568 list_for_each_entry(ns, &ctrl->namespaces, list)
3569 blk_mq_quiesce_queue(ns->queue);
3570 up_read(&ctrl->namespaces_rwsem);
3572 EXPORT_SYMBOL_GPL(nvme_stop_queues);
3574 void nvme_start_queues(struct nvme_ctrl *ctrl)
3576 struct nvme_ns *ns;
3578 down_read(&ctrl->namespaces_rwsem);
3579 list_for_each_entry(ns, &ctrl->namespaces, list)
3580 blk_mq_unquiesce_queue(ns->queue);
3581 up_read(&ctrl->namespaces_rwsem);
3583 EXPORT_SYMBOL_GPL(nvme_start_queues);
3585 int nvme_reinit_tagset(struct nvme_ctrl *ctrl, struct blk_mq_tag_set *set)
3587 if (!ctrl->ops->reinit_request)
3588 return 0;
3590 return blk_mq_tagset_iter(set, set->driver_data,
3591 ctrl->ops->reinit_request);
3593 EXPORT_SYMBOL_GPL(nvme_reinit_tagset);
3595 int __init nvme_core_init(void)
3597 int result = -ENOMEM;
3599 nvme_wq = alloc_workqueue("nvme-wq",
3600 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3601 if (!nvme_wq)
3602 goto out;
3604 nvme_reset_wq = alloc_workqueue("nvme-reset-wq",
3605 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3606 if (!nvme_reset_wq)
3607 goto destroy_wq;
3609 nvme_delete_wq = alloc_workqueue("nvme-delete-wq",
3610 WQ_UNBOUND | WQ_MEM_RECLAIM | WQ_SYSFS, 0);
3611 if (!nvme_delete_wq)
3612 goto destroy_reset_wq;
3614 result = alloc_chrdev_region(&nvme_chr_devt, 0, NVME_MINORS, "nvme");
3615 if (result < 0)
3616 goto destroy_delete_wq;
3618 nvme_class = class_create(THIS_MODULE, "nvme");
3619 if (IS_ERR(nvme_class)) {
3620 result = PTR_ERR(nvme_class);
3621 goto unregister_chrdev;
3624 nvme_subsys_class = class_create(THIS_MODULE, "nvme-subsystem");
3625 if (IS_ERR(nvme_subsys_class)) {
3626 result = PTR_ERR(nvme_subsys_class);
3627 goto destroy_class;
3629 return 0;
3631 destroy_class:
3632 class_destroy(nvme_class);
3633 unregister_chrdev:
3634 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3635 destroy_delete_wq:
3636 destroy_workqueue(nvme_delete_wq);
3637 destroy_reset_wq:
3638 destroy_workqueue(nvme_reset_wq);
3639 destroy_wq:
3640 destroy_workqueue(nvme_wq);
3641 out:
3642 return result;
3645 void nvme_core_exit(void)
3647 ida_destroy(&nvme_subsystems_ida);
3648 class_destroy(nvme_subsys_class);
3649 class_destroy(nvme_class);
3650 unregister_chrdev_region(nvme_chr_devt, NVME_MINORS);
3651 destroy_workqueue(nvme_delete_wq);
3652 destroy_workqueue(nvme_reset_wq);
3653 destroy_workqueue(nvme_wq);
3656 MODULE_LICENSE("GPL");
3657 MODULE_VERSION("1.0");
3658 module_init(nvme_core_init);
3659 module_exit(nvme_core_exit);