powerpc/ftrace: add powerpc timebase as a trace clock source
[linux/fpc-iii.git] / arch / powerpc / kernel / ptrace.c
blob737c0d0b53ac43dcdc41f09b0a3177cf8b4e389b
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
5 * Derived from "arch/m68k/kernel/ptrace.c"
6 * Copyright (C) 1994 by Hamish Macdonald
7 * Taken from linux/kernel/ptrace.c and modified for M680x0.
8 * linux/kernel/ptrace.c is by Ross Biro 1/23/92, edited by Linus Torvalds
10 * Modified by Cort Dougan (cort@hq.fsmlabs.com)
11 * and Paul Mackerras (paulus@samba.org).
13 * This file is subject to the terms and conditions of the GNU General
14 * Public License. See the file README.legal in the main directory of
15 * this archive for more details.
18 #include <linux/kernel.h>
19 #include <linux/sched.h>
20 #include <linux/mm.h>
21 #include <linux/smp.h>
22 #include <linux/errno.h>
23 #include <linux/ptrace.h>
24 #include <linux/regset.h>
25 #include <linux/tracehook.h>
26 #include <linux/elf.h>
27 #include <linux/user.h>
28 #include <linux/security.h>
29 #include <linux/signal.h>
30 #include <linux/seccomp.h>
31 #include <linux/audit.h>
32 #include <trace/syscall.h>
33 #include <linux/hw_breakpoint.h>
34 #include <linux/perf_event.h>
35 #include <linux/context_tracking.h>
37 #include <asm/uaccess.h>
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/switch_to.h>
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/syscalls.h>
46 * The parameter save area on the stack is used to store arguments being passed
47 * to callee function and is located at fixed offset from stack pointer.
49 #ifdef CONFIG_PPC32
50 #define PARAMETER_SAVE_AREA_OFFSET 24 /* bytes */
51 #else /* CONFIG_PPC32 */
52 #define PARAMETER_SAVE_AREA_OFFSET 48 /* bytes */
53 #endif
55 struct pt_regs_offset {
56 const char *name;
57 int offset;
60 #define STR(s) #s /* convert to string */
61 #define REG_OFFSET_NAME(r) {.name = #r, .offset = offsetof(struct pt_regs, r)}
62 #define GPR_OFFSET_NAME(num) \
63 {.name = STR(gpr##num), .offset = offsetof(struct pt_regs, gpr[num])}
64 #define REG_OFFSET_END {.name = NULL, .offset = 0}
66 static const struct pt_regs_offset regoffset_table[] = {
67 GPR_OFFSET_NAME(0),
68 GPR_OFFSET_NAME(1),
69 GPR_OFFSET_NAME(2),
70 GPR_OFFSET_NAME(3),
71 GPR_OFFSET_NAME(4),
72 GPR_OFFSET_NAME(5),
73 GPR_OFFSET_NAME(6),
74 GPR_OFFSET_NAME(7),
75 GPR_OFFSET_NAME(8),
76 GPR_OFFSET_NAME(9),
77 GPR_OFFSET_NAME(10),
78 GPR_OFFSET_NAME(11),
79 GPR_OFFSET_NAME(12),
80 GPR_OFFSET_NAME(13),
81 GPR_OFFSET_NAME(14),
82 GPR_OFFSET_NAME(15),
83 GPR_OFFSET_NAME(16),
84 GPR_OFFSET_NAME(17),
85 GPR_OFFSET_NAME(18),
86 GPR_OFFSET_NAME(19),
87 GPR_OFFSET_NAME(20),
88 GPR_OFFSET_NAME(21),
89 GPR_OFFSET_NAME(22),
90 GPR_OFFSET_NAME(23),
91 GPR_OFFSET_NAME(24),
92 GPR_OFFSET_NAME(25),
93 GPR_OFFSET_NAME(26),
94 GPR_OFFSET_NAME(27),
95 GPR_OFFSET_NAME(28),
96 GPR_OFFSET_NAME(29),
97 GPR_OFFSET_NAME(30),
98 GPR_OFFSET_NAME(31),
99 REG_OFFSET_NAME(nip),
100 REG_OFFSET_NAME(msr),
101 REG_OFFSET_NAME(ctr),
102 REG_OFFSET_NAME(link),
103 REG_OFFSET_NAME(xer),
104 REG_OFFSET_NAME(ccr),
105 #ifdef CONFIG_PPC64
106 REG_OFFSET_NAME(softe),
107 #else
108 REG_OFFSET_NAME(mq),
109 #endif
110 REG_OFFSET_NAME(trap),
111 REG_OFFSET_NAME(dar),
112 REG_OFFSET_NAME(dsisr),
113 REG_OFFSET_END,
117 * regs_query_register_offset() - query register offset from its name
118 * @name: the name of a register
120 * regs_query_register_offset() returns the offset of a register in struct
121 * pt_regs from its name. If the name is invalid, this returns -EINVAL;
123 int regs_query_register_offset(const char *name)
125 const struct pt_regs_offset *roff;
126 for (roff = regoffset_table; roff->name != NULL; roff++)
127 if (!strcmp(roff->name, name))
128 return roff->offset;
129 return -EINVAL;
133 * regs_query_register_name() - query register name from its offset
134 * @offset: the offset of a register in struct pt_regs.
136 * regs_query_register_name() returns the name of a register from its
137 * offset in struct pt_regs. If the @offset is invalid, this returns NULL;
139 const char *regs_query_register_name(unsigned int offset)
141 const struct pt_regs_offset *roff;
142 for (roff = regoffset_table; roff->name != NULL; roff++)
143 if (roff->offset == offset)
144 return roff->name;
145 return NULL;
149 * does not yet catch signals sent when the child dies.
150 * in exit.c or in signal.c.
154 * Set of msr bits that gdb can change on behalf of a process.
156 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
157 #define MSR_DEBUGCHANGE 0
158 #else
159 #define MSR_DEBUGCHANGE (MSR_SE | MSR_BE)
160 #endif
163 * Max register writeable via put_reg
165 #ifdef CONFIG_PPC32
166 #define PT_MAX_PUT_REG PT_MQ
167 #else
168 #define PT_MAX_PUT_REG PT_CCR
169 #endif
171 static unsigned long get_user_msr(struct task_struct *task)
173 return task->thread.regs->msr | task->thread.fpexc_mode;
176 static int set_user_msr(struct task_struct *task, unsigned long msr)
178 task->thread.regs->msr &= ~MSR_DEBUGCHANGE;
179 task->thread.regs->msr |= msr & MSR_DEBUGCHANGE;
180 return 0;
183 #ifdef CONFIG_PPC64
184 static int get_user_dscr(struct task_struct *task, unsigned long *data)
186 *data = task->thread.dscr;
187 return 0;
190 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
192 task->thread.dscr = dscr;
193 task->thread.dscr_inherit = 1;
194 return 0;
196 #else
197 static int get_user_dscr(struct task_struct *task, unsigned long *data)
199 return -EIO;
202 static int set_user_dscr(struct task_struct *task, unsigned long dscr)
204 return -EIO;
206 #endif
209 * We prevent mucking around with the reserved area of trap
210 * which are used internally by the kernel.
212 static int set_user_trap(struct task_struct *task, unsigned long trap)
214 task->thread.regs->trap = trap & 0xfff0;
215 return 0;
219 * Get contents of register REGNO in task TASK.
221 int ptrace_get_reg(struct task_struct *task, int regno, unsigned long *data)
223 if ((task->thread.regs == NULL) || !data)
224 return -EIO;
226 if (regno == PT_MSR) {
227 *data = get_user_msr(task);
228 return 0;
231 if (regno == PT_DSCR)
232 return get_user_dscr(task, data);
234 if (regno < (sizeof(struct pt_regs) / sizeof(unsigned long))) {
235 *data = ((unsigned long *)task->thread.regs)[regno];
236 return 0;
239 return -EIO;
243 * Write contents of register REGNO in task TASK.
245 int ptrace_put_reg(struct task_struct *task, int regno, unsigned long data)
247 if (task->thread.regs == NULL)
248 return -EIO;
250 if (regno == PT_MSR)
251 return set_user_msr(task, data);
252 if (regno == PT_TRAP)
253 return set_user_trap(task, data);
254 if (regno == PT_DSCR)
255 return set_user_dscr(task, data);
257 if (regno <= PT_MAX_PUT_REG) {
258 ((unsigned long *)task->thread.regs)[regno] = data;
259 return 0;
261 return -EIO;
264 static int gpr_get(struct task_struct *target, const struct user_regset *regset,
265 unsigned int pos, unsigned int count,
266 void *kbuf, void __user *ubuf)
268 int i, ret;
270 if (target->thread.regs == NULL)
271 return -EIO;
273 if (!FULL_REGS(target->thread.regs)) {
274 /* We have a partial register set. Fill 14-31 with bogus values */
275 for (i = 14; i < 32; i++)
276 target->thread.regs->gpr[i] = NV_REG_POISON;
279 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
280 target->thread.regs,
281 0, offsetof(struct pt_regs, msr));
282 if (!ret) {
283 unsigned long msr = get_user_msr(target);
284 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &msr,
285 offsetof(struct pt_regs, msr),
286 offsetof(struct pt_regs, msr) +
287 sizeof(msr));
290 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
291 offsetof(struct pt_regs, msr) + sizeof(long));
293 if (!ret)
294 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
295 &target->thread.regs->orig_gpr3,
296 offsetof(struct pt_regs, orig_gpr3),
297 sizeof(struct pt_regs));
298 if (!ret)
299 ret = user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
300 sizeof(struct pt_regs), -1);
302 return ret;
305 static int gpr_set(struct task_struct *target, const struct user_regset *regset,
306 unsigned int pos, unsigned int count,
307 const void *kbuf, const void __user *ubuf)
309 unsigned long reg;
310 int ret;
312 if (target->thread.regs == NULL)
313 return -EIO;
315 CHECK_FULL_REGS(target->thread.regs);
317 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
318 target->thread.regs,
319 0, PT_MSR * sizeof(reg));
321 if (!ret && count > 0) {
322 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
323 PT_MSR * sizeof(reg),
324 (PT_MSR + 1) * sizeof(reg));
325 if (!ret)
326 ret = set_user_msr(target, reg);
329 BUILD_BUG_ON(offsetof(struct pt_regs, orig_gpr3) !=
330 offsetof(struct pt_regs, msr) + sizeof(long));
332 if (!ret)
333 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
334 &target->thread.regs->orig_gpr3,
335 PT_ORIG_R3 * sizeof(reg),
336 (PT_MAX_PUT_REG + 1) * sizeof(reg));
338 if (PT_MAX_PUT_REG + 1 < PT_TRAP && !ret)
339 ret = user_regset_copyin_ignore(
340 &pos, &count, &kbuf, &ubuf,
341 (PT_MAX_PUT_REG + 1) * sizeof(reg),
342 PT_TRAP * sizeof(reg));
344 if (!ret && count > 0) {
345 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &reg,
346 PT_TRAP * sizeof(reg),
347 (PT_TRAP + 1) * sizeof(reg));
348 if (!ret)
349 ret = set_user_trap(target, reg);
352 if (!ret)
353 ret = user_regset_copyin_ignore(
354 &pos, &count, &kbuf, &ubuf,
355 (PT_TRAP + 1) * sizeof(reg), -1);
357 return ret;
360 static int fpr_get(struct task_struct *target, const struct user_regset *regset,
361 unsigned int pos, unsigned int count,
362 void *kbuf, void __user *ubuf)
364 #ifdef CONFIG_VSX
365 u64 buf[33];
366 int i;
367 #endif
368 flush_fp_to_thread(target);
370 #ifdef CONFIG_VSX
371 /* copy to local buffer then write that out */
372 for (i = 0; i < 32 ; i++)
373 buf[i] = target->thread.TS_FPR(i);
374 buf[32] = target->thread.fp_state.fpscr;
375 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
377 #else
378 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
379 offsetof(struct thread_fp_state, fpr[32][0]));
381 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
382 &target->thread.fp_state, 0, -1);
383 #endif
386 static int fpr_set(struct task_struct *target, const struct user_regset *regset,
387 unsigned int pos, unsigned int count,
388 const void *kbuf, const void __user *ubuf)
390 #ifdef CONFIG_VSX
391 u64 buf[33];
392 int i;
393 #endif
394 flush_fp_to_thread(target);
396 #ifdef CONFIG_VSX
397 /* copy to local buffer then write that out */
398 i = user_regset_copyin(&pos, &count, &kbuf, &ubuf, buf, 0, -1);
399 if (i)
400 return i;
401 for (i = 0; i < 32 ; i++)
402 target->thread.TS_FPR(i) = buf[i];
403 target->thread.fp_state.fpscr = buf[32];
404 return 0;
405 #else
406 BUILD_BUG_ON(offsetof(struct thread_fp_state, fpscr) !=
407 offsetof(struct thread_fp_state, fpr[32][0]));
409 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
410 &target->thread.fp_state, 0, -1);
411 #endif
414 #ifdef CONFIG_ALTIVEC
416 * Get/set all the altivec registers vr0..vr31, vscr, vrsave, in one go.
417 * The transfer totals 34 quadword. Quadwords 0-31 contain the
418 * corresponding vector registers. Quadword 32 contains the vscr as the
419 * last word (offset 12) within that quadword. Quadword 33 contains the
420 * vrsave as the first word (offset 0) within the quadword.
422 * This definition of the VMX state is compatible with the current PPC32
423 * ptrace interface. This allows signal handling and ptrace to use the
424 * same structures. This also simplifies the implementation of a bi-arch
425 * (combined (32- and 64-bit) gdb.
428 static int vr_active(struct task_struct *target,
429 const struct user_regset *regset)
431 flush_altivec_to_thread(target);
432 return target->thread.used_vr ? regset->n : 0;
435 static int vr_get(struct task_struct *target, const struct user_regset *regset,
436 unsigned int pos, unsigned int count,
437 void *kbuf, void __user *ubuf)
439 int ret;
441 flush_altivec_to_thread(target);
443 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
444 offsetof(struct thread_vr_state, vr[32]));
446 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
447 &target->thread.vr_state, 0,
448 33 * sizeof(vector128));
449 if (!ret) {
451 * Copy out only the low-order word of vrsave.
453 union {
454 elf_vrreg_t reg;
455 u32 word;
456 } vrsave;
457 memset(&vrsave, 0, sizeof(vrsave));
458 vrsave.word = target->thread.vrsave;
459 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf, &vrsave,
460 33 * sizeof(vector128), -1);
463 return ret;
466 static int vr_set(struct task_struct *target, const struct user_regset *regset,
467 unsigned int pos, unsigned int count,
468 const void *kbuf, const void __user *ubuf)
470 int ret;
472 flush_altivec_to_thread(target);
474 BUILD_BUG_ON(offsetof(struct thread_vr_state, vscr) !=
475 offsetof(struct thread_vr_state, vr[32]));
477 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
478 &target->thread.vr_state, 0,
479 33 * sizeof(vector128));
480 if (!ret && count > 0) {
482 * We use only the first word of vrsave.
484 union {
485 elf_vrreg_t reg;
486 u32 word;
487 } vrsave;
488 memset(&vrsave, 0, sizeof(vrsave));
489 vrsave.word = target->thread.vrsave;
490 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &vrsave,
491 33 * sizeof(vector128), -1);
492 if (!ret)
493 target->thread.vrsave = vrsave.word;
496 return ret;
498 #endif /* CONFIG_ALTIVEC */
500 #ifdef CONFIG_VSX
502 * Currently to set and and get all the vsx state, you need to call
503 * the fp and VMX calls as well. This only get/sets the lower 32
504 * 128bit VSX registers.
507 static int vsr_active(struct task_struct *target,
508 const struct user_regset *regset)
510 flush_vsx_to_thread(target);
511 return target->thread.used_vsr ? regset->n : 0;
514 static int vsr_get(struct task_struct *target, const struct user_regset *regset,
515 unsigned int pos, unsigned int count,
516 void *kbuf, void __user *ubuf)
518 u64 buf[32];
519 int ret, i;
521 flush_vsx_to_thread(target);
523 for (i = 0; i < 32 ; i++)
524 buf[i] = target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET];
525 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
526 buf, 0, 32 * sizeof(double));
528 return ret;
531 static int vsr_set(struct task_struct *target, const struct user_regset *regset,
532 unsigned int pos, unsigned int count,
533 const void *kbuf, const void __user *ubuf)
535 u64 buf[32];
536 int ret,i;
538 flush_vsx_to_thread(target);
540 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
541 buf, 0, 32 * sizeof(double));
542 for (i = 0; i < 32 ; i++)
543 target->thread.fp_state.fpr[i][TS_VSRLOWOFFSET] = buf[i];
546 return ret;
548 #endif /* CONFIG_VSX */
550 #ifdef CONFIG_SPE
553 * For get_evrregs/set_evrregs functions 'data' has the following layout:
555 * struct {
556 * u32 evr[32];
557 * u64 acc;
558 * u32 spefscr;
562 static int evr_active(struct task_struct *target,
563 const struct user_regset *regset)
565 flush_spe_to_thread(target);
566 return target->thread.used_spe ? regset->n : 0;
569 static int evr_get(struct task_struct *target, const struct user_regset *regset,
570 unsigned int pos, unsigned int count,
571 void *kbuf, void __user *ubuf)
573 int ret;
575 flush_spe_to_thread(target);
577 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
578 &target->thread.evr,
579 0, sizeof(target->thread.evr));
581 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
582 offsetof(struct thread_struct, spefscr));
584 if (!ret)
585 ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
586 &target->thread.acc,
587 sizeof(target->thread.evr), -1);
589 return ret;
592 static int evr_set(struct task_struct *target, const struct user_regset *regset,
593 unsigned int pos, unsigned int count,
594 const void *kbuf, const void __user *ubuf)
596 int ret;
598 flush_spe_to_thread(target);
600 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
601 &target->thread.evr,
602 0, sizeof(target->thread.evr));
604 BUILD_BUG_ON(offsetof(struct thread_struct, acc) + sizeof(u64) !=
605 offsetof(struct thread_struct, spefscr));
607 if (!ret)
608 ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
609 &target->thread.acc,
610 sizeof(target->thread.evr), -1);
612 return ret;
614 #endif /* CONFIG_SPE */
618 * These are our native regset flavors.
620 enum powerpc_regset {
621 REGSET_GPR,
622 REGSET_FPR,
623 #ifdef CONFIG_ALTIVEC
624 REGSET_VMX,
625 #endif
626 #ifdef CONFIG_VSX
627 REGSET_VSX,
628 #endif
629 #ifdef CONFIG_SPE
630 REGSET_SPE,
631 #endif
634 static const struct user_regset native_regsets[] = {
635 [REGSET_GPR] = {
636 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
637 .size = sizeof(long), .align = sizeof(long),
638 .get = gpr_get, .set = gpr_set
640 [REGSET_FPR] = {
641 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
642 .size = sizeof(double), .align = sizeof(double),
643 .get = fpr_get, .set = fpr_set
645 #ifdef CONFIG_ALTIVEC
646 [REGSET_VMX] = {
647 .core_note_type = NT_PPC_VMX, .n = 34,
648 .size = sizeof(vector128), .align = sizeof(vector128),
649 .active = vr_active, .get = vr_get, .set = vr_set
651 #endif
652 #ifdef CONFIG_VSX
653 [REGSET_VSX] = {
654 .core_note_type = NT_PPC_VSX, .n = 32,
655 .size = sizeof(double), .align = sizeof(double),
656 .active = vsr_active, .get = vsr_get, .set = vsr_set
658 #endif
659 #ifdef CONFIG_SPE
660 [REGSET_SPE] = {
661 .core_note_type = NT_PPC_SPE, .n = 35,
662 .size = sizeof(u32), .align = sizeof(u32),
663 .active = evr_active, .get = evr_get, .set = evr_set
665 #endif
668 static const struct user_regset_view user_ppc_native_view = {
669 .name = UTS_MACHINE, .e_machine = ELF_ARCH, .ei_osabi = ELF_OSABI,
670 .regsets = native_regsets, .n = ARRAY_SIZE(native_regsets)
673 #ifdef CONFIG_PPC64
674 #include <linux/compat.h>
676 static int gpr32_get(struct task_struct *target,
677 const struct user_regset *regset,
678 unsigned int pos, unsigned int count,
679 void *kbuf, void __user *ubuf)
681 const unsigned long *regs = &target->thread.regs->gpr[0];
682 compat_ulong_t *k = kbuf;
683 compat_ulong_t __user *u = ubuf;
684 compat_ulong_t reg;
685 int i;
687 if (target->thread.regs == NULL)
688 return -EIO;
690 if (!FULL_REGS(target->thread.regs)) {
691 /* We have a partial register set. Fill 14-31 with bogus values */
692 for (i = 14; i < 32; i++)
693 target->thread.regs->gpr[i] = NV_REG_POISON;
696 pos /= sizeof(reg);
697 count /= sizeof(reg);
699 if (kbuf)
700 for (; count > 0 && pos < PT_MSR; --count)
701 *k++ = regs[pos++];
702 else
703 for (; count > 0 && pos < PT_MSR; --count)
704 if (__put_user((compat_ulong_t) regs[pos++], u++))
705 return -EFAULT;
707 if (count > 0 && pos == PT_MSR) {
708 reg = get_user_msr(target);
709 if (kbuf)
710 *k++ = reg;
711 else if (__put_user(reg, u++))
712 return -EFAULT;
713 ++pos;
714 --count;
717 if (kbuf)
718 for (; count > 0 && pos < PT_REGS_COUNT; --count)
719 *k++ = regs[pos++];
720 else
721 for (; count > 0 && pos < PT_REGS_COUNT; --count)
722 if (__put_user((compat_ulong_t) regs[pos++], u++))
723 return -EFAULT;
725 kbuf = k;
726 ubuf = u;
727 pos *= sizeof(reg);
728 count *= sizeof(reg);
729 return user_regset_copyout_zero(&pos, &count, &kbuf, &ubuf,
730 PT_REGS_COUNT * sizeof(reg), -1);
733 static int gpr32_set(struct task_struct *target,
734 const struct user_regset *regset,
735 unsigned int pos, unsigned int count,
736 const void *kbuf, const void __user *ubuf)
738 unsigned long *regs = &target->thread.regs->gpr[0];
739 const compat_ulong_t *k = kbuf;
740 const compat_ulong_t __user *u = ubuf;
741 compat_ulong_t reg;
743 if (target->thread.regs == NULL)
744 return -EIO;
746 CHECK_FULL_REGS(target->thread.regs);
748 pos /= sizeof(reg);
749 count /= sizeof(reg);
751 if (kbuf)
752 for (; count > 0 && pos < PT_MSR; --count)
753 regs[pos++] = *k++;
754 else
755 for (; count > 0 && pos < PT_MSR; --count) {
756 if (__get_user(reg, u++))
757 return -EFAULT;
758 regs[pos++] = reg;
762 if (count > 0 && pos == PT_MSR) {
763 if (kbuf)
764 reg = *k++;
765 else if (__get_user(reg, u++))
766 return -EFAULT;
767 set_user_msr(target, reg);
768 ++pos;
769 --count;
772 if (kbuf) {
773 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count)
774 regs[pos++] = *k++;
775 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
776 ++k;
777 } else {
778 for (; count > 0 && pos <= PT_MAX_PUT_REG; --count) {
779 if (__get_user(reg, u++))
780 return -EFAULT;
781 regs[pos++] = reg;
783 for (; count > 0 && pos < PT_TRAP; --count, ++pos)
784 if (__get_user(reg, u++))
785 return -EFAULT;
788 if (count > 0 && pos == PT_TRAP) {
789 if (kbuf)
790 reg = *k++;
791 else if (__get_user(reg, u++))
792 return -EFAULT;
793 set_user_trap(target, reg);
794 ++pos;
795 --count;
798 kbuf = k;
799 ubuf = u;
800 pos *= sizeof(reg);
801 count *= sizeof(reg);
802 return user_regset_copyin_ignore(&pos, &count, &kbuf, &ubuf,
803 (PT_TRAP + 1) * sizeof(reg), -1);
807 * These are the regset flavors matching the CONFIG_PPC32 native set.
809 static const struct user_regset compat_regsets[] = {
810 [REGSET_GPR] = {
811 .core_note_type = NT_PRSTATUS, .n = ELF_NGREG,
812 .size = sizeof(compat_long_t), .align = sizeof(compat_long_t),
813 .get = gpr32_get, .set = gpr32_set
815 [REGSET_FPR] = {
816 .core_note_type = NT_PRFPREG, .n = ELF_NFPREG,
817 .size = sizeof(double), .align = sizeof(double),
818 .get = fpr_get, .set = fpr_set
820 #ifdef CONFIG_ALTIVEC
821 [REGSET_VMX] = {
822 .core_note_type = NT_PPC_VMX, .n = 34,
823 .size = sizeof(vector128), .align = sizeof(vector128),
824 .active = vr_active, .get = vr_get, .set = vr_set
826 #endif
827 #ifdef CONFIG_SPE
828 [REGSET_SPE] = {
829 .core_note_type = NT_PPC_SPE, .n = 35,
830 .size = sizeof(u32), .align = sizeof(u32),
831 .active = evr_active, .get = evr_get, .set = evr_set
833 #endif
836 static const struct user_regset_view user_ppc_compat_view = {
837 .name = "ppc", .e_machine = EM_PPC, .ei_osabi = ELF_OSABI,
838 .regsets = compat_regsets, .n = ARRAY_SIZE(compat_regsets)
840 #endif /* CONFIG_PPC64 */
842 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
844 #ifdef CONFIG_PPC64
845 if (test_tsk_thread_flag(task, TIF_32BIT))
846 return &user_ppc_compat_view;
847 #endif
848 return &user_ppc_native_view;
852 void user_enable_single_step(struct task_struct *task)
854 struct pt_regs *regs = task->thread.regs;
856 if (regs != NULL) {
857 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
858 task->thread.debug.dbcr0 &= ~DBCR0_BT;
859 task->thread.debug.dbcr0 |= DBCR0_IDM | DBCR0_IC;
860 regs->msr |= MSR_DE;
861 #else
862 regs->msr &= ~MSR_BE;
863 regs->msr |= MSR_SE;
864 #endif
866 set_tsk_thread_flag(task, TIF_SINGLESTEP);
869 void user_enable_block_step(struct task_struct *task)
871 struct pt_regs *regs = task->thread.regs;
873 if (regs != NULL) {
874 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
875 task->thread.debug.dbcr0 &= ~DBCR0_IC;
876 task->thread.debug.dbcr0 = DBCR0_IDM | DBCR0_BT;
877 regs->msr |= MSR_DE;
878 #else
879 regs->msr &= ~MSR_SE;
880 regs->msr |= MSR_BE;
881 #endif
883 set_tsk_thread_flag(task, TIF_SINGLESTEP);
886 void user_disable_single_step(struct task_struct *task)
888 struct pt_regs *regs = task->thread.regs;
890 if (regs != NULL) {
891 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
893 * The logic to disable single stepping should be as
894 * simple as turning off the Instruction Complete flag.
895 * And, after doing so, if all debug flags are off, turn
896 * off DBCR0(IDM) and MSR(DE) .... Torez
898 task->thread.debug.dbcr0 &= ~(DBCR0_IC|DBCR0_BT);
900 * Test to see if any of the DBCR_ACTIVE_EVENTS bits are set.
902 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
903 task->thread.debug.dbcr1)) {
905 * All debug events were off.....
907 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
908 regs->msr &= ~MSR_DE;
910 #else
911 regs->msr &= ~(MSR_SE | MSR_BE);
912 #endif
914 clear_tsk_thread_flag(task, TIF_SINGLESTEP);
917 #ifdef CONFIG_HAVE_HW_BREAKPOINT
918 void ptrace_triggered(struct perf_event *bp,
919 struct perf_sample_data *data, struct pt_regs *regs)
921 struct perf_event_attr attr;
924 * Disable the breakpoint request here since ptrace has defined a
925 * one-shot behaviour for breakpoint exceptions in PPC64.
926 * The SIGTRAP signal is generated automatically for us in do_dabr().
927 * We don't have to do anything about that here
929 attr = bp->attr;
930 attr.disabled = true;
931 modify_user_hw_breakpoint(bp, &attr);
933 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
935 static int ptrace_set_debugreg(struct task_struct *task, unsigned long addr,
936 unsigned long data)
938 #ifdef CONFIG_HAVE_HW_BREAKPOINT
939 int ret;
940 struct thread_struct *thread = &(task->thread);
941 struct perf_event *bp;
942 struct perf_event_attr attr;
943 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
944 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
945 struct arch_hw_breakpoint hw_brk;
946 #endif
948 /* For ppc64 we support one DABR and no IABR's at the moment (ppc64).
949 * For embedded processors we support one DAC and no IAC's at the
950 * moment.
952 if (addr > 0)
953 return -EINVAL;
955 /* The bottom 3 bits in dabr are flags */
956 if ((data & ~0x7UL) >= TASK_SIZE)
957 return -EIO;
959 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
960 /* For processors using DABR (i.e. 970), the bottom 3 bits are flags.
961 * It was assumed, on previous implementations, that 3 bits were
962 * passed together with the data address, fitting the design of the
963 * DABR register, as follows:
965 * bit 0: Read flag
966 * bit 1: Write flag
967 * bit 2: Breakpoint translation
969 * Thus, we use them here as so.
972 /* Ensure breakpoint translation bit is set */
973 if (data && !(data & HW_BRK_TYPE_TRANSLATE))
974 return -EIO;
975 hw_brk.address = data & (~HW_BRK_TYPE_DABR);
976 hw_brk.type = (data & HW_BRK_TYPE_DABR) | HW_BRK_TYPE_PRIV_ALL;
977 hw_brk.len = 8;
978 #ifdef CONFIG_HAVE_HW_BREAKPOINT
979 bp = thread->ptrace_bps[0];
980 if ((!data) || !(hw_brk.type & HW_BRK_TYPE_RDWR)) {
981 if (bp) {
982 unregister_hw_breakpoint(bp);
983 thread->ptrace_bps[0] = NULL;
985 return 0;
987 if (bp) {
988 attr = bp->attr;
989 attr.bp_addr = hw_brk.address;
990 arch_bp_generic_fields(hw_brk.type, &attr.bp_type);
992 /* Enable breakpoint */
993 attr.disabled = false;
995 ret = modify_user_hw_breakpoint(bp, &attr);
996 if (ret) {
997 return ret;
999 thread->ptrace_bps[0] = bp;
1000 thread->hw_brk = hw_brk;
1001 return 0;
1004 /* Create a new breakpoint request if one doesn't exist already */
1005 hw_breakpoint_init(&attr);
1006 attr.bp_addr = hw_brk.address;
1007 arch_bp_generic_fields(hw_brk.type,
1008 &attr.bp_type);
1010 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
1011 ptrace_triggered, NULL, task);
1012 if (IS_ERR(bp)) {
1013 thread->ptrace_bps[0] = NULL;
1014 return PTR_ERR(bp);
1017 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1018 task->thread.hw_brk = hw_brk;
1019 #else /* CONFIG_PPC_ADV_DEBUG_REGS */
1020 /* As described above, it was assumed 3 bits were passed with the data
1021 * address, but we will assume only the mode bits will be passed
1022 * as to not cause alignment restrictions for DAC-based processors.
1025 /* DAC's hold the whole address without any mode flags */
1026 task->thread.debug.dac1 = data & ~0x3UL;
1028 if (task->thread.debug.dac1 == 0) {
1029 dbcr_dac(task) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1030 if (!DBCR_ACTIVE_EVENTS(task->thread.debug.dbcr0,
1031 task->thread.debug.dbcr1)) {
1032 task->thread.regs->msr &= ~MSR_DE;
1033 task->thread.debug.dbcr0 &= ~DBCR0_IDM;
1035 return 0;
1038 /* Read or Write bits must be set */
1040 if (!(data & 0x3UL))
1041 return -EINVAL;
1043 /* Set the Internal Debugging flag (IDM bit 1) for the DBCR0
1044 register */
1045 task->thread.debug.dbcr0 |= DBCR0_IDM;
1047 /* Check for write and read flags and set DBCR0
1048 accordingly */
1049 dbcr_dac(task) &= ~(DBCR_DAC1R|DBCR_DAC1W);
1050 if (data & 0x1UL)
1051 dbcr_dac(task) |= DBCR_DAC1R;
1052 if (data & 0x2UL)
1053 dbcr_dac(task) |= DBCR_DAC1W;
1054 task->thread.regs->msr |= MSR_DE;
1055 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1056 return 0;
1060 * Called by kernel/ptrace.c when detaching..
1062 * Make sure single step bits etc are not set.
1064 void ptrace_disable(struct task_struct *child)
1066 /* make sure the single step bit is not set. */
1067 user_disable_single_step(child);
1070 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1071 static long set_instruction_bp(struct task_struct *child,
1072 struct ppc_hw_breakpoint *bp_info)
1074 int slot;
1075 int slot1_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC1) != 0);
1076 int slot2_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC2) != 0);
1077 int slot3_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC3) != 0);
1078 int slot4_in_use = ((child->thread.debug.dbcr0 & DBCR0_IAC4) != 0);
1080 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
1081 slot2_in_use = 1;
1082 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
1083 slot4_in_use = 1;
1085 if (bp_info->addr >= TASK_SIZE)
1086 return -EIO;
1088 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT) {
1090 /* Make sure range is valid. */
1091 if (bp_info->addr2 >= TASK_SIZE)
1092 return -EIO;
1094 /* We need a pair of IAC regsisters */
1095 if ((!slot1_in_use) && (!slot2_in_use)) {
1096 slot = 1;
1097 child->thread.debug.iac1 = bp_info->addr;
1098 child->thread.debug.iac2 = bp_info->addr2;
1099 child->thread.debug.dbcr0 |= DBCR0_IAC1;
1100 if (bp_info->addr_mode ==
1101 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1102 dbcr_iac_range(child) |= DBCR_IAC12X;
1103 else
1104 dbcr_iac_range(child) |= DBCR_IAC12I;
1105 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
1106 } else if ((!slot3_in_use) && (!slot4_in_use)) {
1107 slot = 3;
1108 child->thread.debug.iac3 = bp_info->addr;
1109 child->thread.debug.iac4 = bp_info->addr2;
1110 child->thread.debug.dbcr0 |= DBCR0_IAC3;
1111 if (bp_info->addr_mode ==
1112 PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1113 dbcr_iac_range(child) |= DBCR_IAC34X;
1114 else
1115 dbcr_iac_range(child) |= DBCR_IAC34I;
1116 #endif
1117 } else
1118 return -ENOSPC;
1119 } else {
1120 /* We only need one. If possible leave a pair free in
1121 * case a range is needed later
1123 if (!slot1_in_use) {
1125 * Don't use iac1 if iac1-iac2 are free and either
1126 * iac3 or iac4 (but not both) are free
1128 if (slot2_in_use || (slot3_in_use == slot4_in_use)) {
1129 slot = 1;
1130 child->thread.debug.iac1 = bp_info->addr;
1131 child->thread.debug.dbcr0 |= DBCR0_IAC1;
1132 goto out;
1135 if (!slot2_in_use) {
1136 slot = 2;
1137 child->thread.debug.iac2 = bp_info->addr;
1138 child->thread.debug.dbcr0 |= DBCR0_IAC2;
1139 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
1140 } else if (!slot3_in_use) {
1141 slot = 3;
1142 child->thread.debug.iac3 = bp_info->addr;
1143 child->thread.debug.dbcr0 |= DBCR0_IAC3;
1144 } else if (!slot4_in_use) {
1145 slot = 4;
1146 child->thread.debug.iac4 = bp_info->addr;
1147 child->thread.debug.dbcr0 |= DBCR0_IAC4;
1148 #endif
1149 } else
1150 return -ENOSPC;
1152 out:
1153 child->thread.debug.dbcr0 |= DBCR0_IDM;
1154 child->thread.regs->msr |= MSR_DE;
1156 return slot;
1159 static int del_instruction_bp(struct task_struct *child, int slot)
1161 switch (slot) {
1162 case 1:
1163 if ((child->thread.debug.dbcr0 & DBCR0_IAC1) == 0)
1164 return -ENOENT;
1166 if (dbcr_iac_range(child) & DBCR_IAC12MODE) {
1167 /* address range - clear slots 1 & 2 */
1168 child->thread.debug.iac2 = 0;
1169 dbcr_iac_range(child) &= ~DBCR_IAC12MODE;
1171 child->thread.debug.iac1 = 0;
1172 child->thread.debug.dbcr0 &= ~DBCR0_IAC1;
1173 break;
1174 case 2:
1175 if ((child->thread.debug.dbcr0 & DBCR0_IAC2) == 0)
1176 return -ENOENT;
1178 if (dbcr_iac_range(child) & DBCR_IAC12MODE)
1179 /* used in a range */
1180 return -EINVAL;
1181 child->thread.debug.iac2 = 0;
1182 child->thread.debug.dbcr0 &= ~DBCR0_IAC2;
1183 break;
1184 #if CONFIG_PPC_ADV_DEBUG_IACS > 2
1185 case 3:
1186 if ((child->thread.debug.dbcr0 & DBCR0_IAC3) == 0)
1187 return -ENOENT;
1189 if (dbcr_iac_range(child) & DBCR_IAC34MODE) {
1190 /* address range - clear slots 3 & 4 */
1191 child->thread.debug.iac4 = 0;
1192 dbcr_iac_range(child) &= ~DBCR_IAC34MODE;
1194 child->thread.debug.iac3 = 0;
1195 child->thread.debug.dbcr0 &= ~DBCR0_IAC3;
1196 break;
1197 case 4:
1198 if ((child->thread.debug.dbcr0 & DBCR0_IAC4) == 0)
1199 return -ENOENT;
1201 if (dbcr_iac_range(child) & DBCR_IAC34MODE)
1202 /* Used in a range */
1203 return -EINVAL;
1204 child->thread.debug.iac4 = 0;
1205 child->thread.debug.dbcr0 &= ~DBCR0_IAC4;
1206 break;
1207 #endif
1208 default:
1209 return -EINVAL;
1211 return 0;
1214 static int set_dac(struct task_struct *child, struct ppc_hw_breakpoint *bp_info)
1216 int byte_enable =
1217 (bp_info->condition_mode >> PPC_BREAKPOINT_CONDITION_BE_SHIFT)
1218 & 0xf;
1219 int condition_mode =
1220 bp_info->condition_mode & PPC_BREAKPOINT_CONDITION_MODE;
1221 int slot;
1223 if (byte_enable && (condition_mode == 0))
1224 return -EINVAL;
1226 if (bp_info->addr >= TASK_SIZE)
1227 return -EIO;
1229 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0) {
1230 slot = 1;
1231 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1232 dbcr_dac(child) |= DBCR_DAC1R;
1233 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1234 dbcr_dac(child) |= DBCR_DAC1W;
1235 child->thread.debug.dac1 = (unsigned long)bp_info->addr;
1236 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1237 if (byte_enable) {
1238 child->thread.debug.dvc1 =
1239 (unsigned long)bp_info->condition_value;
1240 child->thread.debug.dbcr2 |=
1241 ((byte_enable << DBCR2_DVC1BE_SHIFT) |
1242 (condition_mode << DBCR2_DVC1M_SHIFT));
1244 #endif
1245 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1246 } else if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
1247 /* Both dac1 and dac2 are part of a range */
1248 return -ENOSPC;
1249 #endif
1250 } else if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0) {
1251 slot = 2;
1252 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1253 dbcr_dac(child) |= DBCR_DAC2R;
1254 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1255 dbcr_dac(child) |= DBCR_DAC2W;
1256 child->thread.debug.dac2 = (unsigned long)bp_info->addr;
1257 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1258 if (byte_enable) {
1259 child->thread.debug.dvc2 =
1260 (unsigned long)bp_info->condition_value;
1261 child->thread.debug.dbcr2 |=
1262 ((byte_enable << DBCR2_DVC2BE_SHIFT) |
1263 (condition_mode << DBCR2_DVC2M_SHIFT));
1265 #endif
1266 } else
1267 return -ENOSPC;
1268 child->thread.debug.dbcr0 |= DBCR0_IDM;
1269 child->thread.regs->msr |= MSR_DE;
1271 return slot + 4;
1274 static int del_dac(struct task_struct *child, int slot)
1276 if (slot == 1) {
1277 if ((dbcr_dac(child) & (DBCR_DAC1R | DBCR_DAC1W)) == 0)
1278 return -ENOENT;
1280 child->thread.debug.dac1 = 0;
1281 dbcr_dac(child) &= ~(DBCR_DAC1R | DBCR_DAC1W);
1282 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1283 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE) {
1284 child->thread.debug.dac2 = 0;
1285 child->thread.debug.dbcr2 &= ~DBCR2_DAC12MODE;
1287 child->thread.debug.dbcr2 &= ~(DBCR2_DVC1M | DBCR2_DVC1BE);
1288 #endif
1289 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1290 child->thread.debug.dvc1 = 0;
1291 #endif
1292 } else if (slot == 2) {
1293 if ((dbcr_dac(child) & (DBCR_DAC2R | DBCR_DAC2W)) == 0)
1294 return -ENOENT;
1296 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1297 if (child->thread.debug.dbcr2 & DBCR2_DAC12MODE)
1298 /* Part of a range */
1299 return -EINVAL;
1300 child->thread.debug.dbcr2 &= ~(DBCR2_DVC2M | DBCR2_DVC2BE);
1301 #endif
1302 #if CONFIG_PPC_ADV_DEBUG_DVCS > 0
1303 child->thread.debug.dvc2 = 0;
1304 #endif
1305 child->thread.debug.dac2 = 0;
1306 dbcr_dac(child) &= ~(DBCR_DAC2R | DBCR_DAC2W);
1307 } else
1308 return -EINVAL;
1310 return 0;
1312 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1314 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1315 static int set_dac_range(struct task_struct *child,
1316 struct ppc_hw_breakpoint *bp_info)
1318 int mode = bp_info->addr_mode & PPC_BREAKPOINT_MODE_MASK;
1320 /* We don't allow range watchpoints to be used with DVC */
1321 if (bp_info->condition_mode)
1322 return -EINVAL;
1325 * Best effort to verify the address range. The user/supervisor bits
1326 * prevent trapping in kernel space, but let's fail on an obvious bad
1327 * range. The simple test on the mask is not fool-proof, and any
1328 * exclusive range will spill over into kernel space.
1330 if (bp_info->addr >= TASK_SIZE)
1331 return -EIO;
1332 if (mode == PPC_BREAKPOINT_MODE_MASK) {
1334 * dac2 is a bitmask. Don't allow a mask that makes a
1335 * kernel space address from a valid dac1 value
1337 if (~((unsigned long)bp_info->addr2) >= TASK_SIZE)
1338 return -EIO;
1339 } else {
1341 * For range breakpoints, addr2 must also be a valid address
1343 if (bp_info->addr2 >= TASK_SIZE)
1344 return -EIO;
1347 if (child->thread.debug.dbcr0 &
1348 (DBCR0_DAC1R | DBCR0_DAC1W | DBCR0_DAC2R | DBCR0_DAC2W))
1349 return -ENOSPC;
1351 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1352 child->thread.debug.dbcr0 |= (DBCR0_DAC1R | DBCR0_IDM);
1353 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1354 child->thread.debug.dbcr0 |= (DBCR0_DAC1W | DBCR0_IDM);
1355 child->thread.debug.dac1 = bp_info->addr;
1356 child->thread.debug.dac2 = bp_info->addr2;
1357 if (mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
1358 child->thread.debug.dbcr2 |= DBCR2_DAC12M;
1359 else if (mode == PPC_BREAKPOINT_MODE_RANGE_EXCLUSIVE)
1360 child->thread.debug.dbcr2 |= DBCR2_DAC12MX;
1361 else /* PPC_BREAKPOINT_MODE_MASK */
1362 child->thread.debug.dbcr2 |= DBCR2_DAC12MM;
1363 child->thread.regs->msr |= MSR_DE;
1365 return 5;
1367 #endif /* CONFIG_PPC_ADV_DEBUG_DAC_RANGE */
1369 static long ppc_set_hwdebug(struct task_struct *child,
1370 struct ppc_hw_breakpoint *bp_info)
1372 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1373 int len = 0;
1374 struct thread_struct *thread = &(child->thread);
1375 struct perf_event *bp;
1376 struct perf_event_attr attr;
1377 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1378 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
1379 struct arch_hw_breakpoint brk;
1380 #endif
1382 if (bp_info->version != 1)
1383 return -ENOTSUPP;
1384 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1386 * Check for invalid flags and combinations
1388 if ((bp_info->trigger_type == 0) ||
1389 (bp_info->trigger_type & ~(PPC_BREAKPOINT_TRIGGER_EXECUTE |
1390 PPC_BREAKPOINT_TRIGGER_RW)) ||
1391 (bp_info->addr_mode & ~PPC_BREAKPOINT_MODE_MASK) ||
1392 (bp_info->condition_mode &
1393 ~(PPC_BREAKPOINT_CONDITION_MODE |
1394 PPC_BREAKPOINT_CONDITION_BE_ALL)))
1395 return -EINVAL;
1396 #if CONFIG_PPC_ADV_DEBUG_DVCS == 0
1397 if (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
1398 return -EINVAL;
1399 #endif
1401 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_EXECUTE) {
1402 if ((bp_info->trigger_type != PPC_BREAKPOINT_TRIGGER_EXECUTE) ||
1403 (bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE))
1404 return -EINVAL;
1405 return set_instruction_bp(child, bp_info);
1407 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
1408 return set_dac(child, bp_info);
1410 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1411 return set_dac_range(child, bp_info);
1412 #else
1413 return -EINVAL;
1414 #endif
1415 #else /* !CONFIG_PPC_ADV_DEBUG_DVCS */
1417 * We only support one data breakpoint
1419 if ((bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_RW) == 0 ||
1420 (bp_info->trigger_type & ~PPC_BREAKPOINT_TRIGGER_RW) != 0 ||
1421 bp_info->condition_mode != PPC_BREAKPOINT_CONDITION_NONE)
1422 return -EINVAL;
1424 if ((unsigned long)bp_info->addr >= TASK_SIZE)
1425 return -EIO;
1427 brk.address = bp_info->addr & ~7UL;
1428 brk.type = HW_BRK_TYPE_TRANSLATE;
1429 brk.len = 8;
1430 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_READ)
1431 brk.type |= HW_BRK_TYPE_READ;
1432 if (bp_info->trigger_type & PPC_BREAKPOINT_TRIGGER_WRITE)
1433 brk.type |= HW_BRK_TYPE_WRITE;
1434 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1436 * Check if the request is for 'range' breakpoints. We can
1437 * support it if range < 8 bytes.
1439 if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_RANGE_INCLUSIVE)
1440 len = bp_info->addr2 - bp_info->addr;
1441 else if (bp_info->addr_mode == PPC_BREAKPOINT_MODE_EXACT)
1442 len = 1;
1443 else
1444 return -EINVAL;
1445 bp = thread->ptrace_bps[0];
1446 if (bp)
1447 return -ENOSPC;
1449 /* Create a new breakpoint request if one doesn't exist already */
1450 hw_breakpoint_init(&attr);
1451 attr.bp_addr = (unsigned long)bp_info->addr & ~HW_BREAKPOINT_ALIGN;
1452 attr.bp_len = len;
1453 arch_bp_generic_fields(brk.type, &attr.bp_type);
1455 thread->ptrace_bps[0] = bp = register_user_hw_breakpoint(&attr,
1456 ptrace_triggered, NULL, child);
1457 if (IS_ERR(bp)) {
1458 thread->ptrace_bps[0] = NULL;
1459 return PTR_ERR(bp);
1462 return 1;
1463 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1465 if (bp_info->addr_mode != PPC_BREAKPOINT_MODE_EXACT)
1466 return -EINVAL;
1468 if (child->thread.hw_brk.address)
1469 return -ENOSPC;
1471 child->thread.hw_brk = brk;
1473 return 1;
1474 #endif /* !CONFIG_PPC_ADV_DEBUG_DVCS */
1477 static long ppc_del_hwdebug(struct task_struct *child, long data)
1479 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1480 int ret = 0;
1481 struct thread_struct *thread = &(child->thread);
1482 struct perf_event *bp;
1483 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1484 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1485 int rc;
1487 if (data <= 4)
1488 rc = del_instruction_bp(child, (int)data);
1489 else
1490 rc = del_dac(child, (int)data - 4);
1492 if (!rc) {
1493 if (!DBCR_ACTIVE_EVENTS(child->thread.debug.dbcr0,
1494 child->thread.debug.dbcr1)) {
1495 child->thread.debug.dbcr0 &= ~DBCR0_IDM;
1496 child->thread.regs->msr &= ~MSR_DE;
1499 return rc;
1500 #else
1501 if (data != 1)
1502 return -EINVAL;
1504 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1505 bp = thread->ptrace_bps[0];
1506 if (bp) {
1507 unregister_hw_breakpoint(bp);
1508 thread->ptrace_bps[0] = NULL;
1509 } else
1510 ret = -ENOENT;
1511 return ret;
1512 #else /* CONFIG_HAVE_HW_BREAKPOINT */
1513 if (child->thread.hw_brk.address == 0)
1514 return -ENOENT;
1516 child->thread.hw_brk.address = 0;
1517 child->thread.hw_brk.type = 0;
1518 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1520 return 0;
1521 #endif
1524 long arch_ptrace(struct task_struct *child, long request,
1525 unsigned long addr, unsigned long data)
1527 int ret = -EPERM;
1528 void __user *datavp = (void __user *) data;
1529 unsigned long __user *datalp = datavp;
1531 switch (request) {
1532 /* read the word at location addr in the USER area. */
1533 case PTRACE_PEEKUSR: {
1534 unsigned long index, tmp;
1536 ret = -EIO;
1537 /* convert to index and check */
1538 #ifdef CONFIG_PPC32
1539 index = addr >> 2;
1540 if ((addr & 3) || (index > PT_FPSCR)
1541 || (child->thread.regs == NULL))
1542 #else
1543 index = addr >> 3;
1544 if ((addr & 7) || (index > PT_FPSCR))
1545 #endif
1546 break;
1548 CHECK_FULL_REGS(child->thread.regs);
1549 if (index < PT_FPR0) {
1550 ret = ptrace_get_reg(child, (int) index, &tmp);
1551 if (ret)
1552 break;
1553 } else {
1554 unsigned int fpidx = index - PT_FPR0;
1556 flush_fp_to_thread(child);
1557 if (fpidx < (PT_FPSCR - PT_FPR0))
1558 memcpy(&tmp, &child->thread.TS_FPR(fpidx),
1559 sizeof(long));
1560 else
1561 tmp = child->thread.fp_state.fpscr;
1563 ret = put_user(tmp, datalp);
1564 break;
1567 /* write the word at location addr in the USER area */
1568 case PTRACE_POKEUSR: {
1569 unsigned long index;
1571 ret = -EIO;
1572 /* convert to index and check */
1573 #ifdef CONFIG_PPC32
1574 index = addr >> 2;
1575 if ((addr & 3) || (index > PT_FPSCR)
1576 || (child->thread.regs == NULL))
1577 #else
1578 index = addr >> 3;
1579 if ((addr & 7) || (index > PT_FPSCR))
1580 #endif
1581 break;
1583 CHECK_FULL_REGS(child->thread.regs);
1584 if (index < PT_FPR0) {
1585 ret = ptrace_put_reg(child, index, data);
1586 } else {
1587 unsigned int fpidx = index - PT_FPR0;
1589 flush_fp_to_thread(child);
1590 if (fpidx < (PT_FPSCR - PT_FPR0))
1591 memcpy(&child->thread.TS_FPR(fpidx), &data,
1592 sizeof(long));
1593 else
1594 child->thread.fp_state.fpscr = data;
1595 ret = 0;
1597 break;
1600 case PPC_PTRACE_GETHWDBGINFO: {
1601 struct ppc_debug_info dbginfo;
1603 dbginfo.version = 1;
1604 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1605 dbginfo.num_instruction_bps = CONFIG_PPC_ADV_DEBUG_IACS;
1606 dbginfo.num_data_bps = CONFIG_PPC_ADV_DEBUG_DACS;
1607 dbginfo.num_condition_regs = CONFIG_PPC_ADV_DEBUG_DVCS;
1608 dbginfo.data_bp_alignment = 4;
1609 dbginfo.sizeof_condition = 4;
1610 dbginfo.features = PPC_DEBUG_FEATURE_INSN_BP_RANGE |
1611 PPC_DEBUG_FEATURE_INSN_BP_MASK;
1612 #ifdef CONFIG_PPC_ADV_DEBUG_DAC_RANGE
1613 dbginfo.features |=
1614 PPC_DEBUG_FEATURE_DATA_BP_RANGE |
1615 PPC_DEBUG_FEATURE_DATA_BP_MASK;
1616 #endif
1617 #else /* !CONFIG_PPC_ADV_DEBUG_REGS */
1618 dbginfo.num_instruction_bps = 0;
1619 dbginfo.num_data_bps = 1;
1620 dbginfo.num_condition_regs = 0;
1621 #ifdef CONFIG_PPC64
1622 dbginfo.data_bp_alignment = 8;
1623 #else
1624 dbginfo.data_bp_alignment = 4;
1625 #endif
1626 dbginfo.sizeof_condition = 0;
1627 #ifdef CONFIG_HAVE_HW_BREAKPOINT
1628 dbginfo.features = PPC_DEBUG_FEATURE_DATA_BP_RANGE;
1629 if (cpu_has_feature(CPU_FTR_DAWR))
1630 dbginfo.features |= PPC_DEBUG_FEATURE_DATA_BP_DAWR;
1631 #else
1632 dbginfo.features = 0;
1633 #endif /* CONFIG_HAVE_HW_BREAKPOINT */
1634 #endif /* CONFIG_PPC_ADV_DEBUG_REGS */
1636 if (!access_ok(VERIFY_WRITE, datavp,
1637 sizeof(struct ppc_debug_info)))
1638 return -EFAULT;
1639 ret = __copy_to_user(datavp, &dbginfo,
1640 sizeof(struct ppc_debug_info)) ?
1641 -EFAULT : 0;
1642 break;
1645 case PPC_PTRACE_SETHWDEBUG: {
1646 struct ppc_hw_breakpoint bp_info;
1648 if (!access_ok(VERIFY_READ, datavp,
1649 sizeof(struct ppc_hw_breakpoint)))
1650 return -EFAULT;
1651 ret = __copy_from_user(&bp_info, datavp,
1652 sizeof(struct ppc_hw_breakpoint)) ?
1653 -EFAULT : 0;
1654 if (!ret)
1655 ret = ppc_set_hwdebug(child, &bp_info);
1656 break;
1659 case PPC_PTRACE_DELHWDEBUG: {
1660 ret = ppc_del_hwdebug(child, data);
1661 break;
1664 case PTRACE_GET_DEBUGREG: {
1665 #ifndef CONFIG_PPC_ADV_DEBUG_REGS
1666 unsigned long dabr_fake;
1667 #endif
1668 ret = -EINVAL;
1669 /* We only support one DABR and no IABRS at the moment */
1670 if (addr > 0)
1671 break;
1672 #ifdef CONFIG_PPC_ADV_DEBUG_REGS
1673 ret = put_user(child->thread.debug.dac1, datalp);
1674 #else
1675 dabr_fake = ((child->thread.hw_brk.address & (~HW_BRK_TYPE_DABR)) |
1676 (child->thread.hw_brk.type & HW_BRK_TYPE_DABR));
1677 ret = put_user(dabr_fake, datalp);
1678 #endif
1679 break;
1682 case PTRACE_SET_DEBUGREG:
1683 ret = ptrace_set_debugreg(child, addr, data);
1684 break;
1686 #ifdef CONFIG_PPC64
1687 case PTRACE_GETREGS64:
1688 #endif
1689 case PTRACE_GETREGS: /* Get all pt_regs from the child. */
1690 return copy_regset_to_user(child, &user_ppc_native_view,
1691 REGSET_GPR,
1692 0, sizeof(struct pt_regs),
1693 datavp);
1695 #ifdef CONFIG_PPC64
1696 case PTRACE_SETREGS64:
1697 #endif
1698 case PTRACE_SETREGS: /* Set all gp regs in the child. */
1699 return copy_regset_from_user(child, &user_ppc_native_view,
1700 REGSET_GPR,
1701 0, sizeof(struct pt_regs),
1702 datavp);
1704 case PTRACE_GETFPREGS: /* Get the child FPU state (FPR0...31 + FPSCR) */
1705 return copy_regset_to_user(child, &user_ppc_native_view,
1706 REGSET_FPR,
1707 0, sizeof(elf_fpregset_t),
1708 datavp);
1710 case PTRACE_SETFPREGS: /* Set the child FPU state (FPR0...31 + FPSCR) */
1711 return copy_regset_from_user(child, &user_ppc_native_view,
1712 REGSET_FPR,
1713 0, sizeof(elf_fpregset_t),
1714 datavp);
1716 #ifdef CONFIG_ALTIVEC
1717 case PTRACE_GETVRREGS:
1718 return copy_regset_to_user(child, &user_ppc_native_view,
1719 REGSET_VMX,
1720 0, (33 * sizeof(vector128) +
1721 sizeof(u32)),
1722 datavp);
1724 case PTRACE_SETVRREGS:
1725 return copy_regset_from_user(child, &user_ppc_native_view,
1726 REGSET_VMX,
1727 0, (33 * sizeof(vector128) +
1728 sizeof(u32)),
1729 datavp);
1730 #endif
1731 #ifdef CONFIG_VSX
1732 case PTRACE_GETVSRREGS:
1733 return copy_regset_to_user(child, &user_ppc_native_view,
1734 REGSET_VSX,
1735 0, 32 * sizeof(double),
1736 datavp);
1738 case PTRACE_SETVSRREGS:
1739 return copy_regset_from_user(child, &user_ppc_native_view,
1740 REGSET_VSX,
1741 0, 32 * sizeof(double),
1742 datavp);
1743 #endif
1744 #ifdef CONFIG_SPE
1745 case PTRACE_GETEVRREGS:
1746 /* Get the child spe register state. */
1747 return copy_regset_to_user(child, &user_ppc_native_view,
1748 REGSET_SPE, 0, 35 * sizeof(u32),
1749 datavp);
1751 case PTRACE_SETEVRREGS:
1752 /* Set the child spe register state. */
1753 return copy_regset_from_user(child, &user_ppc_native_view,
1754 REGSET_SPE, 0, 35 * sizeof(u32),
1755 datavp);
1756 #endif
1758 default:
1759 ret = ptrace_request(child, request, addr, data);
1760 break;
1762 return ret;
1765 #ifdef CONFIG_SECCOMP
1766 static int do_seccomp(struct pt_regs *regs)
1768 if (!test_thread_flag(TIF_SECCOMP))
1769 return 0;
1772 * The ABI we present to seccomp tracers is that r3 contains
1773 * the syscall return value and orig_gpr3 contains the first
1774 * syscall parameter. This is different to the ptrace ABI where
1775 * both r3 and orig_gpr3 contain the first syscall parameter.
1777 regs->gpr[3] = -ENOSYS;
1780 * We use the __ version here because we have already checked
1781 * TIF_SECCOMP. If this fails, there is nothing left to do, we
1782 * have already loaded -ENOSYS into r3, or seccomp has put
1783 * something else in r3 (via SECCOMP_RET_ERRNO/TRACE).
1785 if (__secure_computing())
1786 return -1;
1789 * The syscall was allowed by seccomp, restore the register
1790 * state to what ptrace and audit expect.
1791 * Note that we use orig_gpr3, which means a seccomp tracer can
1792 * modify the first syscall parameter (in orig_gpr3) and also
1793 * allow the syscall to proceed.
1795 regs->gpr[3] = regs->orig_gpr3;
1797 return 0;
1799 #else
1800 static inline int do_seccomp(struct pt_regs *regs) { return 0; }
1801 #endif /* CONFIG_SECCOMP */
1804 * do_syscall_trace_enter() - Do syscall tracing on kernel entry.
1805 * @regs: the pt_regs of the task to trace (current)
1807 * Performs various types of tracing on syscall entry. This includes seccomp,
1808 * ptrace, syscall tracepoints and audit.
1810 * The pt_regs are potentially visible to userspace via ptrace, so their
1811 * contents is ABI.
1813 * One or more of the tracers may modify the contents of pt_regs, in particular
1814 * to modify arguments or even the syscall number itself.
1816 * It's also possible that a tracer can choose to reject the system call. In
1817 * that case this function will return an illegal syscall number, and will put
1818 * an appropriate return value in regs->r3.
1820 * Return: the (possibly changed) syscall number.
1822 long do_syscall_trace_enter(struct pt_regs *regs)
1824 bool abort = false;
1826 user_exit();
1828 if (do_seccomp(regs))
1829 return -1;
1831 if (test_thread_flag(TIF_SYSCALL_TRACE)) {
1833 * The tracer may decide to abort the syscall, if so tracehook
1834 * will return !0. Note that the tracer may also just change
1835 * regs->gpr[0] to an invalid syscall number, that is handled
1836 * below on the exit path.
1838 abort = tracehook_report_syscall_entry(regs) != 0;
1841 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1842 trace_sys_enter(regs, regs->gpr[0]);
1844 #ifdef CONFIG_PPC64
1845 if (!is_32bit_task())
1846 audit_syscall_entry(regs->gpr[0], regs->gpr[3], regs->gpr[4],
1847 regs->gpr[5], regs->gpr[6]);
1848 else
1849 #endif
1850 audit_syscall_entry(regs->gpr[0],
1851 regs->gpr[3] & 0xffffffff,
1852 regs->gpr[4] & 0xffffffff,
1853 regs->gpr[5] & 0xffffffff,
1854 regs->gpr[6] & 0xffffffff);
1856 if (abort || regs->gpr[0] >= NR_syscalls) {
1858 * If we are aborting explicitly, or if the syscall number is
1859 * now invalid, set the return value to -ENOSYS.
1861 regs->gpr[3] = -ENOSYS;
1862 return -1;
1865 /* Return the possibly modified but valid syscall number */
1866 return regs->gpr[0];
1869 void do_syscall_trace_leave(struct pt_regs *regs)
1871 int step;
1873 audit_syscall_exit(regs);
1875 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
1876 trace_sys_exit(regs, regs->result);
1878 step = test_thread_flag(TIF_SINGLESTEP);
1879 if (step || test_thread_flag(TIF_SYSCALL_TRACE))
1880 tracehook_report_syscall_exit(regs, step);
1882 user_enter();