4 * Copyright (C) 2008 Steven Rostedt <srostedt@redhat.com>
6 #include <linux/trace_events.h>
7 #include <linux/ring_buffer.h>
8 #include <linux/trace_clock.h>
9 #include <linux/trace_seq.h>
10 #include <linux/spinlock.h>
11 #include <linux/irq_work.h>
12 #include <linux/uaccess.h>
13 #include <linux/hardirq.h>
14 #include <linux/kthread.h> /* for self test */
15 #include <linux/kmemcheck.h>
16 #include <linux/module.h>
17 #include <linux/percpu.h>
18 #include <linux/mutex.h>
19 #include <linux/delay.h>
20 #include <linux/slab.h>
21 #include <linux/init.h>
22 #include <linux/hash.h>
23 #include <linux/list.h>
24 #include <linux/cpu.h>
26 #include <asm/local.h>
28 static void update_pages_handler(struct work_struct
*work
);
31 * The ring buffer header is special. We must manually up keep it.
33 int ring_buffer_print_entry_header(struct trace_seq
*s
)
35 trace_seq_puts(s
, "# compressed entry header\n");
36 trace_seq_puts(s
, "\ttype_len : 5 bits\n");
37 trace_seq_puts(s
, "\ttime_delta : 27 bits\n");
38 trace_seq_puts(s
, "\tarray : 32 bits\n");
39 trace_seq_putc(s
, '\n');
40 trace_seq_printf(s
, "\tpadding : type == %d\n",
41 RINGBUF_TYPE_PADDING
);
42 trace_seq_printf(s
, "\ttime_extend : type == %d\n",
43 RINGBUF_TYPE_TIME_EXTEND
);
44 trace_seq_printf(s
, "\tdata max type_len == %d\n",
45 RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
47 return !trace_seq_has_overflowed(s
);
51 * The ring buffer is made up of a list of pages. A separate list of pages is
52 * allocated for each CPU. A writer may only write to a buffer that is
53 * associated with the CPU it is currently executing on. A reader may read
54 * from any per cpu buffer.
56 * The reader is special. For each per cpu buffer, the reader has its own
57 * reader page. When a reader has read the entire reader page, this reader
58 * page is swapped with another page in the ring buffer.
60 * Now, as long as the writer is off the reader page, the reader can do what
61 * ever it wants with that page. The writer will never write to that page
62 * again (as long as it is out of the ring buffer).
64 * Here's some silly ASCII art.
67 * |reader| RING BUFFER
69 * +------+ +---+ +---+ +---+
78 * |reader| RING BUFFER
79 * |page |------------------v
80 * +------+ +---+ +---+ +---+
89 * |reader| RING BUFFER
90 * |page |------------------v
91 * +------+ +---+ +---+ +---+
96 * +------------------------------+
100 * |buffer| RING BUFFER
101 * |page |------------------v
102 * +------+ +---+ +---+ +---+
104 * | New +---+ +---+ +---+
107 * +------------------------------+
110 * After we make this swap, the reader can hand this page off to the splice
111 * code and be done with it. It can even allocate a new page if it needs to
112 * and swap that into the ring buffer.
114 * We will be using cmpxchg soon to make all this lockless.
118 /* Used for individual buffers (after the counter) */
119 #define RB_BUFFER_OFF (1 << 20)
121 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
123 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
124 #define RB_ALIGNMENT 4U
125 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
126 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */
128 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
129 # define RB_FORCE_8BYTE_ALIGNMENT 0
130 # define RB_ARCH_ALIGNMENT RB_ALIGNMENT
132 # define RB_FORCE_8BYTE_ALIGNMENT 1
133 # define RB_ARCH_ALIGNMENT 8U
136 #define RB_ALIGN_DATA __aligned(RB_ARCH_ALIGNMENT)
138 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
139 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
142 RB_LEN_TIME_EXTEND
= 8,
143 RB_LEN_TIME_STAMP
= 16,
146 #define skip_time_extend(event) \
147 ((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
149 static inline int rb_null_event(struct ring_buffer_event
*event
)
151 return event
->type_len
== RINGBUF_TYPE_PADDING
&& !event
->time_delta
;
154 static void rb_event_set_padding(struct ring_buffer_event
*event
)
156 /* padding has a NULL time_delta */
157 event
->type_len
= RINGBUF_TYPE_PADDING
;
158 event
->time_delta
= 0;
162 rb_event_data_length(struct ring_buffer_event
*event
)
167 length
= event
->type_len
* RB_ALIGNMENT
;
169 length
= event
->array
[0];
170 return length
+ RB_EVNT_HDR_SIZE
;
174 * Return the length of the given event. Will return
175 * the length of the time extend if the event is a
178 static inline unsigned
179 rb_event_length(struct ring_buffer_event
*event
)
181 switch (event
->type_len
) {
182 case RINGBUF_TYPE_PADDING
:
183 if (rb_null_event(event
))
186 return event
->array
[0] + RB_EVNT_HDR_SIZE
;
188 case RINGBUF_TYPE_TIME_EXTEND
:
189 return RB_LEN_TIME_EXTEND
;
191 case RINGBUF_TYPE_TIME_STAMP
:
192 return RB_LEN_TIME_STAMP
;
194 case RINGBUF_TYPE_DATA
:
195 return rb_event_data_length(event
);
204 * Return total length of time extend and data,
205 * or just the event length for all other events.
207 static inline unsigned
208 rb_event_ts_length(struct ring_buffer_event
*event
)
212 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
213 /* time extends include the data event after it */
214 len
= RB_LEN_TIME_EXTEND
;
215 event
= skip_time_extend(event
);
217 return len
+ rb_event_length(event
);
221 * ring_buffer_event_length - return the length of the event
222 * @event: the event to get the length of
224 * Returns the size of the data load of a data event.
225 * If the event is something other than a data event, it
226 * returns the size of the event itself. With the exception
227 * of a TIME EXTEND, where it still returns the size of the
228 * data load of the data event after it.
230 unsigned ring_buffer_event_length(struct ring_buffer_event
*event
)
234 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
235 event
= skip_time_extend(event
);
237 length
= rb_event_length(event
);
238 if (event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
240 length
-= RB_EVNT_HDR_SIZE
;
241 if (length
> RB_MAX_SMALL_DATA
+ sizeof(event
->array
[0]))
242 length
-= sizeof(event
->array
[0]);
245 EXPORT_SYMBOL_GPL(ring_buffer_event_length
);
247 /* inline for ring buffer fast paths */
249 rb_event_data(struct ring_buffer_event
*event
)
251 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
252 event
= skip_time_extend(event
);
253 BUG_ON(event
->type_len
> RINGBUF_TYPE_DATA_TYPE_LEN_MAX
);
254 /* If length is in len field, then array[0] has the data */
256 return (void *)&event
->array
[0];
257 /* Otherwise length is in array[0] and array[1] has the data */
258 return (void *)&event
->array
[1];
262 * ring_buffer_event_data - return the data of the event
263 * @event: the event to get the data from
265 void *ring_buffer_event_data(struct ring_buffer_event
*event
)
267 return rb_event_data(event
);
269 EXPORT_SYMBOL_GPL(ring_buffer_event_data
);
271 #define for_each_buffer_cpu(buffer, cpu) \
272 for_each_cpu(cpu, buffer->cpumask)
275 #define TS_MASK ((1ULL << TS_SHIFT) - 1)
276 #define TS_DELTA_TEST (~TS_MASK)
278 /* Flag when events were overwritten */
279 #define RB_MISSED_EVENTS (1 << 31)
280 /* Missed count stored at end */
281 #define RB_MISSED_STORED (1 << 30)
283 struct buffer_data_page
{
284 u64 time_stamp
; /* page time stamp */
285 local_t commit
; /* write committed index */
286 unsigned char data
[] RB_ALIGN_DATA
; /* data of buffer page */
290 * Note, the buffer_page list must be first. The buffer pages
291 * are allocated in cache lines, which means that each buffer
292 * page will be at the beginning of a cache line, and thus
293 * the least significant bits will be zero. We use this to
294 * add flags in the list struct pointers, to make the ring buffer
298 struct list_head list
; /* list of buffer pages */
299 local_t write
; /* index for next write */
300 unsigned read
; /* index for next read */
301 local_t entries
; /* entries on this page */
302 unsigned long real_end
; /* real end of data */
303 struct buffer_data_page
*page
; /* Actual data page */
307 * The buffer page counters, write and entries, must be reset
308 * atomically when crossing page boundaries. To synchronize this
309 * update, two counters are inserted into the number. One is
310 * the actual counter for the write position or count on the page.
312 * The other is a counter of updaters. Before an update happens
313 * the update partition of the counter is incremented. This will
314 * allow the updater to update the counter atomically.
316 * The counter is 20 bits, and the state data is 12.
318 #define RB_WRITE_MASK 0xfffff
319 #define RB_WRITE_INTCNT (1 << 20)
321 static void rb_init_page(struct buffer_data_page
*bpage
)
323 local_set(&bpage
->commit
, 0);
327 * ring_buffer_page_len - the size of data on the page.
328 * @page: The page to read
330 * Returns the amount of data on the page, including buffer page header.
332 size_t ring_buffer_page_len(void *page
)
334 return local_read(&((struct buffer_data_page
*)page
)->commit
)
339 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
342 static void free_buffer_page(struct buffer_page
*bpage
)
344 free_page((unsigned long)bpage
->page
);
349 * We need to fit the time_stamp delta into 27 bits.
351 static inline int test_time_stamp(u64 delta
)
353 if (delta
& TS_DELTA_TEST
)
358 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
360 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
361 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
363 int ring_buffer_print_page_header(struct trace_seq
*s
)
365 struct buffer_data_page field
;
367 trace_seq_printf(s
, "\tfield: u64 timestamp;\t"
368 "offset:0;\tsize:%u;\tsigned:%u;\n",
369 (unsigned int)sizeof(field
.time_stamp
),
370 (unsigned int)is_signed_type(u64
));
372 trace_seq_printf(s
, "\tfield: local_t commit;\t"
373 "offset:%u;\tsize:%u;\tsigned:%u;\n",
374 (unsigned int)offsetof(typeof(field
), commit
),
375 (unsigned int)sizeof(field
.commit
),
376 (unsigned int)is_signed_type(long));
378 trace_seq_printf(s
, "\tfield: int overwrite;\t"
379 "offset:%u;\tsize:%u;\tsigned:%u;\n",
380 (unsigned int)offsetof(typeof(field
), commit
),
382 (unsigned int)is_signed_type(long));
384 trace_seq_printf(s
, "\tfield: char data;\t"
385 "offset:%u;\tsize:%u;\tsigned:%u;\n",
386 (unsigned int)offsetof(typeof(field
), data
),
387 (unsigned int)BUF_PAGE_SIZE
,
388 (unsigned int)is_signed_type(char));
390 return !trace_seq_has_overflowed(s
);
394 struct irq_work work
;
395 wait_queue_head_t waiters
;
396 wait_queue_head_t full_waiters
;
397 bool waiters_pending
;
398 bool full_waiters_pending
;
403 * Used for which event context the event is in.
409 * See trace_recursive_lock() comment below for more details.
420 * head_page == tail_page && head == tail then buffer is empty.
422 struct ring_buffer_per_cpu
{
424 atomic_t record_disabled
;
425 struct ring_buffer
*buffer
;
426 raw_spinlock_t reader_lock
; /* serialize readers */
427 arch_spinlock_t lock
;
428 struct lock_class_key lock_key
;
429 unsigned int nr_pages
;
430 unsigned int current_context
;
431 struct list_head
*pages
;
432 struct buffer_page
*head_page
; /* read from head */
433 struct buffer_page
*tail_page
; /* write to tail */
434 struct buffer_page
*commit_page
; /* committed pages */
435 struct buffer_page
*reader_page
;
436 unsigned long lost_events
;
437 unsigned long last_overrun
;
438 local_t entries_bytes
;
441 local_t commit_overrun
;
442 local_t dropped_events
;
446 unsigned long read_bytes
;
449 /* ring buffer pages to update, > 0 to add, < 0 to remove */
450 int nr_pages_to_update
;
451 struct list_head new_pages
; /* new pages to add */
452 struct work_struct update_pages_work
;
453 struct completion update_done
;
455 struct rb_irq_work irq_work
;
461 atomic_t record_disabled
;
462 atomic_t resize_disabled
;
463 cpumask_var_t cpumask
;
465 struct lock_class_key
*reader_lock_key
;
469 struct ring_buffer_per_cpu
**buffers
;
471 #ifdef CONFIG_HOTPLUG_CPU
472 struct notifier_block cpu_notify
;
476 struct rb_irq_work irq_work
;
479 struct ring_buffer_iter
{
480 struct ring_buffer_per_cpu
*cpu_buffer
;
482 struct buffer_page
*head_page
;
483 struct buffer_page
*cache_reader_page
;
484 unsigned long cache_read
;
489 * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
491 * Schedules a delayed work to wake up any task that is blocked on the
492 * ring buffer waiters queue.
494 static void rb_wake_up_waiters(struct irq_work
*work
)
496 struct rb_irq_work
*rbwork
= container_of(work
, struct rb_irq_work
, work
);
498 wake_up_all(&rbwork
->waiters
);
499 if (rbwork
->wakeup_full
) {
500 rbwork
->wakeup_full
= false;
501 wake_up_all(&rbwork
->full_waiters
);
506 * ring_buffer_wait - wait for input to the ring buffer
507 * @buffer: buffer to wait on
508 * @cpu: the cpu buffer to wait on
509 * @full: wait until a full page is available, if @cpu != RING_BUFFER_ALL_CPUS
511 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
512 * as data is added to any of the @buffer's cpu buffers. Otherwise
513 * it will wait for data to be added to a specific cpu buffer.
515 int ring_buffer_wait(struct ring_buffer
*buffer
, int cpu
, bool full
)
517 struct ring_buffer_per_cpu
*uninitialized_var(cpu_buffer
);
519 struct rb_irq_work
*work
;
523 * Depending on what the caller is waiting for, either any
524 * data in any cpu buffer, or a specific buffer, put the
525 * caller on the appropriate wait queue.
527 if (cpu
== RING_BUFFER_ALL_CPUS
) {
528 work
= &buffer
->irq_work
;
529 /* Full only makes sense on per cpu reads */
532 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
534 cpu_buffer
= buffer
->buffers
[cpu
];
535 work
= &cpu_buffer
->irq_work
;
541 prepare_to_wait(&work
->full_waiters
, &wait
, TASK_INTERRUPTIBLE
);
543 prepare_to_wait(&work
->waiters
, &wait
, TASK_INTERRUPTIBLE
);
546 * The events can happen in critical sections where
547 * checking a work queue can cause deadlocks.
548 * After adding a task to the queue, this flag is set
549 * only to notify events to try to wake up the queue
552 * We don't clear it even if the buffer is no longer
553 * empty. The flag only causes the next event to run
554 * irq_work to do the work queue wake up. The worse
555 * that can happen if we race with !trace_empty() is that
556 * an event will cause an irq_work to try to wake up
559 * There's no reason to protect this flag either, as
560 * the work queue and irq_work logic will do the necessary
561 * synchronization for the wake ups. The only thing
562 * that is necessary is that the wake up happens after
563 * a task has been queued. It's OK for spurious wake ups.
566 work
->full_waiters_pending
= true;
568 work
->waiters_pending
= true;
570 if (signal_pending(current
)) {
575 if (cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
))
578 if (cpu
!= RING_BUFFER_ALL_CPUS
&&
579 !ring_buffer_empty_cpu(buffer
, cpu
)) {
586 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
587 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
588 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
598 finish_wait(&work
->full_waiters
, &wait
);
600 finish_wait(&work
->waiters
, &wait
);
606 * ring_buffer_poll_wait - poll on buffer input
607 * @buffer: buffer to wait on
608 * @cpu: the cpu buffer to wait on
609 * @filp: the file descriptor
610 * @poll_table: The poll descriptor
612 * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
613 * as data is added to any of the @buffer's cpu buffers. Otherwise
614 * it will wait for data to be added to a specific cpu buffer.
616 * Returns POLLIN | POLLRDNORM if data exists in the buffers,
619 int ring_buffer_poll_wait(struct ring_buffer
*buffer
, int cpu
,
620 struct file
*filp
, poll_table
*poll_table
)
622 struct ring_buffer_per_cpu
*cpu_buffer
;
623 struct rb_irq_work
*work
;
625 if (cpu
== RING_BUFFER_ALL_CPUS
)
626 work
= &buffer
->irq_work
;
628 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
631 cpu_buffer
= buffer
->buffers
[cpu
];
632 work
= &cpu_buffer
->irq_work
;
635 poll_wait(filp
, &work
->waiters
, poll_table
);
636 work
->waiters_pending
= true;
638 * There's a tight race between setting the waiters_pending and
639 * checking if the ring buffer is empty. Once the waiters_pending bit
640 * is set, the next event will wake the task up, but we can get stuck
641 * if there's only a single event in.
643 * FIXME: Ideally, we need a memory barrier on the writer side as well,
644 * but adding a memory barrier to all events will cause too much of a
645 * performance hit in the fast path. We only need a memory barrier when
646 * the buffer goes from empty to having content. But as this race is
647 * extremely small, and it's not a problem if another event comes in, we
652 if ((cpu
== RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty(buffer
)) ||
653 (cpu
!= RING_BUFFER_ALL_CPUS
&& !ring_buffer_empty_cpu(buffer
, cpu
)))
654 return POLLIN
| POLLRDNORM
;
658 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
659 #define RB_WARN_ON(b, cond) \
661 int _____ret = unlikely(cond); \
663 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
664 struct ring_buffer_per_cpu *__b = \
666 atomic_inc(&__b->buffer->record_disabled); \
668 atomic_inc(&b->record_disabled); \
674 /* Up this if you want to test the TIME_EXTENTS and normalization */
675 #define DEBUG_SHIFT 0
677 static inline u64
rb_time_stamp(struct ring_buffer
*buffer
)
679 /* shift to debug/test normalization and TIME_EXTENTS */
680 return buffer
->clock() << DEBUG_SHIFT
;
683 u64
ring_buffer_time_stamp(struct ring_buffer
*buffer
, int cpu
)
687 preempt_disable_notrace();
688 time
= rb_time_stamp(buffer
);
689 preempt_enable_no_resched_notrace();
693 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp
);
695 void ring_buffer_normalize_time_stamp(struct ring_buffer
*buffer
,
698 /* Just stupid testing the normalize function and deltas */
701 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp
);
704 * Making the ring buffer lockless makes things tricky.
705 * Although writes only happen on the CPU that they are on,
706 * and they only need to worry about interrupts. Reads can
709 * The reader page is always off the ring buffer, but when the
710 * reader finishes with a page, it needs to swap its page with
711 * a new one from the buffer. The reader needs to take from
712 * the head (writes go to the tail). But if a writer is in overwrite
713 * mode and wraps, it must push the head page forward.
715 * Here lies the problem.
717 * The reader must be careful to replace only the head page, and
718 * not another one. As described at the top of the file in the
719 * ASCII art, the reader sets its old page to point to the next
720 * page after head. It then sets the page after head to point to
721 * the old reader page. But if the writer moves the head page
722 * during this operation, the reader could end up with the tail.
724 * We use cmpxchg to help prevent this race. We also do something
725 * special with the page before head. We set the LSB to 1.
727 * When the writer must push the page forward, it will clear the
728 * bit that points to the head page, move the head, and then set
729 * the bit that points to the new head page.
731 * We also don't want an interrupt coming in and moving the head
732 * page on another writer. Thus we use the second LSB to catch
735 * head->list->prev->next bit 1 bit 0
738 * Points to head page 0 1
741 * Note we can not trust the prev pointer of the head page, because:
743 * +----+ +-----+ +-----+
744 * | |------>| T |---X--->| N |
746 * +----+ +-----+ +-----+
749 * +----------| R |----------+ |
753 * Key: ---X--> HEAD flag set in pointer
758 * (see __rb_reserve_next() to see where this happens)
760 * What the above shows is that the reader just swapped out
761 * the reader page with a page in the buffer, but before it
762 * could make the new header point back to the new page added
763 * it was preempted by a writer. The writer moved forward onto
764 * the new page added by the reader and is about to move forward
767 * You can see, it is legitimate for the previous pointer of
768 * the head (or any page) not to point back to itself. But only
772 #define RB_PAGE_NORMAL 0UL
773 #define RB_PAGE_HEAD 1UL
774 #define RB_PAGE_UPDATE 2UL
777 #define RB_FLAG_MASK 3UL
779 /* PAGE_MOVED is not part of the mask */
780 #define RB_PAGE_MOVED 4UL
783 * rb_list_head - remove any bit
785 static struct list_head
*rb_list_head(struct list_head
*list
)
787 unsigned long val
= (unsigned long)list
;
789 return (struct list_head
*)(val
& ~RB_FLAG_MASK
);
793 * rb_is_head_page - test if the given page is the head page
795 * Because the reader may move the head_page pointer, we can
796 * not trust what the head page is (it may be pointing to
797 * the reader page). But if the next page is a header page,
798 * its flags will be non zero.
801 rb_is_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
802 struct buffer_page
*page
, struct list_head
*list
)
806 val
= (unsigned long)list
->next
;
808 if ((val
& ~RB_FLAG_MASK
) != (unsigned long)&page
->list
)
809 return RB_PAGE_MOVED
;
811 return val
& RB_FLAG_MASK
;
817 * The unique thing about the reader page, is that, if the
818 * writer is ever on it, the previous pointer never points
819 * back to the reader page.
821 static int rb_is_reader_page(struct buffer_page
*page
)
823 struct list_head
*list
= page
->list
.prev
;
825 return rb_list_head(list
->next
) != &page
->list
;
829 * rb_set_list_to_head - set a list_head to be pointing to head.
831 static void rb_set_list_to_head(struct ring_buffer_per_cpu
*cpu_buffer
,
832 struct list_head
*list
)
836 ptr
= (unsigned long *)&list
->next
;
837 *ptr
|= RB_PAGE_HEAD
;
838 *ptr
&= ~RB_PAGE_UPDATE
;
842 * rb_head_page_activate - sets up head page
844 static void rb_head_page_activate(struct ring_buffer_per_cpu
*cpu_buffer
)
846 struct buffer_page
*head
;
848 head
= cpu_buffer
->head_page
;
853 * Set the previous list pointer to have the HEAD flag.
855 rb_set_list_to_head(cpu_buffer
, head
->list
.prev
);
858 static void rb_list_head_clear(struct list_head
*list
)
860 unsigned long *ptr
= (unsigned long *)&list
->next
;
862 *ptr
&= ~RB_FLAG_MASK
;
866 * rb_head_page_dactivate - clears head page ptr (for free list)
869 rb_head_page_deactivate(struct ring_buffer_per_cpu
*cpu_buffer
)
871 struct list_head
*hd
;
873 /* Go through the whole list and clear any pointers found. */
874 rb_list_head_clear(cpu_buffer
->pages
);
876 list_for_each(hd
, cpu_buffer
->pages
)
877 rb_list_head_clear(hd
);
880 static int rb_head_page_set(struct ring_buffer_per_cpu
*cpu_buffer
,
881 struct buffer_page
*head
,
882 struct buffer_page
*prev
,
883 int old_flag
, int new_flag
)
885 struct list_head
*list
;
886 unsigned long val
= (unsigned long)&head
->list
;
891 val
&= ~RB_FLAG_MASK
;
893 ret
= cmpxchg((unsigned long *)&list
->next
,
894 val
| old_flag
, val
| new_flag
);
896 /* check if the reader took the page */
897 if ((ret
& ~RB_FLAG_MASK
) != val
)
898 return RB_PAGE_MOVED
;
900 return ret
& RB_FLAG_MASK
;
903 static int rb_head_page_set_update(struct ring_buffer_per_cpu
*cpu_buffer
,
904 struct buffer_page
*head
,
905 struct buffer_page
*prev
,
908 return rb_head_page_set(cpu_buffer
, head
, prev
,
909 old_flag
, RB_PAGE_UPDATE
);
912 static int rb_head_page_set_head(struct ring_buffer_per_cpu
*cpu_buffer
,
913 struct buffer_page
*head
,
914 struct buffer_page
*prev
,
917 return rb_head_page_set(cpu_buffer
, head
, prev
,
918 old_flag
, RB_PAGE_HEAD
);
921 static int rb_head_page_set_normal(struct ring_buffer_per_cpu
*cpu_buffer
,
922 struct buffer_page
*head
,
923 struct buffer_page
*prev
,
926 return rb_head_page_set(cpu_buffer
, head
, prev
,
927 old_flag
, RB_PAGE_NORMAL
);
930 static inline void rb_inc_page(struct ring_buffer_per_cpu
*cpu_buffer
,
931 struct buffer_page
**bpage
)
933 struct list_head
*p
= rb_list_head((*bpage
)->list
.next
);
935 *bpage
= list_entry(p
, struct buffer_page
, list
);
938 static struct buffer_page
*
939 rb_set_head_page(struct ring_buffer_per_cpu
*cpu_buffer
)
941 struct buffer_page
*head
;
942 struct buffer_page
*page
;
943 struct list_head
*list
;
946 if (RB_WARN_ON(cpu_buffer
, !cpu_buffer
->head_page
))
950 list
= cpu_buffer
->pages
;
951 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
->next
) != list
))
954 page
= head
= cpu_buffer
->head_page
;
956 * It is possible that the writer moves the header behind
957 * where we started, and we miss in one loop.
958 * A second loop should grab the header, but we'll do
959 * three loops just because I'm paranoid.
961 for (i
= 0; i
< 3; i
++) {
963 if (rb_is_head_page(cpu_buffer
, page
, page
->list
.prev
)) {
964 cpu_buffer
->head_page
= page
;
967 rb_inc_page(cpu_buffer
, &page
);
968 } while (page
!= head
);
971 RB_WARN_ON(cpu_buffer
, 1);
976 static int rb_head_page_replace(struct buffer_page
*old
,
977 struct buffer_page
*new)
979 unsigned long *ptr
= (unsigned long *)&old
->list
.prev
->next
;
983 val
= *ptr
& ~RB_FLAG_MASK
;
986 ret
= cmpxchg(ptr
, val
, (unsigned long)&new->list
);
992 * rb_tail_page_update - move the tail page forward
994 * Returns 1 if moved tail page, 0 if someone else did.
996 static int rb_tail_page_update(struct ring_buffer_per_cpu
*cpu_buffer
,
997 struct buffer_page
*tail_page
,
998 struct buffer_page
*next_page
)
1000 struct buffer_page
*old_tail
;
1001 unsigned long old_entries
;
1002 unsigned long old_write
;
1006 * The tail page now needs to be moved forward.
1008 * We need to reset the tail page, but without messing
1009 * with possible erasing of data brought in by interrupts
1010 * that have moved the tail page and are currently on it.
1012 * We add a counter to the write field to denote this.
1014 old_write
= local_add_return(RB_WRITE_INTCNT
, &next_page
->write
);
1015 old_entries
= local_add_return(RB_WRITE_INTCNT
, &next_page
->entries
);
1018 * Just make sure we have seen our old_write and synchronize
1019 * with any interrupts that come in.
1024 * If the tail page is still the same as what we think
1025 * it is, then it is up to us to update the tail
1028 if (tail_page
== cpu_buffer
->tail_page
) {
1029 /* Zero the write counter */
1030 unsigned long val
= old_write
& ~RB_WRITE_MASK
;
1031 unsigned long eval
= old_entries
& ~RB_WRITE_MASK
;
1034 * This will only succeed if an interrupt did
1035 * not come in and change it. In which case, we
1036 * do not want to modify it.
1038 * We add (void) to let the compiler know that we do not care
1039 * about the return value of these functions. We use the
1040 * cmpxchg to only update if an interrupt did not already
1041 * do it for us. If the cmpxchg fails, we don't care.
1043 (void)local_cmpxchg(&next_page
->write
, old_write
, val
);
1044 (void)local_cmpxchg(&next_page
->entries
, old_entries
, eval
);
1047 * No need to worry about races with clearing out the commit.
1048 * it only can increment when a commit takes place. But that
1049 * only happens in the outer most nested commit.
1051 local_set(&next_page
->page
->commit
, 0);
1053 old_tail
= cmpxchg(&cpu_buffer
->tail_page
,
1054 tail_page
, next_page
);
1056 if (old_tail
== tail_page
)
1063 static int rb_check_bpage(struct ring_buffer_per_cpu
*cpu_buffer
,
1064 struct buffer_page
*bpage
)
1066 unsigned long val
= (unsigned long)bpage
;
1068 if (RB_WARN_ON(cpu_buffer
, val
& RB_FLAG_MASK
))
1075 * rb_check_list - make sure a pointer to a list has the last bits zero
1077 static int rb_check_list(struct ring_buffer_per_cpu
*cpu_buffer
,
1078 struct list_head
*list
)
1080 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->prev
) != list
->prev
))
1082 if (RB_WARN_ON(cpu_buffer
, rb_list_head(list
->next
) != list
->next
))
1088 * rb_check_pages - integrity check of buffer pages
1089 * @cpu_buffer: CPU buffer with pages to test
1091 * As a safety measure we check to make sure the data pages have not
1094 static int rb_check_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1096 struct list_head
*head
= cpu_buffer
->pages
;
1097 struct buffer_page
*bpage
, *tmp
;
1099 /* Reset the head page if it exists */
1100 if (cpu_buffer
->head_page
)
1101 rb_set_head_page(cpu_buffer
);
1103 rb_head_page_deactivate(cpu_buffer
);
1105 if (RB_WARN_ON(cpu_buffer
, head
->next
->prev
!= head
))
1107 if (RB_WARN_ON(cpu_buffer
, head
->prev
->next
!= head
))
1110 if (rb_check_list(cpu_buffer
, head
))
1113 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1114 if (RB_WARN_ON(cpu_buffer
,
1115 bpage
->list
.next
->prev
!= &bpage
->list
))
1117 if (RB_WARN_ON(cpu_buffer
,
1118 bpage
->list
.prev
->next
!= &bpage
->list
))
1120 if (rb_check_list(cpu_buffer
, &bpage
->list
))
1124 rb_head_page_activate(cpu_buffer
);
1129 static int __rb_allocate_pages(int nr_pages
, struct list_head
*pages
, int cpu
)
1132 struct buffer_page
*bpage
, *tmp
;
1134 for (i
= 0; i
< nr_pages
; i
++) {
1137 * __GFP_NORETRY flag makes sure that the allocation fails
1138 * gracefully without invoking oom-killer and the system is
1141 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1142 GFP_KERNEL
| __GFP_NORETRY
,
1147 list_add(&bpage
->list
, pages
);
1149 page
= alloc_pages_node(cpu_to_node(cpu
),
1150 GFP_KERNEL
| __GFP_NORETRY
, 0);
1153 bpage
->page
= page_address(page
);
1154 rb_init_page(bpage
->page
);
1160 list_for_each_entry_safe(bpage
, tmp
, pages
, list
) {
1161 list_del_init(&bpage
->list
);
1162 free_buffer_page(bpage
);
1168 static int rb_allocate_pages(struct ring_buffer_per_cpu
*cpu_buffer
,
1175 if (__rb_allocate_pages(nr_pages
, &pages
, cpu_buffer
->cpu
))
1179 * The ring buffer page list is a circular list that does not
1180 * start and end with a list head. All page list items point to
1183 cpu_buffer
->pages
= pages
.next
;
1186 cpu_buffer
->nr_pages
= nr_pages
;
1188 rb_check_pages(cpu_buffer
);
1193 static struct ring_buffer_per_cpu
*
1194 rb_allocate_cpu_buffer(struct ring_buffer
*buffer
, int nr_pages
, int cpu
)
1196 struct ring_buffer_per_cpu
*cpu_buffer
;
1197 struct buffer_page
*bpage
;
1201 cpu_buffer
= kzalloc_node(ALIGN(sizeof(*cpu_buffer
), cache_line_size()),
1202 GFP_KERNEL
, cpu_to_node(cpu
));
1206 cpu_buffer
->cpu
= cpu
;
1207 cpu_buffer
->buffer
= buffer
;
1208 raw_spin_lock_init(&cpu_buffer
->reader_lock
);
1209 lockdep_set_class(&cpu_buffer
->reader_lock
, buffer
->reader_lock_key
);
1210 cpu_buffer
->lock
= (arch_spinlock_t
)__ARCH_SPIN_LOCK_UNLOCKED
;
1211 INIT_WORK(&cpu_buffer
->update_pages_work
, update_pages_handler
);
1212 init_completion(&cpu_buffer
->update_done
);
1213 init_irq_work(&cpu_buffer
->irq_work
.work
, rb_wake_up_waiters
);
1214 init_waitqueue_head(&cpu_buffer
->irq_work
.waiters
);
1215 init_waitqueue_head(&cpu_buffer
->irq_work
.full_waiters
);
1217 bpage
= kzalloc_node(ALIGN(sizeof(*bpage
), cache_line_size()),
1218 GFP_KERNEL
, cpu_to_node(cpu
));
1220 goto fail_free_buffer
;
1222 rb_check_bpage(cpu_buffer
, bpage
);
1224 cpu_buffer
->reader_page
= bpage
;
1225 page
= alloc_pages_node(cpu_to_node(cpu
), GFP_KERNEL
, 0);
1227 goto fail_free_reader
;
1228 bpage
->page
= page_address(page
);
1229 rb_init_page(bpage
->page
);
1231 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
1232 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1234 ret
= rb_allocate_pages(cpu_buffer
, nr_pages
);
1236 goto fail_free_reader
;
1238 cpu_buffer
->head_page
1239 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
1240 cpu_buffer
->tail_page
= cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
1242 rb_head_page_activate(cpu_buffer
);
1247 free_buffer_page(cpu_buffer
->reader_page
);
1254 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu
*cpu_buffer
)
1256 struct list_head
*head
= cpu_buffer
->pages
;
1257 struct buffer_page
*bpage
, *tmp
;
1259 free_buffer_page(cpu_buffer
->reader_page
);
1261 rb_head_page_deactivate(cpu_buffer
);
1264 list_for_each_entry_safe(bpage
, tmp
, head
, list
) {
1265 list_del_init(&bpage
->list
);
1266 free_buffer_page(bpage
);
1268 bpage
= list_entry(head
, struct buffer_page
, list
);
1269 free_buffer_page(bpage
);
1275 #ifdef CONFIG_HOTPLUG_CPU
1276 static int rb_cpu_notify(struct notifier_block
*self
,
1277 unsigned long action
, void *hcpu
);
1281 * __ring_buffer_alloc - allocate a new ring_buffer
1282 * @size: the size in bytes per cpu that is needed.
1283 * @flags: attributes to set for the ring buffer.
1285 * Currently the only flag that is available is the RB_FL_OVERWRITE
1286 * flag. This flag means that the buffer will overwrite old data
1287 * when the buffer wraps. If this flag is not set, the buffer will
1288 * drop data when the tail hits the head.
1290 struct ring_buffer
*__ring_buffer_alloc(unsigned long size
, unsigned flags
,
1291 struct lock_class_key
*key
)
1293 struct ring_buffer
*buffer
;
1297 /* keep it in its own cache line */
1298 buffer
= kzalloc(ALIGN(sizeof(*buffer
), cache_line_size()),
1303 if (!alloc_cpumask_var(&buffer
->cpumask
, GFP_KERNEL
))
1304 goto fail_free_buffer
;
1306 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1307 buffer
->flags
= flags
;
1308 buffer
->clock
= trace_clock_local
;
1309 buffer
->reader_lock_key
= key
;
1311 init_irq_work(&buffer
->irq_work
.work
, rb_wake_up_waiters
);
1312 init_waitqueue_head(&buffer
->irq_work
.waiters
);
1314 /* need at least two pages */
1319 * In case of non-hotplug cpu, if the ring-buffer is allocated
1320 * in early initcall, it will not be notified of secondary cpus.
1321 * In that off case, we need to allocate for all possible cpus.
1323 #ifdef CONFIG_HOTPLUG_CPU
1324 cpu_notifier_register_begin();
1325 cpumask_copy(buffer
->cpumask
, cpu_online_mask
);
1327 cpumask_copy(buffer
->cpumask
, cpu_possible_mask
);
1329 buffer
->cpus
= nr_cpu_ids
;
1331 bsize
= sizeof(void *) * nr_cpu_ids
;
1332 buffer
->buffers
= kzalloc(ALIGN(bsize
, cache_line_size()),
1334 if (!buffer
->buffers
)
1335 goto fail_free_cpumask
;
1337 for_each_buffer_cpu(buffer
, cpu
) {
1338 buffer
->buffers
[cpu
] =
1339 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
1340 if (!buffer
->buffers
[cpu
])
1341 goto fail_free_buffers
;
1344 #ifdef CONFIG_HOTPLUG_CPU
1345 buffer
->cpu_notify
.notifier_call
= rb_cpu_notify
;
1346 buffer
->cpu_notify
.priority
= 0;
1347 __register_cpu_notifier(&buffer
->cpu_notify
);
1348 cpu_notifier_register_done();
1351 mutex_init(&buffer
->mutex
);
1356 for_each_buffer_cpu(buffer
, cpu
) {
1357 if (buffer
->buffers
[cpu
])
1358 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1360 kfree(buffer
->buffers
);
1363 free_cpumask_var(buffer
->cpumask
);
1364 #ifdef CONFIG_HOTPLUG_CPU
1365 cpu_notifier_register_done();
1372 EXPORT_SYMBOL_GPL(__ring_buffer_alloc
);
1375 * ring_buffer_free - free a ring buffer.
1376 * @buffer: the buffer to free.
1379 ring_buffer_free(struct ring_buffer
*buffer
)
1383 #ifdef CONFIG_HOTPLUG_CPU
1384 cpu_notifier_register_begin();
1385 __unregister_cpu_notifier(&buffer
->cpu_notify
);
1388 for_each_buffer_cpu(buffer
, cpu
)
1389 rb_free_cpu_buffer(buffer
->buffers
[cpu
]);
1391 #ifdef CONFIG_HOTPLUG_CPU
1392 cpu_notifier_register_done();
1395 kfree(buffer
->buffers
);
1396 free_cpumask_var(buffer
->cpumask
);
1400 EXPORT_SYMBOL_GPL(ring_buffer_free
);
1402 void ring_buffer_set_clock(struct ring_buffer
*buffer
,
1405 buffer
->clock
= clock
;
1408 static void rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
);
1410 static inline unsigned long rb_page_entries(struct buffer_page
*bpage
)
1412 return local_read(&bpage
->entries
) & RB_WRITE_MASK
;
1415 static inline unsigned long rb_page_write(struct buffer_page
*bpage
)
1417 return local_read(&bpage
->write
) & RB_WRITE_MASK
;
1421 rb_remove_pages(struct ring_buffer_per_cpu
*cpu_buffer
, unsigned int nr_pages
)
1423 struct list_head
*tail_page
, *to_remove
, *next_page
;
1424 struct buffer_page
*to_remove_page
, *tmp_iter_page
;
1425 struct buffer_page
*last_page
, *first_page
;
1426 unsigned int nr_removed
;
1427 unsigned long head_bit
;
1432 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1433 atomic_inc(&cpu_buffer
->record_disabled
);
1435 * We don't race with the readers since we have acquired the reader
1436 * lock. We also don't race with writers after disabling recording.
1437 * This makes it easy to figure out the first and the last page to be
1438 * removed from the list. We unlink all the pages in between including
1439 * the first and last pages. This is done in a busy loop so that we
1440 * lose the least number of traces.
1441 * The pages are freed after we restart recording and unlock readers.
1443 tail_page
= &cpu_buffer
->tail_page
->list
;
1446 * tail page might be on reader page, we remove the next page
1447 * from the ring buffer
1449 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
1450 tail_page
= rb_list_head(tail_page
->next
);
1451 to_remove
= tail_page
;
1453 /* start of pages to remove */
1454 first_page
= list_entry(rb_list_head(to_remove
->next
),
1455 struct buffer_page
, list
);
1457 for (nr_removed
= 0; nr_removed
< nr_pages
; nr_removed
++) {
1458 to_remove
= rb_list_head(to_remove
)->next
;
1459 head_bit
|= (unsigned long)to_remove
& RB_PAGE_HEAD
;
1462 next_page
= rb_list_head(to_remove
)->next
;
1465 * Now we remove all pages between tail_page and next_page.
1466 * Make sure that we have head_bit value preserved for the
1469 tail_page
->next
= (struct list_head
*)((unsigned long)next_page
|
1471 next_page
= rb_list_head(next_page
);
1472 next_page
->prev
= tail_page
;
1474 /* make sure pages points to a valid page in the ring buffer */
1475 cpu_buffer
->pages
= next_page
;
1477 /* update head page */
1479 cpu_buffer
->head_page
= list_entry(next_page
,
1480 struct buffer_page
, list
);
1483 * change read pointer to make sure any read iterators reset
1486 cpu_buffer
->read
= 0;
1488 /* pages are removed, resume tracing and then free the pages */
1489 atomic_dec(&cpu_buffer
->record_disabled
);
1490 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1492 RB_WARN_ON(cpu_buffer
, list_empty(cpu_buffer
->pages
));
1494 /* last buffer page to remove */
1495 last_page
= list_entry(rb_list_head(to_remove
), struct buffer_page
,
1497 tmp_iter_page
= first_page
;
1500 to_remove_page
= tmp_iter_page
;
1501 rb_inc_page(cpu_buffer
, &tmp_iter_page
);
1503 /* update the counters */
1504 page_entries
= rb_page_entries(to_remove_page
);
1507 * If something was added to this page, it was full
1508 * since it is not the tail page. So we deduct the
1509 * bytes consumed in ring buffer from here.
1510 * Increment overrun to account for the lost events.
1512 local_add(page_entries
, &cpu_buffer
->overrun
);
1513 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
1517 * We have already removed references to this list item, just
1518 * free up the buffer_page and its page
1520 free_buffer_page(to_remove_page
);
1523 } while (to_remove_page
!= last_page
);
1525 RB_WARN_ON(cpu_buffer
, nr_removed
);
1527 return nr_removed
== 0;
1531 rb_insert_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1533 struct list_head
*pages
= &cpu_buffer
->new_pages
;
1534 int retries
, success
;
1536 raw_spin_lock_irq(&cpu_buffer
->reader_lock
);
1538 * We are holding the reader lock, so the reader page won't be swapped
1539 * in the ring buffer. Now we are racing with the writer trying to
1540 * move head page and the tail page.
1541 * We are going to adapt the reader page update process where:
1542 * 1. We first splice the start and end of list of new pages between
1543 * the head page and its previous page.
1544 * 2. We cmpxchg the prev_page->next to point from head page to the
1545 * start of new pages list.
1546 * 3. Finally, we update the head->prev to the end of new list.
1548 * We will try this process 10 times, to make sure that we don't keep
1554 struct list_head
*head_page
, *prev_page
, *r
;
1555 struct list_head
*last_page
, *first_page
;
1556 struct list_head
*head_page_with_bit
;
1558 head_page
= &rb_set_head_page(cpu_buffer
)->list
;
1561 prev_page
= head_page
->prev
;
1563 first_page
= pages
->next
;
1564 last_page
= pages
->prev
;
1566 head_page_with_bit
= (struct list_head
*)
1567 ((unsigned long)head_page
| RB_PAGE_HEAD
);
1569 last_page
->next
= head_page_with_bit
;
1570 first_page
->prev
= prev_page
;
1572 r
= cmpxchg(&prev_page
->next
, head_page_with_bit
, first_page
);
1574 if (r
== head_page_with_bit
) {
1576 * yay, we replaced the page pointer to our new list,
1577 * now, we just have to update to head page's prev
1578 * pointer to point to end of list
1580 head_page
->prev
= last_page
;
1587 INIT_LIST_HEAD(pages
);
1589 * If we weren't successful in adding in new pages, warn and stop
1592 RB_WARN_ON(cpu_buffer
, !success
);
1593 raw_spin_unlock_irq(&cpu_buffer
->reader_lock
);
1595 /* free pages if they weren't inserted */
1597 struct buffer_page
*bpage
, *tmp
;
1598 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1600 list_del_init(&bpage
->list
);
1601 free_buffer_page(bpage
);
1607 static void rb_update_pages(struct ring_buffer_per_cpu
*cpu_buffer
)
1611 if (cpu_buffer
->nr_pages_to_update
> 0)
1612 success
= rb_insert_pages(cpu_buffer
);
1614 success
= rb_remove_pages(cpu_buffer
,
1615 -cpu_buffer
->nr_pages_to_update
);
1618 cpu_buffer
->nr_pages
+= cpu_buffer
->nr_pages_to_update
;
1621 static void update_pages_handler(struct work_struct
*work
)
1623 struct ring_buffer_per_cpu
*cpu_buffer
= container_of(work
,
1624 struct ring_buffer_per_cpu
, update_pages_work
);
1625 rb_update_pages(cpu_buffer
);
1626 complete(&cpu_buffer
->update_done
);
1630 * ring_buffer_resize - resize the ring buffer
1631 * @buffer: the buffer to resize.
1632 * @size: the new size.
1633 * @cpu_id: the cpu buffer to resize
1635 * Minimum size is 2 * BUF_PAGE_SIZE.
1637 * Returns 0 on success and < 0 on failure.
1639 int ring_buffer_resize(struct ring_buffer
*buffer
, unsigned long size
,
1642 struct ring_buffer_per_cpu
*cpu_buffer
;
1647 * Always succeed at resizing a non-existent buffer:
1652 /* Make sure the requested buffer exists */
1653 if (cpu_id
!= RING_BUFFER_ALL_CPUS
&&
1654 !cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1657 size
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1658 size
*= BUF_PAGE_SIZE
;
1660 /* we need a minimum of two pages */
1661 if (size
< BUF_PAGE_SIZE
* 2)
1662 size
= BUF_PAGE_SIZE
* 2;
1664 nr_pages
= DIV_ROUND_UP(size
, BUF_PAGE_SIZE
);
1667 * Don't succeed if resizing is disabled, as a reader might be
1668 * manipulating the ring buffer and is expecting a sane state while
1671 if (atomic_read(&buffer
->resize_disabled
))
1674 /* prevent another thread from changing buffer sizes */
1675 mutex_lock(&buffer
->mutex
);
1677 if (cpu_id
== RING_BUFFER_ALL_CPUS
) {
1678 /* calculate the pages to update */
1679 for_each_buffer_cpu(buffer
, cpu
) {
1680 cpu_buffer
= buffer
->buffers
[cpu
];
1682 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1683 cpu_buffer
->nr_pages
;
1685 * nothing more to do for removing pages or no update
1687 if (cpu_buffer
->nr_pages_to_update
<= 0)
1690 * to add pages, make sure all new pages can be
1691 * allocated without receiving ENOMEM
1693 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1694 if (__rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1695 &cpu_buffer
->new_pages
, cpu
)) {
1696 /* not enough memory for new pages */
1704 * Fire off all the required work handlers
1705 * We can't schedule on offline CPUs, but it's not necessary
1706 * since we can change their buffer sizes without any race.
1708 for_each_buffer_cpu(buffer
, cpu
) {
1709 cpu_buffer
= buffer
->buffers
[cpu
];
1710 if (!cpu_buffer
->nr_pages_to_update
)
1713 /* Can't run something on an offline CPU. */
1714 if (!cpu_online(cpu
)) {
1715 rb_update_pages(cpu_buffer
);
1716 cpu_buffer
->nr_pages_to_update
= 0;
1718 schedule_work_on(cpu
,
1719 &cpu_buffer
->update_pages_work
);
1723 /* wait for all the updates to complete */
1724 for_each_buffer_cpu(buffer
, cpu
) {
1725 cpu_buffer
= buffer
->buffers
[cpu
];
1726 if (!cpu_buffer
->nr_pages_to_update
)
1729 if (cpu_online(cpu
))
1730 wait_for_completion(&cpu_buffer
->update_done
);
1731 cpu_buffer
->nr_pages_to_update
= 0;
1736 /* Make sure this CPU has been intitialized */
1737 if (!cpumask_test_cpu(cpu_id
, buffer
->cpumask
))
1740 cpu_buffer
= buffer
->buffers
[cpu_id
];
1742 if (nr_pages
== cpu_buffer
->nr_pages
)
1745 cpu_buffer
->nr_pages_to_update
= nr_pages
-
1746 cpu_buffer
->nr_pages
;
1748 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
1749 if (cpu_buffer
->nr_pages_to_update
> 0 &&
1750 __rb_allocate_pages(cpu_buffer
->nr_pages_to_update
,
1751 &cpu_buffer
->new_pages
, cpu_id
)) {
1758 /* Can't run something on an offline CPU. */
1759 if (!cpu_online(cpu_id
))
1760 rb_update_pages(cpu_buffer
);
1762 schedule_work_on(cpu_id
,
1763 &cpu_buffer
->update_pages_work
);
1764 wait_for_completion(&cpu_buffer
->update_done
);
1767 cpu_buffer
->nr_pages_to_update
= 0;
1773 * The ring buffer resize can happen with the ring buffer
1774 * enabled, so that the update disturbs the tracing as little
1775 * as possible. But if the buffer is disabled, we do not need
1776 * to worry about that, and we can take the time to verify
1777 * that the buffer is not corrupt.
1779 if (atomic_read(&buffer
->record_disabled
)) {
1780 atomic_inc(&buffer
->record_disabled
);
1782 * Even though the buffer was disabled, we must make sure
1783 * that it is truly disabled before calling rb_check_pages.
1784 * There could have been a race between checking
1785 * record_disable and incrementing it.
1787 synchronize_sched();
1788 for_each_buffer_cpu(buffer
, cpu
) {
1789 cpu_buffer
= buffer
->buffers
[cpu
];
1790 rb_check_pages(cpu_buffer
);
1792 atomic_dec(&buffer
->record_disabled
);
1795 mutex_unlock(&buffer
->mutex
);
1799 for_each_buffer_cpu(buffer
, cpu
) {
1800 struct buffer_page
*bpage
, *tmp
;
1802 cpu_buffer
= buffer
->buffers
[cpu
];
1803 cpu_buffer
->nr_pages_to_update
= 0;
1805 if (list_empty(&cpu_buffer
->new_pages
))
1808 list_for_each_entry_safe(bpage
, tmp
, &cpu_buffer
->new_pages
,
1810 list_del_init(&bpage
->list
);
1811 free_buffer_page(bpage
);
1814 mutex_unlock(&buffer
->mutex
);
1817 EXPORT_SYMBOL_GPL(ring_buffer_resize
);
1819 void ring_buffer_change_overwrite(struct ring_buffer
*buffer
, int val
)
1821 mutex_lock(&buffer
->mutex
);
1823 buffer
->flags
|= RB_FL_OVERWRITE
;
1825 buffer
->flags
&= ~RB_FL_OVERWRITE
;
1826 mutex_unlock(&buffer
->mutex
);
1828 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite
);
1830 static inline void *
1831 __rb_data_page_index(struct buffer_data_page
*bpage
, unsigned index
)
1833 return bpage
->data
+ index
;
1836 static inline void *__rb_page_index(struct buffer_page
*bpage
, unsigned index
)
1838 return bpage
->page
->data
+ index
;
1841 static inline struct ring_buffer_event
*
1842 rb_reader_event(struct ring_buffer_per_cpu
*cpu_buffer
)
1844 return __rb_page_index(cpu_buffer
->reader_page
,
1845 cpu_buffer
->reader_page
->read
);
1848 static inline struct ring_buffer_event
*
1849 rb_iter_head_event(struct ring_buffer_iter
*iter
)
1851 return __rb_page_index(iter
->head_page
, iter
->head
);
1854 static inline unsigned rb_page_commit(struct buffer_page
*bpage
)
1856 return local_read(&bpage
->page
->commit
);
1859 /* Size is determined by what has been committed */
1860 static inline unsigned rb_page_size(struct buffer_page
*bpage
)
1862 return rb_page_commit(bpage
);
1865 static inline unsigned
1866 rb_commit_index(struct ring_buffer_per_cpu
*cpu_buffer
)
1868 return rb_page_commit(cpu_buffer
->commit_page
);
1871 static inline unsigned
1872 rb_event_index(struct ring_buffer_event
*event
)
1874 unsigned long addr
= (unsigned long)event
;
1876 return (addr
& ~PAGE_MASK
) - BUF_PAGE_HDR_SIZE
;
1880 rb_event_is_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
1881 struct ring_buffer_event
*event
)
1883 unsigned long addr
= (unsigned long)event
;
1884 unsigned long index
;
1886 index
= rb_event_index(event
);
1889 return cpu_buffer
->commit_page
->page
== (void *)addr
&&
1890 rb_commit_index(cpu_buffer
) == index
;
1894 rb_set_commit_to_write(struct ring_buffer_per_cpu
*cpu_buffer
)
1896 unsigned long max_count
;
1899 * We only race with interrupts and NMIs on this CPU.
1900 * If we own the commit event, then we can commit
1901 * all others that interrupted us, since the interruptions
1902 * are in stack format (they finish before they come
1903 * back to us). This allows us to do a simple loop to
1904 * assign the commit to the tail.
1907 max_count
= cpu_buffer
->nr_pages
* 100;
1909 while (cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
) {
1910 if (RB_WARN_ON(cpu_buffer
, !(--max_count
)))
1912 if (RB_WARN_ON(cpu_buffer
,
1913 rb_is_reader_page(cpu_buffer
->tail_page
)))
1915 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1916 rb_page_write(cpu_buffer
->commit_page
));
1917 rb_inc_page(cpu_buffer
, &cpu_buffer
->commit_page
);
1918 cpu_buffer
->write_stamp
=
1919 cpu_buffer
->commit_page
->page
->time_stamp
;
1920 /* add barrier to keep gcc from optimizing too much */
1923 while (rb_commit_index(cpu_buffer
) !=
1924 rb_page_write(cpu_buffer
->commit_page
)) {
1926 local_set(&cpu_buffer
->commit_page
->page
->commit
,
1927 rb_page_write(cpu_buffer
->commit_page
));
1928 RB_WARN_ON(cpu_buffer
,
1929 local_read(&cpu_buffer
->commit_page
->page
->commit
) &
1934 /* again, keep gcc from optimizing */
1938 * If an interrupt came in just after the first while loop
1939 * and pushed the tail page forward, we will be left with
1940 * a dangling commit that will never go forward.
1942 if (unlikely(cpu_buffer
->commit_page
!= cpu_buffer
->tail_page
))
1946 static void rb_reset_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
1948 cpu_buffer
->read_stamp
= cpu_buffer
->reader_page
->page
->time_stamp
;
1949 cpu_buffer
->reader_page
->read
= 0;
1952 static void rb_inc_iter(struct ring_buffer_iter
*iter
)
1954 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
1957 * The iterator could be on the reader page (it starts there).
1958 * But the head could have moved, since the reader was
1959 * found. Check for this case and assign the iterator
1960 * to the head page instead of next.
1962 if (iter
->head_page
== cpu_buffer
->reader_page
)
1963 iter
->head_page
= rb_set_head_page(cpu_buffer
);
1965 rb_inc_page(cpu_buffer
, &iter
->head_page
);
1967 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
1971 /* Slow path, do not inline */
1972 static noinline
struct ring_buffer_event
*
1973 rb_add_time_stamp(struct ring_buffer_event
*event
, u64 delta
)
1975 event
->type_len
= RINGBUF_TYPE_TIME_EXTEND
;
1977 /* Not the first event on the page? */
1978 if (rb_event_index(event
)) {
1979 event
->time_delta
= delta
& TS_MASK
;
1980 event
->array
[0] = delta
>> TS_SHIFT
;
1982 /* nope, just zero it */
1983 event
->time_delta
= 0;
1984 event
->array
[0] = 0;
1987 return skip_time_extend(event
);
1991 * rb_update_event - update event type and data
1992 * @event: the event to update
1993 * @type: the type of event
1994 * @length: the size of the event field in the ring buffer
1996 * Update the type and data fields of the event. The length
1997 * is the actual size that is written to the ring buffer,
1998 * and with this, we can determine what to place into the
2002 rb_update_event(struct ring_buffer_per_cpu
*cpu_buffer
,
2003 struct ring_buffer_event
*event
, unsigned length
,
2004 int add_timestamp
, u64 delta
)
2006 /* Only a commit updates the timestamp */
2007 if (unlikely(!rb_event_is_commit(cpu_buffer
, event
)))
2011 * If we need to add a timestamp, then we
2012 * add it to the start of the resevered space.
2014 if (unlikely(add_timestamp
)) {
2015 event
= rb_add_time_stamp(event
, delta
);
2016 length
-= RB_LEN_TIME_EXTEND
;
2020 event
->time_delta
= delta
;
2021 length
-= RB_EVNT_HDR_SIZE
;
2022 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
) {
2023 event
->type_len
= 0;
2024 event
->array
[0] = length
;
2026 event
->type_len
= DIV_ROUND_UP(length
, RB_ALIGNMENT
);
2030 * rb_handle_head_page - writer hit the head page
2032 * Returns: +1 to retry page
2037 rb_handle_head_page(struct ring_buffer_per_cpu
*cpu_buffer
,
2038 struct buffer_page
*tail_page
,
2039 struct buffer_page
*next_page
)
2041 struct buffer_page
*new_head
;
2046 entries
= rb_page_entries(next_page
);
2049 * The hard part is here. We need to move the head
2050 * forward, and protect against both readers on
2051 * other CPUs and writers coming in via interrupts.
2053 type
= rb_head_page_set_update(cpu_buffer
, next_page
, tail_page
,
2057 * type can be one of four:
2058 * NORMAL - an interrupt already moved it for us
2059 * HEAD - we are the first to get here.
2060 * UPDATE - we are the interrupt interrupting
2062 * MOVED - a reader on another CPU moved the next
2063 * pointer to its reader page. Give up
2070 * We changed the head to UPDATE, thus
2071 * it is our responsibility to update
2074 local_add(entries
, &cpu_buffer
->overrun
);
2075 local_sub(BUF_PAGE_SIZE
, &cpu_buffer
->entries_bytes
);
2078 * The entries will be zeroed out when we move the
2082 /* still more to do */
2085 case RB_PAGE_UPDATE
:
2087 * This is an interrupt that interrupt the
2088 * previous update. Still more to do.
2091 case RB_PAGE_NORMAL
:
2093 * An interrupt came in before the update
2094 * and processed this for us.
2095 * Nothing left to do.
2100 * The reader is on another CPU and just did
2101 * a swap with our next_page.
2106 RB_WARN_ON(cpu_buffer
, 1); /* WTF??? */
2111 * Now that we are here, the old head pointer is
2112 * set to UPDATE. This will keep the reader from
2113 * swapping the head page with the reader page.
2114 * The reader (on another CPU) will spin till
2117 * We just need to protect against interrupts
2118 * doing the job. We will set the next pointer
2119 * to HEAD. After that, we set the old pointer
2120 * to NORMAL, but only if it was HEAD before.
2121 * otherwise we are an interrupt, and only
2122 * want the outer most commit to reset it.
2124 new_head
= next_page
;
2125 rb_inc_page(cpu_buffer
, &new_head
);
2127 ret
= rb_head_page_set_head(cpu_buffer
, new_head
, next_page
,
2131 * Valid returns are:
2132 * HEAD - an interrupt came in and already set it.
2133 * NORMAL - One of two things:
2134 * 1) We really set it.
2135 * 2) A bunch of interrupts came in and moved
2136 * the page forward again.
2140 case RB_PAGE_NORMAL
:
2144 RB_WARN_ON(cpu_buffer
, 1);
2149 * It is possible that an interrupt came in,
2150 * set the head up, then more interrupts came in
2151 * and moved it again. When we get back here,
2152 * the page would have been set to NORMAL but we
2153 * just set it back to HEAD.
2155 * How do you detect this? Well, if that happened
2156 * the tail page would have moved.
2158 if (ret
== RB_PAGE_NORMAL
) {
2160 * If the tail had moved passed next, then we need
2161 * to reset the pointer.
2163 if (cpu_buffer
->tail_page
!= tail_page
&&
2164 cpu_buffer
->tail_page
!= next_page
)
2165 rb_head_page_set_normal(cpu_buffer
, new_head
,
2171 * If this was the outer most commit (the one that
2172 * changed the original pointer from HEAD to UPDATE),
2173 * then it is up to us to reset it to NORMAL.
2175 if (type
== RB_PAGE_HEAD
) {
2176 ret
= rb_head_page_set_normal(cpu_buffer
, next_page
,
2179 if (RB_WARN_ON(cpu_buffer
,
2180 ret
!= RB_PAGE_UPDATE
))
2187 static unsigned rb_calculate_event_length(unsigned length
)
2189 struct ring_buffer_event event
; /* Used only for sizeof array */
2191 /* zero length can cause confusions */
2195 if (length
> RB_MAX_SMALL_DATA
|| RB_FORCE_8BYTE_ALIGNMENT
)
2196 length
+= sizeof(event
.array
[0]);
2198 length
+= RB_EVNT_HDR_SIZE
;
2199 length
= ALIGN(length
, RB_ARCH_ALIGNMENT
);
2205 rb_reset_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2206 struct buffer_page
*tail_page
,
2207 unsigned long tail
, unsigned long length
)
2209 struct ring_buffer_event
*event
;
2212 * Only the event that crossed the page boundary
2213 * must fill the old tail_page with padding.
2215 if (tail
>= BUF_PAGE_SIZE
) {
2217 * If the page was filled, then we still need
2218 * to update the real_end. Reset it to zero
2219 * and the reader will ignore it.
2221 if (tail
== BUF_PAGE_SIZE
)
2222 tail_page
->real_end
= 0;
2224 local_sub(length
, &tail_page
->write
);
2228 event
= __rb_page_index(tail_page
, tail
);
2229 kmemcheck_annotate_bitfield(event
, bitfield
);
2231 /* account for padding bytes */
2232 local_add(BUF_PAGE_SIZE
- tail
, &cpu_buffer
->entries_bytes
);
2235 * Save the original length to the meta data.
2236 * This will be used by the reader to add lost event
2239 tail_page
->real_end
= tail
;
2242 * If this event is bigger than the minimum size, then
2243 * we need to be careful that we don't subtract the
2244 * write counter enough to allow another writer to slip
2246 * We put in a discarded commit instead, to make sure
2247 * that this space is not used again.
2249 * If we are less than the minimum size, we don't need to
2252 if (tail
> (BUF_PAGE_SIZE
- RB_EVNT_MIN_SIZE
)) {
2253 /* No room for any events */
2255 /* Mark the rest of the page with padding */
2256 rb_event_set_padding(event
);
2258 /* Set the write back to the previous setting */
2259 local_sub(length
, &tail_page
->write
);
2263 /* Put in a discarded event */
2264 event
->array
[0] = (BUF_PAGE_SIZE
- tail
) - RB_EVNT_HDR_SIZE
;
2265 event
->type_len
= RINGBUF_TYPE_PADDING
;
2266 /* time delta must be non zero */
2267 event
->time_delta
= 1;
2269 /* Set write to end of buffer */
2270 length
= (tail
+ length
) - BUF_PAGE_SIZE
;
2271 local_sub(length
, &tail_page
->write
);
2275 * This is the slow path, force gcc not to inline it.
2277 static noinline
struct ring_buffer_event
*
2278 rb_move_tail(struct ring_buffer_per_cpu
*cpu_buffer
,
2279 unsigned long length
, unsigned long tail
,
2280 struct buffer_page
*tail_page
, u64 ts
)
2282 struct buffer_page
*commit_page
= cpu_buffer
->commit_page
;
2283 struct ring_buffer
*buffer
= cpu_buffer
->buffer
;
2284 struct buffer_page
*next_page
;
2287 next_page
= tail_page
;
2289 rb_inc_page(cpu_buffer
, &next_page
);
2292 * If for some reason, we had an interrupt storm that made
2293 * it all the way around the buffer, bail, and warn
2296 if (unlikely(next_page
== commit_page
)) {
2297 local_inc(&cpu_buffer
->commit_overrun
);
2302 * This is where the fun begins!
2304 * We are fighting against races between a reader that
2305 * could be on another CPU trying to swap its reader
2306 * page with the buffer head.
2308 * We are also fighting against interrupts coming in and
2309 * moving the head or tail on us as well.
2311 * If the next page is the head page then we have filled
2312 * the buffer, unless the commit page is still on the
2315 if (rb_is_head_page(cpu_buffer
, next_page
, &tail_page
->list
)) {
2318 * If the commit is not on the reader page, then
2319 * move the header page.
2321 if (!rb_is_reader_page(cpu_buffer
->commit_page
)) {
2323 * If we are not in overwrite mode,
2324 * this is easy, just stop here.
2326 if (!(buffer
->flags
& RB_FL_OVERWRITE
)) {
2327 local_inc(&cpu_buffer
->dropped_events
);
2331 ret
= rb_handle_head_page(cpu_buffer
,
2340 * We need to be careful here too. The
2341 * commit page could still be on the reader
2342 * page. We could have a small buffer, and
2343 * have filled up the buffer with events
2344 * from interrupts and such, and wrapped.
2346 * Note, if the tail page is also the on the
2347 * reader_page, we let it move out.
2349 if (unlikely((cpu_buffer
->commit_page
!=
2350 cpu_buffer
->tail_page
) &&
2351 (cpu_buffer
->commit_page
==
2352 cpu_buffer
->reader_page
))) {
2353 local_inc(&cpu_buffer
->commit_overrun
);
2359 ret
= rb_tail_page_update(cpu_buffer
, tail_page
, next_page
);
2362 * Nested commits always have zero deltas, so
2363 * just reread the time stamp
2365 ts
= rb_time_stamp(buffer
);
2366 next_page
->page
->time_stamp
= ts
;
2371 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2373 /* fail and let the caller try again */
2374 return ERR_PTR(-EAGAIN
);
2378 rb_reset_tail(cpu_buffer
, tail_page
, tail
, length
);
2383 static struct ring_buffer_event
*
2384 __rb_reserve_next(struct ring_buffer_per_cpu
*cpu_buffer
,
2385 unsigned long length
, u64 ts
,
2386 u64 delta
, int add_timestamp
)
2388 struct buffer_page
*tail_page
;
2389 struct ring_buffer_event
*event
;
2390 unsigned long tail
, write
;
2393 * If the time delta since the last event is too big to
2394 * hold in the time field of the event, then we append a
2395 * TIME EXTEND event ahead of the data event.
2397 if (unlikely(add_timestamp
))
2398 length
+= RB_LEN_TIME_EXTEND
;
2400 tail_page
= cpu_buffer
->tail_page
;
2401 write
= local_add_return(length
, &tail_page
->write
);
2403 /* set write to only the index of the write */
2404 write
&= RB_WRITE_MASK
;
2405 tail
= write
- length
;
2408 * If this is the first commit on the page, then it has the same
2409 * timestamp as the page itself.
2414 /* See if we shot pass the end of this buffer page */
2415 if (unlikely(write
> BUF_PAGE_SIZE
))
2416 return rb_move_tail(cpu_buffer
, length
, tail
,
2419 /* We reserved something on the buffer */
2421 event
= __rb_page_index(tail_page
, tail
);
2422 kmemcheck_annotate_bitfield(event
, bitfield
);
2423 rb_update_event(cpu_buffer
, event
, length
, add_timestamp
, delta
);
2425 local_inc(&tail_page
->entries
);
2428 * If this is the first commit on the page, then update
2432 tail_page
->page
->time_stamp
= ts
;
2434 /* account for these added bytes */
2435 local_add(length
, &cpu_buffer
->entries_bytes
);
2441 rb_try_to_discard(struct ring_buffer_per_cpu
*cpu_buffer
,
2442 struct ring_buffer_event
*event
)
2444 unsigned long new_index
, old_index
;
2445 struct buffer_page
*bpage
;
2446 unsigned long index
;
2449 new_index
= rb_event_index(event
);
2450 old_index
= new_index
+ rb_event_ts_length(event
);
2451 addr
= (unsigned long)event
;
2454 bpage
= cpu_buffer
->tail_page
;
2456 if (bpage
->page
== (void *)addr
&& rb_page_write(bpage
) == old_index
) {
2457 unsigned long write_mask
=
2458 local_read(&bpage
->write
) & ~RB_WRITE_MASK
;
2459 unsigned long event_length
= rb_event_length(event
);
2461 * This is on the tail page. It is possible that
2462 * a write could come in and move the tail page
2463 * and write to the next page. That is fine
2464 * because we just shorten what is on this page.
2466 old_index
+= write_mask
;
2467 new_index
+= write_mask
;
2468 index
= local_cmpxchg(&bpage
->write
, old_index
, new_index
);
2469 if (index
== old_index
) {
2470 /* update counters */
2471 local_sub(event_length
, &cpu_buffer
->entries_bytes
);
2476 /* could not discard */
2480 static void rb_start_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2482 local_inc(&cpu_buffer
->committing
);
2483 local_inc(&cpu_buffer
->commits
);
2486 static inline void rb_end_commit(struct ring_buffer_per_cpu
*cpu_buffer
)
2488 unsigned long commits
;
2490 if (RB_WARN_ON(cpu_buffer
,
2491 !local_read(&cpu_buffer
->committing
)))
2495 commits
= local_read(&cpu_buffer
->commits
);
2496 /* synchronize with interrupts */
2498 if (local_read(&cpu_buffer
->committing
) == 1)
2499 rb_set_commit_to_write(cpu_buffer
);
2501 local_dec(&cpu_buffer
->committing
);
2503 /* synchronize with interrupts */
2507 * Need to account for interrupts coming in between the
2508 * updating of the commit page and the clearing of the
2509 * committing counter.
2511 if (unlikely(local_read(&cpu_buffer
->commits
) != commits
) &&
2512 !local_read(&cpu_buffer
->committing
)) {
2513 local_inc(&cpu_buffer
->committing
);
2518 static struct ring_buffer_event
*
2519 rb_reserve_next_event(struct ring_buffer
*buffer
,
2520 struct ring_buffer_per_cpu
*cpu_buffer
,
2521 unsigned long length
)
2523 struct ring_buffer_event
*event
;
2529 rb_start_commit(cpu_buffer
);
2531 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2533 * Due to the ability to swap a cpu buffer from a buffer
2534 * it is possible it was swapped before we committed.
2535 * (committing stops a swap). We check for it here and
2536 * if it happened, we have to fail the write.
2539 if (unlikely(ACCESS_ONCE(cpu_buffer
->buffer
) != buffer
)) {
2540 local_dec(&cpu_buffer
->committing
);
2541 local_dec(&cpu_buffer
->commits
);
2546 length
= rb_calculate_event_length(length
);
2552 * We allow for interrupts to reenter here and do a trace.
2553 * If one does, it will cause this original code to loop
2554 * back here. Even with heavy interrupts happening, this
2555 * should only happen a few times in a row. If this happens
2556 * 1000 times in a row, there must be either an interrupt
2557 * storm or we have something buggy.
2560 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 1000))
2563 ts
= rb_time_stamp(cpu_buffer
->buffer
);
2564 diff
= ts
- cpu_buffer
->write_stamp
;
2566 /* make sure this diff is calculated here */
2569 /* Did the write stamp get updated already? */
2570 if (likely(ts
>= cpu_buffer
->write_stamp
)) {
2572 if (unlikely(test_time_stamp(delta
))) {
2573 int local_clock_stable
= 1;
2574 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
2575 local_clock_stable
= sched_clock_stable();
2577 WARN_ONCE(delta
> (1ULL << 59),
2578 KERN_WARNING
"Delta way too big! %llu ts=%llu write stamp = %llu\n%s",
2579 (unsigned long long)delta
,
2580 (unsigned long long)ts
,
2581 (unsigned long long)cpu_buffer
->write_stamp
,
2582 local_clock_stable
? "" :
2583 "If you just came from a suspend/resume,\n"
2584 "please switch to the trace global clock:\n"
2585 " echo global > /sys/kernel/debug/tracing/trace_clock\n");
2590 event
= __rb_reserve_next(cpu_buffer
, length
, ts
,
2591 delta
, add_timestamp
);
2592 if (unlikely(PTR_ERR(event
) == -EAGAIN
))
2601 rb_end_commit(cpu_buffer
);
2606 * The lock and unlock are done within a preempt disable section.
2607 * The current_context per_cpu variable can only be modified
2608 * by the current task between lock and unlock. But it can
2609 * be modified more than once via an interrupt. To pass this
2610 * information from the lock to the unlock without having to
2611 * access the 'in_interrupt()' functions again (which do show
2612 * a bit of overhead in something as critical as function tracing,
2613 * we use a bitmask trick.
2615 * bit 0 = NMI context
2616 * bit 1 = IRQ context
2617 * bit 2 = SoftIRQ context
2618 * bit 3 = normal context.
2620 * This works because this is the order of contexts that can
2621 * preempt other contexts. A SoftIRQ never preempts an IRQ
2624 * When the context is determined, the corresponding bit is
2625 * checked and set (if it was set, then a recursion of that context
2628 * On unlock, we need to clear this bit. To do so, just subtract
2629 * 1 from the current_context and AND it to itself.
2633 * 101 & 100 = 100 (clearing bit zero)
2636 * 1010 & 1001 = 1000 (clearing bit 1)
2638 * The least significant bit can be cleared this way, and it
2639 * just so happens that it is the same bit corresponding to
2640 * the current context.
2643 static __always_inline
int
2644 trace_recursive_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
2646 unsigned int val
= cpu_buffer
->current_context
;
2649 if (in_interrupt()) {
2655 bit
= RB_CTX_SOFTIRQ
;
2657 bit
= RB_CTX_NORMAL
;
2659 if (unlikely(val
& (1 << bit
)))
2663 cpu_buffer
->current_context
= val
;
2668 static __always_inline
void
2669 trace_recursive_unlock(struct ring_buffer_per_cpu
*cpu_buffer
)
2671 cpu_buffer
->current_context
&= cpu_buffer
->current_context
- 1;
2675 * ring_buffer_lock_reserve - reserve a part of the buffer
2676 * @buffer: the ring buffer to reserve from
2677 * @length: the length of the data to reserve (excluding event header)
2679 * Returns a reseverd event on the ring buffer to copy directly to.
2680 * The user of this interface will need to get the body to write into
2681 * and can use the ring_buffer_event_data() interface.
2683 * The length is the length of the data needed, not the event length
2684 * which also includes the event header.
2686 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2687 * If NULL is returned, then nothing has been allocated or locked.
2689 struct ring_buffer_event
*
2690 ring_buffer_lock_reserve(struct ring_buffer
*buffer
, unsigned long length
)
2692 struct ring_buffer_per_cpu
*cpu_buffer
;
2693 struct ring_buffer_event
*event
;
2696 /* If we are tracing schedule, we don't want to recurse */
2697 preempt_disable_notrace();
2699 if (unlikely(atomic_read(&buffer
->record_disabled
)))
2702 cpu
= raw_smp_processor_id();
2704 if (unlikely(!cpumask_test_cpu(cpu
, buffer
->cpumask
)))
2707 cpu_buffer
= buffer
->buffers
[cpu
];
2709 if (unlikely(atomic_read(&cpu_buffer
->record_disabled
)))
2712 if (unlikely(length
> BUF_MAX_DATA_SIZE
))
2715 if (unlikely(trace_recursive_lock(cpu_buffer
)))
2718 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2725 trace_recursive_unlock(cpu_buffer
);
2727 preempt_enable_notrace();
2730 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve
);
2733 rb_update_write_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
2734 struct ring_buffer_event
*event
)
2739 * The event first in the commit queue updates the
2742 if (rb_event_is_commit(cpu_buffer
, event
)) {
2744 * A commit event that is first on a page
2745 * updates the write timestamp with the page stamp
2747 if (!rb_event_index(event
))
2748 cpu_buffer
->write_stamp
=
2749 cpu_buffer
->commit_page
->page
->time_stamp
;
2750 else if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
) {
2751 delta
= event
->array
[0];
2753 delta
+= event
->time_delta
;
2754 cpu_buffer
->write_stamp
+= delta
;
2756 cpu_buffer
->write_stamp
+= event
->time_delta
;
2760 static void rb_commit(struct ring_buffer_per_cpu
*cpu_buffer
,
2761 struct ring_buffer_event
*event
)
2763 local_inc(&cpu_buffer
->entries
);
2764 rb_update_write_stamp(cpu_buffer
, event
);
2765 rb_end_commit(cpu_buffer
);
2768 static __always_inline
void
2769 rb_wakeups(struct ring_buffer
*buffer
, struct ring_buffer_per_cpu
*cpu_buffer
)
2773 if (buffer
->irq_work
.waiters_pending
) {
2774 buffer
->irq_work
.waiters_pending
= false;
2775 /* irq_work_queue() supplies it's own memory barriers */
2776 irq_work_queue(&buffer
->irq_work
.work
);
2779 if (cpu_buffer
->irq_work
.waiters_pending
) {
2780 cpu_buffer
->irq_work
.waiters_pending
= false;
2781 /* irq_work_queue() supplies it's own memory barriers */
2782 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2785 pagebusy
= cpu_buffer
->reader_page
== cpu_buffer
->commit_page
;
2787 if (!pagebusy
&& cpu_buffer
->irq_work
.full_waiters_pending
) {
2788 cpu_buffer
->irq_work
.wakeup_full
= true;
2789 cpu_buffer
->irq_work
.full_waiters_pending
= false;
2790 /* irq_work_queue() supplies it's own memory barriers */
2791 irq_work_queue(&cpu_buffer
->irq_work
.work
);
2796 * ring_buffer_unlock_commit - commit a reserved
2797 * @buffer: The buffer to commit to
2798 * @event: The event pointer to commit.
2800 * This commits the data to the ring buffer, and releases any locks held.
2802 * Must be paired with ring_buffer_lock_reserve.
2804 int ring_buffer_unlock_commit(struct ring_buffer
*buffer
,
2805 struct ring_buffer_event
*event
)
2807 struct ring_buffer_per_cpu
*cpu_buffer
;
2808 int cpu
= raw_smp_processor_id();
2810 cpu_buffer
= buffer
->buffers
[cpu
];
2812 rb_commit(cpu_buffer
, event
);
2814 rb_wakeups(buffer
, cpu_buffer
);
2816 trace_recursive_unlock(cpu_buffer
);
2818 preempt_enable_notrace();
2822 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit
);
2824 static inline void rb_event_discard(struct ring_buffer_event
*event
)
2826 if (event
->type_len
== RINGBUF_TYPE_TIME_EXTEND
)
2827 event
= skip_time_extend(event
);
2829 /* array[0] holds the actual length for the discarded event */
2830 event
->array
[0] = rb_event_data_length(event
) - RB_EVNT_HDR_SIZE
;
2831 event
->type_len
= RINGBUF_TYPE_PADDING
;
2832 /* time delta must be non zero */
2833 if (!event
->time_delta
)
2834 event
->time_delta
= 1;
2838 * Decrement the entries to the page that an event is on.
2839 * The event does not even need to exist, only the pointer
2840 * to the page it is on. This may only be called before the commit
2844 rb_decrement_entry(struct ring_buffer_per_cpu
*cpu_buffer
,
2845 struct ring_buffer_event
*event
)
2847 unsigned long addr
= (unsigned long)event
;
2848 struct buffer_page
*bpage
= cpu_buffer
->commit_page
;
2849 struct buffer_page
*start
;
2853 /* Do the likely case first */
2854 if (likely(bpage
->page
== (void *)addr
)) {
2855 local_dec(&bpage
->entries
);
2860 * Because the commit page may be on the reader page we
2861 * start with the next page and check the end loop there.
2863 rb_inc_page(cpu_buffer
, &bpage
);
2866 if (bpage
->page
== (void *)addr
) {
2867 local_dec(&bpage
->entries
);
2870 rb_inc_page(cpu_buffer
, &bpage
);
2871 } while (bpage
!= start
);
2873 /* commit not part of this buffer?? */
2874 RB_WARN_ON(cpu_buffer
, 1);
2878 * ring_buffer_commit_discard - discard an event that has not been committed
2879 * @buffer: the ring buffer
2880 * @event: non committed event to discard
2882 * Sometimes an event that is in the ring buffer needs to be ignored.
2883 * This function lets the user discard an event in the ring buffer
2884 * and then that event will not be read later.
2886 * This function only works if it is called before the the item has been
2887 * committed. It will try to free the event from the ring buffer
2888 * if another event has not been added behind it.
2890 * If another event has been added behind it, it will set the event
2891 * up as discarded, and perform the commit.
2893 * If this function is called, do not call ring_buffer_unlock_commit on
2896 void ring_buffer_discard_commit(struct ring_buffer
*buffer
,
2897 struct ring_buffer_event
*event
)
2899 struct ring_buffer_per_cpu
*cpu_buffer
;
2902 /* The event is discarded regardless */
2903 rb_event_discard(event
);
2905 cpu
= smp_processor_id();
2906 cpu_buffer
= buffer
->buffers
[cpu
];
2909 * This must only be called if the event has not been
2910 * committed yet. Thus we can assume that preemption
2911 * is still disabled.
2913 RB_WARN_ON(buffer
, !local_read(&cpu_buffer
->committing
));
2915 rb_decrement_entry(cpu_buffer
, event
);
2916 if (rb_try_to_discard(cpu_buffer
, event
))
2920 * The commit is still visible by the reader, so we
2921 * must still update the timestamp.
2923 rb_update_write_stamp(cpu_buffer
, event
);
2925 rb_end_commit(cpu_buffer
);
2927 trace_recursive_unlock(cpu_buffer
);
2929 preempt_enable_notrace();
2932 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit
);
2935 * ring_buffer_write - write data to the buffer without reserving
2936 * @buffer: The ring buffer to write to.
2937 * @length: The length of the data being written (excluding the event header)
2938 * @data: The data to write to the buffer.
2940 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2941 * one function. If you already have the data to write to the buffer, it
2942 * may be easier to simply call this function.
2944 * Note, like ring_buffer_lock_reserve, the length is the length of the data
2945 * and not the length of the event which would hold the header.
2947 int ring_buffer_write(struct ring_buffer
*buffer
,
2948 unsigned long length
,
2951 struct ring_buffer_per_cpu
*cpu_buffer
;
2952 struct ring_buffer_event
*event
;
2957 preempt_disable_notrace();
2959 if (atomic_read(&buffer
->record_disabled
))
2962 cpu
= raw_smp_processor_id();
2964 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
2967 cpu_buffer
= buffer
->buffers
[cpu
];
2969 if (atomic_read(&cpu_buffer
->record_disabled
))
2972 if (length
> BUF_MAX_DATA_SIZE
)
2975 if (unlikely(trace_recursive_lock(cpu_buffer
)))
2978 event
= rb_reserve_next_event(buffer
, cpu_buffer
, length
);
2982 body
= rb_event_data(event
);
2984 memcpy(body
, data
, length
);
2986 rb_commit(cpu_buffer
, event
);
2988 rb_wakeups(buffer
, cpu_buffer
);
2993 trace_recursive_unlock(cpu_buffer
);
2996 preempt_enable_notrace();
3000 EXPORT_SYMBOL_GPL(ring_buffer_write
);
3002 static int rb_per_cpu_empty(struct ring_buffer_per_cpu
*cpu_buffer
)
3004 struct buffer_page
*reader
= cpu_buffer
->reader_page
;
3005 struct buffer_page
*head
= rb_set_head_page(cpu_buffer
);
3006 struct buffer_page
*commit
= cpu_buffer
->commit_page
;
3008 /* In case of error, head will be NULL */
3009 if (unlikely(!head
))
3012 return reader
->read
== rb_page_commit(reader
) &&
3013 (commit
== reader
||
3015 head
->read
== rb_page_commit(commit
)));
3019 * ring_buffer_record_disable - stop all writes into the buffer
3020 * @buffer: The ring buffer to stop writes to.
3022 * This prevents all writes to the buffer. Any attempt to write
3023 * to the buffer after this will fail and return NULL.
3025 * The caller should call synchronize_sched() after this.
3027 void ring_buffer_record_disable(struct ring_buffer
*buffer
)
3029 atomic_inc(&buffer
->record_disabled
);
3031 EXPORT_SYMBOL_GPL(ring_buffer_record_disable
);
3034 * ring_buffer_record_enable - enable writes to the buffer
3035 * @buffer: The ring buffer to enable writes
3037 * Note, multiple disables will need the same number of enables
3038 * to truly enable the writing (much like preempt_disable).
3040 void ring_buffer_record_enable(struct ring_buffer
*buffer
)
3042 atomic_dec(&buffer
->record_disabled
);
3044 EXPORT_SYMBOL_GPL(ring_buffer_record_enable
);
3047 * ring_buffer_record_off - stop all writes into the buffer
3048 * @buffer: The ring buffer to stop writes to.
3050 * This prevents all writes to the buffer. Any attempt to write
3051 * to the buffer after this will fail and return NULL.
3053 * This is different than ring_buffer_record_disable() as
3054 * it works like an on/off switch, where as the disable() version
3055 * must be paired with a enable().
3057 void ring_buffer_record_off(struct ring_buffer
*buffer
)
3060 unsigned int new_rd
;
3063 rd
= atomic_read(&buffer
->record_disabled
);
3064 new_rd
= rd
| RB_BUFFER_OFF
;
3065 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3067 EXPORT_SYMBOL_GPL(ring_buffer_record_off
);
3070 * ring_buffer_record_on - restart writes into the buffer
3071 * @buffer: The ring buffer to start writes to.
3073 * This enables all writes to the buffer that was disabled by
3074 * ring_buffer_record_off().
3076 * This is different than ring_buffer_record_enable() as
3077 * it works like an on/off switch, where as the enable() version
3078 * must be paired with a disable().
3080 void ring_buffer_record_on(struct ring_buffer
*buffer
)
3083 unsigned int new_rd
;
3086 rd
= atomic_read(&buffer
->record_disabled
);
3087 new_rd
= rd
& ~RB_BUFFER_OFF
;
3088 } while (atomic_cmpxchg(&buffer
->record_disabled
, rd
, new_rd
) != rd
);
3090 EXPORT_SYMBOL_GPL(ring_buffer_record_on
);
3093 * ring_buffer_record_is_on - return true if the ring buffer can write
3094 * @buffer: The ring buffer to see if write is enabled
3096 * Returns true if the ring buffer is in a state that it accepts writes.
3098 int ring_buffer_record_is_on(struct ring_buffer
*buffer
)
3100 return !atomic_read(&buffer
->record_disabled
);
3104 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
3105 * @buffer: The ring buffer to stop writes to.
3106 * @cpu: The CPU buffer to stop
3108 * This prevents all writes to the buffer. Any attempt to write
3109 * to the buffer after this will fail and return NULL.
3111 * The caller should call synchronize_sched() after this.
3113 void ring_buffer_record_disable_cpu(struct ring_buffer
*buffer
, int cpu
)
3115 struct ring_buffer_per_cpu
*cpu_buffer
;
3117 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3120 cpu_buffer
= buffer
->buffers
[cpu
];
3121 atomic_inc(&cpu_buffer
->record_disabled
);
3123 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu
);
3126 * ring_buffer_record_enable_cpu - enable writes to the buffer
3127 * @buffer: The ring buffer to enable writes
3128 * @cpu: The CPU to enable.
3130 * Note, multiple disables will need the same number of enables
3131 * to truly enable the writing (much like preempt_disable).
3133 void ring_buffer_record_enable_cpu(struct ring_buffer
*buffer
, int cpu
)
3135 struct ring_buffer_per_cpu
*cpu_buffer
;
3137 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3140 cpu_buffer
= buffer
->buffers
[cpu
];
3141 atomic_dec(&cpu_buffer
->record_disabled
);
3143 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu
);
3146 * The total entries in the ring buffer is the running counter
3147 * of entries entered into the ring buffer, minus the sum of
3148 * the entries read from the ring buffer and the number of
3149 * entries that were overwritten.
3151 static inline unsigned long
3152 rb_num_of_entries(struct ring_buffer_per_cpu
*cpu_buffer
)
3154 return local_read(&cpu_buffer
->entries
) -
3155 (local_read(&cpu_buffer
->overrun
) + cpu_buffer
->read
);
3159 * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
3160 * @buffer: The ring buffer
3161 * @cpu: The per CPU buffer to read from.
3163 u64
ring_buffer_oldest_event_ts(struct ring_buffer
*buffer
, int cpu
)
3165 unsigned long flags
;
3166 struct ring_buffer_per_cpu
*cpu_buffer
;
3167 struct buffer_page
*bpage
;
3170 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3173 cpu_buffer
= buffer
->buffers
[cpu
];
3174 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3176 * if the tail is on reader_page, oldest time stamp is on the reader
3179 if (cpu_buffer
->tail_page
== cpu_buffer
->reader_page
)
3180 bpage
= cpu_buffer
->reader_page
;
3182 bpage
= rb_set_head_page(cpu_buffer
);
3184 ret
= bpage
->page
->time_stamp
;
3185 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3189 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts
);
3192 * ring_buffer_bytes_cpu - get the number of bytes consumed in a cpu buffer
3193 * @buffer: The ring buffer
3194 * @cpu: The per CPU buffer to read from.
3196 unsigned long ring_buffer_bytes_cpu(struct ring_buffer
*buffer
, int cpu
)
3198 struct ring_buffer_per_cpu
*cpu_buffer
;
3201 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3204 cpu_buffer
= buffer
->buffers
[cpu
];
3205 ret
= local_read(&cpu_buffer
->entries_bytes
) - cpu_buffer
->read_bytes
;
3209 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu
);
3212 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
3213 * @buffer: The ring buffer
3214 * @cpu: The per CPU buffer to get the entries from.
3216 unsigned long ring_buffer_entries_cpu(struct ring_buffer
*buffer
, int cpu
)
3218 struct ring_buffer_per_cpu
*cpu_buffer
;
3220 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3223 cpu_buffer
= buffer
->buffers
[cpu
];
3225 return rb_num_of_entries(cpu_buffer
);
3227 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu
);
3230 * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
3231 * buffer wrapping around (only if RB_FL_OVERWRITE is on).
3232 * @buffer: The ring buffer
3233 * @cpu: The per CPU buffer to get the number of overruns from
3235 unsigned long ring_buffer_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3237 struct ring_buffer_per_cpu
*cpu_buffer
;
3240 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3243 cpu_buffer
= buffer
->buffers
[cpu
];
3244 ret
= local_read(&cpu_buffer
->overrun
);
3248 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu
);
3251 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
3252 * commits failing due to the buffer wrapping around while there are uncommitted
3253 * events, such as during an interrupt storm.
3254 * @buffer: The ring buffer
3255 * @cpu: The per CPU buffer to get the number of overruns from
3258 ring_buffer_commit_overrun_cpu(struct ring_buffer
*buffer
, int cpu
)
3260 struct ring_buffer_per_cpu
*cpu_buffer
;
3263 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3266 cpu_buffer
= buffer
->buffers
[cpu
];
3267 ret
= local_read(&cpu_buffer
->commit_overrun
);
3271 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu
);
3274 * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
3275 * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
3276 * @buffer: The ring buffer
3277 * @cpu: The per CPU buffer to get the number of overruns from
3280 ring_buffer_dropped_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3282 struct ring_buffer_per_cpu
*cpu_buffer
;
3285 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3288 cpu_buffer
= buffer
->buffers
[cpu
];
3289 ret
= local_read(&cpu_buffer
->dropped_events
);
3293 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu
);
3296 * ring_buffer_read_events_cpu - get the number of events successfully read
3297 * @buffer: The ring buffer
3298 * @cpu: The per CPU buffer to get the number of events read
3301 ring_buffer_read_events_cpu(struct ring_buffer
*buffer
, int cpu
)
3303 struct ring_buffer_per_cpu
*cpu_buffer
;
3305 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3308 cpu_buffer
= buffer
->buffers
[cpu
];
3309 return cpu_buffer
->read
;
3311 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu
);
3314 * ring_buffer_entries - get the number of entries in a buffer
3315 * @buffer: The ring buffer
3317 * Returns the total number of entries in the ring buffer
3320 unsigned long ring_buffer_entries(struct ring_buffer
*buffer
)
3322 struct ring_buffer_per_cpu
*cpu_buffer
;
3323 unsigned long entries
= 0;
3326 /* if you care about this being correct, lock the buffer */
3327 for_each_buffer_cpu(buffer
, cpu
) {
3328 cpu_buffer
= buffer
->buffers
[cpu
];
3329 entries
+= rb_num_of_entries(cpu_buffer
);
3334 EXPORT_SYMBOL_GPL(ring_buffer_entries
);
3337 * ring_buffer_overruns - get the number of overruns in buffer
3338 * @buffer: The ring buffer
3340 * Returns the total number of overruns in the ring buffer
3343 unsigned long ring_buffer_overruns(struct ring_buffer
*buffer
)
3345 struct ring_buffer_per_cpu
*cpu_buffer
;
3346 unsigned long overruns
= 0;
3349 /* if you care about this being correct, lock the buffer */
3350 for_each_buffer_cpu(buffer
, cpu
) {
3351 cpu_buffer
= buffer
->buffers
[cpu
];
3352 overruns
+= local_read(&cpu_buffer
->overrun
);
3357 EXPORT_SYMBOL_GPL(ring_buffer_overruns
);
3359 static void rb_iter_reset(struct ring_buffer_iter
*iter
)
3361 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3363 /* Iterator usage is expected to have record disabled */
3364 iter
->head_page
= cpu_buffer
->reader_page
;
3365 iter
->head
= cpu_buffer
->reader_page
->read
;
3367 iter
->cache_reader_page
= iter
->head_page
;
3368 iter
->cache_read
= cpu_buffer
->read
;
3371 iter
->read_stamp
= cpu_buffer
->read_stamp
;
3373 iter
->read_stamp
= iter
->head_page
->page
->time_stamp
;
3377 * ring_buffer_iter_reset - reset an iterator
3378 * @iter: The iterator to reset
3380 * Resets the iterator, so that it will start from the beginning
3383 void ring_buffer_iter_reset(struct ring_buffer_iter
*iter
)
3385 struct ring_buffer_per_cpu
*cpu_buffer
;
3386 unsigned long flags
;
3391 cpu_buffer
= iter
->cpu_buffer
;
3393 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3394 rb_iter_reset(iter
);
3395 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3397 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset
);
3400 * ring_buffer_iter_empty - check if an iterator has no more to read
3401 * @iter: The iterator to check
3403 int ring_buffer_iter_empty(struct ring_buffer_iter
*iter
)
3405 struct ring_buffer_per_cpu
*cpu_buffer
;
3407 cpu_buffer
= iter
->cpu_buffer
;
3409 return iter
->head_page
== cpu_buffer
->commit_page
&&
3410 iter
->head
== rb_commit_index(cpu_buffer
);
3412 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty
);
3415 rb_update_read_stamp(struct ring_buffer_per_cpu
*cpu_buffer
,
3416 struct ring_buffer_event
*event
)
3420 switch (event
->type_len
) {
3421 case RINGBUF_TYPE_PADDING
:
3424 case RINGBUF_TYPE_TIME_EXTEND
:
3425 delta
= event
->array
[0];
3427 delta
+= event
->time_delta
;
3428 cpu_buffer
->read_stamp
+= delta
;
3431 case RINGBUF_TYPE_TIME_STAMP
:
3432 /* FIXME: not implemented */
3435 case RINGBUF_TYPE_DATA
:
3436 cpu_buffer
->read_stamp
+= event
->time_delta
;
3446 rb_update_iter_read_stamp(struct ring_buffer_iter
*iter
,
3447 struct ring_buffer_event
*event
)
3451 switch (event
->type_len
) {
3452 case RINGBUF_TYPE_PADDING
:
3455 case RINGBUF_TYPE_TIME_EXTEND
:
3456 delta
= event
->array
[0];
3458 delta
+= event
->time_delta
;
3459 iter
->read_stamp
+= delta
;
3462 case RINGBUF_TYPE_TIME_STAMP
:
3463 /* FIXME: not implemented */
3466 case RINGBUF_TYPE_DATA
:
3467 iter
->read_stamp
+= event
->time_delta
;
3476 static struct buffer_page
*
3477 rb_get_reader_page(struct ring_buffer_per_cpu
*cpu_buffer
)
3479 struct buffer_page
*reader
= NULL
;
3480 unsigned long overwrite
;
3481 unsigned long flags
;
3485 local_irq_save(flags
);
3486 arch_spin_lock(&cpu_buffer
->lock
);
3490 * This should normally only loop twice. But because the
3491 * start of the reader inserts an empty page, it causes
3492 * a case where we will loop three times. There should be no
3493 * reason to loop four times (that I know of).
3495 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3)) {
3500 reader
= cpu_buffer
->reader_page
;
3502 /* If there's more to read, return this page */
3503 if (cpu_buffer
->reader_page
->read
< rb_page_size(reader
))
3506 /* Never should we have an index greater than the size */
3507 if (RB_WARN_ON(cpu_buffer
,
3508 cpu_buffer
->reader_page
->read
> rb_page_size(reader
)))
3511 /* check if we caught up to the tail */
3513 if (cpu_buffer
->commit_page
== cpu_buffer
->reader_page
)
3516 /* Don't bother swapping if the ring buffer is empty */
3517 if (rb_num_of_entries(cpu_buffer
) == 0)
3521 * Reset the reader page to size zero.
3523 local_set(&cpu_buffer
->reader_page
->write
, 0);
3524 local_set(&cpu_buffer
->reader_page
->entries
, 0);
3525 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
3526 cpu_buffer
->reader_page
->real_end
= 0;
3530 * Splice the empty reader page into the list around the head.
3532 reader
= rb_set_head_page(cpu_buffer
);
3535 cpu_buffer
->reader_page
->list
.next
= rb_list_head(reader
->list
.next
);
3536 cpu_buffer
->reader_page
->list
.prev
= reader
->list
.prev
;
3539 * cpu_buffer->pages just needs to point to the buffer, it
3540 * has no specific buffer page to point to. Lets move it out
3541 * of our way so we don't accidentally swap it.
3543 cpu_buffer
->pages
= reader
->list
.prev
;
3545 /* The reader page will be pointing to the new head */
3546 rb_set_list_to_head(cpu_buffer
, &cpu_buffer
->reader_page
->list
);
3549 * We want to make sure we read the overruns after we set up our
3550 * pointers to the next object. The writer side does a
3551 * cmpxchg to cross pages which acts as the mb on the writer
3552 * side. Note, the reader will constantly fail the swap
3553 * while the writer is updating the pointers, so this
3554 * guarantees that the overwrite recorded here is the one we
3555 * want to compare with the last_overrun.
3558 overwrite
= local_read(&(cpu_buffer
->overrun
));
3561 * Here's the tricky part.
3563 * We need to move the pointer past the header page.
3564 * But we can only do that if a writer is not currently
3565 * moving it. The page before the header page has the
3566 * flag bit '1' set if it is pointing to the page we want.
3567 * but if the writer is in the process of moving it
3568 * than it will be '2' or already moved '0'.
3571 ret
= rb_head_page_replace(reader
, cpu_buffer
->reader_page
);
3574 * If we did not convert it, then we must try again.
3580 * Yeah! We succeeded in replacing the page.
3582 * Now make the new head point back to the reader page.
3584 rb_list_head(reader
->list
.next
)->prev
= &cpu_buffer
->reader_page
->list
;
3585 rb_inc_page(cpu_buffer
, &cpu_buffer
->head_page
);
3587 /* Finally update the reader page to the new head */
3588 cpu_buffer
->reader_page
= reader
;
3589 rb_reset_reader_page(cpu_buffer
);
3591 if (overwrite
!= cpu_buffer
->last_overrun
) {
3592 cpu_buffer
->lost_events
= overwrite
- cpu_buffer
->last_overrun
;
3593 cpu_buffer
->last_overrun
= overwrite
;
3599 arch_spin_unlock(&cpu_buffer
->lock
);
3600 local_irq_restore(flags
);
3605 static void rb_advance_reader(struct ring_buffer_per_cpu
*cpu_buffer
)
3607 struct ring_buffer_event
*event
;
3608 struct buffer_page
*reader
;
3611 reader
= rb_get_reader_page(cpu_buffer
);
3613 /* This function should not be called when buffer is empty */
3614 if (RB_WARN_ON(cpu_buffer
, !reader
))
3617 event
= rb_reader_event(cpu_buffer
);
3619 if (event
->type_len
<= RINGBUF_TYPE_DATA_TYPE_LEN_MAX
)
3622 rb_update_read_stamp(cpu_buffer
, event
);
3624 length
= rb_event_length(event
);
3625 cpu_buffer
->reader_page
->read
+= length
;
3628 static void rb_advance_iter(struct ring_buffer_iter
*iter
)
3630 struct ring_buffer_per_cpu
*cpu_buffer
;
3631 struct ring_buffer_event
*event
;
3634 cpu_buffer
= iter
->cpu_buffer
;
3637 * Check if we are at the end of the buffer.
3639 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3640 /* discarded commits can make the page empty */
3641 if (iter
->head_page
== cpu_buffer
->commit_page
)
3647 event
= rb_iter_head_event(iter
);
3649 length
= rb_event_length(event
);
3652 * This should not be called to advance the header if we are
3653 * at the tail of the buffer.
3655 if (RB_WARN_ON(cpu_buffer
,
3656 (iter
->head_page
== cpu_buffer
->commit_page
) &&
3657 (iter
->head
+ length
> rb_commit_index(cpu_buffer
))))
3660 rb_update_iter_read_stamp(iter
, event
);
3662 iter
->head
+= length
;
3664 /* check for end of page padding */
3665 if ((iter
->head
>= rb_page_size(iter
->head_page
)) &&
3666 (iter
->head_page
!= cpu_buffer
->commit_page
))
3670 static int rb_lost_events(struct ring_buffer_per_cpu
*cpu_buffer
)
3672 return cpu_buffer
->lost_events
;
3675 static struct ring_buffer_event
*
3676 rb_buffer_peek(struct ring_buffer_per_cpu
*cpu_buffer
, u64
*ts
,
3677 unsigned long *lost_events
)
3679 struct ring_buffer_event
*event
;
3680 struct buffer_page
*reader
;
3685 * We repeat when a time extend is encountered.
3686 * Since the time extend is always attached to a data event,
3687 * we should never loop more than once.
3688 * (We never hit the following condition more than twice).
3690 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 2))
3693 reader
= rb_get_reader_page(cpu_buffer
);
3697 event
= rb_reader_event(cpu_buffer
);
3699 switch (event
->type_len
) {
3700 case RINGBUF_TYPE_PADDING
:
3701 if (rb_null_event(event
))
3702 RB_WARN_ON(cpu_buffer
, 1);
3704 * Because the writer could be discarding every
3705 * event it creates (which would probably be bad)
3706 * if we were to go back to "again" then we may never
3707 * catch up, and will trigger the warn on, or lock
3708 * the box. Return the padding, and we will release
3709 * the current locks, and try again.
3713 case RINGBUF_TYPE_TIME_EXTEND
:
3714 /* Internal data, OK to advance */
3715 rb_advance_reader(cpu_buffer
);
3718 case RINGBUF_TYPE_TIME_STAMP
:
3719 /* FIXME: not implemented */
3720 rb_advance_reader(cpu_buffer
);
3723 case RINGBUF_TYPE_DATA
:
3725 *ts
= cpu_buffer
->read_stamp
+ event
->time_delta
;
3726 ring_buffer_normalize_time_stamp(cpu_buffer
->buffer
,
3727 cpu_buffer
->cpu
, ts
);
3730 *lost_events
= rb_lost_events(cpu_buffer
);
3739 EXPORT_SYMBOL_GPL(ring_buffer_peek
);
3741 static struct ring_buffer_event
*
3742 rb_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3744 struct ring_buffer
*buffer
;
3745 struct ring_buffer_per_cpu
*cpu_buffer
;
3746 struct ring_buffer_event
*event
;
3749 cpu_buffer
= iter
->cpu_buffer
;
3750 buffer
= cpu_buffer
->buffer
;
3753 * Check if someone performed a consuming read to
3754 * the buffer. A consuming read invalidates the iterator
3755 * and we need to reset the iterator in this case.
3757 if (unlikely(iter
->cache_read
!= cpu_buffer
->read
||
3758 iter
->cache_reader_page
!= cpu_buffer
->reader_page
))
3759 rb_iter_reset(iter
);
3762 if (ring_buffer_iter_empty(iter
))
3766 * We repeat when a time extend is encountered or we hit
3767 * the end of the page. Since the time extend is always attached
3768 * to a data event, we should never loop more than three times.
3769 * Once for going to next page, once on time extend, and
3770 * finally once to get the event.
3771 * (We never hit the following condition more than thrice).
3773 if (RB_WARN_ON(cpu_buffer
, ++nr_loops
> 3))
3776 if (rb_per_cpu_empty(cpu_buffer
))
3779 if (iter
->head
>= rb_page_size(iter
->head_page
)) {
3784 event
= rb_iter_head_event(iter
);
3786 switch (event
->type_len
) {
3787 case RINGBUF_TYPE_PADDING
:
3788 if (rb_null_event(event
)) {
3792 rb_advance_iter(iter
);
3795 case RINGBUF_TYPE_TIME_EXTEND
:
3796 /* Internal data, OK to advance */
3797 rb_advance_iter(iter
);
3800 case RINGBUF_TYPE_TIME_STAMP
:
3801 /* FIXME: not implemented */
3802 rb_advance_iter(iter
);
3805 case RINGBUF_TYPE_DATA
:
3807 *ts
= iter
->read_stamp
+ event
->time_delta
;
3808 ring_buffer_normalize_time_stamp(buffer
,
3809 cpu_buffer
->cpu
, ts
);
3819 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek
);
3821 static inline bool rb_reader_lock(struct ring_buffer_per_cpu
*cpu_buffer
)
3823 if (likely(!in_nmi())) {
3824 raw_spin_lock(&cpu_buffer
->reader_lock
);
3829 * If an NMI die dumps out the content of the ring buffer
3830 * trylock must be used to prevent a deadlock if the NMI
3831 * preempted a task that holds the ring buffer locks. If
3832 * we get the lock then all is fine, if not, then continue
3833 * to do the read, but this can corrupt the ring buffer,
3834 * so it must be permanently disabled from future writes.
3835 * Reading from NMI is a oneshot deal.
3837 if (raw_spin_trylock(&cpu_buffer
->reader_lock
))
3840 /* Continue without locking, but disable the ring buffer */
3841 atomic_inc(&cpu_buffer
->record_disabled
);
3846 rb_reader_unlock(struct ring_buffer_per_cpu
*cpu_buffer
, bool locked
)
3849 raw_spin_unlock(&cpu_buffer
->reader_lock
);
3854 * ring_buffer_peek - peek at the next event to be read
3855 * @buffer: The ring buffer to read
3856 * @cpu: The cpu to peak at
3857 * @ts: The timestamp counter of this event.
3858 * @lost_events: a variable to store if events were lost (may be NULL)
3860 * This will return the event that will be read next, but does
3861 * not consume the data.
3863 struct ring_buffer_event
*
3864 ring_buffer_peek(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3865 unsigned long *lost_events
)
3867 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
3868 struct ring_buffer_event
*event
;
3869 unsigned long flags
;
3872 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3876 local_irq_save(flags
);
3877 dolock
= rb_reader_lock(cpu_buffer
);
3878 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3879 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3880 rb_advance_reader(cpu_buffer
);
3881 rb_reader_unlock(cpu_buffer
, dolock
);
3882 local_irq_restore(flags
);
3884 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3891 * ring_buffer_iter_peek - peek at the next event to be read
3892 * @iter: The ring buffer iterator
3893 * @ts: The timestamp counter of this event.
3895 * This will return the event that will be read next, but does
3896 * not increment the iterator.
3898 struct ring_buffer_event
*
3899 ring_buffer_iter_peek(struct ring_buffer_iter
*iter
, u64
*ts
)
3901 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
3902 struct ring_buffer_event
*event
;
3903 unsigned long flags
;
3906 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
3907 event
= rb_iter_peek(iter
, ts
);
3908 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
3910 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3917 * ring_buffer_consume - return an event and consume it
3918 * @buffer: The ring buffer to get the next event from
3919 * @cpu: the cpu to read the buffer from
3920 * @ts: a variable to store the timestamp (may be NULL)
3921 * @lost_events: a variable to store if events were lost (may be NULL)
3923 * Returns the next event in the ring buffer, and that event is consumed.
3924 * Meaning, that sequential reads will keep returning a different event,
3925 * and eventually empty the ring buffer if the producer is slower.
3927 struct ring_buffer_event
*
3928 ring_buffer_consume(struct ring_buffer
*buffer
, int cpu
, u64
*ts
,
3929 unsigned long *lost_events
)
3931 struct ring_buffer_per_cpu
*cpu_buffer
;
3932 struct ring_buffer_event
*event
= NULL
;
3933 unsigned long flags
;
3937 /* might be called in atomic */
3940 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3943 cpu_buffer
= buffer
->buffers
[cpu
];
3944 local_irq_save(flags
);
3945 dolock
= rb_reader_lock(cpu_buffer
);
3947 event
= rb_buffer_peek(cpu_buffer
, ts
, lost_events
);
3949 cpu_buffer
->lost_events
= 0;
3950 rb_advance_reader(cpu_buffer
);
3953 rb_reader_unlock(cpu_buffer
, dolock
);
3954 local_irq_restore(flags
);
3959 if (event
&& event
->type_len
== RINGBUF_TYPE_PADDING
)
3964 EXPORT_SYMBOL_GPL(ring_buffer_consume
);
3967 * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
3968 * @buffer: The ring buffer to read from
3969 * @cpu: The cpu buffer to iterate over
3971 * This performs the initial preparations necessary to iterate
3972 * through the buffer. Memory is allocated, buffer recording
3973 * is disabled, and the iterator pointer is returned to the caller.
3975 * Disabling buffer recordng prevents the reading from being
3976 * corrupted. This is not a consuming read, so a producer is not
3979 * After a sequence of ring_buffer_read_prepare calls, the user is
3980 * expected to make at least one call to ring_buffer_read_prepare_sync.
3981 * Afterwards, ring_buffer_read_start is invoked to get things going
3984 * This overall must be paired with ring_buffer_read_finish.
3986 struct ring_buffer_iter
*
3987 ring_buffer_read_prepare(struct ring_buffer
*buffer
, int cpu
)
3989 struct ring_buffer_per_cpu
*cpu_buffer
;
3990 struct ring_buffer_iter
*iter
;
3992 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
3995 iter
= kmalloc(sizeof(*iter
), GFP_KERNEL
);
3999 cpu_buffer
= buffer
->buffers
[cpu
];
4001 iter
->cpu_buffer
= cpu_buffer
;
4003 atomic_inc(&buffer
->resize_disabled
);
4004 atomic_inc(&cpu_buffer
->record_disabled
);
4008 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare
);
4011 * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
4013 * All previously invoked ring_buffer_read_prepare calls to prepare
4014 * iterators will be synchronized. Afterwards, read_buffer_read_start
4015 * calls on those iterators are allowed.
4018 ring_buffer_read_prepare_sync(void)
4020 synchronize_sched();
4022 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync
);
4025 * ring_buffer_read_start - start a non consuming read of the buffer
4026 * @iter: The iterator returned by ring_buffer_read_prepare
4028 * This finalizes the startup of an iteration through the buffer.
4029 * The iterator comes from a call to ring_buffer_read_prepare and
4030 * an intervening ring_buffer_read_prepare_sync must have been
4033 * Must be paired with ring_buffer_read_finish.
4036 ring_buffer_read_start(struct ring_buffer_iter
*iter
)
4038 struct ring_buffer_per_cpu
*cpu_buffer
;
4039 unsigned long flags
;
4044 cpu_buffer
= iter
->cpu_buffer
;
4046 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4047 arch_spin_lock(&cpu_buffer
->lock
);
4048 rb_iter_reset(iter
);
4049 arch_spin_unlock(&cpu_buffer
->lock
);
4050 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4052 EXPORT_SYMBOL_GPL(ring_buffer_read_start
);
4055 * ring_buffer_read_finish - finish reading the iterator of the buffer
4056 * @iter: The iterator retrieved by ring_buffer_start
4058 * This re-enables the recording to the buffer, and frees the
4062 ring_buffer_read_finish(struct ring_buffer_iter
*iter
)
4064 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4065 unsigned long flags
;
4068 * Ring buffer is disabled from recording, here's a good place
4069 * to check the integrity of the ring buffer.
4070 * Must prevent readers from trying to read, as the check
4071 * clears the HEAD page and readers require it.
4073 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4074 rb_check_pages(cpu_buffer
);
4075 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4077 atomic_dec(&cpu_buffer
->record_disabled
);
4078 atomic_dec(&cpu_buffer
->buffer
->resize_disabled
);
4081 EXPORT_SYMBOL_GPL(ring_buffer_read_finish
);
4084 * ring_buffer_read - read the next item in the ring buffer by the iterator
4085 * @iter: The ring buffer iterator
4086 * @ts: The time stamp of the event read.
4088 * This reads the next event in the ring buffer and increments the iterator.
4090 struct ring_buffer_event
*
4091 ring_buffer_read(struct ring_buffer_iter
*iter
, u64
*ts
)
4093 struct ring_buffer_event
*event
;
4094 struct ring_buffer_per_cpu
*cpu_buffer
= iter
->cpu_buffer
;
4095 unsigned long flags
;
4097 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4099 event
= rb_iter_peek(iter
, ts
);
4103 if (event
->type_len
== RINGBUF_TYPE_PADDING
)
4106 rb_advance_iter(iter
);
4108 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4112 EXPORT_SYMBOL_GPL(ring_buffer_read
);
4115 * ring_buffer_size - return the size of the ring buffer (in bytes)
4116 * @buffer: The ring buffer.
4118 unsigned long ring_buffer_size(struct ring_buffer
*buffer
, int cpu
)
4121 * Earlier, this method returned
4122 * BUF_PAGE_SIZE * buffer->nr_pages
4123 * Since the nr_pages field is now removed, we have converted this to
4124 * return the per cpu buffer value.
4126 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4129 return BUF_PAGE_SIZE
* buffer
->buffers
[cpu
]->nr_pages
;
4131 EXPORT_SYMBOL_GPL(ring_buffer_size
);
4134 rb_reset_cpu(struct ring_buffer_per_cpu
*cpu_buffer
)
4136 rb_head_page_deactivate(cpu_buffer
);
4138 cpu_buffer
->head_page
4139 = list_entry(cpu_buffer
->pages
, struct buffer_page
, list
);
4140 local_set(&cpu_buffer
->head_page
->write
, 0);
4141 local_set(&cpu_buffer
->head_page
->entries
, 0);
4142 local_set(&cpu_buffer
->head_page
->page
->commit
, 0);
4144 cpu_buffer
->head_page
->read
= 0;
4146 cpu_buffer
->tail_page
= cpu_buffer
->head_page
;
4147 cpu_buffer
->commit_page
= cpu_buffer
->head_page
;
4149 INIT_LIST_HEAD(&cpu_buffer
->reader_page
->list
);
4150 INIT_LIST_HEAD(&cpu_buffer
->new_pages
);
4151 local_set(&cpu_buffer
->reader_page
->write
, 0);
4152 local_set(&cpu_buffer
->reader_page
->entries
, 0);
4153 local_set(&cpu_buffer
->reader_page
->page
->commit
, 0);
4154 cpu_buffer
->reader_page
->read
= 0;
4156 local_set(&cpu_buffer
->entries_bytes
, 0);
4157 local_set(&cpu_buffer
->overrun
, 0);
4158 local_set(&cpu_buffer
->commit_overrun
, 0);
4159 local_set(&cpu_buffer
->dropped_events
, 0);
4160 local_set(&cpu_buffer
->entries
, 0);
4161 local_set(&cpu_buffer
->committing
, 0);
4162 local_set(&cpu_buffer
->commits
, 0);
4163 cpu_buffer
->read
= 0;
4164 cpu_buffer
->read_bytes
= 0;
4166 cpu_buffer
->write_stamp
= 0;
4167 cpu_buffer
->read_stamp
= 0;
4169 cpu_buffer
->lost_events
= 0;
4170 cpu_buffer
->last_overrun
= 0;
4172 rb_head_page_activate(cpu_buffer
);
4176 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
4177 * @buffer: The ring buffer to reset a per cpu buffer of
4178 * @cpu: The CPU buffer to be reset
4180 void ring_buffer_reset_cpu(struct ring_buffer
*buffer
, int cpu
)
4182 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4183 unsigned long flags
;
4185 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4188 atomic_inc(&buffer
->resize_disabled
);
4189 atomic_inc(&cpu_buffer
->record_disabled
);
4191 /* Make sure all commits have finished */
4192 synchronize_sched();
4194 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4196 if (RB_WARN_ON(cpu_buffer
, local_read(&cpu_buffer
->committing
)))
4199 arch_spin_lock(&cpu_buffer
->lock
);
4201 rb_reset_cpu(cpu_buffer
);
4203 arch_spin_unlock(&cpu_buffer
->lock
);
4206 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4208 atomic_dec(&cpu_buffer
->record_disabled
);
4209 atomic_dec(&buffer
->resize_disabled
);
4211 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu
);
4214 * ring_buffer_reset - reset a ring buffer
4215 * @buffer: The ring buffer to reset all cpu buffers
4217 void ring_buffer_reset(struct ring_buffer
*buffer
)
4221 for_each_buffer_cpu(buffer
, cpu
)
4222 ring_buffer_reset_cpu(buffer
, cpu
);
4224 EXPORT_SYMBOL_GPL(ring_buffer_reset
);
4227 * rind_buffer_empty - is the ring buffer empty?
4228 * @buffer: The ring buffer to test
4230 int ring_buffer_empty(struct ring_buffer
*buffer
)
4232 struct ring_buffer_per_cpu
*cpu_buffer
;
4233 unsigned long flags
;
4238 /* yes this is racy, but if you don't like the race, lock the buffer */
4239 for_each_buffer_cpu(buffer
, cpu
) {
4240 cpu_buffer
= buffer
->buffers
[cpu
];
4241 local_irq_save(flags
);
4242 dolock
= rb_reader_lock(cpu_buffer
);
4243 ret
= rb_per_cpu_empty(cpu_buffer
);
4244 rb_reader_unlock(cpu_buffer
, dolock
);
4245 local_irq_restore(flags
);
4253 EXPORT_SYMBOL_GPL(ring_buffer_empty
);
4256 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
4257 * @buffer: The ring buffer
4258 * @cpu: The CPU buffer to test
4260 int ring_buffer_empty_cpu(struct ring_buffer
*buffer
, int cpu
)
4262 struct ring_buffer_per_cpu
*cpu_buffer
;
4263 unsigned long flags
;
4267 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4270 cpu_buffer
= buffer
->buffers
[cpu
];
4271 local_irq_save(flags
);
4272 dolock
= rb_reader_lock(cpu_buffer
);
4273 ret
= rb_per_cpu_empty(cpu_buffer
);
4274 rb_reader_unlock(cpu_buffer
, dolock
);
4275 local_irq_restore(flags
);
4279 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu
);
4281 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4283 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
4284 * @buffer_a: One buffer to swap with
4285 * @buffer_b: The other buffer to swap with
4287 * This function is useful for tracers that want to take a "snapshot"
4288 * of a CPU buffer and has another back up buffer lying around.
4289 * it is expected that the tracer handles the cpu buffer not being
4290 * used at the moment.
4292 int ring_buffer_swap_cpu(struct ring_buffer
*buffer_a
,
4293 struct ring_buffer
*buffer_b
, int cpu
)
4295 struct ring_buffer_per_cpu
*cpu_buffer_a
;
4296 struct ring_buffer_per_cpu
*cpu_buffer_b
;
4299 if (!cpumask_test_cpu(cpu
, buffer_a
->cpumask
) ||
4300 !cpumask_test_cpu(cpu
, buffer_b
->cpumask
))
4303 cpu_buffer_a
= buffer_a
->buffers
[cpu
];
4304 cpu_buffer_b
= buffer_b
->buffers
[cpu
];
4306 /* At least make sure the two buffers are somewhat the same */
4307 if (cpu_buffer_a
->nr_pages
!= cpu_buffer_b
->nr_pages
)
4312 if (atomic_read(&buffer_a
->record_disabled
))
4315 if (atomic_read(&buffer_b
->record_disabled
))
4318 if (atomic_read(&cpu_buffer_a
->record_disabled
))
4321 if (atomic_read(&cpu_buffer_b
->record_disabled
))
4325 * We can't do a synchronize_sched here because this
4326 * function can be called in atomic context.
4327 * Normally this will be called from the same CPU as cpu.
4328 * If not it's up to the caller to protect this.
4330 atomic_inc(&cpu_buffer_a
->record_disabled
);
4331 atomic_inc(&cpu_buffer_b
->record_disabled
);
4334 if (local_read(&cpu_buffer_a
->committing
))
4336 if (local_read(&cpu_buffer_b
->committing
))
4339 buffer_a
->buffers
[cpu
] = cpu_buffer_b
;
4340 buffer_b
->buffers
[cpu
] = cpu_buffer_a
;
4342 cpu_buffer_b
->buffer
= buffer_a
;
4343 cpu_buffer_a
->buffer
= buffer_b
;
4348 atomic_dec(&cpu_buffer_a
->record_disabled
);
4349 atomic_dec(&cpu_buffer_b
->record_disabled
);
4353 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu
);
4354 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
4357 * ring_buffer_alloc_read_page - allocate a page to read from buffer
4358 * @buffer: the buffer to allocate for.
4359 * @cpu: the cpu buffer to allocate.
4361 * This function is used in conjunction with ring_buffer_read_page.
4362 * When reading a full page from the ring buffer, these functions
4363 * can be used to speed up the process. The calling function should
4364 * allocate a few pages first with this function. Then when it
4365 * needs to get pages from the ring buffer, it passes the result
4366 * of this function into ring_buffer_read_page, which will swap
4367 * the page that was allocated, with the read page of the buffer.
4370 * The page allocated, or NULL on error.
4372 void *ring_buffer_alloc_read_page(struct ring_buffer
*buffer
, int cpu
)
4374 struct buffer_data_page
*bpage
;
4377 page
= alloc_pages_node(cpu_to_node(cpu
),
4378 GFP_KERNEL
| __GFP_NORETRY
, 0);
4382 bpage
= page_address(page
);
4384 rb_init_page(bpage
);
4388 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page
);
4391 * ring_buffer_free_read_page - free an allocated read page
4392 * @buffer: the buffer the page was allocate for
4393 * @data: the page to free
4395 * Free a page allocated from ring_buffer_alloc_read_page.
4397 void ring_buffer_free_read_page(struct ring_buffer
*buffer
, void *data
)
4399 free_page((unsigned long)data
);
4401 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page
);
4404 * ring_buffer_read_page - extract a page from the ring buffer
4405 * @buffer: buffer to extract from
4406 * @data_page: the page to use allocated from ring_buffer_alloc_read_page
4407 * @len: amount to extract
4408 * @cpu: the cpu of the buffer to extract
4409 * @full: should the extraction only happen when the page is full.
4411 * This function will pull out a page from the ring buffer and consume it.
4412 * @data_page must be the address of the variable that was returned
4413 * from ring_buffer_alloc_read_page. This is because the page might be used
4414 * to swap with a page in the ring buffer.
4417 * rpage = ring_buffer_alloc_read_page(buffer, cpu);
4420 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
4422 * process_page(rpage, ret);
4424 * When @full is set, the function will not return true unless
4425 * the writer is off the reader page.
4427 * Note: it is up to the calling functions to handle sleeps and wakeups.
4428 * The ring buffer can be used anywhere in the kernel and can not
4429 * blindly call wake_up. The layer that uses the ring buffer must be
4430 * responsible for that.
4433 * >=0 if data has been transferred, returns the offset of consumed data.
4434 * <0 if no data has been transferred.
4436 int ring_buffer_read_page(struct ring_buffer
*buffer
,
4437 void **data_page
, size_t len
, int cpu
, int full
)
4439 struct ring_buffer_per_cpu
*cpu_buffer
= buffer
->buffers
[cpu
];
4440 struct ring_buffer_event
*event
;
4441 struct buffer_data_page
*bpage
;
4442 struct buffer_page
*reader
;
4443 unsigned long missed_events
;
4444 unsigned long flags
;
4445 unsigned int commit
;
4450 if (!cpumask_test_cpu(cpu
, buffer
->cpumask
))
4454 * If len is not big enough to hold the page header, then
4455 * we can not copy anything.
4457 if (len
<= BUF_PAGE_HDR_SIZE
)
4460 len
-= BUF_PAGE_HDR_SIZE
;
4469 raw_spin_lock_irqsave(&cpu_buffer
->reader_lock
, flags
);
4471 reader
= rb_get_reader_page(cpu_buffer
);
4475 event
= rb_reader_event(cpu_buffer
);
4477 read
= reader
->read
;
4478 commit
= rb_page_commit(reader
);
4480 /* Check if any events were dropped */
4481 missed_events
= cpu_buffer
->lost_events
;
4484 * If this page has been partially read or
4485 * if len is not big enough to read the rest of the page or
4486 * a writer is still on the page, then
4487 * we must copy the data from the page to the buffer.
4488 * Otherwise, we can simply swap the page with the one passed in.
4490 if (read
|| (len
< (commit
- read
)) ||
4491 cpu_buffer
->reader_page
== cpu_buffer
->commit_page
) {
4492 struct buffer_data_page
*rpage
= cpu_buffer
->reader_page
->page
;
4493 unsigned int rpos
= read
;
4494 unsigned int pos
= 0;
4500 if (len
> (commit
- read
))
4501 len
= (commit
- read
);
4503 /* Always keep the time extend and data together */
4504 size
= rb_event_ts_length(event
);
4509 /* save the current timestamp, since the user will need it */
4510 save_timestamp
= cpu_buffer
->read_stamp
;
4512 /* Need to copy one event at a time */
4514 /* We need the size of one event, because
4515 * rb_advance_reader only advances by one event,
4516 * whereas rb_event_ts_length may include the size of
4517 * one or two events.
4518 * We have already ensured there's enough space if this
4519 * is a time extend. */
4520 size
= rb_event_length(event
);
4521 memcpy(bpage
->data
+ pos
, rpage
->data
+ rpos
, size
);
4525 rb_advance_reader(cpu_buffer
);
4526 rpos
= reader
->read
;
4532 event
= rb_reader_event(cpu_buffer
);
4533 /* Always keep the time extend and data together */
4534 size
= rb_event_ts_length(event
);
4535 } while (len
>= size
);
4538 local_set(&bpage
->commit
, pos
);
4539 bpage
->time_stamp
= save_timestamp
;
4541 /* we copied everything to the beginning */
4544 /* update the entry counter */
4545 cpu_buffer
->read
+= rb_page_entries(reader
);
4546 cpu_buffer
->read_bytes
+= BUF_PAGE_SIZE
;
4548 /* swap the pages */
4549 rb_init_page(bpage
);
4550 bpage
= reader
->page
;
4551 reader
->page
= *data_page
;
4552 local_set(&reader
->write
, 0);
4553 local_set(&reader
->entries
, 0);
4558 * Use the real_end for the data size,
4559 * This gives us a chance to store the lost events
4562 if (reader
->real_end
)
4563 local_set(&bpage
->commit
, reader
->real_end
);
4567 cpu_buffer
->lost_events
= 0;
4569 commit
= local_read(&bpage
->commit
);
4571 * Set a flag in the commit field if we lost events
4573 if (missed_events
) {
4574 /* If there is room at the end of the page to save the
4575 * missed events, then record it there.
4577 if (BUF_PAGE_SIZE
- commit
>= sizeof(missed_events
)) {
4578 memcpy(&bpage
->data
[commit
], &missed_events
,
4579 sizeof(missed_events
));
4580 local_add(RB_MISSED_STORED
, &bpage
->commit
);
4581 commit
+= sizeof(missed_events
);
4583 local_add(RB_MISSED_EVENTS
, &bpage
->commit
);
4587 * This page may be off to user land. Zero it out here.
4589 if (commit
< BUF_PAGE_SIZE
)
4590 memset(&bpage
->data
[commit
], 0, BUF_PAGE_SIZE
- commit
);
4593 raw_spin_unlock_irqrestore(&cpu_buffer
->reader_lock
, flags
);
4598 EXPORT_SYMBOL_GPL(ring_buffer_read_page
);
4600 #ifdef CONFIG_HOTPLUG_CPU
4601 static int rb_cpu_notify(struct notifier_block
*self
,
4602 unsigned long action
, void *hcpu
)
4604 struct ring_buffer
*buffer
=
4605 container_of(self
, struct ring_buffer
, cpu_notify
);
4606 long cpu
= (long)hcpu
;
4607 int cpu_i
, nr_pages_same
;
4608 unsigned int nr_pages
;
4611 case CPU_UP_PREPARE
:
4612 case CPU_UP_PREPARE_FROZEN
:
4613 if (cpumask_test_cpu(cpu
, buffer
->cpumask
))
4618 /* check if all cpu sizes are same */
4619 for_each_buffer_cpu(buffer
, cpu_i
) {
4620 /* fill in the size from first enabled cpu */
4622 nr_pages
= buffer
->buffers
[cpu_i
]->nr_pages
;
4623 if (nr_pages
!= buffer
->buffers
[cpu_i
]->nr_pages
) {
4628 /* allocate minimum pages, user can later expand it */
4631 buffer
->buffers
[cpu
] =
4632 rb_allocate_cpu_buffer(buffer
, nr_pages
, cpu
);
4633 if (!buffer
->buffers
[cpu
]) {
4634 WARN(1, "failed to allocate ring buffer on CPU %ld\n",
4639 cpumask_set_cpu(cpu
, buffer
->cpumask
);
4641 case CPU_DOWN_PREPARE
:
4642 case CPU_DOWN_PREPARE_FROZEN
:
4645 * If we were to free the buffer, then the user would
4646 * lose any trace that was in the buffer.
4656 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
4658 * This is a basic integrity check of the ring buffer.
4659 * Late in the boot cycle this test will run when configured in.
4660 * It will kick off a thread per CPU that will go into a loop
4661 * writing to the per cpu ring buffer various sizes of data.
4662 * Some of the data will be large items, some small.
4664 * Another thread is created that goes into a spin, sending out
4665 * IPIs to the other CPUs to also write into the ring buffer.
4666 * this is to test the nesting ability of the buffer.
4668 * Basic stats are recorded and reported. If something in the
4669 * ring buffer should happen that's not expected, a big warning
4670 * is displayed and all ring buffers are disabled.
4672 static struct task_struct
*rb_threads
[NR_CPUS
] __initdata
;
4674 struct rb_test_data
{
4675 struct ring_buffer
*buffer
;
4676 unsigned long events
;
4677 unsigned long bytes_written
;
4678 unsigned long bytes_alloc
;
4679 unsigned long bytes_dropped
;
4680 unsigned long events_nested
;
4681 unsigned long bytes_written_nested
;
4682 unsigned long bytes_alloc_nested
;
4683 unsigned long bytes_dropped_nested
;
4684 int min_size_nested
;
4685 int max_size_nested
;
4692 static struct rb_test_data rb_data
[NR_CPUS
] __initdata
;
4695 #define RB_TEST_BUFFER_SIZE 1048576
4697 static char rb_string
[] __initdata
=
4698 "abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
4699 "?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
4700 "!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
4702 static bool rb_test_started __initdata
;
4709 static __init
int rb_write_something(struct rb_test_data
*data
, bool nested
)
4711 struct ring_buffer_event
*event
;
4712 struct rb_item
*item
;
4719 /* Have nested writes different that what is written */
4720 cnt
= data
->cnt
+ (nested
? 27 : 0);
4722 /* Multiply cnt by ~e, to make some unique increment */
4723 size
= (data
->cnt
* 68 / 25) % (sizeof(rb_string
) - 1);
4725 len
= size
+ sizeof(struct rb_item
);
4727 started
= rb_test_started
;
4728 /* read rb_test_started before checking buffer enabled */
4731 event
= ring_buffer_lock_reserve(data
->buffer
, len
);
4733 /* Ignore dropped events before test starts. */
4736 data
->bytes_dropped
+= len
;
4738 data
->bytes_dropped_nested
+= len
;
4743 event_len
= ring_buffer_event_length(event
);
4745 if (RB_WARN_ON(data
->buffer
, event_len
< len
))
4748 item
= ring_buffer_event_data(event
);
4750 memcpy(item
->str
, rb_string
, size
);
4753 data
->bytes_alloc_nested
+= event_len
;
4754 data
->bytes_written_nested
+= len
;
4755 data
->events_nested
++;
4756 if (!data
->min_size_nested
|| len
< data
->min_size_nested
)
4757 data
->min_size_nested
= len
;
4758 if (len
> data
->max_size_nested
)
4759 data
->max_size_nested
= len
;
4761 data
->bytes_alloc
+= event_len
;
4762 data
->bytes_written
+= len
;
4764 if (!data
->min_size
|| len
< data
->min_size
)
4765 data
->max_size
= len
;
4766 if (len
> data
->max_size
)
4767 data
->max_size
= len
;
4771 ring_buffer_unlock_commit(data
->buffer
, event
);
4776 static __init
int rb_test(void *arg
)
4778 struct rb_test_data
*data
= arg
;
4780 while (!kthread_should_stop()) {
4781 rb_write_something(data
, false);
4784 set_current_state(TASK_INTERRUPTIBLE
);
4785 /* Now sleep between a min of 100-300us and a max of 1ms */
4786 usleep_range(((data
->cnt
% 3) + 1) * 100, 1000);
4792 static __init
void rb_ipi(void *ignore
)
4794 struct rb_test_data
*data
;
4795 int cpu
= smp_processor_id();
4797 data
= &rb_data
[cpu
];
4798 rb_write_something(data
, true);
4801 static __init
int rb_hammer_test(void *arg
)
4803 while (!kthread_should_stop()) {
4805 /* Send an IPI to all cpus to write data! */
4806 smp_call_function(rb_ipi
, NULL
, 1);
4807 /* No sleep, but for non preempt, let others run */
4814 static __init
int test_ringbuffer(void)
4816 struct task_struct
*rb_hammer
;
4817 struct ring_buffer
*buffer
;
4821 pr_info("Running ring buffer tests...\n");
4823 buffer
= ring_buffer_alloc(RB_TEST_BUFFER_SIZE
, RB_FL_OVERWRITE
);
4824 if (WARN_ON(!buffer
))
4827 /* Disable buffer so that threads can't write to it yet */
4828 ring_buffer_record_off(buffer
);
4830 for_each_online_cpu(cpu
) {
4831 rb_data
[cpu
].buffer
= buffer
;
4832 rb_data
[cpu
].cpu
= cpu
;
4833 rb_data
[cpu
].cnt
= cpu
;
4834 rb_threads
[cpu
] = kthread_create(rb_test
, &rb_data
[cpu
],
4835 "rbtester/%d", cpu
);
4836 if (WARN_ON(!rb_threads
[cpu
])) {
4837 pr_cont("FAILED\n");
4842 kthread_bind(rb_threads
[cpu
], cpu
);
4843 wake_up_process(rb_threads
[cpu
]);
4846 /* Now create the rb hammer! */
4847 rb_hammer
= kthread_run(rb_hammer_test
, NULL
, "rbhammer");
4848 if (WARN_ON(!rb_hammer
)) {
4849 pr_cont("FAILED\n");
4854 ring_buffer_record_on(buffer
);
4856 * Show buffer is enabled before setting rb_test_started.
4857 * Yes there's a small race window where events could be
4858 * dropped and the thread wont catch it. But when a ring
4859 * buffer gets enabled, there will always be some kind of
4860 * delay before other CPUs see it. Thus, we don't care about
4861 * those dropped events. We care about events dropped after
4862 * the threads see that the buffer is active.
4865 rb_test_started
= true;
4867 set_current_state(TASK_INTERRUPTIBLE
);
4868 /* Just run for 10 seconds */;
4869 schedule_timeout(10 * HZ
);
4871 kthread_stop(rb_hammer
);
4874 for_each_online_cpu(cpu
) {
4875 if (!rb_threads
[cpu
])
4877 kthread_stop(rb_threads
[cpu
]);
4880 ring_buffer_free(buffer
);
4885 pr_info("finished\n");
4886 for_each_online_cpu(cpu
) {
4887 struct ring_buffer_event
*event
;
4888 struct rb_test_data
*data
= &rb_data
[cpu
];
4889 struct rb_item
*item
;
4890 unsigned long total_events
;
4891 unsigned long total_dropped
;
4892 unsigned long total_written
;
4893 unsigned long total_alloc
;
4894 unsigned long total_read
= 0;
4895 unsigned long total_size
= 0;
4896 unsigned long total_len
= 0;
4897 unsigned long total_lost
= 0;
4900 int small_event_size
;
4904 total_events
= data
->events
+ data
->events_nested
;
4905 total_written
= data
->bytes_written
+ data
->bytes_written_nested
;
4906 total_alloc
= data
->bytes_alloc
+ data
->bytes_alloc_nested
;
4907 total_dropped
= data
->bytes_dropped
+ data
->bytes_dropped_nested
;
4909 big_event_size
= data
->max_size
+ data
->max_size_nested
;
4910 small_event_size
= data
->min_size
+ data
->min_size_nested
;
4912 pr_info("CPU %d:\n", cpu
);
4913 pr_info(" events: %ld\n", total_events
);
4914 pr_info(" dropped bytes: %ld\n", total_dropped
);
4915 pr_info(" alloced bytes: %ld\n", total_alloc
);
4916 pr_info(" written bytes: %ld\n", total_written
);
4917 pr_info(" biggest event: %d\n", big_event_size
);
4918 pr_info(" smallest event: %d\n", small_event_size
);
4920 if (RB_WARN_ON(buffer
, total_dropped
))
4925 while ((event
= ring_buffer_consume(buffer
, cpu
, NULL
, &lost
))) {
4927 item
= ring_buffer_event_data(event
);
4928 total_len
+= ring_buffer_event_length(event
);
4929 total_size
+= item
->size
+ sizeof(struct rb_item
);
4930 if (memcmp(&item
->str
[0], rb_string
, item
->size
) != 0) {
4931 pr_info("FAILED!\n");
4932 pr_info("buffer had: %.*s\n", item
->size
, item
->str
);
4933 pr_info("expected: %.*s\n", item
->size
, rb_string
);
4934 RB_WARN_ON(buffer
, 1);
4945 pr_info(" read events: %ld\n", total_read
);
4946 pr_info(" lost events: %ld\n", total_lost
);
4947 pr_info(" total events: %ld\n", total_lost
+ total_read
);
4948 pr_info(" recorded len bytes: %ld\n", total_len
);
4949 pr_info(" recorded size bytes: %ld\n", total_size
);
4951 pr_info(" With dropped events, record len and size may not match\n"
4952 " alloced and written from above\n");
4954 if (RB_WARN_ON(buffer
, total_len
!= total_alloc
||
4955 total_size
!= total_written
))
4958 if (RB_WARN_ON(buffer
, total_lost
+ total_read
!= total_events
))
4964 pr_info("Ring buffer PASSED!\n");
4966 ring_buffer_free(buffer
);
4970 late_initcall(test_ringbuffer
);
4971 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */